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Abstract

Influenza causes substantial morbidity and mortality in some influenza sea-
sons, especially among the elderly. Influenza seasons dominated by circula-
tion of influenza A/H3N2 virus tend to result in more morbidity and mor-
tality than seasons dominated by influenza A/H1N1 or influenza B viruses.
Influenza viruses undergo constant mutation, called antigenic drift, which
is largely driven by host immunity. It has been shown that antigenic drift
in influenza A/H3N2 virus proceeds in a punctuated, as opposed to contin-
uous, fashion. A cluster of antigenically similar influenza A/H3N2 viruses
appears to remain dominant for between 1 and 8 influenza seasons before
being supplanted by a new cluster. Influenza seasons when a new cluster
becomes dominant may result in higher morbidity and mortality than other
seasons. Influenza vaccine effectiveness varies between influenza seasons be-
cause of the different subtypes in circulation and the degree of antigenic
match between vaccine and circulating variants. In each influenza season in
recent years, over 70% of the population of England & Wales aged > 65 has
been vaccinated, though the impact of this high coverage on population level
morbidity and mortality is unknown. Multivariate time series models were
fitted to reports of laboratory confirmed influenza, sentinel general practi-
tioner (GP) consultations for influenza-like-illness, and all deaths registered
to underlying pneumonia or influenza in England & Wales from 1975/76 to
2004/05. The models successfully distinguish influenza - attributable GP
consultations and deaths from GP consultations and deaths that would be
expected in the absence of influenza. This distinction is made jointly by
the laboratory reports and the non-laboratory confirmed surveillance data.
It is not possible to use the multivariate time series models to quantify
the average effect of the appearance of a new cluster of influenza A/H3N2
virus variants, or vaccine impact, on influenza - attributable morbidity or
mortality in the data analyzed. Reasons for this are discussed.
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1. Introduction

Influenza causes substantial morbidity and mortality in some influenza sea-
sons, especially among the elderly. (1] Influenza-related morbidity or mor-
tality is rarely laboratory confirmed. [4,5] As such, indirect methods are
employed in order to determine the relative impact of influenza seasons in
terms of the morbidity and mortality caused by influenza. A limitation
of the regression models most frequently used to estimate influenza - at-
tributable morbidity and mortality is that they require the epidemiologist
to delete some of the observed data and fit a model to the remaining data.
This is to allow estimation of the expected morbidity or mortality that
would have occurred had influenza not be circulating (e.g. {6,7]). The ob-
served morbidity or mortality that exceeds the model-predicted expected
morbidity and mortality is deemed attributable to influenza. The various
methods of deciding what data should be deleted from model fitting are
more or less arbitrary, leaving the possibility of counting unrelated deaths
or consultations as influenza - attributable (lowering the specificity of in-
fluenza - attributable mortality for influenza) or of missing truly influenza
- attributable deaths or consultations (potentially biasing downwards es-
timates of the effect of determinants of influenza - attributable morbidity
or mortality by obscuring the full extent of the variability in influenza -
attributable morbidity and mortality between influenza seasons). An alter-
native method of estimating influenza - attributable morbidity or mortality
is by regressing deaths or consultations on indicators of influenza virus cir-
culation (e.g. [8,9]). Regression on laboratory data may produce biased es-
timates because of long-term changes to the number of tests performed. [10]
Objective 1 of the work undertaken for the thesis was to develop a model
in which the distinction of influenza - attributable from expected morbidity
and mortality would be made by the model (not the epidemiologist). The
specificity of non-laboratory morbidity and mortality data for influenza is

increased by using both types of data (non-laboratory confirmed data and
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laboratory data) to inform the distinction of influenza - attributable from
expected rates of morbidity and mortality.

Objective 1: to estimate the relative impact of influenza seasons in
England & Wales between 1975/76 and 2004/05 in terms of GP consulta-
tions for influenza-like-illness (ILI) and deaths from pneumonia or influenza
(P&I) by jointly modeling ILI, P&I and laboratory reports for influenza A

virus using multivariate latent variable time series models.

The latent variable models described in the thesis captured the relative
impact of influenza seasons using a simple random effect mean shift (the
ratio of average influenza - attributable to expected morbidity or mortality
rates, by influenza season). The distinction of influenza - attributable from
expected ILI or P&I was made by the model, informed by laboratory reports
for influenza A. The laboratory data informed the timing, not the relative
impact, of influenza seasons.

Influenza seasons dominated by circulation of influenza A/H3N2 virus
tend to result in more morbidity and mortality than seasons dominated by
influenza A/H1N1 or influenza B virus. {1] Influenza viruses undergo con-
stant mutation, called antigenic drift, which is thought to be driven largely
by host immunity. {11, 12] It has been shown that antigenic drift in in-
fluenza A/H3N2 virus occurs in a punctuated, as opposed to continuous,
fashion. {13] A cluster of antigenically similar influenza A/H3N2 viruses
appears to remain dominant for between 1 and 8 influenza seasons before
being supplanted by a new cluster. Work by others suggests that influenza
seasons when a new cluster becomes dominant may result in higher mor-
bidity and mortality than other seasons. [14] The average effect of cluster
transition seasons on influenza - attributable morbidity and mortality in
England & Wales (or, indeed, globally) has not been quantified. The effect
of cluster transition seasons can be estimated by expressing the chosen met-
ric for relative impact of influenza seasons (the random effect mean shift) as
dependent on a binary variable for cluster transition seasons. Objective 2
of the work undertaken for the thesis was to use the models developed for

objective 1 to estimate the average effect of a cluster transition on the mean
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shift in P&I and ILI in each influenza season between 1975/76 and 2004/05
during which time there were 9 cluster transitions (in 1975/76, 1977/78,
1979/80, 1987/88, 1989/90, 1992/93, 1995/96, 1997/98 and 2002/03).

Objective 2: to use the multivariate models developed for objective 1 to
estimate the mean effect of cluster transitions in influenza A/HINZ virus
evolution on the mean shift in P&I and ILI by age group.

The variability in the size of cluster transitions in terms of the degree
of antigenic drift was allowed for in a supplementary analysis where the
random effect mean shift was expressed as dependent on a quantitative
variable for the size of cluster transitions.

Influenza vaccine efficacy against laboratory-confirmed influenza-like-illness
in the elderly has been demonstrated. {15] Vaccine effectiveness varies be-
cause of influenza season-specific factors such as the relative impact of the
season in terms of morbidity and mortality and the degree of antigenic
match between vaccine and circulating variants. {16,17] Between 1989/90
and 2004/05, yearly vaccine coverage of the > 65 age group in England &
Wales has increased from 24 to 71%. The impact of this change in coverage
on population level morbidity and mortality is unknown. Objective 3 of
the work undertaken for the thesis was to estimate the impact of each unit
increase in vaccine coverage of the elderly on morbidity and mortality by
expressing the random effect mean shift as dependent on vaccine coverage.

Objective 3: to estimate the impact on the mean shift in ILI and P6&I

for the > 65 age group, and for the other age groups, per unit increase in
yearly vaccine coverage of the > 65 age group.

The thesis has the following structure. Chapter 2 is a survey of the lit-
erature on methods to estimate the relative impact of influenza seasons in
terms of morbidity and mortality. Evidence for an average inflating effect
of cluster transitions on influenza - attributable morbidity and mortality is
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reviewed, as is evidence for a population impact of vaccination of the elderly.
In chapter 3, P&I and ILI data for England & Wales are described. Models
used in the thesis - the frequentist generalised linear models used initially
to estimate the shape of long-term trend in P&I and ILI and the Bayesian
Markov chain Monte Carlo methods used to fit two-state latent variable time
series models to P&I, ILI and laboratory reports for influenza A - are intro-
duced. In chapter 4, the shape of the long-term trend in P&I and ILI by age
group from 1970 to 2005 is presented. Crude associations between peak P&I
and ILI in each influenza season, by age group, and the exposures of interest
(cluster transitions and vaccine coverage of those > 65) are explored. Chap-
ters 5 and 6 describe development of univariate and multivariate two-state
hidden Markov models (latent variable time series models) used to estimate
the relative impact of the influenza seasons between 1975/76 and 2004/05
in terms of P&I and ILI. In chapter 7, crude associations between the mean
shift in P&I and ILI, by age group, and exposures of interest are examined.
Results from models including a dependency between the mean shift and
cluster transitions or vaccine coverage of the > 65 age group are presented.
Also in this chapter, the relative impact of influenza seasons in England &
Wales estimated using other methods are compared to estimates using the
multivariate latent variable time series models fitted in the thesis. Findings
related to the average effect of cluster transitions and vaccine impact are
also placed in context of what is already known. Chapter 8 summarises the
main findings and suggests directions to take for the future.
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2. Literature Review

2.1. Introduction

This chapter is structured as follows. Background on influenza virus and
disease is provided in section 2.2. The variability in estimates of influenza
- attributable morbidity and mortality between influenza seasons and be-
tween studies is introduced in section 2.3. In section 2.4 the methods that
have been used by others to estimate influenza, - attributable morbidity and
mortality are critically reviewed. Section 2.5 introduces key potential deter-
minants of the variability in influenza - attributable morbidity and mortality
between influenza seasons, including the exposures of interest in the work
described in the thesis: large antigenic drift events in influenza A/H3N2
virus evolution and vaccination. Sections 2.6 and 2.7 review the plausi-
bility of and evidence for an effect of large antigenic drift events, defined
as antigenic cluster transitions by Smith et al. (13}, on mean influenza -
attributable morbidity and mortality in influenza seasons. The plausibility
of and evidence for an impact of increasing yeaily vaccine coverage of the
> 65 age group on mean influenza - attributable morbidity and mortality

across age groups are reviewed in sections 2.8 and 2.9. Finally, the rationale
for the work described in the thesis is given in section 2.10.

2.2. Background

Influenza virus is a member of the Orthomyxoviridae family. There are
three types of influenza viruses - A, B, and C - though only A and B cause
widespread outbreaks in humans. {18] Influenza virus is transmitted via large
droplets (expelled during coughing and sneezing), aerosols (tiny droplets)
and fomites. [18,19]

Influenza virus has a segmented ribonucleic acid (RNA) negative sense

single-stranded genome. The 8 genome segments encode 10 gene prod-
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ucts: PB1, PB2, and PA polymerases, haemagglutinin (HA), neuraminidase
(NA), NP, M1, and M2 proteins, non-structural protein 1 and non-structural
protein 2. [20] HA has two subunits, HA1 and HA2, and is critical for patho-
genesis. [21] The HA is one of 2 major antigenic determinants recognised
by host neutralising antibodies (the other is NA). The HA is involved in
attachment to the host cell, via sialic acid on the host cell surface, and cell
entry. {21] The NA is essential to the release of new virus particles from
infected host cells via cleavage of glycosidic linkages to sialic acid residues
binding new virus particles to the host cell surface. {21] The NA prevents vi-
ral aggregation and facilitates viral dispersion in mucus. It is an important
target for antivirals like oseltamivir and other neuraminidase inhibitors. [18]
The M2 protein forms an ion channel (that is blocked by the antiviral aman-
tadine) which regulates the pH of the virus and enables early viral replica-
tion. {18] Random assembly of the 8 different RNAs into new virions leads
to progeny viruses with new combinations of genes (reassortment) when a
host cell is infected by two different virus variants. [20] The NA, HA and M2
proteins are embedded in the envelope on the surface of the virus. Subtypes
of influenza A virus are defined by their HA and NA (e.g. H3N2, HIN1);
different subtypes of influenza B virus have not been identified.

Within subtypes of influenza A virus there are variants which differ from
one another genetically and antigenically, that is in the degree to which they
elicit an antibody response in the host. Antigenic variants arise due to a
process of mutation called antigenic drift. [18] Antigenic drift is the stepwise
accumulation of mutations in the HA and NA which means that antibodies
raised against a previous variant (in the evolutionary line) will be progres-
sively less able to recognise, and neutralise, newer variants. Antigenic drift
results in hosts becoming susceptible to influenza. virus infection anew. Anti-
genically drifted variants also arise through reassortment. The high rate of
mutation in influenza virus even compared to other single stranded RNA
viruses is due to relatively low fidelity of the RNA polymerase and no error-
checking capability. (21} Antigenic drift has been shown to happen more in
influenza A than B viruses. {22]

In contrast to antigenic drift, antigenic shift is the emergence or reemer-
gence of influenza A viruses against which the population has virtually no
immunity; antigenic shift may lead to influenza pandemics if other condi-

tions, such as good human to human transmission of the pandemic virus,
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are met. Pandemics are sometimes characterised by high mortality because
of the lack of immunity in the population. A shift in the age distribution
of mortality from older people, who die from seasonal influenza, to younger
people can occur during pandemics because of antigen recycling whereby
similar HA or NA circulated long ago and only the oldest people have any
immunity. [23-25] Influenza B virus has no animal reservoir so does not
experience antigenic shift. {21}

Historically antigenic shift has happened when a virus with a new HA
(with or without other new gene segments like a new NA) has infected hu-
mans. The new HA may have arisen directly from an avian reservoir [26] or
via reassortment between human and avian viruses, sometimes via the mix-
ing vessel of pigs. {27] The current pandemic HIN1 2009 virus is sufficiently
diverged evolutionarily from seasonal influenza HIN1 viruses to mean most
age groups are essentially fully susceptible. {28} The nomenclature used to
define antigenic shift viruses therefore needs to be revised to reflect that
antigenic shift can occur without a new NA or HA. {29} In the 20th Century
there were 3 formally recognised pandemics - 1918 (HI1N1), 1957 (H2N2)
and 1968 (H3N2) - and 1 pandemic-like episode in 1977 when an HIN1 virus
identical to viruses circulating in 1950 reemerged, {30] possibly as an acci-
dental release from a laboratory. [31] Seasonal or inter-pandemic influenza
viruses in circulation since the last pandemic are influenza A/H3N2 virus,
influenza B virus and, since 1977, influenza A/HINI1 virus; a reassorted
influenza A/H1N2 virus circulated for a short time starting in 2001. (32]

2.2.1. Key definitions

The period during which influenza virus is circulating in the community,
the ‘influenza season’, is informed by routine [10] and sentinel laboratory
surveillance. {33,34] In the temperate Northern hemisphere influenza inci-
dence displays pronounced seasonality; influenza virus typically circulates
in the community between November and June with little recognised circu-
lation in the summer months. {35] Morbidity and mortality from influenza
related causes is also highly seasonal (e.g. figure 2.1). It should be noted
that little laboratory testing for influenza virus is done in summer leading
to potential underestimation of summer circulation of influenza virus. In-
fluenza years will be defined as the first week of July to the last week of June.
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Henceforth, the term ‘normal’ incidence will refer to the roughly sinusoidal
seasonal pattern of respiratory morbidity and mortality and ‘aberrant’ to
incidence in excess of ‘normal’ incidence. ‘Aberrant’ incidence is observed
during most influenza seasons, but is of variable intensity. Epidemics are
periods when ‘aberrant’ incidence is unusually high.

2.3. Relative impact of influenza seasons

In this section, the variability in estimates of influenza - attributable mor-
bidity and mortality between influenza seasons and between studies is in-
troduced. Around 5% of adults and 20% of children, globally, have symp-
tomatic influenza A or B each year. [37] Influenza virus infection in humans
causes both upper and lower respiratory symptoms. [18] Although infec-
tion is most common in the young, [38-40] morbidity and mortality occurs
largely in the elderly [8,41-43] and in people with underlying cardiorespira-
tory disease or diabetes. {44] Deaths in the elderly are thought to be caused
by secondary bacterial pneumonia. [45] Those who die as a result of in-
fluenza are often elderly people with comorbid respiratory or cardiovascular
disease who are admitted to hospital from the community. [46]

Most diagnoses of influenza are not laboratory-confirmed. [4,5] Most
deaths associated with influenza do not have influenza mentioned on death
certificates. [47] Morbidity and mortality attributable to influenza is typ-
ically ascertained through calculating numbers or rates of general practi-
tioner (GP) consultations, for diagnoses such as influenza-like-illness (ILI),
otitis media, acute bronchitis and asthma, [1-3] hospitalisations for respi-
ratory disease, {1,9,48-50] and deaths from all-causes, [1,8,41,51,52] res-
piratory (pneumonia + influenza + bronchitis) and circulatory diseases, (8,
9,51-53] or pneumonia and influenza [7,54] in excess of the number or rate
expected in the absence of influenza virus. Between 25 and 50% of people
who consult a GP for ILI do so during outbreaks of influenza. [36,55] Ex-
cess mortality [1,56] and hospitalisations [1,48] during epidemics suggests
at least a portion of these are caused by the influenza virus.
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- 1997/98. Reproduced from [36]
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2.3.1. In England & Wales

The burden of morbidity and mortality attributable to influenza is highly
variable influenza season to influenza season (figures 2.2 to 2.5). Estimates
of excess all-age ILI consultations range from 200 to 1600 consultations per
100,000 registered population per influenza season. Excess respiratory hos-
pitalisations in England each season range from none to 70/10,000. There
are between 0 and more than 2,500 per 1,000,000 excess respiratory deaths
in the elderly over 75 years old each influenza season. Refer to table 2.1
for methods of defining baseline morbidity and mortality for estimates of
excess morbidity and mortality shown in figures 2.2 to 2.5.

Several reports in figures 2.2 to 2.5 use the method of Fleming et al. to de-
fine ‘influenza active weeks’. {1,2,6,49,50,53,57] ‘Influenza active weeks’ are
weeks when influenza is estimated to have been circulating. The designation
of influenza active weeks is based on rates of ILI in sentinel general practices
participating in the Royal College of General Practitioners (RCGP) Weekly
Returns Service (WRS) and laboratory reports of influenza infection re-
ported through routine {10] and sentinel virological surveillance. [33,34] The

method of defining ‘influenza active weeks’ is complicated so, for reference,
it is reproduced in full below:

1. From weekly all-age rates of ILI for each of the study years, ILI rates
are deleted for weeks when there is > 1 influenza laboratory report.

2. In the remaining all-age ILI data, an average expected rate of ILI for
each winter week is estimated (e.g. the average expected ILI rate for
the 3rd week of January is the average ILI rate observed in the 3rd
week of January of 1989, 1990, 1991 and so on, excluding any January
3rd weeks when there was one or more flu lab report(s)). This gives

a time series of average expected all-age rates of ILI for each winter
week.

3. A 95% confidence interval (CI) is calculated around the time series of
average expected all-age rates of ILI for each winter week. The upper
95% confidence limit on the time series of average expected rates of
ILI is defined as the ‘epidemic threshold’.

4. Observed all-age ILI rates for every week of the study years are com-
pared with the epidemic threshold for that week. When the observed
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ILI rate exceeds the epidemic threshold, the week is defined as an
‘influenza active week’.
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Figure 2.2.: Estimates of excess ILI in England & Wales. In (a): red

in the <1 yr age group, yellow is the 1-4 age group, pink is the
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Table 2.1.: Key to methods used to estimate baseline morbidity and

mortality in figures 2.2 to 2.5

Definition of baseline Table refer- | refs
ence

Mean rate by age group in winter weeks out- | circles fig 2.2; 1, 49,

side of ‘influenza active weeks’ all fig 2.3; ‘+’ | 50,53
fig 2.4; black
circles fig 2.5

Mean rate by age group in winter weeks out- | ‘4’ in fig 2.2; | [2,57]

side of ‘influenza active weeks’ and ‘respira- | circles fig 2.4

tory syncytial virus (RSV) active weeks™; ex-

cess apportioned between influenza, RSV if

overlapped

Average morbidity in winter weeks excluding | diamonds (3]

weeks encompassing > 70% of laboratory re- | fig 2.2

ports that season (influenza or RSV; excess

apportioned between them if overlapped)

Seasons without ‘very high peaks’ or ‘sizeable | ‘+’ fig 2.5 [58]

outbreaks’

Months with 0 influenza laboratory reports or | coloured  cir- | (51}

lowest RCGP ILI rate cles fig 2.5

Lowest RCGP upper respiratory tract infec- | ‘x’ fig 2.5 [59]

tion rate

Intercept from regressing total excess winter | diamonds [47]

deaths (deaths Dec-Mar divided by average | fig 2.5

of Aug-Nov and Apr-July) on influenza regis-
tered deaths

Variability in excess ILI between influenza seasons is similar across age
groups (figure 2.2). Estimates of excess ILI for later influenza seasons (3]
were lower in general than for earlier years. [1]. This may be related to the
different ways baseline ILI was defined in the later vs. earlier reports (see

table 2.1).

Excess respiratory hospitalisations are variable between influenza seasons
and are higher for older age groups (figure 2.3). Estimates of excess pneu-
monia and influenza hospitalisations [49] (‘4 in figure 2.3) are higher than
estimates of excess respiratory hospitalisations {1,50} (all other symbols in

figure 2.3) because pneumonia and influenza hospitalisations are more spe-

RSV active weeks’ were defined as weeks with at least 200 laboratory reports for RSV
in children <1 and then following the same procedure as for ‘influenza active weeks’
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cific to influenza. Pneumonia and influenza hospitalisations would therefore
be expected to occur at lower rates outside of the influenza season. For a
given influenza season, estimates from [53] (purple ‘x’) are lower than esti-
mates from [50] (purple diamonds) because averaging rates around Christ-
mas holiday weeks done in [53] lowered the estimated excess respiratory
hospitalisation rate. There is no long-term trend in excess hospitalisations.

Excess respiratory mortality is variable season to season and is much
higher in the older than younger age groups (figure 2.4). A similar pattern
is seen in rates of excess all-cause mortality (figure 2.5). There is no clear
long-term trend in excess mortality except in the youngest age groups. Esti-
mates of excess all-age, all-cause mortality that rely on relative numbers of
laboratory reports for influenza A and B in different influenza seasons [59]
(black diamonds in figure 2.5) produce lower estimates, and less variability
in excess mortality between influenza seasons, than other methods. This
suggests that the relative number of laboratory reports between influenza
seasons may not be a good proxy for the relative impact of influenza seasons.

A substantial and variable burden of influenza morbidity and mortality
has been documented in many other settings. [60-67) Comparison of esti-
mates between countries is difficult because of different diagnostic coding

practices and because of different methods used to estimate morbidity and
mortality in the absence of influenza virus.

2.4. Critique of methods to estimate influenza -
attributable morbidity and mortality

In this section, six general methods to estimate influenza - attributable
morbidity and mortality are critically reviewed. These general methods are
Serfling-like least squares, ARIMA time series, linear or Poisson regression,
rate difference, transmission dynamic and latent variable time series meth-
ods.

The cumulative influenza - attributable morbidity and mortality in in-

fluenza seasons has been estimated in many ways. Farr introduced the

concept of ‘excess mortality’, attributable to influenza, over an expected
mortality in the absence of influenza virus circulation. Farr subtracted the
number of deaths that occurred during an influenza epidemic in 1847 from
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the average monthly mortality rate to estimate mortality attributable to
the epidemic. [68) Collins defined expected mortality as the median weekly

number of deaths during non-epidemic years and excess as observed minus
expected deaths. [69)

2.4.1. Serfling-like least squares

Serfling introduced the concept of fitting a sinusoidal curve by least squares
to mortality data with epidemic weeks deleted. [70] This idea is based on the
assumption that the winter increase in mortality is only partly attributable
to influenza. Serfling expressed 4-weekly P&I, with ‘aberrant’ or ‘epidemic’
weeks deleted, as dependent on an intercept, linear trend and one Fourier

term (one sine plus one cosine term) to model seasonality with a period of
one year according to the formula

27t 2wt
Y;: = t in — —_—
t = a+ Bt + B sin 5 + B2 cos 1

where Y; is the monthly mortality rate, o is the intercept, § is a linear
term for long-term trend. () and 32 are coefficients for seasonality. Five
influenza seasons worth of non-epidemic P&I data were used to predict
the expected P&I for the sixth influenza season. Coeflicients were esti-
mated by least squares. Serfling then defined the ‘epidemic threshold’ for
the sixth influenza season as 1.65 standard deviations (SD) above the pre-
dicted mortality for that season (figure 2.6). Excess P&l for the whole
of the sixth influenza season was the sum of observed mortality that was
greater than the epidemic threshold. This method has been widely used
(e.g. [56,58]). The Health Protection Agency Centre for Infections (HPA
Cfl) uses a Serfling-type approach to monitor excess mortality in England
& Wales each winter. (71] The Centers for Disease Control and Prevention
has used a Serfling-type model, modified by Lui and Kendal, fitted to past
P&I incidence from 122 US cities to predict expected P&I for the following
influenza season for many years. (72,73

The approach described above to estimating mortality attributable to
influenza in a particular influenza season is limited in two ways. First,
the epidemiologist must decide what observations in the previous five years
of P&I data are to be deleted before model fitting. The uncertainty in
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Serfling’s least squares method (figure 1 from [74]).

the designation of observed mortality or morbidity as ‘epidemic’ or ‘non-
epidemic’ (i.e. ‘aberrant’ or ‘normal’) is not taken into account. Second,
the roughly sinusoidal baseline with a linear (or sometimes quadratic) long-
term trend lacks flexibility in fitting ‘normal’ seasonal incidence when the
timing of influenza seasons varies between influenza scasons.

As an example of a recent adaptation of Serfling’s original method, Si-
monsen et al. used a Serfling-type regression model to estimate excess P&I
and all-cause (AC) mortality in the elderly in the US for influenza seasons
between 1968 and 2001. (7] First, rates of P&I and AC were adjusted for
the change from ICD 9 to ICD 10 using a comparability ratio. Any long-
term trend in the mortality rates was removed by dividing each month’s
rate by the average summer (June - August) mortality rate using a smooth-
ing spline. Mortality rates for December to April where discarded to iso-
late ‘normal’ mortality. A Serfling-type regression model was fitted to de-

trended monthly rates of influenza-registered mortality, excluding December
to April, according to the formula

. 27t 2mt
Dt=a+ﬂ1smT2—+ﬁ2cos—l—é—+et

where Dy is the de-trended monthly mortality rate, o is the intercept, 5;
and 3, are coefficients for seasonality and ¢; is the error term. Months when
the observed rates of influenza-registered death exceeded the upper 95% CI
on the model-predicted rates of influenza-registered death were defined as
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‘epidemic months’. The identical Serfling-type regression model was then
fitted to de-trended P&I and AC in 5-year age groups (65-94). Excess P&I
or AC was the difference between observed and model-predicted P&I or AC
for all ‘epidemic months’ with trend added back in. This model improves
upon Serfling’s original least squares approach by more flexibly accounting
for long-term trend in ‘normal’ mortality data using a smoothing spline.
The models described in the thesis fitted seasonality using a Fourier term
(one sine plus one cosine term) and fitted long-term trend with cubic splines.
This is analogous to the method of Simonsen et al. where seasonality was
modeled using a Fourier term and where long-term trend was removed using
a smoothing spline. The models described in the thesis thus have increased
flexibility for fitting seasonality and trend in the data relative to Serfling-like
least squares.

The adaptation by Simonsen et al. of the Serfling method is still limited
by the need to delete observations for December to April before model fit-
ting. Accordingly, the models described in chapters 5 to 7 of the thesis have
differentiated ‘aberrant’ from ‘normal’ morbidity and mortality as part of
model fitting, while incorporating uncertainty into this differentiation.

2.4.2. ARIMA time series

Choi and Thacker proposed a method to increase the accuracy of forecasts,
and estimates of excess mortality, compared to those from the Serfling-like
least squares method. [74] They adapted a seasonal autoregressive integrated
moving average (ARIMA) time series model for this purpose. [74,75] Like
Serfling’s method, the seasonal ARIMA model was fitted to past P&I data
with ‘aberrant’ (or ‘epidemic’) weeks deleted. Unlike Serfling’s method,
in the ARIMA model non-independence in the P&I data is not assumed
to necessarily follow a roughly sinusoidal pattern plus linear trend. The
ARIMA model predicts expected numbers of deaths for future time periods
based on the temporal sequence of counts of deaths in past time periods.
Baseline counts for deleted epidemic weeks are also predicted as part of
model fitting. Comparing figure 2.7 to figure 2.6, the increased flexibility of
the seasonal ARIMA model compared with Serfling least squares model for
fitting ‘normal’ incidence is evident. Excess mortality was defined as the
sum of positive residuals exceeding 1.65 SD above mortality predicted by
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the ARIMA model.

2V aALL CITIES

Y acTum
00

A" exeecreo

5004

OEATNHS

400 {ay

200 PY PPPY TYTY Y91 1Y5 TYVY FRYY FOIL UPVS 1YL 1YY PIUS POOU OPR PPN FYV PYVY PYIR PUOY 1YY JURY OVY PO FUN DRV PN S POV 1TV FPPL TP UWY VY TV FOL PO PO O PO |
QN ®

| #Fwams s a3 08 0] 2PN AMI I AS 0N D] 4 F WA My JAS
1976 , er? 1”70 »ry

Fiouns 2. Obesrved number of weekly deaths attributed to is and infl
U.8. cities, 1976-1979.

d with number forecast by ARIMA model (2), 121

Figure 2.7.: The ‘epidemic threshold’ in P&I data from 121 US

cities between 1976/77 and 1978/79 calculated using
the ARIMA time series method (figure 2 from [74}).

The seasonal ARIMA time series model for P&I developed by Choi and
Thacker produced more accurate estimates of excess P&I than Serfling-like
least squares {74] because previous ‘aberrant’ observations were replaced
by model-predicted counts instead of simply being deleted. The models
described in chapters 5 to 7 of the thesis did not require deletion of data
prior to model fitting. The ARIMA method is limited in a similar way to the
Serfling method in requiring the deletion of ‘aberrant’ observations before
model fitting. Both the ARIMA and Serfling-like least squares methods

assume that excess mortality is entirely attributable to influenza.

2.4.3. Rate difference

Another general approach to differentiating ‘normal’ from ‘aberrant’ inci-
dence is to calculate rates of morbidity and mortality during the ‘aberrant’
period (defined based on the presence of an influenza virus indicator) and
compare these to rates during a ‘peri-seasonal period’ (winter weeks outside
of those defined as ‘aberrant’) or during the summer. [76] As an example of
this ‘rate difference’ method, Jansen et al. recently compared average rates
of excess all-cause mortality in elderly people in the Netherlands in peri-
ods of high and low vaccine coverage in order to investigate vaccine impact
on mortality. [64] Excess all-cause mortality was estimated using the rate
difference method. First ‘influenza active periods’ and ‘RSV active peri-

ods’ in each influenza season under study were identified. ‘Influenza active
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weeks’ were defined as > 2 consecutive weeks accounting for at least 5% of
the winter’s total influenza laboratory reports. ‘RSV active weeks' were >
2 consecutive weeks accounting for at least 5% of the winter’s total RSV
laboratory reports. Weeks of influenza predominance were ‘influenza active
weeks’ which were not ‘RSV active weeks’. Winter was considered to last
from week 40 of one calendar year to week 20 of the following year. The
‘peri-seasonal baseline’ mortality was AC mortality in winter weeks which
were neither ‘influenza active weeks’ nor ‘RSV active weeks’; the ‘summer
baseline’ mortality was AC mortality in weeks 21 to 39. Excess AC mor-
tality rates for each season were calculated by subtracting rates during the
peri-seasonal baseline from rates during periods of influenza predominance,
multiplied by the number of ‘influenza active weeks’ in that season. Excess
was similarly calculated using the summer instead of peri-seasonal baseline.
Estimates of excess mortality using this method may be biased downwards if
influenza - attributable deaths lag laboratory reports by a number of weeks
(thus falling outside of the virus active periods).

Many of the estimates of excess morbidity and mortality in England &
Wales summarised in section 2.3.1 were calculated using a similar method
to that of Jansen et al.. [1,2,6,49,50,53,57] In these studies, an ‘epidemic
threshold’ was defined using average all-age ILI data for winter weeks when
there were no laboratory reports for influenza (routine or sentinel). Winter

weeks when observed ILI was above the ‘epidemic threshold‘ were defined

as ‘influenza active weeks’. Average observed morbidity or mortality in

‘influenza active weeks’ was divided by average morbidity or mortality for
the winter weeks of that season which were not ‘influenza active weeks’,
multiplied by the number of ‘influenza active weeks’, to give total excess
morbidity or mortality in that season. The logic behind multiplying a ratio
of average rates by the length of the influenza, active period is unclear. The
‘influenza active weeks’ (defined using all-age ILI data and all-age influenza
A and B laboratory reports) were assumed to be the same for all age groups
and for all outcome variables (e.g. ILI, respiratory hospitalisations and
mortality). This assumption would not hold if influenza activity increased
in some age groups before others, or if deaths lagged ILI (see section 3.2.6).
Also, for analysis of a number of influenza seasons at once, estimating the
‘epidemic threshold’ by averaging ILI rates across weeks for several seasons
would mean the ‘epidemic threshold’ was too high or too low at the ends of
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the time series if there were a long-term increase or decrease in ILI incidence
(see section 4.6).

2.4.4. Regression on an indicator of influenza virus
circulation

Another approach to estimating mortality (or morbidity) attributable to
influenza is to regress non-laboratory confirmed outcome incidence on indi-
cators of influenza virus circulation (like laboratory reports for influenza A
and B, GP consultations for ILI or deaths registered to influenza). By do-
ing this, incidence attributable to influenza is distinguished from incidence
attributable to other factors, like seasonality, fluctuating ambient winter
temperatures or epidemics of RSV. Clifford et al. introduced this approach
by fitting multiple linear regression models to 4-weekly deaths (all-cause or
respiratory in separate model fits) according to the formula

Yi=a+ fix1 + faxg + ... + Bpxp + €

where Y is the 4-weekly number of deaths, « is the intercept and (s are
coefficients for dummy variables for season, trend, ambient temperature,
years since an antigenic drift event, RSV and various indicators of influenza
virus circulation that included influenza A and B routine laboratory reports
and GP consultation rates for influenza from the RCGP. [52] Coefficients
were estimated using least squares. Clifford et al. estimated the number of
deaths in the absence of influenza by setting the influenza indicator to zero
(or the lowest observed level in the case of the RCGP consultation rate for
influenza, which is rarely zero). The portion of excess mortality attributable
to influenza was then the observed mortality minus that predicted when the
influenza indicator was set to the appropriate baseline level.

This general approach has been widely used: Poisson models with a log-
link (8,77} or an identity-link [78] have also been fitted. These regression
models can also incorporate terms for observed morbidity or mortality in
previous weeks or months to account for dependence between death counts
not accounted for by variability in the indicator of influenza virus circu-
lation, seasonality, trend and other confounders. [42] Carrat and Valleron
merged the regression and ARIMA approaches when they regressed respi-
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ratory, cardiovascular and other mortality rates on rates of mortality regis-
tered to influenza and an error term that had an ARIMA structure. {79] In
this way only the variability in respiratory, circulatory or other mortality
rates that could be explained by variability in rates of mortality registered to
influenza was attributed to influenza. All of the remaining variability in the
dependent variable was accounted for in the ARIMA process. In the general
class of models described in this section, influenza - attributable mortality or
morbidity is estimated either as observed mortality minus mortality when
the influenza indicator is set to its baseline value {52] or multiplying the
regression coefficient for the influenza virus indicator by the magnitude of
the influenza virus indicator in each week of each influenza season. [9] There
is a conceptual issue and an analytical limitation of regressing surveillance
data on each other.

The conceptual issue with regressing different influenza surveillance data
on each other is that true influenza burden is partially observed in each
of the surveillance data sets (e.g. mortality, GP consultations, laboratory
reports for influenza) (figure 2.8). When surveillance data are regressed
on one another, this implies that the association between the data sets
is as in figure 2.9. That is, the implication is that laboratory-confirmed
cases (e.g. ascertained through laboratory reports for influenza) cause non-
laboratory confirmed cases (e.g. deaths coded to underlying pneumonia or
influenza). As mentioned above, in reality, influenza disease is partially
observed in each data set. This suggests multivariate models, where both
non-laboratory-confirmed and laboratory-confirmed data are outcome vari-
ables, as an alternative to regression models.

The analytical limitation of regressing different streams of influenza surveil-
lance data on each other is that convenient aspects of models with a log-link
(e.g. allowing control for the changing size of the population at risk with a
population offset, see chapter 3) are problematic. Poisson models with a log-
link and a population offset imply a multiplicative association between the
influenza virus indicator (e.g. laboratory reports for influenza) and the de-
pendent variable (e.g. deaths coded to underlying pneumonia or influenza).
This may not be realistic. {80] Other scales of analysis (for example, model-
ing the association between the laboratory reports for influenza and deaths
coded to underlying pneumonia or influenza using a Poisson model with an

identity-link or using a Gaussian model) make adjustment for the changing
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GP consultations for iLI, etc

Influenza disease Laboratory reports for influenza Aand B

Mortality (respiratory, circulatory, etc)

Figure 2.8.: A schematic illustrating the implied relationship be-
tween true influenza incidence and influenza morbidity
and mortality as captured by surveillance data.

GP consultations for ILI, etc

Influenza disease——————— Lab reports for influenza A and B

Mortality (respiratory, circulatory, etc)

Figure 2.9.: A schematic illustrating the implied relationship be-
tween true influenza incidence and influenza morbidity
and mortality as captured by surveillance data when

GP or mortality data are regressed on laboratory re-
port data.
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size of the population at risk more difficult because a population offset can-
not be used. In Gaussian models, counterintuitive negative model-predicted
numbers of cases are possible (see chapter 3).

Thompson et al. recently estimated excess respiratory and circulatory
morbidity in the US between 1977/78 and 2002/03 using four methods de-
scribed above: Serfling-like least squares, ARIMA time series, rate differ-
ence and Poisson regression with a log-link (where seasonality was modeled
using a sine and cosine term). [60] The highest estimates of influenza - at-
tributable mortality were derived from the rate difference method using a
summer baseline and the next highest from the rate difference method us-
ing a peri-seasonal baseline; Serfling least squares, Poisson regression with a
log-link and ARIMA time series models gave similar estimates to each other
and lower estimates than the rate difference method.

2.4.5. Latent variable time series models

An alternative way to distinguish influenza - attributable from non-influenza
attributable morbidity and mortality is to use latent variable time series
models (details in section 3.5.2). In latent variable time series models, the
distinction of influenza - attributable (‘aberrant’) from non-influenza - at-
tributable (‘normal’) morbidity and mortality is automated. The model
is able to distinguish ‘aberrant’ from ‘normal’ morbidity and mortality by
considering the morbidity or mortality time series as having arisen through
a latent (unobserved) process (e.g. [81]). The differentiation of ‘aberrant’
from ‘normal’ incidence is governed by latent ‘states’ where each state has a
probability distribution associated with it. The model learns from the data
about the probability that any given week is drawn from the ‘normal’ or
‘aberrant’ distribution. The contribution of the work described in the thesis
is in developing age group-specific multivariate latent variable time series
models for influenza morbidity and mortality. In the models described in
chapter 6, the distinction of ‘aberrant’ from ‘normal’ P&I and ILI is in-
formed by laboratory reports for influenza A. Age group specific laboratory
reports, P&l and ILI data are simultaneously modeled as outcome vari-
ables. The distinction of ‘aberrant’ from ‘normal’ incidence in P&I and ILI
is informed by both laboratory reports for influenza A and the P&I and
ILI data themselves. In this way the specificity of influenza - attributable
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morbidity and mortality for influenza is increased relative to models fitted
to P&I or ILI only (see chapter 5). Because models are age group-specific,
different timing of influenza seasons in different age groups is allowed for.
Also, because in bivariate models the distinction of ‘aberrant’ from ‘normal’
incidence is informed by P&I, or ILI, and laboratory reports, shifted timing
of ‘aberrant’ incidence in ILI compared to P&I data is accommodated.

In the latent variable framework, the observation model for the ‘normal’
incidence probability distribution has often been modeled as Serfling-like
with Poisson or Gaussian errors. [81-83] Using a Gaussian model is limited
because of the possibility of predicting negative counts. As mentioned previ-
ously, throughout the thesis ‘normal’ incidence was fitted with a Serfling-like
Poisson model.

In previous latent variable time series models, the distinction between
‘normal’ and ‘aberrant’ incidence has been captured in an autoregressive
term [83-85] or as an additive mean shift. {82] Rath et al. chose an ex-
ponential distribution for the ‘normal’ incidence observation model and a
Gaussian distribution for the ‘aberrant’ incidence observation model. [86)
An advantage of this approach was that seasonality and trend did not need
to be explicitly modeled. There is not an obvious choice as to how to model
the difference between ‘normal’ and ‘aberrant’ incidence. The models de-
scribed in chapters 5 to 7 modeled this using a random effect mean shift
for each influenza season (see section 3.5.2). The random effect allows vari-
ability in the intensity of influenza seasons. The random effect mean shift

is a simple first step for modeling the relative impact of influenza seasons
in terms of morbidity and mortality.

2.4.6. Transmission dynamic models

An alternative to the statistical models described above for making infer-
ence about a time series of counts of an infectious disease are transmission
dynamic models. An example of this approach is the model introduced
by Finkenstadt et al.: a susceptible-infected-recovered-susceptible (SIRS)
model where an observed time series of counts of the disease in question
populates the ‘infected’ class. [87] This framework was recently applied to
French ILI data. [88] The weekly ILI count was assumed to arise from a

Gamma distribution whose mean (¢¢) was expressed in terms of the contact
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rate (1) and the number susceptible (¢) and infected (k) in week t-1. [88]
v = () Ke-1

x is a mixing parameter for the contact process between infected and sus-
ceptible people. x takes the value 1 if the population mixes homogeneously.
Seasonality was parameterised by allowing 7 to vary seasonally (with a pe-
riod of 1 year). The number susceptible (¢) and recovered (w) in week t+1
was then

Gt = G — K1 + Yewr

wip1 = (1 = n)wy + K1

The parameter «, captured the return of immune individuals to suscep-
tibility because of waning immunity or due to antigenic drift. In the full
version of this model, v was constant throughout an influenza season except
for at most 1 week when it could take any value up to 1. The 1 week during
which a proportion of the population essentially instantaneously reverted
from immune to susceptible represented the introduction of an antigeni-
cally drifted variant. Inference about unknown quantities (e.g. x,7,7) was
made using Markov chain Monte Carlo (see section 3.5.3).

Latent-variable models can be extended to include a transmission dy-
namic component [89](where the Markov chain, of which the observed data
are a realisation, is generated by a transmission model). In the work de-

scribed in the thesis, a strictly statistical, and not a transmission dynamical,
framework has been used.

2.5. Determinants of variable impact of influenza
seasons

In this section, key potential determinants of the variability in influenza -
attributable morbidity and mortality between influenza seasons are intro-
duced. These potential determinants include the exposures of interest in
the work described in the thesis: large antigenic drift events in influenza
A/H3N2 virus evolution and vaccination.

There are a number of factors that help to explain the variability in in-

fluenza - attributable morbidity and mortality between influenza seasons.

47



One is the dominant circulating variant or variants in each season. Influenza
A/H3N2 virus infection generally causes more serious illness than infection
with influenza A/HIN1 or B virus. [40,90,91] Influenza seasons dominated
by influenza A/H3N2 virus result in higher mortality [1,92], hospitalisa-
tions [1,48] and GP consultations for influenza-like-illness [1) than seasons
dominated by influenza A /H1N1 or B viruses. There is evidence that the H3
haemagglutinin is under positive selection, [11,12] that there is a higher mu-
tation rate of influenza A/H3N2 virus vs. HIN1 or B viruses {12] and some
evidence of more efficient transmission of influenza A/H3N2 than HIN1
viruses. [19] Large antigenic drift events in influenza A/H3N2 virus evolu-
tion often coincide with epidemics (see section 2.6). [93,94]

Increasing vaccine coverage of certain age groups may lead to less in-
fluenza - attributable morbidity and mortality through direct and indirect
vaccine effects (see section 2.8). [95] The mismatch between vaccine and
dominant viruses sometimes results in lower VE and should be taken into
account in studies of the association between antigenic drift, vaccine cover-
age and excess morbidity and mortality. [16,17)

Factors not related to influenza directly, like ambient temperature and
RSV epidemics, [42] a decline, and then leveling off, of levels of smoking
in the population {96] and declines in healthcare-seeking behaviour in the
population {97) may explain some of the variability in influenza - attributable
morbidity and mortality influenza season to influenza season. Factors such
as these may obscure the relationship between influenza-related factors (e.g.

antigenic drift or vaccine coverage) and excess morbidity and mortality.

2.6. Plausibility of an effect of antigenic drift on

excess morbidity and mortality

In this section, the plausibility of an average inflating effect of large antigenic

drift events on mean influenza - attributable morbidity and mortality is
discussed.

2.6.1. Evolution of influenza A/H3N2 virus

Laboratory studies have provided evidence for changes in influenza A/H3N2
virus that may be indications of adaptation of influenza A/H3N2 virus to
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transmission within the human population. That is, these changes may be
due to selective pressures on influenza A/H3N2 virus exerted during the
long-term circulation of influenza A/H3N2 virus in the human population
(41 years). For example influenza A /H3N2 viruses have, over time, become
better able to bind sialic acid receptors in human epithelial cells. [98] They
also appear to have developed a lower affinity for natural killer cells. [99]
Because this evidence is not coupled to information about viral fitness, how-
ever, it is difficult to interpret it in terms of resulting changes to virulence
(the severity of the illness caused by infection with a pathogen). For ex-
ample, mutations that increase sialic acid affinity, and enhance host. cell

binding, might also increase antibody recognition and result in an overall
decrease in fitness. [98]

Antigenic evolution

Study of the antigenic evolution of influenza A/H3N2 virus gives an in-
dication of evolution in response to selective pressures by human immune
systems which does not result in loss of fitness. Less fit viruses do not per-
sist in order to be isolated from large numbers of patients and thus are not
well represented in databases of antigenicity data on influenza viruses.

As part of the influenza vaccine strain selection process, the World Health
Organization (WHOQO) assesses antigenicity using the haemagglutination in-
hibition (HI) assay. The HI assay is based on the ability of influenza viruses
to agglutinate red blood cells and the ability of specific antibodies to inhibit
this agglutination. The antibodies used in the HI assay are raised by infect-
ing ferrets with the relevant influenza virus variants. The HI value, or titre,
ascribed to each antiserum is the highest dilution of the antiserum that can
block the agglutination of the red blood cells. The higher the HI value,
the more similar the variant of interest is to the reference variant against
which the antiserum was raised. The HI test is used for surveillance because
the antibody produced is durable and directed towards the haemagglutinin
which is the most relevant for assessing susceptibility and immunity. {100]
These data have historically been used in a qualitative way by the WHO
to estimate how well a vaccine that included one variant should protect

vaccinees from infection with another variant.

Recently, Smith et al. used HI assay data on 79 antisera and 273 viral
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isolates from the WHO vaccine strain selection data set to identify clusters
of antigenically similar variants. [13] An antigenic map was constructed by
placing virus isolates and antisera from influenza seasons between 1968 and
2003 on an x-y plane. The distance between virus-antiserum pairs was
determined by their HI titre. The relative position of each pair on the plane
was determined by minimising the sum of squared differences between the
log, of the HI value and the physical distance between the antigens and
antisera on the map (figure 2.10). The accuracy of the map was determined
by selecting antigen-antiserum pairs whose HI values were not included in
the creation of the map, predicting the HI value of those pairs from distances
in the map, and then testing the HI value for this pair in the laboratory.
The correlation between HI distance inferred from the map and laboratory-
tested distance was 0.81.

The HA1 subunit of the HA of each of the influenza A/H3N2 virus vari-
ants included in the map was sequenced to allow comparison of the rates
of genetic and antigenic change. Smith et al. provided evidence that viral
genetic evolution happens in a relatively continuous (linear) fashion while
antigenic change is punctuated. {13] This was done by plotting both genetic
distance (in amino acid substitutions) and the antigenic distance between
the dominant variants each season against the season (figure 2.11). A clus-
ter of variants in the antigenic map was dominant for a mean of 3.3 years
(range 1 to 8 years) before a large antigenic drift event, or cluster transition
(CT), occurred. There was some overlap in circulation of adjacent clusters.

More recently, Russell et al. showed that antigenic change in influenza
A/H3N2 virus between 2002 and 2007 was more linear [101] than the histori-
cal average indicated by Smith et al.. [13] The analysis of antigenic evolution
between 2002 and 2007 was based on a larger data set that was more geo-
graphically representative of global isolates; the earlier analysis of antigenic
evolution between 1968 and 2003 was based on a data set where 94 of 273
isolates used to generate the antigenic map were from the Netherlands. An
alternative hypothesis to the rate of antigenic change having been more lin-
ear between 2002 and 2007 than previously is that global antigenic change
is gradual compared with local antigenic evolution. Local evolution may

appear punctuated because influenza virus does not persist locally between
influenza seasons. [101]
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Figure 2.10.: Antigenic map showing clustering of antigenic variants

of influenza A /H3N2 virus between 1968 and 2003 /04.
Reproduced from figure 1 of Smith et al. [13]. One
unit of antigenic distance on the map is equivalent to a 2-fold
dilution in the antiserum in the HI assay. Coloured symbols
are viral isolates and open symbols are antisera. The size and
shape of each point on the map reflects a confidence area in
its placement on the map. Antigenic clusters are distinguished
by colour. Note that clusters of antigenically similar viruses
arrange chronologically from the HK68 cluster, that includes

the variant that caused the pandemic of 1968-1970 (top), to
the FUO2 cluster.
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Figure 2.11.: Antigenic distance (left) and number of amino acids
(right) between circulating influenza A/H3N2 virus
variants each season against the season (reproduced
from figure 4 in [13]). Clusters are colour-coded as in the
previous figure. The area of each point represents the pro-
portion of isolates per season which were from each antigenic
cluster. Sampling is biased towards outliers so the area of each
point does not reflect this variant’s epidemic impact. Antigenic

change appears to proceed in a more punctuated manner than
genetic change.



2.6.2. Relationship of antigenic drift to host immunity

There is evidence that the HA1 subunit of influenza A/H3N2 virus is under
positive selection and it is likely that a major driver of this is host population
immunity. {11,12] Using a transmission dynamic model, Gog et al. showed
that strain-specific immunity can lead to CT seasons. {102] Models that
also allow a non-specific strain-transcending immunity reproduce antigenic
evolution that proceeds gradually but also clustered antigenic evolution like
that observed by Smith et al.. [12,13]

Antigenic drift plausibly increases the size of the susceptible population to
circulating variants of influenza virus. This is because antibodies generated
by natural infection or vaccination against previously circulating variants
become less able to neutralise variants which are antigenically drifted. As a
result, people revert from being immune to being susceptible to circulating
variants of influenza virus. A cohort study where individuals were grouped
according to previous exposure to influenza A/H3N2 viruses suggests that
there is almost complete immunity to variants within an antigenic clus-
ter. {103] This same study, and a natural experiment in military personnel
where vaccinated people were housed with newly arrived unvaccinated indi-
viduals, suggested there is approximately 60 to 80% cross immunity between
clusters adjacent in time. [103,104] Nakajima et al. found no cross-immunity
between viruses from the HK68 cluster and serum from human subjects that
included antibodies to viruses circulating between 1991 and 1993. [105] This
suggests there probably is little or no cross-immunity between non-adjacent
clusters.

The make-up of the trivalent influenza vaccine used in most countries is
updated regularly to track the antigenic evolution of (specifically) influenza
A viruses. [106] The influenza A/H3N2 virus vaccine variant is updated
when there is an antigenic distance of at least 2 units (a fourfold dilution
of antiserum in the HI assay) between the vaccine variant and the variant
expected to circulate in the next influenza season. The mean degree of
antigenic change with each cluster transition is 4.5 antigenic units. 13

There is at least 1 vaccine variant in each influenza. A/H3N2 virus antigenic
cluster (see section 2.6.1).
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2.7. Evidence for effect of antigenic drift

In this section, the evidence for an average inflating effect of large antigenic
drift events on influenza - attributable morbidity and mortality is reviewed.

The appearance of antigenically distinct variants of influenza A/H3N2
virus in 1972 and 1975 were accompanied by large increases in deaths from
influenza and pneumonia in the United Kingdom (UK) and worldwide. (93]
Greene et al. plotted the monthly percentage AC that was due to P&I from
1968 to 1998 for US residents aged 65 and over, an indicator of the relative
impact of influenza seasons in terms of mortality, indicating CT seasons on
the graph (figure 2.12). [94] I added the red horizontal line to their plot to
indicate approximately the average epidemic in terms of percentage P&I.
All CT seasons coincided with an average or above average P&I percentage
though not all of the highest peaks in the graph occurred during CT years.
The percentage of all-cause deaths coded to pneumonia or influenza is sen-
sitive to changes in the relative percentages of other causes of death. As
such, it has not been used in work described in the thesis as an indicator of
the relative impact of influenza seasons.

Most reports in the literature which make mention of the impact of large
antigenic drift events in influenza A/H3N2 virus evolution refer to individ-
ual drift events [63,107,108] or to a number of antigenic drift events that
coincided with massive epidemics. {58,93,109,110] The average effect of clus-
ter transitions on morbidity or mortality has not, to my knowledge, been
quantified. There may therefore be a bias in the published literature to-
wards large antigenic drift events in influenza A /H3N2 virus which resulted
in large excess mortality and/or morbidity.

The best estimate of the average effect of a number of CT seasons comes
from a model of the antigenic evolution of influenza A/H3N2 virus coupled
with a transmission dynamic model. [14] Here antigenically similar variants
were modeled as belonging to neutral ensembles and the individuals as being
susceptible to, infected by or recovered from infection from a neutral ensem-
ble instead of a particular variant. This model reproduced the pronounced
seasonality in incidence and duration of cluster dominance observed in re-
ality. Reading peak attack rates for each season from a figure of predicted
incidence, colour-coded for the dominant influenza A/H3N2 virus cluster
(figure 2.13), model-predicted influenza incidence during the first season
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Figure 2.12.: The percentage of AC in those 65 and over in the US
coded to underlying P&I, influenza seasons 1968/69 to
1997/98. Stars indicate seasons which were the first
influenza A /H3N2 virus-dominated season after a CT.
Adapted from [94]. The black horizontal bars are seasons dom-
inated by influenza A/HIN1 and/or influenza B viruses. The
red horizontal line indicates the approximate mean peak height
in terms of P&I1 percentage (not in the original paper). All CT
seasons had an average or above average P&I percentage.
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after a new cluster emerged was approximately 1.6 times higher than the
average incidence in other seasons.
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Figure 2.13" Model predicted rates of ‘cases’ of influenza from a

paper by Koelle et al. [14], colour-coded by influenza
A /H3N2 virus cluster. The y-axis is case rate and x-axis is

year, numbered from 1968 to 2003. Model-predicted antigenic
clusters of influenza A/H3N2 virus are dominant for 1 to 6 in-

fluenza seasons (vs. 1-8 influenza seasons for clusters observed
in reality).

Except in the descriptive and theoretical ways described above, the ef-

fect of CT seasons on population morbidity and mortality has not been
quantified.

2.8. Plausibility of impact of vaccination of the
elderly

In this section, the plausibility of an impact of increasing yearly vaccine

coverage of the > 65 age group on mean influenza - attributable morbidity
and mortality is discussed.

2.8.1. Vaccine efficacy in the elderly

Trivalent inactivated influenza vaccine has been shown to prevent up to
58% (95% CI1 26-77%) of laboratory confirmed clinically diagnosed ILI in
healthy people aged > 60. [15] Vaccine efficacy of trivalent inactivated vac-
cine against confirmed influenza in healthy younger adults is approximately
7% (95% 67-85%). [111] A recent review suggested similar post-vaccination

antibody levels in the elderly as in younger adults. [112] This is in contrast



to the general thinking that antibody response to vaccination declines with
age.

2.8.2. Vaccine effectiveness in the elderly

Estimates of VE in the elderly are complicated because few studies used
laboratory-confirmed outcomes. There is the potential for both positive and
negative confounding in observational studies that have not used laboratory-
confirmed outcomes. Positive confounding occurs when vaccinees are health-
ier than the unvaccinated and leads to inflated estimates of VE. Negative
confounding occurs when vaccinees are frailer than the unvaccinated, lead-
ing to artificially low estimates of VE.

Best estimates of VE in the elderly come from studies that verified the
absence of positive and negative confounding by health status. For exam-
ple, the presence of positive confounding by the healthy vaccinee effect can
be revealed by looking for VE in the pre- or post-influenza season (either
before influenza vaccine has been administered or after the end of influenza
virus circulation, when VE would be expected to be zero). From studies
not affected by positive or negative confounding, VE against acute respira-
tory hospitalisations is approximately 20-30% [113,114] and against respi-

ratory mortality is between 12% (95% CI 8-16%) [113] and 79% (95% C1
0-100%). [77]

2.8.3. Indirect effect of vaccination

Several studies have shown that influenza vaccination of school children
(e.g. [115]), health care workers (e.g. [116]), or whole towns (e.g. {117]) can
provide indirect protection against ILI and mortality in the unvaccinated.
In England & Wales, influenza vaccination is recommended for people
over 65 years of age and for people <65 with risk factors for complications
of influenza (e.g. respiratory, circulatory diseases and diabetes) [118]; the
majority of people receiving the vaccine are over the age of 50. [119] If vac-
cine efficacy against laboratory-confirmed clinically diagnosed influenza is
approximately 58%, vaccine effectiveness against non-laboratory confirmed
ILI should be lower. This is because ILI caused by pathogens other than in-
fluenza would be expected to be equally distributed between the vaccinated
and unvaccinated elderly, biasing estimated VE downwards. (See work de-
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scribed in chapters 5 and 6 to increase the specificity of non-laboratory
confirmed P&I and ILI for influenza by jointly modeling P&I and ILI with
laboratory reports for influenza A). Yearly vaccine coverage of the > 65 in
England & Wales increased from 24% in 1989/90 to 71% in 2004/05 (and
from 11% to 40% in people <65 in defined risk groups). {119,120] Unless cov-
erage is high enough to elicit substantial herd immunity, it will be difficult
to demonstrate an impact of the vaccine on levels of non-specific population
markers of influenza disease (see chapter 7). In addition, drivers of trans-
mission in households and the community are thought to be children. [38]
Observing a herd effect of vaccinating the elderly on transmission in other

age groups is unlikely because of the probably low transmission from elderly
to other age groups.

2.9. Evidence for the impact of vaccination of
elderly

In this section, the evidence for an impact of increasing yearly vaccine cov-

erage of the > 65 age group on mean influenza - attributable morbidity and
mortality is reviewed.

2.9.1. Descriptive studies

In several settings there has been a crude decline in rates of respiratory
mortality, GP consultations or emergency department visits in the elderly
in the community, concurrent with an increase in vaccine coverage of the
elderly (detail in table 2.2). There may be an impact of increasing vacci-
nation of the elderly on rates of respiratory mortality, GP consultations or
emergency department visits but these reports do not provide strong ev-
idence to support this. This is because estimates of trends in total (not
excess or influenza - attributable) morbidity or mortality are sensitive to
changes in baseline rates of morbidity and mortality. For example, Dijkstra
et al. regressed total ILI rates from influenza seasons on vaccine coverage
of the > 65 in those influenza seasons and provided some evidence of neg-
ative correlation between the two. [121] A decline in use of GP services,
like that observed in recent years in England & Wales {122], would give the
impression of a causal relationship between increasing vaccine coverage and
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declining rates of ILI when part or all of the decline in ILI rates may be due
simply to declining use of GP services. Because of the potential confounding
by changes to baseline morbidity or mortality incidence, as well as possible
confounding by antigenic drift, the dominant circulating variant, or effect
modification by the dominant variant or vaccine mismatch, these descriptive

studies cannot be interpreted as showing strong evidence of vaccine impact.
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2.9.2. Regression of excess mortality on vaccine coverage

Seven studies were identified which assessed the association between excess
or influenza - attributable respiratory hospitalisations or mortality in the
elderly on vaccine coverage in the elderly (detail in table 2.3). Excess in-
fluenza - attributable morbidity or mortality is less sensitive to changes in
baseline morbidity or mortality than total morbidity or mortality rates. As
such, these studies provide stronger evidence for or against an impact of
vaccination of the elderly than the descriptive studies in table 2.2.
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Simonsen et al. estimated the magnitude of the linear trend in log;o
excess P&1 and AC in the US from influenza A/H3N2-dominated seasons
between 1980/81 and 2000/01, during which yearly vaccine coverage of the
elderly increased from approximately 20% to 65%. 7] Excess mortality was
calculated using a Serfling-type regression method described in section 2.4.
After adjusting for ageing, the point estimate for the linear trend in excess
P&I was -12% overall (-0.6% per year) with a lower bound of the 95% CI
of -35%. The upper bound of the CI was not reported so it is not possible
to say whether they had sufficient power to exclude the possibility of no
change, or an increasing trend. A possible confounding effect of changes to
ambient winter temperature between 1980 and 2001 was not assessed.

Rizzo et al. used the same method as Simonsen et al. to estimate the mag-
nitude of the linear trend in log,, excess P&l and AC in H3N2-dominated
seasons for two periods: the first when vaccine coverage was low (approx.
0 before 1980 to 8% in 1986) and the second when it was rising (10% in
1987 to 61% in 2001). [67) After adjusting for ageing, point estimates for
linear trend in excess P&I were -146% overall (-9% per year) between 1970
and 1986 and +30% (+2% per year) between 1987 and 2001. No CIs were
reported for these trends; the authors stated there was no evidence of a
non-zero trend during the period of rising coverage which probably means
the CI around the estimate of 30% increased excess P&I between 1987 and
2001 was wide and included the null. This would mean the analysis had
little power to estimate the slope of the trend in this period.

Antunes et al. compared excess P&I in Sao Paulo, Brazil in two peri-
ods: before and after the introduction of free yearly influenza vaccination
for the elderly. [131] In the period before free vaccination was introduced
(in 1998), coverage was approximately 0; between 1998 and 2003 cover-
age ranged between 57% and 68%. Using Serfling-type least squares and
ARIMA time series methods of calculating excess P&I, they estimated be-
tween 194 (47.4%) and 583 (88%) fewer excess P&I deaths in the period
with vaccination compared to the period before vaccination. These esti-
mates seem improbably high. Excess mortality for each season estimated
using the two different methods (Serfling-type least squares and ARIMA
time series modeling) produced very different estimates and different rank-
ings of highest to lowest impact study seasons. This suggests there may
have been problems in the analysis. It is possible that there is some con-
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founding by antigenic drift in influenza A/H3N2 virus of the estimates of the
decline of excess P&I with vaccination: there were 2 or 3 cluster transitions
(depending on whether they were first isolated in the same influenza season
as in the Northern hemisphere, or in the following influenza season) in the
period of low vaccine coverage and only 1 during the period of high vaccine
coverage. This might give the impression of an impact of vaccination on ex-
cess P&I which is in fact due to fewer antigenically drifted influenza A/H3N2
virus variants circulating in the vaccination period compared to the period
before vaccination. The dominant circulating influenza type/subtype each
influenza season was not stated. The report did not include Cls around
estimated numbers of excess deaths prevented.

A study of two influenza seasons in Finland compared excess hospitalisa-
tion for pneumonia, influenza or circulatory disease in an area where people
aged > 65 yrs were only offered free vaccination if they were part of a risk
group for complications of influenza with an area where all people aged >
65 were offered free vaccination. {132] Taking excess pneumonia, influenza
and circulatory hospitalisations together, the area that offered vaccination
to all elderly, and that consequently achieved twice the vaccine coverage of
the other area, had fewer excess hospitalisations in one of the two study
seasons. The study season for which there was a clear difference in the
excess hospitalisations between the two areas was dominated by influenza
A/H3N2 virus; the season for which there was little difference in excess hos-
pitalisations between the two areas was dominated by influenza B virus. For
pneumonia or influenza hospitalisations alone, CIs for excess hospitalisations
in the two study seasons and in the two localities overlapped considerably.
The association between vaccination and excess hospitalisations was con-
fined to circulatory hospitalisations in the higher impact influenza season.
This study does not provide strong evidence for vaccine impact against cir-
culatory hospitalisations because of its short duration (2 influenza seasons).

Jansen et al. calculated RRs comparing average excess AC mortality in
the elderly in the Netherlands in the period of high vaccine use (coverage
up to 80%, 1996/97 to 2002/03) to the period of low vaccine use {coverage
<50%, 1992/93 to 1995/96). [64] Excess mortality was calculated using the
rate difference method with either a ‘peri-seasonal’ or ‘summer’ baseline
(described in section 2.4) and Serfling-type regression (similar to [7]). RRs
for excess AC mortality attributable to RSV in high vs low coverage periods



were also calculated as a control. Influenza vaccine would not be expected
to provide protection against RSV mortality. In a sensitivity analysis, the
RRs were calculated based only on high impact influenza seasons (mostly
H3N2-dominated seasons). This study provided robust evidence for vaccine
impact against AC mortality: all RRs for excess mortality attributable to
influenza excluded the null, associations were stronger when the analysis
was restricted to high impact influenza seasons and, when the peri-seasonal
baseline was used, vaccine impact against RSV-attributable excess mortal-
ity was not observed. The estimated impact of the increase in coverage of
the elderly on mortality was 35-65%. There is less likely to be confounding
by antigenic drift in this study than in the study by Antunes et al. since
there were two cluster transitions in each of the low and high vaccine use
periods. A possible confounding effect of different ambient winter temper-
atures in the two vaccine periods was not assessed. There could also be
confounding by changing health status of the elderly over the study period,
for example if levels of smoking had declined. This could have resulted in
positive confounding of vaccine impact.

Using a similar design to Jansen et al., Kwong et al. estimated RRs
comparing excess AC and excess pneumonia or influenza hospitalisations,
A&E visits and GP consultations for two periods: 1997-1999 (before the
introduction of a universal influenza immunisation program (UIIP) in On-
tario, Canada) and 2000-2003. UIIP offered free vaccination to all residents
of Ontario regardless of age or risk group membership. Kwong et al. es-
timated influenza - attributable outcomes by regressing them on influenza
indicators (see section 2.4.4). The purpose of the report was to demon-
strate whether UIIP had led to greater impact in Ontario compared with
impact of elderly/risk groups-only vaccination provided in the other Cana-
dian provinces. The other provinces acted as a control for what the impact
would have been in Ontario had UIIP not been in place. By looking only
at the RRs for the other provinces (not Ontario), an estimate of the impact
of the change in vaccine coverage of elderly > 65 yrs of age from 1997-1999
(around 50%) to 2000-2003 (around 70%) can be gleaned. Controlled for
age, sex, H3N2-dominance, RSV circulation and vaccine mismatch, all RRs
exclude the null. The estimated impact of the increase in coverage of the
elderly on mortality, hospitalisations and A&E visits is 50-70%, higher for
GP consultations. These findings may be confounded by different ambient
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winter temperatures or different health status of elderly in the two periods.

A different approach to estimating vaccine impact was that taken by Car-
rat and Valleron. [79] They calculated estimates of influenza - attributable
mortality (from respiratory or cardiovascular causes, diabetes mellitus, chronic
renal failure, cancer and other death rates) in the > 75 age group prevented
through vaccination of those > 75. The number of deaths prevented through
vaccination (d,) was estimated for a range of plausible estimates of vaccine
effectiveness (VE) from the literature, given the estimates of influenza - at-
tributable mortality (d,) and observed vaccine coverage in each influenza
season (p). Influenza - attributable mortality was estimated by regressing
the mortality rate registered to, for example, cardiovascular causes on the
registered influenza mortality rate, with ARIMA errors (see section 2.4).
Their formula for mortality prevented through vaccination was:

4 = d,VEp
“7 1-VEp

The formula was derived as follows (adapted from the appendix of [79]):

If
AR, is the attack rate in the unvaccinated elderly
AR, is the attack rate in the vaccinated elderly
n, is the number of unvaccinated elderly
n, is the number of vaccinated elderly

given
AR,
VE=1-—=
1 AR,

then

o, = (ARunu + ARvny) _ ARy(ny + (1 VE)n,)
(nu + no) - (ny +ny)

Replacing ny,/n, = p/1 — p and simplifying gives
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do = ARy(1 — VEp)

Assuming that AR, does not depend on vaccine coverage, AR, is the es-

timate of the death rate in the absence of vaccination. (Note that AR, is
unobserved.)

Vaccine impact (dg) is then

“AR. —d oG 4 _ _dVEp
da = ARy d"“(1~VEp) d"”(1—VEp)

The difference between the (unobserved) AR, and the observed influenza-
attributable mortality d, is attributed to vaccination. Assuming that the
attack rate in the unvaccinated does not depend on vaccine coverage means
that this formula is estimating vaccine impact due to direct effects of vac-
cination only. The authors did not report mortality prevented in each sea-
son. They estimated that between approximately 7 and 700 influenza -
attributable deaths may have been prevented in the influenza seasons stud-
ied, depending on the true VE and coverage achieved in that season. This
method could be refined in future by using influenza season-specific esti-
mates of VE against mortality, if available. This would produce estimates
of mortality prevented in each of a number of influenza seasons controlled
for variability in VE due to vaccine mismatch or lower impact influenza
seasons. Carrat and Valleron’s application of the method did not allow for
confounding by other factors, such as ambient temperature or RSV epi-
demics, which, if they overlapped with the period of influenza circulation,
might result in higher estimates of influenza - attributable mortality and
consequently estimates of impact that are lower than in reality.

Estimated vaccine impact against similar outcomes may vary between
settings because of setting-specific factors affecting estimates of the relative
impact of influenza seasons (e.g. diagnostic practices, access to care, ambi-
ent winter temperatures). On balance, the studies reviewed in this section
suggest that there may be an impact of increasing vaccination of the elderly
on morbidity and mortality in the elderly. The reports by Simonsen et al.
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and Rizzo et al. suggest vaccine impact may be difficult to detect using
linear regression because of low power. [7,67] Results presented by Jansen
et al. and Kwong et al. would suggest that for an increase in coverage of
the elderly of approximately 20-30%, a decline in influenza - attributable
mortality of 35-70% could be expected. {64, 95] Despite careful control for
confounding, it is unlikely that these estimated declines in mortality are
entirely attributable to vaccination. Viboud and Miller showed similar de-
clines in mortality in the Northern US despite stagnant vaccine coverage in
the US over this period. [133] Carrat and Valleron's model could provide a
method of estimating vaccine impact each season based on season-specific
estimates of vaccine effectiveness, excess mortality (or morbidity) and vac-
cine distribution, assuming only direct effects of vaccinating the elderly. [79]

2.10. Rationale for overall aims and objectives

In this final section, the rationale for the work described in the thesis is
given. As outlined in the preceding literature review, the average effect of
CT seasons on influenza - attributable morbidity and mortality in England
& Wales (or, indeed, globally) has not been quantified. The impact of the
increase in yearly vaccine coverage of the > 65 age group in England &
Wales from 24% in 1989/90 to 71% in 2004/05 on morbidity or mortality
in the elderly is also unknown.

The effect of CT seasons and the impact of vaccination can both be es-
timated by expressing influenza - attributable mortality as dependent on
CT seasons or vaccine coverage in a regression model. A limitation of the
regression models most frequently used to model influenza - attributable
morbidity and mortality, and determinants of these, is the need to exter-
nally designate expected morbidity or mortality if influenza virus had not
been circulating (where morbidity or mortality in excess of this expected
morbidity or mortality is attributable to influenza). The various ways that
this is routinely done leave the possibility of counting unrelated deaths or
consultations as influenza - attributable (lowering the specificity of influenza
- attributable mortality for influenza) or of designating truly influenza - at-
tributable deaths or consultations as baseline and thus unrelated to influenza
(potentially biasing downwards estimates of the effect of determinants of in-

fluenza - attributable morbidity or mortality by obscuring the full extent of
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the variability in influenza - attributable morbidity and mortality between
influenza seasons). Apportioning deaths or consultations to influenza and
to other aetiologies using multiple linear regression relies heavily on labo-
ratory data that are of limited value for informing the relative impact of
influenza seasons over long time periods because of increased amounts of
testing over time. In the work described in the thesis, latent variable time
series models were fitted in which the designation of baseline from influenza
- attributable morbidity and mortality was made by the model. Laboratory
data for influenza A were used to inform the timing of influenza seasons
by fitting latent variable time series models jointly to morbidity/mortality
and laboratory data (morbidity/mortality and laboratory data were simul-
taneously modeled as outcome variables and were regressed on indicators
for seasonality, trend and data artifacts - see chapter 3). Laboratory data
did not inform the relative impact of influenza seasons, only their timing.

The latent variable models described in the thesis defined influenza - at-
tributable morbidity or mortality using a simple random effect mean shift
(the difference between baseline and influenza - attributable morbidity or
mortality in models with an identity link or the rate ratio comparing base-
line to influenza - attributable morbidity or mortality rates in models with a
log-link (see section 3.5.2)). Attempts were then made to estimate the aver-
age effect of CT seasons on influenza - attributable morbidity and mortality
by expressing the influenza season-specific random effect mean shift as de-
pendent on a binary variable designating seasons as being CT or intracluster
(non-CT) seasons. The variability in the size of cluster transitions was al-
lowed for in a supplementary analysis where the random effect mean shift
was expressed as dependent on a quantitative variable for the size of cluster
transitions (0 for intracluster seasons). In separate analyses, attempts were
made to estimate the impact of each unit increase in the vaccine coverage of
the > 65 age group by expressing the random effect mean shift as dependent
on a quantitative variable for vaccine coverage each season.
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3. Methods

3.1. Aim of this chapter

In this chapter, general methods used in the thesis are introduced. Detail
of specific models is provided in results chapters.

3.1.1. Objectives of this chapter

1. To describe data sets analyzed, data management undertaken and
relevant epidemiology of influenza

. To describe frequentist generalised linear models used to estimate the
shape of long-term trend in P&I and ILI

3. To describe Bayesian Markov chain Monte Carlo methods to fit two-

state hidden Markov models to P&I, ILI and laboratory reports for
influenza A

3.2. Data sets

Influenza incidence must be estimated indirectly because laboratory con-
firmation is seldom done. In the next five subsections the data analyzed
in the thesis are discussed. These data are Royal College of General Prac-
titioner sentinel general practitioner consultations for influenza-like-illness
(section 3.2.1), all registered deaths coded to underlying pneumonia or in-
fluenza from the Office for National Statistics (section 3.2.2), laboratory
reports for influenza A and B from the Health Protection Agency Centre
for Infections (section 3.2.3), vaccine coverage of the 65+ age group in each
influenza season from 1989/90 to 2004/05 from the literature (3.2.4) and
cluster transitions in the evolution of influenza A/H3N2 virus from the lit-
erature (3.2.5). Finally, lags between timing of ‘aberrant’ periods in P&I,
ILI and laboratory data for a given age group are discussed in section 3.2.6.
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3.2.1. Royal College of General Practitioners
influenza-like-illness consultations

The RCGP has collected the weekly number of GP consultations for new
episodes of ILI by age group (0-4, 5-14, 15-44, 45-64, 65+) and by sex
through their WRS since 1967. The WRS represented morbidity statistics
for a registered population of 200,000 people in England & Wales in 1967
and over 600,000 people in 2005. {122, 134] Reports of ILI are not based
on a case definition but rather on a GP diagnosis made using suggested
diagnostic guidelines provided by the RCGP. New episodes are defined as
those occurring 21 days after a previous episode, but not all GPs adhere
to this rule. [135] Reporting physicians are encouraged to use diagnostic
Read codes (as opposed to symptom codes which are what patients present
with or what they say they feel/have); this is thought to encourage the
reporting GP to make a diagnosis. The RCGP provided weekly counts of

ILI consultations by age group from 1967-2005, and the weekly registered
population, for use in the work described in the thesis.

Validation

ILI data have been validated for influenzal illness incidence in several ways. {6,
136,137] Comparing ILI data with virological data shows that increased clin-
ical incidence does not occur in the absence of increased laboratory reports
for influenza. (6] Patterns in ILI incidence have been shown to agree with

patterns in respiratory hospitalisation and all-cause and respiratory mortal-
ity. {136,137)

Representativeness

The population registered with sentinel physicians is representative of the
population of England & Wales in terms of age, sex and social depriva-
tion. [138-141] RCGP state the practices were representative of the National
population by age and sex from 1966 to 1983. [138] The report Morbidity
Statistics from General Practice: fourth national study 1991-92 (MSGP4),
where most participating practices were also contributing to the WRS, sug-
gested MSGP4 participating practices, and hence most WRS practices, were
representative of population of England & Wales in terms of age, sex, mari-

tal status, housing tenure and the proportion who smoked. [142,143] In the
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MSGP4 report, the General Household Survey was used to indicate the de-
mographic profile for England & Wales. Particular ethnic groups, the lowest
socioeconomic status (SES) band, the South of England and metropolitan
areas were under represented in MSGP4 participating practices. Recent ex-

pansion of the WRS improved in particular representation of the lower SES
band and the South of England in the WRS. [141]

Limitations

There is no case definition for ILI in the WRS and diagnostic guidelines
have only been given to the GPs since 1991. [144] Specificity of the diagno-
sis of ILI varies during the year because laboratory surveillance suggesting
influenza virus is circulating in the community is publicised to participat-
ing GPs. This leads to a particular clinical presentation being more likely
to be diagnosed as ILI when influenza virus is known to be circulating in
the community than during other times of the year. Recall that laboratory
surveillance underestimates summer circulation of influenza virus. There
are no firm rules on the length of an episode. Reporting delays are common
around holiday periods. [53]

ILI consultation data have low sensitivity for influenza. A full picture
of the impact of influenza on primary care includes consultations for acute

bronchitis, otitis media and asthma. [3] ILI have been modeled for the thesis
because of their relative specificity for influenza.

Data management

Between 1994 and 1998, the RCGP received both electronic and paper-based
weekly returns from participating practices. From 1999, all weekly returns
were electronic (see section 3.2.1). Discussions with RCGP staff confirmed

that all data (reported electronically or on paper) had been provided for
this analysis.

Artifacts

Several changes in the way the WRS operated over the study period were
noted and controlled for in the analysis using dummy variables (table 3.1).
In the period 1988-90, several practices changed from paper to computer-
based recording and there was subsequent evidence of consistently higher
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level of ILI reported from computerised practices. [145] From the 1993-94
influenza season, ‘epidemic influenza’ (a more severe illness) and ‘influenza-
like illness’ (a less severe illness) were amalgamated for presentation of rates
of ILI. [146] Though the data analyzed here are ‘epidemic influenza’ plus
‘influenza-like-illness’ combined for the whole time series, a dummy vari-
able for this change was included in case the change affected the data. In
the 1999-2000 influenza season, reporting by practices to the RCGP be-
came fully-automated with a consequent decline in the number of reporting
practices that has since rebounded. [144]

Table 3.1.: Known artifacts in P&I and ILI.
Dataset | Year | Change

ILI 1988 | transition from paper-based to electronic reporting be-
gan

1993 | ‘epidemic influenza’ and ‘influenza-like-illness’ now

combined
1999 | full automation of reporting from practices to RCGP
P&l 1979 | change of ICD version (8 to 9)
1984 | change of how rule 3 for underlying cause of death ap-
plied

1993 | change of software for coding underlying cause of death

2001 | change of ICD (9 to 10) and new interpretation of rule
3

3.2.2. Office for National Statistics mortality data

The Office for National Statistics (ONS) has electronically archived under-
lying and contributing causes of death abstracted from death certificates
since 1970. [147] ONS provided daily numbers of deaths registered to P&I
from 1970 to 2004 by age group (<1, 1-4, 5-84 in 5-year age groups, 85+).
P&l was defined using the following International Classification of Disease
(ICD) codes: ICD8: 470-474, 480-483, 485-486, ICD9: 480-487 and ICD10:
J10-J18. Influenza is rarely mentioned on death certificates as an underlying
or contributing cause of death. (47] An average of 0.3% of deaths were regis-
tered to underlying influenza between 1993-2003 (0.6% in 1999/00 influenza
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season). [148] For 80% of death certificates where influenza is mentioned,
it is chosen as underlying cause but it is very rarely diagnosed. It is likely
that many of those who die as a result of influenza infection die from pneu-
monia. [45] P&I was analyzed as a proxy for deaths from influenza because
P&l has greater specificity than all-cause or respiratory deaths.

Validation

P&l is a valid proxy for deaths from influenza. P&I is positively associated
with circulation of influenza viruses. [41,149] P&I has been shown to reliably

and specifically indicate timing and relative size of influenza seasons in the
US. [149-151}

Representativeness

The data provided by ONS are all deaths registered to underlying P&I in
England & Wales.

Limitations

Death registrations, not occurrences, have been analyzed; there are rarely
more than 2-3 days between death and registration except around public
holidays. [47] In the thesis, splines used to model long-term trend smooth
out blips from public holidays. As for ILI, P&I has variable specificity for
influenza since physicians are more likely to diagnose influenza if laboratory
reports for influenza suggest that influenza virus is circulating in the com-
munity at the time of the death. P&I has low sensitivity for influenza and
the full picture of deaths from influenza includes deaths from other respira-
tory causes (e.g. bronchitis) as well as cardiovascular diseases. [69,152] P&I
was modeled because it has higher specificity for influenza than all-cause,

respiratory or respiratory plus circulatory deaths and therefore is best suited
to estimating the relative impact of influenza seasons.

Data management

Daily counts of P&I were collapsed into age groups to match RCGP data
(0-4, 5-14, 15-44, 45-64, > 65). Daily age group-specific counts of P&I were
collapsed into weekly age group-specific counts in Stata version 9. [153]
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Dates contributing to each week were reconciled with the ILI time series:
weeks ran Thursday to Wednesday from January 1967 to August 1969,
Wednesday to Tuesday from August 1969 to August 1991 and Monday to
Sunday from then on. August 13th 1969 was counted twice and there was
one 5-day week (August 28 - September 1 1991).

Artifacts

Several changes to the coding of underlying cause of death were adjusted for
using dummy variables (table 3.1). In 1984, ONS introduced broader inter-
pretation of rule 3 for coding underlying cause of death (where a condition
in part I or IT of the death certificate could take precedence over the cause
of death selected using other rules if the cause was a direct consequence
of the condition in part I or II). {147] This led to an abrupt fall in deaths
registered to underlying pneumonia. In 1993, ONS adopted an automated
system for coding cause of death which narrowed the interpretation of rule
3 and approximately reversed the change adopted in 1984. [154] With the
change from ICD 9 to 10 in 2000, respiratory deaths fell by approximately
22% while deaths coded to pneumonia fell by 38%. {148

3.2.3. Laboratory surveillance

The HPA Cfl provided individual records from LabBase2 of all laboratory-
confirmed influenza A infections, based on virus isolation and PCR, reported
voluntarily by National Health Service (NHS) and HPA laboratories in Eng-
land & Wales between 1975 to 2005. {10] Records included individuals’ age,
sex, the site of influenza virus isolation and the earliest specimen date.

Representativeness

Laboratory reporting is voluntary so it is difficult to assess the consistency of
geographic representativeness of laboratory reports. Until 1993 the majority
of influenza laboratory tests were for hospitalised patients. In 1993 two
sentinel swabbing studies were introduced in general practice, {33,34] one
of which deposits positive results in LabBase2. (33]
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Limitations

Diagnostic techniques are not standardised so sensitivity and specificity may
vary between laboratories reporting positive influenza specimens to HPA
Cfl. [155] The earliest specimen date is the date of report to the HPA CfI
from 1975-1988, when testing was done in batches approximately weekly,
and the date of specimen collection after 1988. The date of infection is rarely
known. [156] The date of specimen collection was missing in approximately
3% of reports in 1992; [10] for these reports the earliest specimen date is
the date of report. Approximately 10% of laboratory reports have missing
age or sex. Before the introduction of the LabBase2 electronic database (in
1989) approximately 20% of reports had missing specimen type.

Data management

From individual laboratory reports, age group-specific (0-4, 5-14, 15-44, 45-
64, > 65 years) weekly counts were created. Weeks were reconciled to match
dates in the ILI time series. Approximately 10% of laboratory reports were
excluded from the analysis because of missing age or sex or because site of
isolation was gastrointestinal, cerebrospinal or genitourinary. Weekly time

series were plotted overall and by age group to check for unknown artifacts.
Artifacts

HPA Cfl adopted the electronic database LabBase2 in 1989 for storage
of laboratory reports of influenza. [10] In the 1993/94 season two sen-
tinel GP swabbing studies began where GPs were asked to swab a num-
ber of ILI patients each week during winter. [33,34] The Virus Refer-
ence Unit(VRU)/RCGP collaborative study data are not included in Lab-

Base2 [34] but HPA sentinel surveillance data typically are included. (33]

These artifacts were controlled for in all analyses by using dummy variables.

3.2.4. Vaccine coverage in the over 65s

Vaccine coverage of those > 65 years of age in England & Wales dur-
ing the influenza seasons 1989/90 to 2004/05 was derived from published
sources. [119,120] Coverage between 1989/90 and 2003/04 was estimated
using the General Practice Research Database (GPRD). [120] The GPRD
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holds patient electronic records for 350 practices in the UK and links pre-
scribing information to outcome and exposure events (e.g. vaccination).
Joseph et al. estimated vaccine coverage, by age group, sex and risk status
categories, for each influenza year (1 July to 30 June). {118,120} Risk sta-
tus was defined using clinical codes - Oxford Medical Information Systems
(OXMIS) and Read codes - for Department of Health defined risk groups
for influenza complications. Patients with no recorded risk were defined
as low risk. All people > 75 were defined as high risk from 1998/99 on-
wards and all people > 65 were defined as high risk from 2000/01 onwards
to reflect government vaccination policy. Coverage from 2004/05 was as-

certained from Department of Health surveillance of vaccine provision in
general practice. [119]

Validation

GPRD has good validity for prescriptions which approximates validity for
exposure events like vaccination. [157] The estimate of coverage for 2004/05

from Department of Health surveillance of vaccine uptake in general prac-
tices has not been validated.

Representativeness

GPRD is representative of the UK population in terms of age and sex. {113]

Representativeness of Department of Health surveillance of vaccine uptake
in general practices is unknown; the aim of the scheme is to ascertain all
influenza vaccinations administered in general practice.

Limitations

Both sources of vaccine coverage information are likely to underestimate
coverage because of vaccines administered outside of general practice.

Data management

Estimates of coverage of those > 65 pre-2000/01 (when policy changed to
include all people aged 65-69 years in the risk group recommended vacci-
nation) were calculated by summing numbers vaccinated in 65-74 and > 75
age groups and dividing by the number of people aged 65-74 and > 75. [120]
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3.2.5. Influenza A/H3N2 virus cluster transitions

Seasons with CTs, and the antigenic distance (AgD) between clusters, were
taken from Smith et al. and are shown in table 3.2. [13]
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Table 3.2.: infiuensa seasons in England & Wales, 1968/60-2004/05: domlinant variant, H3N2
CTs, size of CTs in terms of antigenic units, and vaccine mismatch. Bolding means

H3N2 dominant and vaccine variants are from differcnt clusters,

Season Dominant variant|[ref] CT [13} CT siza (Ag units) [13] H3IN32 vacclne cluster(ref]
1068/69 | H3N2 {158)

1969/70 | H3N2 [158)

1970/71 | B {158]

1971/72 | H3N2 (158}

1972/73 | H3N2 [158] HK68-EN72 3.4

1973/74 | B/H3N2 [158]

1974/75 | H3N2 [158]

1975/76 | H3N2/B {158] EN72-VI75 44

1976/77 | H3N2 [159]

1977/78 | H3aN2/H1IN1 {158} VIT5-TXT7 3.4

1978/79 | B [158]

1979/80 | H3N2 [158) TX77-BAT79 3.3

1980/81 | H1N1/H3N2 [158]

1981/82 | B/H3N2 (160)

1982/83 | H3N2 {160)

1983/84 | H1N1/B [160]

1984/85 | H3N2/B [160]

1985/86 | B [161]}

1986/87 | H1N1 [161]!

1987/88 | H3N2/HIN1 [6] BA79-S187 4.9

1988/89 | H1N1/H3N2 (6]

1989/90 | H3N2 [6) SI87-BE89 4.6 SI87 (162)
1990/91 | B [6] BES9 (163}
1991/92 | H3N2 (6] BES9 [164]
1992/93 | B/H1N1 {6] BE8S-BES2 7.8 BESD (165}
1993/94 { H3N2 (6] BE92 {166]
1994/95 | B (6] BE92 [167]
1995/96 | H3N2 [6] BE92-WU95 4.6 BE®92 [168]
1996/97 | H3N2 [8) wU95 [169]
1997/98 | H3N2/HIN1 [170] WU95.8Y07 4.7 wUuU8s (170)
1998/99 | H3N2/B [171] SY97 (171)
1999/00 | H3N2 [172) SY97 [172]
2000/01 { B/H1N1 [173] SY87 (173)
2001/02 | H3N2/HIN2 [174] SY97 [174)
2002/03 | B/H3N2 [175) SY97-FU02 3.5 SY®7 [175)
2003/04 | H3N2 [176) SY97 (176]
2004/05 | H3N2 [177) FU02 {177]

'based on Netherlands
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Validation

The accuracy of the antigenic map was determined by selecting antigen-
antiserum pairs whose HI values were not included in the creation of the
map, predicting the HI value of those strains from distances in the map, and
then testing the HI value for this pair in the laboratory. The correlation

between HI distance inferred from the map and laboratory-tested distance
was 0.81. [13]

Representativeness

Ninety-four of 273 isolates used to create the antigenic map were from the
Netherlands; the remainder from elsewhere. The same type/subtype was
dominant in both the Netherlands and in England & Wales in each season
between 1987/88 and 1996/97. [6] Also, molecular epidemiology studies of
the global spread of influenza A/H3N2 virus suggest that global antigenic
drift patterns may dwarf local patterns, providing some reassurance that
the seasons in which CTs were first isolated in the data with a Dutch bias
reflect the seasons the CT's were first isolated in England & Wales. {101,178]

Limitations

The lack of global representativeness of the HI data.

Data management

CTs were coded as being dominant from the season of first isolation, or from
the first influenza A/H3N2 virus - dominated season after first isolation if
the CT was first isolated in a season dominated by influenza A/HIN1 or B
viruses. This was done to allow that a CT first isolated during a season not
dominated by influenza A/H3N2 would be unlikely to affect incidence until
it was the dominant variant in circulation. The dominant variant from each
- season was taken from the literature (table 3.2). Influenza A/H3N2 virus

was considered dominant if it alone dominated, or if it was co-dominant
alongside influenza A/H1N1 or B virus.
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3.2.6. Lags between timing of ‘aberrant’ periods in P&I, ILI
and laboratory reports

If an individual were captured by all three outcome data sets (P&I, ILI
and laboratory data), they would be expected to be ascertained first in ILI,
concurrently or secondly by laboratory reports (historically most laboratory
testing for influenza occurred in hospitals while after 1993 the laboratory
data are a mixture of hospital and GP results) and thirdly upon death
registration which occurs typically within 2-3 days of death. [47] There is,
however, incomplete overlap between people in the 3 data sets analyzed be-
cause of different severities of illness (a mild illness that necessitated seeking
care might only be ascertained by ILI) and different underlying conditions
(an asthmatic might bypass the GP surgery and be ascertained first when
admitted to hospital with exacerbation of their asthma and subsequently
tested for influenza while in hospital). Typically, those who die from in-
fluenza are elderly. There are also lags inherent in the data themselves:
the lag between death and death registration and between date of infec-
tion, date of specimen collection and date of report in laboratory data are
examples. Changes to policy (e.g. the Path of Least Resistance report in
1998 released to help curb antibiotic prescribing for respiratory illness in
GP surgeries [179]) and to surveillance systems (e.g. introduction in 1993
of two sentinel swabbing schemes in GP practices to test a proportion of
people with ILI for influenza [33,34]) means that the mixture of people, in
terms of severity of disease and underlying illness, captured by the three

data sets has changed over time. This issue is explored in more detail in
chapter 6.

3.3. Epidemiology of influenza

The epidemiology of influenza dictates methods of analyzing influenza in-
cidence data. First, influenza virus is infectious and cases infect others in
a chain of transmission. This leads to non-independence of counts from
one week to the next (called autocorrelation); space-time clustering of cases
leads to overdispersion of incidence data relative to the Poisson distribu-
tion. Overdispersion means that the variance of the data is greater than
their mean. The Poisson distribution is defined by a single parameter which
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is both mean and variance. Second, recall from section 2.2 that influenza in-
cidence in temperate climates is strongly seasonal. The consequent correla-
tion between observations approximately one year apart must be taken into
account in an analysis. Finally, recall also from section 2.2 that ‘normal’
seasonal influenza morbidity and mortality is punctuated with ‘aberrant’
morbidity and mortality most years, and infrequently by epidemics. This
pattern of incidence contributes to influenza morbidity and mortality data
being overdispersed relative to the Poisson distribution. Influenza can be
modeled using transmission dynamic or statistical models. There is a long
history of statistical modeling of influenza (summarised in section 2.4). Def-
inition of morbidity and mortality that would have occurred had influenza
virus not been circulating is a key feature of the most commonly used mod-
els. [60] The latent variable time series models accounting for seasonality

that have been fitted for the thesis address each of these aspects of the
epidemiology of influenza.

3.4. Generalised linear modeling of baseline trend
in P&I and ILI

In order to calibrate fitting of long-term trend in the latent variable time
series models (section 3.5.2), generalised linear models (GLM) with a log-
link were fitted to P&I and ILI by age group, accounting for seasonality,
long-term trend and artifacts. The log-link allowed inclusion of a popula-
tion offset in the linear predictor to account for the changing size of the
population at risk over time. [180] Different long term trends by age group

were tested for. Various methods of fitting long-term trend were evaluated.

3.4.1. Generalised linear models

Counts of disease are often modeled using the Poisson distribution. [180]
The Poisson mean equals its variance. Because influenza incidence data
are overdispersed relative to the Poisson distribution (section 3.3), negative
binomial instead of Poisson GLMs were fitted. Negative binomial GLMs

allow that the variance of a data set exceeds its mean. [181] The negative
binomial model with a log-link has the following form
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Y, ~ Poisson(u.8)
log(py) = o+ Bt
6 ~ Gamma(a, b)

Y, is the observed count in week t, which is a Poisson random variable with
mean pu:8; 0 is a Gamma-distributed dispersion parameter. The parameters
of the Gamma distribution that 6 follows (a and b) control overdispersion
relative to the Poisson distribution. Values of § greater than 1 indicate the
data are overdispersed relative to the Poisson model. The log(u) is modeled
as dependent on «, the intercept, and g the linear trend.

3.4.2. Excluding epidemic weeks

Between 1 and 25% of the highest counts, in each age group of each data set,
were excluded from the fitting of the negative binomial models in an attempt

to isolate ‘normal’, or baseline, from ‘aberrant’, or influenza-attributable,
incidence. [61]

3.4.3. Changing population size

To be able to assess trends in morbidity or mortality over time, the chang-
ing size of the population at risk should be adjusted for. Crude trends in
age-specific rates are meaningful for assessing age-specific trends. Rates
over time for all ages combined should be adjusted for the changing age-
distribution of the population over time before presence of a trend is tested.
Direct age-standardisation assumes that trends are similar in each age group,
an assumption that should be checked (chapter 4). [182] If the rate of anti-
genic drift in influenza A /H3N2 virus is slowing, for example, incidence of in-
fection over time in the younger ages would remain approximately constant
(since people are born susceptible, ignoring maternal antibodies), while rates
of infection in middle aged people would decline (because of cross immunity
and declining mutability).

The changing size of the population at risk was modeled as a population
offset, log(N;), as below:

log(pt) = log(Nt) + o + St

For ILI data, the population offset was the number of registered patients
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on the middle day of each week (i.e. Thursday for a Monday-Sunday week)
and for P&I data it was the relevant census population of England & Wales

or an inter census estimate. (183] Rearranging the formula gives

log(ut/Ne) = o + Bt

showing the log-link model including a population offset is equivalent to
modeling the log rate.

3.4.4. Seasonality

Seasonality in the influenza incidence data was captured with one Fourier
term (i.e. one sine and one cosine term) as below

t 27t
log(pt) = log(N:) + a + Bt + By sin —— + B2 cos bl

2w

52.2 52.2
The period is 52.2 weeks, not 52 weeks, to account for not every year having
exactly 52 weeks. This method of capturing yearly seasonality in influenza
morbidity and mortality data was introduced by Serfling {70] and has been
used by many authors (e.g. [60]). This method of modeling yearly season-
ality in data is more parsimonious than, for example, including a term for
month (2 parameters vs 12 parameters) [52,184] or modeling trend and sea-

sonality simultaneously with a spline with several degrees of freedom (df)
for each year. {49,185]

3.4.5. Long-term trend

Long-term trend was modeled using linear (3t) or quadratic (3t2) terms or

cubic splines with up to 20 df. The model capturing long-term trend with
cubic splines is shown below:

52.2 52.2
The number of df is . Cubic splines flexibly model trend with a number

of cubic curves smoothly connected at knot points. [186] Splines captured
variability in the baseline in addition to that explained by seasonality and
by artifacts (see next section). Best-fitting models were chosen by com-

paring Akaike’s Information Criteria (AIC) to balance goodness of fit and
parsimony (section 3.4.8).

2
log(ut) = log(Ny) + a + C(t, ) + By sin 2t + B3 cos m

84



3.4.6. Artifacts

Step changes in the long-term trend due to known artifacts (table 3.1) were
fitted via categorical dummy variables (‘artifacts’) as below:

2Tt 27t .
log(uy) = log(Ny) + a + C(t, ¢) + B1 sin -5215 + B2 cos 5% + (Bsartifacts

3.4.7. Inference

The likelihood function is the probability of the data conditional on the

parameters (which are fixed). {180] For the negative binomial model, the
log likelihood (LL) is

LL = ; (Yclog(uc) — log(Y!) — %‘05(1 +mb) + log <F(1l;f9\)(517914/r€;)z)“>)

where Y is the observed count, y; is the predicted count and 6 is the
dispersion parameter.

GLMs were fitted by maximum likelihood, which means that the value of
each parameter was estimated such that the value of the likelihood function
was maximised. The data are analyzed in isolation of prior knowledge (from
the literature, for example) as to the value of model parameters. Estimates
of the uncertainty about values of parameters of interest - confidence in-
tervals (CI) - are expressed as the interval that includes the true value in

e.g. 95 or 99% of (hypothetical) repeated samples, if the experiment were
repeated many times with all parameters constant.

3.4.8. Model selection

Candidate models with linear or quadratic terms to model trend or with
cubic splines with different df to model trend, with and without age group -

trend interaction terms, were compared using AIC. [187] AIC are goodness
of fit statistics calculated as

AIC = —2LL + 2npar

where npar is the number of parameters in the model. Lower AIC indicate

85



better model fit. AIC balance precision, i.e. the highest log likelihood value,
with complexity of the model in terms of the number of parameters. AIC

allow comparison of non-nested models as long as the models are fitted to
the same data.

3.4.9. Rationale for hidden Markov models

GLM modeling of influenza-related morbidity and mortality is hindered by
problems of autocorrelated residuals and overdispersion not adequately ad-
dressed with the negative binomial model (see section 4.6). These issues
indicate that a type of latent variable model called a hidden Markov model
(HMM) may be useful. It can be shown that HMMs are autocorrelated and
overdispersed. [188] Serial correlation arises from the underlying Markov
chain and overdispersion arises because observations are modeled as arising
from one of several marginal distributions, each associated with a different
hidden state. [188,189] In the context of influenza, it is natural to think of
non-laboratory confirmed time series related to influenza as having arisen
from two marginal distributions: one ‘normal’ and one ‘aberrant’. The re-
mainder of this chapter describes methods for fitting two-state HMMs using
Markov chain Monte Carlo (MCMC) in OpenBUGS.

3.5. Bayesian Markov chain Monte Carlo fitting
of hidden Markov models

HMMs were fitted in order to allow modeling of ‘normal’ and ‘aberrant’
incidence simultaneously where the differentiation between ‘normal’ and
‘aberrant’ incidence is automated. Univariate two-state HMMs were fitted
to weekly P&I counts by age group and weekly ILI counts by age group
(chapter 5). Bivariate (P&I + laboratory reports for influenza A in one
set and ILI + laboratory reports for influenza A in another) and trivariate
(P&I, ILI and laboratory reports in the same model) models were fitted in
chapter 6.

Figure 3.1 shows a schematic of a HMM. t denotes a time interval (in
this case one week) and arrows denote conditional dependencies. The ob-

served counts are independent conditional on the unobserved states (details
in section 3.5.2).
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Yt-1 Yt Yt+1

—St1 —> St — S+ —

Figure 3.1.: Schematic of a HMM.

3.5.1. Bayesian Inference

In chapters 5 to 7, Bayesian inference is used in order to incorporate uncer-
tainty in the differentiation of ‘aberrant’ from ‘normal’ incidence in HMM
model fits and to allow prior information as to the effect of cluster tran-
sitions and the impact of vaccination on mean shifts to be incorporated
(chapter 7).

Bayesian inference is based on the posterior distribution. Let Y denote

the observed data and 3 denote model parameters. Bayes theorem states
that

_ _PB)P(Y|B)
PN = TraP(YI8)e8
ie. that the probability of the parameters, given the data (P(B|Y)) is
equal to the product of the likelihood P(Y|3) and the probability of the
parameters P(3), divided by a normalisation constant ([ P(8)P(Y|3)d3).
The probability of a parameter is also called the prior for that parameter.
Priors are the value of key parameters, with uncertainty, before looking at
the observed data that are being analyzed. Full Bayesian analyses thus put
the data being analyzed in the context of what is already known. In making
inference using the posterior distribution, estimates of uncertainty around
parameters of interest - credible intervals (CrI) - are 95 or 99% cut-points

of the posterior distribution that contain 95 or 99% of the sampled values
for that parameter.

3.5.2. Hidden Markov models

In HMMs, observations are independent conditional on an unobserved state
variable. HMMs have been applied to modeling ILI data from France, [81]
P&I data from the US, [82) hospital infection data in England & Wales, [89]
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and have been used extensively in other disciplines (e.g. (189]). Below is a
univariate two-state Poisson HMM with a log-link. The difference between

the ‘normal’ and ‘aberrant’ incidence is modeled as random effect mean shift
for each influenza season (o [flu season).

Yy ~ Poisson(us)

log(ut)| Sy =1 = log(Ni) + ag + Bt

log(ue)] St =2 = log(Nt) + ap + i [flu season] + St
St| St-1 ~ Bernoulli(d)

Y, is the observed number of deaths in week t,

p is the mean of the Poisson distribution from which Yy is
drawn,

N; is the population offset,

o is the intercept,

a1 [flu season] is the mean shift estimated when the model is
in state 2,

Bt is the linear trend,

and Sy is the state variable sampled from a Bernoulli distribu-
tion with probability 8, a two-by-two matrix of probabilities

of moving between states at time t given the state of the
model at time t-1.

Each week, Y ILI or P&I are observed. Y is assumed to be a realisation
of a random process, Y = (Y;t = 1,n), where each Y is associated with
an unobserved random variable S;. S; determines the conditional distribu-
tion of Y;. If S; = j, then the conditional distribution of Y; has density
f(7) = (Y¢;m(4)) where f(j) belongs to a given parameterised family and
m(j) are parameters to be estimated. In this case S, follows a two-state
homogeneous Markov chain of order 1, meaning the probability of moving
between states does not change with time (is homogeneous) and the process
recalls only the state at time t-1 (is a Markov chain of order 1, also called
a random walk). The probability of moving from state i to state j at time
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t is expressed as 6(ij) = P(S; = j|S¢t-1 = ©),i,§ = 1,2. Each state has a
Poisson observation model associated with it. Covariates are incorporated
by expressing parameters (e.g. 3) as dependent on the covariates.

As introduced in section 3.4.9, serial correlation is generated in the HMM
from the underlying Markov chain. [188] Overdispersion of the Poisson
HMM relative to the Poisson GLM comes about because observations are
modeled as arising from one of several marginal distributions, each associ-
ated with a different hidden state. {188,189] Counts predicted if the ‘aber-
rant’ state is drawn are higher than if the ‘normal’ state is drawn by a ran-
dom effect mean shift estimated for each influenza season (o [flu seasonl):
the mean shift is multiplicative, on the original scale, in the Poisson HMM
with a log-link and additive in the Poisson HMM with an identity-link.

3.5.3. Markov chain Monte Carlo

In a HMM, inference about values of parameters of interest cannot readily be
made by directly maximising the likelihood of the data and the parameters
for every possible sequence of states because of computational intractabil-
ity. [81,89] Algorithms like the Expectation - Maximisation (EM) algorithm,
or similar recursive methods, can be used. These algorithms work by first es-
timating the conditional expectation of indicator variables for the two states
(the expectation step) and applying the values of the 2 indicator variables to
the complete data LL to estimate the vector of transition probabilities and
all parameter values (the maximisation step). [81,89)] In order to addition-
ally incorporate prior information as to the value of different parameters of
interest, HMMs were instead fitted in a Bayesian framework where sampling
from the joint posterior distribution of the likelihood and priors was done
using MCMC.

MCMUC is a way of fitting models via stochastic simulation, usually in the
Bayesian framework. It is an alternative to the EM algorithm for repeated
sampling from a complex surface like a HMM. A simple example of stochas-
tic simulation would be to sample many times from a complex space with
many local maxima in order to find the global maximum. The estimate of
the global maximum is then the maximum value of the sample generated by
a long stochastic simulation. Samples from the complex space in question

need not be independent as long as they visit the space proportional to its
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support. Markov chains are one way of generating this long stochastic sim-
ulation. A sequence of random variables is called a Markov chain if, given
the current state of the chain, the next state does not depend further on the
history of the chain. Under certain conditions, as the number of samples in-
creases, the chain will eventually converge to a stationary distribution from
any initial value. {190] For a parameter, then, the mean of the stationary
distribution is the expectation of the mean value of the parameter.

There are different sampling algorithms under the umbrella of MCMC, all
designed to provide a chain that converges to a desired target distribution
which is typically the posterior distribution of the parameters of interest.
The Metropolis-Hastings algorithm works as follows. If the current position
of the sampler is X, and the conditional density around this point m(X),
we sample a proposal Y from a distribution g(Y|X) which is symmetrical
around X. We accept the proposal Y with probability

L a¥)e(XIY)
(X,Y) = min (1' %(Tm(_YTX”))

See [191]. If Y is rejected, the chain does not move. Gibbs sampling is
a special case of Metropolis-Hastings sampling that takes as the proposal

distribution the full conditional of a parameter or set of parameters. [192]
Gibbs sampling therefore always accepts the proposal.

3.6. Informative priors

In a Bayesian analysis, all parameters have priors. Non-informative priors
(e.g. a Gaussian distribution with a very large variance) are used in an
attempt to approximate no prior information as to the value of the param-
eter. In simple situations the use of non-informative priors approximates a
frequentist analysis. Non-informative priors can be problematic since they
assign approximately equal prior probability both to realistic values of the
parameter and to unrealistic values; if there is little information in the data
the sampler may have difficulty visiting the resulting diffuse posterior dis-
tribution. Prior information independent of the data being analyzed can
be used to restrict values of particular parameters to a plausible range (so
called weakly informative priors) or to place higher prior probability on
some values and very low prior probability on others (strongly informative
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priors). Informative priors can help two chains for a parameter mix better
if they were having difficulty mixing under the diffuse reference prior. Lit-
tle information in the data will mean posteriors are dominated by priors;

sensitivity of posteriors to choice of prior should be checked.

3.6.1. Prior setting

There is a vast literature on the topic of eliciting expert opinion for setting
priors in a Bayesian analysis (e.g. [193-196]). Focus group discussions may
be held and individuals asked to define median and 95% cut-points on the
value of a parameter of interest. This process requires participants to be
trained in how to express their beliefs in the form of a probability distribu-
tion. Alternative methods, where participants are asked to indicate points
within a range where they are ambivalent as to whether their belief lies
to the left or right of the line can be useful for establishing a distribution
around a person’s belief. These processes are labour-intensive and must be
budgeted for at the planning stages of a study.

As an alternative to eliciting expert opinion, priors can be set based on
a literature search. In the thesis, weakly informative priors for the effect
of cluster transitions/antigenic distance between clusters, and for vaccine
impact, on mean shifts were set using estimates of the variability in excess
mortality and morbidity across influenza seasons. {7, 8, 54, 56, 58, 61,65, 73,
92,107,197-199] A strongly informative prior on the effect of cluster tran-
sitions/antigenic distance on the mean shift was informed by a modeling

study. {14] In all cases, data used to set priors were independent of data
analyzed in the thesis.

3.7. Diagnosing convergence of Markov chain
Monte Carlo

When the generated samples come from (approximately) the stationary
distribution, the simulation is said to have converged. There are diag-
nostic plots that provide evidence against non-convergence to the target
distribution (but they do not provide conclusive evidence for convergence).
Henceforth evidence against non-convergence will be labeled apparent con-

vergence. To show evidence of apparent convergence, two or more Markov
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chains for a parameter can be run from different initial values and diagnos-
tics used to determine if chains share a stationary distribution. Convergence
of two chains of the LL can be monitored as a global indicator of conver-

gence because the LL is contributed to by the parameters, the data and the
priors. The LL of the Poisson HMM is

LL = (—p + Yelog(p) — log(Y!))
t=1

where p is the predicted count, which is conditional on the state variable
for that week, and Yy is the observed count. One diagnostic plot for conver-
gence is the Brooks-Gelman-Rubin (BGR) plot. [200] BGR plots monitor
convergence of the ratio of variability of pooled chains to that within chains
to 1. If chains have converged to the same stationary distribution, ap-
proximately all variability will be encompassed within the chains, with no
additional variability between chains. BGR plots also show the width of the
central 80% interval of the pooled runs and the average width of the 80%
intervals within the individual runs, both of which should stabilise. For
plotting purposes the pooled and within interval widths were normalised
to have an overall maximum of 1 and statistics were calculated in bins of
length 50. Figure 3.2 shows example BGR plots of apparent convergence
and lack thereof. The ratio of pooled to within chains variability (top (red)
line) is expected to be greater than 1 for early iterations of the sampler if
the initial values for the two chains are suitably different from one another
(i.e. the pooled variability far exceeds within chain variability).

For HMMs, key parameters are transition probabilities (8) for the prob-
ability of moving between states (‘aberrant’ and ‘normal’) given the state
of the previous week. Apparent convergence of transition probabilities typ-

ically predicts apparent convergence of the simulation more generally (e.g.
figures 3.3 and 3.4).

3.8. Model adequacy

In this section several ways to demonstrate HMM model adequacy or su-
periority of one HMM over another are described. These are: posterior

predictive density plots (section 3.8.1), the estimated time series of states

(‘normal’ and ‘aberrant’) that gave rise to the observed data (section 3.8.2)
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Figure 3.2.: Examples of BGRs showing apparent convergence (left
plot) and lack of convergence (right plot). The red line
is the ratio of pooled to within chains variability. If this line
comes to 1, this is evidence for apparent convergence of the
two chains to the target distribution. The two lines along the
bottom of the plots are the width of the central 80% interval
of the pooled runs (green) and the average width of the 80%
intervals within individual runs (blue).
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Figure 3.3.: An example of a history plot of transition probability

parameters showing apparent convergence to the same
area of parameter space.
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Figure 3.4.: An example of a history plot of transition probability

parameters showing lack of convergence.
and autocorrelation plots of residuals (section 3.8.3).

3.8.1. Posterior predictive density plots

Posterior predictive density (PPD) plots were created by drawing a pre-
dicted count for each week from the sampling distribution for the observed
data (whose mean is the linear predictor) and plotting these predicted
counts, with their Crls, on the same graph as the observed data. [201,‘202}
The Crl around predicted counts can be thought of as showing the range
of observed data that would be consistent with the fitted model. [203] Ade-
quate model fit (most observed data falling within predicted Crls) is easily
visualised (e.g. figure 3.5). Overdispersion, greater variability in observed
data than predicted by the model, and underdispersion, less variability in
observed data than predicted by the model, are also obvious from looking
at PPD plots (figure 3.5). A limitation of this method of assessing model
fit is that using the same data for fitting and validation leads to bias in
favour of thinking the model fits well. An alternative method for model
checking is to fit the model to a portion of the time series and predict the
part not used in model fitting. [204] A limitation of this alternative ap-
proach for model checking is that it generally penalises complex models and

models that make predictions too close to the sample data but unstable
out-of-sample predictions. [205,206)
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3.8.2. State sequences

Models were compared with respect to their state sequences: the estimated
time series of states (‘normal” and ‘aberrant’) that gave rise to the observed
P&I or ILI data (figures 3.6 to 3.8). State sequences were assessed in terms
of apparent convergence (each week being assigned to the ‘aberrant’ state
with probability approximately 0 or 1) and volatility (the degree to which
the state sequence flips back and forth between states during a season de-
spite observed data suggesting one ‘aberrant’ period during the season).
Adequate state sequences clearly distinguish between the ‘normal’ and the

‘aberrant’ states and have low volatility (figure 3.6).

Observed and fitted
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1975 1980 1985 1990 1995 2000 2005
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a
)
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Figure 3.6.: An example of a state sequence that appears to con-
verge and is clearly estimated. Top panel: observed and
fitted data; middle panel: state sequence (1.0: ‘normal’ inci-
dence, 2.0: ‘aberrant’ incidence); bottom panel: residuals (ob-
served minus fitted count for each week).

3.8.3. Residual autocorrelation

An adequate model fit captures most of the variability in the observed data
1 A

and leaves little serial correlation in residuals. Autocorrelation plots of
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residuals separated by between 0 and 120 weeks showed the degree of posi-
tive correlation between residuals at short lags, which when present suggests
underfitting of large peaks in the data, and at seasonal lags (approximately
52 and 104 weeks), which when present suggests inadequate fitting of sea-
sonality (e.g. figure 3.9). Substantial correlation at other lags suggests poor
model fit generally. Correlation between residuals is 1 at lag 0 because this
correlation is between the residual and itself. Horizontal dotted lines in-
dicate the threshold below which autocorrelation is ‘ignorable’ ( £2/4/nm,
where n is the sample size: 1566 weeks). [204]
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Figure 3.9.: Example plots of the autocorrelation function of resid-
uals. (a) An adequate model fit with some positive
correlation at a lag of 1 week and at seasonal lags (ap-
proximately 52 and 104 weeks), but otherwise minimal
correlation. (b) Poor model fit. Y-axes: correlation be-
tween residuals at different lags, x-axes: lag between residuals,

in weeks. Horizontal dotted lines are set at ‘ignorable’ residual
autocorrelation (+2/v/1566).

3.9. OpenBUGS

MCMC was run in OpenBUGS (Version 3.0.2, September 2007), a package
for Bayesian inference using Gibbs sampling. [207]
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3.10. R

Data were first read into R (R version 2.6.2 (2008-02-08)) and OpenBUGS
was called from within R to do the MCMC sampling using the BRugs pack-
age. Diagnostics and plots were produced in R.
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4. Descriptive Results

4.1. Aims of this chapter

The aims of the work described in this chapter were, first, to determine the
best way to model long-term trend in P&I and ILI incidence between 1970
and 2005 in England & Wales and, second, to explore crude associations
between the peak incidence each influenza season and the exposures of in-
terest: CT seasons, the antigenic distance between clusters and the vaccine
coverage of those > 65 each influenza season.

4.1.1. Objectives of this chapter

1. To fit negative binomial GLMs to P&I and ILI from 1970 to 2005 to

determine whether long-term trend is adequately modeled by a linear
term or if a quadratic term or cubic splines are needed

To determine if there is an interaction between age group and long-
term trend in P&I or ILI

To explore crude associations between peak incidence each season and
CT seasons, the antigenic distance between clusters and the vaccine
coverage of those > 65 each influenza season

4.1.2. Main findings

The long-term trends in rates of ILI and P&I over the past 36 years are not
linear. Of the models tested, trend is best modeled by cubic splines with 5
df for P&I and 14 df for ILL. This is thus how long-term trend was fitted in
HMMs in chapters 5 to 7. Long-term trends differ between P&I and ILI and
across age groups for each outcome, necessitating age group-specific models
in subsequent chapters. Up to 25% of the highest counts were excluded

to isolate the long-term trend in ‘normal’ incidence from the influence of
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‘aberrant’ observations. The shape of the long-term trend in both data
sets is relatively insensitive to the exclusion of data. Overdispersion and
autocorrelation are evident in residuals from models excluding even 256% of
the highest counts.

In general, the distribution of peak rates for CT seasons appears greater
than for intracluster seasons. Ranking influenza seasons in terms of the
peak P&I or ILI rate, by age, shows that fewer than half of the top ten
seasons are CT seasons. T-test results suggest weak evidence for, crudely,
peak incidence observed in CT seasons being greater than that observed
in the average season by approximately 6 deaths per 1,000,000 population
(p > 0.1) and 95 consultations per 100,000 population (p > 0.1). These
differences are not of public health relevance. There is no clear association
between peak rates of P&I and ILI each influenza season and the antigenic
distance between clusters. There is a weak negative association between

peak P&I and ILI during an influenza season and vaccine coverage of the
> 65 age group in that season.

4.2. Introduction

In section 2.3.1 it was shown that influenza - attributable morbidity and
mortality is variable season to season and that no consistent (increasing
or decreasing) trend has been observed. [1,53] In section 2.7, coincidence
between large antigenic drift events and epidemic morbidity and mortality
was noted. {58, 63,93,94,107-110] A model of the genetic and antigenic
evolution of influenza A /H3N2 coupled with a transmission dynamic model
suggests that CT seasons may result in an average of 1.6 times higher peak
influenza incidence than intracluster seasons. [14] The lack of an estimate
of the average effect of CT seasons (as identified by Smith et al. [13]) was
highlighted.

In section 2.8.3 it was noted that vaccine coverage of those > 65 in Eng-
land & Wales each influenza season increased from 24% in 1989/90 to 71%
in 2004/05. {119,120] The population level impact of this high coverage has
not been assessed in either the > 65 age group or across age groups. In
section 2.9, studies of the impact of rising vaccine coverage of the elderly
on morbidity and mortality in the elderly were reviewed. After adjusting
for confounding, population impact of high vaccine coverage in the elderly
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is hard to detect by linear regression of excess mortality estimates. [7,67)
Results presented by Jansen et al. and Kwong et al. would suggest that for
an increase in coverage of the elderly of approximately 20-30%, a decline
in influenza - attributable mortality of 35-70% could be expected. {64, 95]
Despite careful control for confounding, it is unlikely that these estimated

declines in mortality are entirely attributable to vaccination. [133]

4.3. Data sets

An overview of the data analyzed is shown in figure 4.1. Figures 4.2 and 4.3
show weekly rates of ILI per 100,000 and P&I per 1,000,000 by age group
(0-4, 5-14, 15-44, 45-64 and > 65) from 1970 to 2005. Vaccine coverage in
those > 65 from 1989/90 to 2004/05 was derived from published sources
(see section 3.2.4 in chapter 3). {119,120] Information on whether influenza
seasons were dominated by influenza A/H3N2 virus was taken from the
literature (table 3.2). Information on which seasons were CT seasons was
taken from Smith et al. (table 3.2). [13] From these two pieces of information
a list of the first HIN2-dominated seasons after a CT was derived . The

antigenic distance between clusters was also taken from the Smith paper. [13]

4.4. GLM methods

Negative binomial models with a log-link were fitted separately to weekly
counts of P&I and ILI by age group from 1970 to 2005. [181]

Yy ~  Poisson(u.8)
log(ue) = a+pt
0 ~ Gamma(a, b)

Yy is the observed P&I or ILI count in week t, which is a Poisson random
variable with mean p6. The parameters of the Gamma distribution that 6
follows control overdispersion; values of 8 greater than 1 indicate the data
are overdispersed relative to the Poisson model. The log(yut) was modeled as
dependent on N;, the population at risk in week t, (180] a1, the intercept,
C(t,¢), a cubic spline with ¢ df to model trend, 81 sin &% + 3, cos 2%,
representing seasonality, [70] Bsartifacts, the effects of known artifacts and
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All-age weekly rates of ILI (top), P&I (middle) and
laboratory reports for influenza A (bottom, blue) and
B (bottom, red) in England & Wales from 1970 to 2005.
Stars indicate CT seasons. Triangles are vaccine coverage in the
> 65 (right y-axis). Arrows indicate artifacts.
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interaction terms between age group and artifacts (age groupxartifacts) and
between age group and trend (age group * C(t, )). The population at risk
each week was the registered population of the sentinel general practices for
ILI and the census population of England & Wales for P&I.

To fit the long-term trend in the data, extreme counts were removed. This
is because different biological, environmental and behavioral factors drive
large epidemics than drive long-term changes in incidence. Robustness of
the fitted long-term trend to removal of 1, 2.5, 5, 10, 15, 20 and 256% of the
highest counts in the two data sets was assessed.

Once high rates were excluded, long-term trend was modeled as linear or
quadratic or flexibly with cubic splines with 4 to 20 df; more df were not
tested to avoid overfitting the data. Interaction terms between age group
and trend terms were included to test for a different long-term trend across
age groups (0-4, 5-14, 15-44, 45-64, > 65 years). Age group-specific models
were also fitted to plot age group-specific trend lines.

AIC were plotted against the model to show thresholds at which addi-
tional model complexity did not lead to improved goodness of fit. AIC were

also compared to test improvement of model fit with age-trend interaction
included.

4.5. Descriptive methods

The peak weekly rate of P&I and ILI for each age group in each influenza
season was plotted against vaccination coverage of the > 65, the first H3N2-
dominated season after a CT and the antigenic distance between CT seasons
to visualise crude associations. One and two-sample t-tests and a permuta-
tion test (assuming each season is independent i.e. no secular trend in peak
seasonal incidence) were performed to determine whether crude associa-
tions between CT seasons and peak incidence might be due to chance. [208]
One-sample t-tests addressed whether the difference between mean peak
incidence observed in CT seasons and mean peak incidence observed in all
seasons combined is greater than 0. Two-sample t-tests were used to de-
termine whether the difference between mean peak incidence in CT seasons
and the mean peak incidence in non-CT seasons was different from 0. The
permutation test was done to determine how many times the same differ-

ence between mean peak incidence in CT seasons and mean peak incidence
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in all seasons, or greater, was observed if CTs were randomly allocated to
10 of the 36 seasons in the data set. One million replicate samples of 10 sea-
sons were drawn and p-values calculated summarising the number of times

the mean peak incidence in the sampled seasons was greater than the mean
peak incidence across all seasons.

4.6. Long-term trend in P&I and ILI

The long-term trend in P&I and ILI refers to the secular trend in P&I and
ILI not attributable to influenza. Recall that the trend in these data that is
not attributable to influenza was isolated by excluding high counts, which
were assumed to be influenza-attributable, from model fits. Model fit to
the long-term trend in P&I and ILI improved with each additional df for
the cubic splines up to 14 df for the ILI data and 5 df for the P&I data
(figures 4.4 and 4.5). Allowing an interaction between the long-term trend
and age group improved model fit for both ILI and P&I data.

Long-term trend in weekly ILI rates declined between the mid 1980s and
mid 1990s, leveled off and declined again from approximately 2000 in all
age groups (figure 4.6). In a supplementary analysis, similar declines since
2000 were observed for other upper and lower respiratory tract infections,
as well as non-respiratory consultation categories (figures A.1 to A.8).

Dramatic declines in the long-term trend in weekly P&I rates in children
were observed (figure 4.7). For the 15-44, 45-64 and > 65 age groups, the
95% Cls around the fitted long-term trend curves are consistent with some
decline in the long-term trend in P&I since approximately 1998 for those in
the 15-44 and > 65 age groups, and after 2000 for the 45-64 age group. Near
the end of the time series, Cls for the 15-44 and 45-64 year age groups are
wide and encompass the possibility of a rise or a fall in the long-term trend.
The CI around the long-term trend for the oldest age group is consistent
only with a decline in the long-term trend in P&I between 1998 and 2005.

107



AiC

AIC

Q

1

1

75600 75800 76000 76200 76400
L
(-]

1™
1 S
i

$
g -
B
§'
]
1S
Cacaad
“”:::%
! 15% &

AlC

AIC

52600 52800 53000 53200 53400
I

73000
'

72600
]

14 no int20

AIC

AIC

48200 48400 48600 48800

8 o
3
°° a
1 %
%0
§- CH
2“”:::

Figure 4.4.: Model selection: negative binomial GLMs fitted to ILL

AIC on the y-axis against model complexity (linear or quadratic
trend or cubic splines with up to 20 df) on the x-axis. Each plot
is a different percentage of high counts excluded from model fit
(1-25%). AIC do not fall appreciably beyond a model where the
long-term trend is modeled with cubic splines with 14 df. The
last point on the far right of the plot is the AIC for the model

excluding age group-trend interaction, where trend is modeled
as cubic splines with 14 df.
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negative binomial GLMs fitted to

P&I. AIC do not fall appreciably beyond a model where the
long-term trend is modeled with cubic splines with 5 df. The
last point on the far right of the plot is the AIC for the model

excluding age group-trend interaction, where trend is modeled
as cubic splines with 5 df.
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Residuals from the models fitted to both data sets with 25% of the high-
est counts excluded are approximately Normally distributed around zero
with some autocorrelation (figure 4.8); large residuals are evident from the
fit to P&I data. Overdispersion was reduced with the exclusion of high
counts, but large residuals, and values of 8 greater than 0 for most models

(table 4.1),' with the exclusion of up to 25% of counts suggest it was not
eliminated.
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Table 4.1.: Values of dispersion parameter, 8, from final GLM mod-
els. Blanks in the table mean that 8 was not estimable from this

model.
Outcome | spline df | age group | § se(0)
P&l 5 0-4
P&I 5 5-14
P&I 5 15-44
P&l 5 45-64 80.500 12.100
P&1 5 > 65 83.070 3.560
ILI 14 0-4 11.056 0.788
ILI 14 5-14 8.618 0.559
ILI 14 15-44 15.265 0.772
ILI 14 45-64 16.270 1.250
ILI 14 > 65 18.360 2.780

The shape of the long-term trend in P&I and ILI rates is relatively insen-
sitive to the percentage of high rates excluded (figures B.1 and B.2).

Effects of artifacts differ across age groups (figure 4.9). There is little in-
formation in the data as to the impact of most of the artifacts (as evidenced
by the overlapping CIs for most of them) except for P&I in the age groups

15-44, 45-64 and > 65; the impact of these changes has been discussed by
ONS. (154]
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4.6.1. Effect of CT seasons on epidemics

In general, the distribution of peak rates for CT seasons appears greater
than for intracluster seasons (figure 4.10). This is consistent across age
groups for ILI but is only seen for P&I from the 15-44 and 45-64 age groups.

Ranking influenza seasons from largest to smallest in terms of the peak
P&I rate, by age, showed that CT seasons do not feature prominently in
the top ten seasons (table 4.2). Five of the top ten seasons in terms of P&I
rate for the > 65 age group were CT seasons. Fewer than half of the top

ten influenza seasons in terms of peak ILI rate, by age, were CT seasons
(table 4.3).
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Crudely, peak incidence observed in CT seasons is greater than that ob-
served in the average season by approximately 6 deaths per 1,000,000 pop-
ulation and 95 consultations per 100,000 population; t-tests suggest there
is weak evidence that these are true differences (table 4.4). Peak incidence
observed in CT seasons is greater than that observed in intracluster (non-
CT) seasons by approximately 8 deaths per 1,000,000 population and 133
consultations per 100,000 population; these observations are less likely to be
due to chance (table 4.4). In approximately 6% of permutations for the com-
parison of P&I peak incidence in CT seasons to the average season, at least
as great a difference between CT seasons and the average season is observed
as for the real CT seasons (P = 0.062). The peak weekly P&I rate in the
data analyzed in the thesis, excluding the 1969/70 pandemic season, is 80.4
per 1,000,000 (week 52, 1999) and the peak weekly rate of ILI consultations
is around 2,322 per 100,000 (week 49, 1989). Differences in the weekly peak
of on average 8 P&I deaths per 1,000,000 population and 133 ILI consulta-
tions per 100,000 population between CT seasons and intracluster seasons
are therefore not differences of public health importance.

Table 4.4.: T-test and permutation test results.
Test t df P
One-sample t-tests
P&l
CT-seasons mean peak rate minus over- | 0.27 9
all mean peak rate > 0
ILI
CT-seasons mean peak rate minus over- | 0.35 9
all mean peak rate > 0
Two-sample t-tests
P&l
CT-seasons mean peak rate minus non- | 1.65 33
CT season mean peak rate
ILI
CT-seasons mean peak rate minus non- | 2.20 33
CT season mean peak rate
Permutation tests
P&l

CT-season mean peak rate vs. overall
mean peak rate

Continued on Next Page...

>0.168

>0.168

0.12

0.04

0.062

119



Table 4.4 - Continued

Test t df P
ILI

CT-season mean peak rate vs. overall 0.024
mean peak rate

There is no clear association between peak rates of P&I and ILI each
influenza season and the antigenic distance between clusters (figure 4.11).
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4.6.2. Impact of vaccination on epidemics

There is a weak negative association between peak P&I and ILI during an
influenza season and vaccine coverage of the > 65 age group in that season

(figure 4.12). The association is found across all age groups and appears
stronger for ILI than for P&I.
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4.7. Summary of results

Long-term trend in rates of ILI and P&I between 1970 and 2005 are not
linear. Of the models tested, trend is best modeled by cubic splines with
5 df for P&I and 14 df for ILI. Long-term trends differ between P&I and
ILI. There is evidence for age group-trend interaction for both P&I and
ILI. The data are consistent with a decline in weekly P&I rates in those >
65 years old from approximately 1998 coincident with markedly increased
yearly vaccination coverage in this age group. ILI consultation rates declined
in all age groups between the mid 1980s and mid 1990s, were stagnant to
2000, and declined thereafter. The shape of the long-term trend in both
data sets is relatively insensitive to the exclusion of data.

Crudely, the distribution of peak rates for CT seasons appears greater
than for intracluster seasons. When peak P&I and ILI rates per season
are ranked, only for P&I in the > 65 age group do CT seasons occur in at
least five of the top ten seasons. T-tests and permutation tests suggest that
the small increases in peak P&I and ILI in CT seasons compared with the
average season or intracluster seasons are supported by weak evidence and
are of little public health importance. There is no clear association between

peak rates of P&I and ILI each influenza season and the antigenic distance

between clusters. There is a weak negative association between vaccine

coverage of the > 65 age group and peak seasonal P&I and ILI rates across
age groups.

Peak rates of morbidity and mortality are sensitive to the baseline rate
of morbidity and mortality (i.e. the rate of morbidity and mortality that
would be expected in the absence of influenza). All things being equal
(e.g. virulence of circulating influenza viruses, degree of vaccine match to
circulating viruses, vaccine coverage, winter temperatures), if the baseline
mortality rate declined, so would the peak mortality rate. Estimates of
influenza - attributable morbidity or mortality, excess mortality for example,
are less sensitive to baseline morbidity and mortality rates. In chapter 7,
estimated mean shifts for P&I and ILI by age group for each season (the
estimated influenza - attributable rate ratio of the ‘aberrant’ to ‘normal’
morbidity and mortality rates) from the HMMs are plotted against the
same three metrics - CT vs. intracluster seasons, the antigenic distance
between clusters and vaccine coverage in the > 65. This gives a more
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accurate estimate of crude association between the exposures of interest
and influenza - attributable morbidity and mortality. Also in chapter 7,

confounding of these associations of interest by other time-varying factors
is discussed.

4.8. Strengths of the GLM methods used

Many factors may lead to an apparent change in the long-term trend in
ILI or P&I. An example of such a factor is a secular change in use of GP
services. Different factors than those explaining secular trends are respon-
sible for variability of peak P&I or ILI incidence across influenza seasons.
Examples of factors that may explain variability of peak P&I or ILI across
influenza seasons are increased or decreased influenza vaccination and CTs.
High rates at the start of the time series, for example in the years shortly
following the first wave of the Hong Kong pandemic of 1968 when the mod-
ern influenza A/H3N2 viruses began to circulate in the human population,
influence the slope of the estimated long-term trend (especially when fitting
a linear trend). By excluding these high rates from model fitting and fitting
a flexible curve to the remaining data using cubic splines a close approxi-
mation to the true shape of the long-term trend in P&I and ILI in England
& Wales between 1970 and 2005 has been estimated.

4.9. Limitations of the GLM methods used

Excluding 25% of counts is insufficient to eliminate overdispersion and iso-
late the long-term trend in ‘normal’ incidence from ‘aberrant’ counts in the
death data especially. Hidden Markov models may alleviate these problems
by drawing ‘normal’ rates, that contribute to the long-term trend, from one
distribution and ‘aberrant’ rates from a second distribution. {188]

4.10. Long-term trend

The decline in ILI since around 2000 in all age groups, a decline in other res-
piratory and non-respiratory consultation rates since 2000 and the absence

of a similar decline in P&I rates across age groups indicate a behavioural
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change has resulted in a fall in the use of GP services. Different factors prob-
ably contributed to the decline in use of GP services in different age groups.
The reduction in provision of out-of-hours care by GPs in favour of deputies
(whose notes are not incorporated into patient GP files), the introduction
of the ‘NHS Direct’ telephone health line [210] and the Path of least resis-
tance Department of Health report in September 1998 which discouraged
antimicrobial prescribing in general practice [179] may have contributed to
a decline in consulting by the young and working aged adults. [122] Policy
in the early 1990s to redirect funding from residential care homes to sup-
porting older people in their own homes probably resulted in elderly people
also being less likely to consult their GP and more likely to be admitted
to hospital if they developed a respiratory infection. [122,211] Progressively
lower odds of death within 30 days of being admitted to hospital for pneu-
monia from 2000/01 to 2004/05 compared with 1997/98 reported by Trotter
et al. supports this hypothesis of a lower threshold for admission of elderly
people. [212] Trends in other respiratory disease consultations were simi-
lar which reinforces the suggestion that an environmental or a behavioural
change may explain declines in ILI.

Reasons for the decline in mortality in the youngest age groups have been
described elsewhere. (213] If all influenza-attributable P&I and ILI was not
removed by deletion of 25% of the highest counts before model fitting, it is
possible that the hint of a decline in P&I in the > 65 age group after 1998

may be due to the increase in vaccine coverage in this age group. [120]
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5. Univariate HMM results

5.1. Aims of this chapter

The aim of the work described in this chapter was to determine the appro-
priate scale of analysis and distributional assumptions for HMMs fitted to

P&I and ILI and to evaluate what HMMs fitted to either P&I or ILI alone
tell us about influenza.

5.1.1. Objectives of this chapter

1. To determine appropriate scale of analysis (log-link or identity link)
and distributional assumptions (Poisson or negative binomial) for HMMs
by first fitting each model to P&I for > 65 age group and ILI for 15-44
age group and exploring convergence and model fit

. To explore convergence and fit of good models from objective 1 to P&I
for each age group and to ILI for each age group

. Based on model fit and convergence from objective 2, to evaluate what
these univariate models tell us about influenza

5.1.2. Main findings

Of the models fitted, Poisson log-link and identity link models were de-
veloped and other models discarded due to problems of convergence and
model fit. Of the Poisson log-link and identity link models fitted to P&I
and ILI for different age groups, state sequences (the model-estimated state
- assignment of each week in the time series) appeared to converge for Pois-
son identity link models fitted to P&I but not ILI. Poisson log-link model
state sequences appeared to converge for fits to ILI but not P&I. P&I for
all age groups apart from the > 65 age group were underdispersed relative
to both log-link and identity link models. ILI data were not underdispersed
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or overdispersed relative to either log-link or identity link models. Evidence
of apparent convergence of state sequences predicted apparent convergence
of the model more generally (as captured by the LL). Both log-link and
identity link models were taken forward for joint modeling with laboratory
data (chapter 6).

At the end of the chapter, the concept of lack of convergence reflect-
ing a lack of information in the data about state transitions is introduced.
This idea is revisited in chapter 6 where multivariate models are built in
an attempt to share information about state sequences, and therefore mean
shifts, across outcome variables. It is revisited in chapter 7 when priors for
the impact of CT seasons and vaccination of varying degrees of ‘informa-
tiveness’ are set. The amount of information in the data about the effects
of interest determines the ease with which the sampler visits the different

posteriors. Values of coefficients (e.g. for the magnitude of mean shifts) are
not be interpreted in this chapter.

5.2. Introduction

In chapter 4, evidence for a nonlinear long-term trend in incidence of P&I
and ILI was presented. Since the long-term trends in rates of ILI and P&I
over the past 36 years are not linear, cubic splines were used to fit long-term
trend in HMM model fits. Long-term trends differ between the two outcome
variables, and across age groups for each outcome, necessitating age group-
specific HMMs. Overdispersion and autocorrelation are not accounted for
by fitting negative binomial GLMs to P&I and ILI excluding even 25% of
the highest counts.

Peak ILI and P&I incidence is variable whether or not the season is dom-
inated by a new cluster. Ranking influenza seasons in terms of the peak
P&I or ILI rate, by age, showed that fewer than half of the top ten seasons
were CT seasons. T-tests suggest weak evidence that peak incidence ob-
served in CT seasons is greater than peak incidence observed in the average
season by approximately 6 deaths per 1,000,000 population and 95 con-
sultations per 100,000 population; a permutation test suggested that the
observed difference between peak P&I incidence in CT seasons compared
to the average season may be due to chance. There is no clear association

between peak rates of P&I and ILI each influenza season and the antigenic
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distance between clusters. There is a crude negative association between
increasing vaccination coverage and seasonal peak ILI and P&I incidence
observed across all age groups.

In chapter 3 the history of regression modeling of influenza was reviewed
and the need to distinguish ‘aberrant’ from ‘normal’ incidence in time se-
ries’ of non-laboratory confirmed morbidity and mortality was highlighted.
This is usually done by excluding some portion of the data (sometimes in-
formed by incidence of laboratory-confirmed influenza or by using cut-offs
whereby a certain percentage of the highest counts, or incidence in partic-
ular weeks or months, is attributed to influenza). In chapter 4 excluding
even 25% of the highest P&I and ILI counts and fitting negative binomial
log-link models to the remaining incidence was insufficient to account for
autocorrelation and overdispersion. In this chapter, fits of 2-state Poisson
HMMs to ILI and P&I incidence are described, where distinction between
two states (‘normal’ and ‘aberrant’) is integrated within the modeling pro-
cess. A Bayesian approach allows uncertainty about state assignments to be
incorporated naturally. HMMs attribute variability in the data to more than

one probability distribution and thus account for extra-Poisson variability
in the data.

5.3. Data sets

Influenza years are defined as week 26 of one calendar year (the week of
July 1st) to week 25 of the following calendar year. Models were fitted to
P&I and ILI data by age group from the 1975/76 season to the 2004/05
season. Though ILI data are available since the 1967/68 season and P&I
data since 1970/71 season, models were fitted only to data from 1975/76

since laboratory data (incorporated into multivariate models in chapter 6)
are only available since 1975/76.

5.4. Description of the models

Counts are usually modeled as Poisson distributed, so Poisson log-link and
identity-link HMMSs were fitted (table 5.1). Log-link models allow baseline
parameters - long-term trend, seasonality and artifacts - to combine multi-
plicatively while identity-link models allow baseline parameters to combine
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additively (table 5.1). There is no a priori reason to exclude multiplicative
or additive models since baseline parameters (long-term trend, seasonality
and artifacts) may plausibly combine additively or multiplicatively. There
are examples of both in the published literature (e.g. [43,62]). Negative
Binomial HMMs were also fitted where variability in the observed data in
excess of that predicted by the Poisson distribution was allowed for with a
separate dispersion parameter estimated from the data. As an alternative
method for modeling variability in the data beyond what the Poisson HMM
captures, counts were transformed using two variance-stabilising transfor-
mations - the square-root and the log - and Gaussian HMMs were then
fitted to the transformed counts where overdispersion is allowed for with

the separate variance parameters. Unlike the Poisson, Gaussian variance is
not determined by the mean.

Table 5.1.: Basic univariate HMMs.

Model Model Error struc- | Handling addi- | Key
structure ture on orig- | tional overdisper-
on original | inal scale sion
scale
Poisson log-link | multiplicative | additive nil LOGR
Negative Bino- | multiplicative | additive Dispersion parame-
mial log-link ter 6 NBLOGR
Poisson additive additive nil IDR
identity-link
Negative Bino- | additive additive Dispersion parame- | NBIDR
mial  identity- ter 0
link
Gaussian fitted | additive (on | additive (on | separate  variance | SQR
to square root- | square-root square-root parameter
transformed scale) scale)
counts
Gaussian multiplicative | multiplicative | separate  variance | LNR
fitted to log- parameter
transformed
counts

The interpretation of the mean shift, the feature of the model that distin-

guishes the two states, depends on the scale of analysis. In models with a
log-link, the mean shift is the average ratio of a count drawn from the ‘aber-
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rant’ state to a count drawn from the ‘normal’ state for a given influenza
season; in models with an identity-link, the mean shift is the average differ-
ence between the count predicted from the ‘aberrant’ and ‘normal’ states
for a given influenza season.

The different model structures - Poisson and Negative Binomial log-link
and identity-link HMMs as well as Gaussian HMMs fitted to square-root-
or log-transformed counts (table 5.1) - were fitted initially to weekly P&I
counts in those aged > 65 and ILI in those aged 15-44 to coarsely differ-
entiate between models with different scale and distributional assumptions.
These age groups were used because they contain the majority of the data in
the respective data sets. Models chosen at this coarse stage were then fitted
to P&I and ILI and each age group and convergence and fit were assessed

in more detail. The two-state Poisson HMM with log-link had the following
form:

Y ~  Poisson(u)
log(m) St =1 = log(Ni) + ao + C(t, ) + By sin 2% + B, cos &%
+ Bsartifacts
log(p)| St =2 = log(N¢) + ap + oy [flu season] + C(t, ) + By sin -52;’—; + [ cos 5%’%

+ [Baartifacts

Stl St—1 ~ Bernoulli(4)
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Where Y; is the observed P&I or ILI count in week t,
Ut is the mean of the Poisson distribution from which Yy is
drawn,
N; is the population offset,
ag is the intercept,
a;[flu season| is the random effect yearly mean shift,
C(t, ) is the cubic spline with ¢ df,

B sin -;‘2‘—‘2 + B2 cos % represents seasonality, where 52.2 is

the average number of weeks in a year,

Bsartifacts represents the instantaneous change in the base-
line because of artifacts in the data,

and S, is the state variable sampled from a Bernoulli distribu-
tion with probability 8, a two-by-two matrix of probabilities

of moving (or not) between states at time t given which state
the model was it at time t-1.

5.5. Priors

Reference priors were assigned to all parameters (table 5.2). Prior distribu-
tions are on the scale of analysis unless otherwise stated.

Table 5.2.: Prior distributions. Normal priors are expressed in terms of
mean and precision (recall precision is the inverse of the vari-

ance).
Parameter Prior distribution
ap Normal(0,0.01)
ai[flu season] Normal(firand, Trand ) 1(0,)
Hrand Normal(0,0.01)
Trand Gamma(0.001,0.001)
By, B2, Ba Normal(0,0.01)
08,=2(S,_1=1 Uniform(0,0.2)
03, =2i8, _1=2 Uniform(0.6,1)
Dispersion parameter, 61 Gamma(0.01,0.01)
Precision of Normal distribution? Gamma(0.001,0.001)

INBLOGR, NBIDR models only
2SQR, LNR models only
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In table 5.2, ds,—9s,_,=1 is the probability of a transition into the ‘aber-
rant’ state at time t given being in the ‘normal’ state at time t-1, while
ds,=2/s,_,=2 18 the probability of no transition at time t given being in
the ‘aberrant’ state at time t-1. Prior distributions are defined as Nor-
" mal(mean,precision), where the precision is the inverse of the variance, Uni-
form(range) and Gamma(shape,scale). 1(0,) denotes restriction to positive
values.

Normal and uniform reference priors were used so as to be as ‘non in-
formative’ as possible, that is to approximate no prior knowledge as to the
value of the parameter in question. A Bayesian analysis with reference pri-
ors used on all parameters is, in many simple situations, analogous to a
frequentist analysis. The analyses described in this and the following two
chapters are complex. For example, all possible sequences of states are in-
tegrated over. This means that using reference priors will not necessarily
produce the same results as a frequentist analysis. Normal reference priors
are equivalent to assigning approximately equal prior probability to all pos-
sible values of the parameter in question, with a weak central tendency at 0.
Uniform reference priors assign equal prior probability to all possible values
of the parameter within a range. Priors for transition probabilities were
constrained so that the prior probability of a transition into the ‘aberrant’
state at time t, given being in the ‘normal’ state at time t-1, was uniform
between 0 and 0.20, because large epidemics of influenza last approximately
8-10 weeks so a given week has an up to approximately 20% (10/52 = 0.19)
chance of being the first week of a large epidemic, ignoring seasonality. The
prior probability of no transition at time t, given being in the ‘aberrant’
state at time t-1, was uniform between 0.6 and 1 so that the state variable
would ‘stick’ in the ‘aberrant’ state for the duration of the period of high
incidence. [214] These priors do not allow, for example, that the probability
of a transition to the ‘aberrant’ state at time t given having been in the
‘normal’ state at time t-1 is 0.21. Model results may be sensitive to these
choices for priors on transition probability parameters. Given the deriva-
tion of the priors mentioned above, I think they are a reasonable place to
start. Allowing for a higher than 0.2 probability of moving from the ‘nor-
mal’ to the ‘aberrant’ state in any given week and/or allowing for a lower
than 0.6 probability of remaining in the ‘aberrant’ state from one week to

the next would, if anything, increase volatility of state sequences by allow-
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ing the model more freedom to move between states (see section 3.8.2). If
conclusions were to be drawn from the analysis of covariate effects using the
HMDMs, sensitivity of results to these priors would need to be checked. Pre-
cisions and the dispersion parameter from negative binomial models were
given reference Gamma distributions. [193] The prior on the mean shift was
constrained to be positive to ensure that only an increase (not a decrease)

in the predicted count would be labeled as arising from the ‘aberrant’ state.

5.6. Scale and distribution

For each parameter, two chains were run from different initial values. Models
from table 5.1 fitted to P&I data for the > 65 age group and ILI data for
the 15-44 age group were run for 10,000 iterations on each of two chains (for
a total of 20,000 iterations).

NBLOGR, NBIDR, SQR and LNR models were discarded in favour of
simpler Poisson (LOGR and IDR) models because of poor convergence, fit
or both. P&I and ILI data are underdispersed relative to the NBIDR and
NBLOGR models (e.g. figure C.1). In addition, the transition probabil-
ity parameters, which are key parameters for HMMs, do not converge for
NBLOGR or NBIDR model fits (e.g. figure C.2).

SQR and LNR models predict P&I > 65 data poorly (figures C.3 and C.4).
In addition, coefficients from SQR models are difficult to interpret because
is it not trivial to back-transform coefficients from the square-root to the
original scale. {215]

LOGR and IDR models were fitted to P&I and ILI for each age group;

fit and convergence of these models are summarised in the remainder of the
chapter.

5.7. Model convergence

Fit and convergence of LOGR and IDR models are summarised in table 5.3.
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For LOGR and IDR model fits to each age group, two chains were ini-
tialised from different initial values for each parameter. Four sets of initial
values were developed (one each for LOGR fits to P&I, LOGR fits to ILI,
IDR fits to P&I and IDR fits to ILI). Two chains for each parameter were
run for 100,000 iterations, saving 10% of sampled values for each parame-
ter. Model fit was assessed based on plots of the final 5000 saved samples.
Convergence of two chains to the same area of parameter space for key pa-
rameters was assessed using BGR plots of the LL and history plots of two
chains for the LL and for the transition probability parameters. BGR plots
monitor convergence of the ratio of pooled to within chains variability in
the LL to 1. BGR plots also show that initial values were suitably different
if the ratio of pooled to within chains variability is greater than 1 at the
start of the simulation.

History plots show sampled values from every 10th iteration for two chains
of the LL and the transition probabilities, starting after 20,000 iterations.
Recall that apparent convergence of the two chains for the LL and transition
probabilities to the same approximate value is evidence of apparent conver-
gence of the models more generally. This is because the LL is contributed
to by all parameters in the model and the transition probabilities are the
defining feature of HMMs.

In general, models where transition probability parameters appear to con-
verge show apparent convergence of most other parameters. When tran-
sition probabilities do not converge, many other parameters also do not
converge (detail below).

Transition probability parameters from IDR model fits to P&I appear to
converge for all but the 45-64 age group (e.g. figures 5.1 and 5.2). For IDR
model fits to ILI, transition probabilities only appear to converge for fits to
the 15-44 age group (e.g. figures 5.3 and 5.4). For the IDR model fit to
ILI for the > 65 age group, transition probabilities parameters appear to
converge to a similar area of parameter space (figure D.1).

Transition probabilities from LOGR fits to ILI for all age groups appear
to converge (e.g. figure 5.5). For LOGR fits to P&I, only the 15-44 fit shows
apparent convergence (e.g. figures 5.6 and 5.7). For the LOGR model fit
to P&I for the 5-14 age group, transition probability parameters appear

to begin to mix in the same area of parameter space after approximately
70,000 iterations on the two chains (figure 5.8).

136



Apparent convergence of the LL for models mirrors apparent convergence
of the transition probability parameters (e.g. figures 5.2 and 5.9) with sev-
eral exceptions: the LL does not converge for IDR model fits to P&I or ILI
for the > 65 age group or for either LOGR or IDR fits to ILI for the 15-44
age groups, (e.g. figure D.2) though transition probabilities appeared to

converge for these models (e.g. figure 5.4).
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feration
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Figure 5.1.: History plots of two chains for transition probability
parameters from IDR model fit to P&I from the > 65
age group. The top plot, ‘p.epsilon[l]’, is two chains for
0g,~2:8, ,~1, the probability of a transition into the ‘aberrant’
state at time t given being in the ‘normal’ state at time t-1.
The bottom plot, ‘p.epsilon(2]’, is two chains for 05, =2/S, ;=2

the probability of no transition at time t given being in the

‘aberrant’ state at time t-1. Both transition probabilities ap-

pear to converge.

BGR plots of the LL for the first 20,000 iterations on two chains show

that, for almost all models, chains were started from suitably disparate
initial values (figures D.3 and D.4).
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Figure 5.2.: History plots of two chains for transition probability
parameters from IDR model fit to P&I from the 45-64
age group. Two chains for ‘p.epsilon(2]’ (bottom plot) diverge
around the 3000th saved sample. This suggests the existence of
a number of local maxima for ‘p.epsilon|2]’.
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Figure 5.3.: History plots of two chains for transition probability

parameters from IDR model fit to ILI from the 5-14 age

group. ‘p.epsilon[2]” (bottom plot) does not converge while
‘p.epsilon|[1]” appears to.
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Figure 5.4.: History plots showing apparent convergence of two

chains for transition probability parameters from IDR
model fit to ILI from the 15-44 age group.
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Figure 5.5.: History plots showing apparent convergence of two

chains for transition probability parameters from
LOGR model fit to ILI from the 0-4 age group.
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Figure 5.6.: History plots showing apparent convergence of two
chains for transition probability parameters from
LOGR model fit to P&I from the 15-44 age group.

‘p.epsilon[1]'

Figure 5.7.: History plots showing lack of convergence of two chains
for the probability of no transition at time t given be-
ing in the ‘aberrant’ state at time t-1 (‘p.epsilon[2]’,

bottom plot) from LOGR model fit to P&I from the
> 65 age group.
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Figure 5.8.:
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History plots of two chains for transition probability
parameters from LOGR model fit to P&I from the 5-
14 age group. The two chains for both transition probabilities

begin to inhabit the same region of the parameter space after
approximately 70,000 iterations, but do not mix well.
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History plot showing lack of convergence of two chains
of the LL from IDR model fit to P&I from the 45-64
age group. Two chains for the LL diverged around the 3000th
saved sample. This is consistent with the divergence for two

chains for the 2nd transition probability from this model (see
figure 5.2.
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5.8. Convergence of state sequences

Relative goodness of fit of models was assessed by comparing state sequence
plots in terms of the degree to which the two chains agreed on state assign-
ment for each week across models, and in terms of the volatility of the state
sequence. The latent, or hidden, state variables are the key parameter of
HMMs and convergence of state sequences typically indicates convergence
of models more generally.

For fits to P&I, in general IDR state sequences appear to converge while
LOGR state sequences do not (e.g. figures 5.10, 5.11, 5.12 and 5.13). For
fits to ILI, state sequences are similar from both IDR and LOGR model fits
(e.g. figures 5.14, 5.15, 5.16 and 5.17).

State sequences for all LOGR fits to ILI data are volatile. Volatility of
state sequences decreases with increasing age (e.g. figures 5.14 and 5.18).
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Figure 5.10.:

Observed and fitted

State sequence
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The state-sequence does not converge for the LOGR
model fit to P&I from the 0-4 age group. Top panel:
observed (dashed) and fitted P&I data for the 0-4 age group
(red); middle panel: state sequence (1.0 is the ‘normal’ state,
2.0 the ‘aberrant’ state); bottom panel: residuals (observed
minus fitted P&I count for each week). The state sequence
shown was plotted by averaging the state sequence estimated
by each of the two chains. Lack of convergence is shown be-
cause the pooled state sequence does not clearly designate
weeks as either ‘normal’ or ‘aberrant’. This means the two
chains disagreed on the state assignment for most weeks.
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Figure 5.11.:

The IDR model (shown) is better able than the LOGR
model (previous plot) to distinguish ‘aberrant’ from
‘normal’ incidence in P&I from the 0-4 age group. The

two chains appear to agree on the state assignment for most
weeks.
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Observed and fitted
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Figure 5.12.: The state-sequence from the LOGR model fit to P&I

in those > 65 does not converge. The two chains specif-

ically disagree on state assignment for many weeks between
1975/76 and 1983/84.
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Figure 5.13.:
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The state-sequence from the IDR model fit to P&I in
those > 65 appears to converge for most weeks. Note
the large residuals because of underfitting of epidemics.
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Figure 5.14.:

Observed and fitted
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The state-sequence for the LOGR model fit to ILI
from the 0-4 age group appears to converge for most
weeks, but is volatile. Recall that volatility of the state
sequence refers to it flipping between the ‘aberrant’ and ‘nor-
mal’ states several times during influenza seasons despite the

observed data indicating a single, continuous ‘aberrant’ period.
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15.: The state-sequence for the IDR model fit to ILI in the
0-4 age group does not converge.

Figure 5.

148



Observed and fitted
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Figure 5.16.: The state-sequence for the LOGR model fit to ILI in

those 15-44 years of age appears to converge for most
weeks. There is some volatility in the state sequence.
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Figure 5.17.: The state-sequence for the IDR model fit to ILI in

those 15-44 years of age appears to converge.
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Figure 5.18.:

Observed and fitted
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The state-sequence for the LOGR model fitted to ILI
in those > 65 (shown) appears to converge and is less
volatile than the state sequences for LOGR model fits
to ILI from younger age groups. Large residuals are due
to underfitting of epidemics.
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5.9. Plots of observed and fitted counts and
residuals

Comparing plots, averaged over two chains, of observed and fitted weekly

counts and residuals between models allowed visual comparison of models
with regards to model fit:

1. relative goodness of fit was evident by comparing fitted and observed

counts across models to check for parts of the observed data that one
or another model fits badly

2. comparing time series’ of residuals across models for evidence of resid-

ual seasonality and an abundance of large residuals allowed differen-
tiation of good models from poor ones

Overall model fit is better for LOGR than for IDR models. Observed
and fitted counts and residual time series plots show good fit of all models
to the P&I data apart from underestimation of epidemics (e.g. figure 5.10
in section 5.8). Residual plots show good fit of the LOGR models to TLI
except for underfitting epidemics (e.g. figure 5.16). IDR models fit several
periods of ILI poorly for the following age groups: the first season in the
data set (1975/76 - all but the 15-44 age group); the period from 1986 to
1988 (45-64 and > 65 age groups) (e.g. figure 5.19).

5.10. Posterior predictive density plots

Comparative model fit was also visualised using PPD plots. Recall that
PPD plots show a predicted count and 95% Crl for each week drawn from
the sampling distribution for the observed data. P&I data from the 0-4,
5-14 and 15-44 age groups are underdispersed relative to both the LOGR
and IDR models (data not shown). P&I from the 45-64 age group are
underdispersed relative to the LOGR model but adequately modeled by the
IDR model (figure D.5). P&I for the > 65 are neither overdispersed nor
underdispersed relative to LOGR and IDR models (figure 5.20).

ILI for all age groups are neither overdispersed nor underdispersed relative
to LOGR (e.g. figure D.6). For IDR model fits to ILI for the 0-4, 5-14, 45-64

and > 65 age group, posterior predictive Crls are very large for the 1975/76
and 2004/05 influenza seasons (also shown in figure D.6).
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Figure 5.19.: IDR model-predicted ILI for the > 65 age group (top
plot) are very different from observed ILI for the

1975/76 influenza seasons and for the period between
1986 and 1988.
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Figure 5.20.:
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(a) LOGR

Date

(b) IDR

Posterior predictive density plots of (a) LOGR and (b)
IDR models fitted to P&I from the > 65 age group. The
predicted counts and a 95% Crl for each predicted count (lines)
are plotted on the same graph as the observed data (circles).
These data are neither overdispersed nor underdispersed rela-
tive to the LOGR and IDR models and could be adequately
modeled by either. Recall that overdispersion is present if
many observed data fall outside the posterior predictive Crls.
Underdispersion is present if very few or no observed data fall
outside predicted Crls.
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5.11. Autocorrelation in residuals

Observations in a time series of counts of a seasonal infectious disease are not
independent; counts at short lags (e.g. 1-2 weeks) are correlated because of
person-to-person transmission and counts from the similar weeks in different
years are correlated because of seasonality (since the influenza season occurs
around the same time each year). In the models described in this and the
following two chapters, the Markov chain generates autocorrelation. Models
described in each results chapter have used a Fourier term (one sine and
one cosine term) and cubic splines to account for seasonality (and long-
term trend) in the data. The degree to which different models account for
the correlation between counts at lags of 1-2 weeks and at lags of around
52 weeks was assessed by plotting correlation of residuals at lags up to
120 weeks. Recall that horizontal dotted lines indicate the threshold below
which autocorrelation is ‘ignorable’ (+2/1/1566). [204)

Autocorrelation plots from both LOGR and IDR model fits to P&I for
the > 65 age group show underfitting of epidemics (evidenced by positive
autocorrelation at short lags) (figure 5.21). They also show inadequate
modeling of seasonality since there is positive autocorrelation at lags of
approximately 52 and 104 weeks.

The IDR model badly fits the P&I data for the 45-64 age group (fig-
ure D.7). These data are adequately modeled by the LOGR model. There
is minimal autocorrelation in residuals from LOGR. or IDR model fits to
P&I data for the 0-4, 5-14 and 15-44 age groups (e.g. figure 5.22).

Residuals from IDR model fits to ILI are generally highly autocorrelated
for many consecutive weeks, suggesting poor overall model fit (e.g. fig-
ure 5.23b). Residuals from LOGR model fits to ILI are generally less highly
correlated than IDR fits. For the LOGR model fit to ILI in the > 65 age

group there is a large negative correlation at a lag of 2 weeks (figure 5.23a).
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Figure 5.21.: Autocorrelation plots of residuals from (a) LOGR and
(b) IDR model fits to P&I from the > 65 age group.
The correlation between residuals against the lag between the
residuals. Correlation between residuals is 1 at lag 0 because
this correlation is between the residual and itself. Horizontal
dotted lines are set at +2/4/1566. Both models underfit epi-
demics (shown by positive autocorrelation at lag 1 week). Both
models also inadequately model seasonality (note positive au-
tocorrelation at lags of approximately 52 and 104 weeks).
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Figure 5.22.: There is minimal autocorrelation in residuals from (a)

LOGR and (b) IDR model fits to P&I from the 15-44
age group.
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(b) IDR

Figure 5.23.: Autocorrelation plots of residuals from (a) LOGR and
(b) IDR model fits to ILI from the > 65 age group. The
LOGR model fit shows minimal autocorrelation apart from
a large negative correlation at a lag of 2 weeks. The IDR

model fit is highly autocorrelated for many consecutive weeks
showing poor overall model fit.
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5.12. Relationship between information and
convergence

Lack of convergence of transition probabilities (and thus state sequences) for
some models may reflect a lack of information in P&I and ILI about state
transitions and thus mean shifts. For example, two chains for transition

probabilities from the LOGR fit to P&I for the 0-4 age group do not easily

explore the parameter space. Instead, the two chains wander almost at

random across the parameter space and the state sequence does not converge
(figures 5.10 and D.8). While in principle if there is little information in
the data to inform the posterior for transition probabilities the posterior
should look like the prior (i.e. diffuse), in practice exploring a complex
parameter space is difficult when the data do not contain information to
guide the sampler to the appropriate part of the parameter space. This issue
is explored further in chapter 6 in the context of multivariate models and
the sharing of information about influenza across P&I, ILI and laboratory
data for influenza A. It is revisited in chapter 7 in the context of informative

priors on the effect of CT seasons and impact of vaccination on the mean
shift.

5.13. Summary of results

LOGR and IDR models are chosen and negative binomial and Gaussian
models discarded, because of problems of convergence and model fit with
negative binomial and Gaussian models. It may be that the negative bi-
nomial and Gaussian HMMs fail to distinguish overdispersion relative to
the Poisson distribution from variability generated by the hidden Markov
process (see section 8.5.2).

When modeling P&I, generally IDR models appear to converge and LOGR
models do not. When modeling ILI, LOGR models are preferred. When
the state sequence does not converge it is because the transition probability
parameters for that model do not converge and vis versa. P&I for all age
groups apart from the > 65 age group are underdispersed relative to both
LOGR and IDR models. ILI are not underdispersed or overdispersed rela-
tive to either LOGR or IDR models. Both LOGR and IDR models are taken
forward for joint modeling (chapter 6). Values of particular coefficients (e.g.
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for the mean shifts) are not interpreted until chapter 7.

5.14. Strengths of univariate HMMs

The Poisson HMMs presented adequately model variability in the P&I and
ILI data; overdispersion is no longer an issue. By allowing the model to
determine whether the data are consistent with there being two probability
distributions underlying observed counts there is no need to designate ‘aber-
rant’ from ‘normal’ weeks externally to model fitting. Uncertainty in the

distinction between ‘normal’ and ‘aberrant’ state is incorporated naturally.

5.15. Limitations

As discussed in chapter 3, there are several limitations to the data mod-
eled which may explain some modeling problems and which motivate joint
models in chapter 6.

P& and ILI have variable specificity for influenza. Estimation of the im-
pact of vaccination and of CT seasons - where any impact is expected to be
restricted to outcomes caused by or attributable to influenza - necessitates
increasing specificity of the P&I and ILI data for influenza. Low specificity
might explain difficulties in clearly estimating state sequences. This lim-
itation is addressed in chapter 6 where multivariate models are fitted to
P&I and laboratory reports for influenza A, to ILI and laboratory reports,
or to all three. Since laboratory-confirmed incidence has high specificity
for influenza, jointly estimating state sequences using P&I/ILI data and
laboratory data increases specificity of state sequences for influenza.

A limitation of univariate HMMs is that model fit to epidemics is poor for
all models. Some of this underestimation is because key explanatory factors,
influenza A/H3N2 dominance, vaccination and CT seasons as examples,
are not included in these models. Also, recall that for LOGR models the
mean shift for each influenza season is the average ratio of incidence during
‘aberrant’ periods to ‘normal’ periods for that season. The underfitting
of epidemics might explain autocorrelation of residuals at short lags. In
chapter 7, the value of these factors for explaining variability in mean shifts

between seasons is explored.

The approach to modeling seasonality, with one sine and one cosine term,
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as introduced by Serfling and adapted by many authors [70,81,92], is lim-
ited by its rigidity. In the models fitted in the thesis, cubic splines with
5-14 df used to capture long-term trend and dummy variables controlling
for artifacts in ‘normal’ incidence increase the fiexibility of the HMM to cap-
ture seasonality (and long-term trend) in the data relative to the sine and
cosine term alone. However, autocorrelation plots of residuals show there
is inadequate modeling of seasonality. Future work could include modeling
seasonality more flexibly. Alternatives to a Fourier term which offer in-
creased flexibility for modeling seasonality are using indicator variables for
month (e.g. [52]) or splines with several df each year (e.g. [42]).
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6. Joint HMM results

6.1. Aims of this chapter

The aim of the work described in this chapter was to increase specificity
of P&I and ILI for influenza by fitting multivariate HMMs, where the
state sequence is estimated jointly across age-specific counts of laboratory-
confirmed influenza A cases along with ILI and/or P&, to determine models

to which CT seasons, the antigenic distance between clusters and vaccine
coverage could be added in chapter 7.

6.1.1. Objectives of this chapter

1. To explore model fit and convergence of age group-specific bivariate
models (fitted first to laboratory and ILI data together and then to
laboratory and P&I data together) and trivariate models (modeling

laboratory, P&I and ILI together in a single model) in both the Poisson
log-link and Poisson identity-link framework

To look for evidence for lagged state transitions between outcome
variables within an age group by overlaying state sequences from uni-

variate LOGR and IDR fits to P&I, ILI and laboratory reports for
influenza A

. To explore fitting multivariate models that allow for a lag between

the effect of the state sequence on P&I/ILI relative to its effect on
laboratory reports for influenza A

6.1.2. Main findings

In general, multivariate LOGR models are preferred to multivariate IDR
models because most of the multivariate LOGR models appear to converge

and to fit the data better than multivariate IDR models. Modeling P&I
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or ILI jointly with laboratory reports increases the precision of the random
effect mean shift compared to univariate models in most cases. There is ev-
idence of a lag between the timing of ‘aberrant’ periods in different outcome
variables for a given age group. The lag in the timing of ‘aberrant’ periods
varies across influenza seasons. Models allowing for a constant lag in the
timing of ‘aberrant’ periods across outcome variables are computationally
difficult and are not developed beyond showing that OpenBUGS can fit
these models in principle. Multivariate LOGR models were taken forward
for estimating the effect of cluster transitions and the impact of vaccination

on the mean shift in chapter 7. Multivariate IDR models were discarded
because of lack of convergence and poor model fit.

6.2. Introduction

In chapter 5, LOGR models were shown to fit ILI but not P&I and IDR
models were shown to fit P&I but to be worse at fitting ILI than LOGR
models were. In this chapter, multivariate LOGR and IDR models were
fitted and improvement in convergence and model fit compared to univariate
models was explored. Multivariate models appropriate for estimating the

effect of cluster transitions and the impact of vaccination were decided upon.

6.3. Data sets

In this chapter, P&I and ILI data were modeled jointly with laboratory re-
ports for influenza A. Laboratory reports for influenza A were used instead
of laboratory reports for influenza A and B, combined, because there is ev-
idence that influenza years dominated by circulation of influenza A/H3N2
virus experience higher peak incidence of lab/clinical incidence. [92] In-
fluenza A therefore contributes more than influenza B to the variability in
the impact of influenza seasons. Laboratory data provided by the HPA CfI
do not include subtype (A/H3N2, A/HIN1).

6.4. Description of the model

Age group-specific bivariate and trivariate LOGR and IDR models were
fitted (table 6.1). Bivariate HMMs were fitted first to weekly counts of P&I
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and laboratory reports for influenza A and second to ILI and laboratory
reports. Trivariate models were fitted to P&I, ILI and laboratory reports,
simultaneously. Figure 6.1 shows a schematic of the bivariate HMM where
t denotes 1 week and arrows denote conditional dependencies.

Table 6.1.: Joint HMMs.

Model Key
Bivariate Poisson log-link biILOGR
Trivariate Poisson log-link triLOGR
Bivariate Poisson identity-link biIDR
Trivariate Poisson identity-link trilDR

Y1 Zt Yt Zt Yi+1 2t

—Sst1 — St —— St41 —

Figure 6.1.: Schematic of a bivariate HMM.

In multivariate HMMs, state sequences were jointly estimated by the two
or three outcome variables in each model. An assumption inherent in these
models is that state transitions occur in the same weeks across outcome

variables. This assumption is explored in more detail in section 6.12. Below
is the formula for the biLOGR HMM.
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Where Y, is the observed count of P&I or laboratory reports for
influenza A in week t,
4y are the respective means of the Poisson distributions from
which Y, are drawn,
N is the population offset,
«q are the intercepts,
a;y [flu season] are the random effect yearly mean shifts,
C(t, ) are the cubic splines with ¢ df,

B1 sin ngz' + B2 cos %’—‘2 represent seasonality, where 52.2 is the

average number of weeks in a year,
Bsartifacts represent the instantaneous change in the baseline
because of artifacts in the data,
and S is the state variable sampled from a Bernoulli distri-
bution with probability §, where § is a two-by-two matrix of
probabilities of moving between states at time t given which
state the model was it at time t-1, jointly estimated between
the P&I and laboratory data in this case.
Multivariate IDR models had the same form as the multivariate LOGR
models except that in multivariate IDR models u, not log(u), was dependent
on the linear predictor and there was no population offset.

6.5. Priors

All parameters were given reference priors as in the previous chapter (ta-
ble 5.2)

6.6. Model convergence

Fit and convergence of bivariate models are summarised in table 6.2 while
fit and convergence of trivariate models are summarised in table 6.3.
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Two chains for each parameter were started from different sets of initial
values and were run for 100,000 iterations, saving 1% of sampled values.
Saving only 1% of sampled values was done to ease storage and handling
of the large files generated by the analyses. Despite this high degree of
thinning, Monte Carlo error (MC-error), an estimate of the difference be-
tween the mean of the sampled values and the true posterior mean, is less
than 5% of the standard deviation of posterior distributions for most pa-
rameters from all models. This is an indication that posterior estimates are
sufficiently accurate. Six sets of initial values were developed (one each for
biLOGR fits to P&I, biLOGR fits to ILI, biIDR fits to P&I, bilDR fits to
ILI, triLOGR and trilDR models). Model fit was assessed based on plots
of the final 500 saved samples. History plots of the LL and transition prob-
abilities were used to assess model convergence. BGR plots of the LL for
the first 20,000 iterations were used to show initial values were disparate
enough.

For bivariate fits to P&I and laboratory reports, most model LLs appear
to converge (e.g. figure 6.2). For bivariate fits to ILI and laboratory reports,
only biLOGR LLs appear to converge (e.g. figure 6.3).

From trivariate model fits, the LL from triLOGR models fitted to the 0-4.
5-14, 15-44 and 45-64 age groups appear to converge (e.g. figure 6.4); the
LL from most trilDR models does not converge (also shown in figure 6.4).
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(a) bILOGR (b) BIIDR

Figure 6.2.: Example history plots showing apparent convergence of
the LL from (a) biLOGR and (b) bilDR models fitted
to P&I. This plot shows fits to P&I from the 45-64 age group.

Apparent convergence of the transition probability parameters roughly
parallels apparent convergence of the LL for most bivariate models. For the
biLOGR fit to P&l for the 0-4 age group, transition probabilities appear

to converge despite the LL not converging (figures 6.5 and E.1). For the
trilDR model fits to the 45-64 and > 65 age groups, two chains for the

168



a4

0

e T—— i
S A AR Yi ' ) E

a) biLOGR b) bilDR

)

Figure 6.3.: Example history plots showing (a) apparent conver-
gence of the LL from biLOGR fits to ILI and (b) lack
of convergence of the LL from biIDR models fitted to
ILI. This plot shows fits to ILI from the > 65 age group.

(a) triLOGR

Awwnn

(b) trilDR

Figure 6.4.: Example history plots showing (a) apparent conver-
gence of the LL from triLOGR models and (b) lack

of convergence of the LL from trilDR models. This plot
shows fits to data for the 0-4 age group.
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transition probabilities appear to converge to similar areas of the parameter
space (e.g. figure 6.6).
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Figure 6.5.: History plot showing apparent convergence of transi-
tion probability parameters from the biLOGR model fit
to P&I and laboratory reports from the 0-4 age group.
Recall that ‘p.epsilon[1]’, the top panel, refers to ds,—9s, ,=1.
the probability of a transition into the ‘aberrant’ state at time
t given being in the ‘normal’ state at time t-1. The bottom
panel, ‘p.epsilon[2]’, refers to dg, _9g, ,—2, the probability of no

transition at time t given being in the ‘aberrant’ state at time
t-1.

BGR plots of the LL for the first 20,000 iterations show that initial values

are suitably disparate except for the biLOGR fit to P&I for the 15-44 age
group (figures E.2 to E.5).

6.7. Convergence of state sequences

6.7.1. Models fitted to P&I and laboratory data

For fits to P&I, state sequences appear to converge for biILOGR model

fits to the 0-4 and 5-14 age groups (e.g. figure 6.7), when they do not
converge for (univariate) LOGR model fits (e.g. figure 5.10). This suggests

one of two possible explanations. There may be sharing of information

across outcomes in the biILOGR models to increase power to estimate the
state sequence. Alternatively, laboratory data may dominate the estimation

of the transition probabilities and state sequences in the biLOGR model
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Figure 6.6.: History plot of transition probability parameters from
trilDR model fit to the > 65 age group. Two chains for
‘p.epsilon[1]” appear to converge to a similar area of parameter
space though the two chains do not lie on top of one another.

fits. Recall the relationship between lack of information and convergence
introduced in section 5.12. The state sequences for univariate LOGR and
IDR model fits to laboratory reports for influenza A for the 0-4 and 5-14
age groups appear to converge by 20,000 model iterations, meaning that
the univariate models readily recognise the laboratory data to be consistent
with two states (figures F.1, F.2, F.3 and F.4). This means that there is
ample information in the laboratory data to allow the model to differentiate
two states (‘aberrant’ and ‘normal’) within them.

State sequences from bilDR models fitted to P&I for the 0-4 and 5-14
age groups appear to converge as in the univariate case (e.g. figures 6.8
and 5.11).

State sequences from biLOGR and bilDR fits to P&I from the 15-44 and
45-64 age groups appear to converge, as they do in the univariate case (e.g.
figures 6.9 and E.7).

Neither biLOGR nor bilDR fits to P&I for the > 65 age group appear
to converge (figures 6.10 and 6.11). The state sequence from the biLOGR
fit to P&I for the > 65 age group is similar to that from the (univariate)
LOGR fit to P&I for the > 65 age group (figure 5.12). The bilDR state
sequence from the fit to P&I for the > 65 age group is worse than the IDR

fit to P&I for the > 65 age group (figure 5.13). Worse convergence of the
bilDR compared to IDR model fits to P&I in the > 65 age group, and lack



of convergence of the biILOGR state sequence for P&1 in the > 65 age group,

mav reflect conflict between the P&I and laboratory data for the > 65 age

group in estimating a joint state sequence. This pattern of results may also
g .
reflect the lack of convergence of the LOGR fit to laboratory reports for the

> 65 age group (figure F.5).

Figure 6.7.:
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The state-sequence for biLOGR model fit to P&I and
laboratory reports in those 0-4 years of age. The state
sequence appears to converge for most seasons and is clearly
estimated apart from the 1978/79 and 1988/89 seasons where
the two chains disagree on state assignment for some weeks.
Recall that the state sequence shown is the average of the state
sequences estimated by each of the two chains. Top panel:
observed (dashed) and fitted P&I data (red); middle panel:
state sequence jointly estimated between the P&I and labo-
ratory data (1.0 is the ‘normal’ state, 2.0 the ‘aberrant’ state);

bottom panel: residuals (observed minus fitted P&I count for
each week).
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Figure 6.8.:
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The state-sequence for the biIDR model fitted to P&I

and laboratory reports in the 0-4 age group appears to
converge and is clearly estimated.
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Figure 6.9.:
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The state-sequence for the bilDR model fitted to P&I
and laboratory reports in the 15-44 age group appears
to converge and is clearly estimated.
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Figure 6.10.:
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The state-sequence for the biLOGR model fit to P&I
and laboratory reports from the > 65 age group does

not converge for the period between 1978/79 and
1982 /83.



Figure 6.11.:
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The state-sequence for the biIDR model fit to P&I and
laboratory reports from the > 65 age group (shown)

does not converge for the period between 1978 /79 and
1982/83, as for the BiLOGR fit.
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6.7.2. Models fitted to ILI and laboratory data

From fits to ILI data. state sequences from biLOGR fits appear to converge,
as they do in the univariate case (e.g. figures E.6 and 5.18). State sequences
from bilDR model fits to ILI from the 0-4, 5-14, 45-64 and > 65 age groups
do not converge (e.g. figure 6.12). The bilDR fit to ILI for the 15-44 age

group is better than the univariate fit (figures 6.13 and 5.17).

Observed and fitted
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Figure 6.12.: The state-sequence for biIDR model fit to ILI and lab-
oratory reports in those 5-14 years of age does not
converge for some weeks during several influenza sea-

sons (1976, 1979, 1980, 1983, 1984, 1985, 1987, 1988
and 2004).



Figure 6.13.:
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The state-sequence for bilDR model fit to ILI and lab-
oratory reports for the 15-44 age group appears to
converge and is clearly estimated.
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6.7.3. Models fitted to P&I, ILI and laboratory data

All trilDR state sequences appear to converge (e.g. figure 6.14). TriLOGR
state sequences appear to converge (e.g. figure 6.15) with the exception of
the > 65 model which crashes after 30,000 iterations, having yet to converge
(data not shown).

The crashing of the triLOGR > 65 model may be related to the conflicts
between P&I and laboratory data for the > 65 age group in estimating a
joint state sequence and the lack of convergence of the LOGR fit to labora-
tory reports for > 65 mentioned previously. This conflict might also explain
the following pattern of results from multivariate IDR fits to > 65 data.

1. The state sequence for the IDR fit to P&I > 65 appears to converge.
2. The state sequence for the IDR fit to ILI > 65 does not converge.
3. Neither bilDR model for the > 65 age group (P&I or ILI) converges.

4. The trilDR > 65 model state sequence appears to converge.

This patterns suggests that pooling of P&I, ILI and laboratory data for
the > 65 age group in the trilDR model resolves the conflict between P&I
and laboratory data for this age group in estimating a joint state sequence.
(See overlayed state sequences for (univariate) IDR fits to P&I, ILI and
laboratory reports for the > 65 age group (figures G.1 and G.2). In several
influenza seasons (e.g. 1990/91, 1996/97 and 1997/98), state sequences for
P&I and ILI agree with each other as to the timing of the start and/or
end of the ‘aberrant’ period and disagree with the state sequence for the
laboratory data.) The lags between timing of ‘aberrant’ periods across the
three outcome variables is revisited in sections 6.12 and 6.13.
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Figure 6.14.: The state-sequence from the trilDR model fit to data
for the > 65 age group appears to converge apart from
a few weeks between the 1985/86 and 1986 /87 seasons
and between the 1986/87 and 1987/88 seasons. The
top plot shows trilDR model-predicted P&I for the > 65 age

group. The bottom plot shows trilDR model-predicted ILI for
the > 65 age group.
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Figure 6.15.: The state-sequence from the triLOGR model fit to
data for the 15-44 age group appears to converge. The
top plot shows triLOGR model-predicted P&I for the 15-44

age group. The bottom plot shows triLOGR model-predicted
ILI for the 15-44 age group.

181



6.7.4. Volatility of state sequences

Univariate and multivariate model state sequences vary in their volatility
(e.g. of a less volatile state sequence - figure 6.16 - and a more volatile one
- figure 5.14).

State sequences from triLOGR model fits to data for the 0-4, 5-14, 15-44
and 45-64 age groups (e.g. figure 6.17) are as volatile as biLOGR model
fits to ILI for these age groups (e.g. figure 6.16) and are more volatile than
biLOGR fits to P&I for these age groups (e.g. figure 6.7). In contrast to
fits to the > 65 data, where it appears the conflict lies between P&I and
laboratory data, the above suggests conflict between ILI and laboratory
data for the 0-4, 5-14, 15-44 and 45-64 age groups in estimating joint state
sequences. The conflict is not resolved in the triLOGR models because the
small numbers of deaths in the age groups under 65 contribute relatively
little compared to the ILI and laboratory data.

Observed and fitted

State sequence

§ JULIL |
000 2005
Residuals
£ j
N }
8
& ; . , : .
1975 1980 1985 1990 1995 2000 2005

Figure 6.16.: The state-sequence for biLOGR model fit to ILI and
laboratory reports in those 0-4 years of age (shown)
is more clearly estimated than LOGR fit (figure 5.14)
and similar to the triLOGR model fit to data for the
0-4 age group (next figure).
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Figure 6.17.: The state-sequence for triLOGR model fit to P&I,
ILI and laboratory reports in those 0-4 years of
age (shown) is similar to the state sequence for the
biLOGR fit to ILI and laboratory reports in the 0-4
age group (figure 6.16).
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6.8. Plots of observed and fitted counts and
residuals

Relative goodness of fit of models was determined by comparing plots of
observed and fitted weekly counts and residuals. Plots were created by
averaging results from the two chains.

biLOGR and triLOGR models predict the observed time series’ of P&I
and ILI well. Time series plots of residuals suggest there is underestimation
of epidemics but that, otherwise, fit of biLOGR and triLOGR models is
good (e.g. figure 6.10).

biIDR and trilDR models predict P&I from the 15-44 and > 65 age
groups and ILI from the 15-44 and 45-64 age groups as well as biLOGR
and triLOGR models (e.g. figure 6.14a). Other biIDR and trilDR models
predict observed time series’ poorly (e.g. figure 6.14b). In particular, biIDR
and trilDR models of P&I for the 0-4, 5-14 and 45-64 age groups and ILI

for the 0-4, 5-14 and > 65 age groups poorly fit the 1975/76, 1985/86 and
1987/88 seasons.

6.9. Posterior predictive density plots

Observed data for the 0-4, 15-44, 45-64 and > 65 age groups are neither over-
nor underdispersed relative to any multivariate model (e.g. figure 6.18).

Deaths for the 5-14 age group are very sparse and are underdispersed relative
to all models (e.g. figure E.8).

bilDR and triIDR models fitted to ILI for the 0-4, 5-14 and > 65 age
groups produce very wide Crls for a small number of predicted counts during
the 1975/76 and 2004/05 seasons (e.g. figure 6.18). This uncertainty in
predicted counts is indicative of poor model fit of multivariate IDR models
to ILI for these age groups noted in the previous section.

6.10. Autocorrelation plots of residuals

No model accounts for all autocorrelation in any of the modeled data sets.
Multivariate LOGR model fits are generally adequate, leaving some posi-
tive residual autocorrelation at lags of approximately 1-2 weeks, because of
underfitting epidemics, and at 52 + 2 and 104 + 2 weeks because of failure
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Figure 6.18.:

(a) triLOGR (b) trilDR
Posterior predictive density plots of triLOGR and tri-

IDR models fitted to ILI from the 0-4 age group. The
observed data do not all fall within posterior predictive Crls
(meaning ILI data for the 0-4 age group are not underdispersed
relative to the trivariate models). Neither do the majority
of the data lie outside posterior predicted Crls (meaning ILI

data for the 0-4 age group are not overdispersed relative to the
trivariate models).
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to model seasonal variation sufficiently (e.g. figure 6.19). The triLOGR
model fit to data for the > 65 age group is poor, with residual autocorrela-
tion at most lags up to approximately 52 weeks and at 100-105 weeks (e.g.
figure 6.20).

Multivariate IDR model fits to P&I are similar to multivariate LOGR
fits, in terms of residual autocorrelation (e.g. figure 6.19). The trilDR
model better fits P&I data for the > 65 age group than the triLOGR model
(figure 6.20). Multivariate IDR models fitted ILI for the 0-4, 5-14 and > 65
age groups poorly, leaving autocorrelation in residuals to lags of up to 45

weeks (e.g. figure E.9). This corroborates poor model fit to these data
noted in the previous two sections.

10
1.0

04
1

02

00

(a) iILOGR

(b) bilDR

Figure 6.19.: Autocorrelation plots of residuals from biLOGR and
bilDR model fits to P&I and laboratory reports from
the > 65 age group. Adequate model fit of the data is evi-
dent apart from underestimation of large peaks (shown by the
positive autocorrelation at lag 1 week) and insufficient mod-

eling of seasonality (shown by positive autocorrelation at lags
around 52 and 104 weeks).

6.11. Precision of the mean shift random effect

The means of the posterior distributions for the precisions of the mean
shift random effects, Trand, for fits to P&I and ILI were compared between

univariate, bivariate and trivariate models (tables 6.4 to 6.7). This was done
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Figure 6.20.: Autocorrelation plots of residuals from triLOGR and
trilDR model fits to P&I data for the > 65 age group.
The trilDR fit (b) is adequate (with positive autocorrelation at
lags around 1, 52 and 104 weeks only). The triLOGR fit (a)

is poor (with positive and negative autocorrelation at many
lags).

to determine whether modeling more than one outcome variable in a joint
model resulted in increased power to estimate the mean shifts because of
sharing of information across outcome variables about state transitions.
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The mean posterior precision of the mean shift random effect generally
increases from LOGR to biLOGR and from IDR to biIDR models. There is
considerable uncertainty in estimates of posterior precision across models.
There is no increase in mean shift random effect precision for biLOGR
model fits to P&I and ILI data for the 5-14 age group and ILI data for the
> 65 age group relative to LOGR fits. Deaths and laboratory reports from
the 5-14 age group have many zeros making these data difficult to model.
BiLOGR and triLOGR fits to the > 65 data are problematic as discussed
in sections 6.7 and 6.10.

TriLOGR fits to most age groups do not show an additional increase in
posterior precision of the mean shift random effect over the biILOGR models,
probably because triLOGR model fits are generally the same as, or poorer
than, biLOGR fits (tables 6.4 and 6.5, section 6.7.4). For trilDR model fits
to most age groups there is an additional increase in the posterior precision

of the mean shift random effect, compared with biIDR. model fits (tables 6.6
and 6.7).

6.12. Exploration of lagged state transitions
between outcomes

To determine whether there is evidence that, for a given influenza season
in a given age group, state transitions for one outcome variable are lagged
relative to state transitions for the other outcome variables, state sequences
for univariate fits to each age group for P&I, ILI and laboratory reports
were overlayed, separately for LOGR and IDR model fits. This was done to
allow that any lag might vary between influenza seasons.

State transitions in a given influenza season do not happen in the same
week across outcome variables within an age group (e.g. figure 6.21). This is
due, for example, to the lag between seeking care for an influenza illness and
dying from one (section 3.2.6). The relative timing of transitions across age
groups is not consistent across influenza seasons. Biological explanations
for the inconsistent lag between outcome variables across influenza seasons
may relate to the dominant circulating viruses in different influenza sea-
sons and to the relative virulence of circulating viruses in different seasons.
Artifactual explanations for the inconsistent lag between outcome variables
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across influenza seasons may include changes to the proportion of labora-
tory reports from GPs over time which resulted in a change to the profile of
patients represented in laboratory data over time in terms of, for example,
comorbidities.

State sequences are more clearly estimated from bivariate model fits than
from univariate model fits, so bivariate state sequences were also overlayed
to check for evidence of lagged state transitions (separately for biIDR and
biLOGR models). State transitions do not happen in the same week for

P&I and ILI in a particular age group and different lags are observed each
season (e.g. figure 6.22).

Death, GP and Lab 15-44

Season

Figure 6.21.: State sequence from LOGR fits to P&I (dashed line),
ILI (dotted line) and lab reports for influenza A (solid

line) from the 15-44 age group: 1993/04-2004,/05. The
state sequences do not converge for all seasons. There is a lag

between state transitions for P&I, ILI and lab reports and the
lag varies by influenza season.
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Figure 6.22.: State sequences from biLOGR fits to P&1 (dashed
line) and ILI (dotted line) from the 15-44 age group:
1993/04-2004/05. There is a lag between state transitions
for ILI and P&I and the lag varies by influenza season.
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6.13. Models with a lag

Qiven evidence for a lag between state transitions for different outcome
variables, multivariate LOGR and IDR models allowing state transitions
for different outcome variables to be lagged relative to one another by a
constant + 1 or 2 weeks for the duration of the time series were explored
(the model formula is shown in Appendix G). In bivariate models, the aver-
age lag between state transitions in P&I or ILI relative to state transitions
in laboratory reports was estimated from the data. In trivariate models,
two lags - the average lag between state transitions in P&I relative to state
transitions in laboratory reports and the average lag between state transi-
tions in ILI and in laboratory reports - were estimated from the data. For
every model, the 5 possible lags (+ 2, 1 or 0 weeks) were assigned equal
prior probability (p = 0.20). Models allowing for a lag take 2 orders of
magnitude longer to complete an iteration of the sampler compared with
models without a lag. Models were run for 10,000 iterations on two chains,
saving 10% of sampled values, to determine if such models would run in
OpenBUGS given the added complexity. Models have yet to converge after
10,000 iterations as expected since models without a lag take longer than
10,000 iterations to converge (e.g. figure 6.23). Models including a lag
were not taken forward for estimating the impact of covariates in the next
chapter because evidence presented in section 6.12 suggests an inconsistent
lag from season to season. An inconsistent lag from influenza season to

influenza season is not straightforward to model in this framework; this was
not attempted.

6.14. Summary of results

In general, multivariate LOGR models are better than multivariate IDR
models; most of the biLOGR and triLOGR models appear to converge,
as opposed to many of the multivariate IDR models. Multivariate LOGR
models also fit the data better than multivariate IDR models. Modeling P&I
or ILI jointly with laboratory reports increases the precision of the random
effect mean shift for most model fits. In trilDR models there appears to
be additional sharing of information across outcomes, relative to the bilDR

models, for estimating state sequences and thus mean shifts. There is much
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Figure 6.23.: BGR plot of the LL of triLOGR model with lag, fitted
to the 0-4 age group, after 10,000 iterations. The ratio
of pooled to within chains variability (the top (red) line) has
yet to converge, i.e. come to 1, after 10,000 iterations. The

plot is based on a sample of every 10th iteration from the last
5000 iterations of the run.

uncertainty in the posterior distribution for the mean shift random effect.
Because of problems with convergence and fit, however, no multivariate IDR
models were taken forward for estimating covariate effects in chapter 7. In
triLOGR models, precision of the mean shift declines relative to biLOGR
fits. There appears to be a conflict between ILI and laboratory reports
for age groups <65 and between P&l and laboratory reports for the > 65
age group in jointly estimating state sequences. This is most likely because
the timing of ‘aberrant’ periods differs across outcome variables for a given
age group. Two observations support this explanation. First, overlaying
univariate state sequences shows state transitions occur during different
weeks across the outcome variables and that the lag varies from one influenza
season to the next. Second, biLOGR and triLOGR state sequences are
generally more volatile than univariate state sequences. This is consistent
with there being conflict between outcome variables in estimating the state
sequence due to differences in the timing of ‘aberrant’ periods in different
outcome variables. OpenBUGS accommodates the increased complexity

of fitting models allowing a constant lag between state transitions across
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outcomes. A longer time series (i.e. more than the 30 influenza seasons
analyzed) would probably be required to estimate a state sequence where
a time-varying lag was allowed between state transitions across outcome
variables, though proof of concept could be shown using simulated data.

BiLOGR and triLOGR models were taken forward for estimating impact
of CT seasons and vaccination on the mean shift in chapter 7.

6.15. Strengths of multivariate HMMs

Multivariate models allowed sharing of information across outcome variables
for estimation of state sequences, as evidenced by apparent convergence of
more multivariate than univariate state sequences. This is especially obvious
comparing state sequences for biILOGR to LOGR fits for P&I from the 0-
4 and 5-14 age groups. LOGR models are unable to distinguish ‘aberrant’
from ‘normal’ P&I incidence for the 0-4 or 5-14 age groups. BiLOGR models
are clearly able to do so. Bivariate models increase precision of mean shifts

relative to univariate models. Multivariate HMMs increase specificity of
P&I and ILI for influenza.

6.16. Limitations of multivariate HMMs

There is a time-varying lag between state transitions for outcome variables
within an age group and this is not allowed for in the models. As in the
previous chapter, inadequate modeling of large peaks in incidence and of
seasonality is obvious in autocorrelation plots of residuals.
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7. Estimating the effect of cluster
transitions and the impact of
vaccination on P&I and ILI
using joint HMMs

7.1. Aims of this chapter

The aim of the work described in this chapter was to use biLOGR and
triLOGR HMMs developed in chapter 6 to quantify the effect of CT seasons
in the antigenic evolution of influenza A/H3N2 virus, and the impact of

rising vaccination coverage of the elderly in England & Wales, on the mean
shift in P&I and ILI across age groups.

7.1.1. Objectives of this chapter

1. To fit biLOGR and triLOGR HMMs to each age group including de-
pendency between the random effect mean shift and

a) CT seasons as a binary variable, or

b) antigenic distance between CT seasons as a quantitative variable,
or

c) vaccine coverage in the > 65 age group each influenza season as
a quantitative variable

2. To carry out sensitivity analysis on priors used for covariate effects in
the models above

3. To discuss confounding and effect modification of the effect of CT

seasons on mean shifts and of the impact of vaccination on mean
shifts
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7.1.2. Main findings

Scatter plots of crude mean shifts against exposures of interest - CT seasons,
the antigenic distance between clusters and vaccine coverage of the elderly -
suggest little evidence of association between exposures of interest and mean
shifts in P&I or ILL. This agrees with the finding of little crude association
between these exposures of interest and peak incidence in P&I or ILI noted
in chapter 4. It was not possible to quantify the magnitude of exposure
effects of interest using the biLOGR and triLOGR HMMs. There is limited
information in the data about effects of interest. Posterior distributions
for coefficients for vaccine impact and CT effect on mean shifts are little
influenced by the data and more influenced by priors.

7.2. Introduction

Peak P&I and ILI incidence observed in a given influenza season is highly
variable. Several factors may affect peak P&I and ILI incidence, including
CT seasons {14,94] and increasing vaccination coverage of the elderly. [7]
In chapter 4 it was noted that, crudely, the distribution of peak rates for
the first H3N2-dominated season after a CT appears greater than for intra-
cluster seasons. Ranking of peak P&I and ILI rates observed across seasons
revealed that only for P&I in the > 65 age group do CT seasons occur
in at least five of the top ten seasons. T-tests suggest weak evidence for
small increases in peak P&I and ILI in the first H3N2-dominated season
after a CT compared with the average season (6 more P&I per 1,000,000
population and 95 more ILI per 100,000 population) and compared with in-
tracluster seasons (8 more P&I per 1,000,000 and 133 more ILI per 100,000).
These small differences are of little public health importance given that, in
the data analyzed in the thesis (excluding the 1969/70 pandemic season),
weekly rates of P&I of up to 80/1,000,000 and ILI of up to 2,322/100,000
are observed. It was also noted in chapter 4 that there is no clear asso-
ciation between peak rates of P&I and ILI each influenza season and the
antigenic distance between clusters. There is a weak negative association

between vaccine coverage of the > 65 age group and peak seasonal P&I and
ILI rates across age groups.
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7.3. Covariates

Seasons when new antigenic clusters of influenza A/H3N2 viruses become
dominant may plausibly experience larger average mean shifts than intra-
cluster seasons because of the increase in the proportion of the population
susceptible to H3N2. Each unit of antigenic distance within a CT may also
have a detectable effect on the mean shift. Increasing vaccine coverage of
the > 65 age group would be expected to lead to smaller mean shifts in the
> 65 age group, and plausibly in the other age groups, though relatively low
vaccine effectiveness [113] and the fact that it is likely to be children, not the
elderly, who are drivers of transmission in the community [38] suggest any
impact of vaccination on other age groups would be approximately nil. If all
influenza - attributable incidence is not designated as being from the ‘aber-
rant’ state there may be residual influenza - attributable incidence within
the ‘normal’ state. If this is so, an effect of CT seasons/antigenic distance
and an impact of vaccination might also be distinguishable in changes in
‘normal’ incidence. Another consequence of misclassification of influenza -
attributable incidence to the ‘normal’ state, if present, would be lower power
to detect exposure effects on the mean shift. As a first step in exploring
whether CT seasons/antigenic distance or vaccine coverage of the elderly
explains some of the variability in the impact of influenza seasons in terms
of morbidity or mortality, the random effect mean shift was expressed as
dependent on each of CT seasons, the antigenic distance between clusters
and vaccine coverage of the > 65, in separate model runs. CT seasons were
defined as the first H3N2-dominated season after a CT. The effect of anti-
genic distance between clusters on the mean shift was explored to allow for
the fact that CT seasons differ in size (range 3.3 to 7.8 antigenic units). [13]

7.4. Description of the model

BiLOGR and triLOGR models were fitted to P&I and ILI data using models
identical to chapter 6 (in terms of structure and priors) apart from the
dependency between the mean shift and exposures of interest. Exposure

effects on the mean shift were modeled by expressing the mean of the random
effect as dependent on the exposures like this

200



for(i in 1:30){
aifil ~ Normal(frandli], 7rana)1(0,)
Hrand [l] = Mrandg T Hrand; * CT[i]
}
frand, ~ Normal(0.0,1E —2)
Prand; ~ Normal(0.0,1E - 3)
Trand ~ Gamma(0.001,0.001)

where i denotes an influenza season and CT is a binary variable coding
influenza seasons as 1 for the first H3N2-dominated season after a CT and
0 for intracluster seasons.

Coefficients for exposure effects are the average effect of, for example, a
CT on the average mean shift. Exponentiated (exp) regression coefficients
for covariates are ratios of the average mean shift with to without the covari-
ate (or per unit change in the covariate). Estimating the effect of covariates
on the mean shift using the multivariate LOGR model framework implies

that the association between the exposure and the mean shift is additive on
the logarithmic scale.

7.5. Prior sensitivity analysis

A prior sensitivity analysis was carried out to test whether the association
between exposures of interest and mean shifts were robust to the choice
of priors on coefficients for exposures. First, covariate effects were given
reference Normal(0.0, 1E-3) priors. Second, weakly informative priors were
set using estimates of the variability in excess P&I and ILI from other
settings (sections 7.5.1 and 7.5.2). Finally, strongly informative priors on
the effect of CTs, and the antigenic distance between clusters, on the mean
shift were set based on the results from a previous model fitted by Koelle
et al. (section 7.5.3). [14]

All weakly informative priors were uniform distributions. Uniform distri-
butions assign approximately equal probability to all values within a range.
CT seasons plausibly result in an instantaneous increase in the proportion
of the population susceptible to circulating influenza A/H3N2 viruses and
so would be expected to result in larger mean shift than seasons not experi-

encing a CT. Descriptive studies of the impact of large antigenic drift events
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suggest they at least sometimes coincide with epidemics (e.g. [93]). Each
unit change in the antigenic distance between clusters could also result in
a detectable increase in the size of the susceptible population and thus an
inflated mean shift. Higher vaccine coverage should lead to dampening of
the mean shift.

The aim of the analysis in this chapter was to determine whether the
exposures of interest explain some of the variability in the impact of in-
fluenza seasons, as captured by the mean shift. The magnitude of exposure
effects of interest should lie within the maximum rate ratio (MAXRR) of
excess ILI or P&I observed between two influenza seasons in a single set-
ting. Estimates of MAXRR (based on different data from those analyzed
for the thesis) were used to set weakly informative priors. MAXRR was
used to establish an upper bound for the possible effect of CT seasons (or a
unit change in antigenic distance between clusters) on the mean shift. The
reciprocal of MAXRR was used to establish a lower bound on vaccine im-
pact. Using MAXRR to set extremes of possible covariate effects assumes
no negative confounding of the covariate effect.

A literature search was done to identify reports of excess inter-pandemic
ILI or P&I from other temperate Northern hemisphere settings with which
to estimate MAXRR. A search of Pubmed on June 9th 2009 using the terms
“excess”, “influenza - attributable”, “influenza-associated”, “influenza epi-
demic” (and variations on these terms, separated by “OR”) with “influenza”
identified 13 papers based in a temperate Northern hemisphere setting, or
settings, that provided estimates of excess P&I or ILI counts or rates in two
or more influenza seasons after 1969/70 (the pandemic season). {7,8,54,56,
58,61,65,73,92,107,197-199] All of these studies reported estimates of excess
P&I counts or rates for at least two influenza seasons. One study reported
estimates of excess ILI for at least two influenza seasons. [65] The inclusion
criterion requiring that studies report on at least two influenza seasons was
required so that study-specific MAXRR estimates could be derived. Pub-
lished excess counts were translated into equivalent rates per 100,000 for
ILI, and per 1,000,000 for P&I, for England & Wales using population es-
timates from national statistics websites. Where studies reported an excess
of zero, 1 excess death was added to these seasons in order to be able to
calculate MAXRR (dividing by zero is undefined).

MAXRR for P&I from studies reporting on all-ages or on the > 65 age
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group was 24,800 (122/1,000,000 in 1972/73 divided by 0.004/1,000,000 in
1970/71 and 1973/74). [198] MAXRR for ILI was 785,252 (1,387,/100,000
per week in 1989/90 divided by 0.002/100,000 per week in 1999/00). [65]

7.5.1. Weakly informative priors on the effect of CTs on the
mean shift

As mentioned above, it is plausible that CTs result in an instantaneous
rise in the proportion of the population susceptible to circulating influenza
A/H3N2 viruses, thus inflating the mean shift. It is less plausible that CT
seasons result in smaller mean shifts on average.

The weakly informative prior for the coefficient of the effect of CT seasons,
or a unit change in antigenic distance between clusters, on the mean shift
was set as a uniform prior with the log(MAXRR) as the upper bound. The
lower bound was arbitrarily set as the 10th root of the upper bound, in
the opposite direction. This was done in order not to constrain the prior
such that CTs could only cause an increase (or no change) in the average
mean shift. In this way the prior was ‘weakly informative’ of the effect of
CTs on the mean shift and allowed a small probability that CTs cause a
dampening of the mean shift. On the logarithmic scale, this translated to
a weakly informative prior on the average effect of cluster transitions, or
per unit change in antigenic distance between clusters, on the mean shift in
P&I of ~ Uniform(—1.01,10.12) and in ILI of ~ Uniform(—1.36,13.57).

7.5.2. Weakly informative priors on vaccine impact

The impact of increasing vaccine coverage of the elderly on the mean shift
was first explored with vaccine coverage as a quantitative variable. As men-
tioned in section 7.5, the dampening impact on the mean shift per unit in-
crease in vaccine coverage should be no more extreme than log(1/MAXRR).
Models with a weakly informative upper bound on the prior - for example,
which restricted a unit increase in vaccine coverage to cause an inflation
of the mean shift with only a small probability - were computationally
problematic (see below). The upper bound of the weakly informative prior
on the impact of each unit increase in vaccine coverage on the mean shift
was therefore set at log(MAXRR). On the logarithmic scale, this trans-

lated to a weakly informative prior on the average effect of a unit change
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in vaccine coverage of the > 65 age group on the mean shift in P&I of
~ Uniform(—10.12,10.12) and in ILI of ~ Uniform(-13.57,13.57).

The reason why it was not possible to set a weakly informative upper
bound on the prior for the impact of vaccine coverage, as a quantitative
variable, on the mean shift may be that the assumption of an additive (on
the logarithmic scale) impact of each unit increase in vaccine coverage on the
mean shift is invalid. Modeling vaccine coverage as an ordered categorical,
instead of quantitative, variable eased computational difficulties. There are
natural step changes in the vaccine coverage data that were used to define
levels of the categorical variable. The first step change occurred in 1989/90:
before 1989/90, vaccine coverage of the > 65 age group was assumed to be
zero. Between 1989/90 and 1999/00, yearly vaccine coverage of the > 65
age group ranged from 25% (in 1989/90) to 47% (in 1999/00). The second
step change in coverage occurred in 2000/01. From 2000/01, yearly vaccine
coverage of the > 65 age group ranged from 67% (in 2000/01) to 73% (in
2003/04). By fitting models with a dependency between the mean shift and
vaccine coverage of the elderly as a ordered categorical variable, the average
mean shift in seasons between 1975/76 and 1988/89 (the reference period
when coverage was assumed to be zero) was compared to the average mean
shift in seasons with moderate vaccine coverage of the elderly (1989/90 to
1999/00) as well as to the average mean shift in seasons with high vaccine
coverage of the elderly (2000/01 to 2004/05). These models were fitted with
both a reference prior and a weakly informative prior on the coefficients for
each step change in vaccine coverage on the mean shift in separate model
fits. The reference prior was the same prior used in the model with vaccine
coverage as a quantitative variable (~ Normal(0.0,1E — 3)). The weakly
informative prior was ~ Uniform(—-13.57,1.36). Note that in this case it
was possible to constrain the upper bound of the weakly informative prior

to allow little prior probability that increasing vaccine coverage leads to
larger mean shifts.

7.5.3. Strongly informative priors on the effect of CTs on
the mean shift

The strongly informative prior on CT seasons was the natural log of a prior
which, on the original scale, has median 1.66 (the ratio of peak height in CT
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vs. intracluster seasons from [14]) and 95% prior mass between 0.8 and 4.
The range of this prior was set to encompass a plausible range of estimates
of the effect of CT seasons without being too informative. On the original
scale, this translated to a strong prior on the average effect of CTs on the
mean shift in both P&I and ILI of ~ Normal(1.6625,0.7)1(0.7,).

The strongly informative prior on the antigenic distance between clusters
was the log of a prior which, on the original scale, had median 1.11 (cal-
culated as the median of the CT effect prior, 1.66, to the power of 1/4.5
(1.66'/43), where 4.5 is number of antigenic units in the average CT [13})
and 95% prior mass between 0.8 and 1.66'/33 (where 3.3 is the smallest
CT in [13]). On the original scale, this translated to a strong prior on the
average effect per unit change in the antigenic distance between clusters on
the mean shift in both P&I and ILI of ~ Normal(1.119588, 10)1(0.7,1.53).

7.5.4. Strongly informative priors on vaccine impact

Strongly informative priors on the impact of vaccination were not explored
in models of the impact per unit increase in coverage because of the diffi-
culties in setting weakly informative priors (section 7.5.2). Strongly infor-
mative priors on the impact of moderate or high coverage as an ordered
categorical variable were not explored because results from reference and
weakly informative priors clearly indicate there is insufficient information
in the analysis of mean shifts in ILI for the > 65 age group to be able to
quantify vaccine impact. It was not possible to estimate covariate effects on
P&I for the > 65 age group because multivariate LOGR models fitted to
these data do not converge (tables 6.2 and 6.3). Any impact on other age
groups of vaccination of the elderly would be expected to be much smaller
than the impact in the elderly and therefore more difficult to detect.

7.6. Model convergence

Two chains for each parameter were started from different sets of initial val-
ues and were run for 100,000 iterations, saving 1% of sampled values. Initial
values were the same as those used to initialise models in chapter 6. Model
fit was assessed based on plots of the final 500 saved samples. Coefficients for
the three exposures of interest (CT seasons, the antigenic distance between
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clusters and vaccine coverage of the those > 65) were only interpreted for
models that appear to converge and to clearly estimate the state sequence
(i.e. the state sequence is not volatile). Therefore, coefficients for exposures
of interest were only interpreted for biLOGR models fitted to P&I for the
0-4, 5-14, 15-44 and 45-64 age groups and to ILI for the 0-4, 45-64 and >
65 age groups. Volatile state sequences indicate conflict between outcome
variables in estimating state sequences (section 6.7.4). The estimation of
the state sequence is directly related to the estimation of the mean shift for
each season (since the mean shift is the ratio of incidence in the ‘aberrant’
state to that in the ‘normal’ state). Exposures of interest act on the average
mean shift (the mean of the random effect). Volatile state sequences mean
unreliable estimates of the yearly mean shift, the average mean shift and
therefore coefficients for exposure effects of interest.

Most triLOGR models including exposures of interest produce volatile
state sequences or do not converge. Because of this, neither the effect of
CT seasons nor the impact of vaccination from triLOGR model fits were
interpreted.

Recall from chapter 6 that no model adequately fits P&I data for the >
65 age group. Because of this, it was not possible to estimate effects of
exposures of interest on P&I data for the > 65 age group.

7.7. Crude resﬁlts

In section 7.7.1, time series of mean shifts from crude models (those not yet
including exposures) were plotted to examine the variability in mean shifts
between seasons, between age groups and between P&I and ILI. Recall that
exponentiated mean shifts are rate ratios for the average rate in the ‘aber-
rant’ state divided by the average rate in the ‘normal’ state for each influenza
season. In section 7.7.2, plots of the duration of the ‘aberrant’ period during
each influenza year across models were examined for consistency between
models. To create these plots, the start of the period of ‘aberrant’ incidence
was defined as minimum two consecutive weeks designated as ‘aberrant’ and
the end as minimum two consecutive weeks designated as ‘normal’. [70]
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7.7.1. Mean shifts

Plots of crude exponentiated mean shifts from models without the exposures
of interest are in broad agreement across outcomes and age groups as to
highest and lowest impact influenza seasons (figure 7.1). Mean shifts are
more variable for ILI than for P&I.

For P&I, the distinction between high and low impact influenza seasons is
clear in the 45-64 age group and less obvious in the younger age groups. This
is because influenza related mortality is infrequent in younger people. 95%
credible intervals (Crl) are widest for mean shifts for the 5-14 age group
in which almost no deaths attributable to influenza are registered. The
three highest impact (highest mean shift) seasons for the 45-64 age group
are 1975/76, 1989/90 and 1999/00. 1975/76 and 1989/90 were CT seasons.
Recall that the biLOGR model fitted to P&I for the > 65 age group does
not converge and so results for this age group are not shown.

For IL], a clear distinction between high and low impact influenza seasons
is visible for all age groups presented. Recall that biLOGR models fitted
to ILI for the 5-14 and 15-44 age groups do not converge and so results
for these age groups are not shown. 1989/90 was a high impact season in
terms of ILI in all age groups presented. 1999/00 was also a high impact
season for the 45-64 and > 65 age groups. The 1975/76 season was only
obviously high impact, compared with other influenza seasons, for the 45-64

age group. For the 0-4 age group, 1993/94 and 2003/04 were also notably
high impact seasons.
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7.7.2. Timing and duration of ‘aberrant’ periods

There is broad agreement across models as to the timing of periods of ‘aber-
rant’ incidence in a given season (figure 7.2). Locking across the study pe-
riod, there is a suggestion in these plots that ‘aberrant’ periods are starting
progressively earlier (i.e. that ‘aberrant’ periods tend to occur later in the
year in the 1970s than they do in the 1990s). This may be an artifact of
the laboratory data for two reasons. First, recall from chapter 3 that the
earliest specimen date is the date of report to HPA CfI, from 1975-1988, and
generally the date of sample from 1989 onwards. The date of report would
either be the date of sample or a later date. From 1975-1989 laboratory test-
ing was done in batches approximately weekly. Therefore laboratory data
suggesting influenza is circulating earlier in the year in influenza seasons
after 1988 may simply be an artifact of the end of batch testing.

Second, up to 1993 most laboratory reports in LabBase2 were from hospi-
talised patients. After 1993, laboratory reports from patients visiting their
GP for ILI became more prevalent in LabBase2. [33] The laboratory data
from sentinel GP practices may provide an earlier indication that influenza
is circulating if ascertainment of patients with influenza occurs earlier by
GPs than in hospitals. It is not obvious that this should necessarily be the
case because people visiting their GP with ILI and those hospitalised with
influenza are probably different in several ways including health status.

Pooling results across models without exposures of interest shows that a
median 9.5 weeks (interquartile range 6 to 14 weeks) per influenza season are
designated by the model as ‘aberrant’. Figure 7.3 shows the high degree of

variability in the duration of ‘aberrant’ periods influenza season to influenza
season.
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7.8. Effect of cluster transition seasons

7.8.1. Association between exponentiated mean shifts and
CT seasons

Mean shifts for each influenza season from models not yet including co-
variates (i.e. from crude models) were exponentiated and plotted against
exposures of interest. Mean shifts are highly variable whether or not a CT
has occurred (figure 7.4). No strong association between CTs and mean
shifts is evident.

Mean shifts were ranked largest to smallest within age groups by outcome
(P&I or ILI). The prominence of CT seasons in the top ten seasons was
noted. Never more than 4 out of 10 of the top seasons are CT seasons
(tables 7.1 and 7.2). This is consistent with findings reported in chapter 4.
When peak ILI or P&I rates observed in a given season are ranked largest

to smallest, CT seasons do not feature prominently in the top ten seasons.
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Table 7.1.: Top ten influenza seasons in terms of mean shift in P&I. 1 is
a CT season, 0 an intracluster season.

0-4 yrs 5-14 15-44 45-64
rank | season | CT?| season | CT?| season | CT?| season | CT?
1 1975 1 1975 1 1975 1 1989 1
2 1989 1 1977 1 1999 0 1999 0
3 1988 0 1989 1 1989 1 1975 1
4 1999 0 2003 0 1996 0 1996 0
5 2003 0 1988 0 1988 0 1993 1
6 1993 1 1979 1 2003 0 1998 0
7 1984 0 1985 0 1998 0 2000 0
8 1978 Q 1987 Q 1978 0 1984 0
9 2004 0 1990 0 1985 0 2003 0
10 1998 \] 1978 0 1984 0 1990 0

Table 7.2.: Top ten influenza seasons in terms of mean shift in ILI.

0-4 yrs 45-64 > 65

rank | season | CT?| season | CT?| season | CT?
1 1989 1 1999 0 1989 1
2 2003 0 1989 1 1999 0
3 1993 1 1975 1 1993 1
4 1999 0 1993 1 1998 0
5 1998 0 1998 0 1996 0
6 1995 1 1996 0 1984 0
7 2000 0 1984 0 1976 0
8 1996 0 1995 1 1975 1
9 2001 0 1983 0 1983 0
10 1975 1 2003 0 1995 1

7.8.2. Association between exponentiated mean shifts and
antigenic distance between CT seasons

It is possible that larger cluster transitions (in terms of the antigenic dis-
tance between clusters) have a greater effect on morbidity and mortality
than smaller cluster transitions. Crude exponentiated mean shifts for each
influenza season were plotted against the antigenic distance between clus-
ters to determine whether, crudely, there is evidence for this in the data

analyzed (figure 7.5). There is not a consistent association between expo-
nentiated mean shifts and the size of cluster transitions.
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7.8.3. Estimates of the effect of CTs from model fits

In this section, estimates of the effect of CT seasons on the mean shift for
P&I and ILI from biLOGR model fits with dependency between the random
effect mean shift and CT seasons are explored.

Models with reference priors or weakly informative priors on the effect of
CTs on the mean shift are computationally difficult. For example, the two
chains for the effect of cluster transitions on the mean shift with a reference
or weakly informative prior do not converge for any model. The two chains
for the CT coefficient appear to have difficulty visiting the parameter space
(e.g. figure 7.6). Recall that in section 5.12, the relationship between in-
formation in the data and convergence of the model was introduced. The
difficulty that the models have in sampling from the posterior for the effect
of CTs may be related to lack of information in the data with which to
estimate the average effect of CTs on the mean shift in these data.

Attempts were also made to estimate the effect of CTs in the two seasons
subsequent to the first H3N2 season in which they were dominant (given no
further CT occurred during these two seasons) to determine whether the
effect of a CT is lagged relative to its emergence. Models with anything but
a reference prior on the effect of CTs lagged by one or two seasons do not
run and were abandoned.

As mentioned above, the difficulty that the models have in sampling from
the posterior for the effect of CTs (illustrated in figure 7.6) indicates there
may be too little information in P&I and ILI data with which to quantify
the CT effect on the mean shift. Setting more informative priors on the co-
efficient for the CT effect improves mixing to some extent, since the models
have a less diffuse area to sample from when more informative priors are
set. Because there appears to be little information in the data about the
CT effect, the posterior for the CT effect is essentially dictated by the prior
on the CT effect (e.g. figure 7.7). For the reference prior scenario (left-most
plot in figure 7.7), the two chains for the posterior for the CT effect inhabit
a similar area of parameter space but do not overlap completely. This is
because of lack of convergence and poor mixing of the two chains for the
CT effect (figure 7.6). The variance of the posterior for the CT effect is less
than the variance of the prior but is still large (encompassing a magnitude
of the effect of CT's on the mean shift, on the original scale, between approx-
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imately 0 and 37,000,000). The fact that the posterior is less variable (has
lower variance) than the reference prior suggests there may be information
in the data with which to estimate the effect of cluster transitions but that
this information is limited.

For the weakly informative prior scenario (middle plot in figure 7.7), the
prior and posterior are similar. The two chains for the posterior CT effect
do not agree on the median CT effect (35, on the original scale, for one
chain and 547 for the other), again because of lack of convergence of the
two chains for the CT effect (e.g. figure 7.8). When a strongly informative
prior is used, the posterior and prior are almost identical (right-most plot in
figure 7.7). Both the fact that the posterior from the reference prior scenario
is very vague and the sensitivity of the posterior to the choice of prior suggest
that there is little information in the data which to estimate the effect of
CTs on the mean shift. If there were information in the data with which
to estimate the effect of CTs on the mean shift, then the variance of the
posterior would be expected to be less than the variance of the reference and
weakly informative priors. The variance of the posterior would be expected
to encompass a plausible range of effect sizes. If there were information in

the data about the effect of CTs, the estimated magnitude of this effect
would be relatively robust to the choice of prior.

10 20
1

-10 0

250 300

Figure 7.6.: Example history plot showing lack of convergence and
poor mixing of two chains for the effect of cluster tran-
sitions on the mean shift with a reference prior on the

CT effect. This plot is from the biLOGR fit to ILI for the >
65 age group.

The estimate of the magnitude of the effect of each unit change in the
antigenic distance between clusters on the mean shift in P&I or ILI is also

sensitive to the choice of prior, though posteriors are less dominated by
priors than for estimates of the effect of CTs (e.g. figure 7.9 vs. 7.7). The
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Figure 7.7.: Sensitivity of the posterior for the average effect of CTs
on the mean shift in ILI for the > 65 age group to the
choice of prior on the CT effect. The y-axis is probability
density and the x-axis is the CT effect on the logarithmic scale.
Priors and posteriors for the two chains are plotted separately.
Dotted curves are priors, solid curves are posteriors.

posterior distribution for the coefficient of the effect of each unit change in
antigenic distance with a reference prior suggests a median magnitude of
effect of 1.4 on the log scale (left-most plot in figure 7.9). With a weakly
informative prior (middle plot in figure 7.9) two chains for the coefficient for
the effect of antigenic distance do not converge, but both suggest a median
effect size close to 0 on the log scale (no effect). History plots of two chains
for coefficients for the effect of each unit change in antigenic distance do not
mix well within the range of the posterior distribution for any prior (e.g.
figure 7.10). Poor mixing of two chains for coefficients for antigenic distance
reiterates that there is limited information in the P&I and ILI data with
which to quantify the effect of a change in antigenic distance on mean shifts.
These data cannot provide strong evidence for or against an effect. Posterior
distributions for coefficients for antigenic distance are not identical to their
reference or weakly informative prior distributions, meaning that the P&1

and ILI data do provide some information with which to quantify the effect
of different sized cluster transitions.
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Figure 7.8.: Example history plot showing lack of convergence and
poor mixing of two chains for the effect of cluster tran-

sitions on the mean shift with a weakly informative
prior. This plot is from the biLOGR fit to ILI for the > 65 age
group.
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Figure 7.

9.: Sensitivity of the posterior for the average effect of each
unit of antigenic distance between clusters on the mean

shift in ILI for the > 65 age group to the choice of prior
on the effect of a unit change in antigenic distance.

7.9. Impact of vaccination of the elderly on the
mean shift in P&I and ILI

7.9.1. Association between exponentiated mean shifts and
vaccine coverage of the > 65 age group

Increasing vaccine coverage of the elderly each influenza season might be
expected to lead to a decrease in the mean shift. Crude exponentiated mean

shifts were plotted against vaccine coverage to assess whether, crudely, there
is evidence for this in the P&I or ILI data.

There is no clear association
between increasing vaccine coverage of the elderly and the size of mean shifts
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Figure 7.10.: Example history plot showing lack of convergence and
poor mixing of two chains for the effect of a unit
change in the antigenic distance between clusters on
the mean shift. This plot is from the biLOGR fit to ILI for
the > 65 age group with a weak prior on the effect of a unit
change in the antigenic distance between clusters.

for any age group (figure 7.11).

In section 2.5 it was noted that influenza seasons dominated by influenza
A/H3N2 virus tend to experience higher levels of morbidity and mortality
than those dominated by influenza A/HIN1 or B viruses. There are two
reasons why it is important to consider whether seasons were dominated
by influenza A/H3N2 virus when estimating the impact of vaccination on
trends in the relative impact of influenza seasons (here, the mean shift).
Influenza A/H3N2 virus-dominance may act as, first, an effect modifier of
vaccine impact and/or, second, a confounder of vaccine impact.

First, influenza A/H3N2 virus-dominance may act as an effect modifier
of vaccine impact. VE may be less during lower impact influenza seasons.
This is because it 1s expected that morbidity or mortality occurring during
lower impact seasons is less specific to influenza. Morbidity and mortality
not attributable, or secondary, to influenza would be expected to be dis-
tributed evenly between vaccinated and unvaccinated people (assuming no
difference in the underlying health status of vaccinated and unvaccinated
people). Lower VE during lower impact influenza seasons would be expected
to result in a smaller vaccine impact in lower impact influenza seasons. In or-
der to determine whether, crudely, the association between mean shifts and
accination coverage is different depending on whether influenza A/H3N2
viruses were dominant, mean shifts were colour-coded as H3N2-dominated
seasons (red/gold) or not (blue/green) on the scatter plot of mean shifts

against vaccine coverage (figure 7.12). There is not a consistent associa-
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tion between vaccine coverage and mean shifts in H3N2-dominated seasons.
For H3N2-dominated seasons mean shifts appear to be higher during in-
fluenza seasons with moderate vaccine coverage than in seasons with either
no vaccine coverage or high vaccine coverage. There is no association be-
tween vaccine coverage and mean shifts in seasons dominated by influenza
A/HIN1 or B virus. The difference in trends in mean shifts for seasons dom-
inated by either influenza A/H3N2 virus or HIN1/B viruses for some age
groups suggests H3N2-dominance is acting as an effect modifier of vaccine
impact.

Second, influenza A/H3N2 virus-dominance may act as a confounder of
vaccine impact. If, for example, an increase in the frequency of influenza
A/H3N2 virus-dominated seasons had occurred towards the end of the study
period, when vaccine coverage was highest, this might have caused negative
confounding of the impact of vaccine on the mean shift. Influenza A /H3N2
virus-dominated seasons are not more or less frequent during the period
when vaccine coverage was moderate or when coverage was high. It is

unlikely that influenza A/H3N2 virus-dominance is acting as a confounder
of vaccine impact.
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7.9.2. Expected vaccine impact

In this section, the expected impact of vaccination of the > 65 age group
during moderate and high coverage periods on excess ILI and on excess P&I,
both in the > 65 age group, is posited. The expected impact of vaccination
on each outcome is based on estimates of average effectiveness of trivalent
inactivated influenza vaccination of the elderly from the literature, vaccine
coverage and presumed average cumulative excess ILI and P&I in influenza
seasons before appreciable vaccine coverage was achieved. Presumed aver-
age cumulative excess [LI/P&I before vaccination coverage was appreciable
captures what excess would be, on average, if vaccine coverage were zero.
Two levels of average vaccine coverage were used: 36% (the average coverage
of the > 65 age group in England & Wales between 1989/90 and 1999/00)
and 70% (average coverage of the > 65 age group between 2000/01 and
2004/05) (see the following section for derivations of these cut-points in
coverage).

Recall from section 2.8.2 that best estimates of vaccine effectiveness against
acute respiratory hospitalisations in the elderly are between 20 and 30%. {114,
216] Vaccine effectiveness against ILI would be expected to be lower than
that against respiratory hospitalisations because ILI may be less specific to
influenza and thus less likely to be prevented by influenza vaccination than
acute respiratory hospitalisations. Presumed excess ILI rates in England &
Wales in the absence of vaccination are hypothetical (since no paper was
identified) but plausible given the range estimates of excess ILI rates dur-
ing seasons with low vaccine coverage of the elderly. [1,65] Table 7.3 shows
that if cumulative excess ILI incidence in the absence of vaccination were
2000/100,000 per influenza season, during seasons when VE against ILI is
20% and coverage (p) is 36%, at most 144 ILI consultations per 100,000

people over 65 (7.2% of the pre-vaccination excess ILI rate) (d;) could be
prevented. This estimate was calculated as

dq = (2000/100,000) x VE x p

When coverage averages 70%, at most 280/100,000 excess ILI consulta-
tions (14% of the pre-vaccination excess ILI rate) would be prevented each
season given a VE of 20%. Estimates of the predicted impact of vaccination

on ILI are sensitive to the presumed average excess ILI rate before vacci-
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nation. These estimates are the impact due to direct effects of vaccination
only. Assumptions underlying these calculations are that vaccinated and
unvaccinated elderly are similar in all ways related to risk of morbidity or
mortality apart from vaccination status and that VE is constant influenza
season to influenza season. The calculation is sensitive to the presumed
excess morbidity and mortality in the absence of influenza.

Even though it was not possible to fit HMMs to P&I for the > 65, it
is worth noting the range of possible rates of excess P&I prevented given
the vaccine coverage achieved and estimates of VE against P&I from the
literature. In section 2.8.2 best estimates of VE against respiratory mor-
tality in the elderly between 12% (95% CI 8-16%) and 79% (0-100%) were
noted. [77,113] These estimates were taken to be the best estimates of VE
against P&I. The average excess P&I rates in influenza seasons before much
influenza vaccine was distributed to the elderly are based on estimates from
the US [7] and France {79]. When vaccine coverage was 70%, assuming VE
of 79% against P&I and average pre-vaccination incidence of excess P&I
of 262/1,000,000 per influenza season, an average of up to 145 deaths per
1,000,000 people aged > 65 each influenza season (55% of pre-vaccination
excess P&I) might have been prevented (table 7.4).

The estimates in tables 7.3 and 7.4 are of the impact in the elderly at-
tributable only to the direct effect of some of them having been vaccinated.
These estimates of vaccine impact do not include the possible indirect ef-
fects afforded to unvaccinated elderly attributed to their mixing among vac-
cinated elderly. It is unlikely that the elderly play a strong role in the com-
munity transmission of influenza since transmission appears greatest from
children and teenagers. [38,39] If there were an impact in other age groups
due to the vaccination of the elderly - an indirect effect of vaccinating the
elderly in dampening transmission of influenza in the community among
other age groups - it would be expected to be much smaller than the (di-
rect) impact in the elderly in tables 7.3 and 7.4. A small impact in other
age groups would be difficult to detect and to quantify using modeling. As

a first step, an attempt was made to estimate the magnitude of vaccine
impact in the elderly.
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Table 7.3.: Range of possible impact of vaccination of the elderly
on excess ILI in the elderly.

Presumed average cumulative | 2000 1500 1000| 500
excess ILI per 100,000 in the >

65 age group each season in the

absence of vaccination

Estimated excess ILI per 100,000 in | 144 = 2000 x | 108 | 72 36
> 65 prevented each season assuming | 0.2 x 0.36

36% coverage and 20% protection

(36% coverage and 30% protection) (216) (162)| (108)| (54)
Estimated excess ILI per 100,000 in | 280 210 {1140 | 70
> 65 prevented each season assuming

70% coverage and 20% protection

(70% coverage and 30% protection) (420) (315){ (210)| (105)

Table 7.4.: Range of possible impact of vaccination of the elderly
on excess P&I in the elderly.

Presumed average cumulative
excess P&I per 1,000,000 in the
> 65 each season in the absence
of vaccination

262 °

1487

Estimated excess P&I per 1,000,000
in > 65 age group prevented each sea-
son assuming 36% coverage and 12%
protection

(36% coverage and 79% protection)

11

(75)

(42)

Estimated excess P&I per 1,000,000
in > 65 age group prevented each sea-
son assuming 70% coverage and 12%
protection

(70% coverage and 79% protection)

(145)

(82)

average excess P&l rate between 1969/70 and 1972/73 in the US, fig 3B from [7)
"average excess P&I between 1980/81 and 1984/85 in France, table 2 from {79
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7.9.3. Estimates of vaccine impact on mean shifts in ILI in
the > 65 age group from model fits

In this section. results of bILOGR model fits to estimate the impact of vac-
cination on the mean shift in ILI in the > 65 age group are summarised.
Models of the impact of each unit increase in vaccine coverage (i.e. vaccine
coverage as a quantitative variable) on the mean shift with either refer-
ence or weakly informative priors on vaccine impact are computationally
problematic. The two chains for the coefficient for vaccine impact with a
reference or weakly informative prior do not converge for any model. The
two chains for the coefficient for vaccine impact appear to have difficulty
visiting the parameter space (e.g. figure 7.13).

0

£ _d kbl

-10

-20

250 300

Figure 7.13.: Example history plot showing lack of convergence and
poor mixing of two chains for the impact of vaccination
on the mean shift. This plot is from the biLOGR fit to 1LI

for the > 65 age group with a reference prior on the impact
per unit increase in vaccine coverage.

BiLOGR models were also fitted to ILI for the > 65 age group with a
dependency between the mean shift and vaccine coverage as a categorical
variable. This model compared the average mean shift in seasons between
1975/76 and 1988/89 (the reference period when vaccine coverage of the >
65 age group was assumed to be 0) to the average mean shift in seasons with
moderate vaccine coverage of the elderly (average 36% coverage between
1989/90 and 1999/00) and to the average mean shift in seasons with high
vaccine coverage of the elderly (average 70% coverage between 2000/01 and
2004/05).

Posterior distributions for the impact of vaccination in the > 65 age group
are dominated by their respective priors (e.g. figure 7.14). This suggests
that there is little information in the ILI data for the > 65 age group with

which to estimate the impact of moderate or high vaccine coverage on the
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mean shift.

7.10. Confounding and effect modification

Since there appears to be little information in the data with which to esti-
mate exposure effects of interest, there is no impetus to include confounders
in these models or to stratify by possible effect modifiers (such as H3N2-
dominance, in the case of estimating vaccine impact). For attempts to
estimate the effect of CT seasons or vaccine impact, the variance of the
posterior distributions is diffuse and encompasses a range of implausible
estimates of the exposure effects of interest. For attempts to estimate the
effect of a unit change in the antigenic distance between clusters on the mean
shift, thereby allowing for the different size of CTs in terms of antigenic dis-
tance, two chains for coefficients for the effect of antigenic distance do not
mix well, indicating low power. Adjusting for confounding involves strat-
ifying the analysis by the putative confounder and calculating a summary
adjusted estimate of the exposure effect as a weighted average of confounder
stratum-specific estimates. Adjusting for confounders does not increase the
power of an analysis. Adjusting for confounding will not reveal effects which
are undetectable due to lack of power. Testing for effect modification also
requires that there be information in the data about effects of interest.

7.11. Summary of results

Scatter plots of crude mean shifts against covariates suggest little evidence
of association between exposures of interest and mean shifts in P&I or ILI.
There is limited information in the data about vaccine impact or an effect
of CTs on mean shifts, so posteriors for vaccination and for CT seasons
are little influenced by the data and more influenced by priors. Analysing
the effect of each unit change in antigenic distance between clusters is more
powerful than analysing CT seasons as a binary variable (the latter does not
allow for some CTs being bigger than others in terms of antigenic units).
Even allowing for the different size of CTs, there is limited information in
the data about the effect of CTs on the size of epidemics.
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ate or high vaccine coverage on the mean shift in ILI

for the > 65 age group to the choice of prior on the
coefficients for vaccine impact.
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7.12. Results in context

In terms of ILI, the relative impact of influenza seasons in England & Wales
using mean shifts estimated from biLOGR HMMs is comparable to esti-
mates of the relative impact of influenza seasons using excess ILI rates
(figures 7.15, 7.16 and 7.17). [1-3] Recall from section 2.3.1 that early es-
timates by Fleming et al. (black circles in figures 7.15, 7.16 and 7.17) [1],
the black and gray “+” in figure 7.15 [2]) were derived differently from later
estimates (black diamonds in figures 7.15 and 7.17 [3]). Therefore compar-
isons between the work undertaken for the thesis and estimates of excess
ILI by Fleming et al. will be made separately for the two methods.

The relative impact of influenza seasons was comparable for HMMs and

early excess ILI estimates by Fleming and colleagues [1,2] despite a few key
differences in the methods used:

1. In HMMs, the models defined ‘aberrant’ periods whereas in the method
of Fleming et al. an ‘epidemic threshold’ was calculated, and ‘in-

fluenza active weeks’ defined, externally to model fitting (this method
was described in detail in section 2.3.1).

2. In the HMM analysis, the estimate of the relative impact of influenza
seasons was the mean shift: the ratio of the average rate in ‘aberrant’
weeks for a particular season divided by the average rate in ‘normal’
weeks for that influenza season. The method of Fleming et al. calcu-
lated RRs similarly, but multiplied them by the number of ‘influenza

active weeks’ to give an estimate of the total excess ILI rate for a given
season.

3. Laboratory reports held in LabBase2 are mostly from hospitalised
patients up to 1993 and a mixture of hospitalised patients and GP
patients from 1993 onwards. The analyses performed for the thesis
were done using only these laboratory data. The analyses by Fleming
and colleagues were based on laboratory data which include the data
in LabBase2 and additional laboratory data from joint HPA CfI -

RCGP sentinel GP surveillance [34], results of which are not stored in
LabBase2.

4. Fleming et al. used laboratory data aggregated by age and influenza
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type/subtype. If there are different ‘aberrant’/‘influenza active’ peri-
ods for different age groups, the method would not account for this.
In the analysis described in the thesis, age group-specific influenza
A laboratory reports were used, thus allowing for different timing of
‘aberrant’ periods between age groups.

o

Excess ILI from Fleming’s 2005 paper (black and gray “+" in fig-
ure 7.15) was attributed to either influenza or RSV (see detail in

section 2.3.1). BiILOGR mean shifts estimated jointly from ILI/P&I

and laboratory data were attributed solely to influenza.
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Figure 7.15.: Comparison of estimates of excess ILI rates in chil-
dren <5 in England & Wales (right axis) with expo-
nentiated mean shifts estimated by HMMs (left axis).
Black/gray symbols are excess ILI estimates as follows: black
circles are excess ILI in the 0-4 age group from (1], gray “+”
are excess ILI in <1 age group and black “+” are excess ILI
in the 1-4 age group from [2], black diamonds are excess 1LI
in the 1-4 age group from [3]. Red symbols are mean shifts for
ILI in the 0-4 age group, with 95% Crls (gold).

For the later Fleming paper, excess ILI was attributed to either influenza
virus or RSV using a different method of defining ‘influenza (or RSV) ac-
tive periods’ (figures 7.15 and 7.17). [3] The definition of ‘active periods’ for

either virus was the average ILI each winter in the weeks (surrounding the
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Figure 7.16.: Comparison of estimates of excess ILI rates in the 45-
64 age group in England & Wales (right axis) with
exponentiated mean shifts estimated by HMMs (left
axis). Black circles are excess ILI in the 45-64 age group
from [1]. Red symbols are mean shifts for ILI in the 45-64 age
group, with 95% Crls (gold).
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Figure 7.17.: Comparison of estimates of excess ILI rates in the el-
derly in England & Wales (right axis) with exponenti-
ated mean shifts estimated by HMMs (left axis). Black
circles are excess ILI in the > 65 age group from [1] and black
diamonds are excess ILI in the 65-74 age group from [3]. Red

symbols are mean shifts for ILI in the > 65 age group, with
95% Crls (gold).
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peak week of age-aggregated routine laboratory reports) that encompassed
70% of all laboratory reports for either influenza or RSV that influenza sea-
son. The baseline for calculation of excess was the winter period encompass-
ing fewer than 30% of the laboratory reports for either virus. For periods
where influenza and RSV circulation overlapped, excess ILI during those
weeks of that winter was apportioned to RSV and influenza proportional to
the excess for that winter that was attributed to either virus alone. For three
influenza seasons for which there are estimates from the HMMs and from
Fleming and colleagues using this method, the two methods disagree on the
relative impact of the 1994/95 and 1995/96 influenza seasons for children <5
(figure 7.15). Fleming estimated that 1995/96 was a slightly lower impact
season than 1994/95 whereas the HMM estimated that 1995/96 was clearly
higher impact than 1994/95. There are two reasons for this discrepancy.
First, the estimate of the excess ILI attributable to influenza in 1994/95
from the HMM is lower than the estimate from Fleming et al. because
1994/95 was dominated by influenza B virus circulation; in the HMM only
laboratory reports for influenza A were modeled. This means that weeks in
the 1994/95 season were less likely to be designated as ‘aberrant’ since the
laboratory data indicated little influenza (A) activity during the 1994/95
season. Second, the estimate of the excess ILI attributable to influenza in
1995/96 from Fleming et al. is lower than the estimate from the HMM be-
cause in 1995/96 periods of RSV and influenza virus circulation overlapped
considerably. Fleming et al. apportioned excess ILI incidence to the two
viruses meaning less of the excess was attributed to influenza. This had a
proportionately bigger effect on the estimate of excess ILI in children <5
than on estimates for adults > 65 (figure 7.17).

Estimates of relative impact of influenza seasons in England & Wales in
terms of excess respiratory mortality rates from the literature are compa-
rable to estimates of the relative impact of influenza seasons in terms of
mean shifts in P&I from HMMs (figures 7.18). This is despite differences
in the method of defining relative impact of influenza seasons in terms of
mortality: in HMM fits, ‘aberrant’ weeks were defined separately for ILI
and for P&I; Fleming defined an epidemic threshold, and ‘influenza active
weeks’, using ILI and laboratory data and used the same ‘influenza active
weeks’ to define excess mortality.

For children, variability influenza season to influenza season in excess
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respiratory mortality in the age group 1-4 yrs is low and is similar to the
variability influenza season to influenza season in mean shifts in P&I for

children 0-4 (figures 7.18 to 7.20). [57] Fleming and colleagues found the

variability in excess respiratory mortality influenza season to influenza sea-
son is greater for the age group <1; [57] this age group was not modeled for
the thesis. Weekly rates of laboratory reports for children <1 are extremely

low. limiting the ability to use multivariate HMMs to estimate mean shifts
for this age group.
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Figure 7.18.: Comparison of estimates of excess respiratory mortal-
ity rates in children <5 in England & Wales (right
axis) with exponentiated mean shifts estimated by
HMMs (left axis). Black circles are excess respiratory
mortality (pneumonia, influenza or bronchitis) in the 0-4 age
group, and gray circles are excess respiratory mortality in <1
age group, both from [57]. Red symbols are mean shifts for
P&1 in the 0-4 age group, with 95% Crls (gold).

For people 45-64, the relative impact of influenza seasons in terms of
excess respiratory mortality in England & Wales from the literature and
mean shifts in P&l are similar (figure 7.19). [53] The 1996/97 influenza
season was higher impact than the 1997/98 season; this distinction was
more pronounced for the method of Fleming and colleagues than for the

HMM method. In the 1996/97 season, influenza A circulated in the first



part of the season and influenza B circulated in the latter part. [6] This
kind of longer duration, mixed type, influenza season could give a higher

estimate of excess mortality compared to the mean shift in P&I estimated
using the HMM. There are two reasons for this. First, the mean shift
does not take into account the duration of the influenza season: the mean
shift is simply the ratio of the average rates in ‘aberrant’ to ‘normal’ weeks
for a given influenza season. The estimate of excess rates of mortality by
Fleming et al. were rate ratios (similar to mean shifts), multiplied by the
pumber of ‘virus active weeks’ in the season. A long influenza season can
result in high estimates of excess mortality (because the excess is accrued
in each week for many weeks) without affecting the mean shift. Second, in
the HMM, the mean shift was only estimated using influenza A laboratory
reports, so mortality occurring after the end of circulation of influenza A
would is downweighted in estimating the state sequence and thus the mean
shift. Both of these facts may explain the greater disparity between seasons
1996/97 and 1997/98 found by Fleming than estimated using the HMM.

For the deaths in the elderly, estimates by Fleming et al. of the relative
impact of seasons in terms of excess respiratory mortality for the 65-74 age
group are comparable to estimates of mean shift in P&I for the > 65 age
group (figure 7.20). (53] For the > 75 age group (not modeled for the thesis),
the impact of the 1996/97 influenza season relative to the 1997/98 season
is pronounced. Risk of dying from influenza increases with advancing age,
because of the prevalence of comorbid illnesses, so the relative impact of
influenza seasons in the > 75 age group may be more specific to influenza
than the relative impact in the > 65 or 65-74 age groups (whose deaths
might be more evenly distributed throughout the year, though still higher
in winter than summer).

The timing of ‘influenza active periods’ as defined by the two methods
of Fleming and colleagues discussed above - based on an ‘epidemic thresh-
old’ defined using ILI in weeks when there were no laboratory reports for
influenza [1,2] (figure 7.21) and using weeks surrounding the peak labora-
tory report week that encompassed at least 70% of the laboratory reports

for that season (3] (figure 7.22) - were similar to the timing of ‘aberrant’
periods estimated using the HMM.
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Figure 719 . Comparison of estimates of excess respiratory mortal-
ity rates in adults 45-64 in England & Wales (right
axis) with exponentiated mean shifts estimated by
HMMs (left axis). Black ‘+’ are excess respiratory mor-
tality (pneumonia, influenza or bronchitis) in the 45-64 age
group from [53]. Red symbols are mean shifts for P&I in the
15-64 age group, with 95% Crls (gold).
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Figure 7.20.: Comparison of estimates of excess respiratory mortal-
ity rates in the elderly in England & Wales (right axis)
with exponentiated mean shifts estimated by HMMs
(left axis). Black ‘4 are excess respiratory mortality (pneu-
monia, influenza or bronchitis) in the > 75 age group, and gray

‘47 are excess respiratory mortality in the 65-74 age group,

both from [53]. Red symbols are mean shifts for P&I in the >

65 age group, with 95% Crls (gold).
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The median duration of the ‘aberrant’ period each influenza season esti-
mated using biLOGR HMMs (9.5 weeks, interquartile range 6-14 weeks) is
comparable to the mean length of the influenza season, 10 weeks, estimated
from French ILI data. [86] Rath et al. estimated the mean duration of the
influenza season by fitting 2 state HMMs to weekly sentinel surveillance for
influenza-like-illness data from France between the 1975/76 and 1996/97
seasons. [86] The duration of the ‘aberrant’ period each season estimated
from the biLOGR HMM is typically shorter than the duration of ‘influenza
active periods’ as defined by Fleming [1-3] (figures 7.23 and 7.24). The
biLOGR HMM sometimes estimates a season to have experienced no ‘aber-

rant’ period at all, while the methods of Fleming et al. never does so. These
differences are because:

1. Only influenza A laboratory reports were used to fit biLOGR HMMs,
whereas Fleming and colleagues used all laboratory reports for in-
fluenza regardless of type. In seasons where influenza B circulated
alone (e.g. 1994/95), or at a different time in the influenza season
than influenza A (e.g. 1996/97), the method of Fleming et al. would
tend to estimate a non-zero or longer duration ‘influenza active’ period
than the ‘aberrant’ period estimated by the biLOGR HMM.

2. In the biLOGR HMM, age group-specific influenza A laboratory re-
ports were analyzed, whereas Fleming and colleagues used age-aggregated
laboratory reports. If there are lags between the timing of ‘aberrant’
periods across age groups, the methods of Fleming et al. would again
tend to estimate non-zero or longer duration ‘influenza active' periods
than biLOGR HMMs. This is because the HMM would define differ-
ent ‘aberrant’ periods for different age groups and allow, for example,
‘aberrant’ periods to begin and end earlier for some age groups than
for others. The methods of Fleming et al. define one (long) ‘influenza

active period’ from the age-aggregated laboratory (and ILI) data for
each influenza season and apply it to each age group.
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7.12.1. Plausibility of an effect of CTs

Based on a number of pieces of evidence, an average inflating effect of CTs
on the mean shift would be expected. First, this association is biologically
plausible. CTs would be expected to result in an increase in the propor-
tion of population susceptible to dominant circulating influenza A/H3N2
virus variants since antibodies generated by natural infection or vaccina-
tion against previously circulating variants become less able to neutralise
variants which are antigenically drifted. Recall from section 2.6.2 that the
make-up of the vaccine used in most countries is updated regularly to track
the antigenic evolution of the influenza A/H3N2 virus (the vaccine is less
regularly updated with a different variant of A/HIN1 virus or lineage of
B virus). [106] The recommended influenza A/H3N2 virus variant for the
vaccine is updated when there is an antigenic distance of at least 2 units (a
fourfold dilution of antiserum in the HI assay) between the vaccine variant
and the variant expected to circulate in the next influenza season. The av-
erage antigenic distance between clusters of influenza A/H3N2 virus is 4.5
units. There is evidence to suggest that immunity to one variant in a clus-
ter confers protective immunity to challenge with other variants within the
same cluster. [103] There appears to be between 60 and 80% cross immunity
between clusters adjacent in time. {103, 104] There is probably little or no
cross-immunity between non-adjacent clusters. {105

Second, the positive association between CTs and the mean shift is sup-
ported by a modeling study. In section 2.7 it was noted that the best
estimate of the average effect of a number of CT seasons on influenza mor-
bidity or mortality is from a model of the antigenic evolution of influenza
A/H3N2 virus coupled with a transmission dynamic model. Recall that
model-predicted peak rates of ‘cases’ of influenza during the first season
after a new cluster emerged are approximately 1.6 times higher than the
average peak rates in other seasons. {14] This value was used to set strongly
informative priors on the effect of CTs (and the antigenic distance between
clusters) on the mean shift in P&I and ILI in section 7.5.

Third, a positive association between large antigenic drift events and epi-
demics has often been noted (e.g. in 1972 and 1975 {93]). Most reports
in the literature regarding the impact of large antigenic drift events in in-
fluenza A/H3N2 virus evolution refer to individual drift events [63,107,108)
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or to a number of antigenic drift events that coincided with massive epi-
demics. [58,93,109,110] This means that the average effect of CTs on the
relative impact of influenza seasons may be lower than what can be gleaned
from the literature. Greene et al. plotted the monthly percentage of AC
due to P&I from 1968 to 1998 for US residents aged 65 and over; this plot
suggested that all CT seasons resulted in an average or above average per-
centage of deaths due to P&I but that not all of the highest peaks in the
graph occurred during CT years. (94]

From work described in chapter 4, crude associations between CTs and
peak incidence of ILI or P&I observed in each influenza season appear to
be, at most, weakly positive. When peak P&I and ILI rates per season
are ranked, only for P&I in the > 65 age group do CT seasons occur in at
least five of the top ten seasons. T-tests suggest weak evidence for small
increases in peak P&I and ILI in the first H3N2-dominated season after a
CT compared with the average season or compared with intracluster sea-
sons. There is no clear association between peak rates of P&I and ILI each
influenza season and the antigenic distance between clusters (figure 4.11).
Taken together, these points suggest that any effect of CTs or the antigenic

distance between clusters on ILI or P&I are small and would be difficult to
detect using modeling.

7.12.2. Explanation for what was observed

The magnitude of the mean shift each influenza season is highly variable
whether or not a CT has occurred. No strong association between CTs and
mean shifts is evident. There is less of a positive association between mean
shifts and CTs than between peak incidence each season and CTs. This
may be because epidemics are poorly modeled by the HMMs. The inability
to fit epidemics dampens variability in mean shifts, making it more difficult
to detect the effect of CTs on the variability in mean shifts.

When the mean shifts for each influenza season are ranked largest to
smallest, never more than 4 out of 10 of the top seasons (in terms of the
size of the mean shift) are CT seasons. This agrees with findings when peak
incidence, instead of the mean shift, was ranked in chapter 4. There is no

clear association between exponentiated mean shifts and the size of cluster
transitions.
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There is not sufficient information in the P&I and ILI data analyzed to
quantify the magnitude of the effect of CTs, or the antigenic distance be-
tween CTs, on the mean shift. This is consistent with the finding that terms
for influenza A /H3N2 virus antigenic drift were not important determinants
of excess mortality in multiple linear regression analyses. [51,52] Smaller
degrees of antigenic drift were used in these other studies, however, which
means these terms would have been less likely to be strong determinants of
excess mortality than large antigenic drift events like CTs.

7.12.3. Reasons for a lack of information on CTs effects

There are at least six reasons why the analysis undertaken had limited power
to detect an effect of CTs on mean shifts. First, between 1975 and 2004 there
were only 9 CTs. This is perhaps too few cluster transitions to allow their
average effect to be estimated. The effect of CTs might be heterogeneous. If
factors such as vaccine mismatch, the dominant circulating variant(s) (e.g.
influenza A /H3N2 virus alone vs. in concert with influenza B or A/H1N1
virus) and ambient temperature modify the effect of cluster transitions,
it would be difficult to detect an average effect of CTs on mean shifts,
stratified by each of these potential effect modifiers, given only 9 or 10 cluster
transitions have been observed. Another possible source of heterogeneity in
any CT effect is the overlap in circulation of some clusters. (13] A small
overlap in the circulation of two clusters of influenza A/H3N2 viruses may
result in the population being sufficiently immunologically primed to blunt
the effect of CTs. As a first step in investigating whether the effect of CTs is
heterogeneous, the coefficient for the effect of CTs on the mean shift could
be modeled as a random effect (see chapter 8).

Second, the effect of a cluster transition may be felt in the first season
after it is isolated or in some other season. It may depend on when during
the season the transition occurs: a cluster transition occurring early in the
season may have its effect felt in the season of isolation whereas a cluster
transition occurring later in the season may not produce an effect until a
subsequent season. The models fitted only allowed for an effect in the season
the CT was first isolated, or in the first H3N2-dominated season after a CT
if the season of first isolation was not dominated by influenza A/H3N2 virus.
There were convergence problems when models allowing for an effect of CTs
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in the season it was isolated as well as in the 1st or 2nd season after it was
first isolated were tried. If the effect of CTs occurs sometimes in the season
in which it is isolated and sometimes 1 or 2 seasons after it is first isolated,
the power to detect the average effect of a CT on the mean shift will be
very low given only 9 CTs in the study period.

Third, the biLOGR mean shift may not be a good indicator of the rela-
tive impact of influenza seasons. It may be necessary, for example, to take
into account the duration of the ‘aberrant’ period, as well as the mean shift
(analogous to analyzing excess morbidity or mortality). In general, higher
impact influenza seasons (such as those when influenza A/H3N2 virus is
dominant) are also shorter. Taking into account the duration of the ‘aber-
rant’ period as well as the mean shift would increase the estimated impact of
slow burn and mixed-type influenza seasons (like 1996/97). This would be
likely to reduce the variability in the estimated impact of influenza seasons,
not increase it, and so would not make it easier to estimate determinants
of the variable impact of influenza seasons. Other indicators of the rela-
tive impact of influenza seasons have been used historically, for example
the percentage of deaths from all-causes that were registered to underlying
P&I. [94] This indicator is sensitive to the proportion of deaths due to other
causes. It may be fruitful to develop an indicator of the relative impact of
influenza seasons in terms of both morbidity and mortality. For example,
seasons which result in a large mean shift in both ILI and P&I would be de-
fined as higher impact than seasons resulting in a large mean shift in either
ILI or P&I alone. This would downweight seasons with high excess P&I
or ILI only, which might be caused by something other than influenza, and
consequently increase the specificity of the indicator of the relative impact
of influenza seasons for influenza.

Fourth, epidemics are poorly modeled by the HMMs. Because of this, the
variability in the impact of influenza seasons may be underestimated. This
would make it more difficult to detect the effect of CTs on mean shifts. Fifth,
the assumption that CTs affect mean shifts additively on the logarithmic
scale may not hold. It was not possible to use multivariate IDR models to
estimate covariate effects assuming an additive effect on the original scale.

The sixth reason why the analysis was unable to estimate an effect of
CTs is the general computational difficulties of the analysis. This reason is
related to the others listed above. Model fit of IDR models was unsatisfac-
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tory (recall chapter 6) and so exposure effects were not investigated using
IDR models. In IDR models, exposures act additively on the original scale.
No model adequately fitted P&I data for the > 65 age group. The effect
of CTs on deaths could therefore not be estimated (the vast majority of
deaths occur in the > 65 age group). It may be that the effect of CTs is
detectable only in relative mortality between influenza seasons (or mortality
+ morbidity) but not in morbidity alone.

7.12.4. Plausibility of a vaccine impact

In section 7.9.2, the plausible impact of vaccination on P&I and ILI in the >
65 age group in England & Wales was proposed based on vaccine coverage
and estimated VE from the literature. For upper estimates of coverage and
VE against P&I in the > 65 age group, around 55% of excess P& in this age
group might have been prevented through vaccination. It therefore might
have been possible to detect an impact of vaccination on the mean shift in
P&I had it been possible to model P&I in the elderly (see chapter 6). For
upper estimates of coverage and VE against ILI in the elderly, approximately
14% of excess ILI in this age group might have been prevented through
vaccination. This estimate is sensitive to the assumptions of constant VE
influenza season to influenza season and that vaccinated and unvaccinated
elderly are similar to each other in all ways apart from vaccination status as
well as to the presumed excess ILI in the absence of vaccination. Since it is
likely that children, and not elderly people, are the drivers of transmission
of influenza in the community, [38,39] an impact on P&I or ILI in other
age groups due to indirect effects (via herd immunity) of vaccination of the
elderly was expected to be nil or too small to detect.

Recall from chapter 4 that there is a weak negative association between
vaccine coverage of the > 65 age group and peak seasonal P&I and ILI rates
across age groups. Estimates of the peak incidence observed in influenza
seasons are sensitive to long-term changes to baseline incidence (noted in
chapter 4). For this reason the weak negative association between vaccine

coverage and peak P&I and ILI is not interpreted as evidence of vaccine
impact.
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7.12.5. Explanation for what was observed

There is no clear association between increasing vaccine coverage of the
elderly and the size of mean shifts in P&I or ILI for any age group.

The impact of vaccination on P&I in the elderly could not be assessed.
For models of the impact of vaccine coverage as a quantitative variable,
it was not possible to set sensible weakly informative priors (for example,
that excluded the possibility that high vaccine coverage is associated with
larger mean shifts). This may indicate the assumption of additive vaccine
impact on the logarithmic scale is invalid. It was possible to set sensible
weakly informative priors on the impact of vaccine coverage as an ordered
categorical variable with three levels (no vaccination, moderate coverage
and high coverage). There is not sufficient information in the ILI data for
the > 65 age group to quantify the magnitude of vaccine impact on mean
shifts in ILI. Posteriors for coefficients for the impact of moderate (36%) and
high (70%) coverage on ILI in the elderly are dominated by the reference or
weakly informative priors used.

Two studies, one from the Netherlands and the other from Canada, pro-
vide some evidence of vaccine impact of the elderly on influenza-related GP
consultations in the elderly, but may overstate impact because of uncon-
trolled confounding. Dijkstra et al. regressed the total ILI rate for the
influenza season, not excess ILI rate, on vaccine coverage each influenza
season. {121} A decline of 1.7 ILI consultations per 10,000 per % change in
coverage was noted (95% CI -3.3 to 0.01). The 95% CI for this result just
includes the null. Analyzing total ILI (baseline + excess) is sensitive to
changes in the long-term trend in ILI. As such, it would be useful to know
whether there have been declines in the use of GP services in the Nether-
lands as there have been in England & Wales. If so, this decline coincident
with increasing vaccination may simply reflect confounding by declines in
use of GP services.

Kwong et al. estimated RRs comparing excess GP consultations for
pneumonia or influenza for two periods: 1997-1999 (before the introduction
of a UIIP in Ontario, Canada) and 2000-2003. [95] The authors estimated
influenza - attributable outcomes by regressing them on influenza indica-
tors (see section 2.4.4). Looking only at the RRs for the other provinces
(not Ontario), the estimated decline in GP consultations for pneumonia or
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influenza coincident with the approximately 20% increase in vaccine cov-
erage of the elderly > 65 yrs was 85% (95% CI 83 to 87%) in the 65-74
age group, 85% (82 to 87%) in the 75-84 age group and 80% (77 to 83%)
in the > 85 age group. These estimates of impact were controlled for sex
and RSV circulation. Estimated impact was lower when the analysis was
restricted to H3N2-dominated seasons. These findings may be confounded
by different ambient winter temperatures or different health status of el-
derly in the period before and after 2000. Viboud and Miller argued that
because similar declines were observed in the US as in Ontario (and the
other Canadian provinces) comparing the two time periods (2000-2003 to
1997-1999), during which time vaccine coverage of the elderly in the US was
relatively stable, an unmeasured factor probably explains a portion of the
apparent vaccine impact estimated by Kwong et al.. [133]

The impact of vaccination on P&I in the elderly in England & Wales
might be large enough to detect. It was not possible to estimate the impact
of vaccination on P&I in the elderly using the HMMs. Reports of the impact
of vaccination on excess P&I in the elderly in the US and Italy [7,67) do not
include upper bounds on ClIs for trends so it is not clear whether there was
sufficient information in these data to estimate vaccine impact. The authors
of both papers report no evidence of a non-zero linear trend coincident with
increased vaccine coverage, suggesting that the ClIs on linear trend lines
were wide and included the null. This suggests that vaccine impact on P&!I
in these settings may be modest and therefore difficult to detect using linear
regression.

Studies from the Netherlands and Canada comparing rates of influenza
mortality before and after an increase in vaccine coverage of the elderly
suggest that for an increase in coverage of approximately 30% a decline
in influenza - attributable mortality of 35-70% could be expected. [64,95]
Despite careful control for confounding by age and RSV circulation, and
stratification by high impact/H3N2-dominant seasons, it is unlikely that the
declines in mortality noted in the Netherlands and in Canada are entirely
attributable to vaccination (see section 2.9.2).

The suggestion of effect modification of vaccine impact in England &
Wales by H3N2-dominance found in the analysis undertaken for the thesis

is in agreement with evidence for effect modification in other settings. (7,
64,67,95)

250



7.12.6. Reasons for a lack of information on vaccine impact

Some of the same reasons given for the lack of power to estimate CT effects
may explain the inability to detect an impact of vaccination (section 7.12.4).
The true vaccine impact on ILI may be too small to detect. The biLOGR
mean shift may not be a good indicator of the relative impact of influenza
seasons. Epidemics are poorly modeled by HMMs. This means that variabil-
ity in the relative impact of influenza seasons was underestimated, blunting
the ability to estimate determinants of that variability. As noted above,
IDR models were abandoned because of poor model fit so the additive on
the original scale impact of vaccination as a quantitative variable was not
estimated. Modeling vaccine coverage as an ordered categorical variable
is computationally easier, though an impact of moderate or high vaccine
coverage on ILI in the elderly could not be quantified. Computational dif-
ficulties, especially the fact that no model adequately fits P&I data for the
> 65 age group, severely limited the ability of the analysis to detect an
impact of vaccination. Since VE is higher for more severe outcomes, an
impact of vaccination on mortality might exist in the absence of an impact
on morbidity. It was not possible to assess this in using the HMMs.

7.12.7. Suggested methods for estimating the effect of CTs
and vaccine impact on morbidity and mortality

It might be possible to demonstrate impact of yearly vaccination of the
elderly by comparing different locations where yearly coverage of the elderly
stepped up in different influenza seasons or increased at different rates.
Excess morbidity or mortality, or mean shifts in morbidity or mortality,
could be compared by influenza season (or number of influenza seasons)
across settings where vaccine coverage was very different (e.g. {95]). This
would minimise potential confounding by antigenic drift since antigenic drift
tends to be geographically homogeneous. {101] Estimates of excess or mean
shifts could be controlled for factors which might differ between settings
and be associated with excess or mean shifts (like ambient temperature).
Alternatively, a lower bound on the impact of vaccinating elderly people
against influenza each season could be demonstrated using the method of
Carrat and Valleron and season-specific estimates of VE, excess mortality
(or morbidity) and vaccine distribution (see section 2.9.2). [79] For exam-
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ple, VE against ILI each season could be estimated from the proportion
of ILI patients captured by RCGP WRS who were vaccinated, using the
screening method. {217,218} This value could be substituted into the for-
mula of Carrat and Valleron. Recall that Carrat and Valleron estimated
excess mortality by regressing respiratory, cardiovascular and other mortal-
ity rates on rates of mortality registered to influenza and an error term that
had an ARIMA structure. They then used the estimated excess mortality
for each season (d,), actual vaccine coverage (p) and plausible values of
VE to estimate the mortality rate prevented through vaccination (d,) as
ds = (d,VEp)/(1 — VEp). This method assumes the attack rate in the un-
vaccinated is unaffected by vaccination. Therefore using this method would
give a lower bound estimate of vaccine impact (because it would encompass
only direct effects of vaccinating a proportion of the elderly population).

A method that could be employed to estimate the effect of cluster tran-
sitions allowing for confounding by vaccination is a transmission dynamic
model. Both large antigenic drift events and increasing vaccine coverage
of the elderly is expected to modify the size of the susceptible population
(increasing it in the case of antigenic drift, decreasing it with vaccination),
specifically the proportion of the population susceptible to the dominant
circulating influenza A/H3N2 virus variants. This is not explicitly modeled
in the latent variable time series models fitted in the thesis. One way to
use a transmission dynamic model to explore the effect of CTs, control-
ling for vaccine impact, would be to modify the time series-SIRS model of
Finkenstadt et al.. (88] Recall from section 2.4.6 that the number susceptible
(¢) and recovered (w) in week t+1 was dependent on a parameter, v that

captured the return of immune individuals to the susceptible class due to
waning immunity or antigenic drift

Ct+1 = Gt — K41 + Mwr
witl = (1 — e )wr + K1

where & is incidence of ILI determined from a time series of weekly ILI
counts and estimates of the proportion of ILI cases who have influenza and
the proportion of influenza cases that consult a GP with ILI. To estimate
the effect of CTs, v could be constrained to be constant for the entirety
of influenza seasons apart from 1 week during seasons when a CT was ob-
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served; this would allow estimation of the effect of CT seasons on population
immunity and on predicted ILI. To control for confounding by vaccination,
the maximum value for «, the maximum proportion of recovereds returning
to the susceptible class, in a given influenza season could be constrained to
be 1-VEp, where p is vaccine coverage. Preliminary work by Finkenstadt et
al. suggested it would be difficult to apply this method to ILI in England
& Wales because the proportion of those with ILI who consult a GP, by
age, and the proportion of ILI patients who have influenza are not known

for England & Wales. [88] It might be possible to elicit prior information on
these factors from experts, like GPs.
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8. Discussion and conclusions

The objectives of the work described in the thesis were threefold:

Objective 1: To estimate the relative impact of influenza seasons in Eng-
land & Wales between 1975/76 and 2004/05 in terms of ILI and P&I by
jointly modeling ILI, P&I and laboratory reports for influenza A virus us-
ing multivariate latent variable time series models.

Objective 2: To use multivariate latent variable time series models to es-
timate the mean effect of large antigenic drift events, or cluster transitions,
in influenza A/H3N2 virus evolution on the relative impact of influenza sea-
sons in terms of P&I and ILI by age group.

Objective 3: To use the same models to estimate the impact on influenza-
attributable ILI and P&I in the > 65 age group, and in other age groups,

per unit increase in yearly vaccine coverage of the > 65 age group.

8.1. Key findings related to objective 1

Excluding high counts to explore long-term trend in P&I and ILI in the ab-
sence of influenza virus circulation, it was shown in chapter 4 that there are
complex long-term trends in rates of ILI and P&I between 1970 and 2005
which should be flexibly modeled, for example with cubic splines. Trends
differ between P&I and ILI and across age groups. There is a decline in
the long-term trend in P&I in the > 65 age group in England & Wales
from approximately 1998 which is coincident with markedly increased vac-
cine coverage in this age group. Long-term trends in ILI, in the absence
of influenza virus circulation, declined in all age groups between the mid
1980s and mid 1990s, were stagnant to 2000, and declined further there-

after. The consistency of the trends in ILI across age groups, and in many
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other diagnostic categories, suggests a social or environmental aetiology.

Also in chapter 4, it was highlighted that negative binomial GLMs al-
lowing for seasonality and flexibly modeling trend do not account fully for
autocorrelation and overdispersion in ILI and P&I data.

In chapter 5 it was shown that Poisson log-link and identity-link two-
state HMMs are sufficient to model P&I and ILI data taking into account
autocorrelation and overdispersion. Negative binomial or Gaussian models,
which address overdispersion over that captured by the Poisson HMM, do
not provide improved model fit or convergence over the Poisson models. The
Poisson HMMs are able to distinguish two states (‘aberrant’ and ‘normal’)
in P&I and ILI data. The relative impact of influenza seasons is captured in
a random effect mean shift for each influenza season. The lack of consistency
in whether models with an identity link or a log-link are superior for a given
data set is unsatisfactory.

In chapter 6, modeling P&I or ILI jointly with laboratory reports for
influenza A was shown to increase the precision of the mean shift for most
model fits. This is what was expected since jointly modeling P&l or ILI
with laboratory reports increases the specificity of the model for influenza.
There appears to be a conflict between ILI and laboratory reports for age
groups <65 and between P&I and laboratory reports for the > 65 age group
in estimating the sequence of ‘aberrant’ and ‘normal’ periods in the data.
This is because the timing of ‘aberrant’ periods differs between P&I, ILI
and laboratory data. It was shown that the lag that exists between the
timing of the ‘aberrant’ periods in P&I, ILI and laboratory data is not
constant between influenza seasons. This is important since it suggests
none of P&I, ILI or laboratory data alone would consistently provide the
earliest indication that the influenza season had started, year on year. Also,
averaging rates of morbidity or mortality in particular weeks across influenza
seasons to explore, for example, the average lag between the increase in
activity in ILI and the increase in activity in laboratory data would provide
a biased estimate of the true lag since it would obscure this variability in
the timing of ‘aberrant’ periods between outcomes across influenza seasons.
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8.2. Key findings related to objective 2

In chapter 4 it was noted that, crudely, the distribution of peak rates for
CT seasons appears greater than for intracluster seasons. Ranking of peak
P&I and ILI rates observed across seasons revealed that only for P&I in the
> 65 age group do CT seasons occur in at least five of the top ten seasons.
T-tests suggest weak evidence for small increases in peak P&I and ILI (6
P&I per 1,000,000 population, 95 ILI per 100,000 population) in CT seasons
compared with the average season. There is weak evidence for 8/1,000,000
high rates of P&I and 133/100,000 higher rates of ILI in CT compared
with intracluster seasons. Such small differences are of little public health
importance given that, in the data analyzed in the thesis, weekly rates of
P&I of up to 80/1,000,000 and ILI of up to 2,322/100,000 are observed.
It was also noted in chapter 4 that there is no clear association between
peak rates of P&I and ILI each influenza season and the antigenic distance
between clusters.

In chapter 7, scatter plots of mean shifts against covariates show lit-
tle evidence of association between CTs, or the antigenic distance between
clusters, and mean shifts in P&I or ILL. biILOGR HMMs fitted with a depen-
dency between the mean shift and CTs, or the antigenic distance between
clusters, do not provide evidence of an average inflating effect of CTs on
the relative impact of influenza seasons. The difficulty that the models had
in sampling from reference prior models, and the dominance of informative
priors on posterior distributions, suggests there is little information in the

data with which to quantify the effect of CTs on the mean shift in P&I or
ILI.

8.3. Key findings related to objective 3

In chapter 4 it was shown that there is a weak negative association between
vaccine coverage of the > 65 age group and peak seasonal P&I and ILI rates
across age groups. In chapter 7, scatter plots of mean shifts in P&I and ILI,
by age group, against vaccine coverage of the > 65 age group suggested
little evidence of an association. Stratifying mean shifts by the dominant
variant in the influenza season (influenza A /H3N2 vs H1N1/B) showed that
H3N2-dominance may act as an effect modifier of vaccine impact. This is
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because VE would be higher in higher impact influenza seasons during which
influenza A/H3N2 virus tends to be dominant. There is not a consistent
association between vaccine coverage and mean shifts in H3N2-dominated
seasons. There is no association between vaccine coverage and mean shifts
in seasons dominated by influenza A/H1IN1 or B virus. It is unlikely that
influenza A/H3N2 virus-dominance is acting as a confounder of vaccine
impact since influenza A/H3N2 virus-dominated seasons are not more or
less frequent during the period when vaccine coverage was moderate or
when coverage was high.

From attempts to quantify vaccine impact from model fits, also in chap-
ter 7, it was shown that there is limited information in the data about
vaccine impact. Posteriors for the coefficient for vaccine impact are little
influenced by the data and are dominated by priors.

8.4. Strengths

The work undertaken for the thesis has a number of strengths. First, the
modeling of long-term trend in P&I and ILI, in the absence of influenza,
with cubic splines has increased the flexibility of fitting seasonality with the
sine and cosine term. Careful control for long-term changes in morbidity
and mortality has been achieved. Second, the two-state Poisson HMMs
have adequately modeled variability in the P&I and ILI data meaning that
account has been taken for overdispersion of these data relative to the Pois-
son distribution. Third, by fitting two-state HMMs, where the model itself
determines whether the data are consistent with two states, there is no
need to designate ‘aberrant’ from ‘normal’ incidence externally to model
fitting. Fourth, fitting multivariate HMMs, where the designation of ‘aber-
rant’ from ‘normal’ incidence was made jointly by information in the P&I
or ILI data as well as in laboratory reports, increases the specificity of the
model-estimated ‘aberrant’ periods in P&I and ILI for influenza. BiLOGR
models fitted to either P&I or ILI allow for different ‘aberrant’ periods in

the two data sets, for example due to the deaths being lagged relative to
consultations.
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8.5. Limitations

There are also limitations of the work described in the thesis, both related
to the data and to the modeling.

8.5.1. Limitations of the data

When do CTs become dominant?

The seasons when cluster transitions were first identified in the WHO vac-
cine strain selection data set were taken from the paper by Smith et al.. {13]
Recall that much of the information in the data set, on influenza variants
and on what dates they were isolated from patients, was from the Nether-
lands. It is not known when during the particular influenza season the
cluster transition variant began to circulate in England & Wales. The sea-
son of first isolation of the CT, or the first H3N2-dominated season after
this, might not be a good proxy for when the new cluster became dominant
in England & Wales. There is uncertainty as to whether the new cluster
would have been dominant for the duration of the season of its emergence
or for only, say, the final month of that first season (because it only became
the dominant circulating H3N2 variant one month before the end of the
season). There is also some overlap in the circulation of adjacent clusters,
adding to the uncertainty in when a particular cluster was dominant. It is
possible that variability in the timing of dominance of clusters may partly
explain the difficulty in detecting an effect of CTs on the mean shift.

A related issue is that the dominant influenza variants circulating in each
influenza season in England & Wales were taken from the literature (ta-
ble 3.2). The percentage of subtyped isolates that were influenza A/H3N2
virus or influenza A/H1IN1 virus was not available for most influenza sea-
sons. Therefore, in addition to the uncertainty about when exactly each
cluster became dominant in England & Wales, there is also uncertainty

about what proportion of circulating variants in any season were influenza
A/H3N2 virus variants.

Dates

The time-varying lag between the timing of ‘aberrant’ periods across out-

come variables, identified in chapter 6, is likely to be partly biological and
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partly a function of the data, especially the laboratory data. One pos-
sible biological reason for different lags between outcome variables across
influenza seasons may be variability in the virulence of circulating variants
in different influenza seasons. More virulent variants may result in mortal-
ity sooner after their initial appearance than less virulent variants. Other
possible biological explanations include the different types and subtypes of
influenza circulating in different influenza seasons or interference in some
influenza seasons by cocirculating viruses. In laboratory data, the change
in 1993 to include in LabBase2 the positive reports from one of two new
sentinel swabbing studies of ILI patients [33] means that the relationship
between the non-laboratory confirmed outcome variables (P&I and ILI) and
laboratory data changed at that point. Before 1993 most laboratory testing
was done in hospitals; from 1993 onwards the data in LabBase2 are a mix-
ture of hospital and sentinel GP laboratory reports. The lag between timing
of ‘aberrant’ periods in P&I and ILI did not appear to become time-varying
around 1993, or to have had one value before 1993 and another value after
1993, so this artefact probably does not fully explain the time varying lag.

The time varying lag may also be partly due simply to random variation.

Hospitalisations

Part of the morbidity burden associated with influenza includes respiratory
hospitalisations. (49, 76] Vaccine impact, or the effect of CTs, on rates of
respiratory hospitalisation could be substantial and has not be addressed
in the thesis. However, the maximum number of hospital beds may blunt
estimates of the relative impact of influenza seasons in terms of hospitalisa-
tion. {42] This would limit their usefulness in estimating the relative impact

of influenza seasons in terms of morbidity and determinants of this relative
impact.

8.5.2. Limitations of the modeling

Autocorrelation plots of residuals show there is inadequate modeling of sea-
sonality in two-state HMMs. Future work could include modeling seasonal-

ity more flexibly, e.g. with splines with several df per year [42] or monthly
indicators, {184] instead of with the sine and cosine terms.

There is also inadequate modeling of large peaks in incidence. This is
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partly due to the mean shift being the average ratio of incidence in the
‘aberrant’ to ‘normal’ weeks for a given influenza season and likely also
due in part to the absence of important explanatory variables from the
models. In addition, P&I and ILI data may be consistent with more than
two states. HMMs with two states were fitted for the thesis since a biological
explanation can be assigned to two states (i.e. incidence in the absence
of influenza from one state and incidence attributable to influenza from a
second state). Future work could explore fitting models with more than
two states in an attempt to better model epidemics. For example, three
states could be conceptualised as ‘normal’, ‘aberrant (but not epidemic)’
and ‘epidemic’ incidence.

There is a time-varying lag between state transitions for outcome variables
within an age group (<65 for ILI and laboratory data and > 65 for P&I
and laboratory data) and this is not allowed for in any model.

Multivariate state sequences include some false alarms, where weeks are
labeled as ‘aberrant’ though the high incidence is probably unrelated to
influenza. For example, several models define a short summer period as
‘aberrant’ in some years, perhaps because of heat waves. An area for fur-
ther development within the HMM framework would be to weight outcome
variables for state sequence estimation (for example, more heavily weighting
laboratory vs. other outcomes) to reduce the probability of false alarms in
the state sequence. This would increase the specificity of the mean shift for
influenza. The most specific state sequence for influenza would result from
estimating the state sequence solely using the laboratory data. The state
sequence estimated using only laboratory data could then be applied to the
P&I and ILI data for estimation of mean shifts. This would produce the
most specific mean shifts for influenza but would misclassify some influenza
- attributable morbidity or mortality as ‘normal’ because of lags between
influenza-attributable incidence in laboratory and non-laboratory data and
the fact that laboratory and non-laboratory data do not represent the same
types of people in terms of comorbid illness, for example (see section 3.2.6).

In relation to attempts to use the HMMs to estimate effects of exposures
of interest, the models do not allow for heterogeneity in covariate effects.
Heterogeneity in the effect of CTs on the mean shift could be allowed for
by modeling the coefficient for CTs as a random effect. There may be

spatial heterogeneity in vaccine coverage or VE, if intensity of influenza
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transmission is greater in northern than southern areas of England & Wales.
Models allowing for spatial heterogeneity in relative impact of influenza
seasons and in covariate effects may therefore provide increased power to
estimate vaccine impact.

Some of the influenza - attributable P&I and ILI incidence may have been
modeled by the cubic splines. Overfitting of the long-term trend could have
occurred because the number of df for the splines was decided based on an
analysis of data from 1970-2005 (chapter 4) whereas HMMs were fitted to
data from 1975/76-2004/05.

It is unclear why no multivariate HMM fitted to P&I in the > 65 age
group converged. Even the univariate LOGR HMM fitted to P&I for the >
65 age group failed to converge. The whole explanation for this cannot be
a conflict between P&I and laboratory data because in the LOGR model,
only P&I data were modeled. For the HMM framework to be most useful
for modeling influenza-related data in England & Wales, it is necessary to
find a way to use the HMM to model deaths in the elderly. Risk of death
increases with older age. Analyzing data in the elderly in finer age bands
may therefore also provide additional information with which to estimate
covariate effects.

Some of the problems of convergence of HMMs undoubtedly relate to
sensitivity to model assumptions and not only to limited information in the
data about the state sequence. Recall that in chapter 5 negative binomial
and Gaussian HMMs were discarded in favour of Poisson HMMs because of
lack of convergence. A possible explanation for the problems of the nega-
tive binomial and Gaussian HMMs is that these models fail to distinguish
overdispersion relative to the Poisson distribution from variability gener-
ated by the hidden Markov process. The reliance on Poisson HMMs in the
remainder of the thesis, where variability is generated solely by a mixture of
Poisson distributions, is therefore probably optimistic. The variability gen-
erated by the mixture of Poisson distributions may inadequately address the
various potential explanations for overdispersion (like variation in reporting
and spatiotemporal clustering of cases). Incorporating some structure into
the model, where the Markov chain models the transmission of infection
from infected to susceptible people, might help the model to distinguish
the underlying state process from clustering of cases due to the infectious
nature of influenza [89] and thus lead to improved convergence. Detailed
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spatial data, if available, could be used to allow reconstruction of chains of
transmission by structuring the model in both space and time. This further
model development would probably necessitate abandoning OpenBUGS in

favour of other packages that might more efficiently handle the increased
model complexity.
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A. Trends in other GP

consultations

Similar declines to those in ILI since 2000 were observed for other upper and
lower respiratory tract infections, as well as non-respiratory consultation
categories (figures for upper respiratory tract infections: A.1 to A .4, figures

for lower respiratory tract infections: A.5 to A.7, figure for non-respiratory
infections: A.8).
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Figure A.l1.: Long-term trend in GP consultations for otitis media
in those aged (a) 0-4 years, (b) 5-14 years, (c) 15-44
years, (d) 45-64 years and (e) 65 years of age and over.
25% of the highest counts were excluded from model fitting.
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Figure A.3.: Long-term trend in GP consultations for acute sinusitis
in those aged (a) 0-4 years, (b) 5-14 years, (c¢) 15-44
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B. Sensitivity of long-term trend
to exclusion of different

percentages of high counts
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C. Other model structures

P&I data for the > 65 age group and ILI data for the 15-44 age group are un-
derdispersed relative to the NBLOGR and NBIDR models (e.g. figure C.1).
No observed data points fall outside 95% Crls for model-predicted counts.

Transition probabilities from these models do not converge (figure C.2).

= i ——

=
1975 1980 1985 1990 1995 2000 2005 1975 1980 1985 1800 1905 2000 She

Date Date

(a) NBLOGR (b) NBIDR

Figure C.1.: Posterior predictive density plots of NBLOGR and
NBIDR models fitted to P&I from the > 65 age
group.The predicted counts and a Crl for each predicted count
(lines) are plotted on the same graph as the observed data (cir-
cles). These data are underdispersed (no observed data outside
the posterior predicted Crls) relative to both models.

SQR and LNR models fit P&I data from the > 65 age group poorly
(figures C.3 and C.4).

300



008 012 018
?

10000
-
» epebon(I]

. ———— ‘p.epsiton(2]
: 5
|| xiwww
| g W . —
R ST R et

e T - e

Figure C.2.:

(a) NBLOGR (b) NBIDR

History plots of two chains for transition probability
parameters from NBLOGR and NBIDR models fitted
to P&I for the > 65 age group. For identity-link model
(NBIDR) chains do not mix well - 1 chain moves widely around
the parameter space and does not appear to settle down to a
value; the two chains do not appear to be moving towards a

common parameter space. Two chains for transition probabil-
ities from NBLOGR model mix better.
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Figure (

e

Observed and fitted

978 1980 1985 1990 1995 2000 2005
State sequence
] 7 ‘ ‘ ‘
a4
s oy — e T -
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Revduals
84
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- —— T T T Y T
978 1980 aas 1900 1995 2000 2005
Date

State-sequence for SQR model fitted to P&I. Top panel:
observed (dashed) and fitted P&I data for the > 65 age group
(solid): middle panel: state sequence (1 is the ‘normal’ state, 2
the ‘aberrant’ state); bottom panel: residuals (observed minus
fitted P&I count for each week). The state sequence shown
was plotted by averaging the state sequence estimated by each
of the two chains. The model-predicted time series is very dif-
ferent from the observed time series. Residual plot shows that
model-predicted time series captured little of the variability in
the data. Labels for state variables have also switched whereby
state label 1 now refers to the ‘aberrant’ state and label 2 to
the ‘normal’ state; this is indicative of a poor model.
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Figure (

y4.:

Observed and fitted
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State-sequence for LNR models fitted to P&I for the >
65 age group. As with SQR model fit, model-predicted time
series is very different from the observed time series and resid-
ual plots show that model-predicted time series captured little
of the variability in the data. The state sequence is poorly es-
timated - for most weeks the two chains for the state sequence
are not in agreement as to whether a given week is from the
‘normal’ or ‘aberrant’ state - because transition probability pa-
rameters have not converged. This is evidenced by the state
sequence having a value of approximately 0.5 for most weeks;
this is an average state sequence across two chains which do

not agree on state assignment for most weeks.
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D. Fit and convergence of

univariate Poisson models

Figure D.1.: History plots of two chains for transition probability
parameters from IDR model fit to ILI from the > 65
age group. Both transition probabilities appear to converge
to similar parameter space.

Figure D.2.: History plots showing lack of convergence of two chains
for LL from IDR model fit to ILI from the 15-44 age

group.

The pooled to within chains variability (top (red) line in figures D.3
and D.4) is above 1 from the start of the simulation for all LOGR fits

except fits to P&I data for the 5-14 and > 65 age groups and to ILI for the
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45-64 age group (figure D.3). This shows that for all but these 3 model fits,
initial values for two chains of LOGR model were sufficiently disparate. The
pooled to within chains variability is above 1 for all IDR mode fits showing
initial values were suitably disparate for all IDR model fits (figure D.4).
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Figure D.5 shows better fit of the IDR than LOGR model to P&I from

the 45-64 age group.

o an o 205 2000 2005 1975 1680 1985 1990 1995 2000
Dute Date
) LOGR (b) IDR

Figure D.5.: Posterior predictive density plots of LOGR and IDR
models fitted to P&I from the 45-64 age group. These
data are underdispersed (almost no observed data outside the
posterior predicted Crls) relative to the LOGR model (a) but
adequately modeled by the IDR model (b).

\utocorrelation plots of residuals from IDR and LOGR model fit to P&1

from the 45-64 age group are shown below (figure D.7). The IDR model fits

these data badly
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Dwte

a) LOGR (b) IDR

Ficure D.6.: Posterior predictive density plots from LOGR and IDR
models fitted to ILI from the > 65 age group. The LOGR
model (a) adequately models these data; note large posterior
predictive Crls at start and end of the time series for the IDR
fit (b). indicating poor fit to these influenza seasons.
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(a) LOGR

Lag

(b) IDR

Figure D.7.: Autocorrelation plots of residuals from LOGR and
IDR model fits to P&I from the 45-64 age group. The
correlation between residuals against the lag between the resid-
uals. Correlation between residuals is 1 at lag 0 because this
correlation is between the residual and itself. Horizontal dot-
ted lines are set at +2//1566. These data are poorly modeled
by IDR (b) and adequately modeled by LOGR (a).
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Figure D.X.: History plot of two chains for transition probability
parameters from LOGR model fitted to P&I from the
0-4 age group. Two chains do not converge.
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E. Multivariate models

w
i L ;
i
8 ! '

Figure E.1.: History plot showing lack of convergence of LL from
biLOGR fit to P&I and laboratory reports from the
0-4 age group.
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Figure

E.6.: "

Observed and fitted

State sequence

Resduah
|
|
‘
|
g |
- > 1990 95 2000 2005

I'he state-sequence for biLOGR model fit to ILI and
laboratory reports from the > 65 age group (shown)
appears to converge for all but the 2002/03 season,

during which there is disagreement between the two
chains as to the state assignment.
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State-sequences for IDR mode
15-44 years of age.
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Figure E.8.:

Figure E.9.:

(a) biLOGR (b) biIDR

Posterior predictive density plots of biLOGR and bi-
IDR models fitted to P&I from the 5-14 age group.
The data are underdispersed relative to both models (almost
all observed data fall within posterior predictive Crls). The
predicted counts (red line) and a Crl for each predicted count

(blue lines) and the observed P&I data for the 5-14 age group
(black circles).

ACF

Autocorrelation plot of residuals from bilDR model fit
to ILI from the 5-14 age group. The model’s account-
ing for autocorrelation in the ILI data for the 5-14 age group
was poor, with residual autocorrelation present at lags up to

approximately 45 weeks. Horizontal dotted lines are set at
+2/v/1566.



F. Univariate model fits to

influenza A laboratory reports

In LOGR model fits to weekly rates of laboratory reports for influenza A,
state sequences appear to converge and are clearly estimated for the 0-4,

5-14 and 15-44 age groups (e.g. figures F.1 and F.2).

€ \
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e e e T
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Date

Figure F.1.: After 20,000 iterations, the state-sequence for LOGR
model fit to influenza A laboratory reports in those 0-4
years of age appears to have converged and is clearly

estimated.

In IDR model fits to weekly counts of influenza A laboratory reports,

state sequences appear to converge and are clearly estimated for the 0-4

and 5-14 age groups (ﬁ}_“lll‘(“\' F.3 to l“l)
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After 20,000 iterations, the state-sequence for LOGR
model fit to influenza A laboratory reports in those
5-14 years of age appears to converge and is clearly
estimated.
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Observed and fitted

0 40 80

1975 1980 1985 1990 1995 2000 00!
State sequence
o
"
- T
1975 1980 1985 1890 1995 2000 2005
Residuals
Q l
] W
“
V T T T T T
1975 1980 1985 1990 1995 2000 2005
Date

Figure F.3.: After 20,000 iterations, the state-sequence for IDR
model fit to influenza A laboratory reports in those

0-4 years of age appears to converge and is clearly es-
timated.
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Figure F

.

Observed and fitted
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After 20,000 iterations, the state-sequence for IDR
model fit to influenza A laboratory reports in those

5-14 years of age appears to converge and is clearly
estimated.
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Figure 1.5.: After 20,000 iterations, the state-sequence for LOGR
model fit to influenza A laboratory reports in those >
65 has not converged in the period 1988/89 to 1993/94.



G. Evidence for lag

Evidence for state transitions for a particular influenza season occurring
in different weeks for different outcome variables is seen by overlaying age
group-specific univariate ILI, P&I and laboratory report model state se-
quences (e.g. figures G.1 and G.2).
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Death, GP and Lab 65+

1976 1977 1978 1979

Figure G.1.: State sequence from IDR fits to P&I (dashed line),
ILI (dotted line) and lab reports for influenza A (solid
line) from the > 65 age group: 1975/76-1992/93. The
state sequence for the ILI model fit did not converge for all

seasons. A time-varying lag between state transitions for one
outcome and for another is evident.
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Death, GP and Lab 65+

[f‘-.--

2002 2003

Season

Figure G.2.: State sequence from IDR fits to P&I (dashed line), ILI
(dotted line) and lab reports for influenza A (solid line)
from the > 65 age group: 1993/04-2004/05. The state
sequences do not converge for all seasons. A lag between state
transitions across outcomes is evident and it varies by season.
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The formula below is for a model with a lagged state transition effect on
P&I relative to its effect on laboratory reports.

Ypg1, ~ Poisson(upe,)
Ylab., ~ POiSSOn(y,labt)

log(kpact, )| Stiggees = 1

log(Npe1,) + aope,; + Craa(t, pper)
Bipg; Sin 32%% + B2pg, COS %’-%
ﬂgpmartifacts

+

lOg(l‘P&I;)l Sttngged = 2

log(Npg1,) + 0ope, + apei[flu season] + Cpg(t, pper)
Bipg, Sin Kzg—tz + Bapy, COS 3221%
B3p,, artifacts

+ +

log(p1ab, )| St =1

log(Nlabt) + ag,,,, + Clab(t, Plab)
ﬁlhb sin &5 52 2 + ﬁ2hb COS gg;
3,,, artifacts

+ +

log(p1ab, )} St = 2

1

log(Nlabt) + Qo,,, + iab(flu season] + Clap(t, @iab)
B,,, sin 52 Y + B, cOS 5?2;
B3,,, artifacts

+ +

S| St-1  ~ Bernoulli(d)
tiaggea = t—lag+3

lag ~ dcat(p[l1:5])
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Where Y, are the observed number of P&I deaths or laboratory-
confirmed influenza A cases in week t,
u, are the respective means of the Poisson distributions from
which Y, are drawn,
N, are the populations at risk in week t,
ag are the intercepts,
afflu season] are the yearly random effect mean shifts,
C(t, ) are the cubic splines with ¢ df, respectively,
B sin g% + (B, cos %;‘—2 represent seasonality,
Bsartifacts represent the instantaneous change in the baseline
because of artifacts in the data,
and S, is the state variable sampled from a Bernoulli distribu-
tion with probability 4, a two-by-two matrix of probabilities

of moving (or not) between states at time t given which state
the model was it at time t-1.

Each of the 5 possible lags (+ 2, 1 or 0 weeks) was assigned equal prior
probability (p = 0.20).
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