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Abstract 
Malaria is widely perceived as immunosuppressive. Despite extensive 

phenomenological description, the underlying mechanisms remain poorly described. 

The aim of this thesis was to identify possible mechanisms by which malaria modifies 

host defence, and to determine the importance of these mechanisms in a translational 

system moving from a mouse model to human malaria. 

The most frequently cited immunological consequences of malaria are: suppression of 

vaccine responses, susceptibility to bacterial infection, susceptibility to endemic 

Burkitt lymphoma, and increased HIV viral load. Of these, susceptibility to non-Typhoid 

Salmonella (NTS) bacteremia, associated with severe hemolysis, was the most 

consistent between animal and human studies. I hypothesized that hemolysis would 

induce the immunomodulatory enzyme heme oxygenase-l (HO-l), which is essential 

for survival in malaria infections in mice, but might impair host defence against NTS. 

I demonstrate in mice that malaria, chemically-induced hemolysis, or simply 

administration of heme, cause loss of resistance to NTS, allowing more rapid bacterial 

growth than in control animals. A new niche for bacterial replication is established 

within neutrophils, which have impaired oxidative burst and bacterial killing activity. 

Hemolysis and heme induce HO-1 in neutrophil progenitors in the bone marrow, and 

this reduces the oxidative burst capacity of maturing neutrophils whilst also causing 

their premature mobilization into the circulation. Inhibition of HO by the competitive 

inhibitor SnPP abrogates the impaired resistance to NTS infection. I observed a similar 

phenomenon in Gambian children with malaria, with prolonged impairment of 

neutrophil function, the severity of which is related to hemolysis and HO-l induction. 

In summary I have shown that hemolysis- and HO-l-mediated neutrophil dysfunction 

occurs in malaria and is important for susceptibility to NTS infection. HO-1 inhibition 

might offer a novel therapy to alleviate neutrophil dysfunction in malaria patients. 
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Glossary 

AIDS Aquired immunodeficiency syndrome 
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PE-Cy7 Phycoerythrin-Cyanine 7 conjugate 
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PfHRP2 Plasmodium Jalciparum histidine rich protein 2 
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ROS Reactive oxygen species 
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SiRNA Small interfering RNA 
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STAT Signal transducer and activator of transcription 

StRE Stress response element 

TBP TATA box-binding protein 
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Transforming growth factor-p 
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Tumour necrosis factor-a 
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Spelling conventions 

In the scientific literature the word heme is now used much more frequently than 

haem, for example in heme oxygenase. However this trend is much less marked for the 

use of hemoglobin instead of haemoglobin. To try to maintain consistency between 

terms used in this thesis, the American spelling of this and related words (-e- rather 

than -ae-) has been used throughout, except for the manuscript presented in Chapter 

7, where the English spelling is used due to requirements of the journal to which the 

manuscript has been submitted. 
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Introduction 

The direct and indirect burdens of malaria 

The World Health Organization estimated that there were 216 million malaria 

infections and 655,000 deaths from malaria in 2010, with the vast majority of these 

occurring in the African region. 1 Other authors have suggested that this may be a 

substantial underestimate and that the true number of malaria death is almost twice 

as high.2 In addition to this direct burden of disease, malaria also causes an enormous 

indirect burden of disease, seemingly by increasing the morbidity and mortality due to 

other infections.3 This is difficult to estimate directly, but is apparent from the larger

than-expected reductions in all cause mortality seen when malaria transmission is 

reduced.4
-
s In a rural area of The Gambia, introduction of insecticide treated bed nets 

reduced overall child mortality by more than one-third, greater than the reduction in 

deaths directly attributable to malaria,4 with reductions in deaths due to causes as 

diverse as gastroenteritis and respiratory infections.6 On Bioko island, Equatorial 

Guinea, reducing malaria prevalence by two-thirds in a five year period using indoor 

residual spraying, free access to artemisinin combination therapy and long lasting 

insecticide treated nets, produced a reduction in all cause child mortality of almost 

two-thirds, remarkably achieving the Millenium Development Goal by targeting just 

one disease.s Consistent with these ecological studies, mathematical models have 

predicted that the overall burden of malaria may be more than double the direct 

burden, depending on the transmission setting and age group considered.37 The high 

indirect health burden of malaria has been thought to be due mainly to increased 

susceptibility to other infections, although undoubtedly there are more complex 

factors such as its socioeconomic impact which may also influence health.s Specific 

associations have been well described between malaria and impaired defence against 

other infectious diseases, most notably: Gram negative bacteriallnfections,9-11 Human 

Immunodeficiency Virus (HIV),12 and Epstein-Barr virus (EBV).13.14 These associations 

have been described, almost exclusively,lS with Plasmodium !alciparum malaria, the 

most common of the Plasmodium species causing human malaria, and the cause of the 
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majority of the global morbidity and mortality attributed to malaria.16 Whether other 

Plasmodium species impair host defence in humans has scarcely been studied. 

Malaria and immunosuppression 

Susceptibility to death from other infectious diseases has been the most obvious 

explanation for the indirect burden of malaria,6 
911 and has led to the suggestion that 

malaria causes generalized immunosuppression17-19. Although numerous studies have 

provided evidence of suppression of aspects of innate, cellular and humoral immunity 

by malaria, these have often been quite specific rather than generalized defects, and 

other studies have shown normal responses to different antigens or at different stages 

of infection. 

The earliest observations suggestive of specific defects in immune responses caused by 

malaria were those relating to vaccine responses. In 1962, McGregor reported that 

responses to tetanus vaccination were improved in Gambian children receiving malaria 

chemoprophylaxis compared with children not receiving chemoprophylaxis,2o and 

numerous subsequent studies demonstrated that responses, mainly to carbohydrate 

antigens, were suppressed in malaria (see Chapter 3).21 

later studies investigated alterations in cellular immunity and demonstrated a variety 

of abnormalities during and following acute malaria infection, including: T

lymphopenia,1822 reduced proliferative responses to some antigens (particularly 

malarial antigens),18 22-24 reduced cutaneous delayed type hypersensitivity 

responses,18 and reduced levels of plasma Il_2.18 However, not all of these findings 

were confirmed in other studies,17 and the results must be interpreted with caution 

since they provide only snap shots of the function of cells in peripheral blood during 

infection, and not an assessment of the function of the immune system as a whole. 

Subsequent studies demonstrated activation and redistribution of lymphocyte subsets 

during acute malaria infection,25-26 suggesting that apparent cellular 

immunosuppression is most likely a consequence of both the timing and source of the 

sample during the dynamic process of migration, expansion and subsequent 
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contraction of lymphocyte populations, which characterises the immune response to 

malaria.27 

Abnormalities in innate immune function have been described in malaria, principally 

affecting monocytes, macrophages and dendritic cells. In 1999, the finding that 

dendritic cell maturation appeared to be compromised by co-incubation with 

parasitized erythrocytes28 fuelled great interest in the potential role of dendritic cell 

dysfunction as an explanation for immunosuppression caused by malaria, 

unfortunately resulting in many studies with apparently contradictory results.29 Studies 

in non-lethal rodent malaria infections generally showed normal dendritic cell 

function,30-32 but abnormal maturation and function was observed in more virulent 

infections.3033-34 However, similar to apparent variations in T-Iymphocyte numbers and 

function, it is likely that changes in dendritic cell function also reflect the dynamic 

changes necessary to mount and then regulate an inflammatory response to malaria 

infection,3S-36 and conflicting findings result, in part, from assessment of dendritic cell 

function at different stages in this process. 

Phagocytic cell function, primarily that of macrophages and monocytes, has also been 

investigated in malaria. Most studies have used ex-vivo and in-vitro assessments and 

there has been relatively little in vivo investigation of the importance of these cells in 

explaining the susceptibility to other infections that occurs with malaria. Particular 

interest has focussed on the role of hemozoin, the insoluble hemin polymer produced 

during hemoglobin digestion inside the parasitised red cell.37 Phagocytosis of 

hemozoin by monocytes impairs their i) oxidative burst, ii) ability to perform further 

phagocytosis, iii) ability to kill phagocytosed bacteria, and iv) expression of MHCII, 

C054, COlle, whilst stimulating TNF-alpha, MMP-9 and IL-lO secretion but inhibiting 

IL-2 and IL-12 secretion.38-42 Thus hemozoin may have the potential to affect many 

aspects of monocyte and macrophage function, influencing direct antimicrobial 

activity, antigen presentation, and stimulation and polarization of the adaptive 

immune response.43 However the relevance of hemozoin-mediated phagocyte 

dysfunction in vivo has not been clearly established. In an observational study of 

Kenyan children with acute malaria, the presence of hemozoin containing monocytes 

was associated with lower levels of systemic IL_l2,42 but whether this simply reflects 

20 



different durations and kinetics of parasitemia, and hence the immune response, in 

children with hemozoin accumulation compared to those without, is impossible to 

establish. 

Far from causing a state of anergy, there is abundant evidence that malaria drives 

immune activation. Plasmodium species produce a variety of innate immune system 

activating ligands including: glycosylphosphatidylinositols (GPls), signalling through 

Toll-like receptors (TLR) 2 and 4;44 parasite DNA, often in complex with hemozoin, 

signalling through TLR_g4S and novel innate receptors.46 Hemozoin alone signals 

through the NOD-like receptor containing pyrin domain 3 (NLRP3) inflammasome and 

parasite-derived microparticles signal through TLR 4.47 These innate signalling 

pathways may augment the polyclonal B cell activation that occurs due to type 1 T-cell 

independent P. !alciparum antigens.48
-49 In addition, early, robust T-cell activation has 

been demonstrated by experimental infections in miceso and in sporozoite-infected 

human volunteers in whom expansion of interferon-y producing effector memory 

CD4+T cells and yo T cells is observed.51-52 Consistent with early innate and cellular 

immune activation, elevated levels of soluble granzyme A, interferon-v, IL-8 and IL-

12p40 are detectable in plasma several days prior to microscopic detection of 

paraSitemia in blood, coinciding with the timing of first release of merozoites from the 

Iiver.53-54 There may be considerable variations between individuals in these early 

innate responses, which influence both the rate of increase of paraSitemia and the 

onset of symptoms.54 In experimental infection of humans, treatment is normally 

commenced when parasitemia becomes microscopically detectable, and so it is not 

possible to examine the effect of ongoing parasitemia on subsequent activation and 

function of T -lymphocytes, but infections in mice suggest that there is significant 

redistribution of lymphocytes27 55 and progressive differentiation into late effector 

memory and effector CD4+ T cell phenotypes.56 

Whilst immune activation is necessary to produce an effective immune response to 

control a pathogen, a consequence of persistent or repetitive immune activation can 

be the functional exhaustion of immune cells.57-58 This has been well studied in 

humans with HIV, where sustained immune activation is now believed to be the most 

Important mechanism causing immune dysfunction, 59 and many features seen in HIV 
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are also observed following prolonged or repeated exposure to malaria: polyclonal B 

cell activation,60 hypergammaglobulinaemia,61 expansion of atypical memory B cells,62 

and T-cell exhaustion.63 In high transmission settings, where the indirect burden of 

malaria seems greatest/ the consequences of repetitive and persistent immune 

activation may result in dysfunctional heterologous immune responses and explain the 

observed susceptibility to other infectious diseases. Furthermore, malaria infections 

drive the generation of regulatory T-cells, which appear not to significantly influence 

the early response to the malaria infection, but could conceivably alter host responses 

to other pathogens.64 

In summary, despite early studies often demonstrating specific immunosuppression in 

malaria, evidence for generalized immunosuppression by acute malaria is lacking. 

More likely, recurrent or persistent infections cause immunological changes due to 

persistent immune activation. However, as will be discussed below, there may be 

additional explanations for the specific associations of malaria with poor antibody 

responses to some vaccinations, chronic Epstein-Barr viremia and endemic Burkitt 

lymphoma, increased HIV viral load, and Gram negative bacteremia. 

Malaria and antibody responses 
Impaired responses to vaccination have been demonstrated in animals infected with 

rodent malaria parasites, as well as humans infected with P. !alciparum (reviewed in 

detail in Chapter 3).21 In this review of the literature I found that malaria had little 

effect on the responses to most modern protein antigen vaccines, but seemed to 

predominantly affect the responses to T-indepedent antigens. In contrast to the 

extensive literature on malaria and vaccine responses, there is very little literature 

regarding naturally acquired humoral responses to other pathogens in individuals 

being repeatedly exposed to malaria. These might be particularly interesting to study, 

because naturally occurring responses to some pathogens such as Streptococcus 

pneumoniae, may differ from vaccine induced responses to the same pathogen,6S and 

could potentially be less robust. Recent findings suggest that repeated exposure to 

malaria promotes atypical memory 8-cell generatlon.62 ~67 In the context of HIV 
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infection, this atypical memory B-cell phenotype has been proposed to be functionally 

"exhausted",68 although there is still a need for clarification ofthe role ofthese cells in 

vivo. However, if these really are an exhausted B-cell phenotype, this raises the 

possibility that exposure to intense malaria transmission might increase susceptibility 

to a range of pathogens by impairing either vaccine-induced or naturally occurring 

humoral immunity. 

Malaria, Epstein-Barr Virus and endemic Burkitt lymphoma 
Endemic Burkitt lymphoma is an unusual childhood B-Iymphocyte malignancy, which 

occurs in a restricted geographical distribution, often presenting as a disfiguring mass 

arising from the jaw.69 It occurs across equatorial Africa and Papua New Guinea, in 

areas with holoendemic malaria and all cases are associated with EBV detectable 

within the tumour cells, and overexpression of the proto-oncogene c-myc which drives 

B-cell proliferation.69
-
7o The curious necessity for both sustained exposure to malaria 

(which is not closely associated with other cancers) and EBV (which is well known to 

promote tumorigenesis71
) suggests that malaria somehow enhances the potential of 

EBV to cause malignant transformation?O Immunological mechanisms may underlie 

this phenomenon: malaria has been reported to impair EBV specific T-cell immunity13-

14 and polyclonal B-cell activation by malaria antigens may trigger increased replication 

of latent EBV within these cells.7072 However, it remains unclear why and how the 

establishment and maintenance of immunity to EBV is so impaired by malaria, or even 

whether this is a specific effect. A recent report suggests that replication of some, but 

not all, other herpes viruses may also be favoured by episodes of malaria.73 

Interestingly though, following a marked decline in the incidence of malaria in The 

Gambia,14 impairment of T-cell control of EBV-infected B-cells13 is no longer apparent 

in children with acute malaria,15 suggesting that repeated exposure is necessary to 

produce a functional deficit. 
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Malaria and HIV 

The observation of a geographical overlap between areas of high HIV prevalence and 

high malaria transmission raised the obvious question of whether there are important 

interactions between the two infections.76-77 It was hypothesised that malaria might 

promote HIV replication or impair immunological control of replication, and acute 

malaria was found to cause modest increases in HIV viralload.12 However, the effect of 

malaria on HIV viral load is similar to that of most other intercurrent infections/8 

suggesting that malaria does not have a pronounced immunosuppressive effect on the 

immune response to HIV. Despite this, there are many possible consequences of the 

reciprocal interactions between malaria and HIV, and these are reviewed in detail in 

Chapter 4. 

Malaria and bacterial co-infection 

An association between malaria and susceptibility to invasive bacterial infection has 

been known for almost a century,9 and has been repeatedly documented in different 

settings across Sub-Saharan Africa.1l79-8l This association was first described for 

malaria and non-Typhoid Salmonella (NTS) bacteremia,9 which remains the most 

frequent cause of malaria associated bacteremia in many studies, but also includes 

susceptibility to other Gram negative bacteria.10
-
ll Although coincidence of two 

common pathologies, and shared risk factors such as the local environment, rainfall, 

poverty and co-morbidities (such as HIV and malnutrition) may be hypothesised to 

contribute to susceptibility to both malaria and invasive bacterial infection, there is 

compelling evidence for causality rather than merely an association. 

Observations from the pre-antibiotic era provide a fascinating insight into the 

relationship between malaria and NTS in ways that could never now be tested in 

humans. Prior to the availability of penicillin, "malaria therapy" (the deliberate 

inoculation with blood stage malaria parasites) was widely used as treatment for 

neurosyphilis,82 presumed to work by inducing fever that killed the treponemal 

spirochaetes. However it was observed that malaria therapy was often associated with 

NTS bacteremia and bacterial meninigitis, even in countries where NTS infection was 

very rare in healthy Indlviduals.83 Supporting the concept that the malaria was the 
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cause of the susceptibility to NTS infection, observations in British Guyana 

demonstrated that once the malaria was cured with quinine, co-infected individuals 

were often able to spontaneously clear NTS infection without additional treatment. 

Studies of the epidemiology of malaria-NTS co-infection have clearly shown that the 

incidence of malaria and NTS bacteremia are strongly correlated,l1 7984 whereas stool 

carriage of NTS is not as closely related to the incidence of NTS bacteremia.79 Where 

malaria transmission has declined over time, similar trends have been observed in NTS 

bacteremia.1184 Controlling for the effects of HIV and malnutrition still reveals a robust 

association between malaria and bacteremia.10 81 The most elegant demonstration of 

the effect of malaria on susceptibility to bacteremia comes from recent analysis of the 

associations between sickle cell trait, malaria and bacteremia.11 Sickle cell trait is a 

classic example of heterozygote advantage, providing protection against the 

development of malaria.8s ln Kenyan children, sickle cell trait was associated with a 

decreased risk of bacteraemia that was entirely dependent on the protection it 

afforded against malaria: as malaria incidence declined the protective effect of sickle 

cell trait against bacteremia was lost.ll The same study also allowed the estimation 

that nearly two-thirds of cases of bacteraemia were attributable to the effect of 

malaria when malaria transmission was at its highest levels.ll NTS has been reported 

as one of the most common causes of community acquired bacteremia in children 

presenting to hospital in Kenya,86 second only to S. pneumoniae. However the 

association between malaria and bacteremia extends only to NTS and some other 

common Gram negative organisms but not to S. pneumoniae and other Gram positive 

bacteria.ll 

High case fatality rates have been reported for patients hospitalised with malaria and 

bacterial co-infections, suggesting that mortality may be increased,lO 87-88 but most 

studies have lacked statistical power to determine whether this truly exceeds the 

mortality associated with either bacteremia or equivalently severe malaria alone. 

Whilst findings of a strong association between NTS bacteremia and malaria have been 

consistent, the timing and duration of susceptibility have not been so clearly 

established. In the earliest reports both infections were observed concurrently in 
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individuals who were often not treated for some time after the onset of symptoms.9 83 

Several subsequent studies have suggested that increased susceptibility to NTS 

bacteremia may persist after clearance of microscopically detectable malaria 

infection,8389-9o or that susceptibility is greater at moderate than high density 

parasitemia.90
-
9l Other studies have suggested that the association is particularly 

strong in the case of severe malarial anemia.798l889l-92 Since severe malarial anemia 

most likely occurs following prolonged or recurrent malaria infections,93 the 

observations above might be reconciled by postulating that malaria causes 

susceptibility to NTS through a delayed mechanism that requires a certain amount of 

time to become operational following onset of either parasitemia or symptoms. 

Clinical observations have prompted speculation that malaria may cause susceptibility 

to bacteremia through immunoparesis,lO impairment of phagocytic cell function/994-95 

complement consumption,94 or increased gut permeability.lO Since acquisition of 

functional antibodies against NTS also plays a crucial role in preventing infection,96-97 

one may also speculate that malaria might cause susceptibility through impairment of 

the humoral response to NTS. However, other clinical observations suggest that an 

alternative mechanism, related to hemolysis, may be responsible. Malaria is not the 

only infectious disease to predispose to invasive NTS infection. Oroya fever, an acute 

form of Bartonellosis, was strongly associated with NTS bacteremia.98 Interestingly, 

Oroya fever is characterised by an acute hemolytic phase,99 and it is at this stage that 

susceptibility to NTS manifests clinically.98 Hemolysis is also a characteristic feature of 

sickle cell disease, due to intravascular destruction of abnormal red blood cells, and 

sickle cell disease strongly predisposes to NTS infection.lOO-lOl 

Although it is not immediately obvious how hemolysis might cause susceptibility to 

NTS bacteremia, these clinical observations inspired investigation of the effects of 

hemolysis and anemia on susceptibility to NTS in mice. In seminal experiments Kaye 

and Hook showed that acute hemolytic anemia increased susceptibility to Salmonella 

typhimurium, whereas an equivalent degree of anemia caused by blood loss alone, did 

not.102 This was not dependent on the route of administration of bacteria (intravenous, 

Intraperitoneal or by gavage) or on the method used to induce hemolysis (antl-mouse

erythrocyte serum, phenylhydrazine administration or P. berghe/ infection).lo2-103 
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Increased susceptibility was manifest by decreased survival and increased bacterial 

replication in liver, spleen, blood and kidneys.lo2-l04 Increased susceptibility was also 

found following intravenous or intraperitoneal infection with Escherichia coli and 

Staphylococcus aureus but not two different strains of S. pneumoniae.102 In these 

experiments there was no evidence of significant impairment of the clearance of 

carbon particles or viable bacteria from blood, suggesting that phagocytic mechanisms 

were unaffected, and therefore implying that hemolysis impaired bacterial killing.104 

Interestingly neither administration of hemoglobin-, nor red cell stroma-enriched 

fractions of freeze-fractured red blood cells reproduced susceptibility to S. 

typhimurium,lo2 although it is not clear that the amounts administered were 

equivalent to the amounts likely to be generated by in vivo hemolysis. 

Others have largely confirmed the observations of Kaye and Hook, showing that 

hemolysis and different rodent malaria species can induce susceptibility to infection 

with S. typhimurium,105 S. enteritidis, Yersinia enterocolitica and Listeria 

monocytogenes.106 These studies have also sought to explain the susceptibility caused 

by malaria based on dysfunction of macrophages, but crucially neither has 

demonstrated that increased bacterial replication in vivo occurs within 

macrophages.los-lo6 Furthermore, Roux et al reported that antibody mediated 

hemolysis caused less susceptibility than did malarial hemolysis, proposing malaria 

specific immunosuppression to explain this discrepancy, without demonstrating that 

both conditions produced equivalent degrees of intravascular hemolysis.los 

Tolerance and resistance 
One issue not considered in detail so far, is whether malaria causes its indirect burden 

of disease by increasing the severity of illness associated with other infections, or by 

increasing the likelihood of infections occurring, or both. Another way to consider this 

question is using the emerging concepts of pathogen resistance and tolerance.107-108 In 

this context resistance mechanisms are defined as acting to limit pathogen burden, 

whereas tolerance mechanisms act to reduce the damage or promote survival of the 

host at a given pathogen load. These mechanisms need not be mutually exclusive or 
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even necessarily have the same effect in the context of different pathogens.109 

Resistance mechanisms are most obvious and include most of the defences 

conventionally thought to protect hosts from pathogen invasion, starting from the 

physical barriers of the skin and gut right through to most aspects of the innate and 

adaptive immune systems.110 Tolerance mechanisms are less well characterised llo but 

intuitively would seem to explain the common clinical scenario where one patient with 

bacteremia may have few symptoms besides fever, whilst another infected with the 

same organism may die from septic shock. Of course, the main problem in humans is 

determining whether these patients have the same pathogen load, and hence 

disentangling resistance from tolerance. One may suppose that a patient with severe 

malarial anemia might have reduced physiological tolerance to the additional stress of 

severe gastroenteritis or pneumonia, explaining how malaria might increase mortality 

in these conditions.6 However the specific examples described above suggest that 

malaria, particularly with repeated or sustained infection, impairs resistance to several 

pathogens: P. /alciparum malaria increases EBV and HIV viral loads, 1214111 and 

increases the incidence of bacteremia with NTS,l1 and - in mice - malaria permits more 

rapid replication of NTS.105 The apparent increase in mortality in malaria-NTS co

infection also raises the possibility that tolerance is impaired.87
-
88 

One of the few pure tolerance mechanisms clearly described in mammals is the 

detoxification of hemolysis-derived heme by the inducible enzyme heme oxygenase-l 

(HO-l) in murine malaria,112-114 and subsequently HO-l induction has been proposed 

to mediate tolerance in a sepsis model as well.115 

Heme 

Heme (ferrous (Fe2+) iron protoporphyrin IX) is an essential component of heme 

proteins such as hemoglobin and cytochrome P450, and is indispensible to aerobic 

cells.116 The ferric (Fe3+) form of iron protoporphyrin IX is termed hemin, although the 

term heme Is also often used to describe both the ferrous and ferric forms.
117 

Heme is 

usually contained in the intracellular compartment, but can be released in a variety of 

pathological conditions, when it may incorporate into cell membranes and release iron 
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which can drive production of damaging reactive oxygen species (ROS).117-118 Situations 

where heme proteins are released from the cellular compartment in particularly large 

amounts include hemolysis (hemoglobin derived heme) and rhabdomyolysis 

(myoglobin derived heme).117 Oxidation of cell free-hemoglobin to methemoglobin 

allows the release of the heme moiety.112 Free heme is extremely hydrophobic and 

intercalates into cell membranes, where it becomes susceptible to further oxidation to 

release free, redox-active, iron which amplifies the generation of further ROS and cell 

damage. The accumulation of cytotoxic cell-free heme is usually prevented by a series 

of defences: the plasma protein haptoglobin binds and stabilises cell-free hemoglobin, 

preventing its oxidation and release of heme and targeting hemoglobin to C0163 

expressing cells;119 if haptoglobin levels are depleted by overwhelming hemolysis, 

another plasma protein, hemopexin binds avidly to cell free heme preventing its 

cytotoxic effects and targeting it to C091 expressing cells;120-121 finally, albumin and 

lipoproteins are able to bind heme (albeit more weakly than hemopexin) and may 

provide a final buffer against heme toxicity in extreme hemolysis.118 

In rodent models of sepsis and malaria, cell free heme has been shown to contribute 

to tissue damage by sensitising cells to TNF-a triggered, ROS-mediated, programmed 

cell death.11311s These dying cells may release endogenous pro-inflammatory 

mediators, such as high mobility group box 1 (HMGB1), which then link heme 

sensitised-cell death to exacerbation of the inflammatory response.lls In other 

studies free heme has been shown to activate the neutrophil oxidative burst and 

trigger neutrophil migration whilst preventing neutrophil apoptosis,122-12s to activate 

TLR_4,126-127 and to oxidize low density lipoprotein to cytotoxic derivates.128 

Consequences of heme toxicity include leukocytosis,129 and endothelial activation with 

upregulation of vascular adhesion molecules130-131 and tissue factor.132 By as yet 

undefined mechanisms, free heme also exacerbates depletion of L-arginine, the 

precursor of nitric oxide, which might exacerbate endothelial dysfunction in hemolytic 

disorders.133 
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Heme oxygenase 

Heme oxygenase (HO) enzymes catalyze the rate limiting step of heme degradation, 

producing carbon monoxide (CO), iron and biliverdin (Fig 1.1).134 Biliverdin is rapidly 

converted to bilirubin by biliverdin reductase.135 Three isoforms of HO have been 

described (HO-1, HO-2 and HO_3) .134136-137 HO-1 is inducible by diverse stimuli 

including its substrate heme, and numerous potentially harmful stimuli (Table 1), but is 

also expressed constitutively in spleen and liver, presumably because of their roles in 

heme degradation .134138-139 HO-2 is constitutively expressed by most tissues, and 

shows much less transcriptional regulation.136138 HO-3 was identified by screening a 

cDNA Iibrary,137 but subsequent studies have failed to demonstrate a functional HO-3 

gene, and its relevance remains dubious.14o HO enzymes have been characterized in 

vertebrates, invertebrates, protozoa (including Plasmodium falciparum 141
), plants and 

bacteria .142-143 
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Figure 1.1 Heme degradation. 

Heme is converted to biliverdin by heme oxygenase (box defined by solid line), with 

the liberation of CO and Fe2
+. Biliverdin is rapidly converted to bilirubin by biliverdin 

reductase (box defined by dashed line). Adapted from Kikuchi et al 2005.
142 
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Heme oxygenase-1 

Following its characterization in 1968,134 HO was demonstrated to be induced in many 

tissues with constitutively low levels of activity, by hemoglobin,l44 trace metals,14S and 

endotoxin.146 The inducible isoform was designated HO_1.136 Most attention focused 

on its role in heme metabolism but in 1987 rat HO-l was characterised as a heat shock 

protein,147 and subsequently HO-l was demonstrated to be induced in skin fibroblasts 

by ultraviolet-A radiation, suggesting a protective function in addition to heme 

degradation. l48 The anti-inflammatory role of HO-l was first described in 1995, 

attenuating the effects of carrageenin-induced acute pleural inflammation,149-1S0 and 

endotoxic shock.1s1 

HO-l is encoded by the HMOXl gene in humans located on chromosome 22 q12 and 

by the Hmoxl gene on chromosome 8 in the mouse.1S2 Changes in expression have 

been reported with a vast array of stimuli [reviewed by Ryter,139 and a selection listed 

in Table 1.1]. A 10kb 5'-regulatory region exists with two principal enhancer regions El 

and E2,139 rich in stress response element (StRE) sequences, which permit 

transcriptional regulation under the control of at least four different families of 

transcription factors: nuclear factor-KB (NF-KB), nuclear factor-erythroid 2 (NF-E2; and 

NF-E2 related factor 2, Nrf2), heat-shock factor (HSF), and activator protein-l (AP-l; 

Jun and Fos proteins).lS3 These transcription factors respectively increase HO-l 

expression under conditions of inflammatory and oxidative stress, abnormal protein 

accumulation, or changes in cell fate (growth or cell death). Mitogen activated protein 

kinase (MAPK) cascades are activated by many HO-l inducing stimuli, and primarily 

lead to Nrf2 and AP-l mediated transcriptional activation. Heme regulates HO-l 

expression by binding to Bachl, a repressor, and causing its dissociation from the 

enhancer site of Hmoxl allowing binding of Nrf-2 (Figure 1.2).154-155 Unusually, heat 

shock produces species-specific and possibly cell type-specific changes in HO-l 

expression, probably due to differences in the sequences of the promoter heat shock 

elements or functional repression.153156 

Rat HO-1 is a heat shock protein, whereas the heat shock response is absent in mice 

and is absent from most human cell lines tested except hep38 hepatoma cells,157 but is 
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present in human whole blood leukocytes. iSS The human HMOXl has a variable length 

GT-rich region, {GT)n, which negatively regulates transcription and GTn length 

polymorph isms have been associated with altered susceptibility to oxidative stress, 159 

pneumonia,16O acute respiratory distress syndrome,161 joint damage in rheumatoid 

arthritis,162 and susceptibility to severe malaria. iSS 163-164 An interesting observation is 

that short {GT)n repeats, which result in higher HMOXl expression, seem to be 

generally associated with better outcomes or lower risk of chronic inflammatory 

illnesses, whereas they are associated with worse outcome in some acute illnesses. iSS 

165-166 Post-transcriptional regulation of heme oxygenase-l protein expression by 

microRNAs has also been recently demonstrated.167 
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Table 1.1 Examples of inducers of HO-l. 

Hypoxia 

Hyperoxia 

Ultraviolet irradiation 

Cobalt protoporphyrin 

Nitric oxide / Carbon 

Monoxide 

15d PGh (15-deoxy-delta-
12,14-prostaglandin J2) 

Mechanical stress 

Lipopolysaccharide (lPS) 

Hypoxia - hypoxia inducible factor-i (hif-1) 

dependentl68 

Hyperoxia - APi and STAT bindingl69 

Induction of Nrf2170 

Suppression of bachi and increased Nrf2171 

MAPK dependent activation of Nrf2172-173 

Activation of Nrf2174 

Activation of Nrf2 and Anti-oxidant response element 
(ARE)17S-176 

Activation of p38MAPK and NFKBl77 and induction of 

Nrf2178 

HO-i was originally described as having a "microsomal" location,134 and is most 

concentrated in the endoplasmic reticulum membrane, although its presence has been 

demonstrated in other cellular fractions in significant amounts_179 HO-i is orientated 

with its active site in the cytoplasm and has a hydrophobic transmembrane segment 

near the C-terminus, which facilitates the oligomerization necessary for optimal 

function,l80 but which can be cleaved to allow nuclear trafficking and redistribution.181 

Localization of HO-i to cell surface membrane caveolae has been demonstrated in 

endothelial cells following LPS or hemin treatment,182-183 and there CO facilitates the 

inhibitory effect of caveolin-i binding to TLR-4. 

HO-l is an essential homeostatic enzyme. HO-i deficient (Hmox-l-) mice exhibit partial 

embryonic lethality (20% of the expected Mendelian ratio of Hmox-i- pups), 

endothelial damage, vascular inflammation, intravascular haemolysis, iron overload, 

and growth retardation.184 Similar features occurred in human HO-l deficiency,18S and 

both showed susceptibility to oxidative stress.18S-186 In fact HO-i is a potent inducible 

33 



defence mechanism against many forms of cellular stress, and CO, biliverdin/bilirubin 

and iron have all been ascribed cytoprotective roles (Table 1.2).118 Furthermore, roles 

for endogenous CO in neuronal and neuroendocrine signalling (primarily from HO-2), 

vasorelaxation, and gut smooth muscle contractility have been described [reviewed by 

WU18
\ but will not be discussed further here. 
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Table 1.2. Examples of mechanisms of protection against cellular stress by HO-l. 

Cellular Stressor Protective HO-l - - - Proposed Mechanism - I 

product 

Ultraviolet Irradiation Iron 

Serum deprivation, Iron 

staurosporine or etoposide 

I Hydrogen Peroxide Bilirubin 

Ischemia-reperfusion injury Biliverdin / bilirubin 

Lipopolysaccharide co 

Ischemia I hypoxia co 

Ferritin syntheSIS and 

sequestration of iron prevents 

iron catalyzed free radical 

reactions188 

Iron triggers enhanced iron 

efflux from cells and prevents 

iron-catalyzed free radical 

reactions189 

Antioxidant190 

Potent antioxidant activit/91 

(but augmented by addition of 

C0192
) 

Activation of MKK3/ p38 MAP 

kinase193 

Inhibition of JNK signalling and 

AP-l activation 194 

(Also see Table 1.3 and Figure 

1.2) 

Suppression of extracellular 

signal-regulated kinase (ERK) 

activation and early growth 

response 1 (Egr-l) gene 

expression195 

I 
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Immunomodulatory effects of HO-l 

Many immunomodulatory effects have been described as a result of manipulation of 

HO-l expression or activity, administration of CO and, to a lesser extent, bilirubin 

(Table 1.3).139196 In general increased expression of HO-l or administration of CO 

suppress inflammation, decrease apoptosis and reduce cellular proliferation (Table 

1.4). In the Hmox-i- mouse, there is elevated serum IgM concentration, Thl-skewed 

pro-inflammatory cytokine production, and abnormal distribution of Band T 

lymphocytes in the spleen and lymph nodes.197 HO-l influences both innate and 

adaptive immune responses. HO-l induction suppresses inflammatory cytokine 

production and nitric oxide synthesis in macrophages, and can polarize toward the 

alternatively activated (M2) phenotype.19B ln dendritic cells, carbon monoxide inhibits 

TLR3/4-induced activation of interferon regulatory factor 3 (IRF3), consequent 

functional maturation, and the ability to stimulate CDS T-cells to induce antigen 

specific autoimmunity.199 CO also mediates suppression of CD4 T-cell proliferation in 

response to anti-CD3 plus anti-C02S antibodies, by inhibiting IL-2 secretion.2OO HO-l 

expression in antigen presenting cells appears to be essential for regulatory T-cell 

function.201 ln vascular endothelial cells, induction or overexpression of HO-l or 

administration of bilirubin inhibits TNF-a or LPS-induced upregulation of VCAM-l, 

ICAM-l, P- and E_selectin.202-204 This may be a major explanation for how HO-l inhibits 

neutrophil recruitment to sites of inflammation. Recently a new mechanism by which 

HO-l may modulate innate immunity has been proposed: using myeloid-specific HO-l 

deficient mice, HO-l was found to be necessary for expression of IFN-P, by forming a 

complex with IRF3 which was essential for its activation by TLR3/4 stimulation.2os This 

latter finding suggests that HO-l may have immunomodulatory effects dissociated 

from production of its reaction products, but since CO also inhibits IRF3 activation,199 it 

is likely that regulatory feedback loops exist. 

Gram-negative bacterial lipopolysaccharide (LPS) is one of the most studied 

inflammatory stimuli. Induction of HO-l prior to administration of a lethal dose of LPS 

prevented death and severe symptoms in rats,151 and inhalation of exogenous CO 

abrogated inflammatory cytokine production in mice exposed to a sub-lethal dose of 

LPS.193 The latter observation was shown to involve activation of MAPK kinase 3 
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(MKK3) and p38 MAP kinase. Subsequent studies also identified CO derived from HO-l 

as the downstream mediator of the protective effect of IL-IO against endotoxic shock 

in mice.206 Mechanisms which may be important in mediating the protective effect of 

HO-l include: inhibition of NFKB and IRF3 activation by LPS;199 207 changes in organ 

specific iNOS expression;208 increased expression of peroxisome proliferator-activated 

receptor (PPAR-y) and PPAR-y dependent suppression of Egr-l dependent 

procoagulant genes;209 inhibition of reactive oxygen species (ROS)-dependent 

translocation of TLRs to lipid rafts;210 and suppression of TLR4 signal transduction by 

augmentation of binding of caveolin-l to TLR4.183 The exact mechanisms by which CO 

produces immunomodulatory effects have been difficult to characterise but there is an 

evolving concept that it alters the production of ROS and causes "oxidative 

conditioning" of cells which may of itself reduce inflammation,211 or protect cells from 

further oxidative damage and limit positive reinforcement of the inflammatory 

cascade.118 Binding of CO to cytochrome a3 of complex IV of the mitochondrial 

electron transport chain enhances the generation of superoxide (02-) and subsequently 

H20 2, which can function as important signal transducers,118 212 whereas binding to 

NADPH oxidase (Nox) enzymes can inhibit ROS accumulation.21
0-

212 Some mechanisms 

by which HO-l may suppress the inflammatory response to LPS are illustrated in Figure 

1.2. 
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Figure 1.2 Pathways mediating the effects of HO-l on the response to lPS in a 

macrophage. 

IL- IO 
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AP-l, Activator protein-l; Bax, BcI-2 associated X protein; Bid, BH3 interacting domain death agonist; 

Cav-l, Caveolin-l; cGMP, Cyclic guanosine monophosphate; CO, Carbon monoxide; Egr-l, Early growth 

response protein-l; ERK, Extracellular signal related kinases; GSH, Sulfhydryl glutathione; GSSG, 

Glutathione disulfide; Hif-l, Hypoxia inducible factor-l; HO, Heme oxygenase; HSF, Heat shock factor; 

IFN,lnterferon; IKK, Inhibitor of KB (IKB) kinase; IRF, Interferon regulatory factor; JNK, c-jun N-terminal 

kinase; LPS, Lipopolysaccharide; MAPK, Mitogen activated protein kinase; MKK, MAPK kinase; MyD88, 

Myeloid differentiation primary response gene 88; NADPH, Nicotinamide adenine dinucleotide 

phosphate; NF-E2, Nuclear factor erythroid-2; NFKB, Nuclear factor KB; NO, Nitric oxide; NOX, NADPH 

oxidase; Nrf2, NFE-2 related factor2; PPAR-y, Peroxisome proliferator-activated receptor; ROS, Reactive 

oxygen species ;sGC, Soluble guanylate cyclase; TGF-~, Transforming growth factor-~; TLR, Toll like 

receptor; TNF-a, Tumour necrosis factor-a; TRAM, TRIF-related adaptor molecule; TRIF, TIR-domain

containing adapter-inducing interferon- ~ . 
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Table 1.3. Immunomodulatory Effects of HO-l in selected disease models. 

Disease Process I Species Manipulation Outcome I proposed mechanism ' 

Model 

Endotoxemia 

Chronic Colitis 

(spontaneous 
chronic colitis in 

I IL1O-l-) 

Experimental 

Autoimmune 
Encephalomyelitis 

Collagen-Induced 

Arthritis 

Transplant 
Pancreatic islet 

cell allograft 

Rat 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Induction of HO-l 
by injection of 
haemoglobin (Hb) 
prior to LPS 

Protection against 
endotoxic shock 
by IL-10 

Treatment with 
inhaled CO 

Inhaled CO or 
induction of HO-l 
with hemin / CoPP 

Inhaled CO or 
induction of HO-1 
with CoPP 

Carbon monoxide 
releasing molecule 
(CORM-3) 

Inhaled Carbon 
monoxide, 
bilirubin or both to 
donors and / or 
recipients 

100% survival in Hb treated mice, due 
to HO-1 induction151 

Induction of HO-1 mediates the 
protective effect of IL-10 through 
generation of CO acting on MAPK 
pathwalo6 

Reduced levels ofTNF-a and IL-lf3, 
increased IL-IO, due to increased 
MKK3/p38 MAPK activitl93 

Amelioration of established chronic 
Thl mediated colitis by CO or HO-1 
induction. 
Inhibition of IRF8 and IFN-y 
augmented IL-l2 secretion213 

Amelioration of disease and 
prevention of progression. 
Reduced leukocyte accumulation in 
brain, reduced MHC class" expression 
in brain APCs and reduced pathogenic 
CD4 cell proliferation and effector 
fu nction214 

Amelioration of established arthritis. 
Reduced ICAM-l expression, reduced 
inflammatory infiltrate, reduced 
inflammatory cytokine production 215 

Prolonged graft survival and donor 
specific tolerance to second graft. 
Accumulation of regulatory T-cells 
within graft216 
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Table 1.4. Immunomodulatory effects of HO-l in selected cell types. 

Cell Type Effects of HO-l or its products 

Neutrophil Reduction of superoxide production217-218 

Delayed apoptosis124 

~------------- ---------
Reduction of superoxide production219 

Monocyte 

Downregulation of chemotaxis219 

Delayed apoptosis178220 

Reduced inflammatory cytokine response to LPS178221 
----------------

Macrophage Reduced inflammatory responses to TLR ligands183 193210222 

Anti-inflammatory cytokine production 193 

Inhibition of NADPH oxidase activity223-224 

Enhanced phagocytosis225 

Inhibition of apoptosis226 

Alternative activation (M2) phenotype198 

--------------------------~ 
NK Cells Unknown 

-------------------
Dendritic cell Impaired maturation199 227 

T lymphocyte 

CD4 

Impaired immunogenicity199 227 

Enhanced tolerogenicity and initiation of T-reg suppressive 

activitl01228 

Reduced production of reactive oxygen species227 

Increased early proliferation and activation induced cell death of 
alloreactive CD4 cells229 

Suppression of IL-2 production and proliferation in response to anti
CD3/anti-CD2820o 

Resistance to apoptosis23o 

Regulatory No direct influence; but regulatory function is dependent on antigen 
. II . HO 1201231 presenting ce expression -

COB Unknown 

l B lymphocyte Possibly altered immunoglobulin class switching
232 

40 



HO-l in infectious diseases 

The role of endogenous HO-l in infectious diseases is of considerable interest, since 

the inflammatory response is essential to combat infection but, to limit excessive 

damage to the host, it must be tightly controlled and bystander damage must be 

limited by mediators such as HO_1.233 Conversely, inappropriately early 

down regulation of the inflammatory response could predispose to overwhelming 

pathogen replication, a factor not accounted for in models using endotoxaemia to 

simulate septic shock. 

Induction of HO-l has been shown to occur in authentic and experimental sepsis.16s 22S 

234-23S In the latter case, constitutive overexpression of HO-l in endothelial cells was 

beneficial to survival, associated with enhanced phagocytosis of bacteria and reduced 

apoptosis of host cells, and HO-l deficiency reduced survival.22s Induction of HO-l has 

been shown to occur during infection with Plasmodium species,112-113 1S8 leishmania,236 

Salmonella enterica serovar typhimurium (5. typhimurium),237 Mycobacterium 

tuberculosis,238 Rickettsia,239 Human Immunodeficiency Virus (HIV),240 human herpes 

virus 8 (HHV8),241 and polymicrobial sepsis,lls whereas L. monocytogenes/42 Brucella 

abortus,243 and hepatitis C virus infections244 have been reported to downregulate HO-

1 expression. 

Amastigotes of Leishmania pi/anoi induce HO-l in murine macro phages, which appears 

to prevent maturation of the NADPH oxidase complex and consequent production of 

O2-.
236 Although this may be beneficial to the parasite, HO-l induction during infections 

with S. typhimurium and Rickettsia rickettsii has been proposed to be beneficial to the 

host cell by regulating the availability of iron or preventing apoptosis,226 237 239 whilst 

CO may promote dormancy of Mycobacterium tuberculosis.24s HO-l expression is 

increased in Kaposi's sarcoma (KS), and endothelial cells infected with HHV8 (the 

causative agent of KS) proliferate more extensively in the presence of heme.241 B. 

abortus and L. monocytogenes both decrease HO-l expression in placental 

trophoblast, causing increased risk of abortion in pregnant mice.242-243 Downregulation 

of HO-l by hepatitis C virus appears to be a component of viral strategies to promote 

oxidative stress in the liver, thereby creating conditions which favour viral 
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replication.246-247In patients with AIDS, HO-l expression is increased in monocytes,240 

but in vitro induction of HO-l in monocytes and T lymphocytes suppresses HIV 

replication.248 

H 0-1 in malaria 

The malaria parasite lifecycle involves an obligatory intraeryrthrocytic phase during 

infection of the vertebrate host, and this leads to increased erythrocyte destruction 

through rupture at schizogony as well as increased destruction of both infected and 

uninfected erythrocytes by the host.249 The increase in erythrocyte turnover is 

associated with release of hemoglobin from erythrocytes and hence increased heme 

catabolism. Increased HO-l activity in malaria can be demonstrated by measuring CO 

excretion in mice,250 and carboxyhemoglobin levels in humans.251 Increased 

immunohistochemical staining for HO-l occurs in monocytes and macrophages in 

lesions in the brain of individuals dying from cerebral malaria,252.253 and increased HO-

1 mRNA expression is detectable in peripheral blood mononuclear cells.158 254 

Experimental sporozoite infection in mice resulted in upregulation of liver HO-l and if 

this was inhibited, the enhanced inflammatory response prevented progression to 

patent blood stage infection.255 In contrast, increased expression of HO-l prevents 

experimental cerebral malaria (ECM).112 Through a series of experiments it was shown 

that free heme was pivotal in the pathogenesis of ECM (although dependent on CD8+ 

T-Iymphocytes); that methemoglobin (MetHb) was the main source of free heme 

generation; and that CO generated by HO-l, or exogenously administered, bound to 

free Hb and prevented the formation of MetHb. In additional experiments HO-1 

induction was shown to be essential to protect hepatocytes from apoptosis in non

cerebral severe malaria113 and to explain the protective effect of a rodent model of 

sickle cell trait against severe malaria.114 The crucial underlying principle in all of these 

experimental systems was that HO-1 induction or treatment with carbon monoxide 

reduced the production of cytotoxic reactive oxygen species (summarised in Figure 

1.3). Furthermore, in all of these situations HO-1 was shown to be a tolerance 

mechanism, preventing host pathology without Influencing parasitemia. However 

three independent studies in different geographical settings examining the association 
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of human cerebral malaria with HO-l microsatellite polymorphisms have shown that 

short GTn alleles (associated with greater expression of HO-l) are more common in 

patients with severe and cerebral malaria.163-164 Hence the role of HO-l in the 

pathogenesis of severe malaria in humans is currently unresolved,158 but it is possible 

that either insufficient or excessive HO-l induction might both predispose to severe 

malaria. 
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Figure 1.1. The role of heme and HO-l in the pathogenesis of severe malaria in mice. 
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HO-1 as a potential immunomodulator in malaria? 
HO-l has the potential to be an important immunomodulator in malaria, but very little 

is known about changes in HO-l expression in different populations of cells during the 

course of infection, which makes it difficult to speculate about mechanisms of 

immunomodulation. Since hemozoin has been shown to induce HO-l expression,256 it 

is possible that HO-l may mediate many of the effects of hemozoin on monocytes 

(described earlier in this chapter), although there is some evidence to dispute this.257 

HO-l induction by hemolysis may also playa role in the increased vulnerability to 

other infections seen in patients with malaria, and it is particularly tempting to 

speculate about its role in NTS infection, since hemolysis is a common feature of at 

least three conditions predisposing to NTS infection: malaria, sickle cell disease, and 

acute bartonellosis. Susceptibility to bacterial invasion through the gut mucosa and 

dissemination might be increased by more avid uptake of NTS by resident or circulating 

HO-l expressing phagocytic cells, whilst their ability to kill Salmonella may be 

impaired. Induction of HO-l can inhibit NAOPH oxidase activity/17.218 suppress NO 

production/22 and limit the TNF-a-ll-12/23-IFN-y pathway/13 which are all important 

for early,258-259 intermediate258 and late adaptive phases of control of S. typhimurium 

respectively in mice.260 Furthermore, humans with primary immunodeficiencies caused 

by genetic defects of subunits of the NAOPH oxidase enzyme complex (chronic 

granulomatous disease, CGO), or defects in the TNF-a-ll-12/ll-23-IFN-V pathway are 

susceptible to Salmonella infections.261-262 

The inhibitory role of HO-l on dendritic cell maturation and function l99 227 263 could 

influence adaptive immune responses in malaria, particularly by promoting the 

generation of C04+C025+ regulatory T-cells.less is known about the effect of HO-l 

induction on B-Iymphocyte function, but Hmox-I- mice have abnormal immunoglobulin 

profiles,197 and heme-induced HO-l expression has been reported to be associated 

with altered antibody production in ViVO.
232 

Induction and inhibition of HO-l using existing therapeutics,264-265 and administration 

of inhaled CO,266 are all described in humans, raising the possibility of therapeutic 

intervention if HO-l has either detrimental or desirable immunomodulatory effects in 

malaria. 
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Hypothesis 

Of the potential immunological consequences of malaria, one of the most striking and 

most clinically important appears to be the susceptibility to NTS bacteremia. Different 

strands of evidence from observations in humans and studies in animals point to a 

critical role for hemolysis in the specific susceptibility to NTS infection. Through 

induction of HO-l, hemolysis has the potential to produce immunomodulatory effects 

that may explain this susceptibility. Many of the cytoprotective effects of HO-l 

converge on cellular responses to limit the production of potentially damaging reactive 

oxygen species, and since production of reactive oxygen species is critical for killing of 

NTS I decided that this would be the best mechanism to assess initially. For these 

reasons I hypothesised that induction of HO-l by hemolYSis would impair host 

resistance to NTS in malaria by impairing oxidative burst-dependent killing by 

phagocytic cells. This hypothesis and the resulting experimental approach is 

summarised in Figure 1.4. 

Aim 
The aim of my research was to test the hypotheses that 

1. Induction of HO-l by hemolysis impairs resistance to NTS in mice. 

2. Induction of HO-l occurs in specific cell types during malaria and impairs killing 

of NTS by those cells in mice and humans. 

3. Induction of HO-l can be modulated to abrogate the defect in the immune 

response and impaired resistance to NTS. 

Project Outline 

This project was designed to use two complementary strategies to investigate the role 

of HO-l in malaria and NTS co-infection. In the first part of the project a rodent model 

system was used to elucidate the mechanisms by which malarial hemolysis impairs 
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resistance to NTS co-infection. In the second part of the project blood samples were 

collected from Gambian children with acute malaria, and then during convalescence, 

to investigate whether the findings from experiments in mice would also apply in 

humans. The findings in humans were then used to inform additional experiments in 

mice. 
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Figure 1.4 Hypothesis and initial experimental model. 
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Chapter 2. Research methods and assay validation. 
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Summary of the main techniques developed and optimized for 
studies in mice 

This chapter describes the methods, optimisation and validation of the assays used for 

the studies presented in subsequent chapters. By necessity, this chapter includes brief 

discussions of results of validation studies, in order to clarify why certain methods 

were chosen for the studies presented later in this thesis. To avoid excessive 

duplication, reference is made to other chapters when relevant methodological 

information is fully presented as part of a research paper. 

In order to assess the potential role of heme and heme oxygenase-1 in mediating some 

of the immunomodulatory effects of malaria, assays were needed to determine 

changes in HO-1 expression and activity in both tissue samples and defined cell 

populations. To simplify the initial phases of optimization of these assays a cell line 

known to have inducible HO-1 expression, RAW 264.7,267 was selected for in vitro 

cultivation and manipulation. After verification that the assays worked in vitro, assays 

were also verified by testing tissues or cells from mice that had been treated with HO-1 

inducers. 

RAW 264.7 cell culture 

RAW 264.7 cells were a gift from Dr J. Brian de Souza, having been initially obtained 

from the European Collection of Cell Cultures, expanded in vitro and stored in liquid 

nitrogen until required for use. Under sterile conditions, RAW 264.7 cells were 

defrosted at room temperature, resuspended in 5ml warm culture medium 

(Oulbecco's modified Eagle medium (OMEM) +10% fetal bovine serum (FBS) + 

penicillin, streptomycin and l-glutamine (PSG) (all from Gibco)) and washed once by 

centrifugation at SOOg for 5 minutes before aspirating the supernatant and 

resuspending in 7ml medium and seeding into a 25cm2 culture flask. Cells were divided 

into two flasks in fresh medium after the first day of culture, by gentle mobilization 

from the flask with a sterile cell scraper, centrifugation at 500g for 5 minutes before 
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aspirating the supernatant and resuspending in 7ml warmed fresh medium per flask. 

Cells were then split in the same way every 2-3 days, when about 90% confluent. For 

experiments involving induction or inhibition of HO-1, treatments were performed 

when cells reached approximately 70% confluency and viability was assessed by trypan 

blue staining at the end of experiments and typically found to be 80-90% irrespective 

of treatment. 

Animals 

Animal experimentation conformed to UK Home Office Regulations and was approved 

by Institutional ethical review (london School of Hygiene and Tropical Medicine, 

Imperial College london, University College london, and Royal Veterinary College 

london, for experiments conducted in their respective facilities). Female, 6-10 week 

old C57Bl/6 mice were obtained from Harlan and Charles River, UK and maintained 

under barrier conditions. Frozen stocks of blood-stage Plasmodium yoe/ii 17X Non

lethal (Py17XNl) were inoculated in passage mice. Blood was collected after 5-7 days 

and experimental animals were infected by intraperitoneal (Lp.) injection of 105 

parasitized red blood cells (pRBCs). Parasitemia was determined by examination of 

Giemsa-stained thin blood smears. Mice were killed with CO2 inhalation. Immediately 

after death, blood was collected by cardiac puncture into heparinised syringes and 

tissues were removed into ice cold RPM I and stored on ice, protected from light, until 

processing. 

Induction and Inhibition of80-1 

RAW 264.7 cells and mice were treated with the substrate inducer of HO-1, hemin 

(ferriprotoporphyrin IX chloride), and the non-substrate inducer cobalt (III) 

protoporphyrin IX chloride (CoPP) (Frontier Scientific). CoPP Induces HO-l expression 

through both Bach1 and nrf-2 dependent mechanisms,l71 allowing greater Induction 

than that achieved by hemin alone (which is mediated through Bachl).lSS268 HO-2 

expression is generally constitutive, and not inducible by metalloporphyrins.
269 

HO 

enzyme activity (which is the sum of the activity of HO-1 and HO-2) was inhibited by tin 
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protoporphyrin IX dichloride (SnPP), a competitive inhibitor that produces minimal 

induction of HO-l expression when administered alone.27o 

Metalloporphyrins were protected from light and prepared by dissolving in O.2M 

NaOH, diluted to the desired concentration in PBS and buffered carefully to pH 7.5 

with HCI. For some in vivo experiments hemin solutions were subsequently filtered 

through a O.21lm acrodisc syringe filter unit (Pall Corporation) and the concentration of 

the filtered solution determined using a Quantichrom Heme assay (BioAssay Systems) 

according to the manufacturer's instructions. For experiments using RAW 264.7 cells, 

protoporphyrins were added directly to fresh warm culture medium (Figure 2.1a), 

whilst for experiments using mice, metalloporphyrins were administered by 

intraperitoneal injection (Figure 2.1b). 

HO activity assay 
HO activity assays measure the sum of enzyme activity due to HO-l and HO-2 in the 

sample, based on the catabolism of heme (present in excess) detected by the 

equimolar generation of the heme degradation products carbon monoxide or 

biliverdin (measured after conversion to bilirubin). Changes in HO activity are assumed 

to be due to HO-l induction, since HO-2 shows much less inducibility. It is important to 

note that these assays give an indirect estimate of the amount of enzymatically active 

HO-l in the sample, but do not give a measure of how much heme degradation was 

taking place in the tissue or cells from which the sample is derived prior to the assay, 

since this would depend on the availability of the substrate, heme, in the tissue or cell. 

The reason this is important is because many biological activities of HO-l are 

attributed in part to the bioactive heme degradation products. 

Although there are numerous methods described to measure HO activity, the method 

described by Motterlini et al. 271 was selected because of its relative simplicity and 

because the necessary equipment was already available. In this method HO activity is 

assessed by the production of bilirubin, based on the assumption that heme 

degradation by HO is the rate limiting step in production of bilirubin and the 

conversion of biliverdin to bilirubin (using excess rat liver cytosol as a source of 
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biliverdin reductase) proceeds rapidly. Briefly: 106
-
7 cells were harvested, washed twice 

with cold PBS and resuspended in 550111 PBS + MgCb (2mM), vortexed and placed in -

80DC freezer until required for the assay. Immediately prior to the assay the cell 

suspension was frozen and thawed 3 times (-80DC (10 min) to 37D C (5 min) water bath), 

vortexed then sonicated on ice for 15 seconds to completely break cells apart. In a 

glass tube, 400lli of cell suspension was added to the reaction mixture of 300111 PBS + 

MgCI2 (2mM), 100111 rat liver cytosol (see below), 25111 hemin (20llM, from freshly 

prepared 2mM hemin stock solution), 50111 glucose-6-phosphate (2mM final 

concentration), 15111 glucose-6-phosphate dehydrogenase (0.5 U/ml final), followed by 

final addition of 25111 NAOPH (0.8mM final concentration) and vortexing to start the 

reaction. lOOll1 of cell suspension was retained on ice for determination of the protein 

content (protein assay kit, Bio-rad) according to manufacturer's instructions. The 

reaction mixture was incubated at 37°C in a water bath for 1 hour, after which time 

the reaction was stopped by adding 1 ml of chloroform and vortexing three times to 

maximise extraction of bilirubin into the chloroform. Tubes were centrifuged at 900g 

for 5 minutes at room temperature and to ensure extraction of all bilirubin in to 

chloroform, samples were briefly vortexed to disturb the bottom layer, and 

centrifuged again at 1100g for 5 minutes. Using a spectrophotometer and quartz 

cuvette, the 00464nm and 00s30nm of the lower chloroform layer were determined, after 

setting a blank measurement using pure chloroform. For each assay a positive control 

(hemin treated RAW cells) and a negative control (without cells) were run in parallel. 

Heme oxygenase activity was calculated as follows: 

1. Bilirubin concentration in chloroform: 

00464 - 00530 

40 

nmol 

2. HO activity in pmol bilirubin formed / mg cell protein /60 min 

00464 - 00530 X 106 pmol/mg/60min 

40 x (protein content) 
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When tissue homogenates were used for the assay instead of cultured cells, tissues 

were disrupted by passage through a 200llL cell strainer, red blood cells were lysed 

using lysis buffer, and approx 107
-
8 cells were washed once and resuspended in 550111 

PBS + MgCh before freezing as above. 

Preparation of rat liver cytosol as a source of biliverdin reductase 

Livers were harvested from male Sprague-Dawley rats (200-250 g), pooled and 

homogenized with a hand blender in 3 volumes of ice cold 1.15% KCI-20 mM Tris 

Buffer (pH=7.4). Aliquots of homogenate were transferred to polyallomertubes and 

centrifuged at 5000g for 20 min, then the supernatant fraction was collected and 

centrifuged at 105,OOOg for 60 min. Following each centrifugation the turbid lipid layer 

was removed with a Pasteur pipette and following the last centrifugation the cytosol 

was removed, taking special care not to disturb the bottom microsomal pellet. The 

liver cytosol was aliquoted and kept at -SO°C until required. Biliverdin reductase 

activity was confirmed by the conversion of biliverdin to bilirubin, essentially in the 

same way as the HO activity assay above, except that the sample volume was replaced 

with PBS + MgCI2 (2mM) and biliverdin was substituted for hemin. 
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Figure 2.1 Validation of the heme oxygenase enzyme activity assay. 

(a) HO activity was determined in Iysates of RAW 264.7 cells following 24hr culture in 

medium alone (control) or with 20llM hemin, 20llM CoPP or lOIlM SnPP (results are 

mean ± SO of 3 samples). (b) HO activity was determined in Iysates of livers of mice 24 

hours after treatment with SOllmol/kg hemin or 20mg/kg CoPP, or PBS vehicle alone 

(control) (results are mean ± SO of 2 (CoPP)- 3 (hemin and control) mice per group). 

a b 
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Real-time peR analysis of gene expression 
Cultured cells were harvested, washed in cold PBS and resuspended in RlT buffer 

(Qiagen) before immediate disruption with a tissue tearer and RNA extraction. Snips of 

tissues from mice were snap frozen in foil wraps in liquid nitrogen as soon as possible 

after removal from the animal, and were stored at -80DC before further processing. 

RNA was extracted from cells and tissues using RNeasy minikits (Qiagen) and genomic 

DNA contamination was removed using DNA-free (Ambion). RNA concentration and 

purity was determined by measuring absorbance at 260nm and 280nm using 

GeneQuant II (Pharmacia Biotech). First strand cDNA was synthesised using Superscript 

II reverse transcriptase (Invitrogen). Pre-validated primers for heme oxygenase-l 

(Hmoxl, Mm00516004_ml), Glyceraldehyde 3-phosphate dehydrogenase (Gapdh, 

Mm99999915Jl), and TATA Box-binding protein (Tbp, Mm00446973_ml) (and other 

genes of interest, where applicable) were obtained from Applied Biosystems. Target 

gene cDNA amplification was performed on the same plate as "reference" genes 

(Gapdh +/- Tbp), which were assumed to be invariant. Real time PCR was performed 

using Universal Mastermix (Applied Biosystems) and an ABI Prism 7000 Sequence 

Detection System. Expression was quantified by the c5c5CT method, whereby the 

difference in cycles required for target and reference genes to reach the amplification 

threshold in the control sample (c5CTe), is subtracted from the same value calculated for 

the experimental sample (c5CTE) to give a value c5c5CT, which can be converted to a fold 

change in relative expression.272 In initial experiments only Gapdh was used as a 

reference gene (Figure 2.2a,b), but in later experiments in mice with malaria infection, 

both Gapdh and Tbp were used to provide additional reassurance that the reference 

gene remained truly invariant (Figure 2.2c). In the tissues tested Gapdh is more 

abundantly expressed and Tbp less abundantly expressed than Hmoxl under control 

conditions. Good agreement was always obtained between results using either 

reference gene for calculation of relative gene expression. 
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Figure 2.2 Validation of Hmoxl mRNA expression analysis. 

Relative fold change in Hmoxl mRNA, using Gapdh as the reference gene, (a) in RAW 

264.7 cells following 24hr culture in medium alone (control) or with 20~M hemin or 

20~M CoPP (results are mean ± SO of 3 samples (control and hemin) or a single 

sample (CoPP) shown for comparison) and (b) in livers of mice, using Gapdh as the 

reference gene, 24 hours after treatment with 50~mol/kg hemin or 20mg/kg CoPP, or 

vehicle alone (control) (results are mean ± SO of 3 mice per group). (c) Relative fold 

change in Hmoxl mRNA in liver and spleen of mice at different time points after 

infection with Plasmodium yoelii 17XNL, determined using either Gapdh or Tbp as the 

reference gene. 
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Measurement of HO-l expression by flow cytometry 

At the time of starting this work, few investigators had reported analysis of cell specific 

HO-1 expression using flow cytometry.220 273-274 In order to select a suitable protocol 

for quantitation of HO-1 expression by flow cytometry it was decided that the assay 

should not only allow detection of HO-1 positive or negative cells, but also a dose 

response relationship should be seen between HO-1 inducers and HO-1 expression, 

reflecting the inducibility of HO-1 demonstrated by rt-PCR and in the HO activity assay 

in response to hemin and CoPP. To simplify initial experiments, RAW 264.7 cells were 

used. The first method attempted for detection of HO-1 expression was to use a 

directly conjugated monoclonal antibody (FITC-conjugated anti-HO-1, clone HO-1-2, 

Abeam) to stain live cells that were permeabilised with 0.1% saponin. If successful this 

method would have advantages of simplicity and easy separation of intracellular and 

surface staining steps. Briefly, cells were harvested after 24 hour treatment with HO-1 

inducers, and washed twice in FACS buffer, before resuspending in a final volume of 

100lll FACS buffer for 30 min. Cells were washed again and resuspended in a 1:100 

solution of anti-HO-1 antibody or isotype matched control antibody (Abeam) in 0.1% 

saponin, and incubated for a further 30 minutes in the dark before a further wash and 

resuspension in 2% paraformaldehyde in FACS buffer. Unfortunately, although there 

appeared to be higher binding of the anti-HO-1 antibody than of the isotype matched 

control antibody, there was no evidence that treatment with a HO-1 inducer produced 

any increase in bound antibody per cell (assessed by median fluorescence intensity, 

MFI, Figure 2.3a), suggesting that either the antibody may not be binding to HO-1 or 

that the additional HO-1 induced in the cells is not accessible or not recognized by the 

antibody. 

In case the failure to detect induced HO-1 expression was due to inadequate 

permeabilisation of the cells, a different method of cell preparation was assessed, 

using a method developed for analysis of intracellular signaling protein by flow 

cytometry (Chow et al cytometry 2001). After harvesting, cells were washed in FACS 

buffer, fixed with 2% formaldehyde at 37-C for 10 minutes, centrifuged at SOOg for five 

minutes and resuspended In ice cold 90% methanol for 30 minutes. After this cells 

were washed in FACS buffer and resuspended in FACS buffer containing the anti-HO-1 

58 



antibody. Once again there was no evidence that MFI increased following treatment 

with a HO-l inducer (Figure 2.3b). It was possible that the absolute change in HO-l 

protein in the cell was not sufficient to give a detectable change in MFI using this 

antibody. 

In order to attempt to amplify the signal obtained from formaldehyde-methanol fixed 

cells a polyclonal anti-HO-l antibody was used, followed by a FITC-conjugated 

secondary antibody, as had been used by other groups220 273-274 . Although this would 

theoretically increase the fluorescence signal associated with binding to HO-l, it might 

also increase background fluorescence. However it is not possible to obtain a strictly 

isotype-matched control antibody for a commercial polyclonal antibody preparation so 

initially HO-l expression in cells treated with HO-l inducers was compared with 

untreated (control) cells, which seemed reasonable in vitro and in vivo in healthy mice 

(Figure 2.3c and 2.3d). Unfortunately, in malaria infected mice we were concerned that 

this might produce misleading results because inflammation may increase non-specific 

binding of IgG by certain cell types. For this reason, to reduce non-specific binding, 

cells were incubated for 15 minutes with both commercial Fc810ck (80, to prevent 

binding to Fc receptors) and normal mouse serum (to try to eliminate other non

specific binding), prior to addition of the anti-HO-1 antibody. To further control for 

residual non-specific binding every sample was divided into two aliquots, one to be 

incubated with anti-HO-l and the other to be incubated with normal rabbit serum 

adjusted to give an equivalent totallgG concentration to the anti-HO-l antibodies 

(Figure 2.4). Staining with antibodies to cell surface markers was undertaken after 

staining for HO-l because the fixation-permeabilisation protocol was anticipated to 

cause degradation of some f1uorophores.275 Full details of the antibodies used, and 

the definition of cell populations based on surface protein expression, have been 

published,276 and are reproduced in Chapter 5. The effect of increased non-specific 

binding during malaria infection in mice is illustrated in Figure 2.5, where failing to 

block non-specific binding and compare with the control antibody would lead to the 

incorrect conclusion that HO-1 expression is most strongly induced in granulocytes and 

"inflammatory" monocytes In blood during malaria infection. In fact HO-l only seems 

to be induced significantly in "resident" monocytes. 
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Figure 2.3 Optimization of detection of cellular HO-l expression by flow cytometry. 

(a) and (b) RAW 264.7 cells, gated on FS-SS (aL were cultured for 24 hours in medium 

alone or with 20llM hemin or 20llM CoPP before permeabilization with 0.1% saponin 

(a) or formaldehyde and methanol (b) and staining with the FITC conjugated HO-1-2 

monoclonal antibody or isotype matched control antibody. (c) RAW 264.7 cells were 

cultured for 6 or 18 hour in medium alone or in the presence of varying concentrations 

of CoPP before fixation / permeabilization with formaldehyde and methanol and 

indirect staining with the polyclonal SPA895 anti-HO-l polyclonal antibody. HO-l 

expression is quantified as the ratio of MFI in the treated sample to that in the 

untreated control sample. (d) HO-l expression was induced in mice by administration 

of CoPP 10mg/kg 24 hours prior to harvest. HO-l expression in all blood cells (left hand 

panelsL and in CDllb+ F4/80+ cells (middle and right hand panels) is shown in 

representative examples from CoPP treated and untreated mice. 
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Figure 2.4 Optimized detection of HO-l by flow cytometry in RAW cells. 

RAW 264.7 cells were cultured for 24 hours in medium alone or in the presence of 

varying concentrations of hemin or 20llM CoPP before fixation / permeabilization with 

formaldehyde and methanol and indirect staining with the polyclonal SPA895 anti-HO-

1 polyclonal antibody. HO-l expression (right hand panel) is quantified as the ratio of 

MFI in the treated sample to that for the same sample stained with the control 

antibody (polyclonal rabbit serum). 
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Figure 2.5. Importance of control antibody and blocking non-specific binding in vivo. 

Blood leukocytes from uninfected and Py17XNL infected mice (day 14) were stained 

for HO-1 expression as in d, except that in one experiment non-specific binding was 

not blocked and HO-l expression was compared with that in uninfected controls 

(upper two rows of panels) whilst in the other experiment, non specific binding was 

blocked and HO-l expression (unfilled histogram) was compared with control antibody 

(filled histogram) in the sample before comparison with the uninfected control (lower 

two rows of panels) . 
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Estimation of heme and hemoglobin concentration in plasma 
In order to try to determine the extent of hemolysis due to malaria and the amount of 

heme present in plasma as a potential substrate and inducer of HO-1, plasma 

hemoglobin and heme concentrations were measured. Review of the literature 

suggested simple methods for determination of plasma heme and hemoglobin, which 

could be performed with relatively small sample volumes such as those obtainable 

from mice, included spectrophotometry277 and colorimetric assays.112 It was obvious 

in initial experiments that it was very difficult to obtain blood samples from mice 

without a small amount of artefactual hemolysis (which was more problematic in 

healthy mice than in Py17XNL infected mice, due to the higher hematocrit and 

therefore blood viscosity), and that samples with artefactual hemolysis appeared to 

have higher levels of plasma heme measured by all assays. 

Previous studies have reported the use of the colorimetric Quantichrom heme assay 

(BioAssay Systems) to detect plasma heme in mice,112 and the same manufacturer also 

produces a Quantichrom hemoglobin assay. To assess the specificity of these assays, 

the Quantichrom heme and hemoglobin assays were evaluated using standard 

solutions of hemin and hemoglobin. A fresh hemoglobin solution was prepared by lysis 

of the red cell pellet from heparinised human blood in 8 volumes of distilled water 

followed by centrifugation at 2000g for 10 minutes to pellet erythrocyte membranes. 

The supernatant was passed through a 0.2J.lm syringe filter and the concentration of 

hemoglobin determined using the Quantichrom hemoglobin assay. A fresh hemin 

solution was prepared by dissolving hemin in NaOH as described earlier in this chapter, 

centrifuged at 15000g for five minutes to pellet undissolved debris and the 

concentration of heme was determined using the Quantichrom heme assay. Both 

solutions were then adjusted to the equivalent concentration of 25J.lM heme (based on 

the molecular weight of hemoglobin A, containing four heme moieties, of 

approximately 65,OOOg/moI278
). Both solutions were then tested in both assays to 

determine the specificity of the assays. If the assays were specific, the heme assay 

should detect very little heme in the hemoglobin solution, and the hemoglobin assay 

should detect very little hemoglobin in the heme solution. In fact the results for each 

assay were very similar whichever solution was tested (Table 2.1), indicating that the 
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assays both measure the same thing, which is probably total heme (that is the sum of 

all the heme in free hemoglobin and protein-bound heme and any free heme in 

plasma). This meant that any artefactual haemolysis in samples would invalidate 

plasma heme measurements by the Quantichrom heme assay, and so these 

Quantichrom assays were subsequently only used to determine the concentration of 

pure solutions of heme or hemoglobin respectively. 

Table 2.1. Comparison of Quantichrom heme and hemoglobin assays. 

Hemoglobin and heme concentrations measured in standard solutions of "pure" 

hemoglobin (O.4g/L) and "pure" heme (25~M), determined by Quantichrom 

Hemoglobin and Quantichrom Heme Assays. 

Solution Quantichrom Hemoglobin Assay Quantichrom Heme Assay 

Hemoglobin g/L Heme/~M 

Hemoglobin 0.472 28.5 

Heme 0.393 26.125 

Results are mean of duplicate assays 
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Several spectrophotometric methods have been described to determine the 

concentration of hemoglobin in solution. One of the most accurate is the method 

described by Kahn et aI.279.280 Using a NanoDrop ND1000 spectrophotometer 

(Nanodrop Technologies) this assay was tested using a variety of different 

concentrations of a standard hemoglobin solution dissolved in a final concentration of 

80% normal mouse serum. Briefly, 2 III of the serum was used to determine 

absorbance at 562, 578, 598, 615 and 675nm wavelengths. Using the absorption values 

at 562, 578 and 598nm the concentration of plasma hemoglobin was determined using 

the following equation: 

Concentration of plasma Hb g/dL = 1.55.As78 - 0.861.As62 - 0.689.As98 (Khan et a1.279) 

To test whether the presence of heme altered the amount of hemoglobin detected, 

samples were spiked with additional hemin. Estimates of plasma hemoglobin were 

unaffected by hemin, as shown by the series of essentially superimposed lines for 

measured hemoglobin vs. known hemoglobin concentrations spiked with different 

concentrations of hemin (Figure 2.6a). 

Samples of known hemin concentration were spiked with known concentrations of 

hemoglobin and the absorbance difference A615-67S was measured to determine the 

concentration of protein-bound heme, which is directly proportional to AslS_67S.277 

Spiking with hemoglobin produced consistent changes in the Asl5-67S measurement, as 

shown by the essentially parallel linear relationships obtained (Figure 2.6b). It should 

be noted that at low concentrations of heme, values are very close to the baseline, 

resulting in greater variation due to background noise affecting particularly the As7S 

measurement. 

The As15-675 was corrected for the presence of hemoglobin (CAslS-67S) using the 

regression equation from Figure 2.6b, and CAslS-675 was plotted against the known 

hemin concentration to obtain a standard curve for hemin (Figure 2.6c). For 

subsequent experimental samples, plasma hemoglobin was first calculated, and used 

to calculate cA615-675, which was then used to calculate the heme concentration in 

the sample using the equation of the standard curve. 
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Figure 2.6. Determination of hemin and hemoglobin concentrations in plasma by 

spectrophotometry. 

(a) Relationship between measured hemoglobin and the known concentration of 

hemoglobin in samples of mouse serum spiked with varying concentrations of hemin . 

(b) Relationship between A 615-675 and the amount of hemoglobin in the sample at 

varying concentrations of hemin. (c) Example of a standard curve for A 615-675 corrected 

for hemoglobin concentration (CA615-675) vs. varying concentration hemin standards. 
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Neutrophil oxidative burst and degranulation assay 

In order to assess the magnitude of the oxidative burst produced by circulating 

neutrophils a simple whole blood flow cytometry assay was used.281 This assay, which 
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measures the oxidation of dihydrorhodamine123 to its fluorescent derivative 

rhodamine, has been used in clinical laboratories for the diagnosis of CGD and it has 

recently been reported that the magnitude of the respiratory burst determined by this 

assay is an important determinant of survival in patients with CGD.282 Initially the assay 

was tested on human blood to confirm that the oxidative burst was easily detected 

using the assay as it was originally described. Briefly, whole blood was divided into 2 

aliquots each of 100llL, which were designated as unstimulated and stimulated. 25111 of 

working PMA solution (final concentration 11lM) was added to the tubes and mixed by 

vortexing before incubation for 15 minutes at 37"C. Next 251lL of working 

dihydrorhodamine (DHR) solution was added and incubated for a further 5 minutes at 

37"C in the dark. Cells were then incubated in 2ml ammonium chloride red blood cell 

lysis solution for 5 minutes at room temperature, protected from light, then 

centrifuged at 1000g for one minute, washed in PBS and centrifuged again at 1000g for 

one minute. Finally cells were resuspended in 1m11% paraformaldehyde in PBS, and 

stored in the dark at 4·C until analysis by flow cytometry, which was always done on 

the same day. The magnitude of the oxidative burst was assessed using the rhodamine 

fluorescence in the FL-1 channel, and the median fluorescence intensity (MFI) was 

used for comparison between samples. In human blood it was easy to select the 

neutrophil population based on characteristic forward and side scatter properties, and 

this was clearly distinct from other leukocyte populations and unlysed erythrocytes 

(Figure 2.7a). However using the same method in whole blood from C57BL/6 mice was 

not ideal for the following reasons (illustrated in Figure 2.7b). 

1. Using 100IlL of whole blood for each tube limited the amount of blood that was 

available for other analyses on the same mouse (usually 200-400IlL of blood 

was obtained from healthy mice) 

2. Female C57BL/6 mice have a particularly low proportion of neutrophils in 

peripheral blood,283 which would be expected to decrease the relative purity of 

neutrophils In the forward scatter-side scatter gate 

3. During Py17XNL infection of CS7BL/6 mice there are many reticulocytes and 

parasitized erythrocytes which may clump together and are resistant to RBC 
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lysis, making definition of a discrete neutrophil population based on forward 

and side scatter properties more difficult. 

4. Stimulated neutrophils from some control mice had a bimodal distribution of 

rhodamine fluorescence suggesting that the dose of PMA may be suboptimal in 

this assay 

For these reasons the assay was modified to i) reduce the blood volume required, ii) to 

improve the specificity of identification of neutrophils, iii) to increase lysis of red blood 

cells, and iv) to achieve maximal stimulation with PMA. First APC conjugated anti-Ly6G 

and PE-Cy7 conjugated anti-COllb antibodies were added in a cocktail along with 

dihydrorhodamine in the last 5 minutes incubation step of the assay. This produced a 

clear Ly6G and COllb positive population of neutrophils (Figure 2.7c). An added 

finding was that COllb fluorescence increased following stimulation, which reflects 

degranulation and fusion of C011b within neutrophil granules with the surface 

membrane.284 This finding meant that the same assay could be used to examine two 

functional responses to PMA: oxidative burst response and degranulation response. 

Next, to minimize the amount of whole blood required, the volume of blood used in 

the oxidative burst assay was reduced to 50~L, whilst maintaining the volumes of PMA 

and OHR-antibody cocktail at 25~L each. Using these volumes, different doses of PMA 

were assessed to try to achieve a maximal response (Figure 2.8a). Although this 

experiment did not demonstrate saturation of the response, we were reluctant to use 

higher concentrations because PMA is soluble at lmg/ml in OMSO (1.6mM) and so a 

final concentration of 16.7~M PMA would also contain approximately 1% OMSO, 

which may itself modify cell function and viability. 

In samples from mice with hemolysis (due to malaria or phenylhydrazine treatment) it 

was noted that the separation between Ly6G+ and Ly6G- populations became less 

distinct than in healthy control mice, possibly as a result of autofluorescent, un lysed, 

immature red blood cells (Figure 2.8b). As an additional measure to try to remove 

noise from autofluorescent unlysed immature red blood cells, the length of incubation 

in RBC lysis buffer was extended 

68 



Figure 2.7. Optimization of a flow cytometric oxidative burst assay. 

(a) The magnitude of the oxidative burst was determined by rhodamine fluorescence 

in neutrophils (gated by forward and side scatter properties) in lOOIlL aliquots of 

human whole blood following stimulation with lllM PMA (unfilled histogram) and 

compared with unstimulated cells (filled histogram).(b) Using an identical assay 

procedure, clear discrimination of the neutrophil population was more difficult in mice, 

particularly in the context of Py17XNL infection, and PMA stimulation appeared to 

produce a suboptimal oxidative burst response. (c) Addition of anti-Ly6G and anti

CDllb antibodies improved discrimination of the neutrophil population and revealed 

upregulation of surface CDllb upon stimulation. 
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to 15 minutes. Using a FACS Calibur flow cytometer with only four fluorescent 

channels limited the options for using additional antibodies to define the neutrophil 

population because rhodamine produces strong fluorescence in the FI-1 and FI-2 

channels, and if anti-CD11b is also included in the assay to assess degranulation, then 

neutrophils have to be defined based on a single surface marker. For this reason, 

staining with anti-Gr-1 was also assessed, since the typical separation between positive 

and negative cell populations was observed to be greater than that seen with anti

Ly6G, although separation of the Gr-1 HiCDllbHi population (neutrophils) from the Gr-1 

intermediate populations (which would comprise inflammatory monocytes and 

possibly immature neutrophils) was still not ideal (Figure 2.Sc). In practice, where 

there was difficulty separating populations on the basis of anti-Ly6G staining, results 

were also confirmed using anti-Gr-1 staining. 

It became of interest to determine the oxidative burst response of bone marrow 

granulocytes, and so the same assay was applied to bone marrow. Femurs were 

harvested from mice into ice cold DMEM and after shaving off bone at both ends to 

allow access to the medullary cavity, marrow from one femur was flushed out 

repeatedly with a volume of 500~L DMEM using a 1ml syringe and 25G needle. 

Subsequently 50~L aliquots of the 500~L bone marrow suspension were used for the 

oxidative burst assay following the same protocol as for blood but using 1/10th the 

concentration of PMA, since it was assumed that the absence of large numbers of RBCs 

might reduce the amount of PMA required. 
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Figure 2.8 Further optimization of the oxidative burst assay. 

(a) The volume of blood used in the assay was reduced to 50~L and the concentration 

of PMA was titrated upwards to try to achieve maximal stimulation. (b,c) In samples 

from Py17XNL- infected and PHZ treated mice, separation of Ly6G positive and 

negative populations of cells in stimulated samples appeared less distinct than in 

healthy mice, whereas Gr-l hi cells were more clearly separated from the majority of 

other cells (c). 
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Salmonella enterica serovar typhimurium 

Salmonella enterica serovar Typhimurium pfpv 12023 (hereafter referred to as S. 

typhimurium) constitutively expressing Green Fluorescent Protein (GFP) was a kind gift 

from Prof. David Holden (Imperial College London, UK). In order to ensure an adequate 

and consistent supply of S. typhimurium for use in each series of experiments, S. 

typhimurium was grown to late log-phase in Luria-Bertani (LB)broth supplemented 

with 501lg/ml carbenicillin (to maintain selection of the GFP-carbenicillin resistance 

plasmid) at 3rc. Viable bacterial concentration was monitored by dilution culture on 

LB agar at different time points during growth of the bacteria in broth (Figure 2.9), and 

500111 aliquots were typically collected at 14-16 hours of incubation and stored at -80 

°C in 10% glycerol. Viable bacterial concentrations in the aliquots were reconfirmed 

before use in each experiment. Aliquots were thawed to room temperature, then 

100111 of the aliquot was mixed with 900111 sterile PBS and centrifuged at 16000g for 7 

minutes. 900111 of supernatant was carefully aspirated leaving behind the pellet of 

bacteria, which was then resuspended with addition of a further 900111 sterile PBS and 

repeat centrifugation at 16000g for 7 minutes. 900111 of supernatant was aspirated and 

then the bacteria were resuspended in the desired final volume of reagent for the 

experiment. Bacterial concentrations in stock aliquots were between 108_109 CFU/ml. 

Figure 2.9. Growth curve for S. typhimurium in lB broth. 
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Phagocytosis and killing assays 

To assess the ability of phagocytic cells isolated from mouse blood to kill S. 

typhimurium in vitro we used a modification of the classical gentamicin protection 

assay.28S The principle of this assay is that Salmonella and phagocytic cells are co

incubated at a high ratio (multiplicity of infection, Mal) of bacteria to cells and after 

allowing time for phagocytosis, the remaining extracellular bacteria are killed by 

addition of a high concentration of gentamicin. The medium is then changed and 

further incubation proceeds in the presence of a lower concentration of gentamicin 

which should prevent any replication of bacteria released into the extracellular 

environment, but should not kill intracellular bacteria. At different time points the 

medium and extracellular bacteria can be washed off, and viable intracellular bacteria 

enumerated by culture after lysis of the cells. In addition, the presence of GFP 

expressing bacteria in cells can be assessed by flow cytometry or fluorescent / confocal 

microscopy. 

In order to validate this assay we initially assessed phagocytosis and killing of S. 

typhimurium using RAW264.7 macrophages. Cells were seeded at a density of 1x106 

cells per well in 12-well tissue culture plates, 18 hours before use to allow formation of 

monolayers. S. typhimurium were added at a Mal of 10:1 and incubated for 25 min at 

37 ·C and 5% C02. Plates were washed three times with sterile PBS and then re

incubated in DMEM + 100~ml gentamicin for 1 hour. Cells were washed again three 

times with sterile PBS, and then cells were either harvested by scraping from wells into 

sterile cold PBS, lysed by addition of 1.0% sterile Triton X-100 in sterile PBS for 10 min, 

or reincubated in DMEM plus 10~ml gentamicin overnight before harvesting or 

lysing. Harvested cells were fixed by the addition of 40% formaldehyde to give a final 

concentration of 2% formaldehyde before analysis by flow cytometry (Figure 2.10a). 

la-fold dilutions of Iysates were plated on lB agar to determine viable bacterial 

concentrations. For analysis of phagocytosis by fluorescent microscopy 1x10s cells 

were seeded per well in chamber slides, and the same procedures were followed. 

Rather than harvesting or lysis of cells, they were fixed in situ at the end of incubation 

using 4% paraformaldehyde for 15 minutes. They were then washed three times with 

PBS, air dried and mounted in Fluoromount. Images were acquired using a Zeiss 
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Axioplan2 microscope with HB50 fluorescent lamp and images were obtained with a 

Retiga 2000R camera (Qlmaging) and analysed using Volocity 5.5.1 software 

(PerkinElmer) (Figure 2.10b). At the 1 hour time point (representing phagocytosis) the 

average (of three replicates) percentage of cells containing bacteria determined by 

fluorescent microscopy was 16.6% and the average number of viable bacteria was 2.0 

xlOs per well, which are both in relatively good agreement with the % GFP+ cells 

determined by flow cytometry (Figure 2.10a). After overnight incubation in this 

experiment bacterial growth was so heavy on the lowest dilution plate prepared, that 

discrete colonies could not be accurately counted, and flow cytometry analysis showed 

not only an increase in the proportion of GFP+ cells but also many cells with very bright 

GFP fluorescence (Figure 2.10a) suggesting numerous intracellular bacteria.286 
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Figure 2.10. Infection of RAW cells with S. typhimurium. 

a) Representative flow cytometry histogram showing GFP fluorescence of RAW cells 

following incubation with (black line) or without (filled) S. typhimurium for 1 hour 

(phagocytosis) or overnight. b) Representative phase and fluorescent microscopy 

images showing RAW264.7 cells containing GFP-expressing S. typhimurium (bright 

green). 
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The bacterial phagocytosis and killing assays were modified for assessment of function 

of neutrophils and monocytes from whole blood of mice. Neutrophils have a relatively 

short survival in vitro287
, so to prevent results being confounded by cell death, 

phagocytosis was assessed as before after 45 minutes, but bacterial killing was 

assessed after 2 hours in culture. Mice were killed by carbon dioxide inhalation and 

blood was collected immediately after death by sterile cardiac puncture. Red blood 

cells were lysed with 2ml ammonium chloride lysis buffer per 100\..11 of blood, 

incubated for 5 minutes at room temperature, and then cells were washed with 10ml 

PBS after centrifugation at 1000g for 5 minutes. After centrifugation at 500g at 4°C for 

a further 5 minutes the resulting cell pellet was resuspended in 180lll MACS buffer 
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(prepared according to manufacturer's instructions) and then C011b+ cells were 

isolated using anti-COllb magnetic beads (Miltenyi Biotec) according to the 

manufacturer's instructions. C011b+ cell fractions were collected in 15ml tubes and 

washed twice in ice cold OM EM before resuspension in 1mL OMEM without 

antibiotics, and determination of the cell concentration. Cells were distributed into flat 

bottom 96-well plates at 105 Iwell in 180uL volume or into 8-well chamber slides at 

2x10s Ichamber in 360ul volume. Cells were allowed to rest in the wells for 10 minutes 

at 3rC prior to addition of S. typhimurium. In order to maximize phagocytosis, S. 

typhimurium were prepared from frozen stock as described above, and opsonized for 

30 min at 37°C in 20% normal mouse serum (Southern Biotech) before adjustment to a 

concentration of 6x107 opsonized S. typhimuriumlml (confirmed by plating of serial 

dilutions). s. typhimurium were added to the wells containing C011b+ cells at a MOl of 

10:1 and mixed by gentle pipetting, followed by incubation for 15 minutes at 37°C and 

5% CO2, To control for differences in autofluorescence of cells and for surface binding 

of S. typhimurium to C011b+ cells, which might occur in the absence of phagocytosis, 

aliquots of cells were prepared that were either uninfected with s. typhimurium, or 

that were fixed by suspension in 2% formaldehyde prior to addition of S. typhimurium. 

Uninfected cells were also used to determine purity of CD11b+ cells when analysed by 

flow cytometry, and this was typically around 98%. After the initial 15 minutes 

incubation, gentamicin was added to give a final concentration of 100~ml and cells 

were reincubated for 30 min at 37°C and 5% C02. At the end of this time, plates were 

centrifuged for 2 min at 1000g and cells were gently washed twice with warm medium 

to remove non-phagocytosed bacteria. 

To assess phagocytosis by quantitative culture, cells were lysed in situ by addition of 

1% Triton X100, and 10-fold dilutions were plated on LB agar plates. To assess 

phagocytosis by flow cytometry, plates were placed onto ice for 30 minutes to 

facilitate removal of any plastic-adherent cells, followed by gentle scraping with a bent 

pipette tip prior to aspiration of the well contents, and resuspension in 2% 

formaldehyde for 15 min. These cells were then resuspended in staining buffer 

containing APC antl-Gr-1 and PE-Cy7 anti-CDllb and incubated at room temperature 

for 15 min, before further washing in PBS and resuspension in PBS with 4% 
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paraformaldehyde. Cells were analysed by flow cytometry, and divided into neutrophil 

(Gr-1HiCDllb+) and monocyte (Gr-1Lo/·CD11b+) populations (Figure 2.11a) within the 

CDllb+ cells. The percentage of cells phagocytosing s. typhimurium was calculated by 

setting a gate defining the GFP+ population using uninfected cells, then subtracting the 

proportion of GFP+ cells in the fixed infected sample from the proportion of GFP+ cells 

in the respective unfixed infected sample (Figure 2.11b,c). To assess phagocytosis by 

confocal microscopy, cells in chamber slide wells were fixed in situ with 2% 

formaldehyde for 15 min at room temperature, before washing gently twice with PBS 

plus 5% fetal bovine serum. After this cells were thoroughly dried in air at room 

temperature and then mounted in confocal matrix (Micro Tech Lab) containing 4',6-

Diamidino-2-Phenylindole (DAPI). Analysis of the slides is described in detail in Chapter 

5.276 To assess bacterial killing by CD11b+ cells, after washing off the medium 

containing 100~/ml gentamicin, cells were reincubated at 37°C and 5% C02 in DMEM 

containing gentamicin 10 Ilg/ml for a total of 2 hours. After this time, viable bacteria in 

each well were enumerated by quantitative culture in the same way as for assessment 

of phagocytosis. 

Further details of methods used for in vivo experiments with s. typhimurium infection 

are described in Chapter 5. 
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Figure 2.11. Flow cytometric analysis of phagocytosis of S. typhimurium. 

(a) Definition of CDllb+ cells in blood by flow cytometry (gated region, left hand 

panel), purity (middle panel) of MACS-isolated CDllb+ cell fraction (unfilled histogram, 

mean percentage purity displayed) compared with unselected cells (filled histogram), 

and definition of cell populations within the CDllb+ cell fraction (right hand panel) as 

neutrophils (Gr-1HiCDllb+) and monocytes (Gr-1Lo/'CDllb+). (b) Gatingto assess 

phagocytosis of GFP-expressing S. typhimurium in monocytes. (c) Gating to assess 

phagocytosis of GFP-expressing S. typhimurium in neutrophils. 
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Summary of the main techniques developed and optimized for 
studies in humans 

These studies were undertaken at the Medical Research Council (UK) laboratories in 

The Gambia. Technical assistance was provided by two laboratory technicians, Madi 

Njie and Simon Correa. Some assays were performed in conjunction with another PhD 

student, Sarah Nogaro, when samples from a single subject were used by both 

investigators and the assay results were important for both projects. The methods 

developed and described in this chapter were used in the study reported as a research 

paper in Chapter 6. To avoid duplication, methods performed according to standard 

protocols without further modification, are described in the methods section of 

Chapter 6. 

Study design and constraints 

The present study was embedded within the final year of a six-year study platform 

investigating immunological, parasitological and clinical aspects of mild and severe 

malaria in Gambian children. Recruitment, sample collection, clinical case definitions 

and statistical considerations are described in Chapter 6. Scientific and ethical 

approval, and patient information, consent and record forms are provided as 

appendices. Due to the multi-purpose nature of the study platform, samples from an 

individual subject were often used for three different studies if sufficient blood was 

available on the day of presentation (day 0). Sometimes this meant that at subsequent 

time points the amount of blood available for each study might be considerably 

smaller, constraining the number of assays that could be performed. Samples were 

delivered to the laboratory throughout the working day by fieldworkers. Samples were 

often delivered in batches from each of the three recruitment sites, but their delivery 

was not coordinated between sites. Although subjects were given appointment cards 

to remind them of their follow-up visits, due to the voluntary participation there was 

little possibility to control the timing of sample collection. In consequence, managing 

the workflow for sample processing in the research laboratory was extremely 

challenging, and sometimes several batches of samples were simultaneously being 

processed for several different assays. Due to the limitations of sample volumes, 
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numbers of staff, and equipment, and loss of viability of fresh samples over time, 

assays were developed with special attention to how they could be made time and 

resource efficient, and to the order in which they should be prioritised. 

The aim of this study was to assess neutrophil function (oxidative burst, degranulation, 

phagocytosis and bacterial killing) and its relationship to hemolysis and HO-l 

induction, during acute malaria and convalescence. Fresh, live cells were required for 

neutrophil function, degranulation, phagocytosis and killing assays, and fresh cells 

were ideally required for analysis of intracellular HO-l expression. It was obvious that 

performing these assays would be the main demand on the available blood sample 

volume and also on laboratory time. In order to ensure that the most complete and 

highest quality data set was available, assays had to be prioritized. The combined 

oxidative burst and degranulation assay was judged to be most important because i) it 

would be the most convincing way to determine if a similar mechanism of neutrophil 

dysfunction occurred in both mice and humans, ii) it could be performed with the 

smallest volume of blood (and therefore was most likely that it would be possible to 

perform this assay for every sample), and iii) it required the least time to perform (and 

therefore would be easiest to perform numerous times within a day if necessary). 

The intracellular HO-l expression assay was considered the next most important, 

because i) it might provide a mechanistic explanation for any neutrophil dysfunction, ii) 

after fixation of cells subsequent staining could be done at a later stage in the day, and 

iii) it required a relatively small sample volume. 

The bacterial phagocytosis and killing assay was given lowest priority, because i) it 

required the largest volume of blood (meaning that it may not be possible in all 

subjects) and ii) it was labour intensive. In all cases assays were optimized to try to 

minimize the effects of these constraints as described below. 

Neutrophil oxidative burst and degranulation assay 
Following on from the assay used to determine oxidative burst and degranulation in 

mlce,276 It seemed logical that similar modifications to the original assay described by 

Richardson et arBl. could also be applied for analysis of neutrophils in children with 
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P./a/ciparum malaria. Because every patient's blood samples were to be shared 

between three studies, it was essential to minimize the amount of blood required for 

this assay. Briefly, three 50~L aliquots of blood were split into separate FACS tubes 

labeled 'unstained', 'unstimulated' and 'stimulated'. To each tube, 50~L of PMA (final 

concentration l~M) or PBS was added. Samples were vortexed and incubated for 15 

minutes at 37·C in a water bath. Next 25 ~L of PBS (unstained) or staining cocktail 

(OHR plus PECy7 anti-C011b plus APC anti-C015, unstimulated and stimulated tubes) 

was added and incubated for 5 minutes at 37·C in the dark. Red blood cells were lysed 

with 2ml of ammonium chloride lysis buffer (5 min at room temperature, shielded 

from light) before centrifugation at 1000g for 3 min and washing in PBS before 

resuspension in 300~L PBS containing 1% paraformaldehyde. All samples were stored 

at 4·C protected from light, and analyzed in a single batch on the same day as samples 

were collected. Data was acquired using a using a 3 laser/9 channel CyAn™ AOP 

flowcytometer with Summit 4.3 software (Oako). Compensation for spectral overlap 

between rhodamine and the fluorophores was performed for each batch of samples, 

by mixing stimulated but unstained cells with cells from tubes stained with OHR only, 

PE-Cy7 anti C011b only or APC anti-C015 only, and using forward scatter-side scatter 

characteristics to gate on the neutrophil population. The initial gating strategy is 

shown in Figure 2.12a. 

Sample collection criteria for the study specified that all samples must arrive at the 

laboratory within 2 hours of collection from the patient. To facilitate sample 

management in the laboratory, samples were processed in batches where possible, 

trying to allow no more than 4 hours from sample collection until the oxidative burst 

assay was started. To validate this strategy we assessed the effect of storage on the 

magnitude of the oxidative burst of healthy donor blood. Blood was collected into 

Sodium Heparin tubes identical to those used for patient samples and placed in ice in 

an insulated box which was then placed outdoors in direct sunlight to simulate the 

conditions of samples being collected in the field. The oxidative burst assay was 

performed on samples after 0, 2, and 4 hours of storage, and was also compared using 

either 50 or l00~L of whole blood for the assay. The results showed that there was 
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almost no variation between the oxidative burst under any of these conditions (Figure 

2.12b). 

In order to compare neutrophil function at different time points following infection it 

was necessary to ensure that results obtained for rhodamine MFI at different time 

points would be comparable and not influenced by, for example, drift in the intensity 

of lasers on the flow cytometer. For this reason, before each batch was processed, the 

FL-1 voltage was adjusted to achieve the same FL-1 MFI using the same batch of 

fluorescent beads (Spherotech). Furthermore, samples from the same healthy 

individual were tested 5 times over a one month period to assess the amount of 

variation that occurred (Figure 2.12c). For stimulated samples there was little variation 

in rhodamine MFI (mean value 1381, range 1270-1465, s.d. 73.19, coefficient of 

variation 5.3%), whereas for CD11b fluorescence there was more variation (mean 

975.6, range 741-1207, s.d. 217, coefficient of variation 22.25%). When CD11b 

upregulation was assessed as the fold change in MFI from the corresponding 

unstimulated sample, there was also substantial variation (mean 5.0 fold increase, 

range 2.1-8.1, s.d 2.54, coefficient of variation 50.5%). 
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Figure 2.12. Modification of the oxidative burst and degranulation assay for human 

subjects. 

(a) Gating strategy for selection of human neutrophils. (b) Stability of oxidative burst 

response was assessed when samples were stored for different lengths of time before 

the assay, and for different volumes of whole blood used in the assay. (c) Variation in 

PMA stimulated rhodamine and CDllb MFI was assessed using blood from the same 

healthy individual tested 5 times over a one month period. 
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HO-1 Expression (flow cytometry) 

Following the methodological problems encountered when optimizing an assay to 

detect HO-l expression in mouse leukocytes by flow cytometry, it seemed appropriate 

to assess the performance of different methods for detection of HO-l expression in 

human blood leukocytes. Similar to the approach in the mouse studies, hemin was 

used to induce HO-l in vitro, so that quantitative changes in expression could be 

detected. In 24 well plates, aliquots of fresh whole blood from a healthy donor were 

mixed and incubated with 500~l of RPMI containing varying concentrations of hemin 

for 18 hours at 37"C in the dark. Initially the following methods were assessed: use of 

direct vs. indirect immunofluorescent staining for HO-l and fixation/permeabilisation 

with FixPerm (BO) or formaldehyde/ methanol as described for fixation of mouse cells. 

After incubation with hemin, 500~l aliquots of the blood/RPM I mixture were mixed 

with 10ml ammonium chloride RBC lysis buffer for 5 minutes at room temperature, 

then washed with PBS. Cells were then fixed and permeabilised by using warm 

formaldehyde followed by ice cold methanol and staining in FACS buffer as previously 

described, or by using 250~l FixPerm for 30 minutes at 4"C before washing and 

staining in Perm Wash (BO). Cells were stained with anti-C015 and either no anti-HO-l 

antibody, FllC-conjugated anti-HO-l (HO-1-2, Abcam) or the polyclonal anti-HO-l 

antibody (SPA-895, Assay Designs) or polyclonal rabbit serum (Covance) as a control 

followed by a FllC-conjugated secondary antibody (goat anti-rabbit IgG F(ab')2), as 

described earlier in this chapter. Whilst direct staining with the monoclonal antibody 

produced fluorescence in all leukocytes, which was clearly above that seen In 

unstained cells, there was no evidence that fluorescence increased following 

treatment with hemin, indicating that this antibody was not suitable to quantify 

changes in HO-l expression (Figure 2.13). In contrast, using the polyclonal anti-HO-l 

antibody for indirect labelling of HO-l showed that induction of HO-l in response to 

hemin treatment was detectable, particularly in C01Sdim cells (likely to be monocytes) 

and to a lesser extent in C01Sbrllht cells (neutrophils). Fixation and permeabilisation 

using FlxPerm appeared superior to formaldehyde and methanol as judged by the 

intensity of fluorescence relative to the control antibody. In order to validate this 

further, it was confirmed that HO-l induction was detectable when combined with the 
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full panel of surface antibodies to be used in the study, and using a different conjugate 

for the secondary antibody for detection of HO-1 (because some surface markers were 

only available with certain conjugates, a PE-Cy7-conjugated secondary had to be used 

for detection of HO-1). Surface staining (with antibodies against C014, C016b, C091 

and C0163; see Chapter 6 for further details) was performed prior to fixation and 

permeabilization with FixPerm. This confirmed that in response to hemin treatment of 

whole blood, the greatest changes in HO-1 expression were seen in monocytes (Figure 

2.14). 
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Figure 2.13 Optimization of intracellular staining for HO-l in human blood. 

HO-l expression was compared between healthy donor leukocytes treated with 

varying doses of hemin for 18 hrs and then either directly stained with a FITC

conjugated monoclonal anti-HO-l antibody, or indirectly stained with anti-HO-l 

polyclonal antibody followed by a FITC-conjugated secondary antibody. For the indirect 

polyclonal antibody staining, two fixation methods (FixPerm or formaldehyde 

methanol) were also compared. 
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Figure 2.14 HO-1 induction in different cell types in human blood. 

Detection of inducible HO-l expression was confirmed in healthy donor leukocytes after 18 

hours incubation with 0 or 100~M hemin, when also using a surface antibody panel. Gating 

strategy is shown in the upper panels and histograms in the lower panels show HO-l 

expression in different cell populations. 
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Determination of parasite biomass based on plasma PflIRp·2 
concentration 

Understanding the relationships between malaria parasite burden, hemolysis, HO-1 

induction and neutrophil function was fundamental to this study. In order to avoid 

underestimation of parasite burden using peripheral blood parasitemia in subjects who 

may have intravascular sequestration of parasites, we calculated total parasite 

biomass for all subjects. The methods used to do this are presented and discussed in 

chapters 6 and 7. 

Neutrophil isolations by magnetic activated cell sorting (MACS) 

An assay was developed to determine whether acute malaria induced changes in the 

ability of neutrophils to phagocytose or kill S. typhimurium in vitro. In order to obtain 

relatively pure neutrophils, magnetic beads were used to positively select neutrophils 

from whole blood. In order to minimize the required blood volume, initial experiments 

were performed to assess the yield and purity of neutrophils obtained by magnetic 

bead isolation from healthy donor blood. Briefly different volumes of blood were 

incubated with ammonium chloride red cell lysis buffer (lml per 50 III of blood) for 10 

minutes at room temperature before centrifugation at 1000g for 5 minutes and 

removal of the supernatant. Cells were resuspended in 5ml MACS buffer and washed 

again, before performing a cell count with trypan blue, and proceeding with magnetic 

separation of neutrophils using anti-CD15 beads and MS columns (both Miltenyi 

Siotec) according to the manufacturer's instructions. Cell counts were repeated after 

separation of neutrophils and purity was assessed by staining with an anti-CD15 

antibody. The purity of CD15 selected cells was high (>97%) and appeared unaffected 

by the initial blood volume but the absolute number of neutrophils and the yield of 

cells was dependent on the starting volume (Figure 2.15), and these results confirmed 

that using at least 1ml of whole blood for neutrophil isolation would probably be 

optimal. 
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Figure 2.15 Relationship between blood volume and recovery and purity of cells 

isolated by MACS • 
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The gentamicin protection assay used to determine phagocytosis and killing of S. 

typhimurium in mice was extremely labour intensive and required access to a plate 

centrifuge in which infected samples could be centrifuged between wash steps. 

Unfortunately it was clear that this would not be practical in the study using fresh 

human blood samples for the following reasons: 

1. There was no plate centrifuge available for use with infectious samples. 

2. All assays needed to be performed on fresh blood as soon as possible after its 

arrival in the laboratory, meaning that time available to perform all assays was 

limited. 

3. The study protocol dictated that assays for oxidative burst and HO-l expression 

were prioritized, meaning that time available to perform the phagocytosis and 

killing assays was the most limited. 

For these reasons the phagocytosis and killing assay was performed using a 

modification of the protocol developed by Gondwe et 01.94 The methodology is 

described in detail in the manuscript presented in Chapter 6. The principle of this assay 

is rather different to the gentamicin protection assay, in that a high concentration of 

cells is inoculated with a much lower concentration of opsonized bacteria and 

constantly mixed to ensure a high collision frequency and therefore phagocytosis of 

almost all bacteria. Cells can be removed at various time points during the assay and 

viable bacterial concentration can be determined by cell lysis and quantitative dilution 
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culture, or GFp· cells can be enumerated directly by flow cytometry. In order to 

achieve optimal phagocytosis in this assay, Salmonella were opsonized using pooled 

serum from 10 healthy adult Gambian rural villagers, based on the assumption that 

within this pool of serum there would likely be antibodies which would opsonize 

Salmonella, as described by Gondwe et al. in pooled Malawian adult serum.94 

Opsonization with pooled heterologous serum is preferable to autologous serum from 

children with acute malaria, since child sera might contain highly variable levels of anti

Salmonella antibodies,97 and other serum factors induced by acute malaria infection 

might influence the assay. However, this assay is likely to be a test of the best possible 

phagocytic and killing function of the neutrophils, and not necessarily the function 

which would be achieved in viva in each subject. 
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Chapter 3. Does malaria significantly impair vaccine 
responses? 
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Suppression o/vaccine reponses by malaria. Insignificant or 
overlooked? 

The material presented in this chapter was comissioned as a review article by the 

Editor of Expert Review of Vaccines. It was peer reviewed prior to publication. In the 

article we discuss the evidence that malaria impairs vaccine responses, the potential 

public health implications and the underlying biological mechanisms. 
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Suppression of vaccine 
responses by malaria: 
insignificant or overlooked? 
Expert Rev. Vacdnes 9(4). 409-429 (201 0) 

Malaria is Widely reported to suppress Immune responses to heterologous antigens, including 
vaCCInes, but the evidence base for this assumption is patchy and confusing. Here we review 
the evidence for malaria-mediated suppression of responses to vaccination and conclude that. 
there is eVidence of Impairment of responses to heterologous polysaccharide antigens in 
children with clinical malaria or asymptomatic parasitemia; there is little evidence of impairment 
of responses to routine, protein-based childhood vaccine regimens , and the underlying 
mechanisms of impaired lesponsiveness, and especially of impaired responses to T-independent 
polysaccharide antigens, remain unclear We suggest that, With the possible exception of 
vaCCInes against encapsulated bacteria, the benefits of postponing vaCCInation until a malaria 
Infection has cleared are probably outweighed by the risk of miSSing opportunities to vaccinate 
hard-to-reach populations 

KnWOROS: antibody ' I:ellu!ar Immunity · :hemoprophylaxl,!; " Immunosuppres~ lon " malaria 
" T-mdept'odenl " V~h:( In!? 

Malaria causes a huge global burden of ill 
health: an estimated 243 million cases 01 
malaria and 863.000 deaths in 2008 [lOI]. 
Of the bve specie, known to inlect humans 
(see Box I). P/,1SmodilJlII fo1dparrtlll causes the 
grearest morbidity and mortality. predomi
nantly in young children in sub- aharan 
Africa. However. the direct burden of dis
eose may underestimate the overall .ffoct of 
P. fide/paru", on the healdl of a population. 
Epidemiological and ecological srudies suggest 
that infection with P. fillclpdrum lS a S(fon
ger risk factor for death than can be direccly 
attributed to malaria it,df [I -I] , and it has b .. n 
estimated that up to half of the variation in 
child mortality in Africa may be accounted for 
by parasite prevalence [1]. J a other words, iliere 
IS a major inditect e[IeCl of malaria infection 
on child survival. Consistent with this is the 
aSSOCiation of clinical malaria episodes with 
increased risk of bactaial infections [.-6], 

increased HIV viral load [7J , inability to 
uppress chroni Epstein-Bart virm infec

tion [8.9} and reduced responses to some vac
cines [10· 16] These observations have led to the 
mgg.stion that malaria is immunosuppressive. 
although the term immunomodularory may 
be more appropriate ince it is unclear how 

parasite-induced changes in the host immune 
respons< influence the clinical manifestations 
of P. foll:Jparllm in feetions. 

The populations suffering the grealest burden 
of ill heald, from malaria also suffer subscamiai 
ill health from vaccioe-preventable diseases [17]. 

The possibilit}, that clinical malaria or asymp
romatic parasitemIa (see Box ,) might reduce the 
efficacy of vaccines administered around the 
time of infection is very worrying. This is not 
only a potential problem for ' routine' vaccines. 
bur also an obsrade to "se'smenl of new vac
cine' in malana-end mic settings. Furthermore, 
th~re is a possibility cl,al concurrent P. fofcl
pf/rum infection ar the rime of vaccination may 
alrer the efficacy of an experimental malacia vac
cine in an endemic setting. Despite these CO[1-

cerns, the effect of malana 00 vaccine re ponses 
in hllOlans has been invesrigated less extensivdy 
and Jess rigorously than mighr be expecred. 

In this review we aim to critically re-examine 
the evidence rrgarding whether and how P. fol
<Ip"rum infecrion alters eithN heterologous 
anrigen or malaria vaccine (('sponses in humans 

and to conuasr the effects of P. fillciparu m wirh 
the effects of other inftcrions We conceDImte 
on P. jnfcipllrtlm, ar rhe expense of the olher 
P/;lSmodltlm specie that infect humans, becallse 

IO . I~86/ERV 10.16 ,!'lIOIO Expert RevIC:wsltd ISS 1 476-0~·8 4 409 
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Box 1. Human malaria. 

• Five Spe.:les 01 p,otozoan p.3ra"te caus malaria In humans Plasmodium fa/ciparum. Plasmodium vivax. Plasmodium ova/e. 
Plasmodium tnIl/ar~ and Plasmodium knowlesi 
The PlasmodIUm Specl are transmltttoJ by the bite of female anophEline mosquitoes 

• The lust .tage 01 Inle< tlon Involves the rapid tranSit at Inle< ted sporozortes thlough the ~krn. rnto the blood and Ihen to the liver 
• The paraslle dev..tops and replKate, In "vet cells before merozoltes burst out to rnfect red blood cells 
• In red blood c~ Is. par~sltes undergo lurth .. r rep"<aUon and relea;e more merozoltes to Infect addrtlonal red blood cells In a repeatrng cycle 
• 'ome pa'a>tt.es dltf~rentrate to become gametocytes. whrch can be taken up by mosquitoes dUring a blood meal and rernrtJate the cycle 

of rnfe< tlon 
• Plasmodium Inf",tron may cause no symptoms (asymptomatrc parasrtemra), mild disease charactenzed l1t fever and nonspeclfrc symptoms. 

or severe disease .and dea h (usually only With P. falcipafUm rnfecllon) 
• The ,ntensity of mal"rra rn/ectron valles malkedly. even Within nearby areas of Ihe same country and wrth changes In rainfall and 

mosquito numbers 
• Indlvrduals expo,ed to repeat<>d P falciparum Inle<tlons acqulte Immunrty to malaria and p.3rasltemlii 
• Immunity to sevelp drsea ~ r. iJ. qurred fastel than Immunity whrch leduce> para"t" I d 
• In some Sf'ttlngs. ne.r Iy everyone Will have parasrtemra detec table on iJ blood trim. although few of them Will have any dnreal symptoms 
• The densrty of para~temla IS rela1ed to the Ilkeirhood ot presentlrg symptoms 
• Effective rrnrnune respon H drrected dgamst sporozoite> could produce ste!'lle Immunrty (r" prevent sporozolt~ from an InfectiOUS 

mosquIto bit from generatlt')9 mero:oltes) 
• Eltectrve Immune responses agarn,t blood·stage parasrtes are more Irkely to result In lower parasrte densrtle5 and a reduced Irkelrhood 

ot symptoms 

this parasite has been sludied in most del3il. Some orthe issues we 
idrmify may also be rdevant to infections with olha Plasmodium 
species, particularly PI.wl/odium I'll'''.'. which .1<0 causes a hug< 
burden of disease .IS] bUl, [0 date. the evid<nce iseit.her completdy 
lacking or In ufficienr to draw any firm conclusion. We find that 
the troltgest evidence is for suppre. sian of re ponses [0 hetero
logou polysa eharide antigtns by P.filkrpllnun infection. whilst 
evidence for an dTeet on htterologollS prot<in 3migen responses 
is less tobust. The effect of malaria or asymp[Omacic parasitemia 
on responses to experimental malaria vaccines has Dot been inves· 
tigated in detail, but there IS some prelimina.ry evidenc,. to sug
gest that immullog~nicity is redu cd. Paradoxically. nearly all 
r~ceOl scudi .. seeking to ~xplaiu the ,eJucriou of vaccine-induced 
immune re ponses in malalia have focused 00 T-Iymphocyu
depelldrot mecJlanisms. whereas th~ mosr convinci og evidrnce of 
, uppression is for r~sponses to polysaccharide antigens that do not 
require T-cell hdp. \Y/e propo e that practicJ issues urroundiog 
vaccination may be mOfe import.or lhan the immuoomodula
tory effecr of malaria when administering routine chi.ldhood vac
cines. However. understanding why T.cdl.independenr responses 
are mOSt clearly suppressed by mal. ria may reveal fundamelltal 
as~cts of the immunological host- pathogen relationship, and may 
assist development of mor~ eff~ctive malaria vaccines. We lay clown 
a challengt for all future vaccin~ studies conducted in malaria
endemic counerie, to actively assess the effect of parasitemia on 
vacdne imml100grnicity and protective efficacy. 

Does malaria suppress responses to vaccination with 
heterologous antigens7 
Although It is frequently stated that malana suppresses vaccine 
re ponses, to our knowledge the evidence base supporting this 
,raremeot has n vN bun CI U iC'ally al'l'ra ised 1 n fact. it is difficult 

410 

to imagine how one mayanswel this question experimentally io 
humans. The gold st.od •• d would be to randomize volunteers 
in a blinded E.,hioD to receive infect d or uninfeC[ed mosquito 
bites, rh<n to allow tim< for d<velopm<nr of parasit<mia Ixforr 
double-blind, randomized allocation to i=unization with the 
vaccine of interest or a contro l vaccille. followed by assessmenc 
of the , .. ccine-induced immune response aud. evelllually, of 
protective efficacy of the vaccille. This type of experiment has 
been performed in ao animal modd, for example. the protec
tive efficacy of whol<-cell Bordf!Ii!/I" prrUSSI5 vaccine in m i"" was 
reduced by blood-stag<' malaria (19). bur never in humans. \Vhile 
challenge experiments are possible in human volunteers. and have 
played a role in development of malaria vaccines [201. they ate 
costly and, for ethical and safety reasons, parasiumia would not 
Ix .1I0wed to proc«d for long <no ugh to Ix compo rabl~ with 
naturally acquired malaria. It is also unlikely that the groups of 
most IIltNest for vaccination, for example, Africa n infants. would 
ever bt- ~nrolled in .uch a study. For this reason. most publi hed 
studies hav< addressed this question in the context of naturally 
occurring infections in malaria-endemic areas Unfortunately, 
studies undrrtaken in this way are more subjecr to bias. Forexam. 
pie, comparisoo of vaccine responses LO a group of chi ldren with 
malaria and a group of age- and sex-matched children without 
malaria may be confounded by a common immunological fac
cor which both increases <l1sceptibility [0 malaria and reduces 
responses to vaccinacion. If the vaccine responses were lower in 
the hildren with malaria, the erroneous conclusion may be that 
malaria redu""s vaccine respon es. Examples of study designs and 
potential sourers of bias are described in T ..... t 

A total of 22 studies were identified chal either directly or 
indirecrlyassessed the effect of P. folcipl1TtlllI infection on hetero
logous vaccine responses (TAB1J' 2) II I' 2t IS). orne studies were 
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Suppression of vaccine responses by malaria : insignificant or overlooked? 

Table 1. Limitations and benefits of different study designs to assess the effect of Plasmodium falciparum 
infection on vaccine responses. 

Effect of clinical mala"a ComparISon 01 vaccine responses 
between (hlldren with clinICal 
mala"a and healthy (Ontrol 
children (may Include matchrng for 
age. sex and location) 

• ~electlon bias • ,ample size IS easy to calculate 
• Confounding by uncontlolled 

factors (e g. nutrrtlonal status. 
underlYing Illness. common 
factorlsl predisposing to rnalarta 
and reduCing vacCine responses) 

• A direct method of assessing 
aSSOCiation between mala"a and 
vacCine response 

Effect of asymptomatic 
parasitemia 

Retrospective evaluation of vaCCIne 
response In children With/Without 
parasites In blood film at the time 
ot md>S vaCCination 

• Confounding by uncontrolled 
lac tors a; above 

• Result> eaSily added onto 
another study 

• SubmICroscopIc paraSitemia might 
reduce the power to detect any 
difference between groups 

• Often the study IS not deSigned 
to answel thiS questIOn. so It 
may be underpowered lor 
thiS outcome 

Wec t 01 natural 
protection Irom malana 

VaCCIne ,eponses In children With 
HbAA versus HbA5 

• Confounding by factors as aoove • May be dllhcult to estrmate the 
dr:gree of protE:< tlon aflorded 
by HbAS 

• HE:mogloblnopathy Itsdf may alter 
vaccine lesponses 

Intervention to create 
groups which dre 
protected or unprotected 
from rratutilily 

RanJOlnlzatlon of ch,ldren to 
chemoprophylaxIs Ot pla(ebo 

• The Inte",,,ntlon may Itself elfec t 
vacclf Ie f ~pon5e:; 

• The eftec tlven"" of the 
protective Intervention and the 
rate of naturalill/ectlon, may be 
hard to predlC t In advance 
These factors will Influence the 
power of the study 10 detect an 
effect on vaccine res~()n,es 

• Sele<oon bras may be present but 
can be eliminated by randomization 

occulting infection • Observer bras may be present 
which can be eliminated by 
blinding 

HOAA Nor",,1 ".moglob,o A HOAS Skll. cell tr.rt 

not primarily dtsign d 10 assess whether P. folcrpllnu" infec[ion 

influenced vaccine-induced immune re ponses, bur rarher co res[ 
whether the inravention [0 prrvelll malaria i[sdf influencrd 

[he immun< re. poose [0 rOUline childhood vaccines [: lO.l1.J4]. 

All rudies usrd im munological OUt omes to quamify va cine 
responsrs; no studies have assessed lhe effecI of malaria or asymp

tomaoc parnsitrrui. on vaccine efficacy. Although many different 
merhodologies were used. all had me pocendal [0 introducr bias. 
IndJVldual vaccme., combinations of vaccinrs and schedules of 

administration differed brrween studies. so that direct comparison 
of rr.ul[s is very difficult. Dt-spite Ih sr cavears, mere are several 
consislroc themes mat suggesr rhar P. fillopanan does indeed have 

a derrimenral effect on immune response ro vaccinarion wicllsome 

hererologous antlgrns. 
The aocibody re ponse 10 polysaccharrde antigt'ns. especial ly 

mrningococcaJ polysaccharides, was mosr consisrenrly suppressrd 
by P. filloparulll infecrion. This effecr was "poned in observa
tional scudi .. wherr children with acute malaria or asymprom

:uic parasirrmia had weaker antibody r spon es to meningococ< 
cal polys.ccll.riele Ihan control child"n Wilhoul parasitemia 

I' 1111). Children protected from P fi&lparum infwion by che

moprophylaxis or sickle-cd I rrai[ had higher anribody responses 

ro meningococcal polysaccharrdes chan unprocecced children in 
areas of high uansmission imensicy 11.-11], Comparison of the 

rdative effens of clinical malaria and asymptomatic parasitemia 

www.apc[t~rC:VIC.Ws.t..:om 

have nOl been performed within [he same "udy, but children 

wim acute malaria vaccinated with group C meningococcal poly
accharide in one study had lower antibody tilers rdative [0 theil 

rrsrective coorrols [han children wim asymptom.[ic parasitemia 
at the time of vac ination in another study [10,13J. In observational 
studies. higher levels of symptoma[ic or asymptoma[ic parasit:

emia were associated wich lower amibody response to group 
C meningococcal polysaccharide. sugge ring a 'dose.respome 
relationship 10 .IJ. Vaccination of children at differem tntervals 

after an episode of acute malaria suggeslCd ma[ rhe dura[ion of 
the uppressive etTect of acute malaria \vas a[ least 28 days for 
meningococcal vaccine (10). but this has not been assessed 

foJlowing clearance of asymptomatic parasilemia 
The response [0 almollt!IIa typhr polysaccharide amigens, 

as a resulL of whole-cell vaccination. was also suppressed. but 

the effec[ was less pronounced than for meningococcal poly
saccharide This may reHect me difference between adminis[Ca

rion of a whole organism (which might induce porent cellular 

immune responses) or just a polysaccharide component (which 
might not). Amibody responses to the S. fyphlO .migen. but not 

to thr r.thN more immunogenic H anrigen. were lower in chil

dren with acme malaria infection than in controls (II]. although 
the duration of [his suppression was shorter than for meningo

coccal polysaccharide vaccine [10]. and chemoprophylaxis was 

assoc ialed wi[h only a sm all (not stalistically sign i ficam) increasr 
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5d/mon@!la ryphi 
Oneriese 
adm""stered at 
t~E'~E-t ·m 

' <-!anus toxoid 

5 ryphi ard 
group C 
menmgococcal 
polysacchaflde 
One dose of each 

o bservatlOl'a1 

II'/ililamson 
er al. (1978) 
Observational 

6-month- 6-y>:-.;r
Old ch,dren 
att"ndlng 
outpa"lE'l'lt 

depal'ment c l a 
te;;cnmg hospit"ll~ 
northern NlgE'rra 

6-month-6-y .. ar-
old chtld,,,n 
attending 
outpatient 
department .:;1 a 
teaching hOSPital In 

nortr"rn NlgeIJa 

mala"a. 3' th~ Jr 
With other acute 
,;Iness (Without 
para3tTermalor 34 
ha.lthy Siblings 

79 cbtldlen wltb 
acute P. faKI(»rum 
ma:arra( ~1% 

palaslremla) 
compared with 40 
ag(:, sex and ethnIC 
group matched 
healthy Slblln5)s 
Ch"dren With 
malana werE' 
randomized to 
receive vaCCIIlt,', on 
day 1. 7 or 28 

• Antibody 'If",rs and r",;pom~ I"t", (\WI 

10'", doubling dilutions) 16 davs 
post"acclnat'on 

• Chtld'en Wf~hr'alana had 
aPP'O>:H'lat€'Y 1 8~fold low~ lise l!l 
~tvo1c<lndtlo,... dr:!,bOOy tilers to 

5. ryphl 0 antigen than healtny 
chlld, .. n Th"re wele fewt, ',,,spend .. ,, 
to 5. ryphi 0 antigen (49 vs 85%) 
compared With healthy chlld,en Th<?fe 

ele no dffer'"~t"s for th .. H antigen 

• High.,., pdra"te density wa; assoc ate-:! 
with low",r anubody respome$ to 
5. typhi 0 antigen 

• Other acute dlness was not associated 
With slgnJ!Jcantly dif ferent results to 
healthy children 74% of 'sick cont,ols 
,,,,ponded TO 5. ryphi 0 antigen 

• Increase Ir antibody oter and 
proportion 01 responders ' ~doubhng 

titer) measured 2 wee I:. afte, 
vaCClnaftOn 

• Ch,ld,en With mdlana had 
approXimaldy twofold lowel Increa~E"S 
In antibody tilers lor 5 ryph/ vaee n" 
glllE'n on day 1 

• Ch Iidren WI th malaria had less Increase 
In antlhody titers to group C 
meningococcal polysaccharide at all 
time points (- fourfold lOWE'/ on day 1) 
The ploportJon 01 rE'lponders was lower 
on days I and 7 

• There was a S "ong negative correlation 
betwE*n log (nse ,n antibody tlt~r) and 
log(absolute para5lte count) 

':~ T,uu: 1 tor further details of the dasslfreatlon of study types.:lnd for ge"erte: jlmllat.ons of ea·:h study type 

• Few detail, wer€' prOV1d~ to compare 
1If'1llaruy 01 groups at baSl'llne 

• (h,ldren With malarta rec",ved 
curatiVe treatrrent on the day 0 

presentation/vaccination 

• AI: children. regardless of dlagnosl~. 
re'''C'lved pyrrm'?thamlne 48 h after 
prP.S€'l'tatlon and I w<-€'k lat~r 

• All :hlfdfl,," WIth malaria received 
curatIVe treatment on day 1 

• All children rec"lvl'd weel:ly prophylaXIS 
after enrollment 

115J 

(10) 

'HepatitiS 8 vi(CIM' not strKt~ equIValent between groups . smo:e RTS5JAS02D -:ontatnS hepatitIS 8 surface antigen. bUlln is dlfferenllormutdllon/adJUI/'iwt 
BCG Ba(llltJ5 Cdlffit'tte-GlJ~rln, DTP OIphthella. telitnU5 and pertuSSIS, EIA Enzyme immunoassay, EPI Expanded PrQ9ram on ImmunizatIOn , HbAA Normal hemoglobin A, HbAS Slcr.Ie·('ell trait . tPTI Intermittent 
prP.\lentl ... e tre.ttment of anfdn1s. IPV Ina·ctIY"led poliO vd':Clne 
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Group C Greenwood 360 children and High vs low level! • Antibody response (change from 
mePlngococcal et al. (1980) adults (all ages) In a absent parasitemia pre- to postvacCine tilers) 2 weeks 
poIysacc hande ObservatIOnal Village In nor them HbAAvs HbAS after vacCinatiOI 

On"dose Nlgella 88% 01 • Antibody responSE was lower In 
mdIVlduals Individuals with high parasltemoa within 
paraslteml( each age group 
at baselme - ApprOXimately twofold higher antibody 

response In Individuals with HbAS 
Within each age group 

Group A and C Blakebrough 288 ,t-20-year- Children With HbAA • No difference ,n antibody titer L WE'€ks 

memngococcal et al. (1981) olds attending an and HbAS after VaCCination 

polysaccharide Observational urban secondary 
One dose school In northern 

NIgerla 

Combined group Greenwood lO63-17-month- Antibody titers '1 month postvacCination 

A and C etal. (1981) old children In 

meningococcal A Interventlonal northern Nigeria, A Children A Approximately' 5-fold higher me In 

polysacchande paraSitemia In 59% randomized to antibody titers against menmgococcal A 

One or two doses of children not receive chloroqUine and C polysacchandes ,n children 

111Itlal dose receIVIng doses 1 week receiving chloroqUine 

combmed With prophylaxis al the before and on the 

measles and lime of vaCCInation day of vaCCination 

tetanus tOXOid 
B Observauonal B Children With B Approximately' 6-fold lower litH; of 

paraSitemia at the antibodies against meningococcal A and ( 
time of vaCCination polysaccharrdes In c.hlldren who were 
In group not parasltemiC at the time of vaCclflatlon 
recE-lvlng 
ch lo(oq Uine 

'See T ..... 1 for furth"r details of the claS>~j("tlon of study types and for generIC hrmtatlon. of each study type 

• RegressIOn analysIs was performed to 
control for effect of age and HbAAI 
HbAS genotype on the etffft of density 
01 paraSitemia on vaCCII,e response 

• The IntenSity of rY,alana uansmlSSlon 
was low (the study was conducted 10 

the dry season) so It was unlikely to find 
any effect on vaccine responses from 
the protectIve effect 01 HbAS 
against malana 

• Although subleets WHe allocated 
randomly to chloroqUine treatment, 
there was no placebo treatment and no 
eVidence of blinding 

(11) 

[21) 

[13) 

'Hepatrtls B Vd(me oot StrictJy eqUIvalent between groups, since RTS.51AS02D conlains hepdtlllS B surface <tntlgen. but 10 a different formulallOn/adJuliant 
BeG BaCillus Calm<;Ue-GueJln, OTP DlpMherIJ, lelanus aod pertusSIS, EIA Enzymelmmunoas<ilY, EPI Expanded Program on ImmunIZatIOn, HbAA Normal hemoglobin A, HbAS S1dJe-<:elllraJt. IPTI Intermittent 
preventIve treatment of Infants. IPV Inactivated polio vaccine 
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GroupAand C 
meningococcal 
polysaccharide 
and 5. typhi at 
1-2 years of age 
Onedese 

Haemophilus 
influenzae type b 
capsular 
polvsaccharlde 
conlugatE<! to 
tetanus protein 
One dose 

Bradley-Moore 
et a/. (1935) 
I nterventlonal 

Usen et al. 
(2000) 
Obselvatlonal 

5. typhiTy21a live Faucher et di. 
oral vaccine (2002) 
Thr"'E'doses Interventlonal 
First dose 
coadmlnlstered 
with Vibrio 
cholerae 
CVD103-HgR 
vacCine 

1-2-weer-old 
Infants In a Village 
In northern Nlgena 
41% parasitemia In 
children not 
receIVIng 
prophylaxiS 

12-30-month-old 
Gambian children 
attending 
hospital clinIC 

3304-16-year-old 
public school 
children In Gabon 
ParaSitemia In 

33-35% ai baseline 

193 children 
allocated to receive 
ch loroq ulne 
prophylaXiS or 185 
receIVing placebo 
for 1-2 years 

57 children With 
malaria. 57 With 
other (aparasltemlC) 
febnle Illness, or 
60 healthy 
(aparasltemlc) 
controls 

Children 
randomized to 
receive atovaquenel 
proguanll 
chemoprohyiaxis or 
placebo for 3 weeks 
pnor to vaCCination, 
and continUing for 
12 weeks 

• Antibody liters and proportion of 
children With protectrve titers one month 
after vacCination 

• In the chloroqUine-treated group, rISes In 
anubody titers were higher against group 
A (-1 2-fold) and group C H 6-told) 
menrngococcal polysacchandes There 
were higher proporttons of children With 
protective titers agamst group A (72 vs 
41%) and group C (44 vs 25%) 
meningococcal poIysacchandes 

• Responses to 5_ typhi 0 antigen were not 
SignifICantly different 

• Antibody titers 1 month after 
vacCination and proportions of children 
With protective antibody titers 

• Children With malana or other febnle 
Illnesses had lower antibody oters than 
healthy children (medians of 6 3, 7 5 and 
230 jJ9/ml, respectIVely) 

More children WIth malana faded to 
achieve protective antibody tIters than 
healthy children (11 vs 0%) 

• Serum IgG and IgA antibody titers 
agaInst 5_ typhi hpopolysacchande, and 
vlbrroCldal antrbody titers, 4 weeJ-s after 
vaCCination, and proportion of 
responsers (doubling or quadrupling 
titers, respectIVely) 

• No slgmflcant difference between 
groups 

'See TABU 1 for furt her details of the dassrrlcatlon of study types and for generIC limitations of each study type 

• Allocation was not random and bhndtng 
was partial 

• 60% loss to follow-up occurred over 
the duration of the study Companson 
of age at time of vaCCination With 
meningococcal and 5 ryph;vacetnes 
was not reportE<! for those remaining 
under follow-up at thiS time 

• The groups were not exactly matched at 
baseltne, children With malana were 
slightly older and had slightly lower 
welght-for-age z scores 

• Results would be affected by a common 
ImmunologICal factor causing both 
suscEoptlbllity to clinical malana and 
poorer vacCine responses 

• The study was designed to assess 
whether atovaquone/proguanll 
suppressed ImmunogenlClty of the live 
vaCCInes due to antlbactenal effects 

• The power to detect an effect of 
paraSitemia on ImmunogenlClty was 
limited All children rec~ved curatIVe 
treatment 7 days before, such that only 
one child was parasrtemlC at the start of 
the ch€1YloprophylaXls or placebo 
treatment Only 9% of the placebo group 
were parasnemlC at the ume of vaCCInation 

(12) 

[16) 

(22) 

'HepatitiS 8 va<cme not studly equlV~lent bet..veen groups, smce RTS.SlAS02D (ontalns hepatrtts. B surface antigen. but In CI different formulahonladJuvant 
BCG Bacillus Calmette-Guenn; DTP Dlphtheo.3. tetanus and pertusSIS. EIA Enzyme Immunoassay. H'I E'xpilnded Program on ImmunizatIOn, HbAA Normal nernogk>btn A. HbAS S.dde-ceU trait IPTI Intermrttent 
preventive treatment of Infants. IPV InaCtivated JX>llovacclne 
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Haemophilus Abdulla et aI, 3408-week-old Infants randomized 
influenzae type b (2008) mfants In Tanzania to receIVe either the 
conlugate vacCinp Interventlonal expenmental 
Three doses at malana vaccine 
8,12 and 16 RTS, S/AS02D or 
wo:eks of age hepatl tiS B vacc Ine 
cotormulated at 8, 12 and 16 
With DTPand wee!:s of age 
coadmmlstered 
With hepatitis S' 
or RTS,$/AS02D 

• Seroconverslon or seroprotectlon rates 
and antibody titers measured 1 month 
after the third dose of vaCCInes 

• No Significant difference In 

seroprorecrlon rate betwe;",n groups 
Geometric mean antibody titers were 
lower In th~ Infants receiving 
RTS,SIAS02D 

• Rates of paraSl1emla dunng the course of 
vaCCInation are unknown 

• Paraslterma was deared In all children 
2 wee~s before the third doses 
of vacCInes 

• 20 of 151 children receiving hepatitiS B 
vacCine, and eight of 146 children 
receIVing RTS,S/AS02D had at least one 
episode of parasitemia JUling the 
6-month penod starting 2 weeks after 
the thltd vawne ThiS low rate of 
parasitemia results In low power to 
detect an effect of the protection from 
parasitemia on antJbody response 
to vacCina tlon 

[34J 
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Tetanus tOXOid McGregor and 3-year-old chrldren 16 chrldren • AntitOXin titers measured 10-14 days • Similanity of groups In terms of potential [14] I ~ 
Two doses, 6 Barr (1962) 10 The Gam bla recelV1ng after second dose of tetanus vacCine confounding factors was not assessed 
weeks apart ObselVatlonal chloroqUine • There were Significantly more non- • Allocation of prophylaXIS was not 

prophylaXIS from responders In the unprotected group reported to be random 
birth, 14 recelV1ng (14/36. 38%) than the group receiving • Relatively small study size 
pnmaqume chemoprophylaxIs (4130, 13%) • The response rate to tetanus tOXOid In 
prophylaXiS from 

both groups IS very low compared with 
brrth or 36 children 
recelv10g no the response to 3 doses given In current 

prophylaXiS 
EPI regimes (ciose to 100% 
response rates) 

'See T .. un.,,£ 1 for further dEtails of the Jassrfl<atJon of study types and for gener..: limitations of ea·.;.h rtudy type 
~Hepatltls B vaccme n01 strictly equ~afenl betwEen groups, Stn<e RTS.SlAS02D con1ams hepatltes B surface antigen. but In a different formulatlOn/ad,ulIant 
BCG BaCillus Cal"","e-Guenn, DTP o,phthena, tetanus and pertussIS, EIA Enzyme Immunoassay, EPI Expanded Program on ImmunizatIOn, HbAA Normal hemoglobin A, HbAS SldJe-cell trait, IPTI Intermittent 
preventive treatment of ,rlfants< IPV Inactivated polio vaccine 
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Tetanus tOXOid 
One dose 
adminIStered at 
the same time as 
S. typhi 

Measles (one 
dose) and tetanus 
tOXOid (one or two 
doses, 
Initial dose 
combined With 
group A and C 
meningococcal 
polysacchande 

Greenwood 
et al. (1972) 
Observational 

Greenwood 
etal. (1981) 

Tetanus tOXOid A Monlour 
one 01 two doses. et al. (1982) 
5 weels apart Interventlonal 

B Monlour 
et al. (1988) 
(5-year 
follow-up) 

See Greenwood 
et aI. (1972) In 
Polysae<harode 
antlger.s section [15J 

See Greenwood 
eritl, (1981) In 

Polysaccharide 

See Greenwood 
etal (1972) In 

Polysacchande 
antigens section [15J 

See GreenWOOd 
etal. (1981) In 

Polysaccharide 
antigen> section (13) antigens section [13J 

12-36-month-old 
children In Burkina 
Faso Holoendemlc 

159 children 
reC€lVlng 
amodiaqUine 
prophylaxIs 
commenCing at the 
time of vaCCination, 
who were protected 
(aparasitemlC 
28 days later) 
compared with 126 
children not given 
prophylaxIs who 
were parasitaemlC 
at baseline and 
28 days later 

• Antibody titers and response rates 
16 days post vaccinatIOn 

• There were fewer 'responders' to tetanus 
(24 vs 50%) compared With healthy 
children Higher parasite denSity was 
associated With a lower response rate 

• Other acute Illness was not assocIated 
With Significantly different results to 
healthy children 42 % of 'sICk' controls 
responded to tetanus 

• No SignifICant differences ,n antibody 
tIters to measles and tetanus tOXOid 

• Antibody titers to tetanus tOXOid 
48-58 days after Single vaCCInation 
dose. or 86-96 days after first vacCine If 
two doses were gIven 

• There was no difference In protective 
titers between groups 91 3% ach",ved 
protective tiles after one dose of 
tetanus vaCCIne, and 995% after 2 
doses 

• No difference ,n titers 5 years latel 

'Se<: TABU L for further details of the class"l<atlon of study types and for generIC limitations of each study type 

• See Greenwood etal (1972) In 
Polysaccharide antigens section [lsJ 

• The response rate to tetanus tOXOid In 
all groups IS very low compared With 
the response to 3 doses given In current 
EPI regimes (close to 100% 
response rates) 

• Tetanus appeared to be very 
ImmunogenIC In thiS combination 

• Unclear whether protected and Infected 
sublects were matched In any Wi'tf 

• In the malorlty. prophylaxIS was not 
gIVen p"or to the day of vaCCInation 

• Antibody titers were only available for a 
small proportion of the totalm 
each group 

• In the 5-year follow-up. It was unclear 
how the subjects for follow-up 
were selected 

[ISJ 

[13J 

[23J 

[3SJ 

1Hepatrtls B va(lne not stnctly equivalent between groups. SIOt:e P.TS,SlAS02D c.ontalns hepatrtJS B surface antigen. but In a different iorrnuldhonl.:!dJuvant 
BeG Bacillus Calm.lte-Guerln, DTP Diphtheria, tetonu. and pertus.s, EIA Enzyme Immunoassay. EPI Expanded Program on ImmUnizatIOn. HbAA Normal hemoglobin A HbAS Slckle-<:ell trait . !PTI Intermrttent 
preventlVetreatmenlof 1nfants. IFV Inactivated polio vaccme 
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Table 2. Studies assessing the effect of Plasmodium falciparum infection on heterologous antigen vacone responses (cont.). 

I~nlilc liIi ['Vi',,~-
Tetanus toxoid Brabln et al. 187 pregnant Pres<:nce or absence • Antibody titers measured at days 0, 7 • All women received chemoprophylaxis [24] 

Three doses at (1984) women after of parasitemia In (In pnmlgravldae), 28 or 56 (although Its efficacy was uncertain) 

28 day Intervals Observational 12 weeks gestation peripheral blood at • No eflec t of penpheral blood • $ubstantJalloss to follow-up 
attending rural the tlmeot paraslterr"" on antibody titers Peripheral blood paraSItemia 
hospital ant",natal vaCCInation and 7. underestimates Infection ,n pregnancy 
clinIC In western 28 and 56 days where parasites can sequester In 
r..enya postv.acClnat,on the placenta 

Pnmlgravldae were dMded Into multiple 
groups for comparison based on pattem 
of paraSitemia, whICh m;s; reduce power 
to detect any effect 

DTP and oral poliO Bradley-Moore See Bradley-Moore See Bradley-Moore • Anbbody titers at 1 and 18 months • See Bradley-Moore er al. (1985) In [12] 

at 4, 5 and et al. (1985) et aI. (1985) In et at (1985) In postvaCCInatiOn Conversion from Polysaccharide antigens secllon [12] 

6 months Interventlonal Polysaccharide Polysaccharide negative to POSitIVe Mantoux t~t 

Measles at antigens section [12] antigens section [12) 5 weeks after BCG 

7 months • In the group receiving chemoprophylaxiS 
BCG at 1 or there were higher antibody levels to 
2 years If tetanus toxoid at 18 months post vaCCIne 
Mantoux negative Other antibody responses to vaCCInation 

were not SignifICantly different 

• There was no difference ,n the rate of 
conversion to a poSitive Mantoux test 

Measles MonJour eta/. 1-3-year-oJd 48 children receiving • Seroconverslon 28 days after vaCCInation Not randomized, blinded or [25J 

One dose (1985) children In Sudan amodiaqUine • Seroconverslon rate was not placebo controlled 

Interventlonal 56-60% prophylaxiS from SignifICantly dl fferent between grou ps 
parasitemia pnor to 3 days prior to (895% In unprotected versus 92 3% In 
vacCination vaCCInation protected children) 

('protected') vs 65 
children Without 
prophylaxiS and 
poSitIVe blood films 
3 days prIOr and 
28 days after 
vaCCInation 
('Infected') 

~ TARLE 1 fOI further details of the dasSl.fK3hon of study types and for genery. IImltatlons of each study type 
'HepatitiS B vaccine not stoctly eqUivalent between groups, Since RTS.SlAS02D (entd.ns h~patrttS 8 surface antigen. but In a different formul3tlon/adluvant 
BeG BaCIllus Calmelle-Gu~rln. DTP Diphtheria. tetanus and perlussls, EtA Enzyme Immunoassay, EPI &panded Program on ImrnunlzattOn, HbAA Normal hemoglobIn A. HbAS S.dle~(en1ralt.IPTI Intermrttenl 
preventIve treatment of Infants. IPV Inactivated polio vaccine 
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Measles 
One d05" 

Tetanus toxoid 
(booster) 
Single dost> 

Acellular pertussIs 
Administered with 
diphtheria. tetanus 
and IPV (rhree 

oses). and one 
dose of BCG 
Three dlf ferent 
schedules 

Cenac etal. 
(1933) 
InterventlOnal 

580 9-48-month- Children 
old children In Niger randomIZed to 

parasite clearance 
wlrh chloroqUine on 
the day 01 
vaCCination or no 
treatment 

• St>roconverslon 28 days aftN 
vaCCination 

• The seroconverslon wai nor srgmliCdntly 
different between groups (75 5% In the 
chloroqUine group. 81 7% In the 
unlrt'ated group) 

Corngall (1988) 197 school chrldren Prt'Sence or absenc.:: • Antibody titers measured 28 days after 
Observational (mean age 9 years) of Pdl~$llemla In vaCCination 

In Papua New penpheral blood at • No effect of penpheral blood 
GUinea the ume of parasitemia on antibody tl'.el s 
68 9% ot children vaCCInation 
paraSitemlc on day 
of vacCination 

S,mondon etal. 390 1-2-month-old Children with or 
(1999) Infants ,n rural Without parasitemia 
Observational Senegal 5-8 months after 

vaCCination 

• Antibody rt'Sponses to pertussIs toxoid 
and frlamenlou5 hemagglutinin 
1 month after the thrrd dose of vawne 

• Reduced pertussIs tOXOid titer 
(geometrrc mean titer 81 1 vs 97 3) by 
EIA 1 month after third dose of 
DTP vaCCInE' 

Measles Spindel et aI. 65 20-75-rnonth
old chrldren from 
IWO Indlgenou> 
tribes In BraLlI 
SelologlCal evidence 
of exposure to 
malana In 73-100% 
of children 

Seroconverslon 
rates for these 
populations 
compared With 
expec ted ratE'S lor 
othE'r populations 

• Seroconverslon rates (89-95%) 
measured at variable times atter one or 
two doses were as expected for 
populations not exposed to malana 

Oneortwodoses (2001) 
Observational 

"See TABLE I for further details of the ( JaiSffl(ation of study type:; and for gener..: Ilmnations of ed(h study type 

• Randomized but not placebo controlled 
or blinded 

• Few detarls were prOVided t.o compare 
similarity of groups at baseline 

• Assessment of the effect of para';ltemra 
was a tertiary objective of the trial 

• SignifICant effect of parasltemra on 
pel tUSSIS response was only pres<:nt In a 
pooled analYSIS for one of three assays of 
the an tlbody response to 
pertussIs vacCine 

• No Within-study comparrson 9rouP 

[/6] 

[271 

[18] 

[29] 

·~~rltls 8 vaco:ine not S'ttK.tt,- equlVa~nt between groups, ~:Jn<e RTS.SlAS020 contams hepal It 6 8 surface anugen. but In a different formula1K)n/adJuv~nt 
BeG 8a"lIus (almelle-Gue"n. DTP Diphtheria. lelaous aod penvsSl'. EIA Enzyme Immuno.lssay EPI up.nded Program on Irnmunl",lron. HbAA Normal hemoglobin A. HbAS SK~.Ie-cell tra" IPTI Intermlttenl 
preventIVe treatment of Infarit~. IPV Inactl .... ated poliO vaccine 
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DTP and oral polio Schellenberg 701 2-month old Intants receIVrng • Seroconverslon rates for tetanus and • The effect ot IPTI on vaccIne responses [30] 

vacCInes (three er a/. (2001) Iniants In semlfural placebo or diphtheria at 9 months of age. and was a subsidiary analysIS, deSigned 
doses) and Intervenflonal southern Tanzania sulfadoxrne- protective antibody tIters against to asle;S whether sulfadoxlne-
measles PYrimethamine measles at 12 months of age pynmthamlne prophylaxiS Impaired 
(one dose) Intermittent (at 2, 3 • No difference between groups vaccine responses 

and 7 months of • Pow"r to detect an effect of malana on 
age) preventive vacCine responses was IIml ted because 
treatm~nt at the IPTI commenced With the second dose 
same tlm"as of vaCCines, and the absolute dl fference 
second and third In the proportion of children between 
doses 01 DTP and the groups tree from cllmcal malana was 
measles vaCCInes only approximately 21 % Seroconverslon 

rates were high In both glOups 

DTP and oral polio Massaga et al. 291 12-16-week- Infants receiving • Antibody titers to tetanus (lgG and • The effect of IPT, on vaCCIne responses [31) 

vaCCInes (three (2003) old Infants In rural placebo 01 IgM)' poliOVirUS (lgG and IgM) and was a subs,diary analYSIS, desIgned to 
doses) Interventlonal north-eastern Intermittent (€IIery dlphthena (lgG) 60 days after their assess whether amodIaqUine prophylaXIS 

TanzanIa 2 months) pr€llentlve third vaCCInation Impaired vacCine responses 
24-36% treatment With • No difference between groups • Power to detect an effect of malana on 
parasitemia at amodiaqUine vacCine responses was limited because 
baseline commencing at the IPT, only commenced With the thud dose 

timE: of their third set of vaCCInes, and the absolute difference 
of roubne DTP In the proportion of children between 
vaccine the groups free from malana was only 

approxImately 30% 

Measles (one Rosen etal. 996 4·month- to Children recevlng • AntIbody responses 2 months after • Cluster allocation was not random, not [32] 

dose) or DTP (2005) 6-year-old children amodiaqUine first vaCCInation controlled and not blinded 
(2 doses, 1 month Interventlonal In SIX Villages In rural prophylaXIS for • Anbbody responses were not SignifICantly • There was nearly 50% loss to follow-up 
apart) Burkina Faso 52 % 5 mon ths pnor to different between groups for • Overall response to tetanus was 91 % In 

parasltem la prior vaCCInation or any vacCines those Without prophylaxIS 
to study no prophylaXIS 

'See TABI..I: I for further details of Ihe classification of study types and for generic limitations of each study type 
'Hepatitis 8 va«lne not strtct~ equwalent between groups, since P.TS.s/AS02D contains hepatnlS 8 surface antigen. but In a different formulatlOn/adl'.Nant 
BeG BaCillus Calmette-Guerln. DT? Dlphthena.letanus and pertuSSIS. EIA Enzyme Immunoassay. EPI Expanded Program on ImmunQatlOn. HbAA Normal hemoglobin A. HbAS SdJe-<elilral\.IPTI Intermrttent 
prf'\lentrve treatment of Infants, IPV lnaarvated pohovacclne 
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in the vaccine response co the 0 anti
gen (12 ). There was also evidence th.t 
acute malaria suppressed the ami body 
response [0 H,lnlloph,/us IIIflut'lIJUU 

type b (H ib) capsular pol ysaccharide 
antigen (polyribo ylribi[Ol phosphate 
[PRP]) even when this '''',}S conjugated 
to tetanu, protein [I 'j. However. lh • 
• nti-PRP riters were almost as low 
in apara,itemic child .. n with olh .. 
febrile illnesses. sugge ring rhis .ffeci 
may not be sperifi, to malaria . An 
important porencial confounding fac
tor may have been the adm inisrrarion 
of paraettamol to febrile children. 
which was nor reponed in this study. 
but ha re endy been shown to reduce 
anti-PRP riters in respouse La vacona
tion 136). Unfortunately. there have been 
no direct comparisons of the relauve 
• (f.C[. of parasit m la on pia in poly
ac haride and the relevant conjugate 

vaccine respon es. although this infor
mation v."u1d be very imporcanr if par
asitemia eroded the bendic of conjugate 
vaccin .. in young children. 

In studies designed to a ses whether 
chemoprophylaxis with .tovaquoue! 
proguanil or the ,""ptrimental mabr;" 
I'accine RT .S/AS02D them elv .. 
adversely inBnenred antibody r<sponses 
to S. rypl}l Ty21a and VibrIO cholt'rlu 
CVD103-HgR oral vacclOes. or a Hib
conraining vaccine. respectivelYl th(:r(: 

was no evidence for an effect of parasit
emia on rtspon <s to the polysacch.aride 
antigens I". }oj. However. neither rudy 
was designed to assess the effect of par
asitem ia on vaccine-induced a lltibody 
responses and as uch both ,tudies 
lacked su fficient power for this outcome 
to be meaningfully assessed 

In a single srudy of the antibody 
response to tetanus toxoid administered 
at tbe rime of pre entalion to hospi
tal with acute malaria. ch.ildren with 
malaria had lower anribody tirers and 
re pons< rates than healthy concrol dill
dren or children with other illnesses )IS(. 

!!OWCVCI. dlter observarional studies of 
the effect of asymptomatic parasittmia 
on antibody responses to teranus to~id 
(one in pregnant wotnen and two inves
tigating boosrer vaccination in old., 
children) found no significant effcct 

105 



Suppression of vaccine responses by malaria : insignificant or overlooked? 

of malana IOfrnion on ami-Irtanus aotibody responsrs [24 nJ , 
although all stud"s had mNhodologic2.1 limjtations (TABU 1) . 

\Ve id~mi/ied ~ight sludies lhat inv~Higat~d lhe effect of che
moprophylaxis or pa .. sit~ d~.ranc< on the «spoose to [<taous 
toxoid [12 ·142 ' J{ lUIJ, 10 on~ smaU study, the antibody response 
W3S significantly hi~tr among3-year-old Gambian children who 
had ~~n prot~cted from mal.,ia from birth than in those who 
had not received prophylaxis [14J, and in anorher studywhelech~
moprophylaxi. W2S ;USO giv~n for ~ prolonged ~riod, children 
on prophylaxis showd slower declines In anti-utanus antibod
ies following va cination [. ·1· By contra t, dle respon ~ to ["'0 or 
[hret dose of combined diphthrria, tetanus 2nd pertu i. vaccine 
in ),oungel in[allt> W3S nOl improved by plolonged antimalarial 
plophylax.i III '2J ~ithel because any uppressive effecl ,,"s over
com~ by the JUgh immunogeruciry of this vacccination regime or 
~cause rhe power of rhe study was limited by low susceptibility 
to malaria Inl<ction of 'mall infants 'I, In addition, the response 
to "!anus vaccine wa. not impro,'ed by 1 wuk of chemoprophy
laJU when t<tanus was combined with group A and meningo
coccal.nd mea. I vaccine. in j·17-moruh-old children [131 , by 
chemoprophyl:uis or parasite clearance given at the time of "ac
cin.tion [2 10 III or by th~ apparent protective e£fect of an experi
mental malaria vaccine [H . As shown in rAll ... l, tllere are many 
m~thodologi .1 limitations of these studies which might reduce 
thtir pow~r ro d<t~ct dny effecl of malaria Inftction on antibody 
ftspon«. 10 tclanu' toxoid. OV<rall, the dfrcl of asymptomatjc 
paJas1c.(m ia on lhe tt'u.nus vacdne response h uncenain, and may 
~ negligible, while one obstrvarional study supporrs an association 
brrw~~n .cutr malali. and rrduad rr'pons~ to t<r.fillS vaccine 
givtn in i 'olation, bur do~> not pro\'~ causality. cudits in micr 
iudic.te lh'll whole-cdl porm. i. vaccine can act as an adjuvant for 
co.dminisrered wtigens thereby overcoming mala ria· induced SlIP' 
pr<"ion of rhr IrtaOLh vaccine rrsponst [)'], dnd so U I likrly (ha( 
the immunog~nicily of leranus toxoid i, rnh.nced in the human 
tripl~ vaccinr. Difftrrnc~s in the vaccination and ch~motherapru
(ic rrglm~s u cd ~rwren .rudie. may b~ sufficirnt to ac 'ount for 
th~ discrepant finding. regaJding I~ ponses 10 ttlanus loxoid in 
appropria(r1y powerrd ,tudi .. , 

\Y/~ found no e"id,n ~ that anllbody rrspon('s to m~a Its, dlph
th('daol polio we" impairrd by P.ptl'lparum inftction The i.o
lat~d finding of a "duced I~'pons~ lO p<'ltU is in Olle tudy must 
be inrrrprrred with caution siner this wa only found in a subsid
iary analysis of pooled data and is onJy significant in Ont of the 
thre~ .>say< 11 ~d [, '] '1 h~ antibody rrsponses to modern vaccines 
g,ven 10 their usual Expand.d Program on I mmunl1,1 ion (EPn 

combinations and timings wrr~ univusally high in children in 
mal.uia-endem ic settings, and by inference appear to ~ rdatively 
unaffrcted by malaria or parasitemia I II '~I 
Th~ eff~ct of P [.11.,p"rulll infeC1lon on heterologous vacrin~ 

effi~cy, thal i, wlt"hrr vdninalioll p'OleclS againsl disease, ha, 
nOI ~~n a ,c,std This i"ue is of fal morr clinical and publIc 

health ignihcanc~ than the aOLlbody responses to "aCClnanon, 
sinc~ the quality (affinity and su~13ss) and longevicy of ~nci· 
bodies and m~mory cell. generated by , .. ccin.tion may be IU [ 
dS il1ll'Olt.nt for prolerrion .IS the ahsolute quantil), of antibody 

detected shordy afrer vaccination }~I. In resourc~-poor, malaria
endemic settings thrre IS litde capacity for IlIgh-quality surveil
lanc~ for clinical vaccine failures, and henc~ data on vaccine 
dr(:ctiv~n(ss are scarce . 

ln summary, cherefort, the evidence thor P. inte'parum impairs 
amibody response to polysaccharide antig~ns is quite robust and 
thi is of public h .. lch significance .ince effective vaccination 
against ~ncapsulat~d bacteria uch as Hib, Srreploc'oCc'us /,ntu

monuU and NmuT'ld mnllllgttldi. could produce huge health 
benefits in poorer coumri .. [,oj. PoJysaccharide antigens arc 
well-known to be poorly inlmunogenic in young childr~n and so 
vaccines have been devdo~d with polysaccharide antigens con
jugated to immunogrnic proteins, to convert aT-lymphocyte
independent immune response to one with T-Iymphocyte hdp, 
and greaur immunog~nicity [41 J. It is therefore worrying that 
even Hib-conjugate vaccine responses were suppressed by acut~ 
malaria [I' I, raising important and, a yet, unanswered questions 
as to the effecl of asymptomtic para itemia on Hib vaccina
tion . Of concern, in an .f6cacy trial of a nine-valent pneu
mococcal conjugate vaccine in The Gambia, vaccine efficacy 
was low~st in children immunized during the malaria season, 
although the study was not designed to specifically test the 
effect of P fi,t..-'paruIII on vaccine efficacy and effect of season 
was not statlstica ll y significam [4c J. These findings suggeslthao 
the effect of P. ialnf.lrum on new generation vaccin« against 
eneapsul.t,d bacteria should ~ evaluated in any trials taking 
place in malaria-end~mic r~gions. 

15 the effect of mataria any different to other Infections? 
Illlmunosuppr~ssion by infcClion is not a uniqu~ f~atu,. of 
malaria. Measles suppresses boch cell-01~dialed and humoral 
immuniry during acute infection, .l1d possibly for some time 
after [n 4 , 'iimilar to malaria, mea.les cause< both direct mor
tality durIng Ihe acute iUn~ss and lale mortality, whi h has been 
anllbuted to ItS immunosuppressive effect 41J, The effect of 
mea<l~s on ,,"ccine re. ponses was assessed by \'qhitde ~r .It, 14 in 
alUdy of similar d~sign to.n earlirr trial on acute malaria [I II . 

M~aslcs inf~crion reduced antibody re ponses to S. typbl 0 and H 
antlgens and tetanus toxoid (the Ia((~r not tati tically Significant) 
wh~n children 7-72 months of agt wrr~ immunized wuhin 4 da}'" 
of appearaner of their rash Hdminth infcctions such .. oncho
cerciasis [H] and lymphatic filariasis I" '] have also ~en shown to 
reduc~ responses to vaccination with teranus toxoid and a large 
study is curtendy underway to evaluate wherher inteSlinal hel
lUlnlhs have a slmilal effeCl[loJ. nl~ ~ helminth infections ~r
hap' have mote in common with p, jirk/parum because significant 
proporrions ot the population can be asymptomarically infectrd 
for long periods of time. 

We idenlifi~d onJy cwo smdies that compared responses to vac
cinanon in children pre eoting to ho pital with malaria, with 
r .. pon e in children with other acute illnesse and with healthy 
controls , In Nigeria, Gr~en ... 'Ood ~f ill found that whilst malaria 
was aSSOCiated with lower vaccine responses, orher ill children 
did not have ignificandy low~r responses to tetanus and S. ryplJl 
o anligen than healchy control children [IIJ, On the other hand, 
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in The Gambia. U .. n N <II. found that mal.ria and orher febrile 

illnesses suppressed Ihe response to Hib-conjugate vaccine to a 
similar extent. although the proportion of children with prot Clive 
riters was lowest in those with moJuia 116 • Aside from the dif

ferent vaccines u .. d. the st!tctlon of the nonmalarial ill children 
differed sl ightly with the later rudy. only including those with a 
frver. which may partially explain the discrepancy in the <ffeer 
on vaccine tesponsts. In othe. words. ir is possible thal vaccine 
responses ate reduced after vaccinalion during a febrile illness 
bur not during a nonfebnle illne' More studies art required ro 
resolve lhl que t ion. 

Should malarious children be vaccinated? 
In resource-rich counlfies such as the UK and U 'A. vaccination 
is usually deferred in unwell febrile children [20"03], although 
the rarionale for this is not thar the febtile illness may diminish 
vaccine rr'ponses. bur rhar any potential adverse vaccine reaerion 
may be lndisungui hable from [he exisring febrile illness and may 
thus cause diagnostic uncertainty. FUflhermore. administration 
of a pol<lllia.lly .eanogenic valTiue to a c1ini ally unstable patient 
might precipitare a severe adverse event Several large srudies have 

hown thaI milJ iDlercuneOl Illness 1<1.<21. or eVen more severt 
febrile illness IS)J. have lirtle effe r on vaccine «sponses. a1rhougb 
many of lhes< rdate to mea Ie' vaccine. whidl s«ms to be Ih. 
most imp<lvlouS 10 .,n}'efl" CI of malalla rudies on other vaccines 
would be helpful co clarifywh<,ther vaccine immunogeniciry and 
efficacy are ineuen ·.d by vdc,inarion during intercurrent illness. 

The limired .vidence available suggeSfS ,h.t impaitment of"ac
Cln< response by malaria is qllalitativdyand quantitaLively.imi
lor to me .. les. and ptlhap ro orher febrile illne._e of equal stver
ilY_ HowrvN, in r($ource·ro01 countries. where opportunities to 
vaccinate children may be limited. vaccination often procteds 
rtgardlt ofwhelher a child has an Inttrcurrent illness [1,1 Evrn 
if ~omt rebrile children have. slightly poorer response to vaCCina
tion. tlli i. unlikely to be of great publtc heallh Ignlficanc. if the 
proportion of children who are febril. at any time is low and Ih< 

Juration of the effect i hon Asymptomatic para. itemia potrn
twly poses a greatet problem because the proportion of affected 
chi ld"n at any time may be high and the duration of infection 
may be ptolonged. Thu • even ir the err CI of asymptomallC para
sitemia is not vety Jiffeltnt from other illne se>. irs prrvalroc. and 
duration mighr create a much gr •• ret public health problem. Ar 

the moment. there is insufficient nidence regarding the effects of 
asymptom'[lc parasilemla particularly on re ponses [0 vaccInes 
to e ncapsullrd bar"na - to make any policy recommendations 

in this area 

Does P. falciparum infection reduce the protective 
response to experimental malaria vaccines or 
natural infection? 
There ale currently no Ireen,cd "":ICClne' fOI the pltVeUl ion of 

malaria. but there arc many candld.tes lfl development. with rhe 
RT , "accine (rrcombin.nt circumsporozoire proteLO anngen 
fused to htpacitis B surface antigen in a novel particle) being 

in the mo", advancrd c1inl<-.1 trials 15'1· The devdoplll~nr of 
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malaria vaccines ha seen many candidate vaccine that have 
appear.d immunogenlC.n .nim'" models and in Phase I trial 
in nonendcmic populations, but fail because of negligible effi
cacy in field trials. There remains a fundamenral ptoblem thar 
the natute of naturally acquired immunity co malaria is poorly 
underscood [55]. Consisrenr with rhis, rheft has nev« been a 
cltar correlarion berw«n humoral or cellul.r immune responses 
gen«ated by candidate malaria vaccine and their protecrivt 
efficacy. These observarions make it very difficult to deter
mine whtthtr P fokipurum infrerion does <llppre<s relevanr 
immune re ponsts to experimental malaria vaccines. or LOd«d 
the response [0 itself in human subjects. Furthermore. to our 
knowledge. this is ue has nevet been add res cd as the primaty 
goal of. dini aI trial in humans. Many srudies have used a sim
plified sysrem. examining the effect of P. fo!'-tpllNIIII infection 

on the responses of hum an peripheral blood mononuclear cells 
(PBMCs) to malaria anrigens lIIl'I/ro. and depressd responses 
ro m.l.n •• 01 rgens have usually bun found ill subjecrs wirh 

curreDt infeclion [16 ·Si]. However. these studies made the 
a umpcion that th proporrion of antigen sp cific cells circu
lating in ptripheral blood ar the time of infection is rhe same as 

in convalescence or healthy controls. and this is unlikely to be 
rcue I"J. There is also rhe possibility that naturally occurring 
P fobparulIl inftetion at rhe right tim. iot .. v.1 after vacelna
rion might enhance the response to a malaria vaccine byac[tng 
:;)s a 'natural boo~ter' 

Evidence from experimental malaria vaccine efficacy trials 
To date. on ly tWO experimental malaria vaccines have claimed 
efficacy againS[ naturally occurring infection in endemic Sel

tings: $[>f66 and RTS.S. The Pf66 vaccine (a synthetic poly
mer composed of blood-stage. protein-derived. ami no acid 
sequences. linked bya circum porozitt repeal srquence) is now 
conSidered to have had negligiblt efficacy after a series of din i
cal trials thar began with adult subjtets undel low transmission 
intensity and progressed to inerea ingly rigorous trial in infants 

and children under higher transmission intensilY. with tv .. 

decreasing estimates of protective efficacy ["",2] The effret 
of P. fit/npl/rum infection at the time of . Pf66 vaccination on 

vaccine efficacy was consid«ed In a secondary analy is withlll 
a trial in Brazil 6)J. Although. overall. the va cine did not show 
signilicant efficacy. rhe .,timare of efficacy \\":IS eVen lower in the 

subgroup with intercurrent parasitemia during vaccination than 
In those free from parasitemia. exposure was not assessed Il 
IS not possible to exclude rhat rhis was confounded by differ

ences in exposure. but randomiza[ion should have reduced the 
likelihood ofrhis.ln a trial in I 5-year-old Tanzanian children 
with OVtr 90% parasitt prevalence prior to vaccination. und" 
condition of incens. p.rrnnial transmiSSion. sulphadoxlne
pyrimethamine (S-P) was adminisrered l w«ks p.ior to each 
of I hoee doses of vaccine. ensuring thar children we.e palasite 
frre a[ the time of vaccination. This was [he only trial ofSPf66 
in African children. which demonstrated significant efficacy 
against tht first or only episode of clinical malaria (35% effi 
cacy; '.)5% CI: 0-52) 1SoI]. A subsequent study in infants in lhe 
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same setting found efficacy of only 2% (95% CI: -16-16); this 
ri me pn rasiles weT< not cleared prior to vaccination bur it is not 
clear whether this. the age of the vaccinees or chance explains 
the discrepancy between the tWO erials [62]. However. no sig
nificant beneficial effect of the vaccine was seen in Gambian 
infants, in a highly seasonal malaria transmission serring, given 
three doses ofSPF66 and S-P trealment 1-2 weeks before the 
first and third doses (vaccine efficacy 8% [95% CI: -18-291 [6IJ , 

suggesting that age at vaccination may indeed be important . 
This study was marred by a coding error resulting in incorrect 
vaccine administration in almost a quarter of children, and it 
is unclear whether S- P treatment was fe-ad nt in lstered prior to 

reva cinarion with the correct vaccine. Finally, in 2- 15-year
old children unde< lower incensiry transmission in Thailand. 
parasitemia was only treared at the time of vaccination and 
the protective vaccine efficacy of SPf66 was found to be -9% 
(95% I: -33- 14) [61J. Whilst results of all four of these trials 
would be consistem with a true vaccine efficacy of 0- 14%, 
it is also possible that the differences in treatmentl clear. net 
of P. jalclpttrum dW'ing the course of vaccin3[ion might have 
contributed to differrnces in observed vaccine efficacy. Even 
differences as subele as parasite clearance I velSUS 2 w .. ks before 
vaccination might b. importaor if par.siumi. has a prolonged 
suppressive effect. as observed for meningococcal C vaccine [to], 
although given the peptide nature of the Spf66 vaccine, a major 
effect of malaria is perhaps hard to argue. 

Clinical trials of the RT .S vaccine in Africa have shown 
45 66% efficacy against the first episode of parasiremia [66.67J. 

and 30 53% efficacy against the first episode of clinical 
malaria [66.68J. These trials have varied in siu and geographical 
location, and have included iterative optimizations of both vac
cination schedule and adjuvant ['41. None of the trials included 
deliberate clearance of parasiremi., or chemoprophylaxis prior to 

vaccinatioo; however. all trials using the firsr episode of parasit
emia as an end point requi ted a curative treatment to be g.iven 
prior to lhe third (final) dose of vaccine so thac any parasitemia 
observed during follow-up might be classified .s a new infec
lion. Parasite dearance was ~Ot undertaken in either of the large 
Sludies using 6rst episode of clinical malaria as an end point 
[60.681. From the available evidence it is not possible to determine 
wh~thC'; l P. fidclpllnl1tl infection prior to vaccination has any detri

mental effect on the efficacy of RTS,s. although clearly this issue 
is of great importance as RTS.S is a strong candidate to become 
the first licensed malaria vaccine. 

Other malaria vaccines have reached clinical trials in endemic 
couneries, but none have demonstrated clinical efficacy. Only one 
assessed the effecr of parasite clearance with P prior to vaccina
tion (with Combination B: merozoite su rtace proteins [MSP] I 
and 2. and ring-infected erythrocyte surface antigen) and. using 
para ite density during the follow-up period as a measure of vac
cine efficacy, th~ autholS suggested that parasite dearana might 
acruilly be associated with a rebound increase in parasite density 
and a consequent reduction in vaccine efficacy [60]. This study 
was small and randomization may have been inadequate, so this 

finding should be viewed with call i ion. 

Evidence from experimental malar ia vaccine 
immunogenicity trials 
Far more trials of experimental malaria vaccine immunogenicity 
have been conducted tha n for vaccine efficacy, but again few have 
assessed the effect of parasitemia on response to vaccination. 10 
the small study of the Combination B vaccine mentioned above, 
antibody titers to the component antigens were not enhanced by 
S-P treatment 1 week prior to vaccination but cellular responses 
(Q one of three anligem (MSP-1) appeared lower in the vaccinated 
subjects who had received S- P [70]. In a larger srudy. Bejon ef a/. 
examined the effect of naturally occurring P. folciparul1l infec
tion on the developmenr and longevity ofT-ceil responses to an 
experinnental vaccine (multiple-cpitope thrombospondin-rdated 
adhesion protein [ME-TRAP]) designed to stimulate strong cel
lular immunity (71J. The ME-TRAP vaccine was administered by 
a sequential vector regime (attenuated fowl pox followed by modi
fied vaccinia virus Ankara) and although it did not protect against 
febrile malaria in the primary study (72J it was immunogenic. 
Asymptomatic parasitemia at the starr of vaccination. or prior to 
the peak transmission s~ason in concrol subjec[s, was associa(~d 

with a small" IFN-y recall response to vaccine antigens at the end 
of the vaccination schedule or transmission season. respectively. 
WIllie the results of these studies are interesting, their televance is 
u ncefta in given the inefficacious im mu ne tespon<e to the vaccine 

Evidence from studies of naturally acqui red infection 
Naturally acquired protective immunity to P. fillcip.lrum develops 
slowly. incompletelyaod can wane in the absence ofongoing chal
lenge [15.73]. Epidemiological studies suggrst that there are at least 
fWO components: immunity to clinical disease and immunity to 
parasitemia. The development of clinical immunity is relatively 
fast. is hastened under conditions of more intense transmission 
and is lost relatively quickly in the absence of reinfection. By con
trast, antiparasite immunity appears to develop more gradually 
with age and. once established. can be maineained with infrequent 
boosting 173.74). The two components are likely to be related, sin e 
antipara ite immunity may reduce parasitemia below a threshold 
necessary to cause symptoms or severe disease. Ir is possible that 
eich" of these components of naturally acquired immunity are 
subverted or subdued by P. pzldparum infection. Unfonunarely, 
the exact nature of the antibody and cellular immune responses 
necessary for protection against malaria remain unknown. 
Antibody levels correlate well with exposure to P. foldparum [75J, 

exposure correlates strongly with the acquisition of prorective 
immunity and protective antiparasitic immunity reduces the 
amollOt of P. folclpttrum antigen available ro restimulate immune 
responses. Thus. it is very difficult to assess whether naturally 
occurring P. foldpnnw' infection actually suppresses the immune 
response to subsequent P. folcipnrum infection or whether any 
change is acruaJlydue to protective immunity efficiently limiting 
infection and hence antigen exposure. 

One way to circumvent this problem would be to assess the 
effect of intensity of exposure on the development of immllOe 
responses to P. fo/tlpttntlll antigens before antiparasitic immunicy 
has developed. This has been attempted in a small but detailed 
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longilUdin.11 sludy of Kenyan in fanes in [he first 2 years of life 
underdiff<renr transmission intensities. wlth frequent assessment 
of parasitemia and fnLomological ino ulalion rate to detelmine 
specific amibody responses 176J. Level. of IgG [0 MSP-1 IHD• 
(a blood-stage antigen) and circumsporozoire protein (CSP; a 
pre-erythrocytic aOligeo) varied dramatically over timeaod with 
episodts ofinf«tion. Higherlrvels ofIgG lO MSP-I ".IO., bUl not 
CSp, were found in children who were subjected to lower trans
mission intensity and had fewer infections during rhe fim 2 years 
of life rhan in tho e subjected to a very lugh intensityofinfecrion. 
Another approach to lhe problem is to assess immune responses 
in c!uldren who arr exposed to malaria bUl protected from blood
tage infection by chemoprophylaxis. In 5-year-old Gambian chil

dren who had re rived 3 year ofinrerm iuenr chemoprophylaxis, 
cellular responses to blood-stage antigens were higher than in 
controls who had received placebo. but antibody responses to 
a crude schizont eXtraCl were lower [77J. FurthetnlOre, a small 
study comparing exposed individual, with and wilhout natural 
prorection againsl th. blood stage of P. t'11'IlX, due to ab ence 
or prtsence of the Duffy amigeo 00 erythrocytes, uspectively, 
demonstrated strong cellular responses ro sporozoite antigens 
bUl ~bsent respenses to blood-stage dmigens in Duffy antigen
negativc individuals. and rhe oppo ite rrend in Duffy anrigen
positive individuals 17$1. Thtse findings provide some preliminary 
evidence that PlflSI110tliuTIl peeies may suppress cellular and anti
body ltsponsts to some of rheir own antigens In "IVO, although 
th relationship may be complex. with different thresholds fOI 
~neration and suppression of protective responses. 

Overall, there is scarce evidrnce Ihat P. jnlcip<1NJm infection 
suppres e protective responsrsro muLllia vaccines Ot ro nalUraIly 
acquired lDolari. infection, bur ,his is because protective immune 
responses remain poorly defined, rarher rhan beeau e there is 
strong evidence to refure the hyporhesis Some observarions are 
compalible with supp"<sion of specific «sponses to maJari •• nri
gens by P. jillctPlJrulll. hur these full r.'1 short of proving caus.lity, 
or that rhue is an e(fect of clinical or publ ic heald1 relevance. 
Alternative explanations for Ule slow development of anriparasite 
immunity. such as age-dep<'ndrnt marurarion of the Immune sys· 
tem [741, and parasite amigenic v.riation [7'1 have more compelling 

ev ide nee rO support them. 

Mechanisms of Immunomodulatlon by malaria 
The evidence for modulation of vaccine responses by P. flb
pantlll is limired by rhe methods available for seudy of human 
lmOlun(" responses, bu[ ~xpetlm("n[al Lofrctions in animals have 

allowed much more detailed explorarion of immunomodulatory 
effecrs and the potenrial mechanisms. In mice, humoral and cel
Iulaf responses to vaccinarion with 0 wide variety of hettrolo

gous antigen can be shown to br' wppressed byexpNimental 
malaria, recapitularingand of len <l<ceedingthe effects observtd in 
human< [80 .1. Inlelc I ingly, rhiseffect is particularly prominent 

for splenic antibody responses rarher rhan those mou med in lymph 
nodes fllJ. Thu< is con Ilic ting (videnc( regarding ,,11ether blood
stage infection to mice Can suppress Immunity to livu-stage anti
gens [8' ~I, which wOlud b!' a problem for vaccines such a~ RT • 
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if it were also true in humans. However, experimental infeerions 
in mice do not necessarily closely replicace nalUralIy occurring, 
rope aced episodes of P. jnldpllrum infection in humans. so here we 
will focus on only the most pacinent mechanisric srudies. 

The most convincing effect of P. folripdrum is on responses 
to hererologous vaccine polysaccharide antigens . These aori
gens, which contain repetilive sequences, dicit T-Iymphocytc
independenr type-2 immune (TI-2) responses , through a 
mechanism wlUch involves cross-linking of multiple B-cell 
«ceprors, aU owing signal transduction in the absence of M HC·II 
restricted T-cell co-srimulatory signals [86J . ConventionaUy, CD4' 
T lymphocytes have been thought to recognize only protein 
antigen presented via MH -I[ and hence are exduded from the 
response to polysaccharide antigens. Although it is worth noting 
that rhe quality of the response to T-independenr (TI) aorigens is 
affected by T-lymphocytes 1$6J and that some pelysaccharide anti
gens can be presented on MHC-[l and recognized by the ~f3T-cell 
r.cepror[87J , if the primary defeer in rhe vaccine response was at 
the level of D4' <Xj3T cells we would <xpecr to see widespread 
effects on responses to prorein vaccines, and this is not the case. 

Splenic marginal zone B cdls are parricularly adapted for 
respending lO TI-2 antigens [88.8.J. The malginal zone allows 
slow passage and trapping of blood-borne anrigen, carried at 
leasr in mice on circulating CDllcl' Mac-1 hi ' dendritic ceUs 
(D s) [R990J, which also provide survival signals for plasma
blasts. ensuring maximum exposure of marginal zone B C(US to 
antigen. TI-llesponses are weak in young children, for reason. 
which r~main uncertain but may rellecr a need for maturation 
of rhe marginal zone B·cell population in early childhood [88J. 

Most or rhe evidence for suppression of polysacchartde vaccine 
lesponses by P. foLdp.lrum was generated in young children, so 
it is perhaps nor surprising thar the most weakly immunogenic 
types of antigen in this age group are seen to be most affected by 
malaria. and tbis may involve 3 completely nonspecific mecha
nism. However. TI-2 «'sponses are an essencial compenent of the 
host re pons~ to encapsulated bacteria in rhe bloodstream and 
individuals with impaired TI-2 responses due to malaria would 
be expected ro be smceptible to bacterial coin feet ions This has 
been repeatedly observed to numerous settings wh"e malaria is 
endemic I~ , I. If a pecific mechanism is involved, modulation 
of either B-c'!l or D function. rather than T-lymphocyre func
tion. are the most likely explanations. Early experiments in mice 
suggest~d that B-ceU dysfuncrionp..,.s .. was an unlikely expla
nation for hyporespensiveness to TI-2 antigens since, although 
splenic B cells responded poorly in malaria-infected mice. these 
same B cells were able [0 respond afrer transfer inco irradiated 
uninfected mice [UJ. It was also realized early on that Certain 
antigens did nor loealiz< normally in rhe pleen during malaria 
infecl ion 191], suggesting thaI changes in splenic architecrure or 
antigen-preseOlingcdl function may be the underlying problem. 
DC fUDction has been extensively studied during maJaria infec

tion and although the findings may appear superfiCially comra
dietory they can, on the whole. be reconciled by considering a 
natural progression from activation of DCs early in infection to 
homeostatic inlUbitionlater 111 infection [9' J. Uowever, ac[<nlion 
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has focu ed on (h. intera lion of DCs with T lymphocytes and 
subsequenl T-effector and T-dependent amibody responses with 
lilrle regard for TI responses. Whether the rol~ ofDCs in local
izing antigen for the TI response, or in promoting survival of 
marginal zone B cells is defective. is unknown at present. and 
an e.xplanacion as simple a. co ntinuous depletion of circLllating 
DCs by persisrenr parasitemia and high levels of malaria antigen 
exposure. may be all thal is necessary. Indeed, a recent study 
has shown ,hat a CDllel"Mac-l hI 'monoeyt<' population, with 
a very <imilar immunophenorype to the previously described 
circulating D '. selecrivtiy uansports Pf,/slIIod",m ,-habaudl t:o 

tbe spleen. accumulating there during blood-stage infection wid, 
simultaneous depletion from the bone marrow 103J. This may be 
compounded by widespread activation of marginal zone B «lis 

during ma laria infection by highly repetilive malaria antigens 
acting as TI antigens [94 ·96) . or by complement-binding IgM 
in1mune complexes 1'7. 99], leaving them with liede capaciry to 
respond to otha TI anrig~ns that are quite simply crowded our. 
Crucially. obliteration ofche normal splenic architecture during 
both P. la/Clpllrtmz and rodent malaria, including progressive 
dissolution of the splenic marginal ZOne and follicular stfUC
tUles [100.101) . probably precludes optimal interactions between 
marginal zone B cells and antigen-presenting DCs. Intriguingly. 
rhe time taken for splenic marginal zones to regaiD their nor
mal conformal ion (up to ;30 days afrer ckarana of infection in 
mice [IOOJ) is sim ilar to the du rarion of the adverse response to 
polys.ccllaride vaccination. 

A pO>siblescenario by which malaria infection leads (0 suppres
sion of h~r~rologous polysaccharid~ vaccin~ responses might rhus 
be as follows. Malaria amigens in the blood !ream are trafficked 
to the spleen by ciJcuhting D s. If the antigen load is sufficieDt 
this may depleCt DCs from d1e blood or ovelwhelm lheir capacity 
to traffic oci,er antigens. Thr ugh TI-2 repetitive sequence pro
teins and T I-l polydonal B-edl·acrivatiog antigens. and through 
immune complex-medi.~ted stimulation of marginal zone B cells. 
proliferatioD and migration of marginal zone B cells leads to dis
solution of rhe normal m:ugioal zone "fUClure. Hererologous 
polysaccharide ancigens or ba teria entering the circulation at this 
stag' oftb. infection may not be trafficked 1.0 tht spleni marginal 
zone due co a lack of transporting IX or be ause rhe marginal 
~one has disintegrated. Even if the margina l zone lymphocyces 
are encountered elsewbere in ci1e spleen, they may be unable to 
respond normally ro TI antigens, and a relarive defect may persist 
unrillhe ma rginal zone ard,irecture returos to normal. 

Implkatlons & challenges for the future 
The evidence that P.j"/"'panlm infection reduces vaccine responses 
is less robu t cilan is often impli..cl. In parrthis reflects the difficulry 
of studying immllne responses in hwnans in the context ofa com
plexpara iti eli ease. which mosl severrlyaffecls yowlgchildren in 
some of the wodd's mo. t deprived counuies. It .Iso reHects the fact 

that the potenrial in1pact of concurrent malaria infection has been 
largely ignored in vaccine trials in endemic countries. Based on rhe 
ava ilable evidence, rhere is no reason ro suppose that asymptomacic 
P .. fo/c'l"lnm' infection signilicanrly reduces the immunogeniciry 

of rourine IPI vaccines when given in their usual forroul.rion and 
chedule. Whether clinical malaria wOllld inHuence cilese vaccine 

respouses is unclear, and the decision whether or not to vaccinate 
iu the COntext of an acute febrile illness that may be malaria has 
to be a pragmatic one - in an ideal situation vaccination might be 
deferr~d until the illness has been treared. butifrhe opportuniry for 
vaccinacion may not recur, then vaccination would be better than 
not. In the case of very high fever. severe illness or where there is 
diaguo ti~ uncertainry. vaccination may risk causing harm and we 
would recommend deferring vaccination. 

For vaccination with polysaccharide anrigens, consideration 
should be gr\len to curative rreacment prior (0 vaccination in areas 

where parasite prevalence is high, particularly in younger children 
who already respond suboptimally to these vaccines. The length 
of time between parasite clearanc" and restitUtion of normal v.c
elne responsiveness may vary from vaccine to vaccine. Imt a good 
rule of thumb appears to be 4 weeks and practical considerations 
such as accessibiliry of rhe population. the effective hal f-life of the 
anrimalarial drug and likelihood of reinfection will be at least as 
importanl as the immunological recovery. Even for newer conju
gate vaccines, responses may be impaired by acuee malaria or oehel 
febrile illness. but the same con iderations apply as for pol)'Sacd1a
ride vaccines. when deferring vaccination may result in a missed 
opportuniry to vaccinate. Ginieal trials of new conjugate vaccines 
undeteaken in malaria-endemic areas should aim to assess the 
effect of parasitemia on vaccine efficacy. weU as immunogeniciry. 
III the context of a well· conducted, random ized conerol trial this 
should nOl be a great additional burden on resources. 

Determining wherber P. la/ciparum modulates the immune 
responses to ilself or to antigens in malaria vaccines seems to be 
a high prioriry for understanding prote tive immune responses 
against malaria and for the development of an effective malaria 
vaccine. ne ""'y ro assess th is would be a combi.ned trial in a high
transm ission serting ofa malaria vaccine with another intervention. 
such as intermi.ttent preventive trearment ofinfums (iPTi) (102). If 
IPTi was given prior to the malaria vaccine, and a 2 • 2 factorial 
design OPTi + malaria vaccinevs placebo + malaria vaccine vs IPTi 
t control vaccine vs placebo + control vaccine) was employed, cilis 
could be very informative. and would be a realistic assessment of 
the value of a malaria vaccine. which is unlikely to ever be used 
in isolation. (0 prevent malaria in aD endemic setting. The major 
drawbacks of this approach would be the very large sample size 
reqttired and the resulting COst. Howevet. even the systematic col
lection and analysis of observational data in ongoi ng ""d future 
trials. moniroringvaccine efficacy in children with orwitbout para
sitemia befure and during vaccinacion may provide in1portant infor
marion to address this isslle. ubsequenr mathematical mod~ling of 
vaccine efficacy and cost- efftcciveness under differem transmission 
inrensicies or in combination wilh other coutrol measures could 
assist the mOSl rarional implementation of the vaccine. 

The potencial significance of the relative suppression ofhe lero
logous TI-2 antibody re pouses by P. fi,IClf'ilrum bas been overlooked 
ro date. We speculate thar this may be diucdy related to the altera
tions in splenic arch irecrure and marginal ZOne B-cell acrivarion and 
distribution thar occur in malaria. 1 nvesrigalion of rhe underlying 
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moch,ni,m, of suppression of vaccine responses by malaria might 
reveal DOVel insighls into the c:1pabili[ies and limitation ofhurnan 
immunity, particlllarly in ill F.lIlts, and might eohan e development 
of vaccines for malaria and other infectious diseases. 

Expert commentary 
We are eruering lht second wave of vaccination to reduce burden of 
childhood disease in resource-pool countries. The inilial package of 
vaccines inuoduced by the WHO EPI in the 1970s and 1980s is now 
Ixingsupplemented by the H. il1jlublZttt!rype b conjugate, pneumo
coc al conjL1ga[e and rot.virus vaccines, and potentially affordable 
malaria, meningococca.l conjugate and typboid vaccioessuil.ble [01 

Africaar. in advanced trials [103]. However, routine vaccine coverage 
remain incomplete and tho dctermillarus of vaccine effi: tivenessfor 
preventing discase in routine us. remain l:ugdy unknown. 

For malaria, a chaIleage of global <Indication has been set and 
many innovariw strategies besides vaccines art being assessed. 
There has also been a resurgence of interesl in the immu 00-

modulatory .ffect' of malaria. Unfonunately, the extraordinary 
opponunities afforded by malaria intcI vention and eradication 
studies have not yet been fully exploited [0 assess the immuno

modulatoryefl'm of P. fit/tlpan"" infection in humans. If P. fitt
"taTUm infecrion influences the effecriveness of new vaccines, it 
may have major implications for thelf cost- effectiveness and thdr 
mode of ddivery. Undrrstanding the eltect of P. jal"ltarum on 
vaccine effectiveness is therefore rucial . 

It is sad to have to resrare year on year that the nature of ,he 
protective immune response to malaria remains poody understood. 
By beller understanding the nalure of lhe suppressive effect of 
P. fo1dpanJm on heterologous vaccine responses we may better 
understand wh ther immune respon os to any parasite antigen 
are also likely to be suppressed. If so, such antigens may prove to 
b<- the :Achi li s h ei' of [he paJasile and be largm ror development 

of more effective vaccine . 

Five-year view 
In u1e next 5 years, malaria cooHol and erndication efforts will 
rnah progress in reducing ,he global burden of malaria. This may 
produce unanticipated benefits in terms of athol vaccine-prevent

able diseoses, especiaIly meningococcal.nd pneumococcal disease. 

Results of the Phase III RTS, mal.ri. vaccine trials will reveal 

whether RT ,S is" good enough vaccine to eoter routine use. Other 
Dew vaccines will also become available and decisions wiU have 
to Ix made as to which are most effective and which are afford

able. NoDe of these decisions can be made on a sound basis for 
malaria-endemic coururies without considering the possible Impact 
of malaria on the effectiveness of these vaccines and we hope that 
tudie will be undertaken to answer this question definitively. 
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Key issues 

• Plasmodium falciparum Infecbon suppresses antibody lesponses 
to polysac<hande vacCine antlgem 

• Responses to protein anngen vaccine; and some P falciparum 
antigens may be suppressed, but the eVidence IS weaker 

• There IS no elldence that antIbody re;ponses to highly 
ImmunogeniC combmatlons of routIne vaCCInes are Significantly 
suppressed by P faldpartJm. 

• The effect of P falcipartJm on vacCine efficacy has nevel been 
tormally assessed. even though [hI> IS more 1m portant than 
assessment of the antibody response There IS an urgenl need to 
Incorporate thiS assessment Into efficacy tnals ot new vacCines In 
malana-endemlc countnes 

• The mechanIsms ot the protectIve Immune response against 
malaria and the suppression 01 vaccine responses remain poorly 
explaIned but attentIon should pehaps be focused on cellular 
In eractlons 'n the margInal zone of the spleen 

• Better understanding of the effect of P f .. lciparum on vaCCIne 
responses may be crUCial to develop and Implement neW 
vawnes tor malana endemIC <ountrle5 
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Chapter 4. What are the consequences of malaria and HIV 

co-infection? 
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HIVand malaria co-infection 

The material presented in this chapter was comissioned by Dr Tracey lamb as a 

contribution for the textbook (in Press) Immunity to Parasitic Infection (Wiley

Blackwell). In this review we consider the scale of the problem of malaria and HIV co

infection, the many different facets of the interactions between the two pathogens 

with a particular emphasis on the immunological mechanisms involved in the 

pathogenesis of HIV which may be important in the reciprocal interactions with 

malaria, and finally, we describe the consequences of co-infection. The material 

presented here has been edited by Tracey lamb, in her role as editor of the book, to 

ensure consistency and avoid duplication within the book, but no substantive changes 

in content have been made. 
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HIVand Malaria 
Co-infection 

Aubrey Cunnington and Eleanor M. Riley 
London School of Hygiene and Tropical Medicine 

19.1 The endemicity of HIV and malaria 

19 

The Human Immunodeficiency Virus (HlV) has spread as a global pandemic, 
affecting all continents. Malaria, caused by the five Plasmodium species known 
to infect man (P. /alcipantl7l, uiuax, ovale, malmiae and knowlesl) (see Chapter 
3), has a more limited geographical distribution, defined by the availability of 
suitable mosquito vectors. The greatest burden of disease due to both HlV and 
malaria (predominantly P. falciparum) occlir in sub-Saharan Africa, although 
the geographical overlap of tbe highest risk areas for both infections is limited 
to central and southernAfrica (Figure 19.1). Nevertheless, HlVinfection persists 
lifelong, and R falciparum can be both a chronic and a frequently recurring 
cause of infection, increasing the likelihood of HlV and malaria co-infections 
in the same individual , 

Understanding the potential consequences of interaction between the two in
fections - including understanding tileir reciprocal effects on host immune re
span es La HIVand malaria, their combined effect on host responses to other 
infections, and the implications of H IV-malaria co-infection on transmission, 
diagnosis, treatment and prevention - is therefore of considerable importance 

19.2 HIV infection 

19.2.1 A short history 01 HIV Infection 

HlV is the cause of the acquired immunodeficiency syndrome (AlDS), a pro
gressive loss of immune competence which results in susceptibility LO oppor
tunistic infection and cancer. H lV is caused by two related retroviruses - HlV-l 
and I-IlV-2 - both of which evolved from viruses of non-human primates. It is 
likely that the ancestral HlV-l virus entered the human population in the early 

immullily 10 Parasiric I,ljecticll$, Flrst Edition_ Edited by 'lIacey Lamb, 
<0 :!012 John Wuey & Sons. Ltd. Publisbed :!01:! by John WIley & SOilS, Ltd. 
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20th cemury in the Democratic Republic of Congo, bUl AIDS was not formally 
recognized until its description in J.981 in the United States of America. 

HIV·] is widespread, while the HIV-2 epidemic is focused around West Africa 
and its migrant populations; HIV-2 infection progresses to AlOS more slowly 
than HIV-l. Globally, more than 30 million people are estimated to be infected 
with HIV; two-thirds of these in the sub-SaharanAfrican region. This compares 
with 85 per cent of 240 million global malaria cases, and nearly 90 per cent of 
the 860,OOOmalaria deaths occur in the African region. 

Despite this broad overlap, the burden of co-infection is unevenly distributed 
within the African region, and even within individual countries, due to local 
variation in malaria transmission and the nature of the HIV epidemic. For ex
ample, malaria is often more common in rural areas, whereas HIV is often more 
prevalent around urban centres, Also, immunity to malaria is acquired in child
hood. before the peak of HIV acquisition in adolescence and early adulthood. 

The countries most severely affected by malaria-HIV co·infection include 
Malawi, Mozambique, the Central African Republic. Zambia and Zimbabwe. 
In this chapter. we limit discussion to interactions between HIV-l and R [alci
panlm, because there is less evidence available for interactions involving HlV-2 
or the other Plasmodium species. 

, 9.2.2 The HIV virus 

Before considering the interactions between HIV and malaria. it is useful to 
considt:r the challenges thal each infection poses on its own for host in1IDU
nity, and to take note of some similarities between the two infections in the 
ways that they have co-evolved with the host's immune system (Table 19.1). 
The immunology and pathology of malaria infections has been described in 
Chapter 3. 

HIV is a retrovirus; each enveloped viral particle (virion) contains two copies of 
the viral RNA genome as well as the enzymes essential for the reverse transcrip
tion of this RNA into eDNA and its integration into the host genome. The sur
face of the HIV virion expresses glycoproteins, which mediate binding to. and 
fusion with, host target cells. The most important of these are gp120, which 
binds to CD4, as well as the co-receptors CCR5 and CXCR4 on the host cell 
mem brane. and gp41 which is necessary for fusion of the membranes and viral 
entry. 

19.2.3 Cellular sources of HIV virus 

Activated CD4+ T cells, which express CCR5. are the principal target for HIV 
invasion and the main site of viral replication, producing the majority of HIV 
which is detectable in the plasn18 (the viral load). However. HlVis also able to 
infect other cell type • including na'ive and memory CD4 T cells. monocytes, 
macrophages and dendritic cells. Infection of these other cell types makes 
relatively little comribution to plasma viral load, but it creates a latent (i.e. 
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Table 19.1 Some slmllarhles between Plasmodium and HIV 01 relevance to host Immunny. 

Evolutionary origin 
Zoonotic transmission from non-human primates. 
Host adaptation to invade red ~ood cells using specific 
sialic acid residues. 

Immune evasion at Infection 
Rapid transit of sporozoltes to the liver limits stimulation of 
humoral responses. 

Immune activation 
Repeated exposure/chronic persistent parasitaemia 

Immune activation causes increased endothelial adhesion 
molecule expression, sequestration of P. falClp<lfUm 

paraslbzed RBCs, protecbon from spleniC clearance and 
enhanced replication 
Imrrune activation may cause severe disease 
manifestations such as cerebral malaria 

Evasion of the humorallmml.l1e response 
Antigenic variation. 
Mutalion. 
Crypbc B cell epltopes. 
Alternative roaslon pathways, e.g. SialiC aCid dependent 
and Independent invasion of RBC. 
Intracenular replication cycles. 
Polyclonal B cell activation diverts from speCific response. 
(Hypel{lammaglobullnaemla). 
Aberrant memory B cell development. 
Latent Infection (hfnozoile) In the liver in (P Vlvax and P 
O'IaJe) 

Evasion of the cell mediated Immune response 
Sporozoites down-regulate MHC I on Kupffer cells in the liver. 
Altered peptide ligands Interfere wilh T cell receptor 
Interactions and activation. 
Intraerythrocybc replication cycle - RBCs lack MHC 
expression. 
Cryptic T cell epitopes. 

!IV 

Zoonotic transmission from non-human primates. 
Adaptation to human host, e.g. HIV· l Vpu protem 
antagonizes Ihe innate defence protein tethenn (whlcln 
would prevent release of Viral progeny from cells). 

Rapid Invasion 01 CD4+CCR5+ cells for aatve replication. 
Dendritic cells and B cells carry virus to activated CD4 T 
ceNs 
Early estabhstment of latenUy Infected cells. 

Persists ifelong after infection 
Translocation of microbial products across intestinal 
mucosa causes immune activation. 
Immune aclivation increases Viral replication. 

Immune activation hastens progression to AIDS. 

Antigenic va nation. 
Mulation. 
Cryptic B cell epltopes. 
Alternative invasion pathways e.g. CCR5 and CXCR4. 

Intracellular replication cycle. 
Polyclonal B cell activation diverts from speCific response. 
(Hypergammaglobuhnaemla) 
Aberrant memory B cell development. 
Latent Irtracellular Infection of macrophages and resting T 
cels 

Viral Nef (negative regulation factor) protem inhibits MHC I 
expression and presentation of pep tides on MHC II 
Mutation of T cell eprtopes Interferes with T cell response 
to wild type mmll10d0mnant epltopes. 
Viral reservoirs In pnvileged sites, e.g. central nervous 
system. 

non-replica ting) virus reservoir, relatively protected from the immune response 
and from antiretroviral drugs. 

Latent virus can begin LO replicate following immunological activation of the 
ho t ce ll ; for example. there are NF-KB responsjv~ elements in the viral long 
terminal repeat CUR) region, which result in transcriptional activation of the 
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virus hy NF-K B. HIV rf'plkation in artiv3ted C04+ T cells has a directl-ytopatnk 
effeCi, whereas latently inf!'rted l't' lis may have a prolonged lifespan . 

19.2.4 Transmission of HIV 

IIIV is lransmill!'d h!'lw!'!'n humans as <'!'II-IT!,!, or <,plI-associat!'d virus in bod
ily nuids, principally '!'m!'n , vaginal s!'eT!'lions and blood. II ('an also be Irans
mill('d from molhC'r 10 child acfOSS In(' plac('nla, in Ihe birlh canal or in bl'('a~t 
milk. rhe risk of transmission is r los!'ly related to the viral load in til!' blood 
and lilt-' int!'grity and stale of innammation of thp mucosal (or plaepnla!) barri
ns. HIV ('8n cross th(' mucosal harriers through inleraction with dendriti(, crlis 
or CCR5-exprrssing epillwlial ('('lis, with suhsequ('nt infrction ofCD1 T ('('lis in 
the subm ucosa or lymphoid tissues. Individuals with m uta lions that lim It CeR5 
expression are resistant to my infection. 

19.2.5 The immune response against HIV 

When IIIV is transmilled inlo a new host , it establi shps infection in CD4+ r 
('('Us and Ih('l'(, is a phasC' of rapid viral rC'plication, high viral load, and dcl('
tion of C R5+CD4+ T c('Us from the gut and, to a lC'ssC'1' C'xtC'nt, from the PC'
rlpheral blood (FlgurC' \9.2). Tlli a utC' phasC' manifests as an influenza-like 
il lnes,", in 50-80 P(,T ('('nl of cases. An innale immul1(, r('sponse is inilial('d by 
binding ofuridinl'-rkh HlV RNA to ToU-like receplors 7 and 8 and Iriggering of 

Acute Chronic AIDS 

seroconverslon 

Hi_ Yelrs 

Agure 19.2 Three phases 01 HIV Inlection. Acute HIV InfecOOn IS characterized by a high VIIal 
Ioed and depletion of CD4+ T cells. Plasma Vllaiload drops to a relanvely constant 's&t-polnr 
as hostlmmunlly establishes Imperfecl control 01 vllal replication, antibody seroconverSlon 
occurs, and there Is recovery of CD4+ T cell numbers In the peripheral blood In the chronic 
phase, there Is gradual loss 01 functional Immunity, most commonly measured by the depletion 
of CD4+ T-Iymphocytes, and eventually a loss of control of viral replication. When the CD4+ T 
cell count falls below the threshold of 200 cells/v-!, there Is severe ImmunocomprornlZ9: AIDS. 
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interferon-a production by gpl20 in monocytes and dendritic cells, It is accom
panied by CD8+ T cell activation and production of antibodies to viral proteins 
(seroconversion). This cytotoxic CD8+ T cell response to acute infection limits. 
but does not eradicate. infection. Antibodies appear to be ineffective. because 
the humoral response is too slow to keep up \vith the rapid rate of mutation of 
HIV epitopes. such that neutralization ofimact virions is poor ill vim. 

After 2-6 weeks. viral load falls to a 'set-point' and peripheral blood CD4+ T ceU 
numbers rebound. In tile absence of treatment. a chronic phase of infection 
begins; there is now a gradual decline in CD4+ T cell numbers and a gradual 
increase in HIV viral load. with eventual progression to AIDS. In reality. there is 
great variation in the time taken to progress from acute infection to AIDS. with 
a median of 8-10 years (although in children. progression is often faster). Some 
individuals progress very rapidly. while others appear not to progress (\ong
term non-progressors). Long-term non-progression is strongly associated with 
genetic variants affecting the peptide binding groove of HLA class 1. indicating 
that interaction of HLA class J with viral peptide and the quality of its presen
tation to CD8+ T cells is a major determinant of the effectiveness of the host 
response. 

The acute phase of infection (seroconversion iUness) is rarely identified clini
cally. unless there is a particular reason to expect an individual is at risk of HIV 
infection. The beginning of the chronic phase is asymptomatic. This means 
that individuals may be infected \vith HIV for several years \vithout kno\ving 
that they have the virus, during which time they may tran mit the virus to oth
ers. Progression to advanced stages of HIV and AIDS is defined by the onset of 
recurrent. severe or opportunistic infections. malignancies (cancers) or patho
logical effects of HIV itself (wasting syndrome or encephalopathy). or by a faU 
in the CD4+ Tcel! count below a threshold value «200 cells/fJ-1 for adults). 

19.2.6 Drug therapy against HIV infection 

Highly active anti-retroviraltherapy (HMRT) targets the replicating virus by in
hibiting the reverse transcriptase and protease enzyme necessary for the pro
duction of infective virions, but it does not affect the virus in latently infected 
cells, making eradication of the virus (Le. a cure) impossible. HAART usually 
comprises a combination of three drugs. two nucleoside reverse transcriptase 
inhibitors eN RTIs) and either a non-nucleoside reverse transcriptase inhibitor 
(NNRTI) or a protease inhibitor (PI). HAART can effectively suppress viral repli
cation to undetectable levels. reverse immune activation and slowly allow re
covery of the immune system. 

In the chronic phase. treatment of H IV with HAART can prevent the progression 
to AIDS by suppressing viral replication and delaying the decline in peripheral 
blood CD4 count. Treatment of individuals after they have an AIDS defining
illness can also suppress viral load and restore peripheral blood CD4+ T cell 
counts over time. reversing the immunodeficiency. 

orne consequences of HIV/AlD • such as lung. kidney and neurological dam
age. are not reversible \vith restoration of the CD4 count and. unfortunately. 
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not all immunological dysfunction appears reversible. Notably, memory B cell 
numbers and function do not recover well after initiation ofHAART, and this re
sults in persisting defects in humoral immunity, which might only be avoided 
by initiation of HAART very early in the course of infection, before irreversible 
damage is done. Restoration of immune competency by HAART carries risk in 
Ihosewho have been very immunosuppressed, because the resurgent immune 
system may mount a vigorous and damaging response to covert pathogens, 
causing immune reconstitution in.flammatory syndrome (IRIS). 

Anti-retroviral drugs may also be used to prevent mother-to-child u'ansmis
sion (MTCf) of HlV and to prevent infection immediately following exposure to 
mv (post-exposure prophylaxis). Individuals with low CD4+ T cell counts are 
often also given prophylactic trea un ent with trimethoprim-sulfamethoxazole, 
antibiotics which help to prevent bacterial and Plleumocystis jirovecii infection. 

19.3 Immunopathogenesis of HIV 

19.3.1 Immune activation in acute HIV infection 

Although it is now accepted that HIV is the cause ofAlD . the mechanisms lead
ing to immunosuppression remain the subject of some debate. Immunosup
pression due to HIV is not a state of immunological quiescence. but quite the 
opposite. HIV promotes immune activation. and immune activation strongly 
predicts progre sion to AlDS (Figure 19.3). 

Immune activation is identified by increased circulating pro-inflammatory me
diators (chemokines and cytokines). polyclonal B cell activation, increased T 
cell proliferation and activated T cell phenotypes. Although only a small pro
portion «1 per cent) of all CD4+ T cells are infected by HlV, the increased ac
tivation and turnover of T cells not only creates new target cells (expressing 
CCRS) for further viral replication, but may also ultimately exhaust the prolifer
ative capacity of the T and B memory cell pools. 

Activation and infection of important functional subsets ofT cells. such as cen
tral memory CD4+ T ceUs. may be particularly damaging. Central memory T 
cells constitute a pool of precursors for effector memory T cells, and their de
pletion is strongly associated with development of AlD . Similarly, depletion of 
polyfunctional T cells (able to secrete high levels of several cytok.ines) is cor
related with irIcreased viral load and progression to AIDS. Polyfunctional cyto
toxic (CD8+) Tcells are believed to be important in defence against HlV itself. 
but the capacity of these effector cell s to limit HIV replication is impaired by 
chronic immune activation, which drives terminal differentiation towards ex
hausted cells, secreting lower levels of a more limited repertoire of cytokines. 

Similar phenomena occur in B cells during HlV infection, \vith chronic stim
ulation leading to exhausted cell phenotypes and a reduction in their capac
ity to mount antibody responses to vaccination and infection. One mechanism 
by which chronic immune activation impairs T cell function is increased ex
pression of the surface receptor Programmed Death-l (PD-1) on T cells, and 
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Figure 19.a Immune activation is central to the pathogenesis of AIDS. t. HIV preferennally Infects 
activaled C04+ T cells expressing CCR5. 2. HIV is directly cytopathic to activated C04+ T 
cells. resulting in acute depletion of CD4+ T cells in peripheral blood. particularly in the gut. 3. 
This causes damage to the defensive mucosal barrier of the gut. allowing translocation of 
bacteria and their products Into the circulation . 4. Bacterial products such as 
lipopolysaccharide (LPS) and HIV synergize to cause chronic immune activation. 5. 
Consequent activation of C04+ T cells allows increased viral replication. It promotes 
depletion of central memory (CM) cells and differentiation of effector memory (EM) cells to 
less functional terminal effector and exhausted (ex) phenotypes.S. Depletion of CD4+ T cells 
limits helper function for B-Iymphocytes. and Immune acnvation causes polyclonal stimulation 
a! mature na'ive B-Iymphocytes. enhanced differentiation to short-lived (SL) plasmablasts and 
exhausted (ex) phenotypes. while "reversibly depleting resting memory (rm) B cell pools. 7 . 
Chronic Immune activation enhances the expression of Programmed Death-t (PD-t) on 
C08+ T cells and of its ligand PO-LIon antigen presenting cells (APCs). which reduces the 
proliferabon and enhances apoptosis of HIV-specific CD8+ T cells. 

of its ligand, PD-L!, on antigen presmting cells. Ligation of 1'0-1 to PD-L! re
duces survival, proliferalion and rytokine production of C08+ and C1)4+ T 
cells. Chronic immune activatioll also disrupts the architecture oflymph()id tis
sut's (e.g. thymus and lymph nodes)' prt'venting their orcilf'strarion of normal 
immune responses. 

19.3.2 Chronic immune activation in HIV infection 

The chrunic Immune activation Ihal occurs during IIiV infe tion is nOI at 
tributable t'xrlusiwly to the virus. It is currently believed that immune acti 
vation is lar!ll'ly llriven by a loss of functional inlegrity of the gastrointesti
nal mucosal barrier. which allows Iranslocation of microbial product. such as 
Iipopolysacrharidl' (LPS) (rom the brut lumen into the circulation. [,hese mi
crobial protluct~ are able to Mimulate the innate immunt' response through 
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Toll-like receptor signalling. Furthermore, H IV infection increases the sensitiv
ity of macro phages to Toll-like receptor ligands. 

HIV infection ca uses inflammation of the gastrointestinal tract, with destruc
tion of the epithelial surface and death of en terocytes . The majority of lympho
cytes in the body are located in the gastrointestinal tract, and there is a dramatic 
depletion of CD4+ T cells from this site during acute HIV infection_ This con
tinues in the chronic phase of infection, and it is of much greater magnitude 
than the CD4+ T cell depletion from peripheral blood. The occurrence of op
portunistic infections in HIV-infected individuals provides another stimulus to 
immune activation, viral replication and disease progression. 

19.4 Interactions between malaria and HIV 

There are many possible interactions between malaria and H IV (summarized 
in Figure 19.4). but good quality evidence is available to support or refute only 

HIVon 
Malaria 

Malaria 

on HIV 

HIV 

Treatment and 
Prevention 

Disease 

Transmission 

Disease 

Transmission 

• IPTp less effeclille 

• Drug Inler actUJ(lS 

• Increased congenital malaria 
• Prolonged gametocytemla 

• Incre.,ed v".lload 

Other Health 
Effects 

Indirect 

Direct 

• Immune activation I faster progres~ion 

• Increased molher lo<hild Irangll""ior,1 
• Increased infectivIty 

• Reduced vacane l 
responses 

• DNefSiOO of Resources 

• Salmonella b.:Klerenllii 

• Burl<1lllymphoma 

• Inot"ased advet'se 
pregnancy OOICOOl("'i 
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Figure 19.4 HIV and malaria have reciprocal el1e<:tc on Imnsmlsslon. dlseue, Irealmanl and prevenllon. The combInallon of HIV and 
malaria CX)~nlecilon may have addltlonalllJ1)llcallona lor cuscepllblilly 10 other Infecllons and poor health. 0I1ha many potenllal 
conoequlnc .. shown herl, aa y.t only I law (&hOlY" In bold Iypo) Ire supported by reliable Imll'llnological or IpIc*nIoIogical dala. 
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some of these interactions_In this chapter. we will consider the likely immuno
logical explanations for the best-established interactions between malaria and 
HlY. and indicate areas of potential concern that warrant further research . 

19.4.1 Effect of HIV infection on the incidence and severity 
of clinical malaria 

Assessment of the effect of HIV/AIDS on the incidence of clinical malaria. and 
the likelihood of severe disease. can only be meaningfully interpreted when the 
intensity of malaria transmission and the prior acquisition of immunity to se
vere disease are taken into accounLAs the exact nature of 'immunity' to malaria 
remains poorly defined, quantifying any effect immunologically is almost im
possible. and thus we have to rely on inference from epidemiological studies. 

Even this. however, is not straightforward. Even within a defined geographi
cal area, individuals may be exposed to different intensities of transmission of 
malaria and have different levels of anti-malarial immunity, regardless oftheir 
HIV status. Those who go on to acquire HIV may not necessarily be similar (ge
netically. immunologically. or in terms of malaria exposure) to those who re
main HIV-negative. In addition, the diagnosis of clinical malaria can be diffi
cu lt; the presence of paras it aemi a and compatible clinical symptoms does not 
necessarily mean that malaria is the cause of the illness. Asymptomatic para
sitaemia is common in clinically-immune individuals, and individuals with HIV 
are more likely to have other infections, which may be misdiagnosed as malaria 
ifparasitaemia is present. 

Thus, although many studies have claimed that HIV-infected individuals are 
more sllsceptible to clinical malaria and to severe malaria, establishing a link 
between HIV/AlDS and incidence and severity of malaria is problematic. 

To date there are no robust data to indicate whether or not acquisition of clini
cal (anti-disease) or anti-para itic immunity to malaria are impaired. dilTeren
tially affected or unaffected by HIV infection. This is mainly because the very 
high mortality of children with vertically acquired H IV, in settings where there 
is also high-intensity transmission of malaria, has prevented longitudinal stud
ies of the effect of I IIV infection on acquired immunity to malaria. 

However, several studies in adults who have acquired immunity to malaria 
prior to becoming HIV infected suggest that horizontally-acquired I IIV appears 
to have a relatively modest effect on pre-existing anti-malarial immunity. Al
though the riskof clinical malaria increase everal-fold. and is inversely related 
to the CD4-t count, the susceptibility to malaria is much less dramatic than sus
ceptibility to bacterial infections. The risk of severe malaria does not appear to 
be significantly increased, indicating that HIV has relatively little effect on es
tablished anti-malarial immunity. 

Importantly, however, this is not the case for adults with HIV who do not have 
pre-existing immunity to malaria. In settings where malaria occurs sporadically 
or in epidemics, the risle of severe ma laria including coma. acidosis and severe 
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anaemia is significantly higher in HIV-infected adults than in those without 
H IV. Some severe manifestations of malaria, such as cerebral malaria. are fre
quentlyconsidered to be due to immunopathology, so itis an interesting obser
vation that HIV-related immunosuppression exacerbates, rather than prevents, 
severe malaria_ This may be reconciled by remembering that immune activa
tion and dysregulation ratller tIlan silencing of the immune system - is central 
to the pathogenesis of AIDS, and perhaps supports the concept that dysregula
tion is also important in the pathogenesis of severe malaria. 

There has been very lillie research on whether HIV may increase malaria trans
mission, but it is conceivable that clearance of gametocytes from the blood is 
impaired in IIIV-infected individuals, resulting in a prolonged 'carrier' state. 
This may be of particular relevance as a factor hindering global effort to elim
inate and eradicate malaria. 

19.4,2 Effect of malaria on HIV viral load and progression 

In contrast to the paucity of robust information on the effects of HIV on malaria 
incidence and severity, there are numerous studies demonstrating an effect 
of malaria on HIVinfection and progression. Longitudinal studies of inter cur
rent malaria infections in HIV-infected individuals indicate that acute clinical 
malaria increases plasma viral load. This is presumed to result from immune 
activation by malaria. which would increase viral replication. The increase in 
viral load is relatively modest (less than a tenfold increase), and it resolves with 
anti-malarial treamlent. 

This is not unique to malaria, since other pathogens have also been reported to 
increa e viral load in a similar manner (e.g_ tuberculosis, herpes sim plex. schis
tosomiasis). However, it is the possibility of frequent episodes of malaria, and of 
persistent asymptomatic parasitaemia affecting a large proportion of the pop
ulation, that distinguish malaria as, potentially, an important cause of elevation 
of lllV viral load and, thus, progression to AIDS. Frequent episodes of malaria 
could thus hasten progression to AI OS and increase mortality. In addition, HIV 
plasma viral load is a major determinant of the risk of HIV transmission be
tween individuals, and so transient increases in viral load might increase the 
spread of II IV. 

Unfortunately, there are currently insufficient data from longitudinal studies to 
know if malaria is really a major force driving II IV transmission and morbid
ity in 5ub-SaharanAfrica, and studies are urgently needed to address this issue. 
Although the immunological arguments are compelling, there are many rea
sons why these may not have the predicted effects. For example, adults with 
symptomatic malaria may be less likely to engage in sexual activity and would 
therefore be less likely to transmit HIV during acute malaria episodes. 

19_4.3 Interactions between malaria and HIV in pregnant women 

[n settings with stable, high-level malaria transmis ion, adults are generally 
immune to clinical malaria and have lower levels of parasitaemia when they 
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become infected. This immunity is strikingly impaired by pregnancy, with 
a susceptibility to clinical malaria and dense infection of the placenta with 
R [a/ciparwn being a feature of (particularly first) pregnancies. Pregnancy
associated malaria (PAM) is associated with poor outcomes for the mother (se
vere anaemia) and the foetus (reduced birth weight. increased neonatal mor
tality) . 

In subsequent pregnancies. the risk of PAM and adverse maternal and neonatal 
outcomes decreases. The most compelling explanation for this phenomenon is 
that PAM is caused by a subset of Rfalcipanlm parasites which express variant 
surface antigens (VSA) on the surface of infected erythrocytes. enabling their 
binding to chondroitin sulphate A (CSA) on placental trophoblast and. thus. 
sequestration of infected erythrocytes in the placenta. 

In non-pregnant individuals. acquisition of protective humoral immunity to 
malaria is likely to be due to acquisition of specific JgG against the predomi
nantly expressed VSAs. CSA is rarely u ~ed as a receptor for R [a lcipa rum adhe
sion in non-pregnant individuals, so there is no stimulus for an antibody re
sponse against the CSA-bindingVSAs. In pregnancy. there is an opportunity for 
selection of parasite clones able to adhere to CSA. which is highly ex "pressed in 
tlle placental intervillous space. Since there is no pre-existing immunity to CSA
binding VSAs. these clones can adhere. replicate and cause symptomatic infec
tion. Pregnant women acquire increasing levels of antibodies to these clones 
during sequential pregnancies. which correlates with the acquisition ofimm u
nitylO PAM. 

HIV exacerbates the eITects of malaria in pregnancy. Pregnant HIV-infected 
women suffer more frequent and more severe attacks of malaria. develop more 
severe anaemia and have wor e neonatal outcomes than HIV-negative women. 
H IV is. in itself, a cause of adverse pregnancy outcomes; for example. pregnant 
women with HIV are particularly vulnerable to opportunistic infections. Fur
tIlermore. the remarkable perturbation of B cell function caused by HIV im
pairs tile acquisition of protective antiboclie against the pregnancy associated 
VSAs. and tIlus reduces the protective immunity that is acquired during se
quential pregnancies. This means that the vulnerability to pregnancy associ
ated malaria seen in first pregnancies also persists in subsequent pregnancies 
in HIV-infected women. 

Maternal HIV infection also increases the risk of congenital malaria infection of 
the newborn, Le. blood-stage P [alcipamm transmitted directly across tile pla
centa from mother to foetus. The increased risk of congenital malaria is likely a 
direct consequence of the increased risk of placental infection in women with 
HlY. 

In the absence of any intervention. MTCT occurs in 35 per cent of cases. Ap
proximately 20 per cent of these infection occur in utero. 40 per cent oc
cur during childbirth and the remainder occur dUlmg breast-feeding. There 
are several reasons to think that malaria might increase MTCT of HIV. First. 
malaria increases HIV plasma viral load and plasma viral load is an indepen
dent predictor ofMTGT econd. placental malaria causes inflammation in the 
placenta. which may locally increase HIV replication and facilitate passage of 
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Hrv across the placental barrier. increasing ill UTero transmission. It will be 
important for future studies to resolve the relationship between pregnancy
associated malaria. placental malaria and MTCf of HN. 

19.5 Effect of co-infection on treatment of HIV 
and malaria infections 

There is considerable potential for co-infection to influence the treatment of 
malaria and IIrv. both through reciprocal effects on the effectiveness of treat
ment and also the interaction of drugs used to treat each infection. Drug 
interactions can be extremely complex and difficult to predict. influencing 
pharmacokinetics (liberation, absorption, distribution, metabolism and elimi
nation of the drug). phannacodynamics (effects of the drugs on the body. Hrv 
or the malaria parasites) and. ultimately. the effectiveness of drug treatment 
and emergence of resistance. Whether clinical malaria or asymptomatic para
sitaemia impairs the treatment of Hrv is currently unknown. but it is conceiv
able that, during episodes of severe malaria, there may be reduced compliance 
with antiretroviral drugs and changes in host factors which determine pharma
cokinetics and pharmacodynamics. 

The effectiveness of drug treatment of malaria is determined in part by bost im
munity. Adults who have acquired protective immunity. through repeated ex
posure to malaria. have a lower risk of treatment failure than do children in the 
same transmission setting. and children with higher concenu'ations of IgG to 
some parasite antigens have better treatment responses than those with lower 
levels. In addition, it is generally true that treatment of any infection is more 
likely to fail in an immunocompromiz.ed host. 

If the major effect of H rv is to impair the acqui ition of immuniry to malaria. 
then it would be predicted that this would also bE' associated with increased 
rates of treatment failure in older children and adults. There is some evidence 
from clinical studies that HIV-infected individuals are less likely to clear their 
malaria infections completely after treatment, leading to recrudescence of in
fection after treatment and being more prone to rap id reinfection. There is also 
evidence that HTV infection may diminish the effectiveness of intermittent pre
ventive treaunent of malaria in pregnancy (IPTp). a strategy of providing inter
mittent treatment doses of sulfadoxine-pyrimethamine to pregnant women in 
order to eliminate subclinical malaria infections and protect against PAM. 

Interactions between anti-malarial and anti-retroviral drugs have been pre
dicted on theoretical grounds and from ill vitro tudies. but convincing ev
idence of clinical relevance from sttJdies in humans is lacking. Interestingly. 
some of the most widely used HIV PIs have been described to have anti-malarial 
activity. suggesting that they may prevent or reduce the severity of malaria in 
HIV patients receiving PI-containing HAART. imilarly. ill flirro studies indicate 
that anti-malarial drugs such as meJ]oquine ynergize with Pis to enhance their 
antiretrovira l activity. While such interactions might be beneficial. both anti
malarial drugs and 8l1ti-retroviral drugs have undesirable side effects. and thus 
Further study is needed to establish that these sLrategies would be saFe. 
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19.6 Combined effects of HIV and malaria on susceptibility 
to other diseases 

Co-infection with HlV/AIDS and malaria may have cumulative etTects, re ult
ing in increased susceptibility to other diseases. Notable examples are suscep
tibility to non-typhoid Salmonella (NTS) bacteraemia, B cell lymphoma and 
vaccine-preventable diseases. 

19.6.1 Salmonella bacteraemia 

Malaria and H lV are independently associated with an increased risk of invasive 
infection with IS. which is itself one of the most common invasive bacterial 
infections in children in sub-Saharan Africa. Antibodies are an imponant com
ponent of protection against NTS bacteraemia. Young children often lack the 
capacity to make antibodies against encapsulated organisms such as NTS, and 
dysregulated humoral immunity as a result of HlV infection or malaria infec
tion further contributes to susceptibility. If different mechanisms are involved 
in the susceptibility caused by malaria and HlV respectively. then their com
bined effecl on susceptibility to NTS may be dramatic. 

19.6.2 Burkitt's B ceJllymphoma 

Malaria and H lV are independently associated wilh an increased risk of the B 
cell malignancy, Burkitt lymphoma. Endemic Burkitt lymphoma is a childhood 
cancer that occurs in malarious regions of sub-Saharan Africa. and its aetiology 
appears dependent on the co-incidence of repeated exposure to malaria and 
infection will1 the B-lymphotropic Epstein-Barr virus (EBV) . Children repeat
edly exposed to malaria have reduced control. and thus greater replication. of 
EBV, presumably as a consequence of polyclonal B cell stimulation by malaria 
antigens and suppression ofT cell- mediated immunity to EBV 

EBV is an oncogenic virus which can trigger the translocation of the proto
oncogene MYC into a IgG locus within infected B celis, resulting in over
expression of the transcription factor c-myc, enhmced cellular proliferation 
and reduced apoptosis. H lV-related Burkitt lymphoma is less often associated 
with EBV (only about 40 per cent of ca es). but in tho e EBV-positive cases it is 
believed mat impairment of cell mediated immunity by HTVallows reactivation 
of EBV. ",'hile lIlV and malaria are both imponant risk factors for Burkitt lym
phoma. whether HlV increas s susceptibility to endemic Burkitt lymphoma. or 
malaria increases susceptibility to HlV-related Burkitt lymphoma, remains to 
be established. 

19.6.3 Vaccination 

Vaccination against infectious diseases has been one of the most succes -
ful ways to reduce their global burden. Childhood vaccines recommended 
universally by me World Health Organization are BCG (except in those with 
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confirmed HIV irrfeclion), hepatitis B, polio, diphtheria, tetanus and pertussis, 
Haell10philus Inf/uenzae type B, pneumococcal conjugate, rotavirus. measles 
and humanpapilloma virus. 

Vaccines protect from infectious diseases both at an individual and a popula
tion level. If the number of people susceptible to an infectious agent falls below 
a critical threshold, then the agent will not be able to spread within the popu
lation and can potentially be eradicated_ Individuals who are unvaccinated, or 
who did not acilleve a protective response to vaccination, are protected by 'herd 
immunity'; when the majOlity of individuals in the population have been vac
cinaled, the chance of a susceptible individual coming into contact with some
one who has not been vaccinated is very small. So long as berd immunity is 
maintained, immunocom promized individuals are afforded some protection 
against the vaccine-preventable diseases. 

However, herd immunity can be eroded rapidly by disruption of vaccine dis
trihution and uplake, or by increased rates of vaccine failure_ Dysregulation ot" 
B-lymphocyte function and CDH T-lymphocyte help. and functional impair
ment of CD8+ T cells in HlV-infectt:d individuals, impairs responses to most of 
the vaccines studied (including polysaccharide. protein suhunit and live allen
uated vaccines) and leads to loss of pre-existing vaccine mediated immunity. 
which cannot be restored by HMRT alone. Although revaccination after slart
ing HAART generally allows etTecuve immune responses (0 be mounted. these 
maywane more rapidly than in non-HIVinfecled individuals. 

Children with vertically-acquired I-llV may only achieve the capacity to mount 
normal vaccine responses if they are idemifi d and commenced on HAART 
early in life, allowing preservation of their memory B cell pool. Delayed anti
retroviraltherapymay cause long-lasting impairmem oftJ1eir ability to respond 
to vaccination, even after commencing HMRT. In areas where the HIV preva
lence is high. it is likely that a large pl'Oponion of the population is susceptible 
to vaccine prevemable diseases, and conditions are created where outbreaks 
may occur. 

Malaria has also been reported to impair vaccine responses, most notably 
for T cell-independem polysaccharide antigens and possibly polysaccharide
protein conjugate vaccines administered during episodes of clinical malaria. 
The effect of malaria on T-dependent vaccine responses, those (0 protein vac
cines like tetanus, and to live vaccines like measles. appears to be minimal. 
The mechanisms by which malaria impairs vaccine responses are uncertain. 
but they may include polyclonal B cell activation and disruption of normal 
splenic function. AltJlOUgh it ha never been formally evaluated. the pOlential 
for erosion of the population benefits of vaccination in areas of co-existing high 
malaria transmission and high HlVprevalence is very worrying. 

19.7 Malaria and HIV vaccines 

Strenuous efforts are being made to develop vaccines against malaria and 
HIV, bUl vaccine which provide complete proteclion from infection remain 
a distant prospect. If realized, these vaccines would be of huge public health 
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significance, but even partially effective vaccines may have a valuable role in re
ducing malaria mortality and stemming the HlV epidemic, when implemented 
alongside other preventive measures. 

lmperfect vaccine , which might reduce the likelihood of clinical and evere 
malaria without providing sterilizing immunity. or reduce the rail' of progres
sion of HlV without preventing infection. are in development. and these may 
be the first generations of vaccines against these diseases to reach widespread 
use. However, any host factors which erode their effectiveness when used op
erationally (Le. outside of clinical trials) may drastically reduce their cost
effectiveness. In other words, if HJV substantially impairs the effectiveness of 
a malaria vaccine, then the money spent on the vaccine might be better spent 
on other measures to protect fTom malaria in populations with a high preva
lence of HN 

19.7.1 Malaria vaccine candidate RTS,S 

The RTS,S vaccine is the malaria vaccine candidate closes! to achieving ap
proval for widespread operational use (see Chapter 25). The efficacy of RTS,S 
in HlV-infected individuals is unknown, but there are reasons to be pessimistic: 
the immunogenicity of the hepatiti B surface antigen (HBsAg. which is a com
ponent of the vaccine) is diminished by HJV; the generation and longevity of 
antibody responses to the circumsporozoite pl'Otein are likely to be impaired; 
and chronic immune activation is likely to diminish the quality, quantity and 
durability of the polyfunctional T cell response. In order to maximize any ben
efit from RTS,S it may need to be employed in conjunction with measures to 
reduce MTCT of HlV and treat infected adults. 

19.7.2 Vaccination against HIV infection 

An effective vaccine to prevent HlV infection is not yet available, but much re
search effort has justifiably been directed into trying to identify one. HIV vac
cine development has been hampered by failure of killed virus or protein sub
units to elicit broadly neutralizing antibodies - which appear to be necessary 
to prevent infection or to generate effective CD8+ T lymphocyte responses, 
which might help to prevent infection and limit viral replication. This is a con
sequence of the rapid mutation of key viral molecules such as gp120. coupled 
with confonnational protection of conserved regions until the moment of liga
tion with target cells. 

Mutation of HIV CD8+ T cell epitopes also occurs rapidly, which necessi
tates that vaccine strategies seeking to protect through cell-mediated immunity 
should elicit a broad range of CD8+ T cell8- responses in order to be protective. 
However, cell-mediated responses would probably not prevent transmission of 
HJV and establishment of infection, even if they could attenuate viral replica
tion and progression to AID Thus, vaccines aiming to elicit a cell-mediated 
immune response might reduce the 'set point' of plasma viral load (essentially 
the equilibrium between replication and control) and preserve CD4 cell counts, 
and these are being actively pursued. 
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The most successful clinical trial to date - llsinga six-dose prime-boost strategy 
based on gp120 - only showed a slight (less than one-third) reduction in risk of 
infection with HIV. and no effect on viral load or CD4 count in infected subjects_ 
Given the inherent difficul ties in the ability of the human immune system to 
mount an effective response ta,..protect against or control HIV. it is likely that 
anything that perturbs the ability to mount an optimal immune response will 
threaten the success of such vaccination_ 

There is. as yet. little evidence on which to evaluate the effect of malaria on 
novel vaccine technologies. so we cannOI pr diet for certain whether malaria 
will hamper efforls to control HIV by vaccination. bUI the co-incidence of the 
two infections is likely to be another hurclle to be overcome. Since individu
als with acute febrile illness. such as malaria. are usually not vaccinated until 
recovery, and there might be major operational difficulties in administering a 
complicated vaccine schedule in an area where there is both high malaria trans
mission and a high incidence of clinical malaria. 

19.8 Summary 

The combination of HIV and malaria has the potential to be very detrimen
tal to health. but there is surprisingly little evidence that this is. in fact, the 
case. AltllOUgh there are broad geographical overlaps between the grealest bur
dens of R Jalciparum infection and HlV infection, the overlap at an individual 
level may be I ss dramatic. One situation where there is cJearevidence that HIV 
and malaria have a detrimental interaction is in pregnancy; and there are ob
vious virological. parasitological and immunological reasons why this should 
be the case. Formulating safe and effective strategies to limit HIV-malaria co
infections in pregnant women is. thus. a priority. 

HIVand malaria have some common effects on the host immune response, and 
some similar mecharLisms of immune evasion. probably explairLing why they 
represent two of the most intractable human pathogens. Lessons learned from 
one infection may be instructive in the future to guide strategies for tackling 
the other. and there is a clear pressing need for more research on the adverse 
effects and best management of co-infection. 

REFERENCES FOR FURTHER READING 

HIV Infedlon 

Pierson. T sl sl. (2000). ReservoIrs for HIV-1: mechanisms for 
viral persIQo_ In the presence of antiviral Inm.JOO responses and 
antlrotrovlral therapy Annu.1 Revlsw allmmunology 18. 665-708 

AItleid. M 81 a/ (201 1). OCsand NKC8IIc: altlcal effectors In the 
Inm.JOO r<!SpOO'" to HtV-l . Nalu,sl9vlews. Immunology 11 (3). 
176-186 

Wu. Y & Yoder. A (2009). ChemoIdna coroceplor signaling In 
HI V-I Infection and pathogenecls. PLoS Palhogens 5(12). e1000520. 

Jones. A & Netson. M (2007). The role of roceplOfs ln 

the HIV-l entry pmceu EU!0p68!l Journal 01 Med1c81 RllS&aIIOh 12(9). 
391-396. 

tllWl'llllOpOthogenesia of HIV 

Moir. S 81./. (2011). Palhogenlc mechanltlncof HIV dlsea .... 
Annusi Revi .... af Paihology6. 223-248 

Int.,..cUOM ~tw...n rnald,l, and HIV 
Harero. MD 81 aJ (2007) HIV and rrelorla. AIDS R911T_ 9(2) . 

8a-98 

133 



Pi: TYS 

JWST185-c19 JWST185-Lamb March 29.2012 12:8 Printer: Yet to come 1Iim: 246= 189mm 

352 Chapler 19 HN and Malaria Co-infecijon 

Freitag. C 01 ai_ (2001). Malaria Inlection Induces virus 
exprO$$\On In human Immunodel1c1eney vlr\l$ tmnogenlc mie<! by 
CD4 T cell-dependont Immune activation. The Journal of Infllctious 
Diseases 183(8). 1260-1268. 

Effect 01 HIV Inlecllon on the 1n<:1dence and 5""erity 01 ellnlcel 
malaria 

Hewitl. K el ai. (2006). Inleractlons '*- HIV and malaria In 
non-prtgnanladult&: evidence and I~lcellons. AIDS 20(16) . 
1993-2004. 

Butcher. GA (2005) T-cell depletion and InmlnllV 10 malaria In 
HIV-lnlecllons. Parasitology 13O(Pt 2). 141-150. 

Eft..:! of rnalsm on HIV vll'lli load and progrts£/on 
McxIjarrad. K & Venrond. SH (2010). Effect 01 treating 

co.fnlectlons on HIV-l vlmlload: a systematic mviow Tho Lancel 
Infllctious Diseases '0(7). 45S--463 

Inl'l'IIellono belween malaria and HIV In pregnanl women 
Briand. V .1 ai (2000). Placenlalmelaria, maternal HtV Inlection 

and Inlan! IllC)(bldlly. Annals of liopical Paooiatrtcs 29(2). 71~. 

Ellect 01 co-inlectlon on treatment 01 HIVand malaria inlections 

Slutsl<er. L & Marsloo. BJ (2007). HIV and malaria: Interactions 
and I~lcellon • . Cwrenl Opinion in Infectious 0Isoases20(1) . 
3--10. 

MIo:kenzie. G 01 aI. (2010) A decline In the InckIenc:e 01 Invasive 
non-lypholdal Salmonella Inlecllon In The Gambia t""lX'nllly 
auoctaled with. dectlneln malaria Inlectlon . PLoS OneS(5) • 
• 10568. 

Obara. SK 01 al. (2004). llImJnogenlclly and elflcecy 01 
childhood vaccines In HIV-l-1nlected children The Lanc.llnl9c/Jous 
DlSeasss4(8). 51G-518. 

Munz. C & Mooonann. A (2008). lnvnune orcape by Epslein-BarT 
virus auoeiated malignancies. Ssm/nars in Caneor Biology 18(6). 
381-387. 

Malaria and HIV vaccl_ 

Mascola. JR & Mont.fiori. DC (2010). The role 01 enUbodle$ In 
HIV Vaccinee. Annual Revl8w of Immunology 2B. 413--444 

Kim JH 81 ai. (2010) . HIV vaccines: Ie$sons leerned and the way 
lorwal'd. Current OpInion In HIV and AIDS 5(5), 428-434 

134 



Chapter 5. Does heme oxygenase-1 playa role in the 
increased susceptibiliw to Salmonella of malaria infected 
mice? 
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Malaria impairs resistance to Salmonella through heme- and heme 
oxygenase-dependent dysfunctional granulocyte mobilization. 

The material presented in this chapter is an uncomissioned, fully peer-reViewed, 

published article, in which we describe the mechanisms accounting for increased 

bacterial replication and accelerated mortality in mice co-infected with the rodent 

malaria parasite P. yoe/ii 17X Non-lethal, and S. typhimurium. Although I performed 

most of the laboratory work myself, some of the experimental work presented in 

Figures 3h, 4b, and 5, was undertaken with assistance from Dr J. Brian de Souza. 
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Malaria impairs resistance to Salmonella through 
heme- and heme oxygenase-dependent dysfunctional 
granulocyte mobilization 
Aubrey J Cunningtonl, J Brian de SOllza 1.2, Michael Walther3•4 Be Eleanor M Rileyl 

In su~Saharan Africa, Invasive nontyphold Salmonella (NTS) infection is a common and often fatal complication of Plasmodium 
""ciparum infection . I nduction of heme oxygenase-l (HO-I) mediates tolerance to the cytotoxic effects of heme during malarial 
hemolysis but might impair resistance to NTS by limiting production of bactericidal reactive oxygen species. We show that 
co-infection of mice with Plasmodium yoeJii 17XNL (Py17XNL) and Salmonella enterica serova r Typhimurium 12023 (Salmonella 
Iyphlmurlum) causes acute, fatal bacteremia with high bacterial load , features reproduced by phenylhydrazine-induced hemolysis 
or hemin adm inistration . S. Iyphimurium localized predominantly in granulocytes. Pyl7XNL, phenylhydrazine and hemin caused 
premature mobil ization of granulocyt es from bone marrow with a quantitative defect in the oxidative burst. Inhibition of HO by 
tin protoporphyrin abrogated the impairment of resistance to S. Iyphimurium by hemolysis . Thus , a mechanis m of t olerance to 
one Infection, malaria , Impairs res istance to another, NTS. Furthermore , HO inhibitors may be useful adjunctive therapy for NTS 
infection in the context of hemolysis. 

NTS baelererol<l Is the most common cause 01 community- acquired 
bacteremia In many parts of sub-Saharan Africal• and NTS co
tniectlon has been associated with hlgh malaria mortalitt. The 
association ofNTS infecHon with hemolysis IS well estabhshed In 
humans with malaria (especially severe malarial anemla) 1. 4 and 
sickle cell d iseaseS and in mlle with hemolysis resulting from rodent 
malaria tniectlon6 8, treatment With phenylhydra7.lne or erythrocyte 
targeting antibodies. or red blood cell enzyme defects·-ll. ll has been 
assumed that hemolysis Induced macrophage dysfunction Is respon
sible tor this phenomellon. although there Is no di rect evldence that 
macrophages are the primary refuge ofNTS ;/1 vivo In the context 
ofhemolysls,·8.1o. 

Hemolysis resul ts in IIberatlon of hem .. leading to expression oflhe 
lllducible isoform ofHO (HO- I )12, which degrades heme to bUlver
dm. carbon monoxide and Iron '3 Heme IS pro- oxidant, loduces neu 
trorhH migration and activates the neutrophU oxidative burst 14- 16• 
but HO I (and lis products) aree seollalln cyt0r rolection (reviewed 
in ref 17). as evidenced by the severe susceptibil ity to olddalive slress 
of mice and humans with HO I deftclency,"-2o. HO · I lnduellonhas 
been shown to protect agai nst Infectlous, lntlammatory and hypoxic 
IschemiC Insults In mice (reviewed In ref 21) and has been linked 
to modulation of mru arial pathogenesls22 and Sickle cell dlsease23. 
Recently. In mice. induction of HO I has been proposed as a toler 
ance mechanism III severe malaria24- 2t> and polymJcroblal sepsLS27: 
HO· I lessens heme mediated tissue damage and enhances survival 

without reducing pathogen load. A key cytoprotective effeel ofHO- I. 
and thus a Ukely explanation fo r ,ts ability 10 confer tolerance, IS lis 
abUlty to limit the production of damaging reactive oxygen species 
(ROS. reviewed In reL 17). However. ROS arc crucial for resistance to 
certalnpathogeos, including Sa/mollella speclcs28, and thls raises the 
possibUiry that tolerance 01 ooepathogen may someUmes come at the 
price ofloss of resistance to another. We hypothesl7.ed that liberation 
of heme by lntrava cular hemolysis may lead to HO- I induction and 
Impairment of resistance to NTS, with increased bacterial replication 
and mortality. 

RESULTS 
Hemolysis and heme impair resistance to S. Iyphimurium 
bacteremia 
To deterrrune whether berne liberated by hemolysis Impaus resist 
ao e to NTS infection. we co mpared su rvival and bacterial loads 
after lotraperltoneallnfectlon of C57BLl6 mice with GFP-expressing 
S. fyphl"",rillm with or Without p receding Py l7XNL co-Infection. 
phenylhydrazine (PHZ) or hemin trealment. Py l7XNL infeelloo of 
C57BL/6 mice caused a self resolvi ng infection; parasltemJa pea ked 
at 20 30% and was accompanied by progressive hemol)>1.lc anemla 
(Fig. la). By contrast. PHZ treatment caused acute hemolysis 
(Fig. Ib). ln both cases. plasma heme concentrations were markedly 
increased and simuarto concentrallons achieved 12 h after Injection 
of hemin (Fig. 1 c), but without depletion of haptoglobin or hemopexin 

I [)epartme(lt 01 Immunology 9nd Inleelton, facUlty of Infe:;.tlouS snd TroPtCSI DI5f'.ases, London Sc.hooI of Hy lerie and Troplt3! Medl ne. London, UK 20lvisIOn 01 
Inl ecllon and Immunity, L1nlvt!I .. lty Col l\1ge LL'ndQo Me:Jlcal Scho)I, londOn, UK ) MedICBI Rese3lc.h CounCil Labof'l:ltOIIl3 Banjul, The GamblB 'Current address 
Immune Regulation C'.&.:.l!on, L300r3tory of Malana Immunol 'i 3nd Var.c1nologyl DIVision ol lnl ramUf::i 1 Re~ar(.l1i H8tjon811nstjt lJ l ~ cJ Aller y and Infecltous Diseases, 
JS Nottonal Institutes (,t Health, Roc ~ Yllle, Maryland, USA Correspondence should be 8ddressed to E,M R. (elean(')f' nley@fshtm 8G uk) 

Received 23 M3I.h 2010 lCC"pte<! 1\ Novernber 2011, publIShed OI1llne 18 December 2011 dOl: 10 I 0381nm.2601 

NATURE MtDlCINE ADVANCE O NLI NE PUBLICATION 

138 



ARTICLES 

a b c e 

Time (d) afte, infection 

Figure 1 Hemolysis and heme are associated with Impaired reSistance to S typhlmu'lUm. (a) Erythrocyte 
count and parasitemia of mice Infected with Py17XNL. Data are representative of seven Independent 
experiments (mean ± s.d. of &-25 mice per time point). (b) Erythrocyte count before and 18 h after 
subcutaneous injection of PHZ. Data are representative of three Independent experiments (mean:t s.d. of 
five mice). (e) Plasma heme concentration dUring Pyl7XNL Infection and IS h aftel PHZ treatment 0; 12 h 
after hemin treatment. Data are representative of at least two Independent experiments (mean ± S.d. of four 

f 01 five mice) per condition and time point. (d) Survival (time until reaching humane endpoint) of mice Infected 
0; 

a 18 h after 1OIectIOn 
• 72 h after tnfectlon 

With s. typhlmuflum on day 15 after Py 17XNL ,"fectlon or 6 h after PHZ. first dose of hemin 01 PBS treatment. 
Data are representative of at least fOUl Independent experiments (mean ± s.d. of four or five mice) per condition. 
(e) S. typnlmu,ium bacterial loads In whole blood. spleen, livel and bone marrow 18 h after Infection for PBS-treated 
controls and at humane endpoint for other conditions. (f) S. Iyphimurium bacterial loads In whole blood. spleen and 
liver at 18 h or 72 h (humane endpoint) after ,"fecllon for PBS-treated mice In e.f. data ale representative of at least 
two Independent experiments (mean ± s.d. of four 01 five mice) per condition. SIBnlflcance determined by two-tailed 
paired Studen!'s t test (b). one·way AN OVA With Dunnett's multiple comparison test (c .•. fl . or log·rank Mantel Cox test 
(d). 'p< 005 ... P< 0.01, "'P < 0.001 

(Supplementary Fig. la.b). SurVival of Salmonella·infe"ted mice 
was dramatically shortened by prior Py17XNL infection. PIIZ or 
hemin treatment (Fig. Id) and wa, 'ignifkantly shorter in PHZ· allll 
hemin-trealed mice (l6 h) than in Pyl7XNl.w· infecled mice (1 R h) 
(P < o.Ol.lus·rnnk Mantel C"x test). PIIZ. hemin and Pyl7XNL did 
not ~nllse Jny mortalil y in the nbsetlce of S. typllll/luriurn infection 
(dota not shown). 

Decreased surviv,,1 of malana-infected. l'HZ- trcated or hemm

lrcatcd miLe after S. Iyphinlllrium infection was ac;companicd by 
higher bacteriallo.ds Itl whole blood . spleen, liver and bone marrow 
(Fig. Ie). 3Jld baclcrcmin W;'!!o much 1TI1,)rc pronoun..:ed; immediately 
before death (Ihat is. 16-18 h .lfter infection in l'yI7XNL-infected. 
PHZ· or hcrnin· lrcatcu mice anc.l 72 h after infl!t:liol\ in control mkc), 

ba"teria1loads III the blood of Infected or treated mice were propor~ 
tionate1y higher .• nd bacterial loads in liver Jnd spleen proportion · 
ately lower (Fig. Ie). th.m lIllontrol mke (Fig. 10. 

S. typhimurium localize in granulocytes following hemolysis 
By now cytomctry. we identified Gn)+ (S. Iypirimllriurrt-containing) 
~ellsin blood. spleen .1Id bone marrow. In tbe blood o(PyI7NXL· 
inlected mice. and ofP IIZ- or hemin treated mice. lust before death. 
we found •• Imonellac predomlnanlly in Gr·l hlcclls (Fig. 2.). and lhey 
were enriched In thiS cell population .:ompared to the bacteria in .:on· 
tro! (PBS-Ireilled) mice (Fig. 2b). The proportion of all GI'P+Gr- Jhl 

cells ill blood. spleen and bone morrow (Fig. 2c) correlaled with the 
itacteriallo.d determined by "ullure (Fig. le.O. We idcntil1ed lhe 
Gr-lhl cell as granuloq1es (L)'6G' F1/80 CDlIS ; Supplementary 
Fig.2a.b) Almost all GFP' ~ells were CD llS (Fig. 2d ); moreover. 

S. typhltllllMl"n infe.tion caused a blgher ~'rop(lrtion of Gr· J toCD 115 
blood Icllkotytcs (Fig. 2e). <ugge'ling lllat unmalllre granulo_ytc. 
arc mobili/.cd fromlhe b,,"e marmw to Ihe peripheral blood during 
injection" In support 01 t his. blood 111ms from PyJ7XNL·illfected 
JnJ PHi'.· orhcmin~treJted m",e 18 h after S. typirmwnlllll infection 
showed numerous neutrophil, ,ontnining S. IYP!II/mmutll. and many 
"f the ... neutrophUs Iud immature nude.r morphology (Fig. 20 

In (ontrast. neutrophils from PIt -treated mi.;e .howed malure 
nuclear morphology and did not (Onlam S. ly,.I",,,,mum. 

The accumulation ofGI'r+ baderia in granu!txYIe> wa, not simply 
due to failure ofb~lCtcri31 upl~kc! by mono<. )'tc!> anJ ma<.ruphagcs. as 
the proportion of ,Fr+ .:ells in the spleen tll.11 were either monoq1es 
or mauophages (F1I80toCDII bhl and F4/80hl DJ lblo• respectively) 

,lid nol differ bet"een PyI7X.N L· inf«ted or PHZ· or hemin·lreated 
mice and those treated with PBS alone (Supplementary Fig. 2,). 

Py17XNL inhibits granulocyte oxidative burst and bacterial killing 
A, Ihere is no obvious defect in uptotkc of5. typlllrlllllium by ma<TO
phage, and monoqtcs aftcr hemolysis or hemin trcatmenl •• lCcumula· 
lion ofS. t ypl,imw;I<m in bluod granuJo .. ytcs may result from impaired 
b.lcterlal killing or a more permissive lntr.<ellular envlronment for 
b,lCterial replicatinll. To investigale t.hese possihillties. we isolated 
COlI b' cclls from blood ofP)'17XNL·infeded and uninfc<led mice 
Jnd compared their ability to phagocytose and ki ll S IYl'lIimunum. 
Neilher !low <. ylornctri analysis nfG H)+ cells nor quantit"t i\'e mlture 
(in a gentamidn prutection a.say) revealed any difference, In Ihe rates 
of phagoC}10sis ofS. ~Y,.lnrmmuttl betweell neulruphils or monocytes 
or between cells from malaria-iJltected or lJJlini'ected mice (Fig. 3a,b); 
we wnIlrmed Ihe intracellular 1000ation of Grp I balteria hy confocal 
microscopy (S upplementary Fig. 3a.b). 1I0wever. when we lysed 
cells ,liter 2 It In tIle gentJmicin protection assa)' and enllmer<lted live 
bacteria by clllture. the live b"cterial recovery from cells from 
Pyl7XNI·infectcd mice w", <ignilleantly higher than from conlrol 
mice (Fig. 3b). indicating cOll>lderable unpairment of intracellular 
killing of S. typlllttll/rillm by cells from Py l 7XNL·infected mice 

As 1l0-J redules tIle prodlKtlon of ROs'O' J3. and as phagocyte 
NADPH o>.idasc IS <=cntiaifl)f resbt.lnce toS. tVI'll/mul/llm e;trly in 
inf(XlionZ". we investigated whelher l'y17XNL infedion Impairs the 
granulocyte oxidative uurst. Using oxidattOll of dillydrorhodamine 
lo it~ l1uore~cnl derivative rh daminc a~ it rCl.lduul for oxidative 
burst '4. we observed progressive uppres>ion of the phorbol myristute 
acel.\Ie (PMA)-illdllced oxidatiw burst o(blood gralluJoq1es durulS 
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Flgu,e 2 S. typhlmurlum locali2e In 
granulocytes after hemolysrs and hemrn 
treatment. (a) Representatrve flow cytometry 
plots of blood leukocytes collected f,om 
GFP-expresslng S. typhlmurlum-1nfected 
(bottom) and unlnfected (top) mrce at the 
humane endpoint or the Indicated time 
point. Data are represent.tive of at least 
four Independent expenments (n = 4 or 
S mice) per condition. (b) Proportion of ali 
GFp· blood leukocytes WIth hrgh levels of 
Gr-I expression (PBS 18 h not shown owing 
very low absolute numbers of GFP' cells). 
(e) Infected mature granulocytes (GFP'Gr_Ir,r) 
as a proponron of all Gr-I" cells rn blood, 
spleen and bone marrow (d) Proportion of 
ali GFp· cells rn blood that are CD IJ S-
In b-d, data are representatrve of at least 
two independent experiments (mean ± s.d. 
of four or five mice) per condition. 
(e) Rep'esentatlve flow cytometry .nalysrs 
defining Immature granulocytes.s 
Gr-I'·CDllS- (top) and quantification of 
the proportion of blood leukocytes that .,. 
G,-I'·CDIlS (bottom) Data are combined 
from two Independent experiments (mean ±s.d 
of four to nine mice) per condrtron (I) light 
microscope images of neut,ophlls from May
G,onwaid Glemsa-starned thin blood films of 
S. typhlmurium-Infected mice, 1811 
after Infection in PBS-treated mice or 
at the humane endPOrnt in pyI7XNL-
rnfected and PHZ- or hemill-treated 
mice). Images are representative of 
neutrophrls containing bacteria. except 
for PBS-treated mrce whe,e no bacteria 
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f PBS (18 h) Py17XNl PHZ 

Gr.1~ 

-t S typhlrrAmum 

wore seen, from two rndependent experiments wrth three to frve mice per condition. Scale bars, 10 ~m 
varrance (ANOVA) wrth Dunnett's multiple comparison test • p < 005 .•• P < 0.01 .••• P < 0.00 I 

Significance determr ned by one-way analysis of 

infection (Fig. 3<:). Granulocytes were not simply refractory (0 PMA 
stimulation, as PMA-inJlIced degranulation (assessed by surface 
CDlib expression ';) wasaetu,llI)' enhanced 14 and 21 d afler malaria 
inf", tion (Fig. 3d). In contrast, bloud granulocytes bolJtcd 24 h afier 
PIlZ or hemin t reaUlIent did not differ from those of control mice ill 
oxidative bu rst capacity, degranulation, ex viva phagocytOSiS or killing 
of . 1)'I,hi17",rillm (Fig . 3c,d and Supplementary Fig. 3c,d). 

Hemolysis induces dysfunctional granulocyte mobilization 
Accumulation of heme after PHZ-med.iated hemolysiS or hemin 
administration is faster than dllring PyJ7XNL infection. lleme 
directly iltdll,es neutrophll migraticUl and R S prodliliioll 16, wbereas 
the subsequent HO-I induclioll in myeloid ,ellsean supprc" matura
tion and oxidative burst 10,". As I 10-1 is induced in bone marrow by 
hemolysis26, we wondered whetl,.r the chroni hetm,lysis llssociated 
witb Py17XNL illleClion might ind,,,e 110-1 eA'Pres ion in immature 
b"ne marrow myeloid cells, sUllpress their oxidative burst capacity as 
they maWre and allow gr.duillllc,ull1l1 lali n of dysflUlCt i"llill ceUs 
in the circulation, as opposed to acute bemolysis (Induced by PIIZ), 
which may botl, activate the oxidative burst of cirelll.t U1S granulo
lo-ytc:s (Iod ml..lhillze fum.:lionally irnmatllrc hone m~lrrow granlllocyle~. 
resliiting in het~rogcneou< oxidative btl"t activity of blood granulo
cytes (as sugge;ted by Fig. 3c). 

In mice. granulocyte matllfati n in bone l11armw is charallcri/'(''ll by 
increasing e;l.l're ion of Gr-l (rer: 29). Gr-l hi cells are mature neut ro
phils, '111.1 Gr-I lo cells are immature granulocy1es iOnd granuloc}1e 
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progenitors; the Gr-IIo\! (intermediate) compartment contains a mLx
ture of cell t ypcs. Generation of an uxldaLive burst is restricted to a 
fU"'LionaJly mature subpopulation of cells'" in the Gr-l h" and to a 
lesser extent the Gr-l1nt, lomp.rlmcnt, (Supplementary Fig. 4). 

Treatment with hemin or PIIZ and Pyl7XNL infection all caused 
marked depletion of Gr-I hi .ells from bone marrow (Fig. 3e and 
Supplementary Fig. 5). ror "HZ and hemin tTCatmenl, 1o," of 
Gr-l hi cclb Crom bone marrow \Vas accompanied by an increase in 
granulocyte, in peripheral blood (Supplementary Fig. 5), confirm
ing the cffc'(l of free heme in mobilization of granulocytes from bone 
marrow to the periphery. I\Ithough the prOportion of cir,ulating 
granulofyles did not increase uurmg Py17XNL Infection, gr""ulo
c)'tc mohilization might have been obslllred by an nverall incre •• e 
inleukocyle COUllt or gra llul -yte redist ribution (for example, from 
blood !(llbe spleen)'7 S. tvphirmtl'iurn infection caused grallluo
cyte mobilization in PBS-treated mice and markedly exacerbated 
the granulocyte mobilization in Pyl7XNL-infccted and PHZ- or 
hemm-treated mire (Fig. 3e and Supplementary Fig. 5), consistent 
with tl1e presence of immalilre granulocytes in blood (Fig. 2e) . T(, 
confirm that hemolysis and bacterial eh,illenge did iJldeed resul t 
in g-riIJ1U)ocyICt\ wit h rCdllf..cd oxidat ivc bur~1 dUivil y cnlcring lbc 
tirculation, lI'e ""e>sed the oxidative burst of circulating gr3nlllo
cy1es. Eight h urs aller S. typhimlJrfulIf infection, tbe oxidative btrrst 
respon.e t PM A was enhanced in PBS-treated mice (presumably 
due to priming '8), but the oxidative burst capacity was markedly 
lower ill PllZ-tre"ed mice (Fig. 30. 
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Fleur. 3 Hemolysis and heme cause 
dysfunctional granulocyte mobilization . 
In vitro phagocytosis (a, b) and killing 
(b) of S Iyphlmu"um by CDllb'celis from 
blood of control and Pyl7XNL· lnfected (day 15) 
mice. (i ) Phagocytosis, percentage of 
granulocytes (Gran) and monocytes (Mono) 
that were GFP' (b) Phagocytosis (45 min) and 
killing (2 h) of S typhlmurium assessed by 
quantitative cultUie. Data are representative of 
two independent expenments (mean ± s d of 
three to five mice per condition). (c,d) PMA· 
stimulated oxidative burst (e) and degranulation 
(d) of granulocytes In whole blood from control, 
Pyl7XNL·lnfected or PHZ· 01 hemln·treated 
(24 h after first treatment) mice. relative to 
mean of PBS controls. Data are representative 
of at least two independent e~pe"ments 
(mean ± S.d. of three to five mice) per condition 
and time pomt. MFI. median lIuorescence 
Intensity. (e) Flow cytometry analysis of Gr·1 
expression by bone marrow cells In unlnfected 
mice (top) or 16 h after S. Iyphlmu'lUm 
Infection (bottom) Representative of at least 
four Independent expenments per condition 
(I) Left, PMA·stimulated oxidative burst of 
whole· blood granulocytes 14 h after PHZ or 
PBS treatment (8 h after S. typhlmurJUm 
,nfectlon). Rhodamine fluorescence for 
unstlmulated·unlnfected (gray filled) , 
unstlmulated·lnfected (solid lines). PMA· 
stimulated. unmfected (dotted lines) and 
PMA·sllmulated, Infected (dashed lines). PBS· 
and PHZ·treated mice Right. quantitative data 
for PMA·stlmlilated blood Representat,ve of 
two Independent e.pellments (mean ± s d. of 
lour mice pel condition). (e) PMA·stlmulated 
oxidative burst of Gr·l HI bone marlow 
granulocytes from control, day 14 Py 17XNL 
and hemin and PHZ treated mice. 
Representative of at least three Independent 
experiments (mean ± sd of three to five mice) 
per condition. (h) Proportion of Gr·1 hi bene 
malfow cells With a low·level oxidative burst 
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lesponse to PMA. Total. low· and hlgh.level o.,dat,ve burst populat,ons (left; unst,mulated control In gray) and quantltallve data (light) Data representat,ve 
of at least three Independent expellments (mean ± s.d. of three to five mice) per condition. Significance determined by two·talled Student's t test (a.b.f) 0' 
one·way ANOVA with post hoc comparison With control using Dunnett); multiple comparison test (c,d.f-h) • P< 0.05 . .. P< 0.01 , .. P< a 001 

~lflally, we investigated whether maturation ofllle oxidative burst In 
hone ma rrow granulocytes was also impaired. On day 14 ofPyl7XNI 
infection, and 18 b after PHZ ,'r hemin treatment, tbere was. clear 
quant it ative defect in the PMA·induled oxldalive burst of Gr· I hl.:eU. 
(Fig. 3g), evident as an in.rease in the propon,on of lells With low 
oxidative burst '.pa,ily and. dC<1'casc in the proportion of,c1b with 
high bu",1 capacily (Fig. 3h ), compared to the PIlS conl rol 

TogeLher, Ihese data indicate Ihat intravascular heme (rcle.""d 
during hcmoly,is) mohili,es granulr .... ytcs from bone marrow and 
simultaneously impairs development of their ""idat ive burst. Thus, 
granulocyte. entering the circulation in response to subsequent 
infection are 'Ihle to phago.:ytosc S. typhilnunuln but. owing ttl their 
reduced oxidative burst cup.dty. fail to kill them, providing instead 
a ni he for bacterial repliG,tion ano dissemination 

HO· l is induced in immature bone marrow myeloid cells 
Given that lI,e C)1opn>ledive effects of HO I, andoflhe he,". degrn 
datioll product, ,,,rboll monoxide, have been nt1 rihuted to inhibit ion 

4 

of ROS produ .. tion 17.W• we wondered whether suppression f lbe 
g,."nuloqle oxidative burst. correlated with 110·1 induction during 
granulopoiesis. Asexpected25,4<l. PHZ trC,lInent and Py17XNL Illfec· 
tinn led to systemiC induction of HO·l (Supplementary Fig. 6 3-C). 

HO·I was consistently induced in peripheral blood mon0C)1Cs by 
l'y17XNL, PllZand bCmiJl, bUI only (to a modc,1 c.xtcnt) by hemin in 
'irlul.ling granuloqles and by Pyl7XNL in the nonmyeloid popuJ •. 
t inn (Supplementuy Fig. 6d). 

In bone marrow ofuntrcatcd, uninletted mile. 110.1 b c.'pre.sed 
m,unly in F4/80' ceUs (Fig. 40), pre umably ma.rophages and mono
qtes However. In hemin·treated and PHZ·treated mke.lhere was a 
signifkant increase in the proportion of HO-I' bone murow lclls, 
espeCIally III tbe Gr.l 1ol-H/80 compartment (Fig. 4a ,b) Tbere 
was a >ll1all but signiJi<.nt increase in the proportion of HO.J+ 
Gr·l k'1'1/80 celh in l'yl7XNL·mfcctcd rnlle (Fig. 4b) bUI no over. 
all increase Ul bone marrow I10 I' leUs, probably owing 10 mobi. 
liulinn of H/80' cells from bone marrow to blood and spl.on'7,41 
( upplelllentary Fig. 7). ['he Gr. \101 1-1/80 "''"'partlllent cnnt<lim 
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Fi,ur.4 HO-llnductlon In bone marrow. (a) Representative flow cytometry plots 
Identifying bone marrow cells expressing HO-I. which were then divided on the 
basis of expression of F4/80 and Gr-j (b) Quantillcation of the proportion of bone 
marrow cells expressing HO-I. overall and In each quadrant (Ql--04) on the basis 
of F4/80 and Gr·j expression In (a), for control PBS·treated , Py 17XNL-lnfected 
(day 14), PHZ-treated and hemin-treated mice (18 h after treatment) Data are 
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replesentatlve of two rndependent experiments (mean ± s.d. of thlee to five mice) pel condition (c) Flow cytometry analysis shOWing Identification of 
granulocyte GMP cells as lineage c-Klt' Sca-I Fcyll' CD34'I L-7Rlt , and normalized HO-l expression ,n GMP cells determined by the ratio of the MFI 
of the fluorescence for the ant, body aga,nst HO-l to control antibody staining for the same sample, normalized against the average express, on in PBS
treated mice ,n the same expellment (bottom left) The Il7-RIX' populat,on (shaded, bottom light ptot) is drawn from the IIneage'" population In the top. 
se<:ond left plot. Data ale from two Independent experiments (mean ± s.d.> Involving four to eight mice per condition. Significance was determined by 
one-way ANOVAwlth post hoc comparrson With control condition using Dunnett's multiple comparison test. • P< 0.05, •• P< 0 01." P < 0.001 

myeloid progcnilnrs lInd immature myeloid cells. A!l sllrf:lLc markers 

that positively "lentify mouse myeloblasts and promyelo.:}1es have 
not yet been defined, we asses.ed HO-l expression in the granulocyte 
macrophage progcnitur (GMP) population , which is proximal 10 

the myC\ohlasl in Ihe myeloid differentiation palhway42. PyI7XNL, 
PilL and hemin all ,au>;cd . igniIkant indmtion of 110-1 even at 
this very early st.lge of development (Fig. 4c). ThIL', malariJ Infec
tion, hemolysiS and hcn1in trcalmcnl aU indw;;c IIO- l cxprc~slon in 

tbe earliest stages of granulo< yte development and tbereby impair 
sub~C)lIen.t fun. .... ti('ll1al ma1uration of these tells. 

HO inhibition restores resistance to S. typhimurium 
To test the h}'jlothesis that HO-I impair> resistance of PyI7XNI.
int"C\-ted mice to S. lypJlIlIJunum bacteremia, we pretreated mice 
with the competilive 110 inhibitor tin protoporphyrin IX (SnPP) 
Treatment of PyI7XNL-Ulfe.:ted mice with SnPP for 48 b before 
S, typhirrllJrium infection reduced bacterialload.< in blood, spleen and 
liver to levels nnt signifi"lntly different from those in PBS tre.lted 
mice (Fig. Sa) .Sn PP treatment had no effect on ba terialload in mice 
without Py17XNL infection (Fig. Sa) or on par.sitemia in PyI7XNL
infected mice (Fig, Sb) bllt very elTellively prevented accumulation of 
GFP' S. typ/lltnllrilltn within granuh:ytes in PyI7XNL-infc.:tcd mice 
(Fig,Sc,d) SnPP also partially restored resista]l(C to.s. tYP/llt11uriutll 
when administered 2 h bef(lre PHZ treatment (Fig. 5a.c,d) and pro· 
longed the survival of PyI7XNL- in (C<lcJ or PIIZ-treated mice after 

S. typirimuriuln infection (Fig. Se) Cobalt protoporphyrin (CoPP), 
which indllces HO-I UI tbe absence of hemolysis or free heme", did 
not impair re,istan(e to S. rYP/lllnllf"'t11 16 h afterinlection (Fig, Sa). 
TlllI', both heme and HO I Jre necessary for imp,lirment of resist 
ance to S. rYP/llt11urillrn "'m,ed b) PyJ 7XNL or PHZhemolysL" ,111li 
inhibition of HO abr(lgates thls effect. Inhibition of 110 by SnPP did 
not restore Ihc u.\idativc b"nlllfGr-1 h, bone marrow granu]o'_yIC. U1 

Py17XNL-infc'ttcd or PI IZ-trcatcu mile (Fig. 50, presumably owing 
to enhanced mobilint ion of mature Gr-I bt cells (Fig. 5g) as a result 

of gre,ller heme "«luJlulation (Fig. 3. and Supplementary Fig. 5) 
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However, SnPP did reverse the accumulation 01 granulocytes with 
low-level oxidative burst ,I(tivity in tbe bone marrow of Py17XNL
infe<ted and PHZ-treateu mice (Fig, Sb) , indicating that inhibition of 
110 restores normal devel opment of the oxid.tive bursl in maturing 
bone marrow gralllllolytes 

DISCUSSION 

Undcr<tanding lhe etiology "I NT ""plkcmla in inwvlo!ual, wilh 
malaria and otber hem{)lytk disorders may lead to new strategies 
for redUCing morbidity and mortality. To reflect the clinica l 3SS0-

dation oct ween NTS septicemia anl.l severe malarial anemia \' 4, ,,"'e 

bave u.ed a modd in which malaria ulfe<.lIon causes progre»ive 
hemolysis, eventually r«uhing in severe (bUI not lethal) anemia, to 

assess lhe Impact of S. Ivp/llllluriurn co iJllection on disease. We have 
shown that loss of resistance to S Ivplti"",rilllll requires hemolytic 
relea e of cell-free beme and sub'f'1uent induchon of HO- l and 
that Inhibition of HO- I reverses this sus.:ept ibilit)' to NTS . Thus. 
altbough HO-l isessential for tolerance to tbe cytotoxic effects "f free 
heme. reduCing disease severitywithout altering pathogenload24 27, 
HO- l - mediOleJ loler.llce to malaria simultaneou Iy impai" 
resist.u"e to S. tYP/llrnliriIlTli . 

We propose (Fig. 6) that during ,Ieute hemolysis, heme triggers 
immediale mobilualion of granulocytes from bone marrow 10 blond 
and generAtwn of ROS ' 6, while simult.neou,ly indudng HO-] in 
Immature myeloid cells and lhereby redudng their subsequent oxida
tive bu"t capadlyJO,;', perh.p, by limiting the availabilil y of heme for 
iJ.eorporation into NADPH oXldaseH This results in mobilization of 
a heter(lgeneous population of granuloqrtes with varyillg levels of oxi. 
dative burst capacity. During malaria infection , howevcr, progrc.«i\'e 
hemolysis leads to sustained release offree berne, whkh both inlpuin. 
m.tllrnt ion of tbe oxidatlve bllrst capacity' If gnlJlulocytes ill the bone 
marrow and mobililes functionally immalure granulocytes from bone 

marrow inw the pcriphcri,] dr.:ulation Accumlilatitlfi in peripheral 
bluod of functionally Impaired granlllo.:}'1es, whieh phagoC)10se 
but nr~ unahll! to kill b.h.:teria* provides 11 new niche for bacterinl 
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Figur.S Impaired reSistance to S typhlmuflum IS abrO\lated by I11hlbltlon of heme oxygenase (a) S typhlmuflum bacteflalloads In blood. spleen 
and liver obtained from mice treated as In Figure Ie, with additional groups recelvl11g SnPP 01 CoPP treatment. (b) ParaSitemia of SnPP-treated 
and untreated Pyl7XNL-lnfected mice Immediately before treatment With SnPP, Immediately before Infection With S Iyphlmuflum and 18 h after 
I11fection. (c) Representative flow cytometry analYSIS of blood leukocytes from S. typhlmuf/um-infected mice treated as In a. (d) Quantification of 
GFP+ granulocytes as a proportion of all granulocytes 111 blood. (e) Survival (to the humane endpoint) 18 h or 16 h after S typhlmuflum I11fectlon 111 
Py 17XNL-tnfected and PHZ-treated mice, respectively, With or Without SnPP treatment In <HI, data represent pooled IOsults (mean ± s.d.) of two 
Independent experiments (six to nine mice per condition). (f) The OXidative burst of Gr-I hi bone marrow granulocytes (as In Fig. 3g) (g) PlOportion of 
bone marlow cells that are GI-l hi after SnPP treatment. expressed as a percentage of the avelage propo'llon of Gr-I" cells In the eqUivalent treatment 
condition without SnPP. (h) Proportion of GI-l hi cells respondl11g to PMA With a low-level o.,datlve burst (as In Fig. 3h) Data are representative of 
two Independent expeflments (mean ± S.d. of three to five mice) per condition Significance determined by one-way ANOVA With compallsons uSing 
Dunnett's multiple comparison test or Bonferronl's multiple comparison (bracketed SIOUpS) (a,b,d,f,h), Student's tlest (e) and Fisher's exact test (e). 
·P<O.OS, "P< 0.01. ···P"O.OOI 

replication und diss.eminillion. In tiljS scenarh.,. 110-1 c.ontribllle:, to 
impaired resislanle 10 NTS, hUI heme .1'0 h ••• dired role-cilher 
in granulocyte nlClbilizotlon 16 or as" substrate for 110-1. The heme 
dcgrad,'iun prodUllhlarhon monoxide, biliverdin and iron may fur
Wet impair resistance In NTS by reducing prodUction of ROS21 or 
fadlilaling balteriJI repltl.twn" In tontrast, nonhcme ItldUlt.OIl III 

110-1 (for example, by oPP) may limit avaUable iron for baclerial 
replic.lion and pr ICll phago<.yli lell> from apoptosb<,,'b 

Our ob>crvation thai hemolysis spccifltally suppresses the o>.id.
live burst capaCily ofneutruphils offers a plausible explanalion for the 
particular susceptibility to NTS bacteremia In individu"ls with hemo
lysiS. Snlmollelln 'pede, have evolved to hurvi,'c and replkate inside 
mononuclear phagO<.'ytes<7; hemol),sis pro,;des an addit ion a! Jlich~ for 
.ustained hatterial replication in tirtlllotl11& ncutrophils. Our results 
ue also cOJlsistent with studies or the cytoprotective role "f 110-1 in 
mice; uldeed, lUllliation of the granulocyte oxidative burst (auld be a 
keyadnpliw mecbanism to reduce <eU:damage by ROS during hemo· 
lysis dnd to prevent tissue injury associated with release of heme. 

Very rew me. hall isms llilva been dearly identltled that coufer tol 
erante 10 the harm caused by inrcttiou., org'lt1isms·~. despite recent 
interest il, the Iherapeutic potenti,,1 of augmenting bost tolerance l• 
In mice. HO-l ~onfcrs tolerance lo blooJ-slagc malaria:!.·2C; but 
simultaneously diminishes reSi~laJ1Ce to m;,laria parasites develop
Itlg in the li\fcr~, whereas in Drosophila. intc(.tion-tnJuccd dl1urexi" 

Increases t(llerallce agilill I S. Ivp!ri",,,ri,,,,, but reduces resistance 
ngain~t Usler;ll monocytogenesC;l, indicaling thut rcsislanl.c and 
tolcrunce mechanisms can be highly pathngcll spetifk and that a 
mechanism oftoicran(.c to olle l'l4llhogcl1 (all diminh-h rcsislal1lc to 
another. Although it is weU recognized thai cO-infection with different 
palhogens (an enhance Jisca~ severity, and in some lases molecula.r 
medldnlsms hove been e1l1ddated" to OUf knowledge, thi> 'illdy 
provides the Orst uire<l c\'idcncc in a mammalian mudel ofto)erance 
to one pathogen impJlfing res\stan,e to anolher 

To condude, our findings have a nllmber of key Implkatioll<. First 
Illey provide all eXl'lan,ltion for the susleptlbility to NTS ba,teremtn 
in individual, with malaria and sickle cell disease. Second, the)' imply 
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Figur. 6 Proposed mechanism to explain how 
hemolysis Impairs resistance to S. Iyphlmuf/um 
through heme- and heme oxygenase-dependent 
dysfunctional granulocyte mobilization 
(a-c) Proposed scheme for granulocyte 
mobilization In response to S. /yphlmu,ium 
infection (a) and the dysfunctIonal mobilization 

induced by hemolysIs (b). which causes 
impaIred resistance to s. tvph,mu,ium (c) . 
In normal C57BU6 mice (a). S. lyphlmu'lUm 
infecllon causes emergency granulopoiesis (I) 

and mobilization of granulocytes from bone 
marrow (2), These granulocytes are able to 
phagocytose S. Iyph,muf/um and generate a 
normal oXidative burst. controlling bacterial 
replication (3). (b) Intravascular hemolysis 
caused by malaria or phenyhydrazine treatment 
liberates hemoglobin and hemoglobln-<ierIVed 
heme. Heme induces HO-l expression In 
Immature myeloid cells (4), and heme IS 
degraded to biliverdin, carbon monoxide 
and iron (inset). These heme degradation 
products may modily the function of developing 
granUlocytes, Heme also causes mobilization 
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of mature granulocytes from bone marrow (5) and may activate the oXidative burst (6). However, In chroniC hemolysis (as In the case of Py 17XNL 
infectIOn), functionally immature granulocytes accumulate In the blood, ultimately resulting in reduced oxidative burst capacity (7). (e) The combination 
of hemolysis and S, Iyphimurium challenge increases mobilization of bone marrow granulocytes With low oxidative burst capacity and high cellular iron 
stores into lhe blood. These granUlocytes are able 10 phagocytose S fyphlmuflum normally but are unable to kill the bact.na , owing to low OXIdative 
burst capacity, and support bacterial growth due 10 the high "on availability. ultimately allowing increased bactenal replication and dissemlnalion (8), 

that tolerance and resi.tancc mechanisms identified from studies of 
single pathogens may m'l easily Iran,l.te to the 'real world: where 
people arc simullaneously exposed to multiple pathogens. SpeCIfically. 
the conccpllhalthe cytoproteclive effecls ofllO-1 may be harnessed 
by admini,tering iL< products therapeulically in humans withoul 
adversely atTecting host defense against infeClion'3·5.j may not he valid. 
Third. we have identified a putential adjunct Iherapy (SnPP) thaI 
mighl enhance resistance tn NTS in patients "~lh hem lytic diseases. 
SnPP has been used experimentally 10 prevent severe jaundice'S. bUl 
opl1111izatioll of trealmenl would be rucial 10 avoid imp.,rment of 
tolerance to heme. The experimental system described here may be a 
good slarting P01l1t 10 asse~s and oplimize such lreaLmenls. 

METHODS 
Mcthllds and any ""()(ldted rcferenles arc availahle 111 the online 
version of Ihe paper at hllp;f/www.nature.com/naturemedicine/ 
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ONLINE METHODS 
Bacteria. We stored aJiquolS from a single brolh cui lure of S. e"ta;clJ seroV2.r 
Typhilnurium L2023 (S. (yphimuriu,"). consutulsvelyexpressmg GFR in 10"1. 
glycerol at -SO °C. For ill vitro experiments we opsonized S. typhimuriurn 
In 20'16 normal mouse serum at 37 'C for 30 min before lOocuiation. For 
quantilkation of bactenalloads. we plated tenfold dilution. of lysed organ 
homogenate. and whole blood onto LB agar and incubated for L8 h before 
counting the number of colony-forming Units (CFUs). 

Mice. Mouse expcrunenlallon conform~ 'N'Ilh UK Home Office Regulations 

and was approved by the London School of Hygiene and Tropical Medicine 
animal procedures and ethics commillee. We obtaJned female, 6- to I ().week
old C57BU6 m"e from Harlan and Charle. Rover (UK) and ",feeted them 
with P. yo<UI t7X nonlethal (PyI7XNL) by I"lrapentoneal (I.p.) Injection of 
I x 10' parasiUzed red blood ells. We detennlned parasitemia by examination 
of Giemsa stamed thin blood smears. We determined erythrocyte counts using 
a Zl Coulter par lsde counter. We induced a ute hemolysis by subcutaneous 
InJeetion of PI I Z (SIgma) (L 25 JJg per g bodywtight). We administered hemIn 
(Frontier Scientific) by Lp. injection (SO lUllol ~ kg body wtight per dose) In 
two doses 12 h apart. We IOltialed S. typhl,"unu," infections by I.p. inocula 

tion of I x 10' CPU of S. ryph,,"unum on day 15 of PyL7XNL InfecUon or 6 h 
after PHZ or first dose of hemin lreatment We administered SnPP (Frontier 
Scientific) (40 lUllol per kg body weight per do.e) by I.p Injection 48, 24 and 
8 h before S.lyph""urlum Infection ofPyI7XNL· Infected mice, 2 h before PHZ 
lr.aun.ntorS h b.for.S. typiu,"unum alon •. W •• dmtnist .... d CoPp (Fronti.r 
SClcntlOc) (10 mg per kg body w .. ght) I.p. 6 h befor.S. typhl,"u"um IOfectlon . 
We monitored S. typhimurllmt-infected mi<:t every 6 h until they showed s igns 

of Illn. (dlnical stage 2. see Supplementary Methods) and then .very 1-2 h 
unUI they reached the hwnane endpoint (chmcal st.ge 4). at whICh POlOt they 

w",lolled The time of death was used for survival analysis. 

FIowcylometry Antibodies used are described In the Supplementary Methods 
We perform d inlracellular slammg (or HO· 1 on the basiS of a prevsou ty 
described method" 

Micr ... copy. Chamber sltdes "'ere protectod from bght and aJrdned for 2 It 
before nudear staining and mounlingwllh DAPI dissolved In confocal matrix 
To determine whether bacteria were intra"UQlar or adherent to the cell surface, 
we assessed .. lis wilh overlapping GF~ S. Iyphlmurium by 0.5-1Ul' Interval 
Z-stacklmaglng. For light microscopy, we fixed thin blood fllmsWlth methanol 
and air driedbefure staining with May GriinwaldGiemsastain 

Salmonella phogocyto.l. and lillin8 a .. al We ....... d ex vn'O phagocytosiS 
and kllIlIlg of S. typh,munum \0 a gentamiCin protection assay and quantified 
by flow cytometry (staining with allophycocyan in conjugated antibodyagalnst 
Gr-I (eBloscienet) and phycoerythrln ·Cy7-ronjugated antibody against C D I I b 
(tBlosel",«)). confocal mlaosropy and bacterial culture We seeded Isolated 
CDllb' ,0110 at 1 x 10' perweU on nal bouomed IJ6·well plates or.t2 x to' per 
well In tight· well chamber slidesand Incubated at 3~'C and 5'1(, CO2 for 20 min 

dOl: 10.103elom.7601 

before addition of S. typhimunu," at a multiphcity of tofection (MOl) of ten 

S. typh,,"unum to one CDllb ' cell W. detennmed phagocytosis at45 mln aft ... 
infeclson and kilhng al2 It after mfecUon 

Oxidative burst and degranulation .... 1' We assessed neUlrophil OXIdative burst 
using a modification of a previously described flow cytometric assayl' in which 
dihydrorhodamine 123 is converted to rhodamine. We measured neutrophil 
~granulation by the percentage increase in the medjan fluorescence Intensity 
of surfaceCDll b expression m slsmuialed ""US Wlstimulated samples 

Mf uurement of heme and hemoslobin. We determined concentrations of 
hemin and hemoglobin using QuanUchrom Heme and Hemoglobin assay 
kits (BioAssay Systems). W. quantified prOlelO bound plasma heme uSlOg a 
previously descnbed spectrophOlom'l!triG" methodS? and the concentration of 

plasma hemoglobin using a previouslypubUshed method'" 

""'ox! upre .. ion I nd HO activity .. saJ". We determined Hmoxl mRNA 
expression In liverbyquanlltat lv. RT·PCR. W. standardized eDNA expression 
for each sample using the housekeeping genes Gapdh and Tbp and calculated 
expression as rebove fold change compared to healthy control samples. Wt 
measured HO actMty tn whole-Itver homogenates after red blood cell lySiS uslOg 
a previously described method". We measured plasma HO · I by ELISA using 
an HO-I Immunoset (Ema Ufo Sciences) 

SLAti tical anaIy.. . We performed ttabstu:al analysIS using Graph Pad Pnsm S 
software. We used an alpha value of 0.05 for ali preplanned stabstical analyses. We 
used the log rank Manlel Cox lest for survival analysis. We 3Jlalyzed continuous 
data that ",,,e approximately nonnally distributed tlsing two-sided unpaired or 
paired Student's t lest. forpairwtst comparisons or one-way ANOVA Wlt.hposl hoc 
testing using Dunnelt~ muilJple comparison lest for comparison WIth the conlrol 
group. TUkey'.multipk comparison test forcomparlson b.tween multiple group' 
;md Bonferronl's multiple comparlsoo test for comparison between two or more 
.. Ieetc<! pairs. We log lo transformed all data reiaong 10 bact.nal loads before 
analysIS Wecampared proportions b.tween groups ustog Fisher's exact test 

Additional mrt bods. Detatledmethodo!ogy IS described \0 the Supplemen tary 
Method. 
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Malaria impairs resistance to Salmonella through heme-
and heme oxygenase-dependent dysfunctional granulocyte mobiliz~ion. 

A. J. Cunnington , J.B. de Souza, R-M . Walther, E. M. Riley 

Supplementary Figure 1 
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Supplementary Figure 1. Plasma haptoglobin and hemopexln levels are not depleted by 
Py17XNL or phenylhydrazine hemolysis. (a,b) Plasma haptoglobin (a) and hemopexin (b) 
were measured by ELISA during Py17XNL infection and 18 h after phenylhydrazine (PHZ) 
administration. Data are representative of 2 independent experiments (mean ± S.d. of 3-4 mice) 
per concition . Significance was determined by one-way ANOVA with post-hoc comparison with 
control concilion using Dunnett's multiple comparison test. u p <0.01, '''P <0.001 . 
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Supplementary Figure 2 
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Supplementary Figure 2. Definition of myeloid cell populations by flow cytometry. (a) Myeloid cell 
populations in blood were defined by differential expression of CD11 band Gr-1 in both uninfected and 
Py17XNL-infected mice (14 d post infection). and their identity confirmed by expression of other surface 
markers (histograms). Regions a, b, c (and filled. solid line and dashed line histograms) correspond to 
granulocyte, inflammatory monocyte and resident monocyte populations respectively . (b) Representative flow 
cytometric analysis of blood 18 h after infection with GFP-expressing S. typhimurfum on day 15 of Py17XNL 
infection. Granulocytes were identified by Gr_1Hi expression (left hand panel) and Ly6G expression (right hand 
panel) .(c) Splenic monocyte and macrophage populations were defined by flow cytometry as F4/80LoCD11 bHi 

and F4/80HiCD11 bLo respectively (left hand panel) and the proportion of all GFP+ positive cells in each of 
these compartments was quantified in Py17XNL-infected. PHZ- and hemin-treated mice at the humane 
endpoint (right hand panel). GFP+ cells are shown 72 h after infection of PBS-treated control mice, but due to 
very low infection levels in PBS-treated mice 18 h after infection, resulting in no GFP+ cells being detected in 
most mice, this condition is not shown. Data are representative of 2 independent experiments with 3-5 mice 
per condition. Significance was determined by one-way ANOVA with post-hoc comparison with control 
condition (PBS) using Dunnett's multiple comparison test. 
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Supplementary Figure 3. 
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Supplementary Figure 3. Phagocytosis of S. typhimurium by monocytes and neutrophils is not impaired by 
Py ITXNL, pnenymyarazme or nemm ana ". lypmmUrfum killing IS not Impalrea Dy pnenymyarazlne or nemln. 
(a,b) Intracellular bacteria were quantified by confocal microscopy following incubation of CD11 b+ cells (isolated from 
blood of Py17XNL-infected (day 14) and uninfected control mice) with S typhimurium for 45 min in a gentamicin 
protection assay. (a) Representative orthogonal reconstruction from 17 stacked images at 0.5 ~m depth intervals, 
shOWIng a CD11 b+ cell (from Py17XNL infected mouse, arrow) containing GFP+ S. typhimurium. Blue nuclear staining, 
DAPI ; Green, GFP, scale bar 1 0 ~m . (b) Summary data for analysis of confocal images. Data are representative of 2 
independent experiments (mean ± s.d of 3 mice) per condition Phagocytosis (c,d) and killing (d) of S typhimurium by 
CD11 b+ celis isolated from whole blood of control mice or test mice 24 h after PHZ or hemin treatment, and incubated 
with s typhimurium in vitro In a gentamicin protection assay Phagocytosis was assessed by the percentage of 
granulocytes and monocytes which were GFP+ by flow cytometry (c) and by culture of ceillysates collected after 45 
min incubation with bacteria (d). Bacterial killing was assessed by culture of ceillysates collected after 2 h incubation 
with bacteria (d) Data are representative of 2 independent eXperiments (mean ± s d of 3--Q mice) per condition 
Significance was determined by two-tailed Student's t-test (b) or one-way ANOVA with post-hoc companson with 
control condition using Dunnett's multiple comparison test (c,d) 

149 



Supplementary Figure 4 
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Supplementary Figure 4. Oxidative burst activity is predominantly a property of Gr-1HI 
bone marrow granulocytes. Left hand panel : Representative flow cytometric analysis of 
control bone marrow cells showing gating of Gr_1 lo • Gr_1 lnt (Gr-1 intermediate) and Gr_1 Hi 

cells. Right hand panels: rhodamine fluorescence intensity of unstimulated (shaded) and 
PMA-stimulated cells (unshaded, black line) . ResuHs are representative of 6 experiments each 
with 3-5 mice. 
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Supplementary Fig .... e 5 
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Supplementary Figure 5 . Frequency and phenotype of bone marrow and peripheral blood 
granulocytes. Flow cytometnc analysIs of blood (upper panel) and bone marnow (lower panel) 
granulocytes assessed by expression of Gr-1 and divided as low , intermediate and high expression 
(Gr-1Lo , Gr-1lnt , Gr-1HI respectively) , 22 h aiterm lce were treated with PBS, PHZ orhemJn 
treatments, or at different time pOints dunng Py17XNL infectIOn , orwith additional S fyphlmuflum 
infection 16 h (PHZ and hemin), 18 h (Py17XNL and PBS) or 72 h (PBS) before harvest 
Granulocyte frequencies are shown as a percentage of all leukocytes In blood, and of all bone 
marrow cells , respectively Data are representative of at least 3 independent experiments (mean ± 
95% confidence Interval of 3-5 mice) per condition and ome pOint 
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Supplementary Figure 6 

a 

d 

100 

Control 

Py17XNL 

PHZ 

b 15 C 

0 c::~ 

I ~10 {i~ 
~ :~ ~ ~ 

""0 a.., 
~(IJ ~a. 

5 Og' a:: 
I~ 

0 
O<D<"lON 

>.~N:t 

~ ~~Cl. 
00 

Py17XNL 

Inflammatory Resident Non-myeloid 
Granulocytes Monocytes Monocytes Cells 

*W*uJlLJlJ ~ "" <" " t" <" " ~I""" .... ~" .. "" " ,ooUJ,ooW,ooJU ,ooU to 10 10 10 

eo 10 •• to 

.to 40 .to • 

::JO XI Xlj ~ 
o· 0 0, ~ 0 

1010 10 to 10 10101010'" 101010·'010 tOICi 10·'0 10 

""W >OOjJ""r ""JJ to 10 • 10 

10 II) .., eo, 
_ ., .eo .eo 

»' XI ~ ~ 

o 0 0 0 
'10 10 10'" ~ 10 to 10 \0

1 
to 10 to 10 to 10 10 10 10 

Hemin .. .. .. " ""iJ'''JlJ '''''JU'''1LJ to to to 10 

«» <w .eo 4U 

M. ~ ~ ~ 

Percentage Of~,o 101 10 10 to 0 to 10 to to 10 0"0 10' 10 10 10 o'tO 10 10 to 10 

maXimum 
H0-1 

10 

05 

30 

20 

10 

0 

Py17XNL 

Supplementary Figure 6. Hemolysis and hemin cause systemic and cell-type specific Induction of HO-1 . Heme 
oxygenase-1 induction assessed by Hmox1 mRNA expression in liver (a), HO bio-activity in liver (b) and HO-1 protein 
concentration in plasma (c) . (a) Hmox1 expression in liver was determined by rt-PCR expressed as fold change relative 
to the control gene Gapdh, relative to the difference between Hmox1 and Gapdh expression in control liver. Data are 
representative of 2 independent experiments (mean ± s.d. of 4--5 mice per time point). Similar results were Obtained 
using Tbp as the control gene. (b) HO enzyme activity in liver homogenates from mice infected with Py17XNL or 18 h 
after PHZ treatment, was determined by conversion of hemin to bilirubin, standardized for protein content and 
expressed relative to controls at each time point. Data are representative of 2 independent experiments (mean ± S.d. of 
3-11 mice per condition and tIme pOint). (c) Plasma HO-1 protein concentration was determined by ELISA. Data are 
representative of 2 independent experiments (mean ± S.d. of 4 mice per condition or time pOint). (d) HO-1 expression In 

myeloid and non-myeloid cells in blood was determined by flow cytometry, using the cell population definitions shown in 
Supplementary Fig 2a. HO-1 expression was quantified (lower panels) by the ratio of anti-HO-1 fluorescence (unfilled 
histograms) relative to control antibody (filled histograms) (upper panels) and normalized to the average value for 
control animals in each experiment Data are representative of at least 2 independent experiments with 3-9 mice per 
condition Significance was determined by one-way ANOVA with post-hoc comparison with control condition using 
Dunnell's multiple comparison test. • p <0.05, up <0.01 , ••• p <0.001 
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Supplementary Figure 7 
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Supplementary Figure 7. Frequency of F4/8o+ cells in bone marrow. Flow cytometric analysis of 
the proportion of bone marrow cells staining positively for the monocytel macrophage marker F4/S0 , 
during Py17XNL infection or 22 h after PBS, PHZ and hemin treatment. Data are representative of 1 
or 2 independent experiments (mean ± s.d. of 3-11 mice) per condition and time point. Significance 
was determined by one-way ANOYA with post-hoc comparison with control condition using Dunnett's 
multiple comparison test. • P <0.05, -P <0.01 . 

153 



Supplementary methods 

RfIIIgent •. All reagents were purchased from Sigma unless specified otherwise. Hemin (ferriprotoporphyrin IX 
chloride), tin protoporphyrin IX (SnPP), and cobalt (III) protoporphyrin IX chloride (CoPP) were obtained from Frontier 
Scientific, were protected from light and prepared by dissolving in 0.2 M NaOH, diluted to the desired concentration in 
PBS and buffered carefully to pH 7.5 with HCI. Hemin solutions were subsequently filtered through a 0.2 11m acrodisc 
syringe filter unit (Pall Corporation) and the concentration of the filtered solution determined using a Quantichrom 
Heme assay (BioAssay Systems) according to the manufacturer's instructions. SnPP and eopp solutions were not 
filtered but were prepared using sterile reagents and technique. Aliquots of hemin (3.26 mg mt'), SnPP (3 g mi") and 
eoPP (1 mg mt') _re stored at ~O ·C until use. Phenylhydrazine hydrochloride 25 mg mi" solution \/\laS freshly 
prepared immediately prior to injection by dissolving in PBS, buffering to pH 7.4 with NaOH, and filtering through a 0.2 
Ilm syringe unit. 

Salmonella enterica serovar Typhimurium 12023 (S. typhimurium) constitutively expressing GFP was a gift from Prof. 
David Holden (I mperial College, London, UK). Bacteria were grown to late log phase in static culture in Luria-Bertani 
(LB) broth with SO 119 mi" carbenicillin. Bacteria were frozen in aliquots in 10% Glycerol and stored at-80·C until 
required for use. The concentration of stock bacteria was determined by dilution cultures on LB Agar, and reconfirmed 
for each aliquot at the time of use. Prior to inoculation, the Salmonella stock was defrosted, washed twice in PBS and 
diluted to the desired concentration in sterile PBS. For in vitro experiments Salmonella were opsonized in 20% normal 
mouse serum at 37"C for 30 min prior to inoculation. For quantitation of bacterialioads from organs of Salmonella 
infected mice, cell suspensions v.ere prepared by disruption of tissue with a syringe plunger, passage through a 70 11M 
nylon cell strainer (BD), and resuspension as 1 Q'I(, solution by weight in sterile PBS. 10 fold-dilutions of organ 
honnogenates and whole blood v.ere made in 1'111 Triton X-1 00, plated onto LB agar and incubated for 18 h before 
counting the number of colony forming units (CFUs). 

Animal •. Animal experimentation conformed IMth UK Home Office Regulations and was approved by Institutional 
ethical review. Female, 6-10 week old C57BU6 mice v.ere obtained from Harlan and Charles River, UK and 
maintained under barrier conditions. Frozen stocks of blood-stage Plasmodium yoe/ii17X Non-Lethal (py17XNL) were 
inoculated in passage mice. Blood was collected after 5-7 days and experimental animals were infected by 
intraperitoneal (i.p.) injection of 105 parasitised red blood cells (pRBCs). Parasitemia was determined by examination 
of Giemsa-stained thin blood smears. Erythrocyte count was determined using a Z2 Coulter partide counter (Beckman 
Coulter). Parasitemia, erythrocyte count and, where relevant, body weight were monitored at least least twice a _k. 
To induce acute hemolysis, mice were treated with phenylhydrazine (125119 g" body _ight) by subcutaneous (s.c.) 
injection. Hemin was administered by i.p. injection (SO llmol kg.l body weight per dose) in tv.o doses 12 h apart 
Salmonella infections were initiated by i.p. inoculation of 105 CFU of S. typhimurium in 200 ilL PBS, on day 15 of 
Py17XNL infection or 6 h after PHZ or first dose of hemin treatment To inhibit henne oxygenase activity, SnPP (40 
Ilmol kg-' dose") \/\laS administered by i.p. injection 48, 24 and 8 h before S. typhimurium infection of Py17XNL 
infected mice, 2 h before PHZtreatmen~ or 8 h before S. typhimuriumalone. The H0-1 inducer COPP (10mg kg") 
\/\laS administered i. p. 6 h prior to S. typhimurium infection. Control animals received injections of equivalent volumes 
of PBS. After infection with S. typhimurium, mice 'MIre monitored 6 hourly until displaying signs of ~lness (Clinical stage 
2, Supplementary Mathods Table 1) and then every 1-2 h until they reached clinical stage 4, at which point they 
were euthanized. Since progression from stage 4 to death is extremely rapid in Salmonella and rodent malaria 
infections, and using death as an experimental endpoint was considered unethical, the humane endpoint - time of 
reaching stage 4 - was used for survival analysis. In each experiment a group of PBS-treated Salmonella-infected 
mice was sacrWiced at the same time as the treatment groups to allow comparison d bacterial loads. In all 
experiments with groups of Salmonella-infected mice, animals were killed by injection of pentobarbitol. In all other 
experiments mice were kHIed with CO2 inhalation. Immediately after death, under aseptiC technique, blood ..... s 
collected by cardiac puncture into heparinised syringes and tissues were removed into ice cold RPMI and stered on 
ice, protected from light, until processing. 

Table 1. Clinical scale used to determine disease severity in mice: 
1. no signs 
2. ruffled fur and/or abnormal posture and/or minor weight loss «15%) 
3. lethargy l!lQlQJ: moderate weight loss ~ 20%) 
4. reduced response to stimulation Imilm ataxia IlDSUgr respiratory 

distress/hyperventilation 
5. prostration and/or paralysis ~ convulsions I.DSIl2! severe Might loss (>25%) 
6. Death 

The humane endpoint was defined as mice reaching stage 4 
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Flow cytomerry. Antibodies used are shown in Supplementary Methods Table 2. For aM experiments except oxidative 
burst assays, cells """re incubated for 5 min with red blood cell lysing buffer (Sigma), washed, and resuspended in FACS 
buffer prior to staining. Cells from S. typhimurium infected mice v.ere fixed in 4% formaldehyde prior to surface staining. 
Cells v.ere incubated with cocktails of antibodies for 30 min at room temperature in the dark and washed twice before 
analysis. 

Intracellular staining for HO-1 was based on the method of Ewing et "/~. Briefly, cells """re fixed in ~ formaldehyde for 
10 min at 37°C, centrifuged at 500 g for 5 min at 4°C, resuspended in ice-cold 90% methanol and incubated on ice for an 
additional 30 min. After washing with FAGS buffer, cells v.ere resuspended in FAGS buffer containing 1% normal mouse 
serum (Southern Biotech) and Mouse Fc Block (BO Biosciences) or PE conjugated antibody against C016132 and 
incubated for 5 or 30 minutes at room temperature respectively. Cells were then centrifuged at 1000g for 2 minules and 
resuspended in FACS buffer containing rabbit polyclonal antibody against H0-1 or an equivalent concentration of normal 
rabbit polyclonal antibody as a control for 30 min at 4°C. Cells were washed twice in FAGS buffer before resuspension 
with FITC conjugated secondary antibody and a cocktail of surface marker antibodies and incubation at 40C for 30 min, or 
room temperature for 90 min when the antibody against C034 was used, follov.ed by 2 final_shes. 

A BD FACSCalibur flow cytometer was used to acquire all samples except those for analysis of bone marrow progenitor 
populations (which v.ere acquired using a BD LSR-II) and data were analysed using FioIM.Io version 7.6 (Tree Star, Inc.). 

Mlcro.copy. Chamber slides were protected from light and air-dried for 2 h before nuclear staining and mounting with 
DAPI dissolved in confocal matrix (Micro-Tech-Lab). Slides were examined using a Zeiss axiOiert confocal microscope 
with a Plan-Apochromat 63x oil immersion lens and Zeiss LSM51 0 analysis software. For quantitative assessment a 
phagocytosis, cells with overlapping GFP' S. typhirmrium were assessed further by 0.5 11m interval Z-stack imaging to 
determine v.tlether bacteria """re intracellular or adherent to the cell surface. For light microscopy, thin blood films were 
fixed with methanol and air dried before staining with May-Grunwald Giemsa stain according to the manufacturer's 
instructions. Images """re acquired using a Zeiss Axioplan2 microscope with CP Apochromat 1 COx oil immersion lens, 
and images were obtained with a Retiga 2000R camera (Qlmaging) and analysed using Volocity 5.5.1 software 
(PerkinElmer) . 

Salmonella phagocytos/. and IUII/ng .... y •. Ex-vivo phagocytosis and killing of S. typhimurium by blood granulocytes 
and monocytes were assessed in a gentamicin protection assay and quantified by flQW cytometry, confocal microscopy 
and bacterial culture. Following red blood cell lysis, CD11 b' cells _re isolated from murine whole blood using anti-
CD11 b magnetic beads (Milteny1), according to the manufacturers' instructions. After washing t'Mce in DMEM (Gibco), 
cells """re resuspended at 5.6x1()5 ml-' in DMEM without antibiotics and seeded at 1x1()5 per _II in flat bottomed 96-"",,11 
plates or at 2x105 per wetlln 8-"",,11 chamber slides (Labtek). Plates and slides were inoubated at 37 "C and 5% CO2 for 
20 min prior to addition of S. typhimurium at a multiplicity of infection (MOl) of 10 S. typhimurium 1 CD11b' cell. To 
control for autofluorescence and binding of opsonised S. typhimlHium to the cell surface without phagocytosis, WIllis 
containing uninfected cells (negative control), or """lis in which boIh cels and bacteria v.ere fixed with ~ formaldehyde 
(fixed controls), """re incubated in parallel. Plates v.ere incubated for 15 min before addition of gentamicin to a final 
concentration of 100 I.Ig m~' to kill remaining extracellular bacteria (Ie. those which had not been phagocytosed) and 
incubation for another 30 min. To __ bacterial phagocytosis, after 30 min cells v.ere washed twice with warm sterile 
PBS and either harvested for flow cytometry, fixed in situ for confocal microscopy, or lysed for bacterial culture. 
Altematively, to assess bacterial killing, cells were washed twice with warm medium, then reinoubated for 2 h in medium 
containing 10 IIg mI-' gentamicin to prevent eoctraoellulargrOYAh of S. typhimurium. To a_ phagocytosis by now 
cytometry, cells _re gently scraped from wells (on ice) and resuspended in PBS with ~ formaldehyde before staining 
with APC-conjugated antibody against Gr-1 and PE-Cy7-conjugated antibody against CD11 b. Phagocytosis was 
quantified as the proportion of GFP' cells after subtraction of the proportion of GFP' cells in the fixed control samples. To 
assess phagocytosis and bacterial survival by culture, cells v.ere washed twioe in warm llerile PBS to remove 
gentamicin, then lysed with 1% Triton X-100 and 10-fold dilutions """re plated onto LB agar, inoubated for 18 h at 370C 
and colonies counted. To a_ phagocytosis by confocal microscopy, cells v.ere fixed with ~ formaldehyde for 15 min 
at room IBmperature, then 1Mlshed twice in PBS containing 5'111 fetal calf serum, and aHCMed to air dry before staining and 
mounting. 
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Oxidative burst and rlegranu/atlon assay. Neutrophil oxidative burst was assessed using a modification of the flow 
cytometric assay described by Richardson et al.34. 50Ill aliquots of fresh whole blood, or bone marrow suspension 
(cells from 1 femur resuspended in 500 III RPMI), _re mixed v.ith either 50 III of PMA solution (stimulated samples, 25 
IJM for VIotlole blood, 2.5 IJM for bone marrow) or stJerile PBS (unstimulated) and incubated for 15 mnutes in a 37"C 
water bath. Next 25 II l of a staining cocktail containing dihydrorhodamine 123 and fluorochrome- conjugated antibodies 
to cell surface markers in PBS was added and cells reincubated for 5 min at 37"C. 2 mI of red blood cetllysis buffer was 
added to each tube and incubated in the dark for 15 min at room temperature then centrifuged at 1000 g for 1 mn. Cells 
_re washed again with PBS, and resuspended in PBS with 1% paraformaldehyde, The magnitude of the oxidative 
burst was assessed by rhodamne median fluorescence intensity (MFI) measured in the Fl-1 channel, analysed on the 
same day. Degranulation was measured by the percentage increase in the MFI of surface CD11 b expression in 
stimJlated versus unstimJlated samples, In each experiment at least three control samples (from age-matched, healthy, 
uninfected nice) were assayed in parallel with experimental samples. For longitudinal assessment of the oxidative burst 
and degranulation at different time points in the same experiment, rhodanine fluorescence values were normalized to 
the average value for the control samples at each time point. 

Measurement of hem. and hemoglobin. Standard hemoglobin solution was prepared by 0.2 11m filtration of lysed red 
blood cell supernatant The concentrations of standard solutions of hemin and hemoglobin were determined using 
Quantichrom Henne and Hemoglobin assay kits (BioAssay Systems) in accordance v.ith the manufacturer's instructions. 
Protein bound plasma heme was quantified by the spectrophotometric method of Shinowara and Waters57 using a 
NanoDrop ND1 000 spectrophotometer (Nanodrop Technologies), Briefly heparinised VIotlole blood was centr~uged at 
500g for 5 minutes, then plasma was removed and subjected to centrifugation at 15000g for a further 7 minutes to pellet 
any remaining red blood cells. Tv.o III of the remaining plasma was used to deternine absorbance at 562, 578, 598, 
615 and 675nm wavelengths. Using the absorption values at 562, 578 and 598nm the concentration of plasma 
hemoglobin was determined by the method of Khan et a/sa, The effect of plasma hemoglobin on the difference in 
absorption 615-675 nm was determined by preparation of a standard curve of hemoglobin in plasma, and the 
absorption difference 61 !H!75nm was corrected for the effect of plasma hemoglobin. The corrected absorption at 615-
675nm was used to determine plasma heme from a standard curve for hemin in plasma. 

Hmox1 exprea/on, HO acrtvlty and H()'1 protein aSAYS. Hmox1 mRNA expression in liver was determined from 
fresh snips of liver v.t1ich were snap frozen in liquid nitrogen and stored at -sooc until processing. RNA was extracted 
(RNAeasy, Qiagen) and DNAse1- treated prior to eDNA synthesis. eDNA was quantified using pre-validated inventoried 
Taqman gene expression assays for Hmo)(1 (Mrr00516004_m1), Gapdh (Mm99999915-l11) and Tbp 
(Mm00446973_m1), and an ABI Prism 7000 sequence detection system (Applied Biosystems). eDNA expression for 
each sample was standardized using the housekeeping genes Gapdh and Tbp and expressed as relative fold change 
compared to healthy control samples. HO activity was measured in whole liver homogenates after RBC lysis, using the 
method of Foresti et a/. 5Q. To aHow comparison between experiments, HO activity was normalized to the average value 
of at least three control samples in each experiment. Plasma HO-1 was measured by alSA using a H0-1 Imnnunoset 
(Assay Designs) performed in acoordance v.ith the manufacturer's instructions. 

Stati.tical analy.I •. Statistical analysis was performed using Graph Pad Prism 5 softv.ere. All statistical analyses were 
pre-planned and used an alpha value of 0.05. Survival analysis was performed USing the log Rank Mantel Cox test. 
Continuous data which were approximately normally distributed were analysed using two-sided unpaired or paired 
studeofs t-test for pairwise comparisons, or one-way ANaVA with post-hoc testing using Dunnett's multiple ~rison 
test for comparison v.ith the control group, Tukey's multiple comparison test for comparison '*'-n multiple groups, 
and Bonferroni's multiple comparison Mt for comparison betl/\een two or more selected pairs. All data relating to 
bacterial loads were Iogwtransformed prior to analysis. Comparison of proportions bel.Y;een groups was performed 
using Fisher's exact teet. 
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Supplementary Methods Table 2: antibodies used for flow cytometry 

Antigen (clone) Manufacturer Fluorochrome 

Gr-1 (RB6-8C5) eBioscience FlTC, PE, PE-Cy7, APC, 

efluor450 

C011b (M1/70) eBioscience PE, PE-Cy7 

Ly6G (lA8) Miltenyi Biotec APC 

F4/80(BM8) eBioscience FlTC, APC 

C068 (FA-11) AbOSerotec AlexaFluor 647 

Ly6C (Hk1.4) Abeam FlTC 
Biolegend APC 

Ly6B.2 (7/4) AbOSerotec FlTC 

C0115 (AFS98) eBioscience PE, APC 

C034 (RAM34) eBioscience eFluor 660 

C016/32 (93) eBioscience PE 

C0127/ IL-7Ra (A7R34) eBioscience PERCP-CyS.S 

Sca- l / Ly6A/E (07) eBioscience PE-Cy7 

c-Kit / CD117 (ACK2) eBioscience APC-eFluor 780 

Mouse haematopoietic eBioscience eFluor 450 
lineage cocktail 

HO-l (SPA-89S, polydonal Assay Designs None, primary antibody 
rabbit) 

Polyclonal rabbit serum Covance None, primary antibody 

F(ab')2 Anti-Rabbit IgG eBioscience FrTC, secondary antibody 
(secondary antibody) 
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Chapter 6. Do chiklren with malaria have evidence of 

heme- and heme oxygenase-l related neutrophil 

dysfunction? 
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Prolonged neutrophil dysfunction following Plasmodium 
falciparum malaria is related to hemolysis and heme oxygenase-1 
induction. 

The material presented in this chapter represents an article that has been submitted 

for peer-reviewed publication. In this article we describe neutrophil function in 

Gambian children with acute P. falciparum malaria, and relate this to indices of 

hemolysis and heme oxygenase-l induction. Patients were recruited and samples were 

collected in the context of a larger ongoing, mUlti-purpose study platform evaluating 

the immunological, parasitological, genetic and clinical associations of mild and severe 

malaria. A large team of clinical staff, field workers, clinical laboratory staff and 

support staff contributed to the process of subject recruitment, sample collection, 

processing of clinical samples, clinical care of the subjects, and follow-up. Although I 

routinely performed all the described assays myself, I received additional assistance as 

necessary from laboratory technicians, Madi Njie and Simon Correa, who were 

employed by The Medical Research Council laboratories (The Gambia) to facilitate 

laboratory aspects of the study platform. Under my direct supervision, they assisted 

with sample preparation and data acquisition for all of the flow cytometry based 

assays when multiple assays needed to be performed at the same time, and also 

assisted with the CRP ELISA. Extraction of RNA from whole blood and pfHRP2 EliSAs 

were performed in conjunction with another PhD student, Sarah Nogaro, as some 

samples were to be utilised in both of our PhD projects. 
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Abstract: 

It is not known why people are more susceptible to bacterial infections such as non

Typhoid Salmonella (NTS) during and after a malaria infection but, in mice, malarial 

hemolysis impairs resistance to NTS by impairing the neutrophil oxidative burst. This 

acquired neutrophil dysfunction is a consequence of induction of the cytoprotective, 

heme degrading enzyme heme oxygenase-1 (HO-1) in neutrophil progenitors in bone 

marrow. In this study, we assessed whether neutrophil dysfunction occurs in humans 

with malaria and how this relates to hemolysis. We evaluated neutrophil function in 58 

Gambian children with Plasmodium jalciparum malaria, and examined associations 

with anemia, haptoglobin, hemopexin, plasma heme, expression of receptors for heme 

uptake, and HO-1 induction. Malaria caused the appearance of a dominant population 

of neutrophils with reduced oxidative burst activity, which gradually normalized over 8 

weeks of follow-up. The degree of neutrophil impairment correlated significantly with 

markers of hemolysis and HO-1 induction. HO-1 expression was increased in blood 

during acute malaria, but at a cellular level HO-1 expression was modulated by 

changes in surface expression of the haptoglobin receptor (C0163). These findings 

demonstrate that neutrophil dysfunction occurs in P. jalciparum malaria and support 

the relevance of the mechanistic studies in mice. Furthermore, they suggest the 

presence of a regulatory pathway to limit HO-1 induction by hemolysis in the context 

of infection, and indicate new targets for therapeutic intervention to abrogate the 

susceptibility to bacterial infection in the context of hemolysis in humans. 
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Introduction 

Plasmodium /alciparum malaria caused an estimated 655,000 deaths and 216 million 

cases globally in 2010 (1), but this almost certainly underestimates the indirect health 

burden (2) which includes increased susceptibility to Gram negative bacterial 

infections (3-4), particularly non-Typhoidal Salmonella (NTS)3(5-6). In areas with high 

malaria transmission, these indirect effects of malaria infection may explain more than 

half of the child mortality (2) and community acquired bacteremia (4). The incidence of 

NTS closely reflects that of malaria (4, 6-7) and there is compelling evidence that P. 

/alciparum malaria increases susceptibility to NTS bacteremia in humans. In The 

Gambia, the incidence of NTS bacteremia has declined dramatically over the past thirty 

years, mirroring the decline in the incidence of malaria (7); this observation has since 

been confirmed in Kenya (4). In the pre-antibiotic era, malaria therapy for treatment 

of neurosyphilis was frequently complicated by NTS bacteremia even when NTS 

infection was otherwise very rare (8), and quinine alone often cured endemic malaria

NTS co-infection (9). NTS bacteremia incidence was found to be more closely related 

to malaria incidence than to stool carriage of NTS (6), and in Kenyan children sickle cell 

trait was found to have a protective effect against bacteremia, which was entirely 

dependent on the protection it affords against malaria (4). Several studies have shown 

that susceptibility to NTS is greatest in the context of severe malarial anemia (5-6), 

while others have found that the greatest risk occurred in children with recent rather 

than current malaria infection (10-11). 

163 



Studies in mice have confirmed that hemolysis - caused by malaria or in any other way 

- increases susceptibility to NTS and some other bacterial infections, whereas blood 

loss alone does not (12-14). We have recently shown in a mouse model of malarial 

anemia that resistance to S. typhimurium is impaired as a result of neutrophil 

dysfunction caused by liberation of heme during hemolysis and by induction of the 

cytoprotective heme catabolising enzyme heme oxygenase-1 (HO-l) (15). In this model 

system, HO-1 induction in myeloid progenitor cells in the bone marrow leads to 

production of granulocytes with reduced oxidative burst activity, and their 

mobilization into the blood is enhanced by both hemolysis-derived heme and the 

response to bacterial co-infection. This results in the accumulation of functionally 

impaired granulocytes in the circulation which are able to phagocytose S. typhimurium 

but not able to kill the bacteria effectively, providing a new niche for bacterial 

replication. We found that normal resistance to S. typhimurium was restored by 

inhibition of heme oxygenase with the competitive inhibitor tin protoporphyrin, a drug 

that can be used to treat hyperbilirubinemia in newborns (16), suggesting that HO 

inhibitors might represent a novel therapeutic intervention to abrogate the 

susceptibility to NTS induced by malaria. 

Humans and mice with genetic deficiency of subunits of the phagocytic NADPH 

oxidase, a complex enzyme that catalyzes the generation of superoxide radicals in 

phagocytic cells, are known to be susceptible to NTS infection (17-18), and the 

importance of the neutrophil oxidative burst for killing of serum opsonized Salmonella 
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by blood leukocytes from African children has been demonstrated in vitro (19). 

Impairment of the neutrophil oxidative burst in humans with malaria would thus be a 

compelling explanation for susceptibility to NTS bacteremia. In the current study we 

investigated whether the same mechanism may apply in humans, by examining 

neutrophil function in a cohort of children with predominantly uncomplicated malaria. 

Despite the fact that this population would not be considered at high risk of NTS co

infection, we found that malaria caused a marked abnormality of function in a large 

proportion of neutrophils, with impairment of oxidative burst capacity but not 

degranulation. The severity of the impairment of the neutrophil oxidative burst was 

strongly associated with hemolysis and prior induction of HO-l, but the duration of 

impairment was much longer than expected, lasting up to 8 weeks after infection. 
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Materials and Methods 

Study subjects and procedures 

The study and all procedures were approved by the Gambian Government / Medical 

Research Council Laboratories Joint Ethics Committee, and the london School of 

Hygiene and Tropical Medicine Ethics Committee. All human samples were collected 

with written informed consent from the participant or from the parent or legal 

guardian of child participants. Between September and December 2010, 58 Gambian 

children with P. falciparum malaria (defined by compatible clinical symptoms and 

>5000 asexual parasites/ill blood) were recruited within a longitudinal study 

investigating clinical, immunological and parasitological factors in mild and severe 

malaria, details of which have been published (20). Briefly, subjects were recruited, 

without selection for disease severity, from three peri-urban health centres: The 

Medical Research Council Gate Clinic, Brikama Health Centre and The Jammeh 

Foundation for Peace Hospital, Serekunda. Initial parasitemia (to determine eligibility 

for inclusion in the study) was estimated from Field's stained thick blood films and 

subsequently accurately counted from 50 fields on Giemsa stained thin blood smears. 

All children underwent full clinical examination and were managed in accordance with 

Gambian government guidelines. Severe malaria was defined using modified WHO 

criteria (21): severe anemia, defined as hemoglobin < 6g/dl; lactic acidosis defined as 

blood lactate> 7mmol/l; cerebral malaria defined as a Blantyre coma score ~ 2 in the 

absence of hypoglycaemia, with the coma lasting at least for 2 hours; severe 
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prostration (SP) defined as inability to sit unsupported (children> 6 months) or 

inability to suck (children ~ 6 month). Children suspected to have concomitant 

bacterial infections were excluded. For this study children underwent standardized 

assessment on the day of presentation (day 0) and days 7, 28 and 56, and blood was 

collected for: thick blood film, full blood count (EDTA), immunological assays (sodium 

heparin), and RNA (PaxGene tube) (days 0 and 28). On day 0 a thin blood film was 

prepared and sickle cell status, blood lactate, and glucose were determined. Blood 

samples were transported to the laboratory on ice within 2 hours of sample collection. 

Full blood count was performed using a Medonic instrument (Clinical Diagnostics 

Solutions, Inc). Sickle cell status was determined by metabisulfite test and confirmed 

on cellulose acetate electrophoresis. Heparinised whole blood was used for 

assessment of neutrophil oxidative burst and degranulation (350~L), intracellular and 

cell surface flow cytometry (400~L), and for neutrophil isolation (1.25mL). On some 

occasions there was insufficient blood available to perform all assays. Single blood 

samples were obtained from 6 healthy Gambian children and 10 healthy Gambian 

adults, all without current or recent malaria, recruited from Brefet village where 

malaria transmission is now extremely low (22). 

Laboratory reagents 

All reagents were obtained from Sigma unless specified otherwise. GFP-expressing 

Salmonella enter/co serovar Typhimurium pfpv 12023 (S. typhimurium) was a gift from 

Prof. David Holden (Imperial College London, UK), grown to late log-phase in Luria 
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Bertani (lB) broth supplemented with ampicillin, and kept as frozen stock at -70DC in 

10% glycerol. 

Neutrophil oxidative burst and degranulation assays 

The neutrophil oxidative burst was assessed in minimally manipulated whole blood 

using a modification of the assay described by Richardson et al. (23). Briefly, 50lll 

aliquots of blood were mixed with 50 III of PMA (final concentration 11lM) or PBS (as 

control) and incubated for 15 min at 37·C in a water bath. Next 25 III of PBS (unstained 

sample) or staining cocktail (Dihydrorhodamine 123, PECy7 anti-CDUb (eBioscience, 

ICRF44), and APC anti-CD15 (Miltenyi Biotec, VIMC6)(unstimulated and stimulated 

samples)) was added and incubated for 5 min at 37·C in the dark. Ammonium chloride 

RBC lysis buffer was added for 5 min at room temperature, shielded from light, before 

washing in PBS and resuspending cells in 1% paraformaldehyde in PBS. Samples were 

stored at 4·C protected from light, and analysed on the day of collection, using a 3 

laser/9 channel CyAn™ ADP flowcytometer with Summit 4.3 software (Dako), after 

calibration of the Fl-l voltage with fluorescent beads (Spherotech). Data were 

analysed in FlowJo 7.6 (Tree Star, Inc, OR). The magnitude of the oxidative burst was 

quantified by the rhodamine median fluorescence intensity (MFI), and degranulation 

was quantified by the fold increase in surface CDUb MFI from the unstimulated to the 

stimulated sample. Neutrophils were divided into rhodamineHI and rhodamineLo 

populations at the mid-point of the nadir between peaks. 
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Flow cytometry for cell sUrface receptors and intracellular HO-1 expression 

Whole blood was subjected to ammonium chloride RBC lysis and, after washing, cell 

pellets were resuspended in surface marker antibody cocktail (FITC anti-C091 (AbO 

Serotec, A2Mr a-2), PE anti-CD16b (BO Pharmingen, ClB-gran11.5), PERCP anti-C014 

(BO Pharmingen, M<I>P9), APC anti-C0163 (R&D Systems, 215927)) or a similar cocktail 

instead containing the corresponding manufacturer-matched isotype-control 

antibodies for C091 (Mouse IgG1) and C0163 (Mouse IgG1, 11711). Cells were 

permeabilized with CytoFix/CytoPerm (BO) before intracellular staining with polyclonal 

anti-HO-1 (Assay Designs, SPA-895) or an equivalent concentration of polyclonal 

control rabbit serum (Covance), followed by PE-Cy7 conjugated secondary antibody 

(F(ab')2 anti-rabbit IgG, Santa Cruz Biotechnology). The expression of HO-1, C0163 and 

C091 were quantified as the ratio of MFI to the respective isotype control antibody for 

the same sample. 

Neutrophil isolation and Salmonella phagocytosis and killing assays 

C015+ cells were isolated from whole blood, after red blood cell lysis and labelling with 

APC anti-C015, using anti-C015 magnetic beads and MS columns (all from Miltenyi 

Biotec) according to the manufacturer's instructions. C015+ cells were resuspended in 

RPMI + 2mM l-Glutamine at a concentration of 107/m!. GFP-expressing S. typhimurium 

(concentration confirmed by serial dilution) were opsonised in 10% pooled healthy 

Gambian adult serum (derived from 10 donors, as has been described by others (19)) 

for 20 min in the dark at room temperature. Neutrophils and S. typhimurium were 
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mixed continuously at a ratio of 50:1 at 60 rpm at 3rc. Bacterial counts were assessed 

at time 0 and 120 min by 10-fold dilutions of aliquots of the neutrophil-S. typhimurium 

suspension in 1% Triton, and plating onto LB agar, with colony forming units counted 

16-18 h later. Bacterial killing was quantified as the percentage reduction in bacterial 

count between time 0 and 120 min. Phagocytosis was assessed after 15 min of 

incubation, by removing the neutrophil-S. typhimurium suspension directly into PBS 

4% paraformaldehyde and analysing by flow cytometry. To control for 

autofluorescence and surface binding of bacteria without phagocytosis, control 

samples were prepared in an identical manner except that neutrophils and s. 

typhimurium were both fixed with 4% formaldehyde before mixing together. The 

proportion of cells phagocytosing bacteria was determined by subtraction of the 

proportion of GFP+ cells in the fixed-control samples from that in the respective 

unfixed sample. 

ELlSAs. Plasma levels of P. Jalciparum histidine rich protein-2 (PfHRP-2) (Cellabs), 

hemopexin, haptoglobin (both Genway), C-Reactive protein (CRP, R&D systems) and 

HO-1 (Enzo life Sciences) were measured by ELISA. All ELISA assays were performed 

according to the manufacturers instructions and samples for each assay were 

performed in a single batch. 

Heme Assay 
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Total plasma heme (that is plasma hemoglobin plus free- and protein bound-heme) 

was measured using a colorimetric heme assay kit (QuantiChrom heme, BioAssay 

Systems). 

Quantitative RT-PCR 

Total RNA was extracted from PAX tubes using PAXgene blood RNA kits (Qiagen) 

according to the manufacturer's instructions, and converted into eDNA using a reverse 

transcription reagent kit (Invitrogen). HMOXI (141250) gene expression was 

determined by qRT-PCR on a DNA Engine Opticon- (MJ Research) using a TaqMan

Probe kit with primers (all Metabion) as described by Hirai et al. (24). 18S rRNA was 

used as an endogenous reference gene since its expression has been shown to be 

stable in acute and convalescent samples from malaria cases regardless of disease 

severity (20), and was amplified with a commercial kit (rRNA primers and VIC labeled 

probe, Applied Biosystems). Data were analysed using Opticon Monitor 3 ™ analysis 

software (BioRad). HMOXI expression was quantified as the ratio of the transcript 

number of the HMOXI to 185 rRNA. 

Estimation of total parasite biomass 

Total parasite biomass was calculated from plasma PfHRP-2 concentration using the 

method of Dondorp et al. (25). This assumes that PfHRP-2 concentration Is an integral 

of all PfHRP-2 released in preceding rounds of schizogeny (when infected erythrocytes 

rupture to release merozoites), and is therefore a reliable indicator of cumulative 
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hemolysis since the start of the infection (25). We modified the calculation to account 

for the relatively higher blood volume at lower body weight in small children (26). To 

account for variation in size of children, parasite biomass was expressed as parasites 

per kg body weight. 

Statistics 

The study was designed to detect a 30% difference in neutrophil oxidative burst 

activity between samples at day 0 and day 28 with 80% power at the 0.05 significance 

level, allowing for 15% loss to follow up. Statistical analysis was performed using PASW 

Statistics 18 (SPSS Inc). Variables were examined for normality of distribution, and 

most were found to be non-normal. Two-tailed non-parametric tests appropriate for 

paired or related repeated measures were used to compare longitudinal data at 

different time points, and correlation was tested with Spearman's rho correlation. In 

order to normalize distribution for general linear model analysis, some variables were 

Loglo transformed or converted to binary variables. Haptoglobin concentrations 

showed a bimodal distribution, and were thus converted to a binary variable «0.349 

mg/mL, the lowest value observed in healthy control samples, or ~0.349 mg/mL). 

Sample volumes did not allow for some assays to be performed at time points after 

day 0, in which case values from six healthy control children were presented for 

comparison, but not for formal statistical analysis. 
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Results 

Subjects 

58 children with P. falciparum malaria were recruited to the study, 55 (95%) of whom 

had uncomplicated malaria (Table I). Four children had recurrent episodes of 

parasitemia during the course of follow-up and were excluded from longitudinal 

analyses; another 13 children were lost to follow-up or withdrew consent. Thus, at 

days 7, 28, and 56 the number (%) of children in follow-up were 52 (89.6%), 46 

(79.3%), and 41 (70.1%) respectively. 

Prolonged impairment of the neutrophil oxidative burst 

We assessed the PMA-stimulated oxidative burst of neutrophils using a whole blood 

flow cytometric assay based on the oxidation of dihydrorhodamine 123 to its 

fluorescent derivative rhodamine, where the magnitude of the oxidative burst is 

quantified by the rhodamine fluorescence intensity (23). The assay was modified to 

allow simultaneous assessment of degranulation based on upregulation of C011b (27), 

and surface staining of C015 to identity neutrophils. We found that neutrophils (Fig. 

1A) from subjects with acute malaria (day 0) showed an abnormal, bimodal, 

distribution of oxidative burst activity (Fig. 16), with distinct populations of 

rhodamineHi and rhodamineLo cells, whereas CDllb expression showed a unimodal 

distribution (Fig. lC). Overall, neutrophil rhodamine median fluorescence intensity 

(MFI) increased significantly over time (Fig. 10), but in view of the bimodal distribution 

of neutrophil rhodamine fluorescence, we also compared the proportion of cells that 
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were rhodamineLo and the rhodamine MFI of the rhodamineLo cells over time. The 

proportion of rhodamineLo cells decreased significantly during the convalescent period 

(Fig. lE) but remained above that of healthy controls for at least 56 days; the 

rhodamine MFI of the rhodamineLo cells also significantly increased over time and was 

similar to that of healthy controls by day 56 (Fig. IF). In contrast, there was no 

evidence of abnormalities in neutrophil degranulation as assessed by CDllb 

expression (Fig. lG). Of interest, the rhodamine MFI of the rhodamineH' cells was 

higher on days 0 and 7 after presentation (P=O.04, and P<O.OOl respectively, Wilcoxon 

matched pairs test), than on day 56 (Fig. 1 H), suggesting that the oxidative burst is 

primed in these neutrophils (28). These findings are consistent with our observations 

in mice that hemolysis and infection can prime the oxidative burst of mature, 

circulating neutrophils whilst simultaneously mobilizing immature neutrophils with 

impaired oxidative burst activity from the bone marrow (15). However the duration of 

these neutrophil abnormalities following P. falciparum infection was longer than we 

expected. 

Hemolysis and neutrophil dysfunction 

We have previously shown that hemolysis-derived heme impairs neutrophil function 

during malaria infection in mice through two related mechanisms: mobilization of 

functionally immature neutrophils from bone marrow, and impairment of the 

oxidative burst capacity of developing neutrophils due to HO-l induction In bone 

marrow progenitors (15). The severity of malarial hemolysis can be inferred from levels 

of the plasma proteins haptoglobin and hemopexin, which provide sequential lines of 
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defence against heme-mediated toxicity by binding cell-free hemoglobin and cell-free 

heme respectively (29). Only once haptoglobin is depleted do levels of hemopexin 

begin to fall, indicating that heme is being released from cell-free hemoglobin (30). 

To assess the extent of hemolysis in study participants we measured erythrocyte count 

and total parasite biomass (Table I), total plasma heme (Fig. 2A), haptoglobin (Fig. 28) 

and hemopexin (Fig. 2C), and examined their correlation with the proportion and 

function of rhodamineLo neutrophils (Table 2). As expected, total plasma heme levels 

were significantly greater on day 0 than on day 28 (Fig. 2A). Levels of haptoglobin 

showed a bimodal distribution (Fig. 28), consistent with the expected depletion of 

haptoglobin by hemolysis in some subjects (3~), but also increased production of 

haptoglobin as part of the acute phase response in other subjects (31). Hemopexin 

levels, however, were relatively normally distributed and very similar to healthy 

controls (Fig. 2C), suggesting that in these subjects with predominantly uncomplicated 

malaria, hemolysis does not liberate sufficient cell-free heme to deplete plasma 

hemopexin (29-30). 

Since rhodamineLo cells may be similar to the functionally immature granulocytes 

released into the circulation during malaria and NTS infection in mice (15), we assessed 

whether their frequency was associated with markers of inflammation and hemolysis 

(Table II). The proportion of rhodamineLo cells was significantly correlated with C

reactive protein (CRP) concentration, which would be consistent with their 
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mobilization as part of an inflammatory response (32), but did not correlate directly 

with measures of hemolysis. By contrast, the magnitude of the oxidative burst among 

rhodamineLo neutrophils (rhodamineLo MFI) showed significant univariate correlations 

with erythrocyte count and haptoglobin concentration, and significant negative 

correlations with total parasite biomass, CRP, and total plasma heme. Since these 

variables are likely to be highly correlated with each other, we analysed their effects 

on rhodamineLo neutrophil MFI using a general linear model. After stepwise 

elimination of the least significant variables in the model, only parasite biomass 

remained significantly associated with rhodamineLo neutrophil MFI (F=16.036, P < 

0.001). Overall these results are consistent with the acute phase inflammatory 

response being the primary determinant of release of rhodamineLo neutrophils into the 

circulation in children with uncomplicated malaria, but parasite burden and 

consequent hemolysis being the major determinant of the impairment of the oxidative 

burst in rhodamineLo neutrophils. 

Factors associated with HO-1 induction 

In malaria-infected mice we found that heme-mediated HO-1 induction in neutrophil 

progenitors in bone marrow was necessary to impair the oxidative burst of developing 

neutrophils (15). Since there were no clinical indications for bone marrow aspiration in 

any of the study subjects, our analysis of the HO-1 pathway was restricted to 

parameters measurable in peripheral blood, namely plasma HO-1, whole blood 

HMOX1 gene expression and HO-1 protein expression in peripheral blood cells. Also, 

since the induction of cellular HO-1 by haptoglobin-hemoglobin or heme-hemopexln 

176 



complexes depends on the presence of surface receptors for their uptake (C0163 and 

C091 respectively) (31, 33-34), we examined C0163 and C091 expression on 

monocytes and neutrophils. 

As previously reported in mice (15) and humans (35), HO-1 expression (assessed by 

fluorescence intensity) in circulating neutrophils was not increased in acute malaria 

infection compared with convalescence (data not shown). In contrast, monocyte HO-1 

expression was higher on day 0 than on days 7 or 28 (Fig. 3A). Plasma HO-1 was higher 

in subjects on day 0 than in healthy control children (Fig. 38), and as we have 

previously reported (35), whole blood HMOX1 expression was significantly higher on 

day 0 than following recovery on day 28 (Fig. 3C). 

In control subjects, C0163 and C091 were expressed on the surface of monocytes but 

were not detectable on neutrophils (Fig. 3~). In children with malaria, monocyte 

C0163 expression was significantly lower at day 0 than on days 7 and 28 (Fig. 3E), 

whereas C0163 remained undetectable on neutrophils from most subjects (Fig. 3F). 

C091 expression did not change significantly over time on monocytes (Fig. 3G) or 

neutrophils (Fig. 3H), although when all subjects were considered together, there did 

appear to be very low level C091 expression on neutrophils at all time points. 

To further explore the likely pathways of HO-1 induction during malaria infection, we 

constructed a simple conceptual model (Fig. 4), beginning with the malaria parasite as 

the cause of hemolysis, inflammation, and tissue hypoxia/ischemia (36) - all of which 

may induce HO-1 expression (37) - and analysed univariate correlations between the 

various measures of HO-1 induction. As expected, parasite biomass was strongly 

correlated with total plasma heme and CRP. Plasma HO-1 correlated much more 
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strongly with CRP and lactate than with plasma heme, supporting the idea that it may 

be released in response to harmful and inflammatory stimuli. Surprisingly, however, 

neither whole blood HMOXl expression nor monocyte specific HO-1 correlated 

significantly with total plasma heme, CRP, or lactate. As the haptoglobin receptor 

C0163 has been reported to be down regulated during inflammation (38), and to be 

shed from the cell surface during acute, uncomplicated malaria infections (39), we 

explored whether monocyte specific HO-1 expression might be confounded by 

changes in expression of C0163, using a general linear model controlling for the effect 

of C0163 expression. This revealed a significant interaction between total plasma 

heme and C0163 expression, but strong independent associations between monocyte 

HO-1 and total plasma heme (F=15.1, P < 0.001) and monocyte HO-1 and C0163 

expression (F=9.378, P = 0.003). In other words, monocyte HO-1 induction would 

closely correlate with total plasma heme, but down regulation of surface C0163 

prevents the uptake of hemoglobin-haptoglobin complexes and hence limits HO-1 

induction. This explains in part the discordance between different measures of the HO-

1 induction pathway in blood. In summary, however, this analysis demonstrates that 

HO-1 protein expression in myeloid cells can be increased by hemoglobin and heme 

liberated during malarial hemolysis, although this effect is limited by reductions in 

surface C0163 expression. 

Neutrophil oxidative burst and prior HO-l induction 

In mice we had observed that suppression of the oxidative burst of circulating 

neutrophils by hemolysis required the release of immature neutrophils from bone 
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marrow, requiring either a lag time, or an additional stimulus (such as NTS infection), 

to cause these cells to rapidly enter the circulation (15). Having observed that an 

abnormal population of neutrophils was present for prolonged time following P. 

!alciparum, we looked for evidence of an association between HO-1 induction on day 

0, and neutrophil oxidative burst on day 7. Using the ratio of day 0 to day 28 whole 

blood HMOX1 expression as an indicator of induction in acute malaria, we found a 

significant inverse correlation with the rhodamine MFI of rhodamineLo neutrophils on 

day 7 (Spearman's correlation coefficient = -0.352, P = 0.028, n=39), whereas there 

was no significant correlation with the proportion of rhodamineLo cells on day 7 

(Spearman's correlation coefficient = -0.101, P = 0.542, n=39). Although the kinetics of 

the process of HO-l induction, suppression of oxidative burst capacity in developing 

neutrophils, and subsequent release of the functionally immature neutrophils into the 

circulation are unknown, the observed association between HO-l induction during 

acute disease and neutrophil dysfunction during early convalescence is consistent with 

this sequence of events. 

Salmonella phagocytosis and killing 

Since we have observed that neutrophil killing (but not phagocytosis) of S. 

typhimurium is defective in malaria-infected mice (15), we assessed the ex-vivo killing 

and phagocytosis of serum-opsonised S. typhimurium by neutrophils isolated from 

whole blood of subjects and controls from whom sufficient blood remained after the 

preceding assays (Fig. 5A-C). Bacterial killing, calculated as the reduction in the viable 

bacterial count 2 hr after co-culture, was slightly higher on day 0 than at subsequent 
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time points (Fig. 5A). There was no significant correlation between bacterial killing on 

day 0 and either the proportion of rhodamineLo neutrophils, the rhodamine MFI of the 

rhodamineLo neutrophils, total plasma heme or parasite biomass (data not shown). 

Bacterial phagocytosis, determined by flow cytometric analysis of the proportion of 

GFP+ neutrophils after 15 min co-culture (Fig. 5B), did not vary significantly over time 

following infection (Fig. 5q. However phagocytosis at day 0 was inversely correlated 

with parasite biomass (n=26, Spearman's correlation coefficient = -0.512, P =0.008), 

and with total plasma heme (n=28, Spearman's correlation coefficient = -0.441, P= 

0.019) (Fig. 50). Taken together with the neutrophil oxidative burst assay data (Fig. 1 

F,H), these data indicate that although there may be some degree of (heme-mediated) 

priming of neutrophil function in children with acute malaria (day 0) which enhances 

bacterial killing during acute illness (40), phagocytosis of S. typhimurium by circulating 

neutrophils becomes increasingly impaired with increasing parasite burden and 

increasingly severe hemolysis, and that the ability of neutrophils to kill S. typhimurium 

once they are phagocytosed might also become impaired. 

Discussion 

Although the association between malaria infection and susceptibility to NTS 

bacteremia has been recognized for almost a century (9), the mechanism has been 

elusive. The strongest association is with severe malarial anemia (5-6) and at least two 

other conditions associated with hemolytic anemia - sickle cell disease (41) and acute 

bartonellosis (42) - also predispose to NTS bacteremia. This is likely a result of both the 
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nature of the defect in host-defence induced by malaria, and also the prevailing 

epidemiology of invasive bacterial infection: NTS is one of the most common causes of 

bacteremia in Sub-Saharan Africa (43-44). In a mouse model we recently showed that 

hemolysis due to malaria or phenylhydrazine treatment impaired resistance to S. 

typhimurium, which could be recapitulated by treatment with hemin, and abrogated 

by treatment with the HO inhibitor tin protoporphyrin (15). We found that bacteria 

accumulated in circulating neutrophils, and that these neutrophils were defective in 

killing S. typhimurium, associated with impairment of their oxidative burst response 

which is an essential mechanism for killing S. typhimurium (18). This was due to heme-

mediated induction of HO-l in granulocyte precursors in bone marrow, causing 

immature neutrophils leaving the bone marrow to have a reduced capacity to mount 

an effective oxidative burst. It is not known whether bacteria accumulate 

preferentially in neutrophils in humans with malaria and NTS cO-infections, but in the 

pre-antibiotic era neutrophils and NTS were often found co-localized in abscesses 

which formed at the site of intramuscular quinine injection in co-infected individuals 

(9). Although neutrophil function has not been extensively studied in malaria, there are 

several case reports of patients with severe malarial hemolysis spontaneously 

developing fungal sepsis (45-47), which is typically associated with neutropenia and 

neutrophil dysfunction. 

The present study was designed to determine whether Gambian children with P. 

!alciparum malaria have evidence of neutrophil dysfunction similar to that observed in 

mice infected with P. yoel/i 17XNL. We hypothesized that the neutrophil oxidative 

burst would be impaired in children with malaria, and the severity of this impairment 

would be related to hemolysis and HO-l induction. However, we also predicted that 
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the impairment of neutrophil function would be relatively mild, because declining 

malaria transmission in The Gambia has lead to a decrease in the incidence of severe 

malarial anemia and malaria-NTS co-infection (7). Overall, our results are consistent 

with our hypothesis: the oxidative burst activity of circulating neutrophils was 

profoundly abnormal in subjects with acute P. !alciparum malaria, and most severely 

impaired in children with the highest parasite burdens and greatest hemolysis, albeit 

the magnitude of this impairment did not translate into a clinically significant defect in 

neutrophil killing of S. typhimurium in vitro. We also found that these abnormalities 

persisted for at least 56 days, and that bacterial phagocytosis and killing appeared to 

deteriorate during the early convalescent period (up to 28 days), findings which may 

be consistent with descriptions of increased susceptibility to NTS bacteremia in 

children who have recently had malaria (6, 10), and the gradual emergence of 

dysfunctional neutrophils from bone marrow following HO-l induction during the 

acute infection (15). To facilitate comparison with our studies in mice (15), we 

assessed neutrophil function using PMA as the stimulus for the oxidative burst. 

Although this is not a physiological stimulus, the advantages of this method are: i) that 

it produces a strong oxidative burst (48-49) which is clearly distinguished from any low

level activation caused by malaria infection per se , ii) it is not dependent on 

phagocytosis (which might also be impaired by malaria) (48-49), and iii) variations in 

the magnitude of the PMA-induced oxidative burst are directly related to the ability of 

humans to survive infections (50). 

Consistent with data from mice and humans (15, 35, 51), we observed induction of HO-

1 during acute malaria. Although dissecting the causal and consequential pathways of 

HO-l induction is difficult in an observational study, we constructed a conceptual 
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model of likely pathways leading to HO-1 induction based on existing literature (Figure 

4) (37), and used this model to guide our statistical analysis. Plasma HO-1levels 

correlated more strongly with plasma lactate and CRP concentrations than with plasma 

heme concentrations, suggesting that plasma HO-1 may be predominantly a response 

to inflammation and hypoxia and a marker of cell damage. As noted previously, 

intracellular HO-1 protein expression was not significantly upregulated in acute malaria 

in circulating neutrophils (35), presumably because they lack C0163 expression, 

whereas monocytes did show evidence of increased HO-1 protein expression in acute 

malaria. However there was not a significant univariate association between total 

plasma heme concentration and HO-1 expression in monocytes, which could be 

explained statistically by the reduced levels of monocyte surface C0163 expression in 

acute malaria. This explanation is fully consistent with the subjects in this study having 

only mild hemolysis (none had severe malarial anemia and only half had low 

haptoglobin levels) and with the assumption (as hemopexin levels were not depleted) 

that very little of the total circulating heme represents cell-free heme. In this case, HO-

1 induction due to hemolysis would be expected to proceed predominantly through 

C0163-mediated uptake of haptogobin-hemoglobin complexes, and reduction in 

surface C0163 would be expected to limit HO-1 induction (38). In contrast, severe 

hemolysis would be expected to generate cell free heme, and lead to HO-1 induction 

and heme catabolism in cells expressing the surface receptor (C091) for heme

hemopexin complexes, which appears to be invariantly expressed during infection. 

Indeed, we previously found elevated carboxyhemoglobin levels, an indirect measure 

of HO activity, only in children with severe malarial anemia suggesting that heme 

catabolism is constrained in acute malaria and only detectably increased in cases with 
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the most severe hemolysis (52). It is conceivable that by reducing C0163 expression in 

the context of infection, monocytes are rendered relatively resistant to HO-1 induction 

by hemolysis, perhaps preventing HO-1-mediated impairment oftheir normal 

inflammatory responses (38, 53). However, it is presently unknown whether either 

C0163 or C091 expression are required for HO-1 induction in immature myeloid cells 

and their progenitors in human bone marrow. If HO-1 induction in bone marrow is 

responsible for the observed neutrophil dysfunction (as it is in mice (15)), it may be 

either independent of C0163, or C0163 may not be down regulated in the bone 

marrow to the same extent as in blood monocytes. We did not examine the effect of 

HMOXl promoter (GT)n length polymorph isms in this study because the majority of 

subjects had uncomplicated malaria with mild hemolysis and we expected that under 

these circumstances genetic polymorph isms would have a relatively small effect and a 

much larger sample size would have been required (35). 

In apparent contradiction of our findings in mice, killing of S. typhimurium by 

neutrophils was not noticeably impaired on day 0, but deteriorated over the next 4 

weeks. A possible explanation is that, despite the accumulation of a rhodamineLo 

neutrophil population, the oxidative burst of the rhodamineHi neutrophil population 

was higher on days 0 and 7 than at later time points, and enhanced bactericidal activity 

among rhodamineHi cells may initially compensate for the lack of killing among the 

rhodamineLo population, particularly if the rhodamineHi cells showed preferential 

phagocytosis of the opsonised S. typhimurium. This finding is perhaps not surprising 

because none of the children had severe hemolysis or severe anemia, which are the 

major risk factors for malaria-NTS coinfection (5-6), suggesting that their bactericidal 

capacity should not be seriously impaired. We predict, however, that bacterial killing 
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would be seriously impaired in children with severe hemolytic anemia. The acquired 

defect of neutrophil function that we observed in children with malaria in this study 

might be considered analogous the neutrophil defect observed in female carriers of X

linked chronic granulomatous disease, where around 50% of neutrophils have 

defective oxidative burst activity due to random inactivation of the X-chromosome, but 

there is not increased susceptibility to infection (54) and in vitro bactericidal activity 

may be normal (55). However in some carriers, inactivation of the X-chromosome 

becomes skewed, and when less than 15% of neutrophils are able to make a normal 

oxidative burst, susceptibility to infections is markedly increased (17). Consistent with 

this, in a large European registry of chronic granulomatous disease patients, 

Salmonella has been reported as by far the most common cause of septicemia (whilst 

fungi and Staphylococcus aureus are the most common causes of chronic lung and 

deep tissue infections, due to the persistent defect in oxidative burst activity) (17). We 

propose that in patients with malaria a threshold proportion of abnormal neutrophils 

in blood may be required to produce susceptibility to NTS, and when this threshold is 

exceeded the degree of susceptibility may then also be determined by the magnitude 

of the impairment of oxidative burst capacity. Factors which may determine whether 

the proportion of dysfunctional neutrophils exceeds this putative threshold may 

include: the duration of infection and the severity of the inflammatory response, which 

may both influence the mobilization of dysfunctional neutrophils from bone marrow 

(15); the severity of hemolysis, since cell-free heme itself promotes neutrophil 

mobilization (15); and possibly host factors such as age and genetic background. The 

strong correlation we observed between impaired neutrophil oxidative burst and total 

parasite biomass allows us to predict that children with high parasite burden (who are 
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also most likely to have severe hemolysis) would have the most impaired oxidative 

burst. These children may also have depleted hemopexin levels and accumulate cell 

free heme, which can itself mobilize neutrophils from bone marrow (15), perhaps 

increasing the proportion of abnormal neutrophils above a threshold required to 

induce susceptibility to NTS. 

The prolonged duration of abnormal neutrophil oxidative burst activity, extending up 

to 8 weeks after acute infection in some subjects, was unexpected. It seems unlikely 

that these children would all have an underlying defect in neutrophil function, but one 

possibility that deserves consideration is that the duration of neutrophil impairment 

may be linked to persisting hemozoin. Hemozoin is an insoluble hemin polymer, the 

end product of hemoglobin digestion inside the parasitised red cell, which is able to 

induce HO-l (and impair the oxidative burst in phagocytes) but is not catabolised by it 

(56-57), resulting in prolonged persistence in the circulation, reticuloendothelial 

system, and bone marrow, of hemozoin-Iaden phagocytes (58). 

The major limitations of our study are that most subjects had relatively mild hemolysis 

and that we did not have bone marrow samples to confirm HO-l induction in 

neutrophil progenitors. To recruit a significant number of subjects with severe malarial 

hemolysis would require a much larger study, probably conducted in a higher 

transmission setting. To study prospectively whether the severity of neutrophil 

dysfunction at recruitment correlated with susceptibility to NTS bacteremia during 

convalescence would require an even larger and more logistically complex study. To 

obtain bone marrow aspirates from children with malaria would be difficult to justify 

ethically unless appropriate sedation and analgesia (usually requiring a general 
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anaesthetic) could be provided without placing them at additional risk of 

complications. 

Nevertheless, our findings have a number of important implications. First we show 

that the oxidative burst capacity of a large proportion of neutrophils is markedly 

abnormal in children with P. !alciparum malaria, supporting the translation of findings 

in a mouse model (15). Second, neutrophil function recovers only very slowly over the 

two months after treatment, providing an explanation for the association of 

susceptibility to NTS with recent malaria (10-11). In the mouse model, hemolysis

induced neutrophil dysfunction could be abrogated by competitive inhibition of HO 

with tin protoporphyrin (15), but using this treatment in acute malaria would be 

challenging because HO-1 is also important for tolerance to cytotoxic effects of cell 

free heme in mouse models (51, 59). Alternative therapeutic strategies would be 

administration of tin protoporphyrin upon completion of antimalarial treatment, with 

the aim of restoring neutrophil function during convalescence and preventing the 

susceptibility to NTS caused by recent malaria, or prioritisation of children at greatest 

risk of persistent neutrophil dysfunction for prophylactic antibiotic treatment. Third, 

we propose the down-regulation of the haptoglobin receptor C0163 on the surface of 

blood monocytes during acute P. Jalciparum malaria as a novel host-protective 

homeostatic response to hemolysis and inflammation, which may prevent HO-1 

induction from impairing monocyte function. Further experimental studies are needed 

to confirm the effects of manipulating C0163 expression during infections, but 

manipulation of this axis would hold promise for both the modulation of inflammation 

and optimization of iron re-utilization during chronic infections. 
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FIGURE 1. P. /alciparum malaria causes prolonged impairment of the neutrophil 

oxidative burst. (A) Representative FACS plots showing the gating of the neutrophil 

population based on forward scatter and side scatter characteristics followed by 

selection of single cells based on pulse width and forward scatter, and selection of the 

CD15+ population. (B,C) Rhodamine (B) and CDUb (C) fluorescence of unstimulated 

(filled histogram) and PMA-stimulated neutrophils (unfilled histogram) on days 0, 7, 28 

and 56 after presentation with P. /alciparum malaria. Representative plots from a 

healthy control child are also shown for comparison. RhodamineHi and rhodamineLo 

populations of neutrophils were defined for each sample by partition at the nadir of 

the bimodal distribution, and percentages of the total cells in each population are 

shown (8). (D-H) longitudinal analyses of neutrophil function, compared using 

Friedman's two way ANOVA for all subjects with valid data at all time points. Healthy 

controls are also shown for comparison, but not included in the statistical analysis 

(D,E,G). Horizontal lines represent medians. n stated for valid data at every time point. 

(D) Rhodamine MFI for all neutrophils (rhodamineHi and rhodamineLo considered 

together as a single population); n=32. (E) Proportion of neutrophils that are 

rhodamineLo
; n=28. (F) Rhodamine MFI of rhodamineLo neutrophils; n=28. (G) 

Degranulation of all neutrophils, assessed by fold change in surface CDllb (PMA 

stimulated CD11b MFI: unstimulated CDllb MFI); n=29. (H) Rhodamine MFI of 

rhodamineHI neutrophils; n=32. 
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FIGURE 2. Indicators of hemolysis in subjects with P. Jalciparum malaria. (A) Total 

plasma heme on day 0 and day 28, compared using Wilcoxon matched pairs test for 

those with data at both time points (n=32). (8) Distribution of plasma haptogobin 

levels at day 0, n=S7. For comparison levels in six healthy control children are also 

shown. (C) Distribution of plasma hemopexin levels at day 0, n=49. For comparison 

levels in six healthy control children are also shown. 

201 



FIGURE 3. Factors associated with heme oxygenase-1 expression in P. /a/ciparum 

malaria. (A-C): heme oxygenase-1 induction. (A) Representative FACS analysis of HO-1 

induction in moncoytes showing exclusion of red blood cells, gating on single cells, and 

subsequent definition of monocytes as C014+. Histograms show fluorescence of 

monocytes stained intracellularly with control antibody (filled) or anti-HO-1 antibody 

(unfilled) followed by a secondary detection antibody. Quantitative data for HO-1 

expression in monocytes (ratio of anti-HO-1 to control antibody fluorescence) for all 

subjects on days 0, 7 and 28 are shown in the right hand panel, compared using 

Friedman's two way ANOVA (n=20). (8) The distribution of Plasma HO-1 on day 0, 

n=S7. For comparison levels in six healthy control children are also shown. (C) Whole 

blood HMOXl RNA expression, measured by qRT-PCR, compared between samples on 

day 0 and day 28 using Wilcoxon matched pairs test for those with data at both time 

points (n=42). (D-H) C0163 and C091 expression on monocytes and neutrophils. (D) 

Representative flow cytometry analysis of healthy control subject neutrophils (C014" 

C016b+) and monocytes (C014+C016b"), showing staining with respective control (filled 

histogram) and anti-C091 or anti-C0163 antibodies (unfilled histograms). Quantitative 

data for expression (ratio to control antibody fluorescence) of C0163 in monocytes (E) 

and neutrophils (F), and C091 in monocytes (G) and neutrophils (H), compared using 

Friedman's two way ANOVA for all subjects with valid data at all time points (C0163, 

n=19; C091 n=20). Horizontal bars represent medians. n stated for those with valid 

data at all time points. 
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FIGURE 4. A conceptual model of the pathways leading to HO-1 induction in acute P. 

!alciparum malaria. The biomass of P. !alciparum parasites within the subject was 

considered to be the quantifiable cause of hemolysis, inflammation and tissue hypoxia 

/ ischemia, all of which are stimuli for induction of HO-1. The variable measured to 

quantify each step in the pathway is indicated in italics. Associations between variables 

were tested using Spearman's correlation as indicated by lines with arrows showing 

the hypothesized relationship from cause to effect. Significant correlations are 

denoted by solid lines, and line thickness indicates the significance of the correlation 

(thin line 0.01 S P <0.05, medium thickness line 0.001 S P <0.01, heavy line P <0.001), 

whereas non-significant correlations are denoted by dashed lines. The strength of 

correlation is indicated by Spearman's rho adjacent to significant correlation lines. 
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FIGURE S. Ex-vivo killing and phagocytosis of S. typhimurium by neutrophils from 

children with P. !alciparum malaria. (A) Killing of S. typhimurium. Neutrophils isolated 

on days a, 7, 28 and 56 after presentation with P. !alciparum malaria were mixed with 

S. typhimurium at ratio of 50:1 and killing expressed as the percentage reduction in 

bacterial numbers after 2 h incubation. Statistical comparison using Friedman's two 

way ANOVA for all subjects with valid data at all time points, n=18. Data from control 

subjects shown for comparison. (8) Representative flow cytometry plots showing 

phagocytosis of GFP+ S. typhimurium by neutrophils isolated on day O. RBCs and debris 

were excluded based on forward scatter and side scatter characteristics, then single 

cells were selected based on pulse width and forward scatter characteristics (upper 

row). The proportion of GFP+CD15+ cells was determined in samples where both 

neutrophils and S. typhimurium were fixed in 4% formaldehyde prior to incubation (to 

control for surface binding without phagocytosis), and in unfixed samples (lower row). 

(C) Phagocytosis of S. typhimurium. Neutrophils isolated on days 0, 7, 28 and 56 after 

presentation with P. !aJciparum malaria were mixed with S. typhimurium at a ratio of 

50:1 and phagocytosis expressed as the percentage GFP+ neutrophils after 15 min 

incubation. The percentage GFP+ cells was calculated by subtracting the proportion of 

GFP+ cells in formaldehyde fixed samples from that in unfixed samples. Statistical 

comparison using Friedman's two way ANOVA for all subjects with valid data at all 

time points, n=7. Data from control subjects shown for comparison. (D) Correlation of 

phagocytosis (on day 0) with parasite biomass on day 0 (left hand panel, n=26) and 

total plasma heme on day 0 (right hand panel, n=28). 
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Table I. Demographic, clinical and laboratory characteristics at recruitment. 

Variable Category n*(%) Median (lQR) 
Sex Male 36 (62) 

Female 22 (38) 
Ethnicity Mandingo 25 (43) 

Fula 10 (17) 
Wolof 7 (12) 
Manjago 5 (9) 
lola 5 (9) 
Serere 4 (7) 
Aku 1 (2) 
Fanti 1 (2) 

Age (years) 58 8 (4-12) 
Severity Mild 55 (95) 

Severe 3 (5) 
prostration 2 
lactic acidosis 1 

Plasmodium species P. Jalciparum 55 (95) 
P. falciparum and 3 (5) 
P. malariae 

Sickle cell screen Negative 53 (91) 
AS 1 (2) 
Not done 4 (7) 

Hemoglobin, gld1 58 11.5 (9.98-12.5) 
Erythrocyte count,x 1 012 /L 58 4.26 (3.83-4.66) 
Mean corpuscular volume, 56 
fL 76.9 (73.5-80.7) 
Leukocyte count, xl 09/L 57 8.50 (6.74-10.3) 
Granulocyte count, x109/L 57 6.21 (3.91-7.85) 
Parasite density, 57 92800 (28200-219000) 
parasites/~L 
Parasite biomass, 55 1.23xl010 (5.21x109-
parasites/kg 2.l4x101~ 
C-reactive protein, mgIL 46 106.4 (64.5-234.3) 
Lactate, mmollL 42 2.0 (1.6-2.45) 

* Data were not available for every variable for every subject. IQR, Interquartile range. 
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Table II. Association of neutrophil dysfunction with hemolysis on day o. 

% RhodamineLo Rhodamine MFI 

Neutrophils of RhodamineLo Neutrophils 

Correlation Correlation 

Variable n* coefficient P n* coefficient P 

Parasite biomass/kg 53 0.208 0.134 53 -0.539 <0.001 

Erythrocyte count 56 -0.001 0.992 56 0.280 0.037 

Haptoglobin 55 0.004 0.976 55 0.292 0.031 

Total plasma heme 54 0.222 0.l06 54 -0.268 0.050 

C-reactive protein 44 0.350 0.020 44 -0.452 0.002 

Indicators of hemolysis and inflammation were assessed for correlation with the 

proportion of rhodamineLo neutrophils and with the rhodamine MFI of rhodamineLo 

neutrophils on day 0 using Spearman's correlation. *Data were not available for every 

variable for every subject. 
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Chapter 7. Is extensive sequestration of parasitized red 

blood celk necessary for severe P. falciparum malaria in 

children? 
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Extensive parasite sequestration is not necessary lor severe disease 
in Gambian children with Plasmodium lalciparum malaria 

The material presented in this chapter represents an article that has been submitted 

for peer reviewed publication. This chapter does not obviously follow from the rest of 

the thesis so far, but arose from an analysis of the relationship between parasitemia 

and PfHRP2-derived total parasite biomass, which has been suggested to be a better 

marker of the parasite burden within an individual with P. Jalciparum malaria.288 In the 

preceding chapter, parasite biomass was presented using estimates derived from the 

concentration of PfHRP2 in plasma. The material in this chapter explores the 

association of PfHRP2 and the derived parameter, sequestered parasite biomass, with 

severe malaria in Gambian children. The subjects included in this study are those from 

the same data collection platform described in Chapter 6. The assays for PfHRP2 in 

plasma were performed with Sarah Nogaro. Analysis of possible confounding factors 

(requiring advanced statistical techniques) was performed by Dr Michael Bretscher, 

who also provided general statistical advice on the analysis and interpretation of 

results from this study. The conclusion of this article, that extensive sequestration of 

parasites is not necessary for severe malaria, suggests that other factors mentioned in 

Chapter 1, such as hemolYSis and immune activation, may be more important in 

triggering severe malaria, and these aspects will be considered in more detail in 

Chapter 8. The relationship between hemolysis, heme, HO-1 induction and severe 

malaria is discussed further in Chapter 9. 
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Abstract 

Background: Intravascular sequestration of parasitized red blood cells (pRBC) is thought to 

playa central role in the pathogenesis of severe Plasmodium /alciparum malaria (SM), but 

current evidence does not allow resolution of whether sequestration is the cause or a 

consequence of SM. 

Methods: Parasite biomass estimates were compared in 296 Gambian children with P. 

/alciparum malaria, 120 (40·5%) of whom had one or more indicators of SM. Circulating 

parasite biomass was calculated from blood film parasitaemia, whilst total parasite biomass 

was estimated from plasma levels of P./alciparum histidine rich protein 2 (PfHRP2). Evidence of 

sequestration was defined as the PfHRP2-derived biomass estimate being greater than 

circulating biomass. 

Findings: In uncomplicated malaria (UM) the PfHRP2-derived parasite biomass and circulating 

biomass estimates were remarkably similar. Both total and circulating parasite biomass 

estimates were significantly greater in children with SM than in those with UM. However, 

there was no significant difference between PfHRP2-derived and circulating parasite biomass 

estimates in children with SM, or in any subgroup of children with SM classified by clinical and 

laboratory features, except those with severe anaemia (SA). Furthermore, the calculated 

sequestered parasite biomass did not differ significantly between UM and SM, except in those 

with SA. Both estimates of parasite biomass correlated equally well with blood lactate, a we"

established marker of disease severity, whereas there was no significant correlation between 

lactate and sequestered parasite burden. 
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Interpretation: Extensive parasite sequestration is not necessary to cause most manifestations 

of SM in Gambian children. Extensive sequestration seen in post mortem studies of children 

with malaria may be a consequence of severe disease rather than the initiating factor. 

Funding: This study was supported by core funding from the Medical Research Council (MRC, 

UK), The Gambia, and a MRC clinical research training fellowship (AJC, G0701427). 

Introduction 

Current dogma places the extensive sequestration of pRBC within the microvasculature at the 

centre of the pathogenesis of SM,l based on the following compelling observations: 

Plasmodium /alciparum, the cause of most SM, is the only Plasmodium species exhibiting 

extensive sequestration in humans;2 post mortem studies have shown the presence of 

sequestered pRBCs in patients dying from malaria;l, 3-4 reversible obstruction of blood flow in 

retinal vessels occurs in patients with cerebral malaria (CM);5 and adults with SM have a 

calculated total parasite biomass much higher than that estimated from peripheral blood 

smears.6 Whilst the association of sequestration with SM is beyond doubt, these observations 

fall short of proving that sequestration is the cause of, rather than a consequence of SM. 

Indeed, other observations raise questions about this dogma: P. vivax, which exhibits much 

less pRBC sequestration, is increasingly recognized as a cause of severe disease;7 a significant 

proportion of CM cases do not exhibit retinopathy;8 and human and animal studies have 

implicated numerous other pathways that can lead to organ damage and dysfunction in 

malaria without the need for pRBC sequestration.9
•
11 To prove that pRBC sequestration is 

necessary to cause SM in humans is extremely challenging. However, evidence that SM does 

not require extensive sequestration might be more readily obtained if SM occurs with 

sequestered parasite burdens similar to those in UM. PfHRP2, a soluble parasite molecule 

released predominantly at schizogeny (when pRBCs rupture, releasing merozoites to infect 
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new RBC), has been used to provide an indirect estimate of total (sequestered plus 

unsequestered) parasite biomass.6 Sequestered biomass can be estimated from the difference 

between PfHRP2-derived parasite biomass and circulating parasite biomass (estimated from 

the unsequestered parasites visible on a peripheral blood film). In this study in Gambian 

children we found that there was remarkably good concordance of population estimates of 

parasite burden between the two methods in both UM and SM, but little evidence of extensive 

sequestration of pRBCs in SM. 

Methods 

The study was approved by the Gambia Government / MRC laboratories Joint Ethics 

Committee. All samples were collected with informed consent from the child's parent or legal 

guardian. During each malaria season between August 2007 and January 2011, Gambian 

children with P. !alciparum malaria (defined by compatible clinical symptoms and ~5000 

asexual parasites/ill blood) were recruited within a longitudinal study investigating clinical, 

immunological and parasitological factors in UM and SM.12 Briefly, subjects were recruited 

from three peri-urban health centres, The MRC Gate Clinic, Brikama Health Centre and The 

Jammeh Foundation for Peace Hospital, Serekunda. All children underwent full clinical 

examination and were managed in accordance with Gambian government guidelines. Children 

suspected to have concomitant bacterial infections were excluded. SM was defined using 

modified WHO criteria:13 SA = Hb ~ 6g/dl; lactic acidosis (LA) = blood lactate ~ 7mmol/l; CM = 

a Blantyre coma score ~ 2 for at least 2 hours in the absence of hypoglycaemia; severe 

prostration (SP) = inability to sit unsupported (children> 6 months) or inability to suck 

(children ~ 6 month). Children fulfilling the criteria for both SP and SA, LA, or CM were 

classified as having SA, LA, or CM. Outcome was assessed by survival to discharge from 

hospital. On presentation, capillary blood was used for lactate, glucose, thick and thin blood 
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films; venous blood was collected for sickle cell screen, full blood count (EOTA), RNA (PAX 

tubes), and plasma (heparin). Initial parasitaemia (to determine eligibility) was estimated from 

Field's stained thick blood films and subsequently accurately counted from 50 fields on Giemsa 

stained thin blood smears by an experienced microscopist. Samples were transported to the 

laboratory on ice within 2 hours of collection. Plasma was separated on arrival in the 

laboratory and stored at -70°C until analysis was performed. Full blood count was performed 

using a Medonic instrument (Clinical Diagnostics Solutions, Inc). 

PfHRP-2 was measured in duplicate in plasma by ELISA kit (Cellabs). A standard curve was 

constructed using serial dilutions of the PfHRP-2 standard and run with every plate. Each plate 

contained a mixture of samples from UM and SM arranged in order of enrollment. Circulating, 

PfHRP2-derived, and sequestered parasite biomass estimates were calculated as described by 

Oondorp et al.6 To account for the higher blood volume relative to weight in small children we 

modified the blood volume term in the equation as follows: males, blood volume (mL) = 

312+(63,11 x body weight (kg)); females, blood volume = 358+(62,34 x body weight (kg)).14 To 

account for variation in size of children, parasite biomass was expressed as parasites per kg 

body weight. 

The presence of metabolically active bacteria in blood was determined using quantitative peR 

on cDNA with species-specific primers for Streptococcus pneumoniae1S and non-Typhoid 

Salmonella (NTS),16 the two most common causes of invasive bacterial infection.17 

Statistical analysis was performed using PASW statistics 18 (SPSS Inc.), GraphPad Prism 

(GraphPad Software Inc.) and the R-statistical software (R Foundation). Variables of interest 

were IOg10 transformed to achieve normal distribution prior to parametric analysis, except 

sequestered biomass (which had both positive and negative values) which was analysed with 

non-parametric tests. Unpaired and paired sample t-tests were used to compare continuous 

variables between independent and related groups respectively. Sequestered parasite biomass 
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was analysed using the Mann-Witney U test for group comparisons, and the Scheirer-Ray-Hare 

test and quantile regression were used to assess confounding. Correlation was assessed using 

Spearman's rank correlation coefficient. To allow for the multiplicity of tests resulting from 

multiple responses and multiple comparisons within a response, a false discovery rate (FOR) of 

5% was assumed, using the Benjamini and Hochberg approach.ls 

Role of the funding source. The funders had no role in study design, data collection and 

analysis, decision to publish, or preparation of the manuscript. 

Results 

Plasma samples, sufficient data for calculation of total and circulating parasite biomass, and 

full clinical data were available from 315 children. In 19 cases PfHRP-2 measurements were 

below the detection limit of the assay (0·4ng/mL), and these were excluded from further 

analysis. In total, data from 296 children (Tables 1 and 2), 120 (40,5%) with SM (Figure 1), were 

analysed. 

Children with SM had higher parasite biomass than children with UM, regardless of which 

estimate of parasite biomass was used (Figure 2 and Table 2). As expected, the children with 

SM were younger, more anaemic, had lower platelet counts and had higher blood lactate, 

parasitaemia and parasite density than UM cases. 

We assessed the extent of parasite sequestration in two ways: first, PfHRP-2-derived parasite 

biomass was compared with the circulating biomass within groups of subjects (with a 

significantly higher PfHRP-2-derived biomass indicating sequestration of pRBC); second 

sequestered parasite biomass estimates for each subject were compared between groups. 

Using the first method, the two parasite biomass estimates did not differ significantly for 

either UM or SM, or for any of the subgroups of SM except SA (Table 2). Since a large 
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proportion (74 out of 120,61·6%) of SM cases had prostration alone, which is associated with 

a lower risk of mortality than the other indicators of severity/9 we reanalyzed the data for 

subjects with SM excluding those with prostration alone. Even in this group of 46 children with 

the most severe manifestations of malaria, there was no significant difference between 

estimates of parasite burden. Reanalysis using a less stringent definition of hyperlactataemia 

(> 4mmol/L, as used by Dondorp et all increased the numbers of children classified as having 

SM, SM excluding prostration, and SM with LA to 142, 106 and 100 respectively, but did not 

change the significance or inference from the comparisons between the different estimates of 

parasite burden (Table 2). Similarly, in the small group of children who died, there was no 

significant difference between estimates of parasite burden. We next calculated sequestered 

parasite biomass: for all subjects taken together this revealed a roughly symmetrical 

distribution of values about zero, and there was no significant difference in sequestered 

parasite biomass between UM and SM groups, or between UM and any individual severe 

manifestations except SA (Table 2). When we calculated sequestered parasite burden in 

subjects with SM, excluding those with prostration alone, the geometric mean value was 

3'0x109 parasites/kg, which is equivalent to just 9·9% and 11% of the geometric mean total 

parasite biomass and circulating biomass respectively. Only subjects with SA had clear 

evidence of what might be considered extensive sequestration, with a PfHRP2-derived biomass 

greater than the circulating biomass. Taken together, these results provide no evidence of 

extensive parasite sequestration associated with SM except in a small subgroup of children 

with SA. 

Elevated venous blood lactate is strongly associated with mortality in P. !alciparum malaria,6. 20 

and has been reported to correlate strongly with PfHRP2-derived parasite biomass, but not 

circulating parasite biomass in adults.6 This has been taken as further evidence of the 

importance of parasite sequestration in causing microvascular occlusion and tissue hypoxia. 

We found that lactate correlated significantly with both estimates of parasite burden, and the 
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correlation coefficients were very similar (Table 3). Furthermore, there was no significant 

correlation between sequestered parasite biomass and lactate (Spearman r = -0·084, P = 

0·151). These results suggest that PfHRP2-derived biomass provides a good estimate of 

circulating parasite biomass but, in contrast to findings in adults, does not support extensive 

parasite sequestration as a cause of hyperlactataemia. 

Potential confounding by age was considered because it is related to parameters used to 

calculate parasite biomass and differs significantly between UM and SM subjects (Table 2). 

Both estimates of parasite biomass showed significant and similarly strong negative correlation 

with age (Table 3), whereas sequestered biomass did not correlate significantly with age 

(Spearman r = 0'051, P = 0·381). Confounding by age was assessed by performing a two-way 

ANOVA on the rank-transformed data (Scheirer-Ray-Hare test), which found no significant 

effect of age (P=0·641), severity (UM vs. SM, P=0·304) or an interaction of the two (P=0·565) 

on sequestered biomass. This result was confirmed by step-wise selection of the best-fitting 

quantile regression model (performed using the "quantreg" package in R). Another 

confounding factor may be misclassification of subjects with another severe illness and 

coincidental parasitaemia as having SM. Since bacterial sepsis would be the most likely illness 

to present in this way, PCR was performed to detect NTS or S. pneumonlae bacteremia in 160 

(54·1%) study subjects (92 of 176 (52,3%) uncomplicated and 68 of 120 (56·7%) severe cases). 

No subjects (95% CI 0-2·3%) had evidence of bacterial co-infection. 

Discussion 

Eradication of malaria is now high on the global health agenda,21 yet it is predicted that as 

malaria becomes less common, the proportion of cases with severe disease will increase.
22 

Understanding the pathophysiology of SM is important for developing new strategies to 

prevent malaria deaths. Progress in this field is difficult because studies in humans with SM can 

only describe associations with severe disease, and cannot prove causality. Post-mortem 
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studies are of limited value because they describe findings in the minority of patients dying 

from SM and it is not possible to determine whether the same pathological processes occur in 

the majority who survive. Animal models allow experimental manipulation of factors which 

may be essential for different manifestations of SM, but there has been much debate about 

whether they recapitulate the features of severe disease in humans, particularly parasite 

sequestration.23 Sequestration of pRBC may cause microvascular occlusion and lead to hypoxic 

and ischaemic tissue damage24 but is assumed to be beneficial to malaria parasites by 

preventing their clearance by the reticuloendothelial system.25 P. /alciparum erythrocyte 

membrane protein 1 (PfEMP1) variant surface antigens are expressed on the surface of 

infected erythrocytes and can bind to molecules on the host vascular endothelium such as 

C036 and ICAM-l, allowing cytoadherence and sequestration.24 Expression of lCAM-l is 

upregulated during inflammation, possibly enhancing pRBC sequestration.24 However others 

have suggested that inflammatory mediators, released in response to parasite factors, might 

themselves cause the clinical manifestations of severe malaria and in this scenario, 

sequestration may be a consequence rather than a cause of severe disease.26 

The present study was undertaken to assess whether extensive parasite sequestration occurs 

in Gambian children with malaria at the time of clinical presentation.6 We found that PfHRP2 

derived parasite biomass estimates were remarkably similar to the circulating biomass 

calculated from blood parasitaemia. All indices of parasite biomass (parasitaemia, parasite 

density, PfHRP2 concentration, circulating parasite biomass, and PfHRP2-derived parasite 

biomass) were significantly higher in SM compared with UM. Considering UM and SM 

separately, and all subgroups of severe disease, we only found significant evidence of 

sequestration in subjects with SA. Furthermore, PfHRP-2-derived biomass estimates did not 

correlate any better with lactate (an important marker of severity),20 than circulating biomass 

estimates. These findings are in contrast to a similarly large study conducted in adults in 
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Thailand, which found that peripheral blood parasitaemia was a poor indicator of parasite 

burden in SM, and provided evidence of extensive parasite sequestration in patients with 

severe disease. The simplest interpretation of these results is that in our study population, 

circulating P. !alciparum biomass provides a good estimate of total parasite biomass because 

there is little sequestration. From this we infer that extensive parasite sequestration is not 

necessary to cause SM in these children. 

In assessing the validity of our findings we must consider methodological issues which might 

influence our results. First, our study was conducted in children, whereas the model relating 

PfHRP-2 concentration to parasite biomass was derived from data in adults.6 In order to 

account for physiological and size differences between children and adults we modified the 

model slightly to improve the accuracy of the term for calculation of blood volume, and we 

report parasite burden data relative to body weight. Overall estimates of PfHRP2-derived 

parasite biomass are remarkably consistent with those obtained in adults: among non

prostrated SM subjects we found a geometric mean of 3'02xl010 (95% CI 1·98-4·61 xl010) 

parasites/kg, whilst Dondorp et al. found a geometric mean of 1·7 X10l2 (1·3-2·3 X10l2) 

parasites per body in SM subjects,6 equivalent to 3·4xl010 (2·6-4·6 xl010) parasites/kg for a 

body weight of SOkg. However this compelling consistency of numerical estimates of parasite 

burden, across measurement techniques and study populations, should not create the false 

impression that correctness of the model is required to conclude that there is no difference in 

sequestration between UM and SM subjects: this conclusion simply requires that any 

estimation error be the same in each group. Second, it could be argued that our study was 

conducted in a setting where previous exposure to malaria may result in acqUisition of 

antibodies that reduce circulating levels of PfHRP2. The Gambia has experienced a remarkable 

and sustained decline in malaria transmission over the last decade,27-28 and young children are 

the least likely to have experienced prior malaria infections and the least likely to have 
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antibodies to P. !alciparum antigens.28 Moreover, children with SM were much younger than 

those with UM, and so it is very unlikely that anti-PfHRP2 antibodies caused us to 

underestimate the total parasite burden in SM cases. We found no evidence of any interaction 

between age, severity and sequestered parasite burden. Third, parasite multiplication rate (the 

number of new parasites produced from each parasite in the preceding generation) is one of 

the most significant parameters in the model,6 and may be reduced at increasing parasite 

densities,29 resulting in over estimation of the total parasite biomass.6 In our study, children 

with SM had higher circulating parasite densities than those with UM, and so overestimation 

of multiplication rate would lead us to overestimate the extent of parasite sequestration in 

SM, rather than underestimate it. Fourth, our patients with SM had only a 4·2% mortality rate 

compared with 17% in the adult study,6 which might suggest the children were 'less' seriously 

ill than the adults. However, in both studies similar percentages of SM cases (44% in adults and 

48·3% in children) had lactate levels above 5 mmol/l, and the average lactate levels in SM 

cases were similar in both studies. To try to improve comparability between the two studies 

we excluded children classified as SM due to prostration alone and reanalyzed our data; 

although mortality was 8· 7% in this group of children there was no significant difference 

between biomass estimates. We also reanalyzed our data using a lower cut-off for 

hyperlactataemia, but this did not alter the results. After considering these methodological 

issues, we believe our findings are robust. 

How should our results be interpreted? Considering we had at least 80% power to detect a 2-

fold difference in parasite biomass estimates in the subgroup of 46 children with SM excluding 

prostration alone, our findings do not exclude lower levels of parasite sequestration, or more 

extensive sequestration limited to specific vascular beds, such as the retinal vessels. Rather we 

find no evidence for extensive generalized parasite sequestration. Due to the small number of 

deaths in this study, we cannot exclude that sequestration plays a role in the progression from 

severe to fatal malaria. The evidence of sequestration in children with SA is plausible, because 
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extensive sequestration might exacerbate anaemia. However, artefactual overestimation of 

total parasite burden in these children by PfHRP2 measurements, due to decreased 

multiplication rate when the percentage parasitaemia is high,6,29 cannot be ruled out. 

The findings of this study have important implications. In Gambian children, circulating 

parasite burden rather than sequestration is associated with severe disease. Genetic, 

physiological, immunological and parasitological differences may explain why extensive 

sequestration is apparent at the time of presentation in Thai adults with severe malaria6 but 

not in Gambian children. If extensive sequestration is not essential for the development of 

severe malaria then this implies that other mechanisms may be more important, and parasite 

sequestration may be a consequence rather than cause of severe disease. For example, free 

heme released during malarial hemolysis has been proposed to cause severe malaria in mice, 10 

and in humans cell free hemoglobin impair the function of endothelial cells,30 which may be 

both target and effector cells at the interface between the parasites in the blood and organ 

tissue damage.31 pRBC sequestration may appear intimately related to SM without being the 

proximate cause, because the processes that cause endothelial activation will also increase 

binding of pRBC to endothelium.24 In adults, perhaps sequestration is necessary to allow total 

parasite biomass to rise to sufficient levels to trigger severe disease, whereas in children this 

may not be necessary, explaining the dissociation of extensive sequestration from SM in this 

study. If our findings can be generalized to other children in Sub-Saharan Africa, then they 

suggest that the research agenda should be refocused beyond parasite sequestration in the 

search for new methods to prevent and treat SM. 
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Table Legends 

Table 1. Characteristics of children enrolled in the study 

Table 2. Comparison of Indicators of severity, parasite biomass, and sequestered parasite 

biomass between children with different manifestations of malaria. Severe malaria cases 

were grouped according to syndrome (as shown in Figure 1). Severe malaria syndromes were 

considered both exclusively (every combination of syndromes considered as a distinct group) 

and inclusively (subjects with combinations of syndromes considered within each syndrome 

group). Data represent geometric mean (95% CI), except in the case of sequestered parasite 

burden where data represent median (interquartile range, or range if n=3), and the P value for 

comparison with the uncomplicated malaria group using unpaired t-test on loglo-transformed 

data. For each manifestation of malaria, circulating and PfHRP2-derived biomass estimates 

were compared using the paired sample t-test. CM, cerebral malaria, LA, lactic aCidosis, SA, 

severe anaemia. • Platelet count was not available for four subjects with severe malaria (all 

prostration alone). Only tests with a P-value at or below 0·024 have a false discovery rate of 

5% or less using the Benjamini and Hochberg method to control for multiple comparisons and 

are considered significant (P-value in bold type). 

Table 3. Correlation of blood lactate and age with estimates of parasite biomass. 
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Figure Legends 

Figure 1. Manifestations of severe malaria. Venn diagram showing the number of children 

with each severe malaria syndrome. 

Figure 2. Severe malaria Is associated with high circulating and PfHRP-2-derlved parasite 

biomass estimates. Parasite biomass estimates for children with mild malaria (blue boxes, 

n=176) and severe malaria (red boxes, n=120) calculated from blood film parasitaemia 

(circulating biomass) and plasma PfHRP2 concentration (PfHRP2-derived biomass). 

Comparison between mild and severe cases for each biomass estimate using the unpaired t 

test. 
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Table 1. 

n % 

Sex Male 169 57·1 

Female 127 42·9 

Ethnicity Mandingo 117 39·5 

Wollot 28 9·5 

Fulla 58 19·6 

Jola 50 16·9 

Serehuli 2 0·7 

Serere 10 3·4 

Manjago 13 4·4 

Aku 1 0·3 

Other 10 3·4 

Unknown 7 2·4 

Severity Mild 176 59·5 

Severe 120 40·5 

Survival to Alive 291 98·3 

hospital 

discharge 

Died 5 1·7 
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Table 3. 

n Circulating Biomass P1HRP-2-derived Biomass 

Spearman 95%CI P Spearman r 95%CI P 

r 

Lactate 296 0·496 0·402 to <0·0001 0·437 0·337 to <0·0001 

0·579 0·528 

Age 296 -0·284 -0·388 to <0·0001 -0·291 -0·395 to <0·0001 
-0,172 -0·180 
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Chapter 8. The role of parasitized red blood cell 
sequestration in the pathophysiology of severe malaria. 
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Stuck in a rut? Moving beyond sequestration of parasitized red 
blood cells as the cause of severe malaria. 

The material presented in this chapter represents an uncommissioned article that is in 

the process of being submitted for peer reviewed publication. In this "Opinion Article" 

my co-authors and I discuss whether parasitized red blood cell sequestration is a cause 

or a consequence of other factors that cause severe malaria. The review of the 

literature and formulation of hypotheses was undertaken with advice and critical 

comments from Prof. Eleanor Riley and Dr. Michael Walther. 
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Stuck in a rut? Moving beyond sequestration of parasitized red blood cells as the 

cause of severe malaria. 

Aubrey J. Cunnington\ Michael Walther2 and Eleanor M. Rileyl. 

lLondon School of Hygiene and Tropical Medicine, UK 

2Nationallnstitute of Allergy and Infectious Diseases, USA 

Summary 

The sequestration of parasitized red blood cells (pRBCs) in the microvasculature is 

widely assumed to be the proximal cause of severe Plasmodium !alciparum malaria. 

Obstruction of blood flow by sequestered pRBCs is believed to cause tissue hypoxia 

and endothelial damage, resulting in the metabolic, neurological, respiratory and other 

features that constitute the different manifestations of severe P. !alciparum malaria. 

There is abundant circumstantial evidence linking sequestration of pRBCs with severe 

and fatal P. !alciparum malaria, but the association is not absolute and there is 

accumulating evidence that sequestration is neither necessary nor sufficient to cause 

severe malaria. Here we critically review the evidence associating pRBC sequestration 

with severe malaria, review sequestration-independent processes which are also 

associated with severe disease and propose a unifying hypothesis which explains the 

features of severe malaria caused by various Plasmodium species in humans and in 

animal models. This hypothesis invokes endothelial dysfunction and microcirculatory 

failure as the proximal causes of severe malaria and implies that sequestration is a 

specific consequence of these events during P. !alciparum infections. Testing of this 

hypothesis may help to progress the development of new interventions to prevent and 

treat severe malaria. 

Malaria 

Malaria remains a major cause of morbidity and mortality in tropical regions of the 

world with estimates of 700,0001 to 1.24 million deaths from malaria in 20102
• 
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Plasmodium !alciparum infections account for the majority of clinical cases and deaths, 

but P. vivax also causes a large burden of disease3, including severe disease4
-
s, and P. 

knowlesi is an emerging cause of severe malaria in south east Asia6. Clinical symptoms 

of malaria are exclusively associated with the asexually replicating red blood cell stage 

of infection. Whilst uncomplicated malaria is characterized by fever, myalgia and 

headache, severe malaria may result in severe anemia, coma, respiratory distress, 

multi-organ failure and death7
• Although the pathogenesis of severe malaria is 

uncertain, many authorities cite microvascular occlusion by sequestered parasitized 

red blood cells (pRBCs) as the proximate cause of severe P. !alciparum diseaseS-10 and 

severe P. !alciparum malaria is widely attributed to pRBC sequestration in medical text 

booksll-l2. 

What is sequestration and how does it occur? 

Sequestration is the adherence of pRBC to the luminal walls of small blood vessels 

(particularly capillaries and venules)lO or their retention within the slow open 

circulation of the spleen13 and is a characteristic feature of P. !alciparum infections 

where erythrocytes containing mature trophozoites, schizonts and developing 

gametocytes (sexual stages) are rarely detected on blood films. Sequestration of pRBC 

in the capillaries is believed to offer a survival advantage to Plasmodium species by 

avoiding passage through the spleen where distorted or rigid pRBC are cleared13. 

Hence, sequestration may facilitate replication of asexual parasites, extending the 

duration of the infection and increasing both the generation and survival of sexual 

(transmissible) stages13-l6. However, whilst sequestration appears to be a universal 

trait of P. /alciparum, P. vivax is only weakly adherent and mature forms of P. v;vax are 

routinely detected in the circulation of infected patients17
• Although sequestration has 

been observed in one post-mortem human P. knowles; easelS, and in a small study P. 

knowles; isolates were found to bind to variable degrees to human endothelial cell 

receptors19, trophozoites and schizonts are usually visible on peripheral blood films
20

, 

and coma is not a feature of P. knowles; infections2l-23
• Sequestration has not been 

reported for P. malariae and P. ovale infection, although for the latter, rosetting - a 
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phenomenon associated with sequestration - has been described 24. Further, some 

rodent and non-human primate malaria species do sequester25
-
30 suggesting that this is 

an ancient and relatively conserved trait. 

Adhesion of pRBC to vascular endothelium appears analogous to the early phases of 

leukocyte recruitment to a site of inflammation, involving first rolling adhesion and 

then static adhesion31
• Adhesion is mediated by specific binding of parasite-derived 

ligands on the surface of pRBCs to host receptors expressed on vascular endothelial 

cells31 and may be facilitated by aggregation of platelets, fibrin and other components 

of the coagulation system32. Reduced deformability of pRBCS33
-
34 and pRBC 

aggregation into rosettes 35 also contribute to the mechanical retention of pRBCs 

within the microvasculature. In the specific case of malaria in pregnancy, sequestration 

may also occur in the placenta, and in this circumstance parasites may be undetectable 

in peripheral blood whilst multiplying and causing chronic infection in the placental 

vascular bed 36. There are several excellent reviews of malaria in pregnancy, in which 

sequestration in the placenta clearly plays an important role36
-
38

, and this will not be 

considered further in this article. 

The best characterized adhesive ligands are members of the highly polymorphic P. 

!alciparum erythrocyte membrane protein 1 (PfEMP1) variant surface antigen (VSA) 

family39. Different VSAs are able to bind to different host receptors and, since VSA 

expression can vary over the course of an infection due to sequential expression of 

different VSA family members, the cytoadhesive phenotype may vary as infection 

progresses40
• Moreover, since different host receptors are differently expressed in 

different tissues, sites of sequestration may vary according to parasite VSA genotype 

and expression patterns. The best characterized host receptors, which are probably 

most important for static cytoadhesion, are C036 and intercellular adhesion molecule-

1 {ICAM-l, C054)31,41. C036 is a scavenger receptor which is widely expressed on 

vascular endothelium (except the brain), and also on platelets, monocytes and 

macrophages42
• ICAM-l, an immunoglobulin super family member, is expressed on 

endothelial cells (including the brain capillaries) and leukocytes43
• Whilst most PfEMPl 

variants can bind to C036, only a subset of variants (encoded by group B var genes) 
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can bind to ICAM-131, Other host molecules that may mediate adhesion include 

thrombospondin, P-selectin, platelet endothelial cell adhesion molecule-l (PECAM-l, 

C031), E-selectin, VCAM-l (COI06) and chondroitin sulphate A (CSA)31, In addition, 

adhesion of pRBC to C036 on platelets, and the adhesion of platelets to von 

Wille brand factor at sites of vascular endothelial injury, may serve to amplify 

sequestration and allow sequestration in endothelial beds where appropriate host 

receptors are not expressed44
, Expression of host receptors on endothelium is a 

dynamic process, and changes dramatically in response to infection45, ICAM-l in 

particular is upregulated by inflammation, whereas C036 is constitutively and 

relatively invariantly expressed42-43, 46, 

The molecular basis of sequestration is less well understood for other Plasmodium 

species but the limited cytoadherence of P. vivax is believed to be mediated by binding 

to ICAM-l and CSA17
, whereas clinical isolates of P. knowlesi have shown variable 

binding to ICAM-l and VCAM but not C03619. On the other hand, some rodent malaria 

parasites bind extensively to C03616, 25,47. 

How can sequestration be measured? 

Examination of serial blood films from P. Jalciparum infected individuals reveals far 

fewer circulating late stage tropholoites and schizonts than would be expected from 

the subsequent increases in parasitaemia48 suggesting that these mature forms are 

present in the body but not visible in the peripheral blood
49

. Although pRBC 

sequestration can be directly assessed in animals - by histology, intravital 

microscopySO or bioluminescent imaging of whole animals infected with genetically 

modified (luminescent) parasites25, direct quantification of sequestration in humans is 

limited to histological analysis of biopsy samples - such as muscle, skin and 

subcutaneous tissue - in live subjects 51-52 or at post-mortem in those dying from 

severe malaria32
, 53-55. Histological assessment allows the exact anatomical location, 

number and maturational stage of sequestered parasites to be quantified and is the 

gold standard, but is considerably limited by the requirement for tissue samples which 
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in most cases will come only from subjects who die and not those who survive severe 

malaria, and may not be representative of the situation preceding death. 

Given this limitation, several indirect methods to quantify pRBC sequestration have 

been developed. Although these methods can be very useful, it needs to be borne in 

mind that their validation is also hindered by the lack of direct measurements. 

Mathematical models have been developed to estimate the sequestered parasite 

burden, fitting data from parasitemia measurements in subjects receiving successful 

drug treatment in clinical trials56
-
57 or, occasionally, following ineffective drug 

treatment48
• A more direct way to determine the total parasite biomass in an 

individual, and hence to calculate the sequestered parasite biomass, is measurement 

of soluble parasite molecules - such as P. /a/ciparum histidine rich protein 2 (PfHRP2) -

which are released into the circulation. PfHRP2 is a relatively large molecule, assumed 

to remain mostly in the intravascular compartment, released predominantly at 

schizogenl8 and eliminated with first order kinetics, not dependent on renal or liver 

function9
• These characteristics make it possible to relate PfHRP2 concentration to 

total parasite biomass within the body9. Subtraction of circulating parasite biomass 

(calculated from parasite density in blood and estimated blood volume) from the total 

body parasite biomass (calculated from PfHRP2 concentration) reveals the sequestered 

parasite burden. Using this methodology, the sequestered biomass in Thai adults with 

severe malaria was estimated to be 10 times higher than in those with uncomplicated 

malaria9
• Alternatively, parasite-derived lactate dehydrogenase has been used to 

quantify the biomass of parasites in human tissues collected at postmortemS9
• 

Observation of blood flow in human retinal and rectal blood vessels, using fluorescein 

angiography60 or orthogonal polarization spectroscopll has provided estimates of 

vascular occlusion as a proxy measure of sequestration. 

What 15 severe malaria? 

The term "severe malaria" is applied to a variety of clinical manifestations of malaria 

which are associated with an increased risk of death or other adverse outcomes such 

as neurological sequelae. The definition of severe P. /alciparum malaria is based on 
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criteria published by the WHO 62-63, often modified to suit local circumstances7 or 

improve specificity of the diagnosis64
-
6s

, which attempt to identify patients at increased 

risk of death. The WHO criteria include numerous clinical and laboratory features, 

although the vast majority of children who wi" die from malaria can be recognized 

from the presence of the following clinical syndromes (which may occur alone or in any 

combination): impaired consciousness, severe respiratory distress or severe anaemia66
• 

The spectrum of severe disease can be different in adults, with more frequent 

jaundice, renal impairment and pulmonary edema, and less frequent hypoglycaemia62
, 

but acidosis and reduced consciousness still predict the majority of deaths67
• The WHO 

criteria are sensitive for identification of those at risk of death but are not specific 

since other illnesses can cause similar clinical features and malarial parasitemia may be 

a coincidental finding64
• For research purposes, the definition can be improved by 

setting a threshold level of parasitemia (as the likelihood of the illness being 

attributable to malaria increases with the parasitemia) and use of simple clinical and 

laboratory tests to exclude other illnesses64
-
6s

• 

Although P. /alciparum is by far the most common cause of malaria deaths, fatal cases 

of P. vivax and P. knowlesi infection are well recognized6
, 68. The definitions of severe 

disease due to these Plasmodium species have largely been extrapolated from those 

for P. /alciparums, 21-22, 69. In Papua New Guinea, where both P. vivax and P. /alciparum 

infections are common, the proportion of P. vivax cases fulfilling the definition of 

severe disease is similar to that for P. /alciparum; all three severe disease syndromes 

have been observed although P. vivax is more likely to cause respiratory distressS
' 70. 

Similarly severe P. knowlesi disease appears to manifest most frequently as respiratory 

distress; renal failure and shock are also common but coma has not been reported in 

human hosts21
-
22

, 69. For all Plasmodium species, severe malaria is the exception rather 

than the rule: the vast majority of cases are uncomplicatedS
, 66, 71. 

An important, and unresolved, issue is whether the different severe malaria 

syndromes are distinct entities with distinct pathophysiology, or are simply different 

manifestations of the same underlying process. Similarly, it is assumed, but not 

proven, that the pathophysiological processes are the same for the different 

Plasmodium species. A number of observations support the possibility of distinct 
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pathophysiologies for different syndromes. For example, the median age of children 

with severe anemia is significantly lower than that of children with respiratory distress 

or cerebral malaria72
, profiles of pro-inflammatory and anti-inflammatory cytokines 

differ between severe disease manifestations73
-
75

, and sequestration of pRBCs is 

markedly less - not only in brains but also in most other organs - when compared 

between fatal cases of non-CM and CM malaria54
• However, the inherent limitations of 

studying disease causation and progression in humans make it impossible to discern 

whether these differences reflect different pathological processes or different stages 

of the same process_ 

The association between sequestration and severe malaria 

It is widely reported that pRBC sequestration leads to microvascular obstruction and 

resultant tissue ischemia and hypoxemia and thus, especially, CMS
' 61, 76-77. However, 

there is an evolving opinion that adherent pRBC also trigger signaling events in 

vascular endothelial cells and cause release of inflammatory mediators within the 

blood vessels41
, 78. Either, or both, of these scenarios place pRBC sequestration as the 

proximal event in the pathogenesis of severe malaria: without sequestration there 

should not be severe disease. Indeed, there is abundant evidence to support the 

association of pRBC sequestration with severe P. Jalciparum malaria but, 

understandably - given the limitations of clinical studies, there is a lack of data 

showing a causal association. The limitations of the various forms of evidence are 

summarized in Table 1. 

Postmortem studies examining the gross, microscopic and ultrastructural 

characteristics of organs from individuals dying of severe malaria have tended to focus 

on the pathology of cerebral malaria. In children the post-mortem hallmarks of CM are 

swelling and edema of the brain, sequestered parasites in blood vessels, hemozoin

containing macrophages, and petechial (ring) hemorrhages10
• In adults cerebral edema 

is less common and not associated specifically with CM79 but other features are similar. 

However there is considerable variability between individuals in the pathological 

findings in CM and the actual cause of death is often difficult to establish (reviewed 
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in 10). There is frequently striking evidence of pRBC sequestration in the majority of 

small vessels in the brains of patients dying from cerebral malaria32, 55, 59,80-8\ with all 

stages of the asexuallifecycle detectable at up to 40-times higher concentrations than 

in the peripheral blood80. However} the extent of sequestration is variable55: there is 

considerable overlap in the extent of sequestration in brains of patients dying with CM 

and that in brains of patients dying with other severe malaria syndromes32, 54-55 and 

some studies suggest that CM can occur with minimal sequestration or that extensive 

sequestration may not always be associated with CM32, 55, 80. Sequestration of pRBC is 

associated with localised endothelial activation (increased expression of ICAM-1} 

VCAM-1 and E-selectin)82-83; iNOS84-85} EpoR and CD13186 expression and adjacent 

diffuse axonal injury81.87} but absence of an inflammatory infiltrate or necrosis 81-82. In 

children81.83 (and probably to a lesser extent in adults79)} intercellular junction and 

blood brain barrier breakdown coincides with sequestration. Sequestration also occurs 

in other tissues of patients with CM10, 32, 59, 82, 88} and so is not specific for the cerebral 

vasculature} and is associated with endothelial activation in these other sites82, 88. 

Despite demonstrating the intimate association between sequestration and pathology 

of CM} these studies are limited by the static nature of the histopathological 

assessment - making it impossible to differentiate vascular blockage from vascular 

stasis or post-mortem pooling of pRBC in certain sites. More importantly} the single 

snap-shot of data and the lack of data from appropriate controls (those without CM} 

those with CM who recover) makes it impossible to determine the sequence of events} 

or to assess whether sequestration is either necessary or sufficient for CM. We 

speculate that terminal events in patients dying with CM (in children this is most often 

respiratory arrest with sustained cardiac output89) may artefactually increase the 

accumulation of pRBCs in cerebral blood vessels due to their greater resistance to flow 

and increased adhesive properties34. This might explain why muscle biopsies of African 

patients with both CM and non-CM malaria showed extensive vascular endothelial 

activation but no pRBC sequestration} whereas necropsy specimens of muscle did 

show sequestration88
• Despite the higher mortality rate in African children with malaria 

and severe respiratory distress (SRD) than with CM 66} the association of pRBC 

246 



sequestration with SRD, or with the related condition of metabolic acidosis, has not 

been specifically assessed in postmortem studies, 

Malarial retinopathy, which in postmortem studies is strongly associated with pRBC 

sequestration in the retinal vessels10
, 53, is a frequent observation in clinically defined 

eM and can help to distinguish CM from other causes of encephalopathy in 

parasitemic children53
, 90, Its hallmark features are retinal whitening, vessel 

discoloration, hemorrhages, and papilloedema91
; retinal whitening corresponds with 

areas of capillary non-perfusion6o
, Retinopathy is most likely to be seen in fatal cases92

-

93, but adults and children with uncomplicated malaria and with non-CM severe 

malaria may have a similar retinopathy, albeit less frequently than in CM 92-96, 

Unfortunately, examination of the retina in vivo does not allow visualization of 

individual RBCs so quantification of sequestration is impOSSible, and is inferred from 

the pattern of retinopathy or by correlation at postmortem90
, Impairment of 

microvascular blood flow has also been observed in vivo by imaging of the rectal 

mucosal capillaries and correlated with markers of diseases severity such as lactate 

and parasitemia, but again the contribution of sequestration cannot be directly 

assessed61
, Other attempts to measure in vivo sequestration by biopsy of superficial 

tissue have yielded conflicting results: one study found no evidence of sequestration in 

skeletal muscle88 whilst another found that sequestration in muscle was inconsistent 

and rather limited to CM cases51
, In another small study, sequestered pRBCs were 

much more frequent in dermal specimens from severe than uncomplicated malaria 

cases52
, 

Indirect estimates of total parasite burden based on mathematical models of parasite 

clearance curves49
,56-57 have indicated that pRBC sequestration is greater in fatal 

malaria than in severe non-fatal malaria, and lower again in uncomplicated malaria, 

and that sequestered parasite burden is predictive of a fatal outcome56
, However, 

again, there is considerable heterogeneity in these data, especially amongst African 

children with CM5
6-57, with estimates of sequestered parasite burden being quite 

modest in surviving children treated for CM in the Gambia (approximately one third of 

the circulating parasite burden56
) and considerably lower than this in some children56

, 

In line with this we recently reported that estimates of sequestered parasite burden 
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derived from plasma PfHRP-2 from 296 Gambian children did not differ significantly 

between cases of uncomplicated and severe malaria, allowing the conclusion that in 

these children extensive parasite sequestration is not a prerequisite to develop severe 

disease (Cunnington et al., manuscript under review). This contrasts with the very high 

estimates of sequestered parasite burden in Thai adults (obtained using the same 

method), being double the circulating parasite biomass in survivors and four times 

higher in fatal cases9. 

In summary, therefore, although the association between pRBC sequestration and 

severe malaria is incontrovertible, a causal association has not been demonstrated. 

PRBC sequestration could be either the cause of severe malaria or a consequence of 

other underlying pathologies. Even with the advent of non-invasive imaging 

techniques, establishing the sequence of events in humans is impossible because it is 

unethical to allow uncomplicated malaria infections to progress to severe disease. 

Sequestration does not fully explain severe malarial pathology 

Rapid clinical recovery without persistent neurological symptoms is the most common 

outcome of CM following treatment77
• Focal necrosis is not a feature of CM brains 

postmortem10 and acidosis can be rapidly reversed following initiation of antimalarial 

therapy97. It is hard to reconcile these observations with the dramatic obstruction of 

vessels seen at postmortem in CM or with the assumption that microvascular 

obstruction by pRBCs is the proximal cause of disease. Such extensive pRBC 

sequestration would not be expected to show such rapid reversibility and would be 

expected to leave some irreversible endothelial damage. Extensive microvascular 

obstruction may explain cases where neurological defects persist after treatment98
, 

but this is the exception rather than the rule. 

That CM can occur with low sequestered parasite burdensS6
, 59, 82 and without 

retinopathy99 indicates the extensive sequestration of pRBCs is not an absolute pre

requisite, and our data from Gambian children suggest that severe disease occurs in 

the presence of high parasitemia, but with relatively little sequestration (Cunnington et 
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al., manuscript under review). Although sequestered biomass was a better predictor of 

death than peripheral parasitemia in Thai adults9, peripheral parasitemia is a strong 

predictor of mortality among non-immune adult travelers returning to Europe100-101. 

Also, in the Thai study, total parasite biomass was not significantly predictive of death 

after adjustment for level of consciousness, renal function and lactate indicating that 

sequestration may not, in fact, be the major determinant of fatal outcome9. 

It is also hard to reconcile microvascular obstruction with the well recognized 

possibility of clinical deterioration after the onset of treatment (most often with 

progression to coma) 100-103. Since quinine and artesunate preferentially kill late ring 

and early trophozoite parasite forms (which would be the pool of parasites most likely 

to contribute to further sequestration)49 treatment should limit further pRBC 

sequestration, but will not inhibit the rupture of schizonts already sequestered in 

microvasculature. In a Gambian study, deterioration to death was associated with an 

increase in parasitemia (implying rupture of schizonts and release of merozoite)s6, and 

is thus more easily explained by a pathological effect of schizogeny (and release of 

pRBC contents) than by additional sequestration. 

Furthermore, sequestration in all organs (i.e. not just the brain) is usually more 

extensive in CM cases than in non-CM cases at post mortem
S4 

but case fatality rates 

are actually lower for CM than for severe respiratory distress in pediatric studies66, 

indicating that the extent of sequestration is poorly correlated with outcome. 

Consistent with these observations, neither cytoadhesion properties of parasite 

isolates nor genetic polymorphisms of host receptors have shown consistent 

associations with severe disease (reviewed in 31,104). In contrast, vascular endothelium 

from CM patients shows greater activation in response to inflammatory cytokines than 

that of controls10S, indicating that vascular endothelial activation may be more 

important than sequestration in determining outcome of infection. 

Finally, both P. vivax and P. knowlesi infections can cause severe malaria and severe 

disease has been reported in isolated cases with P. malariae infectionS, 21, 106 but there 

is no obvious correlation with pRBC sequestration. P. vivax shows limited 

cytoadherence to host vascular endothelium, but all stages of the asexuallifecycle are 
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regularly seen on blood films and pRBC deformability is increased compared with 

uninfected RBCs, making microvascular sequestration and obstruction extremely 

unlikely explanations for its pathogenesis68
• There are, however, no modern 

comprehensive postmortem studies of fatal P. vivax malaria which would allow 

comparison with equivalent manifestations of severe P. falciparum malaria68
• On the 

other hand, P. vivax induces a relatively greater inflammatory response and more 

endothelial activation than P. falciparum 107
, which might explain its ability to cause 

severe disease at lower parasitemias. P. knowlesi may have the capability to 

cytoadhere, judged by the (variable) binding to ICAM-l and VCAM but not C03619
, but 

peripheral parasitemia predicts severity of infection21 and CM has not been described6
• 

Intriguingly, postmortem of an adult patient infected with P. knowlesi who died from 

circulatory collapse showed petechial hemorrhages and pRBC accumulation in the 

brain remarkably similar to that in P. falciparum CM, however there was no evidence 

of endothelial activation (assessed by ICAM-l expression) and the patient did not have 

coma preceding circulatory collapse18
• This suggests that the pRBC accumulation in the 

brain is not sufficient for the development of CM. There is no evidence that p, malariae 

sequesters but it does occasionally cause very severe iIIness106
, 108. 

Experimental models of severe disease and sequestration 

The use of experimental animal models to investigate the pathophysiology of severe 

malaria has recently come under intense scrutiny and fuelled a highly polarized 

debateS, 109, In particular, the well characterized model of experimental cerebral 

malaria (ECM), p, berghei ANKA (PbA) infection in susceptible inbred strains of micellO-

111, has been criticized8 for failing to recapitulate "key" pathological features of human 

CM, such as extensive pRBC sequestration, However, throughout this debate, the 

assumption that pRBC sequestration is the proximal cause of human CM has not been 

questioned, In fact, PbA pRBCs do sequester, most notably in lungs and adipose 

tissues, as evidenced by examination of serial blood films and bioluminescent 

imaging25
, Sequestration is C036-dependent25 and confers a growth advantage to 

parasites16
, Nevertheless, C036-1- mice (in which sequestration is abolished) are fully 
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susceptible to ECM implying that sequestration is not a prerequisite for ECM. 

Conversely, acute lung injury is reduced in PbA-infected C036-/- mice47 which may be 

due to lack of sequestration or to lower total body parasite biomass. 

An alternative, inflammatory, etiology has been well described for ECM and other 

severe pathologies caused by rodent malarias, that involves endothelial activation, 

C04+ and C08+ T-Iymphocytes, inflammatory cytokines (reviewed in 111-113) and 

heme114-115. Moreover, despite the lack of overt vascular obstruction, there is evidence 

of microcirculatory dysfunction and impaired blood flow, resulting in cerebral hypoxia 

and ischemia116-118. In vitro experiments support the assertion that inflammation 

rather than adherence is a pre-requisite for many of the pathological features of CM. 

For example, P. /alciparum pRBCs decrease the integrity of monolayers of human brain 

microvascular endothelial cells119, cause proinflammatory endothelial activation120 and 

upregulation of ICAM-1119. These effects are largely independent of pRBC 

cytoadherence and involve soluble mediators119-121 such as histones, which are 

released from ruptured pRBCS122 . Furthermore, soluble inflammatory mediators 

liberated from pRBC-activated endothelium can cause astrocyte activation and 

neuronal axonal damage123. 

An alternative etiology for severe malaria 

If the proximal role of pRBC sequestration in severe malaria is to be challenged, 

alternative explanations which better explain the features of different severe malaria 

syndromes in children, adults and experimental models across the spectrum 

Plasmodium species must be proposed, and these explanations must account for the 

strong association of sequestration with severe disease in humans. The most 

convincing hypotheses relate to endothelial activation and dysfunction, and have been 

formulated in a variety of different forms to either supplement or replace the role of 

pRBC sequestration41, 78,123-126. Inflammatory activation of the vascular endothelium 

and disruption of the blood brain barrier may be mediated by molecules released at 

pRBC rupture, such as hemoglobin-derived heme114, 127-128 and soluble parasite 
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products119-121 including histones122, and by circulating cytokines such as TNF_a129 

without the need for cytoadhesion. 

The vascular endothelium is intimately involved in the control of microcirculatory 

blood flow and oxygen delivery, mainly through nitric oxide production130-13\ and 

represents the physical barrier and point of interaction between pRBC and tissues41. 

Profound abnormalities of microcirculatory function, due to reduced nitric oxide 

bioavailability, have been observed in patients with severe malaria 97,132-134 and in mice 

with experimental cerebral malaria 118, and correlate with disease severity and 

measures of hemolysis97, 132, 134-137. Mechanistically this involves reduced availability of 

the essential substrate for NO synthesis (arginine)132, quenching of nitric oxide by cell 

free hemoglobin which is released as a result of intravascular hemolysis134, and 

increases in endothelial activating molecules such as angiopoietin-2133, 136-137. On this 

basis, it has been hypothesized that nitric oxide administration may be of benefit as an 

adjunctive therapy in severe malaria138, and a clinical trial has been initiated139. 

Microcirculatory dysfunction causes heterogeneity of blood flow across vascular beds 

and regional hypoxia 130, 140. Regional hypoxia is evident from elevated cerebrospinal 

fluid lactate concentrations in adults and children with CM141-142 and increased lactate 

in the brain parenchyma in ECM117; and almost certainly contributes to elevated blood 

lactate levels seen in CM and other manifestations of severe malaria143-144. 

Heterogeneous patterns of microcirculatory flow, with adjacent areas of stagnant and 

hyperdynamic flow, have been visualized in the rectal mucosa of patients with severe 

malaria61; patchy capillary non-perfusion in the retina and postmortem congestion of 

cerebral vessels (which would not normally be patent)SS,60 are indicative of 

microcirculatory disturbance in the CNS. These features are identical to those of 

distributive shock associated with sepsis, where they are attributed to endothelial 

dysfunction rather than mechanical obstruction of vessels130. Microcirculatory 

dysfunction due to low nitric oxide bioavailability is also causally associated with 

ECM116,118. 

Thus many of the features of CM and severe non-CM can be explained without 

sequestration. However, as a consequence of endothelial activation, increased 
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expression of adhesion molecules such as ICAM_1145 will facilitate pRBC sequestration 

and select for parasite clones expressing relevant sequestration ligands, and may 

explain why sequestration is seen in patients with the most severe endothelial 

dysfunction. Additionally, where microcirculatory dysfunction leads to reduced rates of 

flow, pRBCs would be expected to accumulate due to their reduced deformability or 

weak cytoadhesion34
• 

Concluding remarks 

We propose that vascular endothelial dysfunction provides a unifying explanation for 

the pathophysiology of severe malaria across Plasmodium species, host species and 

host age ranges (Figure 1, Box). Endothelial dysfunction can occur in all host species, in 

response to any type of malaria infection, irrespective of the ability of the pRBCs to 

cytoadhere and sequester. Endothelial dysfunction will lead to systemic 

microcirculatory disturbance, tissue hypoxia and lactate accumulation. Importantly, 

however, all of these effects are rapidly reversible once the proximal cause - the 

infected red blood cells - are removed. For those malaria species where 

cytoadherence does occur, endothelial activation will facilitate pRBC sequestration in a 

dose-dependent manner. In other words, the more severe the endothelial dysfunction, 

the more sequestration there will be. Since the extent of endothelial dysfunction is 

expected to correlate with disease severity, sequestration is also expected to correlate 

with disease severity. In particularly severe cases, pRBC sequestration leading to 

complete vascular obstruction may be the final straw - leading to irreversible damage 

to vital organs and thus to death. Such a scenario is entirely consistent with the post

mortem findings in the small proportion of severe malaria cases that are fatal. 
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Table 1. Pitfalls in studies designed to assess whether sequestration causes severe 

disease 

Study Design 

All studies 

Postmortem 

Tissue biopsy 

Visualisation of 
obstructed blood flow 

Biochemical 
assessment 

eg PfHRP2 

Genetic studies 

Problems 

Specificity of diagnosis of 
severe malaria 

Static assessment 

Selection of control groups 

Observer bias 

Limited availability of tissues 
from live subjects 

Selection of controls 

Limited availability of vascular 
beds 

Only vessel patency / 
perfusion can be assessed 

Assumption based model to 
calculate sequestration 

Linkage dysequilibrium 

large sample size required to 
determine effect 

May be influenced by parasite 
as well as host genetics 

Parasite binding studies Parasites isolated from blood 
may differ from those 
sequestered in the tissues 

Animal models Different host / parasite 
species combinations 

Possibility of different 
pathogenesis 

Potential Bias 

Inadvertant inclusion of patients dying from 
other causes, with incidental parasitemia 
will make interpretation more difficult 

Sequence of events cannot be established: 
necessity of pathological findings to cause 
severe disease cannot be established 

Comparison with uncomplicated malaria 
cases cannot be performed: sufficiency of 
pathological findings to cause severe 
disease cannot be established 

Without blinding pathological findings may 
be over-interpreted 

Tissues of interest in pathogenesis of 
severe disease may not be accessible 

Failure to match controls for equivalent 
peripheral parasitemia 

Failure to compare severe with 
uncomplicated malaria 

May not be representative of 
microcirculation in the brain or viscera 

Flow abnormalities may be due to 
microcirculatory dysfunction independent 
of sequestration 

Incorrect estimation of model parameters 
may cause systematic bias in biomass 
estimates 

Effects of polymorphisms in different genes 
in linkage disequilibrium may increase or 
decrease the effect of the gene of interest 

Insufficient sample size increases likelihood 
of finding no effect 

May reduce power to find a significant 
effect 

May reduce power to detect association 
between parasite binding phenotype and 
severe disease 

Models selected for specific disease 
features may not represent the natural 
interaction of parasite and host 

Conclusions about causality from 
experimental manipulation may only be 
valid to the specific model system 
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Box: A unifying hypothesis 

1. The severity of endothelial dysfunction is determined by the combined effects of 

cytokines, soluble host and parasite-derived molecules, and anatomical and genetic 

factors which influence the response to these stimuli in specific vascular beds. These 

effects are not anticipated to be uniform 

2. The rate of expansion of the parasite biomass and rupture of pRBCs influences the 

magnitude of the stimulus provoking endothelial dysfunction, and also determines 

whether regulatory host mechanisms can maintain homeostasis or whether 

decompensation occurs and severe disease develops. Parasite growth is restricted by 

splenic clearance and innate and adaptive immune responses 

3. pRBC sequestration helps parasites to avoid clearance by the spleen, facilitating more 

rapid expansion of the parasite biomass, and also results in higher local concentrations 

of soluble mediators presented to the endothelium when pRBCs rupture 

4. Reduced nitric oxide bioavailability due to the effects of hemolysis, and reduced 

arginine availability, causes impaired distribution of microvascular blood flow and 

results in reversible regional hypoxia, and anaerobic tissue metabolism 

5. In the brain, regional hypoxia, blood brain barrier disruption, and elaboration of 

soluble inflammatory mediators from brain microvascular endothelial cells cause 

variable degrees of edema and axonal damage 

6. Progressive endothelial dysfunction is accompanied by increased expression of 

adhesion receptors and thus increased pRBC cytoadherence, hence sequestration 

becomes intimately associated with severe or fatal malaria. As pRBCs increasingly pack 

vessels in the dysfunctional microcirculation they may further reduce blood flow 

through increased viscosity and direct physical obstruction 

7. Progressive hypoxia, ischemia and inflammation cause worsening endothelial 

dysfunction in a self-amplifying cycle, and result in the manifestations of severe 

malaria eventually progressing to death if untreated 
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Figure 1. 

Sequestration hypothesis Endothelial dysfunction hypothesis 

• •• • 
1. Plasmodium sp Infection. 

pRBCs circulate within the microvasculature 

2. In P falciparum 
infection, mature blood 
stage parasites adhere 
to endothelial receptors 

3. Sequestration causes 
mechanical obstruction, 
actlvallon of endothelial 

cells and barner 
disruption 

2. Circulating cytokines. 
and host and parasite 
molecules from pRBC 

rupture cause 
endothelial dysfunction 

3. Endothelial act,vallOn 
and dysfunction 

compromises 
microvascular blood flow 

and barrier. integrity 
pRBC sequestration 

occurs in some 
PlasmodIUm species 
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Chapter 9. Discussion. 
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The roles of hemolysis, heme and HO-1 in the direct and indirect 
burden of malaria disease 

In the preceding chapters the results, their limitations and implications have already 

been discussed in some detail. In this chapter the discussion will focus on how these 

findings contribute to understanding several conundrums associated with malaria: 

immunosuppression, susceptibility to bacterial infection, the role of HO-l in severe 

malaria, and iron metabolism during malaria infection. 

Immunosuppression by malaria 

The literature review presented in Chapter 1 demonstrated that immunosuppression is 

probably a misleading term for the immunological consequences of malaria. Malaria is 

specifically associated with impaired resistance to EBV and Gram negative bacteremia, 

and with impaired vaccine responses to predominantly T-independent antigens. 

Impaired resistance to EBV appears to be related to the intensity of malaria 

exposure ll1
. Recent studies in The Gambia following a sustained decline in malaria 

transmission over two decades have shown that the impaired T-cell responses to EBV 

described in the context of intense exposure are no longer seen.75 Similarly, in both 

The Gambia and Kenya, declining malaria transmission has been associated with large 

reductions in the incidence of NTS bacteremia.1l84 Using the malaria-dependent 

protective effect of sickle cell trait on risk of Gram negative bacteremia to control for 

confounding by other common factors related to both malaria and NTS-risk, the 

Kenyan study was able to prove (as far as is possible for an epidemiological study) that 

the decline in malaria transmission was the cause of the declining incidence of Gram 

negative bacteremia.ll These findings again suggest that intensity of exposure may 

playa major role in susceptibility. The effect of malaria on vaccine responses was also 

generally greatest in studies in the highest intensity transmission settings.21 

The very specific nature of the defects in immune function associated with malaria 

indicate that malaria does not cause a generalized immunosuppression. They also raise 

the issue of whether a single mechanism or disparate mechanisms are responsible. If 
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there was a generalized immunosuppression then initially one may hypothesise a 

unifying mechanism as the most likely cause. However, the limited impairment of 

resistance to other infections must make it at least as likely that different mechanisms 

are responsible for impaired resistance to EBV and Gram negative bacteremia and 

impaired vaccine responses. Possible explanations for impaired vaccine responses have 

already been discussed in Chapter 3, and the favoured hypothesis would involve both 

splenic dysfunction impairing T-independent responses, possibly with an additional 

contribution from polyclonal B cell activation generally impairing the ability to mount 

specific antibody responses.21 Impaired resistance to EBV may share some of these 

mechanisms, since acquisition of anti-EBV antibodies may be impaired, and polyclonal 

B-cell proliferation will promote EBV replication and expand the target cell pool. 

However, impaired T-cell responses to EBV may only be significantly impaired when 

the EBV viral load becomes extremely high and there is sustained by-stander activation 

by prolonged and intense exposure to malaria resulting in functional T-cell exhaustion. 

Alternatively, malaria may impair T-cell priming through effects on dendritic cells, or 

malaria induced regulatory T-cells may produce bystander suppression of EBV-specific 

response. Experimental data to support these hypotheses is not yet available. In 

contrast, susceptibility to gram negative bacterial infections may involve very different 

mechanisms as discussed below. 

Susceptibility to bacterial infection 

In the preceding chapters I have provided evidence to suggest that susceptibility to 

NTS bacteremia specifically may be caused by neutrophil dysfunction as a consequence 

of hemolysis, release of erythrocytic heme, induction of HO-l and consequent 

impairment of neutrophil function.276 Of note, these studies did not seek to exclude 

the contribution of other mechanisms, however they do suggest that hemolysis may 

playa major role in susceptibility. By inference from previous studies in mice, the same 

mechanisms may also account for the susceptibility to other Gram negative bacteria, 

whereas in mice hemolysis did not impair susceptibility to S.pneumoniae,102 which 

shows no association with malaria in human studies.ll We found that even humans 

with uncomplicated malaria have evidence of impaired neutrophil function, but in 
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keeping with the clinical studies suggesting that this population would be a low risk of 

NTS bacteremia, the magnitude of the defect in oxidative burst was not sufficient to 

impair bactericidal function. Additional studies in the highest risk populations (Le. 

children with severe anemia) will be necessary to establish that neutrophil dysfunction 

is indeed related to susceptibility to NTS bacteremia in humans. 

A number of other mechanisms, which may be relevant in malaria patients, have been 

proposed to cause susceptibility to NTS and warrant additional consideration alongside 

the experimental findings described in this thesis. The entry of NTS and other Gram 

negative bacteria into the body is the first step in causing bacteremia, and is a 

prerequisite even before the interaction of bacteria with macrophages or neutrophils. 

As these are all enteric organisms, increased bacterial translocation from the gut into 

the bloodstream has been proposed,lO due to impaired integrity of the gut mucosa,289 

possibly associated with sequestration of pRBCs in the gut microvasculature.29o 

Others have suggested macrophage dysfunction as the explanation for susceptibility to 

NTS in malaria, above and beyond any contribution made by hemolysis. lOS 2S6 This may 

be explained by macrophage dysfunction as a result of hemozoin ingestion,2S6 erythro

/hemo-phagocytosis,los 291 or reduced production of cytokines such as Il-12 (which is 

necessary to facilitate the killing of intracellular NTS).lOS Whilst these may all be 

contributing factors, that may explain the formation of localized NTS abscesses which 

are frequently seen in patients with macrophage dysfunction due to Il-12/ll-23 

signalling defects,292 they do not easily explain the clinical association of malaria with 

NTS bacteremia. In fact, NTS is far more common as a cause of bacteremia than of 

abscesses in patients with chronic granulomatous disease where both neutrophil and 

macrophage function are abnormal.26l Furthermore, the macrophage hypothesis is 

limited by the lack of any direct evidence to date showing that macrophages are the 

main cell type within which NTS are replicating in vivo in humans or animals with 

malaria co-infection. 

Perhaps a more important mechanism, which has received little attention, is the effect 

of malaria on the natural acquisition of antibodies against NTS. Antibodies playa clear 

role in protection against NTS bacteremia, and are usually acquired during the second 
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year of life in African children.
97 

Recurrent episodes of malaria during early childhood 

might suppress natural acquisition of antibodies to NTS, similar to the suppression of 

antibody responses to Salmonella capsular polysaccharide vaccine.21 Although the 

mouse model developed in the studies presented in this thesis is assumed to be 

antibody independent because the mice are Salmonella naive and infection progresses 

too rapidly for antibody production to make a significant contribution, in humans a 

lack of antibody may exacerbate the severity of defects in neutrophil oxidative burst.94 

Another factor worth considering is the recently described role of erythropoietin in 

impairment of resistance to NTS in mice.293 Erythropoietin is the main regulator of 

erythropoiesis in bone marrow, but its receptors are also expressed on other cell types 

and appear, amongst other effects, to regulate the inflammatory function of 

macrophages.294 Consistent with this, erythropoietin levels are generally elevated in 

severe malarial anemia, the major risk factor for NTS,81 as would be expected as part 

of the homeostatic response to severe anemia.295 However, evidence is lacking that 

erythropoietin is associated with susceptibility to infection in humans. In a large 

prospective study in renal dialysis patients, therapeutic erythropoietin administration 

was not a risk factor for bacterial infection.296 

The experimental findings presented in this thesis are remarkably consistent with the 

clinical observations of susceptibility to NTS infection in children with either severe 

malarial anemia, or recent malaria. Although the study in Gambian children provides 

preliminary evidence and proof of principle for a relationship between hemolysis, HO-l 

induction and neutrophil dysfunction, it does not prove that this is associated with 

clinically significant increase in risk of NTS infection. Ideally this requires a very large 

prospective study of children with malarial anemia, to have neutrophil function and 

indices of hemolysis and HO-l induction assessed at the time of clinical presentation 

with malaria and at regular intervals after anti-malarial treatment, and to be followed 

up during convalescence for acquisition of NTS bacteremia. At the time of diagnosis 

with NTS bacteremia, it would be very useful to again assess neutrophil function, 

evidence of hemolysis and HO-l expression, and also to determine the cellular location 

of NTS in blood. If such a study confirmed that children at highest risk of NTS infection 

had the most severely Impaired neutrophil function, then targeted treatment to 
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reduce this risk may be justified. This might be antibiotic prophylaxis, or perhaps 

administration of a HO-l inhibitor prior to discharge from hospital following successful 

treatment for malaria. HO-l inhibition has been successfully performed in human 

neonates with severe hyperbilirubinaemia secondary to hemolysis, and proved very 

safe,297-299 In children who have already commenced effective treatment for malaria 

and who are no longer at risk of deterioration, administration of a drug like SnPP is 

likely to be safe. Similarly it might be administered as an adjunctive treatment to 

children who present with NTS infection in the context of a negative malaria blood 

film, but positive antigen based rapid diagnostic test. 

The exact mechanism by which HO-l induction leads to impairment of the oxidative 

burst in maturing neutrophils was not elucidated in the studies presented in this 

thesis. Existing literature affords speculation about several mechanisms which might 

be investigated in further studies. The most direct mechanism simply involves 

catabolism of cellular heme, such that little is available for incorporation into the 

gp91Phox subunit of the NADPH oxidase complex.223 The main problem with this 

explanation is that induction of HO-l by heme is likely to also provide adequate heme 

for gp91Phox maturation, unless the increased HO-l activity persists long enough to 

catabolise the cellular heme pool as well as the finite amount of administered heme. 

Others have shown that bilirubin218 and C0300 can inhibit NADPH oxidase activity, 

whilst Nakahira and colleagues have proposed that direct binding of CO to the heme 

moiety of gp91Phox interferes with the assembly of the enzyme complex.210 In a 

different model system involving priming of neutrophil oxidative burst activity in rats 

by alcohol intoxication, HO-l induction with CoPP decreased the expression of p47Phox 

and p67PhOX
, but the molecular basis of this was not investigated.217 At present the 

exact mechanism by which heme-induced HO-l might suppress neutrophil oxidative 

burst activity remains to be clarified. Any mechanism identified must also explain why 

only a proportion of neutrophils appear to have abnormal oxidative burst activity In 

the study in Gambian children with malaria. In acute malaria this might be proposed to 

be due to the mobilisation of immature granulocytes with an impaired oxidative burst, 

but during convalescence this is unlikely to be the sole explanation. As proposed in 

Chapter 6, the persistence of hemozoin in bone marrow may cause prolonged 
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induction of HO-l in myeloid lineage cells and perhaps influence the oxidative burst 

capacity of only a proportion of developing granulocytes. 

The roles ofHO-l in malaria 

The results of the studies presented in this thesis also need to be considered in the 

wider context of the possible roles of HO-l in malaria. Elegant studies in mice have 

clearly demonstrated that the ability to upregulate HO-l is essential for survival in 

experimental severe malaria infections.112
-
114 However, HO-l induction also promotes 

the survival of liver stage malaria parasites in experimental infections in mice, which in 

theory might lead to a greater inoculum of meroloites and more rapid ascent of blood 

stage parasitemia.2ss In humans, it is much harder to isolate the effects of HO-l 

induction from other factors which might also determine susceptibility to severe 

malaria, but it remains at best uncertain whether the results obtained in mice may be 

of relevance. The most common strategy to find evidence that HO-l induction is 

causally related to susceptibility to severe malaria has been to examine the association 

with genetic polymorph isms which determine HO-l expression. The most consistent 

finding has been an association between the polymorphic (GT)n repeat in the HMOXl 

promoter and disease severity.158163-164 Contrary to expectations, short (GT)n repeats, 

which confer greater HMOXl mRNA synthesis in response to heme, are more common 

in patients with severe malaria than uncomplicated P. !alciparum malaria.1S8163-164 One 

other study has reported that long (GT)n repeats, associated with lower HO-l protein 

expression, were seen more frequently in subjects with symptomatic than 

asymptomatic (predominantly P. vivax) malaria.301 However this study had significant 

methodological limitations, using a different definition for long (GT}n repeats and 

comparing alleles rather than genotypes between subjects. Discounting the findings of 

the latter study, a reasonable explanation for the somewhat contradictory 

observations in mice and humans is that the relationship between HO-llevels and 

malaria severity is "U" shaped: whilst some HO-l induction is desirable to protect the 

host against malaria, excessive HO-l induction can also become harmful. In inbred 

mice there are no polymorphisms which influence HO-l expression and the increase in 

hmoxl expression required to protect from severe malaria is only 4-5 fold,112 whereas 
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in humans with severe malaria HMOXl expression may show up to a lO-fold 

increase.158 It is possible that beyond a certain point, excessive HO-l induction may 

cease to prevent oxidative damage and actually begin to enhance it by increasing 

intracellular ferrous iron avaiiability.302 Consistent with this, neutrophils incubated 

overnight with a high concentration of hemin showed an enhanced oxidative burst 

upon PMA stimulation, which was abrogated by co-incubation with Snpp.158 

The findings in mice and humans presented in this thesis become particularly 

interesting when considered alongside the possibility that extent of HO-l induction 

determines whether production of reactive oxygen species is limited or exacerbated. 

That induction of HO-l expression in progenitor cells in bone marrow leads to reduced 

oxidative burst activity, may represent an adaptive mechanism to limit the 

consequences of excessive HO-l induction elsewhere, by reducing the production of 

reactive oxygen species.276 Similarly, downregulation of surface C0163 expression on 

monocytes and presumably macrophages in acute malaria, may also serve to limit 

excessive HO-l induction. Although this might limit the immunomodulatory effect of 

modest HO-l induction, it might also prevent the potential pro-oxidative effect of 

excessive HO-l induction. Further studies to prospectively assess the potential role of 

HO-l in human malaria are clearly needed before serious consideration is given to the 

manipulation of HO-l expression, or administration of carbon monoxide, as potential 

therapies in severe malaria. These studies will need to consider the many different 

stimuli for HO-l induction, the numerous factors that control the availability and 

cellular delivery of the substrate heme, and the potential modifying effect of other 

changes within host cells that may influence oxidative and non-oxidative cell damage. 

Heme and iron metabolism in malaria 

The role of HO-l induction in malaria must not only be considered in the context of 

protection from the toxicity of free heme and reactive oxygen species,303 but also in 

the context of its crucial role in heme catabolism and the coordinated regulation of 

heme iron recycling and redistribution.304 The increase in erythrocyte destruction in 

malaria, either by rupture of Infected erythrocytes, intravascular hemolysis or 

erythrophagocytosis by macrophages of the reticuloendothelial system results in a 
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huge amount of heme iron being directed primarily to macrophages.30s Under normal 

conditions hemoglobin-haptoglobin complexes and heme-hemopexin complexes 

would enter the macrophage via binding to their respective receptors on the 

macrophage surface, heme would be liberated in the intracellular environment, and 

HO-l would be induced.304 At the same time increasing intracellular heme would 

increase expression of ferroportin and ferritin. Ferroportin is the sole iron exporter in 

mammalian cells and transfers ferrous (Fe2+) iron extracellulary where it is converted 

to Fe3
+ and binds to plasma transferrin before being trafficked to the bone marrow for 

re-utilization.304 Ferroportin is dominantly regulated by plasma hepcidin, a hormone 

synthesised predominantly in the liver, which binds to and causes internalization and 

degradation of ferroportin, thus preventing iron efflux.306 Hepcidin is induced as part 

of the innate immune response to infection,307 and is upregulated in malaria,308-309 

where it may limit superinfection by additional Plasmodium strains or species by 

depriving them of iron that they require for growth in the liver prior to blood stage 

infection.310 One obvious consequence of increased hepcidin expression in malaria is 

that heme-derived iron will remain sequestered in macrophages,30S and if HO-l is 

induced by the acquisition of heme in these cells, its activity will result in increasing 

intracellular Fe2
+ and ferritin. Presumably this iron would be available to siderophilic 

intracellular pathogens such as NTS. However, downregulation of cell surface C0163 

expression on monocytes and macro pages, as observed in the study of Gambian 

children presented in this thesis, may to some extent limit this increase in intracellular 

Fe2
+, until the stage that haptoglobin is saturated with hemoglobin and free 

hemoglobin begins to release heme. If hemolysis is sufficiently severe to reach this 

stage, then heme will bind to hemopexin and can enter cells through C091 binding, 

which appears unimpaired by malaria, and will induce HO-1 and be catabolised as 

normal. Thus one level of protection against the damaging effects of hemolysis may be 

sacrificed in order to limit intracellular iron accumulation. If this is so, then what 

happens to the circulating hemoglobin-haptoglobin complexes that are not being 

removed by their normal pathway? In addition to loss of surface C0163 expression as 

described in Chapter 6, others have described increased soluble C0163 levels in acute 

malaria,311 and soluble C0163 may bind the circulating hemoglobin-haptoglobin 

complexes, but how might this alter the fate of these complexes? At present the 
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answers to these questions are uncertain, but pinocytosis of the hemoglobin

haptoglobin complexes by hepatocytes is one possibility,312 and urinary excretion is 

another possible explanation, which might contribute to iron deficiency in children 

suffering frequent episodes of malaria. 

Another reason why changes in the host responses to hemolysis and regulation of iron 

metabolism may be important, is because of the association between hemolysis and 

severe malaria. Although somewhat different mechanisms have been proposed, 

hemolysis appears to contribute to both endothelial dysfunction in P. !alciparum 

malaria313 and cytotoxicity in experimental severe malaria in mice,112 as discussed in 

Chapter 8. It is conceivable that administration of haptoglobin,314 hemopexin,115 or 

both might be considered as potential adjunctive therapeutic strategies, to limit these 

deleterious effects. Understanding the potential benefits and risks of these therapies 

will require further exploration of the fates of intravascular haptoglobin-hemoglobin 

and heme-hemopexin complexes during malaria. 

Conclusions 

The aim of this thesis was to investigate the mechanism of susceptibility to bacterial 

infection caused by malaria and its relationship with hemolysis. Initially I reviewed the 

evidence for immunosuppression by malaria and found that in humans it appears to be 

limited to a few specific situations, with the term immunosuppression probably being 

misleading. Based on existing literature describing the susceptibility to NTS infection in 

mice and humans, and recent literature describing the crucial role of HO-l in tolerance 

to malaria, I hypothesised that HO-l induction might also mediate the susceptibility to 

NTS.ln a mouse model I have demonstrated that hemolysis-derived heme causes HO-l 

dependent dysfunction of neutrophils, characterised by impaired oxidative burst 

activity, failure to kill S. typhimurium, and consequently the creation of a new niche for 

replication. In a proof-of-principle study in Gambian children I found evidence of 

similar neutrophil dysfunction, and that this was associated with hemolysis and HO-l 

induction, supporting the applicability of the findings in the mouse model. The 

implications of these findings may extend to bacterial infections associated with other 
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hemolytic diseases, and may offer a potential for reversal of the susceptibility to NTS 

following malaria. I also found evidence that malaria infection causes changes in the 

host pathways involved in scavenging and recycling heme, which may have 

implications for the pathogenesis and treatment of severe malaria. 

In a study which began as a separate project alongside the investigations on HO-l in 

malaria, I found that severe malaria in Gambian children was not associated with 

extensive parasite sequestration, questioning the current dogma that severe malaria is 

caused by sequestration of parasitized red blood cells. This prompted me to review the 

evidence for sequestration and other mechanisms in the pathogenesis of severe 

malaria, and my conclusions were that endothelial dysfunction is more likely to be the 

proximal cause of severe disease than is sequestration. The reasons for endothelial 

dysfunction are multiple, but prominent amongst them is the role of hemolysis in 

impairing nitric oxide bioavailability and endothelial activation and injury. Thus the 

destruction of infected red blood cells and release of their contents as a consequence 

of the intraerythrocytic life cycle of Plasmodium species appears to be the primary 

cause of much of both the direct and indirect burden of malaria. 
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Summary: 

Malaria predisposes to bacterial infections, most notably non-Typhoid Salmonella (NTS) 
bacteraemia. Studies in mice suggest that haemolysis causes this susceptibility, and our 
own work suggests that this leads to a defect in neutrophil oxidative burst, which 
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Who will introduce the proposal at SCC? 

Dr Michael Walther 

Training Fellow 

Sen. Immunologist 

MRC PhD Student 

Head of Programme 

Sen. Statistician 

LSHTM PhD Student 

Data Manager 

Prof of Immunology 

c) How will the safety oversight be done (if applicable)? 

Safety Monitor D TscD DMC/DSMB D Other D NA ~ 

AS location(s) of research 

Samples from malaria cases will be collected from the Jammeh Foundation for 
Peace Hospital, the MRC Outpatient Department and the Brikama Health Centre. 

Samples from healthy volunteers will be collected from Brefet Village. 

The laboratory work will be carried out at the Laboratories, Fajara, The Gambia 
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Some of the subsequent analysis may be done at the London School of Hygiene 
& Tropical Medicine 

A6 Are adjunct studies planned? 

Yes IZI No D 

Depending on feasibility we may wish to study the same questions in children with sickle cell 

disease attending clinic - this would be the subject of an additional application if this appears 

feasible based on preliminary findings in the study set out in this application form. 
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A7 Checklist for Administration 

a} Has the project been discussed and cleared with the institutions in 
which research will be carried out including health services to which the 
study will need access? 

Yes IZI No D Recruitment for this study forms an integral part of the 
ongoing study initially described in SCC 1003 and SCC 1002, with recent 
modifications described and approved for SCC 1180. The new scientific 
questions will be presented to the CEO of the Health Centre prior to start 
of recruitment. 

b) Have all investigators and collaborators given their agreement to take 
part in the study as described? 

Yes IZI No D 

c) Have ethical issues been addressed? 

Yes IZI No D 

d) Does the project require laboratory work, new laboratory procedures, or 
the riding of motorcycles? 

Yes IZI No D Yes, the project does require laboratory procedures to be 
carried out on the samples by the PI. Sample transport will be in an MRC 
Landrover or on MRC motorbikes. 

If yes, have the safety issues been addressed, if any? 

(The Health and Safety Manager will advise on risk assessment) 

Yes IZI No D The PI will be made aware of local health and safety 
regulations during his introduction. 

e) Will the project require data taken out of The Gambia? 

Yes IZI No D Since the PI is registered as a PhD student at LSHTM and 
will be required to return to London in April 2011, he will be required to take 
data with him. Data will be transported on an encrypted device; a safety copy 
of the data will remain in the Gambia. 

If it is an MRC project, the Principal Investigator ensures that a copy of the 
complete data set remains with the MRC Data Management Office in The 
Gambia at the following two time points: 

1. After data entry and verification ("raw data sets") 

Yes 181 No D 
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2. At the point of submission for publication of final report ("analysis data 
sets") 

Yes~ NoD 

At the end of the study and after publication, a master file containing all raw 
data in an anonymous format will be made available to the Unit. 

Note: Before export of any data, separate approval by SCC and Ethics 
Committee is required and for MRC studies the signature of the Unit Director 
or designee 

f) Will the project require biological materials taken out of The Gambia? 

Yes~ NoD 

Although it is planned to carry out all lab work related to the project at the MRC 
laboratories, The Gambia, depending on the results it may become of interest to 
examine for instance the proportion of free and protein bound heme in plasma. 
This would be done by high performance liquid chromatography in collaboration 
with Dr Harparkash Kaur at LSHTM. In that case, separate permission will be 
sought from the SCC I EC to transfer aliquots of the samples collected during 
this study to another laboratory outside of The Gambia. 

The Principal Investigator will ensure that appropriate aliquots of the biological 
material being taken out of the country remain with MRC Laboratories The 
Gambia 

If it is an MRC project, the Principal Investigator ensures that appropriate 
aliquots of the biological material being taken out of the country remains with 
MRC Laboratories The Gambia 

Yes~ NoD 

Note: Before export of any biological material, separate approval by SCC and 
Ethics Committee is required and for MRC studies the signature of the Unit 
Director or designee 

g) For projects to be ca"/ed out at MRC Laboratories 

Has the project been discussed with the following support staff as 
appropriate and resource requests agreed? 

Yes~ NoD 

This project takes advantage of the ongoing longitudinal study of severe and 
mild malaria cases established here at the coast since 2005 (SCC 1002 SCC 
1003). The work suggested in this project should be seen as a continuation of 
SCC1077 (Role of HO-1 in P. falciparum infection). In addition, two further 
research projects will be based on this platform during the forthcoming 
season: SCC 670 and SCC 1180. All issues re safety, transport etc. have 
been discussed and agreed previously and have not changed. No new staff 
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are required. The laboratory work will require mainly standard techniques that 
are well established in our lab. A copy of this proposal has been sent to 
Ousman Secka. Risk assessments for the use and culture of genetically 
modified (fluorescent protein-expressing) Salmonella Typhimurium have been 
undertaken. 

Support staff Date discussed Comment 

Health and Safety Manager 
April 26, 2010 Sent by email 

Pknight@mrc.gm 

Head of IT ISenior Data Manager 
Dcotsell@mrc.gm; April 26, 2010 Sent by email 
Dl2arker@mrc.gm 

Director of Clinical Services 
tcorrah@mrc.gm April 26, 2010 Sent by email 

Scientific Administrator 
April 26, 2010 Sent by email 

Imanneh@mrc.gm 

Transport Manager 
April 26, 2010 Sent by email 

I2knight@mrc.gm 

Finance Manager 
April 26, 2010 Sent by email 

abar~@mrc.gm 

Personnel Manager 
April 26, 2010 Sent by email 

khill@mrc.gm 

Director of Operations 
April 26, 2010 Sent by email 

mkill2atri~k@mrc.gm 

Other services - specify 

Signature of Principal Investigator and date: 

Signature Date 

(Please sign the hard copy before the project commences and provide a copy to 
the see secretary for filing) 
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AS For interventional studies on human participants (Clinical Trial) 

Synopsis 

Population studied: 

Number of sites: 

Study duration: 

Subject participation duration: 

Investigational products or 
Intervention: 

Objectives: 

Endpoints or 
Outcome parameters: 

Study Design: 

320 



B Scientific Description of the Project 

B1 Background and Rationale 

Malaria causes a huge global burden of ill-health: an estimated 243 million cases of 

malaria and 863,000 deaths in 2008 [1]. However, the direct burden of disease may 

underestimate the overall effect of P. !alciparum on the health of a population. 

Epidemiological and ecological studies suggest that infection with P. !alciparum is a 

stronger risk factor for death than can be directly attributed to malaria itself 3 5-6, and it 

has been estimated that up to half of the variation in child mortality in Africa may be 

accounted for by differences in parasite prevalence 3. One reason for this may be that 

Plasmodium !alciparum malaria is associated with increased susceptibility to bacterial 

infection (particularly non-Typhoidal Salmonella, NTS)[5-8]. Susceptibility to NTS 

bacteraemia is most strongly associated with severe malarial anaemia [5,6] and is 

more closely related to the incidence of malaria than to stool carriage of Salmonella[5]. 

These data are supported by increased susceptibility to Salmonella infection in 

experimental malaria-Salmonella co-infections in mice [10,11]. Susceptibility to NTS 

also occurs in humans with sickle cell disease [12], and mice with pyruvate kinase 

deficiency [13] or experimentally induced immune-mediated or chemical haemolysis 

[11,14]. This strongly suggests that haemolysis, rather than "malaria" itself is central to 

the pathogenesis. Most investigators have assumed that haemolysis due to malaria or 

other factors has an adverse effect on macrophage function [5,10,11,14], since 

macrophages are the main host cell type in which Salmonella Typhimurium replicates 

in otherwise healthy mice [15]. However, there is no direct evidence that the malaria

induced susceptibility to infection involves impairment of macrophage function, and 

the mechanism is unknown. 

Heme oxygenase-l (HO-l) is the stress inducible, cytoprotective isoform of the enzyme 

responsible for heme degradation [reviewed in 16]. It is induced by its substrate heme 

(hence it is induced during haemolysis), as well as a huge number of potentially 

harmful stimuli. Induction of HO-1 has many immunomodulatory effects [reviewed in 

17], including suppression of the generation of reactive oxygen species important for 

intracellular signaling and the oxidative burst [18-20]. In general these effects reduce 

inflammation and protect host tissues from damage. Induction of HO-l has been 

demonstrated in human and rodent malaria infections [21-24], and its timely induction 

can prevent severe manifestations of malaria in mice [25]. Although induction of HO-l 

has been shown to be beneficial to survival in other models of sepsis [26], we 

hypothesized that its induction by malaria or other causes of haemolysis might inhibit 

killing of intracellular Salmonella, which requires generation of reactive oxygen and 

reactive nitrogen species [27]. 
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We have reassessed malaria-Salmonella co-infection in mice using Green Fluorescent 

Protein (GFP) expressing Salmonella (allowing cellular localization to be determined) 

and the non-lethal rodent malaria parasite P. yoe/ii l7X (Py17X) (Cunnington et al. 

unpublished observations). Co-infected mice died much more rapidly than those 

infected with Salmonella alone, and showed massively increased bacterial loads in 

blood, livers and spleen. At this time point most bacteria were found in neutrophils 

and monocytes, with a marked neutrophil predominance in co-infected mice. These 

findings are consistent with recent observations that neutrophils are the first host cells 

for Salmonella Typhimurium early in infection, and that Salmonella activate 

transcription of genes to allow survival in neutrophils [28]. We found that neutrophils 

from Py17X infected mice did not show increased phagocytosis of Salmonella when 

challenged ex-vivo, suggesting that there may be a defect in their ability to kill 

Salmonella. We found that the neutrophil oxidative burst was markedly reduced by 

Py17X infection, whereas neutrophils retained normal degranulation. This defect was 

progressive and correlated with the rise in parasitaemia, fall in erythrocyte count (ie 

haemolysis), plasma heme levels and systemic and neutrophil specific induction of HO-

1. These data suggested that a defect of neutrophil function may be responsible for 

the susceptibility of malaria infected mice to systemic Salmonellosis, and the induction 

of HO-l by hemolysis may suppress the neutrophil oxidative burst. 

Work undertaken in The Gambia (M. Walther et ai, unpublished observations), has 

already examined HO-l expression in malaria. This work has clearly identified that HO-

1 is induced by P. !alciparum malaria and that neutrophils are the major cell type 

expressing HO-l. These findings in humans helped to shape the mechanistic studies we 

have been performing in the animal model, which in turn has provided insight into a 

potential functional role of HO-l, and we now aim to translate this back into a study in 

humans. 

We wish to investigate whether a defect in neutrophil function occurs in Gambian 

children with malaria, and whether there are any simple clinical, haematological or 

biochemical indicators, which correlate with the severity of this defect, which might 

allow us to determine which children might be most susceptible to bacterial co

infection. We will employ the existing longitudinal study of severe and mild malara, so 

that we have a spectrum of clinical malaria cases, each with acute (day 0) and 

convalescent (days 7 and 28 and week 8 post-presentation) samples. We will compare 

neutrophil function on day 0 with convalescent values for the same subject, enabling 

us to attribute any change to malaria. We will also determine the relationship between 
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HO-l expression and neutrophil function, to evaluate whether HO-l may be 

contributing to any suppression of the oxidative burst. Methods for detection of HO-l 

expression by flow cytometry, rt-PCR and ELISA, as well as neutrophil isolation from 

human blood samples, have been developed and validated in the MRC laboratories in 

The Gambia (M. Walther et ai, unpublished results) and greatly enhance the chances of 

completing this study successfully. 
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83 Project description 

a) What Is the hypothesis of the project? 

Malaria causes a defect in neutrophil function through the induction of heme 
oxygenase-1. 

b) What are the primary and secondary objectives? 

Primary Objective 

To determine whether neutrophil function (neutrophil oxidative burst and ability 
to kill Salmonella enteritidis serovar Typhimurium. in vitro) is suppressed by P. 
falciparum infection. and inversely correlated with HO-1 protein expression in 
neutrophils. 

Secondary Objectives 
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1. To determine factors correlated with HO-1 induction (eg plasma heme) 

2. To determine the duration of any effect of acute malaria on neutrophil 
function. 

3. To determine whether neutrophil dysfunction is associated with heme 
oxygenase-1 gene expression I enzyme activity in peripheral blood neutrophils. 

4. To determine whether neutrophil function differs between different clinical 
manifestations of malaria (severe vs. mild; correlation with degree of anaemia). 

5. To assess whether there are any simple haematological or biochemical 
markers (eg. carboxyhaemoglobin saturation, bilirubin, total plasma heme, 
methemoglobin, haptoglobin or hemopexin) that predict impaired neutrophil 
function. 

c) What type of study design is proposed? 

Longitudinal study, using the severe and mild malaria longitudinal study platform. 

This study platform will also be used to recruit subjects for studies SCC 670 and 
SCC 1180, although blood samples from each individual subject will only be used 
for one of the three studies. 

In addition, one-off blood samples will be collected from healthy control children 
(to determine a normal range for neutrophil function). 

d) What are the subjects and/or samples studied and their number? 

Study subjects will be paediatric patients enrolled in the ongoing longitudinal 
study, and healthy control children from Brefet Village. 

Patients will be recruited from the following sites: Jammeh Foundation for Peace 
Hospital, MRC Outpatient Department and the Brikama Health Centre, during the 
2010 transmission season. 
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Patients who are enrolled in the ongoing longitudinal study suffer from either 
severe or mild malaria and so these patients are mainly young children. In the last 
three years between 120 and 180 children have been recruited per malaria 
season. 

In total, 58 children will be required for the longitudinal study outlined in this 
application. Another 20 healthy control children will be required. 

Blood samples will be collected on days 0, 7 and 28, and week 8, from those 
patients enrolled in the longitudinal study. 

In addition 20 healthy control children (10 children 1-4 years old, 10 children 5-12 
years old) will be recruited from Brefet Village (the purpose of these samples is to 
estimate the normal range for neutrophil function tests in Gambian children, not 
for formal comparison with acute malaria samples). 

e) What are the endpoints or outcome parameters? 

The main outcome is neutrophil function (oxidative burst, degranulation and ex
vivo killing of Salmonella). This will be compared between acute and 
convalescent samples for each malaria case. 

f) Which methods (laboratory and/or field) will be used, what 
samples/specimens, if any, will be taken and what Investigations will be 
conducted? 

Initially, when patients enroll in the ongoing longitudinal study during the 2010 
transmission season, the nurse will explain the study to the parent/guardian. The 
nurse will make clear to them that a total of up to four bleeds will be requested 
from their child for this study (days 0, 7, 28, and week 8). For those who are 
willing to participate, individual written informed consent will be obtained. 
Participants will be made aware that they can withdraw at any time during the 
study without this affecting the health care provided by the MRC clinic. For 
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healthy children enrolled from Brefet Village, the study will be explained as above, 
but it will be made clear that only a single blood sample is required. 

In line with the Ethics Committee's guidelines, a volume of venous blood 
appropriate for the respective age group will be collected from all study 
participants at each visit. The blood will be used for the following tests: 

-A thick film will be prepared for slide microscopy to test for presence or absence 
of parasitaemia. 

- 2 EDTA microtainer tubes will be filled with not more than 250\.11 (for children less 
than 5 years) or not more than 500\.11 (for children> 5years) of blood each, to 
perform i) a full blood count that will be used for patient management and research 
purposes, ii) to test for sickle cell status (day 0), iii) to perform a qualitative PCR for 
Plasmodium DNA, and lor to perform a PCR for bacterial DNA to determine the 
presence of co-infection. 

- 0.5 ml blood will be collected into a PAX tube to preserve the mRNA. 

- 4.0ml-13.0ml of blood (depending on age of the child) will be collected into 
heparinized tubes and transported in an insulated box to the MRC within two hours 
of collection. 

For all samples, when blood arrives in the MRC laboratory it will be processed in 
small batches as follows: 

Heparlnlsed Blood 

400ul whole blood for oxidative burst and degranulation assay, performed 
immediately. 

Up to 500ul aliquot centrifuged to separate plasma (aliquot of plasma frozen at -
aOC), red cells lysed, leukocytes stored on ice for later flow cytometry assay 
for HO-1. 

5ul aliquot for COHb assay. 

Remainder: plasma separated, erythrocytes lysed and neutrophils isolated from 
remaining blood for ex-vivo Salmonella killing assay. 

EDTA Blood: processed as indicated above 
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PAX gene tubes: frozen at -80C until January 2011. 

1. Oxidative burst in response to phorbol myristate acetate (PMA) or 
Salmonella Typhimurium. This is measured using a whole blood flow cytometric 
assay with conversion of dihydrorhodamine 123 to rhodamine providing a 
fluorescent indicator of intracellular hydrogen peroxide generation (Richardson et 
ai, Journal of Immunological Methods 1998 219: 187-93). The strength of the 
oxidative burst can be determined from the median fluorescence intensity of 
rhodamine. Neutrophils and monocytes can be distinguished based on their 
forward scatter and side-scatter properties, and I or by the addition of 
fluorochrome conjugated antibodies, their expression of different surface markers 
eg CD16b, CD14. 

2. Degranulation in response to phorbol myristate acetate (PMA). 
Upregulation of surface CD11b is measured in the same whole blood flow 
cytometric assay by addition of a fluorescent labeled anti-CD11b antibody. 
CD11 b is contained in primary granules of neutrophils and this can be used as an 
indicator of degranulation. 

3. Ex vivo killing of Salmonella. Neutrophils will be isolated from the remaining 
blood using positive selection with magnetic beads. Isolated neutrophils will be 
incubated with serum opsonisedt Salmonella Typhimurium which has been 
genetically modified to express green fluorescence constitutively and red 
fluorescence when cultured in the presence of L-arabinose ([Helaine et a!. PNAS 
2010], provided by Prof D. Holden, Imperial College, UK). Invasion of neutrophils 
by Salmonella, and killing of Salmonella will be determined by culture and flow 
cytometry at various time-points in a gentamicin protection assay. Intracellular 
replication of Salmonella, if any, can be determined by dilution of red 
fluorescence when cultured in the absence of L-arabinose. If necessary, 
intracellular Salmonella can also be quantified by fluorescent microscopy. 
Neutrophils in excess of numbers required for the assay will be stored in 
RNAlater for subsequent rtPCR or appropriate buffer for HO-1 activity analysis. 

4. Heme oxygenase-1 expression by flow cytometry. Using a whole blood 
staining procedure for flow cytometry established by the programme, the level of 
HO-1 expression by different leucocyte subsets will be determined. 

For secondary obJectives: 
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1. Heme oxygenase-1 expression will be determined by rtPCR in whole blood 
collected into PAX tubes, and in isolated neutrophils. Heme oxygenase activity 
will be measured using a standard assay for bilirubin production. Neutrophil HO-1 
expression and activity will be correlated with neutrophil function. 

2. Carboxyhaemoglobin saturation and plasma methaemoglobin and heme will be 
determined using spectrophotometric assays with a nanodrop spectrophotometer. 
Bilirubin will be determined using a Quantichrom bilirubin kit, and plasma HO-1, 
haptoglobin and hemopexin will be measured by ELISA. These parameters will 
be correlated with neutrophil function in univariate analyses. 

Detection I exclusion of bacterial co-infection by whole blood RT-PCR (using protocol 
developed by G Morris and adapted by Matt Edwards at MRC laboratories, The 
Gambia) 

tin order to perform optimal bacterial killing assays it is helpful to use serum which already contains antibodies against 
Salmonella. This will be achieved using pooled donor serum collected from adults in the village of Brefet. 

Sample Processing Overview 

AssaylTime Day 0 Day 7 Day 28 Week 8* 
Point (presentation) 

Sickle Screen X 

Blood Film X X X X 

Full Blood X X X X 
Count 

Oxidative Burst X X X X 

Degranulation X X X X 

Killing Assay X X X X 

HO-1 X X X X 
Expression 

Biomarkers X X X X 

Bacterial RT- X 
peR 

• Week 8 time point wi" be used at the beginning of the study but its necessity wi" be determined in an interim analysis. 
Please see section B5 for further details. 
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Blood tests will be performed on healthy control child samples as for day 0 above. 

g) What are the anticipated time-scales? 

Recruitment will run from the start of September 2010 to end of December 2010. 
The last blood samples may be taken up to 8 weeks after close of recruitment. 

All assays requiring live cells (ie those for the primary outcome measures) will be 
performed on fresh samples on the day of collection, thus all data collection for 
these assays will be completed by the end of February 2011. Assays on stored 
samples will be performed in batches between December and March 2011. 

Data will be analysed, reports written and manuscript(s) submitted for peer
reviewed publication between March and August 2011. 

84 Projects involving human subjects 

a) How and where will the study participants be selected? 

Patients will be recruited from the three different study sites namely, from the 
Jammeh Foundation for Peace Hospital, the MRC Out-Patient Department and 
the Brikama Health Centre. 

Healthy control children will be recruited from Brefet Village, based on 
demographic records. 10 children aged 1-4 years and 10 children aged 5-12 
years old will be recruited, to allow stratification for age. Parents of children of 
appropriate age will be identified and invited to bring their children for a single 
blood test. 

Will it be confirmed that they are not already Involved in other studies? 

Yes 0 No 181 as in the past, they will be part of the longitudinal study of 

severe and uncomplicated malaria cases and as such, samples may also be 

used for parasitological projects that make use of the red blood cell pellets not 
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used by the immunological projects. However, neither the frequency of bleeds 

nor the amount of blood taken at any time is affected by this. 

b) What inclusion/exclusion criteria will be applied? 

Eligibility criteria: 

African child living within the study area 

Mild malaria: 

• clinical symptoms compatible with malaria (e.g. fever> 37.5°C) and 
• more than 5000 asexual P. fa/ciparum parasites/IJI, and 
• no other obvious cause of fever, and no complications 

Severe malaria: 

• Blood film positive more than 5000 asexual P. fa/ciparum parasitesilJl, plus 1 of 
the following: 

• Hb < 6mgldl 
• Blood glucose < 2.2mmollL 
• Repeated convulsions (~3/24hours) 
• Unrousable coma as defined by a Blantyre coma score of 2 or below 
• Lactate concentration on whole blood or capillary blood> 7mmollL 
• Difficulties in breathing defined as the presence of one or more of these features: 

abnormalities in the respiratory rate (according to the age), lower chest in-drawing 
or deep breathing 

• Inability to drink or suck (observed) 
• Inability to sit unsupported (observed) 

Healthy Control Children: 

• Parents of children aged 1-4, and 5-12 years will be identified and invited for their 
children to participate in the study. 

Exclusion Criteria 
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Children with clinical or microbiological evidence of bacterial co-infection will be 
excluded from the primary analysis of the effect of malaria on neutrophil function. 
However these results will probably only be available after the initial assays have been 
performed, and if there are sufficient children with evidence of bacterial co-infection 
they may be analysed as a sub-group. 

c) Will treatment be given? 

Yes~ NoD 

Nature of treatment(s): 

Treatment will be performed according to the national Gambian Treatment 
Guidelines 

For drugs: Formulation, dosage, dosage regimen, route of 
administration and duration of treatment: 

As indicated in treatment guidelines 

Person(s) responsible for administering treatment: 

Treatment will be provided by Health Centre staff, supported by MRC 
research nurses. 

d) Will questionnaires be used? 

Yes 181 No 0 

e) Will Interviews been conducted? 

Yes 181 NoD 

Who will be conducting these? 

A trained nurse will be involved in conducting interviews, transcribing answers 
from questionnaires, checking for eligibility and obtaining informed consent. 

85 Data management and statistical analysis 

a) What are the statistical considerations and sample size calculations 
Involved In determining the size of the study? 

The sample size calculation for the study is based on the primary outcome 
measure: neutrophil function. We assume that there is a consistent linear 
relationship between the magnitude of the neutrophil oxidative burst and the 
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ability of neutrophils to kill Salmonella in an ex-vivo assay (as has been 
demonstrated for Staphylococcus aureus [Elison et a/. Journal of Experimental 
Medicine 2006]), and hence base the sample size calculation on the neutrophil 
oxidative burst in response to PMA stimulation. 

In ethnically mixed healthy subjects, the oxidative burst assay performed by this 
technique results in a stimulated mean rhodamine fluorescent intensity of 
approximately 1200 units (standard deviation 490 units) [Siddiqi et al Cytometry 
2000 46:243-6J with a relatively normal distribution. 

It is not known whether there is a threshold for the reduction of oxidative burst 
and susceptibility to infection. We expect differences in humans to be smaller 
than in the mouse model, particularly since the incidence of NTS infections and of 
severe malarial anaemia have both decreased dramatically in The Gambia in 
recent years. In animal studies the oxidative burst must be reduced to SBO% of 
normal before a significant effect is seen on bacterial killing. Therefore we regard 
a 20% reduction in oxidative burst in acute malaria, compared with convalescent 
samples, as clinically significant and worth detecting 

Since we do not know the duration of any effect of malaria on neutrophil function, 
we plan to obtain convalescent samples at intervals up to 2 months after 
presentation (days 7 and 28, and week 8). Due to the short life span of 
neutrophils in the circulation (no more than a few days) it is expected that by day 
28 after infection, neutrophil function will have returned to normal, whereas at day 
7 there may be some residual effect from parasite products such as hemozoin. 
However it is conceivable that neutrophil function may be suppressed for longer 
periods, depending, for example, on what happens to progenitor cells in the bone 
marrow. For this reason we will begin by obtaining samples at days 7 and 28, and 
week 8 but will undertake an interim analysis after the first 2 months of the study, 
to determine if the samples at week 8 are necessary for the remainder of the 
recruitment period. 

It should be noted that the primary objective of this study is not to assess 
differences in neutrophil function between individuals with severe and mild 
malaria, but we do wish to have a spectrum of clinical cases which might result in 
a greater range of HO-1 expression and possibly oxidative burst values. 

Sample size calculation: (Using Stata Sampsi) 
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Paired sample t-test: Acute vs Convalescent oxidative burst (likely to be 028) 

Two-sided p value = 0.025 (to allow for multiple testing caused by planned interim 
analysis) 

Power = 80% 

Estimated means: Acute = 960 units, Convalescent = 1200 units 

Standard deviation: 490 units for both acute and convalescent samples 

Sample size = 40 

Practical Considerations for Sample Size: 

In previous years approximately 85% of subjects have provided both acute and 
convalescent (day 28) samples. We anticipate that loss to follow-up may be as 
high as 25% by 8 weeks after presentation, and therefore increase the sample 
size to reflect this. 

It is likely that the distribution of oxidative burst values may not be normally 
distributed in this population, particularly in the acute samples, so we will adjust 
the power calculation to take into account the fact that non-parametric testing 
may be necessary. The maximum increase in sample size requirement if a non
parametric test is required is 15%, therefore this will be added to the sample size 
calculated above. 

The combination of loss to follow-up and contingency for non-normal distribution 
increases the sample size required to 58 subjects. 

Final recruitment target In longitudinal study 

58 children with acute malaria 

334 



Healthy Control Subjects 

20 children, (10 children aged 1-4 years, 10 children aged 5-12 years). Note, 
these children are not included in formal statistical analysis, but allow us to 
estimate the normal range for Gambian children. 

b) Who is responsible for the statistical design and analysis of the study? 

The study was designed by the PI, his MRC supervisor Dr M. Walther, and his 
LSHTM supervisor Prof E. Riley. The study design and analysis plan has been 
revised following advice from Dr David Jeffries, MRC Senior Statistician. Initial 
analysis will be performed by the PI, and subsequent analysis will be performed 
with assistance from Dr Jeffries and Bankole Ahadzie. 

c) What is the plan of analysis? 

All laboratory data will be stored in the database. 

All data collected onto a CRF will be reviewed by the PI prior to double entry and 
cleaning. 

Eventually both datasets (from the CRF and the laboratory) will be merged 
according to the study identifier. 

Pre-specified analyses comparing the primary outcomes between acute and 
convalescent samples will be performed by the PI. For secondary exploratory 
analyses, the PI will perform multivariable analyses with assistance from Dr 
Jeffries. 

Primary analysis: 

Flow cytometry data for the neutrophil oxidative burst will be subjected to objective 
clustering analysis to allow unbiased quantification of the magnitude of the 
unstimulated and stimulated neutrophil oxidative burst for acute and convalescent 
samples. Data at each time point will be examined to determine the possible duration 
of any suppression of neutrophil function compared to the subsequent time points (ie. 
based on when the oxidative burst seems to stop increasing with time, expected to be 
day 28). In the simplest analysis, acute and convalescent stimulated oxidative bursts 
will be compared using a paired sample test appropriate for the distribution of the data. 
A similar analysis will be performed for the bacterial killing assay at the same time 
points. The relationship of the bacterial killing to oxidative burst will be assessed using 
a model to fit the best curve for this relationship accounting for multiple observations on 
each individual. We will also use the model to define if there is a threshold for oxidative 
burst to influence bacterial killing. Heme oxygenase expression in neutrophils will be 

335 



quantified from flow cytometry fluorescence intensity data (again using objective 
clustering analysis) and will be correlated with oxidative burst and bacterial killing using 
a similar modeling approach. If necessary parametric or rank-based longitudinal 
methods taking account of intra subject correlation will be used if more than two time 
points are necessary. 

Subsequent analysis: 

We do not expect that the magnitude of the convalescent oxidative burst will be 
substantially influenced by age, sex or ethnic group, however it is possible that 
this may be the case. We will explore the associations between these variables 
and oxidative burst, neutrophil function and HO-1 induction in a multivariable 
analysis. If necessary, we will repeat the primary analyses with adjustment for 
these factors. 

The associations of clinical, haematological and biochemical indices with 
neutrophil function and HO-1 expression will be assessed and the strongest 
candidates for diagnostic tests will be identified. We will calculate threshold 
values and their sensitivity and specificity for predicting impaired bacterial killing 
in vitro. 

d) Who will be primarily responsible for database design and data 
management? 

Ismaela Abubakar 

e) Will Microsoft Access be used as database? 

Yes 181 NoD 
Laboratory data will be stored in an Access Database. 
The OpenClinica database will be used for clinical data, to allow for 
monitoring the data as it is being entered. 
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86 Expected outputs and Dissemination of results 

a) What are the expected outputs (publications) from this project? 

We expect to be able to publish the results from this study, whether or not an 
association can be demonstrated between malaria and suppression of the 
oxidative burst. 

If this study demonstrates suppression of oxidative burst and Salmonella killing by 
neutrophils from patients with malaria we would aim to prepare 2-3 manuscripts: 

1. An immunology paper showing the magnitude and nature of this effect, and 
possible mechanism 

2. A clinical-immunological correlation paper showing the relationship between 
clinical I haematologicall biochemical indices and neutrophil dysfunction 

(3. A review I opinion article about the implications of malaria control activities for 
reducing susceptibility to Salmonella infection and additional reductions in child 
mortality) 

b) What other arrangements will there be to disseminate the 

findings? 

We would also aim to present the findings at an appropriate international 
conference, as well as seminars at the MRC laboratories, LSHTM and other 
institutions (if invited). 
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C Ethical Issues 

C1 Outline how the study will contribute to improving the health of people of The 

Gambia 

Apart from the health care provided to the patients at the study site, there is no direct 
immediate benefit to the health of the people of the Gambia. However, if we identify 
mechanisms and correlates of susceptibility to NTS infection in children with malaria, 
this may ultimately lead to specific therapy to reduce the risk, or to risk stratification and 
improved use of empirical antibiotic treatment. This could reduce morbidity and 
mortality due to NTS infection. 

C2 Summarise the potential risks and benefits to individuals, communities or 

country 

PartiCipants may experience some discomfort such as local bruiSing or fainting when 
blood is being drawn by venepuncture. The field worker will explain this to them during 
the consenting process. EMLA cream will be applied before taking blood samples to 
minimize discomfort. 
Referrals to MRC or RVTH will be facilitated where necessary. 
Findings from this study will contribute to our understanding of how malaria influences 
susceptibility to other infections, and may provide means of protecting individuals from 
infection. 

C3 How will informed consent be obtained? 

A trained nurse will explain the study to the subjects, or in the case of children to their 
parent/guardian. The field worker will answer any questions the participants may have 
regarding the study or will refer them to another investigator if they are unable to 
answer them. 

C4 How will confidentiality of the data gathered be ensured? 

Study participants will be issued a unique three digit number as study 10. Only the first 
page of the CRF will allow us to link the participant's name and address to the 10 and 
will be stored separately in a locked filing cabinet, accessible only by the PI. 
The CRFs, once entered, will be locked in a filing cabinet accessible only by the PI and 
senior fleldworkers involved in the conduct of the study. 

C5 Will HIV Testing be required? 

Yes 0 No 181 

C6 Please ensure: 

Is a consent form attached? 

Yes 181 NoD 

Is a subject information sheet attached? 
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Yes IZI No 0 
Is the questionnaire (if applicable) attached? 

Yes IZI No 0 
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o Resources Requested 

01 Timeline 

First samples will be collected from September 2010 until end December 2010. Follow-up 

samples will be collected up until the end of February 2011. Initially, samples will be collected 

at day 0, 7 and 28, and week 8 for each participant. 

02 Resource Request Spreadsheet 

(available in Excel on request) 

Existing staff 

Who(names Grade % time Source of funding 
needed) 

Aubrey Cunnington 100 MRC Clinical 
Research Training 
Fellowship 

Michael Walther Band 3 10% Sen Immunologist 

Madi Njie Grade 83 25% Lab technician 

Simon Correa Grade C2 25% Sen Lab technician 

Who(names Grade Training needed Source of funding 
needed) 

New staff 

Grade/Band Where recruited % time on project Source of funding 
from 
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Consumables 

What Cost Source of funds 

LAB 

Oxidative burst 354 External, MRC CRTF 
assay (G0701427) 

AJ Cunnington 

Degranulation 477 G0701427 
assay 

Bacterial Killing 3824 G0701427 
Assay 

Neutrophil RNA 176 G0701427! MRC Core 
extraction 

Flow cytometry 4218 G0701427! MRC Core 

Biochemical 863 G0701427 
Assays 

Whole blood 2366 G0701427! MRC Core 
rtPCR 

Bacterial Culture 130 G0701427 

Disposable 1300 G0701427! MRC Core 
plastics 

Other 1300 G0701427! MRC Core 
Consumables 

DRUGS 500 MRC Core 

STATIONERY 125 G0701427 
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COMMUNICATIONS 50 G0701427 

OTHER 

Shipment 750 
G0701427 

Publications 2000 

Petty cash 150 

Existing equipment to which access is needed 

What How often 

ELISA reader Several times per month 

CyAN Daily 

PCR machine Several times per month 

Incubator Daily 

Biological Safety Cabinet Daily 
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New minor equipment required 

List: Cost Source of funds 

Use of laboratory services 

What: No of specimens Cost Source 

HLA Typing 

Clinical Microbiology 

Haematologyl Thick film 252 1455 MRC Core 

Biochemistry FBC 252 

Sickle Screen 78 

Serology 

HIVtesting 

Transport and local travel 

What: Km Cost Source 

Land Rover usage 3200 1120 MRCCore 

Motorcycle usage 13860 1965.5 MRCCore 

Allowances 

Fares 

Space (Office, Lab, Fridges/Freezer) 

What Where % use 

Office Whittle Building 100 

Lab Whittle Building (malaria tissue culture 50 
room) 

Others 

I What I Where I % use 
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Freezer (-BO°C) Whittle Building 5 

Freezer (-20°C) Freezer room 5 

Fridge (4°C) Whittle Building 20 

Signature of Data Manager and date: 

Signature Date 

Signature of Laboratory Manager and date: 

Signature Date 

(Please sign the hard copy as appropriate before the project commences and provide a 

copy to the SCC secretary for filing) 

D3 Sources of funds 

Dr AJ Cunnington holds a MRC Clinical Research Training Fellowship (G0701427), 
administered through the London School of Hygiene and Tropical Medicine. This was 
intended to provide approximately £10,000 of research costs for work undertaken at 

MRC laboratories, The Gambia. 
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2. Scientific coordinating committee approval 

Scientific Coordinating Committee 
HRC (UK) The Gambia, Faja ra 
PO Box 273 Banjul, The Gambia 
West Africa 
Switchboard (+220) 4495442/6 Ext 2308 
Fax (+220) 4494154/4494498 I 

Medical 

MRC 
Research 

Ccuncll 

E-mail : scc@mrc.cm 
Website (Intranet): \\open ,mrc,gm\ home,asp 

10th May 2010 

Dr Aubrey Cunnington 
Immunology Unit 
London School of Hygiene and Tropical Medicine 
Keppel Street, London 
WC1E 7HT 
UK 

Dear Dr Cunnington 

Leading Re ;e~ ch ror Better Health 

SCC 1207, studying the effect of Plasmodium falciparum malaria and heme 
oxygenase-1 induction on neutrophil function 

Thank you for submitting your proposal dated 26th Apri l 2010 for consideration by the 
SCC at its meeting held on 8th May 2010 , 

The committee considered this to be an interesting proposal. A number of aspects were 
discussed in the meeting that were responded to and clarified well , and we are pleased 
to approve the proposal to be forwarded to the Ethics Committee for consideration at its 
meeting on 28th May 2010, 

With best wishes, 

Yours sincerely, 

Dr David Conway 
Chair, Scientific Coordinating Committee 

Cc : Dr Michael Walther 

Additional documents submitted for review: 
• Information Sheet & Consent Form (Control) , Version 1 - 26 April 2010 
• Information Sheet & Consent Form (Mild), Version 9 - 26 April 2010 
• Information Sheet & Consent Form (Severe), Version 9 - 26 April 2010 

• Questionnaire 
• CV - Aubrey Cunnington 
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3. Ethical approval 

The Gambia Government I MRC Laboratories Joint 

ETHICS COMMITTEE 

C/o MRC Laboratories Fajara 
P. O. Box 273. Banjul 

The Gambia. West Africa 
Fax: +220 - 4495919 or 4496 513 
Tel: +220 - 4495442·6 ext. 2308 

16th June 2010 

Dr Aubrey Cunnington 
Immunology Unit 
London School of Hygiene and Tropical Medicine 
Keppel Street, London 
WCIE 7HT 
UK 

Dear Dr Cunnington 

see 1207, studying the effect of Plssmodlum 'stelp.rum malaria and heme 
oxygenase-1 Induction on neutrophil function 

Thank you for your response letter dated 4th June 2010 addressing the queries raised by 
The Gambia Government/MRC Joint Ethics Committee at Its meeting held on 28th May 
2010. 

I am pleased to give Chair's approval for this study to start. 

Best wishes, 

Yours Sincerely, 

Mr i ~ II ••• 
Cha~overnment/MRC Joint Ethics Committee 

Cc: Dr Michael Walther 

Additional documents submitted for review: 
• Information Sheet &; Consent Form (Control), Version 1 - 26 April 2010 
• Information Sheet &; Consent Form (Mild), Version 9 - 26 April 2010 
• Information Sheet &; Consent Form (Severe), Version 9 - 26 April 2010 
• Questionnaire 
• CV - Aubrey Cunnington 

The GuDbla GovenuaeDt I lIRe Labontorle. ,Jobat EtIalca Co_Itt .. : 

AII' Malcolm Clurlre. Chairman 
Mrs Ka/hv Hil/. Secre/ary 
M" NqfJie JoIN. ;rJ Secretar), 
Professor OusllfQn Nyan. SCientific Advisor 
.\/1' Dawda Jagne 
AI" Bertha Mboge 
Mr ModDil PhoIl 

Professor Tumanl Corrah 
ProfolSor llilton Whittle 
Dr Stephen Howie 
Dr Beul Camara 
Dr /.amln Sldl6th 
AII' Mal_In SonIw 
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4. Subject information and consent forms 
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I 

Medical 

MRC 
Research 

Council 

Malaria Programme 
Medical Research Council 
Laboratories, 
Fajara 
P. O. Box 273 
West Afrlca 

A study to help understand the causes of severe malaria and how maL'lria makes people 
susceptible to other infections 

The following information sheet should be explained in the appropriate local language: 

You and your child are being invited to take part in a research study that aims to explore various aspects 
as to why some children suffer from severe disease, while others "only" suffer a relatively mild illness 
when they are infected with malaria . Before you decide, it is important for you to understand why the 
research is being done and what it would involve. Please take time to read the following information 
carefully, and a k us if there is anything that is not clear, or if you would like more information. 

Reason for study 
Your child has malaria, which is one of the mosl common diseases in African children, and a major 
health problem in the Gambia too, although it can be prevented by sleeping under an insecticide treated 
bednet. Malaria is C.1USed by parasites (small germs) tllat are carried by some types of mosquitoes, and 
which enter the blood when we are bitten by those mo quitoes. TIle parasite makes its way into the red 
blood cells (important for Ule transport of oxygen) and destroys Qlem Most cases of malaria are usually 
mild. However, severe cases of malaria do also occur and some patients are seriously ill and are at risk of 
dying, especially children. It is not known why some children are able to fight malaria strongly while 
others get severe malaria. We know that part of the reason is that some people are born with the ability to 
fight malaria better tllan others, and these differences are called "genetic". Differences in tlle ability of 
the child's immune system (defense mechanism of the body against infections) to fight germs and 
parasites such as malaria, may contribute too. We know tllat the structure of the urface of the parasites 
varies, and it might be that some forms are more dangerous than others. 
We hope that by comparing mild with severe cases of malaria, we can get a better unders tanding of these 
genetic and immunological differences. and may be able to identify structures on the parasite that make it 
a dangerous one. This may allow us to fmd new treatments or a vaccine that can prevent severe forms of 
malaria in tlle future. We also want to study how tlle body learns to protect itself again t malaria. One 
way how the body fights malaria is by antibodies (tiny molecules produced by so called B cells in the 
blood) that destroy ilie parasites. Previously, we have examined healthy children of different age group 
and found tl\3t younger children have les B cells that can fight malaria tlian older children. Now. we 
want to fmd out more how these cells develop after a known infection with malaria. Therefore, we would 
like to follow up your child on regular intervals for 1.5 years after s(he) got malaria, and to compare 
hislher B cell responses to those of oilier children of different ages. 
We also know that having malaria makes you more likely to get certain oUler infections, particularly 
germs entering your blood. It seems Utat malaria can weaken cettain parts of your child's immune 
system. We want to find out why tllis is, and whether we can identify who is at most risk, so Ulat we can 
prevent iliese additional infections from happening. 

How to take part? 
It is up to you to decide whether or not you and your child take part. If you do decide to take part you 
will be a ked to sign or thumbprint a consent form on behalf of your child, and the field worker will ask 
you a number of questions to see if your child is eligible for iliis study. You are free to withdraw your 
child from the study at any time without giving a reason. and whether or not your child takes part will not 
affect the health care he/she will receive in any way. 

Wllat would happen to my child ifhelshe takes part? 
lfyou agree that your child will join the study and the child is eligible, the study nurse will take a blood 
sample. In agreement WiUl the recommendations of the Gambian Ethics Committee, not more than SmIs 
(about 1 teaspoon) will be taken out of your child's vein if it is less than 5 years old. If your child is 5 to 

Malaria Study SCC 670. 1077. 1143. 1178, 1179. 1180. 1207. Information Sheet I Consent Form 1 
(mild cases) 
Version 9 0 \pn126 2010 
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9 years old, we would like to request 10rnls (2 teaspoons) of blood. From children that are older than 9, 
we would like to request 15mls (3 teaspoons). A mouth swab would be taken to collect some cells from 
the inner site of your child's cheek. These samples will be used to carry out immunological, 
parasitological and genetic research, described above. Furthermore, a stool sample will be collected at all 
the vis its to assess your child's worm carriage. Your child will receive the recommended treatment for 
malaria. We would also like to review the case notes when your child leaves the hospital so that we can 
write down his/her fmal diagnosis, clinical features of the illnesses and the outcome. 
We would ask you to bring back your child one and four weeks afta your child presented at the out 
patient department or the ward, to ensure that helshe is in good health. At both visits, we would collect 
another blood sample from your child as before, for the studies described above. Thereafter, we would 
like to arrange for a follow up visit to sec your child 2, 4, 6, 8, 10, 12, 14, 16 and 18 months after s(he) 
had been to hospital. On these visits, the child's health will be checked and a further blood sample will be 
requested to allow us to do the work on B cells mentioned earlier. 

What are the side etTects and possible risks and benefits of taking part' 
The mouth swab or collecting blood from your child will not harm himlher. The venepuncture may cause 
mild tenderness or bruising. For the duration of the study, the nurse will be happy to treat minor ailments 
free of charge and facilitate referral to the MRC clinic when necessary. 
Transport costs for the study visits will be reimbursed to you. 

What tests would be done on my blood' 
Comparing blood samples from cases of mild malaria with cases of severe malaria aims to answer three 
questions: 1) By eK.amining the surface of the malaria parasites of severe and mild cases of malaria, we 
hope to identify those forms that arc more dangerous than others. 2) The blood will also be examined to 
see in what ways the body's immune response (defense mechanism) to the malaria parasite differs 
between mild cases and severe cases. 3) The molecules that carry the genetic information (called genes) 
your child is born with may be responsible for how well helshe can fight malaria. From the collected 
blood genetic material will be eK.tracted and analysed in the Gambia and also by our collaborators in the 
UK or elsewhere. The aim is to idertify genes that are particularly common in children with scvere 
malaria. This may help to identify new targets for vaccines. 
For the study that wants to fmd out how malaria makes you wlnerable to bacterial infection, we will look 
at how well cells of the immune system produce factors that kill bacteria (germs), and how well the cells 
kill bacteria (germs) when they are mixed together in the laboratory. We will also look at how these 
factors are related to the scverity of the malaria infection your child had, and to a variety of molecules 
that can be measured in the blood, to try to find which ones might be the best test to determine who is at 
risk of bacterial infection. 
Future research in malaria is likely to increase our knowledge about the genetic mechanisms of the 
disease. Thus, it would be particularly useful to be able to use some of the blood samples from this study 
to eK.amine them again in the future in the light of such new fmdings. With your consent we would 
therefore like to store some of the leftover blood samples for up to 25 years. No studies concerning 
diseases other than malaria will be done. 

Would my taking part in this study be kept confidential' 
All information that is collected about you or your child during the course of the research will be kept 
strictly confidential. The data will be available only to the study team, the Ethics Ccmmittcc and 
Government regulatory authorities who can ask to audit or monitor the study. No unauthorized person 
will have access to who your child is or the information that you give us. 

Who has reviewed the study? 
A panel of scientists at the Medical Research Ccuncil has reviewed the study and bas approved its 
scientific value. The Gambian Governmcnt/MRC Joint Ethics Ccmmittee has also approved the study 
and has granted permission for this study to take place. 

Malaria Study sec 670, 1077, 1143, 1178, 1179, 1180, 1207. Information Sheet I Consent Form 2 
(mild cases) 
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Whom can I contact? 
If you have any questions at any time during thetria~ please ask Dr Michael Walther at tile MRC 
Laboratories, Fajara (Tel: 4495442/6 Ext: 4009) or Dr Aubrey Cunnington (Ext: 4008). They will be 
happy 10 talk about any worries or queries. 

Thank you very much for your time. 

Malaria Study S C 670, 1077, 1143, 1178, 1179. 1180. 1207. Information Sheet I Consent Form 3 
(mild cases) 
Version 9.0. April 16 2010 
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Consent form for study: A study to help wldel'stand the causes of severe malaria and 
malaria makes people susceptible to other infections 

Dear pat ient, parent or guardian, 

Please circle answer 
I . Have you read or has the Information Sheet Version ___ --.J' dated _____ been read to you? Yes/No 

2. Did you have a chance to ask questions and did you receive satisfactory answers? 

3. Do you understand what partIcipation in the study means to you I your chlld? 

Yes/No 

Yes/No 

4. Do you understand that the participatirn of you /your child is voluntary and that you are free to withdraw at any 
time, without giving any reason, without your medical care or legal rights being affected? Yes/No 

5. Do you understand that the information regarding you I your child that is collected in the course of this study 
will remain confidential? Yes/No 

6. Do you understand that laboratory tests will be done on the blood samples you I your child provide, and do you 
agree that some of the leftover blood samples will be stored and may be used for further studies of the l:xxIy' s 
response to malaria ? . Yes/No 

7. Do you agree that we could collect blood from your child, one of the following amounts depending on hislher age 
as described today and CIl another 11 visits over the next 1.5 years? 

-5mls (l teaspoon) of blood if your child is less than 5 years old 
-10m Is (2 teaspoons) of blood if your child is aged between 5 and 9 years of age 
-15m Is (3 teaspoons) of blood is your child is older than 9 years old 

8 In case you are the mother or father of the child: Do you agree to donate 5mls of blood today? 
Yes/No 
Yes/No 

9 Do you understand that if you / your child gets sick during the study period, you can go to the Clin ic where study 
staff are providing care, and be examined and treated for free? Yes/No 

10. Do you agree that we could perform a mouth swab from your child? Yes/No 

11 . Do you agree for your child to take part in this study? Yes/No 

12. In case you are the mother I father : Do you agree to take part m this study? Yes/No 

Name of child (in block letters) 

Name of parent or guardian (in block letters) 

Signature or thumbprint of parent or guardian of the child 

I have read I explained the above to---, _________ (name of parent or guardian of the 
child) in a language he/she understands. 

I am confident thai he/she bas understood what I e:..-plained and that hel he freely agreed that 
his/her child can take part in tlus study. 

Signature of Field worker supervisor (or designate): 

Date: .-! __ / __ 
Name ( in block letters): 
Malaria Study SCC 670, 1077, 1143, 1178, 1179, 1180, 1207. Information Sheet I Consent Form 4 
(mild cases) 
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I 
Medical 

M RC 
Research 

Council 

Malaria Progranvne 
Medical Research Council 
Laboratories, 
Fajara 
P. O. Box 273 
West Africa 

A study to help understand the causes of severe malaria and how malaria makes people 
susceptible to other infections 

The following infocmatioo sheet should be explained in the appropriate local language: 

You and your child are being invited to take part in a research study that aims to explore various aspects as to why 
some children suffer from severe disease, while others "only" suffer a relatively mild illness vmen they are infected 
with malaria. Before you decide, it is important for you to understand why the research is being done and what it 
would involve. Please take time to read the following information carefully, and ask us if there i s anything that i s 
not clear, or if you would like more information. 

Reason fill' study 
Your child has malaria, v.ilicil is one of the most common diseases in Afiican children, and a major health problem 
in the Oambia too, although it can be prevented by sleeping under an insecticide treated bednel Malaria is caused 
by parasites (s mall germs) that are carried by some types of mosquitoes, and which enter the blood vmen we are 
bitten by those mosquitoes. The parasite makes its way into the red blood cells (intportllDt for the transport of 
oxygen) and destroys them Most cases of malaria are usuaUymild. However, severe cases of malaria do al so occur 
and some patients are seriously ill and I£e at ri sk ofd)'ing, especially children. !tis not known why some children 
are able to fight malaria strongly v.itile others get severe malaria . We know that part of the reason is that some 
people are bom with the alility to fight malaria better than others, and these differences are called "genetic". 
Differences in the ability of the child's immlDe system (defense mechanism of the body against infections) to fight 
germs and parasites such as malaria, may contribute too. We know that the structure of the surface of the parasites 
varies, and it might be that some forms I£e more dangerous than others . 
We hope that by comparing mId with severe cases ofmalllia, we can get a better understanding of these genetic 
and immunological differences, and may be able to identify structll"es on the parasite that make it a dangerous one. 
This may allow us to find new treatments or a vaccine that can prevent severe form s ofmall£ia in the future. 
We also want to study how the body learns to protect itself against malaria. One way how the body figbts malaria is 
by antibodies (tiny molecules produced by so called B cells in the blood) that destroy the parasites. Previously, we 
have examined healdlY chil<ren of different age groups and found that younger children have less B cell s that can 
fight malaria than older children. Now, we want to find out more bow these cells develop after a known infection 
with malaria. Therefore, we would like to follow up your child on regular intervals for 1.5 years after s(he) got 
malaria, and to compare hi slber B cell responses to those of other children of different ages. 
We al so know that having malaria makes you more likely to get certain other infections , particularly germs entering 
your blood. It seems that malaria Clll weaken certain pl£ls ofa child's intmlDe system. We want to find out why 
thi s is, and whether we can identify who is at most risk, so that we can prevent these additional infections from 
happening. 

How to take partT 
It is up to you to decide v.ilether or not you and your child takes part. If you do decide to take part you ~ll be asked 
to sign or thumbprint a consent form OIl behalf of your child, and the field worker will ask you a number of 
questions to sce if your child is eligible for this study. You are free to withdraw your child from the study at any 
time ~thout giving a reason, and whether or not your child takes part will not affect the health care be/she will 
receive in any way. 

Wbat would bllppen to my cbild ifbelsbe takes part? 
If you agree that your child will join the study and the child is eligible, the study nurse will take a blood sample. In 
agreement with the recommend;tions of the Gambian Ethics Committee, not more than 5mls (about 1 teaspoon) 
will be taken out of your child's vein ifitis less than 5 years old. If your child is 5 to 9 years old, we would like to 
request 10mis (2 teaspoons) of blood. From children that are older than 9, we would like to request lSmls (J 
teaspoons). A mouth swab would be taken to collect some cells from the inside of your child's cheek. We would 
al so like to take Smls of blood from you if you are the child' s biological mother or filther . These samples will be 
used to carry out immmological, parasitological and genetic research, described above. FUrthermore, a stool sample 
will be collected at all the vi sits to as sess your child 's worm caniage. Your child ~11 receive the recommended 
treatment for malaria. We would al so like to re\<iew the case notes when your child leaves the hospital so that we 
can write down hi slher final <iagnosis, clinical features of the illnesses and the outcome. 
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We would ask you to bring back your child one and four weeks after your child presented at the out patient 
department or the ward, to ensure that he/she is in good health. At both visits, we would collect another blood 
sam pie from your child as before, for the studies described above. Thereafter, we would like to BmIIlge for a follow 
up visit to see your child 2, 4, 6, 8, 10, 12, 14, 16 and 18 months after s(he) had been to hospital. On these visits, the 
child's health will be checked and a further blood sample will be requested to allow us to do the work on B cells 
mentioned earlier. 

What are the side effects and JlClSSlbie risks and benefits of taking part? 
The mouth swab or collecting blood from your child will not harm himlher. The venepuncture may cause mild 
tenderness or bruising. For the dUl'lltion of the study, the nurse will be happy to treat minor aihnents free of charge 
and facilitate referral to the MRC clinic when necessary. Transport costs for the study visits will be reimbursed to 
you. 

What tests would be done on my blood? 
Comparing blood samples from cases of mild malaria with cases of severe malaria aims to answer three questions: 
I) By examining the surface of the malaria parasites of severe and mild cases of malaria, we hope to identify those 
forms that are more dangerous than others. 2) The blood will also be examined to see in what ways the body's 
immune response (defense mechanism) to the malaria parasite differs between mild cases and severe cases. 3) The 
molecules that carry the genetic information (called genes) your child is born with may be respoosible for how well 
he/she can fight malaria. From the collected blood genetic material will be extracted and analysed in the Gambia 
and also by our collaborators in the UK or elsewhere. The aim is to identify genes that are particularly common in 
children with severe malaria. This may help to identify new targets for vaccines. 
For the longitudinal study that wants to fmd out how B cells that can fight malaria develop in children at different 
ages, we will use assays that allow us i) to count the number of B cells that are specific to malaria, and ii) to 
characterize these cells further for instance by measuring the amount and type of antibodies they produce. 
For the study that wants to find out how malaria makes you vulnerable to bacterial infectim (germs), we will look 
at how well cells of the immune system produce factors that kill bacteria, and how well the cells kill bacteria when 
they are mixed together in the laboratory. We will also look at how these factors are related to the severity of the 
malaria infectim your child had, and to a variety of molecules that can be measured in the blood, to try to fmd 
which ones might be the best test to determine who is at risk of bacterial infection. 
Future research in malaria is likely to increase our knowledge about the genetic mechanisms of the disease. Thus, it 
would be particularly useful to be able to use some of the blood samples from this study to examine them again in 
the future in the light of such new fmdings. With your cmsent we would therefore like to store some of the leftover 
blood samples for up to 25 years. No studies concerning diseases other than malaria will be done. 

Would my taking part In this study be kept tonlldenUal? 
All informatim that is collected about you or your child during the course of the research will be kept strictly 
cmfidential. The data will be available only to the study team, the Ethics Canmittee and Government regulatory 
authorities who can ask to audit or mmitor the study. No unauthorized person will have access to who your child is 
or the informatim that you give us. 

Who hal remwed the study? 
A panel of scientists at the Medical Research Council has reviewed the study and has awoved its scimtific value. 
The Gambian GovemmmtlMRC Joint Ethics Committee has also awoved the study and has granted permission 
for this study to take place. 

Whom can I contact? 
If you have any questims at any time during the study, please ask Dr Michael Walther at the MRC Laborata-ies, 
Fajara (Tel: 449544216 Ext: 4009) or Aubrey Cunnington (Ext: 4008). They will be happy to talk about any worries 
or queries. 

Thank you very much for your time. 
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Consent fonn for study: A study to help undentand the causes of severe malaria and 
how malaria causes susceptibility to other mfectlons 

Dear patient, parent or guardian, 

Please c:Irtle answer 
I. Have you read or has the Informatioo Sheet Version , dated. ____ been read to you? YelllNo 

2. Did you have a chance to ask questioos and did you receive satisfactory answers? YelllNo 

3. Do you understand what participatioo in the study means to you / your child? YelllNo 

4. Do you understand that the participation of you /your child is voluntary and that you are free to withdraw at any 
time, without giving any reasm, without your medical care er legal rights being affected? YelllNo 

5. Do you understand that the information regarding you / your child that is collected in the course of this study 
will remain confidential? YelllNo 

6. Do you understand that laboratcry tests will be done on the blood samples you / your child lX"ovide, and do you 
agree that sane of the leftover blood samples will be stered and may be used for further studies of the body's 
response to malaria? YelllNo 

7. Do you agree that we could collect blood from your child, one of the following am OIDlts depending on hislher age 
as described today and 00 another II visits over the next 1.5 years? 

-5mls (\ teaspoon) of blood if your child is less than 5 years old 
-IOmls (2 teaspoons) of blood if your child is aged between 5 and 9 years of age 
-15m Is (3 teaspoons) of blood is your child is older than 9 years old 

8. In case you are the mother er father of the child: Do you agree to dooate 5mls of blood today? 
YelllNo 
YelllNo 

9. Do you understand that if you / your child gets sick during the study period, you can go to the clinic where study 
staff are 1X"0viding care, and be examined and treated fer free? YelllNo 

10. Do you agree that we could perform a mouth swab from your child? YelllNo 

II. Do you agree for your child to take part in this study? YelllNo 

12. In case you are the mother / father: Do you agree to take part in this study? YelllNo 

Name of child (in block letters) 

Name of parent or guardian (in block letters) 

Signature or thumbprint of parent or guardian of the child 

I have read 1 explained the above to----:-_______ (name of parent or guardian of the 
child) in a language he/she understands. 

I am confident that he/she has understood what I explained and that he/she freely agreed that 
he/she and hislher child can take part in this study. 

Signature ofField worker supervisor (or designate): _____________ _ 

Date: _1 __ 1 __ Name (in block letters): _______________ _ 
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I 
Medica l 

M RC 
Research 

Council 

Malaria Programme 
Medical Research Council 
Laboratories, 
Fajara 
P.O. Box 273 
West Africa 

blformatioll and Consent. fonn for HeaJtby Control ubjects 

A study to help understand how malaria can es susceptibility to other infections 

The following information sheet should be explained in the appropriate local language: 

You and your child are being invited to take part in a research study that aims to rmd out why malaria 
increases the risk of getting other infections . Before you decide, il is important for you to understand why 
the research is being done and what it would involve. Please take lime to read the following information 
c..1refully, and ask us if there is anything that is not cle.1r. or if you would like more information. 

Reason for study 
Your child is he.1lthy at the moment, but many othcr- children have malaria, which is a major he.1lth 
problem in the Gambia. Malaria c,1n be prevented by leeping under an insecticide treated bednet. 
Malaria is caused by parasites (small genns) that are carried by some types of mosquitoes, and which 
enter the blood when we are bitten by those mosquitoes . TIle parasite makes its way into tile red blood 
cells (important for the transport of oxygen) and destroys them. Most cases of malaria are u uaUy mild. 
However we know that having malaria makes you more likely to get certain other infections, particularly 
bacteria (germs) entcr-ing your blood It seems that malaria can weaken ccr-tain parts of a child's immune 
system. We want to find out why this i , and whether we can identify who is at most risk. so that we can 
prevent these additiona I infections from happening. 

How to take part? 
It is up to you to decide whether or not you and your child 1.1ke part. If you do decide to take part you 
will be asked to sign or thumbprint a consent form on behalf of your child, and the field worker will ask 
you a number of questions to see if your child is eligible fol' iliis study. You are free to withdraw your 
child fi-om the study at any time without giving a reason. and whethcr- or not your child takes part will not 
affect the healili care he/she will receive in any way. 

What would happen to my child if helshe takes part? 
)fyou agree that your child will join the study and the child is eligible. the study nurse will take a blood 
sample. In agreement with the recommendations of the Gambian Ethics Committee. not more than 5m1s 
(about J teaspoon) will be taken out of your child's vein if it is less than 5 years old. If your child is 5 to 
9 years old, we would like to request IOmIs (2 teaspoons) of blood. From children that are older than 9, 
we would like to request 15mls (3 teaspoons). These samples will be used to carry out the immunological 
research described above. 

What are the side effects and possible risks and benefits of taking part? 
Collecting blood from your child will not harm himJhcr- . The venepuncture may cause mild tenderness or 
bruising. The MR provides free healthcare for the Brefet community and you and your child are 
encouraged to take advantage of iliis. 

What tcsts would be done on my blood? 
We want to look at how well blood cell ofilie immune system produce factors that kiU bactcr-ia (genns), 
and how well tile cells kill bacteria when tIley are mixed togethcr- in tile laboratory. We will compare 
iliese factors between samples from he.1lthy hildren and ases of mild malaria and severe malaria. This 
will tell us wheilier malaria makes people susceptible to bacterial infection by reducing lhe ability to kill 
bacteria . W will also look at how these factors are related to a variety of molecules iliat can be measured 
in the blood to help to determine who is at risk. of bacterial infection. 
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Would my taking part in this study be kept confidential? 
All information that is collected about you or your child during the coW'se of the research will be kept 
strictly confidential. The data will be available only to the study team, the Ethics Committee and 
Government regulatory authorities who can ask to audit or monitor the study. No unauthorized person 
will have access to who YOW' child is or the information that you give us. 

Who has reviewed the study? 
A panel of scientists at the Medical Research Council has reviewed the study and has approved its 
scientific value. The Gambian Govc:mmentlMRC 10int Ethica Committee has also approved the study 
and has granted permission for this study to take place. 

Whom can I contact? 
If you have any questions at any time dW'ing the trial, please ask Dr Michael Walther at the MRC 
Laboratories, Fajara (Tel: 449544216 Ext: 4009) or Dr Aubrey Cunnington (Ext: To be confmned). They 
will be happy to talk about any worries or queries. 

Thank you very much for your time. 

Malaria Study sec 1207 Information Sheet / ConsClll Fonn (Con1rols) 
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Con ent form for study: A study to help understand how malaria causes usceptibility to 
other infections 

Dear patient, parent or guardian, 

PleaS(' circle answer 
Have you read or has the informatIOn Sheet Version __ ,dated _____ been read to you?Yesl 0 

2 Did you have a chance to ask questions and did you receive satisfactory answers? YesfNo 

3 Do you understand what parttclpatJon in the study means to you / your chIld? YesfNo 

4 Do you understand that the partlcipaltcn of your child IS voluntary and that you are free to withdraw at any tune, 
WIthout giving any reason, without your medlcsl care or legal nghts being affected? YesfNo 

5 Do you understand that the informatiCll regarding your chJld that is collected in the course of this study will 
remain confidential? YesfNo 

6. Do you understand that laboratory tests will be done on the blood samples you provide? YesfNo 

7. Do you agree that we could collect blood from your child one of the following amounts depending on hislher age 
as described today 

-5m ls (1 teaspoon) of blood if your child is less than 5 years old 
-10m Is (2 teaspoons) of blood if your child is aged between 5 and 9 years of age 
-15mls (3 teaspoons) of blood if your child is older than 9 years old 

YesfNo 

g Do you agree for your cluld to take part III thiS study? YesfNo 

Name of child (in block I"tt r ) 

Name of parent or guardian (in block letters) 

'ignature or thumbprint of parent or guardian of the child 

I have read / eX'Plained the above to __________ (name of parent or guardian of the 
child) in a language he/she understands. 

I am confident that he/she has understood what I explai.ned and that he/she freely agreed that 
his/her child can take part i.n this study. 

ignature of Field worker supervisor (or designate): 

Date: 
Name (in block letters) : 

Malaria Study SC 1207 Information Sheet / Consent Fonn (Controls) 
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I 

Medical 

MRC 
Research 
Council 

Malaria Programme 

Medical Research Council Laboratories, 

Fajara, P. O. Box 273 West Africa 

Switchboard (+220)4495442/6 Ext: 4009 

Email. mwaiUler@mrc.gUl 

Collection of human blood from healthy volunteers 

Consent Form 

You are asked to donate a venous blood sample for the malaria programme of the MRC 
laboratories, Fajara., PO Box 273 , Banjul. 

The experiments to be performed on your blood aim to further our understanding of the body's 
immune responses to P ja/ciparum malaria. All projects will have received ethical approval from 
the Gambian GovernmentJMRC Joint Ethics Committee. and will be limited to research on 
malaria. 

It is important that you understand that your participation is entirely voluntary. You are free to 
withdraw at any lime. without giving any reason . 

If you decide not to take part. this will not affect at all your legal rights as an MRC employee, or 
the medical care offered to you by MRC. 

Blood will be collected only by clinically qualified staffusing sterile procedures. 

You are entitled to ee all data arising from the use of your blood. on request. 

To maintain confidentiality. your sample will be given a three digit study identification (ID) 
number derived from a list of random numbers. The Principal Investigator will keep a master list 
linking your name to astudyID. This list will be kept in a locked filing cabinet together with this 
consent form. 

Consent form for vo luntary blood donation for the malaria research programme 
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DetaUs of the donor 

Surname: 

First name: 

Tel number: 

Email address: 

Are you a regular blood doncc in: 
The Gambia YES\NO 
Elsewhere YES\NO 

Country of ccigin: 

Have you lived in any countries apart from your country of YES\NO 
crigin and the Gambia? 

If YES, please list the countries and the dates when you lived 
there 

Blood group if known. 

Blood volume to be taken: ____ _ StudyID: _____ _ 

How much blood have you dooated within the last 8 weeks period? _____ _ 

(NIXe, within an 8 weeks period, not mcce than 500m1 of blood should be taken) 

I understand that my participation is entirely voluntary and does not affect my rights 

I understand that whether or not I participate does not affect the medical care offered by MRC 

I understand that I may withdraw at any time without giving a reason 

YellNo 

YellNo 

YellNo 

I have been given the opportunity to ask questions about the study and have received satisfactccy answers YellNo 

I have received enough infccmation about the research my blood would be used fcc 

I am happy to donate blood for the MRC malaria research programme 

Name (dooor): _______ _ S~tureofdoncc: _____________ _ 

Date: _______ _ 

YellNo 

YellNo 

I have checked that including the blood volume taken today not mcce than SOOnI have been taken within the past 8 
weeks 

Name (phlebotomist): ______ S~ture (phlebotomist): ______ _ 

Consent form for vo 1untary blood donation for the malaria research programme 2 
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5. Clinical record form 
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Hospital number _______ _ 

Hospital slide number: _______ _ 

TRIP in severe and mild malaria 

MRC malaria Programme, Fajara The Gambia 

This Case Record Form is to be used for children resident within a 40 km radius south 
of Banjul, excluding Banjul city, and the costal areas (Cape point, Bakau, Fajara, Kotu, 
Kololi, Bijilo), and for children enrolled at Brikama health centre that have agreed to 
participate in the study. 

Subject's name 

Father's name ............................................................................................... . 

Mother's Name .............................................................................................. .. 

Compound Head .................................................................................... .. 

Telephone number (if available) 

Address 

Sketch of the area where the participant lives 

Referring Health Centre I facility 

Form completed by 
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TRIP in severe and mild malaria 

MRC malaria Programme, Fajara The Gambia 

Enrolment at MRC Fajara (=1), at Brikama He (=2), at JFfP-hospital (=3) LI 

Date of Birth '_-:' __ Age: ____ (years) 

Sex: male I_I, female LI 

Ethnic group: I_I (1=Mandingo,2=Wollof, 3=Fula, 4=Jola, 5=Serahuli, 
6=Serere, 7=Manjago,8=Aku,9=Others, specify 

Date of admission: -'_-:'--
day I month I year 

Inclusion criteria met? yes = 1, no = 2 IJ 
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Antimalarial treatment or other medication received in the last two weeks? 
yes = 1, no = 2 I_I, if yes complete the table below 

Antimalarials Yes = 1 Dates Route Comments 
No= 2 

Chloroquine I_I 

Fansidar I_I 

Quinine I_I 

Septrin I_I 

Coartem I_I 

Unknown drug I_I 

Presenting symptoms 

Patient Duration 

Presenting complaints 1. 1_1_1 (Days) 

2. 1_1_1 (Days) 

3. 1_1_1 (Days) 

HISTORY Yes = 1 No = 2 

Fever I_I 

1_1_1 (Days) 

Convulsion I_I No of fits in last 24hrs 

1_1_1 

Unconscious I_I 1_1_1 (Hours) 

Diarrhoea I_I 1_1_1 (Days) 

Vomiting I_I 1_1_1 (Days) 

Unusually sleepy? 1--' 1--'-' (Days) 
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Restless/I rritable? I_I 1_1_1 (Days) 

Fast breathing? I_I 1_1_1 (Days) 

Breathing difficulty? I_I 1_1_1 (Days) 

Pallor/lethargy I_I 1_1_1 (Days) 

Cough? I_I 1_1_1 (Days) 

Reduced feeding? I_I 1_1_1 (Days) 
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EXAMINATION ON INITIAL PRESENTATION TO HOSPITAUOPD 

Physical examination performed? Yes = 1 No = 2 I_I 

If yes, answer the following: 

Pallor 1-Conjunctival, 2=Palms, I_I 
3=Tongue, 4=AII, 9=Nil 

Jaundice Yes = 1 No = 2 I_I 

Neck stiffness Yes = 1 No = 2 I_I 

Respiratory Patterns 1 =Normal, 2=Deep breathing, 
3=lrregular, 4=Gasping 

1_11_1 

Prostration* Yes = 1 No = 2 I_I 

Grunting Yes = 1 No = 2 I_I 

Use of accessory muscles Yes = 1 No = 2 
of respiration 

I_I 

Auscultatory findings 1 =Normal, 2=Crackles, 
3=Wheeze,4=Bronchial 

I_I 

Dehydration 1. Nil, 2. Mild, 3. Mod., 4. Severe I_I 

Axillary temp (OC) 1_1_1·1_1 

Heart/pulse rate/min I_LI_I/min 

Respiratory rate/min 1_1_1_1 

Weight (kg) 1_1_1·1_1 
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Height (cm) 1_1_1_1 

Spleen size (cm) 1_1_1 

Liver size (cm) 1_1_1 

Other important findings 

.. * -Prostrated children (inability to Sit up In a child normally able to do so, or to drink in 
case of children too young to sit) 
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Blantyre Coma Score 

BEST MOTOR RESPONSE Score VERBAL RESPONSE Score 

Localizes painful stimulus* 2 Appropriate cry 2 

Withdraws limb from pain** 1 Moan or inappropriate cry 1 

Non specific or absent 0 None 0 

EYE MOVEMENT 

Directed (e.g. follows mother's 1 
face) 

0 
Not directed 

*Localizes painful stimulus: rub knuckles on patient's sternum. 
** Painful stimulus: firm pressure on thumbnail bed with horizontal pencil 

Total Score I_I 
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Laboratory Investigations 

HB on admission 

Lactate on admission 

mmol/L 

Blood sugar on admission 

mmol 

1_1_1 - I_I gmldl 

1_1_1-1_1 

1_1_1-1_1 

Has malaria smear been taken? Yes = 1 No = 2 I_I if yes complete the 

following table 

Field stain: Yes = 1 No = 2 I_I if yes enter results 

Positive= 1, Negative =2 and 3= Not available I_I 

DENSITY: Trophozoites 1_1_1_11 1_1_1_1 HPF 

Gametoctytes 1_1_1_1/1_1_1 HPF 

For subjects less than 5 years old: 

Has a 4 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into purple EDT A tube 2? 
I_I Yes=1, No=2 

For subjects aged between 5·9 years old: 

Has a 8 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 
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Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects older than 9 years old: 

Has a 13 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

Has a mouth swab been taken? I_I Yes=1, No=2 

For all study subjects has a stool sample been collected? Yes = 1 No = 2 I_I 

For patients with severe malaria only: 

Has a 5mls blood sample been taken from: (Yes =1; No = 2) 

the U mother and I or 

the U father? 
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First OPD visit (VISIT 2, one week after admission) 

Date of visit 1_1_1/1_1_1_1/1_1_1 

Did study participant come for this visit? I_I (Yes =1; No = 2) 

Temperature 1_1_1.1_1 OC 

Does the patient have any significant symptom Yes = 1 No = 2 I_I 

If yes, record symptoms 

SYMPTOMS 

Fever 
Coughing 
Headache 
Dizziness 
Vomiting 
Diarrhoea 
Nausea 
Abdominal Pain 
Chills/Rigors 
Itching 

Jaundice 

Duration in days (1 if started on day of visit) 

1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 

Others (specify)-_______ _ 1_1_1 
1_1_1 
1_1_1 
1_1_1 

Physical examination 

Physical examination performed? Yes = 1 No = 2 I_I 

If yes, answer the following: 

Weight 1_1_1 . I_I Kg 

ENT 

Chest 

CVS 

CNS 

GIT 

Skin 

MSS 

Tick if normal, if not normal, record findings 
I_I 

I_I 

I_I 

I_I 

I_I 

I_I 

I_I 
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Other abnormal findings or comments:. ____________ _ 

LABORATORY TESTS 

Has malaria smear been taken? Yes = 1 No = 2 I_I if yes complete the following table 

Field stain: Yes = 1 No = 2 I_I if yes enter results 

Positive= 1, negative =2 and 3= not done I_I 

DENSITY: Trophozoites 1_1_1_1/1_1_1_1 HPF 

Gametoctytes 1_1_1_1/1_1_1 HPF 

HB 1_1_1 . I_I gm/dl 

Antibiotic given at any time during the first week 

(as documented in the notes) Yes = 1 No = 2 I_I 

If yes please give details below 

DRUG NAME DOSE ____ DURATION __ _ 

DRUGNAME DOSE ____ DURATION __ _ 
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For subjects less than 5 years old: 

Has a 4 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects aged between 5-9 years old: 

Has a 8 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects older than 9 years old: 

Has a 13 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDT A tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 

I_I Yes=1, No=2 
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Second OPO visit (VISIT 3, four weeks after admission) 

Date of visit 1_1_1/1_1_1_1/1_1_1 

Did study participant come for this visit? I_I (Yes =1; No = 2) 

Temperature 1_1_1.1_1 DC 

Has participant been seen for the day 7 visit? Yes = 1 No = 2 I_I 

Does the patient have any significant symptom Yes = 1 No = 2 I_I 

If yes, record symptoms 

SYMPTOMS 

Fever 
Coughing 
Headache 
Dizziness 
Vomiting 
Diarrhoea 
Nausea 
Abdominal Pain 
ChillslRigors 
Itching 

Jaundice 

Duration in days (1 if started on day of visit) 

1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 
1_1_1 

Others (specify)-_______ _ 1_1_1 
1_1_1 
1_1_1 
1_1_1 

Physical examination 

Physical examination performed? Yes = 1 No = 2 I_I 

If yes, answer the following: 

Weight 1_1_1 . I_I Kg 

ENT 

Chest 

CVS 

CNS 

GIT 

Tick if normal, if not normal, record findings 
I_I 

I_I 

I_I 

I_I 

I_I 
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Skin 

MSS 

I_I 

I_I 

Other abnormal findings or comments: __________ _ 

LABORATORY TESTS 

Has malaria smear been taken? Yes = 1 No = 2 I_I if yes complete the following table 

Field stain: Yes = 1 No = 2 I_I if yes enter results 

Positive= 1, negative =2 and 3= not done I_I 

DENSITY: Trophozoites 1_1_1_1/1_1_1_1 HPF 

Gametoctytes 1_1_1_1/1_1_1 HPF 

HB 1_1_1 . I_I gm/dl 

For subjects less than 5 years old: 

Has a 4 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into a purple EDT A tube 1? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into purple EDT A tube 2? 
I_I Yes=1, No=2 

For subjects aged between 5·9 years old: 

Has a 8 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 
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Has a 0.5 ml blood sample been taken into a purple EDT A tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects older than 9 years old: 

Has a 13 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 1 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDT A tube 2? 
I_I Yes=1, No=2 
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Has the possibility for VCT for HIV for both child and parents been offered to 

parents? Yes = 1 No = 2 I_I 

Was a blood transfusion performed? Yes = 1 No = 2 I_I 

If "yes", please indicate the date _, , ___ and the 

Blood volume given: ____ ,ml 

Diagnoses at enrolment, please tick the appropriate: 

Mild malaria 

Severe malaria 

• Cerebral malaria 

• Severe malaria anaemia 

• Severe malaria respiratory distress 

• Severe malaria, other entities 

I_I 

I_I 

I_I 

I_I 

I_I 

o please describe: _____________ _ 

Other diagnoses (to be assessed on day 28 with help of the notes) 

1 _____________ _ 

2 _____________ _ 

3 _________________ __ 

Outcome: 1 =Alive without sequelae 2= Alive with neurological sequelae 

3=Died I_I 

Date of discharge or death: _--:'--....;'---
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Interim Report on Study part 1 

Date: ----1----1 __ 

Study part 1 completed? Yes = 1 No = 2 0 

If 'NO' mark one reason. 
I 

1D I Eligibility criteria not met 

2' Protocol violation, specify one reason. 

Lost to follow-up - give date of last contact: _-1 __ 1 __ 

Subject died 

I Date of death: ----1 ____ 1 __ 

51 Consent withdrawn 

6f I I Physicians decision, specify. 
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INVESTIGATOR STATEMENT 

I certify that I have carefully examined all the entries on the case 

report form and that all information entered on these pages by myself 

or associates is correct. 

Signed: 

Name & Date. 
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Third OPD visit (VISIT 4, eight weeks after admission) 

Date of visit 1_1_1/1_1_1_1/1_1_1 

Has participant been seen for the day 28 visit? Yes = 1 No = 2 I_I 

Since the last visit, has your child been ill with a fever at any time? 

If yes, has the child's blood been examined for malaria? 

If yes, what was the test result? 

Yes = 1 No = 2 I_I 

Yes = 1 No = 2 I_I 

Pos =1, Neg = 2 I_I 

Did you seek any advice or treatment for the illness from any source? 
Yes = 1 No = 2 I_I 

If yes, where have you been? 

Did your child take any medicine for malaria? 
Yes = 1 No = 2 I_I 

Did your child sleep under a bed net the night before? Yes = 1 No = 2 I_I 

Did the child have any other health problems since the last visit? 
Yes =1 No = 2 I_I 

If yes, describe the nature of the problem and how it has been dealt with: 

According to you, how is the child feeling today? 

Please measure the temperature, weight and height of the child 

Temperature 1_1--',1_1 °C Weight 1_'-' ' ,-' Kg Height 0-' -'-_,-', '_I em 
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LABORATORY TESTS 

For subjects less than 5 years old: 

Has a 4 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects aged between 5-9 years old: 

Has a 8 mls blood sample been taken into two green heparinized tubes? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects older than 9 years old: 

Has a 13 mls blood sample been taken into two green heparinized tubes? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1, No=2 

For all study subjects has a stool sample been collected? 
Yes = 1 No = 2 I_I 
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Fourth OPD visit (VISIT 5, four months after admission) 

Date of visit 1_1_1/1_1_1_1/1_1_1 

Has participant been seen for the day 56 visit? Yes = 1 No = 2 I_I 

Since the last visit, has your child been ill with a fever at any time? 

If yes, has the child's blood been examined for malaria? 

If yes, what was the test result? 

Yes = 1 No = 2 I_I 

Yes = 1 No = 2 I_I 

Pos =1, Neg = 2 I_I 

Did you seek any advice or treatment for the illness from any source? 
Yes = 1 No = 2 I_I 

If yes, where have you been? 

Did your child take any medicine for malaria? 
Yes = 1 No = 2 I_I 

Did your child sleep under a bed net the night before? Yes = 1 No = 2 I_I 

Did the child have any other health problems since the last visit? 
Yes =1 No = 2 I_I 

If yes, describe the nature of the problem and how it has been dealt with: 

According to you, how is the child feeling today? 

Please measure the temperature, weight and height of the child 

Temperature 1_1_1.1_1 °C Weight 1_1_1 . I_I Kg Height 1_1_1_1. I_I cm 
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LABORATORY TESTS 

For subjects less than 5 years old: 

Has a 4 mls blood sample been taken into a green heparinized tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.25 ml blood sample been taken into purple EDTA tube 2? 
I_I Yes=1, No=2 

For subjects aged between 5·9 years old: 

Has a 8 mls blood sample been taken into two green heparinized tubes? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 1? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1. No=2 

For subjects older than 9 years old: 

Has a 13 mls blood sample been taken into two green heparinized tubes? 
I_I Yes=1, No=2 

Has a 0.5 ml blood sample been taken into a PAX tube? 
I_I Yes=1. No=2 

Has a 0.5 ml blood sample been taken into a purple EDT A tube 1? 
I_I Yes=1. No=2 

Has a 0.5 ml blood sample been taken into a purple EDTA tube 2? 
I_I Yes=1. No=2 

For all study subjects has a stool sample been collected? 
Yes = 1 No = 2 I_I 
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Study Termination Page 

Date: ~~-

Study completed? Yes = 1 No = 2 0 

If 'NO' mark one reason. 

I 

I 
1 I Eligibility criteria not met 

I 

2 Protocol violation, specify one reason . 

Lost to follow-up - give date of last contact : _-1 __ 1 __ 
3 

Subject died 
4 

I Date of death: ~ 1_-

5 Consent withdrawn 

I 
6 I Physicians decision, specify. 

I 
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INVESTIGATOR STATEMENT 

I certify that I have carefully examined all the entries on the case 

report form and that all information entered on these pages by myself 

or associates is correct. 

Signed: 

Name & Date. 
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Re: Chapter 3 
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18/05/201209:41:48 
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