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Abstract 

The statistical analysis of repeated measures or longitudinal data always requires the 

accommodation of the covariance structure of the repeated measurements at some 

stage in the analysis. The general linear mixed model is often used for such analyses, 

and allows for the specification of both a mean model and a covariance structure. 

Often the covariance structure itself is not of direct interest, but only a means to 

producing valid inferences about the response. This thesis considers methods for 

the analysis of repeated measurements which arise from very small samples. 

In Part 1, existing methods of analysis are shown to be inadequate for very small 

samples. More precisely, statistical measures of goodness of fit are not necessarily 

the right measure of the appropriateness of a covariance structure and inferences 

based on conventional Wald type procedures (with small sample adjustments) do 

not approximate sufficiently well their nominal properties when data are unbalanced 

or incomplete. 

In Part 2, adaptive-estimation techniques are considered for the sample covariance 

matrix which smooth between unstructured and structured forms; 'direct' smooth

ing, a weighted average of the unstructured and structured estimates, and an es

timate chosen via penalised likelihood. Whilst attractive in principle, these ap

proaches are shown to have little success in practice, being critically dependent on 

the 'correct' choice of smoothing structure. 

Part 3 considers methods which are less dependent on the covariance structure. A 

generalisation of a small sample adjustment to the empirical sandwich estimator 

is developed which accounts for its inherent bias and increased variance. This has 

nominal properties but lacks power. Also, a modification to Box's correction, an 

ANOVA F-statistic which accounts for departures from independence, is given which 

has both nominal properties and acceptable power. 

Finally, Part .J recommends the adoption of the modified Box statistic for repeated 

measurements data where the sample size is very small. 
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Chapter 1 

Background 

1.1 Introduction 

A review is given of methods for dealing with estimation and testing in the analysis 

of repeated measures and longitudinal data. Our interest lies in procedures which 

are appropriate for such data which arise from very small samples. 

1.2 Modelling Covariance Structures 

Repeated measures and longitudinal data typically involve correlation between ob

servations made on the same subject. It is also commonly found that variances are 

not constant across repeated observations. Where such patterns exist they must be 

effectively modelled to ensure the validity of inferences about the mean structure. 

If the data are unbalanced with a lack of common time points for responses, or 

not extensive enough to allow very general or completely unstructured covariance 

models to be used, a sufficiently well-fitting and parsimonious model must be found. 

Identification of an appropriate structure can improve the efficiency of the inferences 

made. 

The general linear mixed effects model, developed following Laird and Ware (1982), 

is generally adopted for the analysis of repeated measures and longitudinal data. 

20 



(See for example Verbeke and Molenberghs (2000)). It has the form 

y=X{3+Z,+c (1.2.1) 

where (3 are the fixed effect parameters and, are random effects. This leads to 

E(y) = X{3 and Var(y) = ~ = ZGZT + R. i.e. , and care uncorrelated Gaussian 

random variables with zero means and covariance matrices G and R. Hence, the 

variance of the data is modelled by the appropriate specifying of any random effects 

and the structure of the covariance matrices G and R. If R = (j21 and Z = 0, so 

that there are no random effects, then the mixed model reduces to the general linear 

model. The fitting of such models has become routine with the arrival of procedures 

such as PROC MIXED in SAS (Sas Institute, 1999). 

Generally ~ is chosen to maximise the REML log-likelihood, Patterson and Thomp-

son (1971), 

lIT lIT 
lR(G, R) = --logl~1 - -loglX ~- XI - -y H:EY - canst. 

2 2 2 
(1.2.2) 

the generalized least squares estimator 

(1.2.3) 

The residual or restricted likelihood approach (REML) is preferred to maximum 

likelihood as it takes account of the loss of degrees of freedom from estimating the 

fixed effects. This is achieved by replacing y in the usual likelihood expression by 

the (n - r) error contrasts AT y, where A is a full rank matrix whose columns are 

orthogonal to the columns of X. It follows that Var(AT y) = AT~A does not 

depend on {3, and also the REr--IL estimator :E does not depend on the choice of A. 
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There is no general satisfactory approach to finding the correct covariance structure. 

Possible structures include unstructured and stationary models such as compound 

symmetry and autoregressive. However, the obvious non-stationarity of most re

peated measurements has led to the introduction of non-stationary models such as 

antependence (Kenward (1987)). Wolfinger (1996) reviews a large number of such 

proposals and suggests the following strategy based on Diggle (1988) for model se

lection. 

(1) Use graphical analysis to select an initial mean model. 

(2) Select initial covariance structures by any relevant means. 

(3) Use formal statistical techniques to compare and select an appropriate struc

ture. Assuming the chosen covariance structure, reduce the mean model if 

necessary. 

A number of criteria can be used to compare the fit of such covariance structures. 

For instance, (reduced) likelihood ratio tests can be used for nested models to test 

whether the additional parameters of the more complicated covariance structure give 

a significant improvement to the fit of the model. That is, 

(1.2.4) 

where :E2 is nested within :El and qi are the corresponding number of covariance pa

rameters for each model. Also, Akaike's information criterion (AIC, Akaike (1974)) 

and Schwarz's Bayesian criterion (BIC, Schwarz (1978)) are both likelihood mea

sures penalized by the number of parameters, which can be used to make a direct 

comparison between models which fit the same fixed effects. P ROC MIXED uses 

the following 'smaller is better' formulations based on the REML log-likelihood, 
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AICR : - 2lR + 2q 

BICR: - 2lR + qlog(m) 
(1.2.5) 

where q is the number of covariance parameters in the selected model, and m is the 

number of effective subjects. 

Graphical and descriptive methods can point to likely classes of covariance structure, 

but comparison of the fit of a number of models is usually necessary for any given 

problem. This can be time consuming, and commonly the choice of structure is not 

consistent among similar types of data set. 

Diggle (1988) advocates the use of the variogram 

(1.2.6) 

to identify a plausible covariance structure for longitudinal data which is station-

ary. He proposes a three component model for covariances, comprising a random 

intercept, measurement error and serial correlation. This model has variogram 

'Y( u) = 7
2 + 0'2 {I - p( u)}, which corresponds to the covariance structure 

(1.2.7) 

where H = (P( U)) is the matrix of correlations of the form p( u) = exp ( - au '), 

and 1/2 and 7 2 are variance components corresponding to the random intercepts and 

measurement error respectively. Identity, compound symmetry and autoregressive 

structures are special cases of this model. The parameters can be estimated from 

the sample variogram, which is a scatterplot of squared residuals from a saturated 

model against the underlying time differences between observations. Verbeke et al. 

(1998) extend the use of the variogram approach to models for non-stationary data 

by including random effects other than intercepts. 
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Verbeke and Molenberghs (2000) suggest the use of residuals from an overparame

terised mean model fitted using ordinary least squares to help determine an appro

priate covariance structure. Dependence among repeated measures can be assessed 

from a smoothed average trend of the residuals. For example, a constant variance 

function would indicate stationarity in the data so that no random effects beyond 

intercepts should be included in the model. When considering further random ef

fects, Verbeke and Molenberghs suggest only covariates which are included in the 

fixed part of the model or are linear combinations of these need be used, since the 

random effects are deemed to have zero mean. Having selected an appropriate set 

of random effects, the covariance matrix R for the error terms c can be chosen. 

An alternative route to the development of covariance structures is to model di

rectly the behaviour of subjects through a random coefficients model, and to use the 

structure induced by this. (See for example Longford (1990)). While attractive in 

principle, the success of such an approach is critically dependent on the appropriate 

choice of subject level model, and this can be difficult in practice. 

Verbyla et al. (1999) introduce the cubic smoothing spline as an additional level of 

random effects in the mixed model. This imposes an implicit covariance structure on 

the model which consists of linear random coefficients, an individual random spline 

and a constant error term. The spline models departure from the linear model, and 

thus accounts for the serial correlation between successive measurements. (See for 

example Ruppert et al. (2003)). 

Variances and covariances commonly change smoothly with changes in time and 

time lags. Diggle and Verbyla (1998) make use of this in smoothing the components 

of the variogram to provide an estimated covariance matrix using the variogram 

cloud as the input data for a two-dimensional non-parametric estimator for the var

iogram and the squared residuals as the input data for an estimator for the variance 

function. These functions are separately smoothed using a kernel weighted local 

linear regression with bandwidths chosen to minimise a cross-validation criterion, 

and combined to give a smoothed covariance estimate. This approach is difficult 
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to implement and does not guarantee an estimate which is postive-definite, so has 

limited use in inference. However, it is suggested as a diagnostic tool for helping 

to specify a plausible parametric structure. It could also be useful in providing an 

estimated covariance structure for data which is highly unbalanced or in which ob

servation times are not common to all subjects, and alternative approaches are not 

available. 

Shrinkage estimation in which parameter estimates are pushed towards pre-determined 

or believable values has a natural setting in Bayesian statistics where such shrink

ing is a natural consequence of reliance on informative prior distributions. Many 

authors following Stein (1975) have sought to shrink the eigenvalues of the sample 

covariance matrix towards more plausible values (often a common value) resulting 

in a more robust estimate. Others have sought to achieve such stability through a 

decomposition of the covariance matrix and placing prior distributions on the sep

arate elements. Daniels and Kass (1999, 2001) review a number of these methods 

and propose using an estimated covariance matrix which is a compromise between 

an unstructured and a parametric form. They achieve this through the introduction 

of two hierarchical priors for the covariance matrix based on two different matrix 

decompositions. 

Computational problems can arise in sampling from non-conjugate priors, so that 

Daniels and Kass (2001) adopt asymptotic distributions to simplify the computa

tional aspects of their use. Their approach is to first fit a model by maximum 

likelihood with an unstructured form for :E, and conditional on {3 compute the 

observed information matrix based on one of the two parameterisations. This re

quires the estimation of only two variance components (shrinkage parameters) from 

the data in addition to the parameters of the structured model. This method is 

easily computed using existing statistical software, requiring only a simple macro 

for the estimation of the shrinkage parameters. The structured covariance matrix 

which the unstructured matrix is smoothed towards may be chosen according to the 

usual criteria (AIC, BIC or likelihood ratio tests). However, the approximations and 
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asymptotic results needed to simplify the computations means that these estimates 

are less reliable in the small sample situations where they are most likely to be use

ful. Also, it is not clear if independent modelling of the variances and correlations in 

the sample covariance matrix is appropriate in a repeated measures or longitudinal 

data setting. 

1.3 Testing of Fixed Effects 

The fixed effects parameters obtained from (1.2.3) are asymptotically distributed as 

(3 rv NCB, q,), where 

q, = Var((3) = (XT:E-IX)-lXT:E-IVar(y):E-IX(XT:E-IX)-l 

= (XT:EX)-l, 
(1.3.1) 

so that inferences about the fixed effects made via the general linear hypothesis, 

Ho : L{3 = 0, where L is an (l x r) fixed matrix, may be tested using the approximate 

Wald statistic 

(1.3.2) 

where W rv X2 (l). This chi-squared statistic assumes no variation in the denominator 

term Var(L(3) = Lq,LT, so that often the Wald F-statistic is preferred, 

(1.3.3) 

where Frv F( l, v2) and the denominator degrees of freedom v2 are estimated from the 

data. Usually the residual degrees of freedom n - rank(XZ), which is the number of 

observations less the number of estimated parameters, are adopted, although there 
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are a number of alternatives which attempt to account for small sample bias in the 

Wald Statistic. 

Kenward and Roger (1997) suggest replacing q, in (1.3.3) by q, A, the adjusted 

covariance matrix for the fixed effects parameters suggested by Kackar and Harville 

(1984) and approximating A times F as an F-distribution with adjusted denominator 

degrees of freedom m. 

F* = AF rv F(l, m) (1.3.4) 

q, A = q, + 2A accounts for the additional variability in Var(j3) = q, = (XT~X)-l 

which is caused by the estimation of the unknown ~ by the inclusion of the addi

tional factor A, which corrects for the downward small sample bias. Denoting the 

parameters in :E as the vector (j, A is found based on a Taylor series expansion 

around (j. Kenward and Roger show how the scale factor A and degrees of freedom 

parameter m are found by comparing moments from the Taylor series expansion of 

(L<i> ALT)-l about (j, and hence F* with those of the approximating F-distribution. 

The adjustment is included as an option in recent versions of PROG MIXED. The 

Kenward Roger approximation has the advantage that it matches the exact values 

of A and m in the special cases of Hotelling's T2 test or the split-plot ANOVA, where 

:E has a compound symmetry structure. The approximation also recovers Satterth-

waite's adjusted degrees of freedom for the Wald t-test, where 1 = 1, whence A = 1 

and the square root of m is taken. 

A number of alternatives for calculating the denominator degrees of freedom for the 

Wald F-statistic are reviewed by Schaalje et al. (2003), who recommend the use 

of the Kenward Roger method. They show it outperforms the other options in a 

simulation study, but note that when the covariance structure is complicated and 

the sample size is small this method can lead to inflated type 1 error rates. 

Since in the above approaches the standard errors of the fixed effects are based on 
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known ~, inferences about {3 are not robust to misspecification of the covariance 

structure. An alternative is to base inferences on the robust or empirical variance 

estimator, Liang and Zeger (1986), also known as the 'sandwich' estimator. That 

IS, use 

(1.3.5) 

with 

(1.3.6) 

where W- 1 
A 

~ is a 'working' covariance structure and Var(y) is consistent for 

~ whatever the true structure. Taking Var(y) = (y - X(3) (y - X(3)T uses the 

observed correlations between the residuals. This is the approach taken to covariance 

structure modelling via the generalised linear model using generalised estimating 

equations. The advantage of this estimator is that a poor choice of W will not 

affect the validity of inferences about {3. However it should be noted that this 

approach causes the fixed effects variances to reflect the observed correlations rather 

than those of any imposed 'structure'. In the simple case that W-1 = I, then we 

have the ordinary least squares estimate of {3 but with the standard errors of the 

estimates adjusted to account for the observed correlation structure. Brown and 

Prescott (1999) suggest the use of this approach whenever the mean response is 

of primary interest in an analysis and limited time is available to determine an 

appropriate covariance model, or in pharmaceutical trials where statistical methods 

have to be specified in advance in the protocol. 

A disadvantage of the robust method is that the resulting tests based on the asymp

totic Chi-squared distribution are known to be unreliable in small samples. That is, 

the consistency provided by this estimator comes at the price of increased variabili t.\", 

Diggle et al. (1994) suggest that the robust approach is suitable only when the data 

come from 'many experimental units', although several authors have a ttelllpted to 
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correct for this in certain situations. (See, for example, Kauermann and Carroll 

(2001)). 

Another approach which uses the ordinary least squares estimate of {3 is given by 

Bellavance et al. (1996), who suggest Box's correction (Box (1954a,b)) based on the 

ANOVA F -statistic in the context of cross-over data as repeated measures. That is, 

let X be the (n x r) design matrix with all terms included, and XR (n x (r - c)) 

have the terms to be tested removed, and define A = I - X(XTX)-l XT and B = 

X(XTX)-l XT - XR(X'kXR)-l X'k. Then, 

(1.3.7) 

where, 

'ljJ = (n - r) tr(B~) 1 = {tr(B~)}2 _ {tr(A~)}2 
c tr(A~) ,v tr{ (B~)2}' and v2 - tr{ (A~)2} . 

This is equivalent to testing the fixed effects based on their ordinary least squares 

estimates, but adjusting the null distribution to account for the covariance struc-

ture. The approximating distribution is derived by considering the quadratic forms 

yT Qy of the numerator and denominator to be independently distributed as a con-

stant times a Chi-squared distribution. The constant and the degrees of freedom 

parameter are chosen by matching the first and second moments of yT Qy with those 

of the Chi-squared distribution. In practice, an estimate of ~ must be used, but this 

may be taken to be any consistent estimator of Var(y). Jones and Kenward (2003) 

suggest the use of the ordinary least squares covariance estimate is in keeping with 

the spirit of this approach, but in practice it may be more practical to simply adopt 

the unstructured REML estimate. Bellavance et al. show that this modified F -test 

approximation gives adequate control over the type 1 error. 

The use of various covarIance estimates and testing procedures are compared 111 
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Jones and Kenward (2003) in the context of cross-over data as repeated measures. 

They also consider the use of a randomisation test. Under the null hypothesis of 

no treatment effect, sequences of responses within each subject should not differ 

systematically, so that the empirical distribution of the ANOVA F-statistic can 

be approximated by the repeated re-calculating of the statistic following random 

reallocation of subjects to sequences. The obtained value of the statistic can then 

be compared to this distribution. This method can be effective but the permutation 

of the data needs to be carefully matched to the null hypothesis. For example, the 

above scheme would not have worked in the presence of any carryover effect. Jones 

and Kenward use the randomisation test as a robust check of the p-values obtained 

from the other methods. This type of test is an example of a bootstrap resampling 

method. (See for example Davison and Hinkley (1997)). Other bootstrap methods 

may also be suitable, although generally such methods are thought to be unreliable 

in small samples no matter how many bootstrap samples are taken. 
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Chapter 2 

Assessment of Existing Methods 

2.1 Motivation 

The need for methods for repeated measures or longitudinal data which adequately 

deal with the underlying covariance structure, when the sample size is very small, 

is highlighted in a paper by Brammer (2003). 

Brammer analyses the data from two experiments which aIm to investigate the 

effect of a compound on isolated tissues and organs; whether the compound causes 

electrocardiogram abnormalities in the guinea pig papillary muscle (GPPM), or has 

an effect on pressure in an isolated lung from a rat. An ascending dose design is 

adopted in each case, whereby a number of 'control' responses are measured for each 

assay at the beginning of the experiment and then remeasured at intervals following 

increasing doses of compound. As there is a limited time in which to experiment 

with the assays before deterioration, this design ensures the carryover effect at each 

stage is minimal compared to the increased dosage, as there is no time for a washout 

period. 

These experiments can be considered as repeated measures designs with concen

tration as the time variable and tissue/animal as the subject, and analysed using 

a mixed model with an appropriate choice of covariance structure. This model is 

preferred to either a two-way ANOVA, which assumes a compound symmetry forIll 
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that may not be appropriate, or paired t-tests of each concentration against control, 

which would not make use of the full information from the data. The mixed model 

would appear to be a sensible approach, but the sample sizes here are very small. 

For the GPPM data, Brammer has data from two experiments involving just three 

assays in each and, as the compounds being tested in each of these experiments are 

different, these are analysed separately. Since six concentrations of compound are 

compared with a control, this means that for each experiment a (7 x 7) covariance 

matrix is to be estimated from just three subjects. For the isolated lung data, there 

is data from rats in two strains of six. Here, three concentrations of compound are 

compared with a control, so that a (4 x 4) structure is fitted from 12 subjects. These 

matrices are used to estimate the standard errors of the treatment effects (difference 

from control). 

Brammer chooses the covariance structure by first examining the unstructured form 

and then assessing the fit of a parametric model based on fewer parameters which 

appears to have a similar structure. For the GPPM data there were convergence 

problems when estimating a full unstructured covariance matrix, so he was restricted 

to comparing the fit of structures using forms with as many parameters as the 

data would allow. In each case he assesses an AR1 structure for example to fit 

better than a compound symmetry form, suggesting that the two-way ANOVA is 

not appropriate, but different structures are preferred for different responses from 

the same experiment. 

In each experiment, Brammer compares the standard errors and unadjusted p-values 

for the treatment differences under each response and chosen covariance structure to 

indicate that the choice of structure is important. Due to the design, the treatment 

means for each response are the same regardless of chosen model, but this is not 

true for an extension study using the isolated lung data, where strain main effects 

and a strain/treatment interaction are included in the model. 

This type of problem is typical in early stage drug development, where such studies 
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are routinely undertaken using very small samples, due to costs and the desire to 

minimise unnecessary animal experimentation. A particular example of this is in 

the area of safety pharmacology, where investigations are undertaken into the effects 

of test compounds on the vital functions of the central nervous, cardiovascular and 

respiratory systems prior to trials involving human subjects. Such experiments are 

carried out under 'good laboratory practice' to give an indication of potentially ad

verse effects, but can also indicate possible clinical benefits. Typically between four 

and eight (animal) subjects are used in parallel group or crossover trials involving 

repeated measurements. Clearly it is of great interest to see whether the usual tech

niques for analysing repeated measurements, which were outlined in Chapter 1, are 

appropriate in such small data sets, or if the inferences made are valid. The purpose 

of this assessment is to consider such issues through a series of simulation studies. 

2.2 A Pilot Study 

Consider a simple repeated measures experiment, where 16 subjects are randomly 

allocated to two treatment groups (of equal size), and a response recorded for each 

subject at each of five time points. Five time points are chosen so that the resulting 

(5 x 5) estimates of the covariance structure within subjects will be large enough 

for differences between models to be adequately determined; and to give a range 

to the number of covariance parameters estimated by each model. The sample size 

here may be considered only moderately small, but this design serves as a useful 

comparison with later studies. 

2.2.1 Methodology 

1000 data samples are independently generated arising from a Gaussian distribution 

with zero mean and each of six underlying covariance structures; identity, compound 

symmetry, AR1 (low and high correlation), first order antedependence, and two 

'unstructured' forms. These structures are shown in Figures A.1.1-A.1.6 of Appendix 
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A. The two unstructured forms are chosen to have patterns far removed from that 

usually fitted by the structured forms, such as correlations which increase by lag. 

One of these is found by adoption of a quadratic random effects model with unusual 

parameter values. The number of covariance parameters to be estimated by each 

model are then 1 (identity), 2 (compound symmetry, ARl), 11 (antedependence), 

and 15 (unstructured). 

For each data set, a saturated means model is fitted, giving a separate mean param

eter for each treatment and time combination (10 parameters). REML estimates 

of this model using various estimates of the 'true' underlying covariance structure 

are then used to assess the existing methods of choosing between covariance struc

tures; reduced likelihood ratio tests and AICR/BICR. Also, the properties of the 

various Wald statistics (X2 and F with either residual degrees of freedom or the 

Kenward Roger adjustment) in making inferences about an appropriate hypothesis 

are compared. All the simulations are undertaken using SAS IML. 

2.2.2 Results 

Results from the pilot study are shown in Tables 2.2.1 and 2.2.2. 

Choice of Covariance Model 

Likelihood Ratio Test: Structured Covariance Model v's Identity (independence) 

This test is of little practical interest since it is known that repeated measurements 

from a subject will be correlated. However, it is useful to consider it here as part 

of an investigation of the nominal properties of such tests. That is, to determine 

whether the actual size of the test, or type 1 error rate, is close to the nominal level. 

This can be checked by noting the proportion of significant results obtained when 

a 'structure' is fitted to data generated under the null hypothesis of an underlying 

identity covariance structure (independence). The actual sizes were checked for each 
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Underlying Proportion of Significant Reduced Likelihood Ratio Proportion of Structures chosen by AICR (BICR) 
'True' Covariance Tests (No. of Covariance parameters) 
Structure 'True' Model v's Identity 'True' Model v's Unstr UN ID CS AR1 ANTE 

df at 5% at 1% df at 5% at 1% (15) (1) (2) (2) (11) 

Identity - - - 14 0.111 0.032 0.029 0.705 0.148 0.112 0.006 
(0.000) (0.828) (0.100) (0.072) (0.000) 

Compound 1 0.980 0.944 13 0.114 0.033 0.044 0.006 0.873 0.075 0.002 
Symmetry (0.005) (0.008) (0.909) (0.078) (0.000) 
AR1 (p=0.2) 1 0.309 0.139 13 0.125 0.046 0.046 0.403 0.135 0.406 0.010 

(0.003) (0.520) (0.116) (0.359) (0.002) 
AR1 (p=0.8) 1 1.000 1.000 13 0.114 0.039 0.044 0.000 0.038 0.907 0.011 

(0.002) (0.000) (0.041) (0.956) (0.001) 
Antedependence 10 1.000 1.000 4 0.291 0.113 0.408 0.000 0.000 0.000 0.592 

(0.195) (0.000) (0.000) (0.000) (0.805) 
U Ilstructured 14 1.000 1.000 - - - 1.000 0.000 0.000 0.000 0.000 

(1.000) (0.000) (0.000) (0.000) (0.000) 
Unstr (QRE) 14 1.000 1.000 - - - 1.000 0.000 0.000 0.000 0.000 

(1.000) (0.000) (0.000) (0.000) (0.000) 

Table 2.2.1: Results from 1000 simulations of the Pilot Study: a simple Repeated Measures experiment with 16 subjects. (UN=Unstructured, 
ID = Identity, CS=Compound Symmetry, ANTE=Antedependence). 
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of compound symmetry, AR1 and antedependence forms. These were found to be 

close to the nominal levels of both 1 % and 5 % in each case for the two low parameter 

models (compound symmetry and AR1), but slightly inflated for the antedependence 

form. (Details omitted). 

Once the nominal properties of a test have been established it is appropriate to 

consider power. The proportion of significant test results from the estimated 'true' 

structure against the identity in Table 2.2.1 gives the power of the likelihood ratio 

test to detect departures from independence. The results presented show that the 

reduced likelihood ratio test is very powerful in detecting such departures, and hence 

the need for modelling of the covariance structure. The exception to this is for data 

generated from an underlying AR1 covariance structure with low correlation, where 

the null hypothesis of independence is rejected on only 30% of occasions at the 5% 

level of significance. This is however unsurprising as this model may be considered 

close to an identity structure. 

Likelihood Ratio Test: Structured Covariance Model v's Unstructured - 'Goodness of 

Fit' 

Ho : ~ = ~s v's HI: ~ = ~u 

As the unstructured covariance form will always give the best fit to the data, the 

proportion of significant tests from reduced likelihood ratio tests of the estimated 

'true' covariance structure against an unstructured form gives the actual size of the 

test for detecting a more parsimonious model where an appropriate one exists. Table 

2.2.1 shows that in this respect the reduced likelihood ratio test does not achieve its 

nominal size, with actual sizes in excess of 3% and 12% for nominal levels of 1 % and 

5% respectively. This means that the use of such a test to assess the fit of a structured 

model against that of an unstructured one will result in the unstructured form being 

chosen more often than would be expected from the nominal level. These sizes are 

further inflated for the test of an antedependence form against the unstructured. 

However, whilst these structures are not close they are closer than the unstructured 

is to sayan AR1 or compound symmetry form. 
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Underlying Covariance Proportion of Significant Test Results 
'True' Covariance Estimate (Ho: No Treatment/Time Interaction) 
Structure Size Power 

X:2 F KR KR 

Identity Unstr 0.178 0.161 0.044 0.747 
Identity 0.062 0.045 0.045 0.903 

Compound Unstr 0.193 0.175 0.047 0.75--1 I 

Symmetry Comp Sym 0.072 0.053 0.048 0.897 
AR1 (p - 0.2) Unstr 0.200 0.174 0.051 0.765 

AR1 0.065 0.055 0.047 0.901 
AR1 (p - 0.8) Unstr 0.179 0.160 0.039 0.744 

AR1 0.049 0.044 0.031 0.879 
Antedependence Unstr 0.172 0.149 0.036 0.764 

Ante 0.108 0.096 0.051 0.859 
Unstructured Unstr 0.176 0.158 0.047 0.767 
Unstr (QRE) Unstr 0.225 0.198 0.057 0.782 

Table 2.2.2: Results from 1000 simulations of the Pilot Study: a simple Repeated 
Measures experiment with 16 subjects. Size, X2

, F and KR, gives the proportion of 
Type 1 errors obtained using the X2 and F- Wald statistics with residual and Kenward 
Roger adjusted denominator degrees of freedom. 

AICR and BICR 

The measures AICR and BICR have no nominal properties against which to assess 

their behaviour, so need to be assessed in an absolute sense. Table 2.2.1 appears to 

show that they generally have a high proportion of success in identifying the 'true' 

covariance structure. Where there is a spread in these values, for example for data 

arising from the AR1 (low correlation) or antedependence models, it is because these 

models are not far removed from their alternatives. 

Testing of Fixed Effects 

Table 2.2.2 shows the actual sizes, testing under the null hypothesis, of the various 

Wald statistics for no treatment/time interaction. The results from the simulation 

show that both the asymptotic chi-squared and F -statistics (using residual degrees 

of freedom) have greatly inflated type 1 error rates, even for this moderately small 

sample size. If the 'true' structure is estimated, then for low dimension models 

(identity, compound symmetry and AR1) the error rates although inflated are closer 
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to the nominal level of 5%. For all underlying covariance structures, the adjusted 

F -statistic using the Kenward Roger adjustment gives an actual size close to the 

nominal level when using either the unstructured or 'true' model. It has been shown 

in a further study that where the estimated covariance structure is not 'true' use of , 

the Kenward Roger adjustment can lead to inflated test sizes. (Details omitted). 

It should be noted that for this model, using a saturated means model with complete 

and balanced data results in mean estimates which are equivalent to ordinary least 

squares estimates which do not depend on the covariance structure. Also, use of 

the unstructured covariance matrix in testing the interaction is equivalent to using 

Hotelling's T2 test. That is, this is an exact small sample test, as is the split-plot 

ANOVA statistic which results when a compound symmetry structure is chosen, 

so that the nominal properties of these tests is known. When the identity model 

is adopted, the Kenward Roger adjustment is equivalent to the usual Wald F-test 

using the residual degrees of freedom. 

Again, once the size of the test has been fixed at the nominal level, it is appropriate 

to consider power. Here this is done by adding terms which are linearly increasing 

in time to the responses of one of the treatment groups. These terms were chosen to 

set the power using the unstructured model at around 75%. Table 2.2.2 shows that 

if the 'true' covariance structure can be determined, then the resulting Wald tests 

will be more powerful than if the unstructured model is adopted. This is expected, 

but the reduction in power of up to 15% from adopting the unstructured model is 

non-negligible. 

2.3 Further Simulations 

The pilot study above involved only a moderately small sample size. Also, the design 

of the study meant that the covariance structure played no part in the estimation 

of the mean parameters being tested, and allowed Wald tests based on the Kenward 

Roger adjustment to be exact with nominal properties. 
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Three further designs are therefore considered to investigate the effects of reduced 

sample size, missing values and model design. 

(A) A simple repeated measures experiment, with 10 subjects randomly allocated 

to two treatment groups (of equal size), and a response recorded for each 

subject at each of five time points. 

(B) As design (A), but with missing values. One subject in each treatment group 

drops out at some random time following the first observation. 

(C) A five treatment-five period crossover trial, with 10 subjects allocated ran

domly to treatments according to Table 2.3.1, using a pair of Williams' squares. 

Subject Period 
1 2 3 4 5 

1 A B C D E 
2 B D A E C 
3 D E B C A 
4 E C D A B 

5 C A E B D 

6 E D C B A 

7 C E A D B 

8 A C B E D 

9 B A D C E 

10 D B E A C 

Table 2.3.1: A crossover design for 5 treatments (A, B, C, D, E). 

2.3.1 Methodology 

Each design is treated as before, with 1000 data sets independently generated for 

each underlying covariance structure. In designs (A) and (B) a saturated means 

model is fitted, but for the crossover design (C) the mean model comprises an in

tercept, treatment and period effects (9 parameters). Again REi-.IL estimates of the 

mean models and covariance structures are adopted. Interest in designs (A) and (B) 

remains on the treatment/time interaction, but in design (C) the appropriate null 

hypothesis is that of no treatment effect. 
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2.3.2 Results 

The results of these simulations are shown in Tables 2.3.2 - 2.3.7. 

Choice of Covariance Model 

Likelihood Ratio Tests 

Table 2.3.2 for design (A) shows results similar to those of the pilot study. That 

is, the reduced likelihood ratio tests are powerful in detecting departures from inde

pendence for data arising from underlying covariance structures which are far from 

an identity form. This is repeated in Tables 2.3.3 and 2.3.4 for designs (B) and (C) 

respectively. Again a check has been undertaken to confirm the nominal properties 

of this test, with results similar to those noted for the pilot study. 

For these designs based on a smaller sample size, the reduced likelihood ratio tests 

of the 'true' structure against the unstructured show that this test does not have 

nominal size. That is, where the data are generated from an underlying 'true' 

structure of few parameters, the likelihood ratio test is less effective at discriminating 

between this and an unstructured model in these settings. The actual sizes from 

the simulations are around 25% for design (A) and in excess of 40% for designs (B) 

and (C) compared to a nominal size of 5%. Again, the sizes are inflated further in 

the case of the estimated antedependence structure, which shares variances and lag 

1 correlations with the unstructured model. 

Little has been published on the small sample behaviour of the likelihood ratio 

test (LRT) in the context of choosing a covariance structure. Zucker et al. (2000) 

considers the use of a Bartlett correction (Bartlett (1937)) when making inferences 

about the mean parameters from a mixed linear model. For very small samples this 

correction still leads to an inflated test size, but can result in a test with nominal 

properties for tests involving single parameters only, when used in conjunction wit h 

an adjusted likelihood expression. 
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Underlying Reduced Likelihood Ratio Tests Proportion of Structures chosen by AICR (BICR) 
'True' Covariance Proportion of Significant Tests (Out of 1000) (No. of Covariance parameters) 
Structure 'True' Model v's Identity 'True' Model v's Unstr UN ID CS AR1 ANTE 

df at 5% at 1% df at 5% at 1% (15) (1) (2) (2) (11) 

Identity - - - 14 0.240 0.099 0.109 0.672 0.117 0.097 0.005 
(0.052) (0.756) (0.105) (0.086) (0.001) 

Compound 1 0.874 0.769 13 0.229 0.097 0.118 0.049 0.709 0.123 0.001 
Symmetry (0.044) (0.062) (0.756) (0.136) (0.002) 
AR1 (p=0.2) 1 0.210 0.077 13 0.254 0.108 0.116 0.456 0.144 0.277 0.007 

(0.048) (0.553) (0.133) (0.264) (0.002) 
AR1 (p=0.8) 1 0.999 0.995 13 0.249 0.122 0.145 0.000 0.071 0.771 0.013 

(0.072) (0.000) (0.078) (0.843) (0.007) 
Ante 10 1.000 0.994 4 0.474 0.247 0.568 0.000 0.000 0.004 0.428 

(0.485) (0.003) (0.003) (0.013) (0.496) 
Unstr 14 0.999 0.998 - - - 0.988 0.000 0.006 0.003 0.003 

(0.966) (0.003) (0.020) (0.009) (0.002) 
Unstr. (QRE) 14 1.000 1.000 - - - 0.778 0.000 0.000 0.000 0.222 

(0.706) (0.000) (0.000) (0.000) (0.294) 

Table 2.3.2: Results from 1000 simulations of Design (A): A simple Repeated Measures experiment with 10 subjects. 
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Underlying Reduced Likelihood Ratio Tests Proportion of Structures chosen by AICR (BICR) 
'True' Covariance Proportion of Significant Tests (Out of 1000) (No. of Covariance parameters) 
Structure 'True' Model v's Identity 'True' Model v's Unstr UN ID CS AR1 ANTE 

df at 5% at 1% df at 5% at 1% (15) (1) (2) (2) (11) 

Identity - - - 14 0.393 0.202 0.205 0.581 0.105 0.098 0.011 
(0.121) (0.683) (0.093) (0.099) (0.004) 

Compound 1 0.813 0.670 13 0.403 0.211 0.246 0.057 0.567 0.127 0.003 
Symmetry (0.144) (0.084) (0.634) (0.136) (0.002) 
AR1 (p=0.2) 1 0.166 0.062 13 0.398 0.204 0.214 0.445 0.127 0.206 0.008 

(0.118) (0.539) (0.128) (0.213) (0.002) 
AR1 (p=0.8) 1 0.998 0.988 13 0.379 0.186 0.218 0.000 0.084 0.684 0.017 

(0.130) (0.001) (0.094) (0.764) (0.011 ) 
Ante 10 0.992 0.961 4 0.639 0.445 0.721 0.005 0.001 0.004 0.269 

(0.644) (0.011) (0.004) (0.016) (0.325) 
Unstr 14 0.999 0.992 - - - 0.978 0.003 0.014 0.003 0.002 

(0.935) (0.010) (0.042) (0.012) (0.001) 
Unstr. (QRE) 14 1.000 1.000 - - - 0.829 0.000 0.000 0.000 0.171 

(0.768) (0.000) (0.000) (0.000) (0.232) 

Table 2.3.3: Results from 1000 simulations of Design (B): A simple Repeated Measures experiment with 10 subjects, and missing values. 
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Underlying Reduced Likelihood Ratio Tests Proportion of Structures chosen by AICR (BICR) 
'True' Covariance Proportion of Significant Tests (Out of 1000) (No. of Covariance parameters) 
Structure 'True' Model v's Identity 'True' Model v's Unstr UN ID CS AR1 ANTE 

df at 5% at 1% df at 5% at 1% (15) (1) (2) (2) (11) 

Identity - - - 14 0.410 0.262 0.265 0.543 0.081 0.102 0.009 
(0.185) (0.642) (0.075) (0.094) (0.004) 

Compound 1 0.912 0.796 13 0.468 0.287 0.323 0.015 0.548 0.112 0.002 
Symmetry (0.233) (0.022) (0.624) (0.121) (0.000) 
AR1 (p=0.2) 1 0.204 0.073 13 0.468 0.289 0.312 0.394 0.092 0.196 0.006 

(0.206) (0.486) (0.092) (0.213) (0.003) 
AR1 (p=0.8) 1 0.998 0.997 13 0.485 0.289 0.326 0.001 0.055 0.607 0.011 

(0.231 ) (0.001) (0.062) (0.703) (0.003) 
Ante 10 0.995 0.952 4 0.688 0.499 0.768 0.000 0.005 0.009 0.218 

(0.691 ) (0.008) (0.007) (0.020) (0.274) 
Unstr 14 0.999 0.999 - - - 0.988 0.000 0.009 0.003 0.000 

(0.972) (0.001 ) (0.021) (0.006) (0.000) 
Unstr. (QRE) 14 0.980 0.980 - - - 0.830 0.000 0.000 0.000 0.170 

(0.799) (0.000) (0.000) (0.000) (0.201 ) 

Table 2.3.4: Results from 1000 simulations of Design (CJ: A five treatment-five period Crossover Study with 10 subjects. 



Lawley (1956) demonstrates that the Bartlett correction generally improves the small 

sample behaviour of the LRT statistic, and gives an expression for the correction 

factor in terms of the cumulants of the log-likelihood derivatives. The correction 

adjusts the LRT statistic to give the same moments as the chi-squared distribution. 

ignoring quantities of order 11m2
, where m is the sample size, and its behaviour is 

generally improved as the number of estimated parameters is small in comparison to 

the sample size. A separate correction would be needed for each pair of structures 

to be compared, and this is not pursued here. 

AICR and BICR 

For design (A), the measures AIeR and BIeR still pick out the 'true' structure 

on the majority of occasions, but with a greater spread towards structures which 

are close to the 'true' structure. For designs (B) and (e), the spread is increased, 

indicating the reduced effectiveness of these measures in discriminating between 

structures. 

Testing of Fixed Effects 

Table 2.3.5 shows greatly inflated type 1 error rates for the X2 and F Wald statistics 

in design (A), but the Kenward Roger adjustment is seen to fix the size of the test at 

the nominal level of 5% when either the unstructured or 'true' covariance estimate 

is adopted. Again, if the 'true' structure with few parameters is estimated, then it 

is more powerful in detecting a significant difference in the interaction. Table 2.3.6 

for design (B) shows that when data are missing, the Kenward Roger adjustment 

leads to inflated type 1 error rates of around 7.5% when the unstructured or ('true') 

antedependence structure are used. When the estimate of the 'true' structure is 

based on few parameters however, the adjustment still generally fixes the test size 

to the nominal value. 

The loss of nominal properties in these tests when using an unstructured covariance 

model for data with missing values is marked, although when only two subjects drop 



Underlying Covariance Proportion of Significant Test Results 
'True' Covariance Estimate (Ho: No Treatment/Time Interaction) 
Structure Size Power 

X:l F KR KR 

Identity Unstr 0.329 0.290 0.053 0.735 
Identity 0.064 0.048 0.048 0.980 

Compound Unstr 0.350 0.306 0.045 0.747 
Symmetry Comp Sym 0.069 0.051 0.046 0.985 
ARI (p - 0.2) Unstr 0.352 0.319 0.050 0.735 

ARI 0.095 0.070 0.052 0.978 
ARI (p - 0.8) Unstr 0.344 0.318 0.056 0.775 

ARI 0.074 0.058 0.033 0.984 
Antedependence Unstr 0.332 0.300 0.058 0.760 

Ante 0.208 0.179 0.069 0.945 
Unstructured Unstr 0.348 0.316 0.045 0.768 
Unstr (QRE) Unstr 0.333 0.300 0.048 0.740 

Table 2.3.5: Results from 1000 simulations of Design (A): A simple Repeated Mea
sures experiment with 10 subjects. 

out, the loss in data is at most 8 observations out of a possible 50. Allowing a third 

subject to drop out (from either treatment group) is found to inflate this test size 

further, to around 15%, although as the amount of missing data increases so do the 

problems of convergence in finding the REML estimates. With the introduction of 

missing data, these small sample adjustments no longer lead to exact tests. That 

is, the Kenward Roger adjustment for all models is now based on an approximate 

Taylor series expansion, which may not be appropriate for large dimension problems 

with such small data sets. Also, the covariance structure of the data now directly 

effects the estimates of the mean parameters as well as their standard errors. Table 

2.3.6 also shows a loss of power as we would expect with less data, but there is a 

greater loss when using the unstructured model even accounting for the inflated test 

size. 

This inflation of the type 1 error rates using the Kenward Roger adjustment is even 

more pronounced in design (C), Table 2.3.7, where the actual test sizes found when 

using the unstructured covariance matrix are very far from the nominal level for the 

test of no treatment effect. However, it is noted again how the tests which reI)' on 

an estimate of the 'true' structure (where this has few parameters) appear to be 
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Underlying Covariance Proportion of Significant Test Results 
'True' Covariance Estimate (Ho: No Treatment/Time Interaction) 
Structure Size Power 

X~ F KR KR 

Identity Unstr 0.468 0.432 0.073 0.633 
Identity 0.062 0.044 0.044 0.958 

Compound Unstr 0.437 0.411 0.074 0.632 
Symmetry Comp Sym 0.080 0.050 0.047 0.950 
AR1 (p - 0.2) Unstr 0.461 0.419 0.089 0.637 

AR1 0.094 0.063 0.050 0.976 
AR1 (p - 0.8) Unstr 0.463 0.412 0.078 0.637 

AR1 0.075 0.051 0.031 0.966 
Antedependence Unstr 0.487 0.454 0.084 0.645 

Ante 0.261 0.220 0.079 0.858 
Unstructured Unstr 0.432 0.399 0.077 0.640 
Unstr (QRE) Unstr 0.360 0.338 0.046 0.516 

Table 2.3.6: Results from 1000 simulations of Design (B): A simple Repeated Mea
sures experiment with 10 subjects, and missing values. 

reasonably robust, with actual sizes close to the nominal level. It is not appropriate 

to compare power here, as the actual test sizes have not all attained the nominal 

level. 

2.4 Discussion 

The simulation studies of the previous section show that, in general, as the sample 

size decreases or the model becomes complex, either by design or due to missing 

values: 

(1) Reduced likelihood ratio tests of goodness of fit (and AICR/BICR) increasingly 

favour the unstructured covariance model in preference to the 'true' structure, 

so are not necessarily appropriate means of determining fit. 

(2) The power of (small sample adjusted) tests of fixed effects using the unstruc

tured covariance estimate is diminished in detecting departures from the null 

hypothesis. 

(3) Where an exact small sample test of the fixed effects using t he unstructured 



Underlying Covariance Proportion of Significant Test Results 
'Tr 'C . ue ovanance Estimate (Ho: No Treatment Effect) 
Structure Size 

X:2 F KR 

Identity Unstr 0.913 0.900 0.654 
Identity 0.065 0.048 0.048 

Compound Unstr 0.921 0.912 0.690 
Symmetry Comp Sym 0.077 0.058 0.054 
AR1 (p - 0.2) Unstr 0.910 0.900 0.660 

AR1 0.085 0.061 0.041 
AR1 (p - 0.8) Unstr 0.914 0.901 0.672 

AR1 0.062 0.042 0.024 
Antedependence Unstr 0.943 0.938 0.712 

Ante 0.410 0.382 0.137 

Unstructured Unstr 0.919 0.910 0.677 

Unstr (QRE) Unstr 0.926 0.913 0.698 

Table 2.3.7: Results from 1000 simulations of Design (C): A five treatment-five 
period Crossover Study with 10 subjects. 

model is not possible, the approximate test is unlikely to have nominal prop

erties. That is the actual size of the test may not be fixed at the nominal level, 

making inferences uncertain. 

These simulations show the importance in small sample studies, where the covari-

ance structure plays a part in the estimation of the mean parameters, of finding 

an appropriately fitting model with few parameters, where one exists, for validity 

of inference. This is because models with fewer parameters are likely to be better 

estimated when there is less data available, than their large dimension counterparts 

such as the unstructured model. Where a covariance structure is badly estimated, 

it affects not only the estimates of the mean parameters, {3, recall (1.2.3), but also 

the standard errors which are used to make inferences about them using (1.3.1). 

This raises questions about the role of the covariance structure in making inferences 

in a repeated measures context where the sample size is very small and the model 

or the covariance structure are complex. Such data are often highly non-~tationary. 

with variances and covariances which change over time, so that low-dimensional 

(stationary) models such as compound symmetry or AR1 are unlikely to be adeqnate. 
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However, adopting the additional parameters of an antedependence or unstructured 

model may lead to a dramatic loss of power, and inferences which are invalid. This 

suggests that the usual methods of analyses for such data are unreliable in these 

settings. 

2.5 Some Alternative Approaches 

There is clearly a need for methods which accommodate the structure of the data, 

but do not lead to inferences which are invalid in very small sample settings. Two 

general approaches are suggested: 

(1) To consider a covariance structure which offers a compromise between unstruc

tured and structured forms. A structure which retains the relevant features of 

the data in a model which has a low number of parameters. 

(2) To drop the covariance structure from estimation of the mean parameters, 

basing inference on their ordinary least squares estimates and using some con

sistent estimate of Var(y) to derive the standard errors. 

Option (1) suggests adoption of a 'smoothed' covariance estimate, whereas option 

(2) suggests the use of a robust (sandwich) estimator or Box's modified F-test based 

on an ANOVA statistic may be appropriate. These approaches are considered in 

turn in Parts II and III of this thesis. Our interest is in finding appropriate methods 

for the analysis of very small samples of repeated measurements that are widely 

applicable across a range of settings, which lead to tests with nominal properties 

for general hypotheses involving the fixed effects parameters, and have acceptable 

power to detect departures from those hypotheses. 
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Part II 

Smoothing the Covariance 
Structure 
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Chapter 3 

Background: Smoothing 
Covariance Structures 

3.1 Introduction 

Part 1 demonstrated the need for a generalised approach to covariance structure 

modelling in repeated measures analysis; where often the primary interest in an 

analysis is the mean response but the efficient estimation of a covariance structure 

is necessary for inference. There is enough common structure in the variances and 

covariances of repeated measurements to suggest that it should be possible to formu-

late models that can adapt to a variety of settings. Common features are variances 

and covariances that change smoothly with changes in time and time lags, and cor-

relations that tend to be smaller with larger time lags. The underlying smoothness 

that is commonly seen suggests smoothing more general structures in an adaptive 

way. 

Diggle and Verbyla (1998) suggest smoothing the components of the variogram to 

provide an estimated covariance matrix. The variogram of the residual process 

Z(t) = Y(t) - J-l(t) 

(3.1.1) 
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relates to the covariance function G (s, t) of the data via 

'"'I(s, t) = H G(s, s) + G(t, t) - 2G(s, t) } (3.1.2) 

This implies -y(t, t) = 0 so that the variance function (J"2(t) must be considered addi

tionally to account for the measurement error in the data. For a set of longitudinal 

data (Yij, tij): i = 1, ... , m; j = 1, ... , ni, where Yij is the jth measurement on subject 

i and tij is the time at which this measurement is made, with mean value function 

/-li(t), the variogram cloud is defined as the set of points (tij, tik, Vijk): i = 1, ... , m; 

j = 1, ... , ni; k > j, where 

(3.1.3) 

Diggle and Verbyla use the variogram cloud as the input data for a two-dimensional 

non-parametric estimator for the variogram, and the squared residuals Z;j = {Yij -

/-l(tij)}2 as the input data for an estimator for the variance function. These func

tions are separately smoothed using a kernel weighted local linear regression with 

bandwidths chosen to minimise a cross-validation criterion, and combined to give a 

smoothed covariance estimate 

(3.1.4) 
s=t 

This approach is difficult to implement and does not guarantee an estimate which is 

postive-definite, so has limited use in inference. However, it is suggested as a diag

nostic tool for helping to specify a plausible parametric structure. It could also be 

useful in providing an estimated covariance structure for data which is highly unbal

anced or in which observation times are not common to all subjects. and alternati\'e 

approaches are not available. 
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3.2 A Bayesian Approach 

Shrinkage estimation in which parameter estimates are pushed towards pre-determined 

or believable values has a natural setting in Bayesian statistics where such shrinking 

is a natural consequence of reliance on informative prior distributions. Such esti-

mation is common in the context of the multivariate linear model, where differing 

mean estimates can be moved closer to an overall mean. Often this involves use 

of an informative prior distribution for the covariance matrix which influences the 

mean estimates, although in many applications direct shrinking of the covariance 

parameters is undertaken. 

In small samples it is well understood that covariance matrices provided by maximum 

likelihood methods are unstable with the estimated eigenvalues of the underlying 

population covariance matrix being biased. Typically, the largest eigenvalues are 

overestimated whilst the smallest are underestimated. Many authors following Stein 

(1975) have sought to shrink the eigenvalues of the sample covariance matrix towards 

more plausible values (often a common value) resulting in a more robust estimate. 

These are orthogonally invariant estimates of the form :E = OA*(.\)OT, where 0 

is the matrix of normalised eigenvectors, .\ is the vector of sample eigenvectors and 

A*('\) = diag(Ai(.\), ... , A;(.\)), where each Aj is a real-valued nonnegative function. 

Stein's characteristic roots method sets Aj(.\) = n.\j/aj, where 

(3.2.1) 

Others have sought to achieve such stability through a decomposition of the co

variance matrix and placing prior distributions on the separate elements. Lin and 

Perlman (1985) and Barnard et al. (2000) model the covariance matrix in terms of 

standard deviations and correlations. (See Daniels and Kass (1999, 2001)). 

Chen (1979) and others have proposed shrinking the unstructured sample covariance 

matrix towards a structured form, by using the structured form as the scale matrix 
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in the inverse Wishart prior. Increasing shrinkage towards the structured form can 

be achieved by adopting a large value for the associated degrees of freedom. Chen 

develops his approach for a multivariate linear model where he shrinks the sample 

covariance matrix towards a factor analysis form. 

Chen's approach can be described as follows for data Y i f'V N(O, :E), where A = 

Li YTYi, and :E = A/n is the maximum likelihood estimate of :E. The unstruc

tured covariance matrix:E is modelled as an inverse Wishart distribution A _ :E- 1 
f'V 

Wp{(lJO)-l, lJ}, centred at 0, apxp structured covariance matrix. Ignorance (fiat) 

priors are then adopted for the unknown hyperparameters in 0 and for the degrees 

of freedom parameter lJ. 

Assuming 0 and lJ are known initially, we have the posterior distributions, 

(Aldata) f'V W p{ (A + lJO)-l, n + lJ}, and 

(:Eldata) f'V W;l{(A + lJ*O*), n + lJ* + P + I} 
(3.2.2) 

and it follows that the Bayes estimate of :E, the mode of the posterior density, is 

given by 

A n A lJ* 
:E* = :E + 0* 

n + lJ* n + lJ* 
(3.2.3) 

which is a weighted average of the unstructured estimated matrix and the given 

structured matrix. The degrees of freedom parameter lJ* weights ones prior belief 

about the specified structure against the sample evidence. 

lJ* and 0* are calculated by reference to the joint density of the data A and the 

inverse covariance matrix A 

f(A, AIO, lJ) = h (AIA)h(AIO, lJ) (:1. 2.1) 
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from which we obtain the marginal density of A 

g(AIO, v) = J f(A, AIO, v)dA 

{A>O} 

(3.2.5) 

Chen uses the EM algorithm for the hyperparameter estimation, where (0* 1 v*) are 

chosen to maximise this marginal likelihood. By considering (A, A) as the complete 

data with A unobservable and A alone incomplete. Given (O(k), v(k)) the current 

values of (0, v) after k cycles of the algorithm, we have 

Estep: 

(3.2.6) 

M step: 

Find O(k+l)which maximises H(O) = loglOI - tr(OA (k+l)) 

Then, solve for v 

p 

where, g(v) = plog(v/2) - 2: w{(v + 1 - j)/2} and w(t) 
j=l 

digamma function. 

(3.2.7) 

(d/ dt )logf( t) is the 

Chen shows (under the usual 'regularity conditions') that t* is a consistent estimate 

of :E, and that t* is asymptotically at least as efficient as the maximum likelihood 

estimate t for all :E. 

This approach is attractive in principle with one shrinkage parameter (degrees of 

freedom) for all elements of the covariance matrix being determined by the data. 

However, there are necessary restrictions in practice as the degrees of freedom must 

be greater than p - 1 in order to maintain a proper prior, forcing the resultillg esti

mate some way towards the structured form, even when the data suggest otherwise. 

Chen~s approach has been adopted by' sen'ral authors. including Brown d ai. (1994) 
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in the context of spatial interpolation. Also, Friedman (1989) takes an analogous 

approach in choosing between two covariance estimates for problems in discriminant 

analysis which are ill- or poorly-posed (Le. have sample sizes below the number 

of parameters to be estimated). Friedman proposes a 'regularisation' between us

ing the separate group covariance structure (quadratic discriminant analysis, QDA) 

and adopting a single pooled covariance structure for all groups (linear discriminant 

analysis, LDA). The regularised covariance structure reduces the high variance as

sociated with small sample based estimation at the expense of bias. Two smoothing 

parameters are introduced, the first of which determines the amount of regulari

sation between QDA and LDA, whilst the second reduces the inherent bias in the 

process. These parameters are chosen to jointly minimise an estimate of the future 

misclassification risk. 

Daniels and Kass (1999) also propose using an estimated covariance matrix which 

is a compromise between an unstructured and a parametric (diagonal) form. They 

achieve this through the introduction of two hierarchical priors (HPs) for the co-

variance matrix based on two different matrix decompositions. These are compared 

with the standard Bayesian approach of using a hierarchical Wishart prior, where 

a Wishart prior is introduced for ~-1 which has an unknown scale matrix with a 

diagonal form and unknown degrees of freedom, which allows the data to determine 

the extent to which diagonality is supported. 

Their first approach is to place a hierarchical prior on the correlations using the 

variance/correlation decomposition of the covariance matrix ~ = diag(S)Rdiag(S), 

where S is a vector of standard deviations and R is the matrix of correlations. 

Daniels and Kass place a normal distribution on Fisher's z-transform of the correla

tions O.5log{(1- p)/(l + p)} '" N(O,72) which will shrink the correlations towards 

zero. These normal distributions are truncated to ensure that the resulting estima

tor is positive definite. Also, flat priors are placed on the logarithms of the diagonal 

elements of ~ and a 'uniform shrinkage' prior of the form /T( 72
) ex (c + 72)-2 is used 

for the unknown variance 72, where c is chosen to be the asymptotic variancl' of the 

55 



z-transform of the correlations, l/(k - 3), where k is the number of subjects. 

The second approach is based on the spectral decomposition E = PApT , where A 

is a diagonal matrix of ordered eigenvalues and P is the orthogonal matrix which 

is the product of the unique rotation matrices defined by p(p - 1) /2 Givens angles. 

Here, a normal distribution centered at zero is placed on the logit transformation of 

the Givens angles, 

{
7r/(2+8)} 2 

log 7r/(2 _ 8) rv N(O, 7 ) 

As with the correlation shrinkage method, flat priors are placed on the logarithms 

of eigenvalues of E and a prior of the 'uniform shrinkage' form is placed on the 

unknown variance 7
2

. Here, however, the choice of the constant c is more difficult, 

because there is no expression for the asymptotic variance of the logit of 8. Daniels 

and Kass set c = 1. 

The risk of the three estimators is compared to that given by standard priors (e.g. 

Jeffreys and Wishart) in a simulation study, using data Y rv N(O,~) for a variety 

of true covariance matrices ranging from the identity to somewhat ill-conditioned 

matrices. using the risk function R(:E,~) = E:E{L(:E,~)} associated with Stein's 

loss L(:E, E) = tr(:EE- 1) - log I :E~-l I -p, where :E is the Bayes estimator. 

The hierarchical Wishart prior performs well for matrices which are close to diagonal 

but struggles otherwise as the degrees of freedom parameter pushes against the 

boundary p - 1, a property shared with the non-hierarchical Wishart prior. This 

gives the edge to the correlation and Givens-angle HPs where the parameter 7 2 , 

which works analogously to the degrees of freedom parameter in determining the 

amount of shrinkage, may become arbitrarily small. 

One drawback of these estimators however is the computational problems invoh'ed 

in sampling from such non-conjugate priors. Using Gibbs sampling when t he full 

conditional of E is not inverse \Vishart leads to a uni\'ariate approach generating 
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the full conditional of :E componentwise requiring p(p + 1) /2 evaluations. Approx

imations to the full conditional of :E which allow it to be generated at once often 

require an expensive maximisation at each iteration and can also lead to problems 

because of the high correlation between estimated parameters. To avoid these prob

lems, when modelling the covariance matrix in the second stage of a hierarchical 

model, Daniels and Kass propose a combination of approximation and importance 

sampling. 

This approach is generalised in Daniels and Kass (2001), where the correlation 

shrinkage and rotation shrinkage estimators are developed to provide for shrinkage 

towards any structured form, and asymptotic distributions are adopted to simplify 

the computational aspects of their use. They consider specifically the use of these es

timators in a fixed effects regression model with correlated errors, useful in repeated 

measures analysis. 

(3.2.8) 

Their approach is to first fit a model by maximum likelihood with an unstructured 

form for :E, and conditional on f3 compute the observed information matrix based 

on one of the two parameterizations. They then propose a two level Normal-Normal 

model where the maximum likelihood estimator of :E is firstly approximated by a 

Normal distribution with variance the inverse of the observed information matrix, 

which is taken to be block diagonal. Then, a normal prior is used to shrink the 

correlations and eigenvalues (or variances and angles) towards a structured form es

timated from the data. This requires the estimation of only two variance components 

(shrinkage parameters) from the data in addition to the parameters of the structured 

model. 

For the correlation shrinkage estimator, the normal prior on the correIa t ions used in 

Daniels and Kass (1999) is replaced by the more general z(p) rv N(z(ps), T;), whcre 

ps are the correlations under the assumed covariance structure. -Using an asymptotic 
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approximation first proposed by Lin and Perlman (1985), the effect of this approach 

is to simply replace the sample correlations, given in the vector p, with 

where I{z(p)} is the observed information matrix for the z-transform of the corre

lations, and 

f; = ((z(p) - z(Ps)}TI{z(p)}{z(p) _ z(Ps)} _ p(p - 1}/2 
tr[I {z(p)}] (3.2.10) 

If it is required to shrink the covariance matrix rather than the correlation ma-

trix, then the variances must also be shrunk using log(a-2) rv N(log(a;), r;), which 

replaces the sample variances, given in the vector iJ'2, with 

iT 2 = log-l ([I{log( u2 )} -1 + f2Wlf21og(u2) 

+ [I{log(u2)} -I + f2WII{IOg(U2)-11og(u~)}) (3.2.11) 

where I{log(iJ'2)} is the observed information matrix for the logarithm of the vari-

ance. This assumes that the variances and correlations are asymptotically indepen-

dent which is unlikely to be the case, although Daniels and Kass find that this is not 

a problem in practice. Also, this estimator is not guaranteed to be positive definite 

even where the unstructured and structured estimates from which they are derived 

are. 

For the rotation shrinkage estimator, the prior distribution for the logit of the Givens 

angles becomes 

. (7r/2+()) .) 2 loglt(()) = log / rvN(lOglt(()s ,,&) 7r 2-() 
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where Os are the Givens angles under the assumed covariance structure. Again, 

assuming an asymptotic distribution for the Givens angles, a simple shrinkage esti

mator is found by replacing the sample Givens angles, given in the vector 0, with 

iJ = logit-1 ([I{logit(iJ)} -1 + f2W1f21ogit(iJ) 

+ [I{logit(iJ)}-1 + f 2W 1 I {logit (iW 11ogit(O,)} ) (3.2.12) 

where I {logit( On is the observed information matrix for the logit of the Givens 

angles, and 

f~ = {z(O) - z(OsnT I{z(On{z(O) _ z(Osn _ p(p - 1)/2 
tr[I {z( On] 

To shrink the eigenvalues they use 

(3.2.13) 

(3.2.14) 

Daniels and Kass refer to shrinkage of the eigenvalues alone, using (3.2.14) as the 

structured log eigenvalue estimator. This is considered to be more reliable in practice 

than the full rotation shrinkage estimator as the Givens angles in the rotation method 

are slow to converge towards their asymptotic distribution, making these estimates 

unreliable in small samples. 

These two 'shrinkage to structure' approaches are compared with conventional eigen-

value shrinkage approaches through a simulation study, which calculates the percent

age reduction in average loss for each estimator using the loss function of Daniels 

and Kass (1999). This is the difference between the risk of the sample covariance 

matrix and the risk of the estimator divided by the risk of the sample covariance 

matrix. It is concluded that both estimators have smaller risk than the unstructured 

maximum likelihood estimator in small to medium sized samples and better than 
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the structured estimator where the hypothesised structure is incorrect. They also 

consider the effect of such estimates on the estimated regression parameters. and 

report gains in the mean squared error of these estimates. The correlation shrinkage 

method is preferred, and results from this estimator are good particularly when the 

chosen structure is close to the true one. In large samples, both estimators do well 

as the data dominates the specified structure, whether or not it is correctly cho

sen. In this case the shrinkage estimates and unstructured REML estimates become 

indistinguishable. 

The estimators are described as optimally efficient, in the sense that the covariance 

estimates are consistent and the resulting regression coefficients are consistent and 

asymptotically efficient. 

Daniels and Kass recommend that the eigenvalues of the unstructured covariance 

matrix are first shrunk using the Stein estimator to provide a more robust estimate of 

the sample covariance matrix, before shrinking towards some parametric structure. 

They suggest the following approach to shrinking the estimated covariance matrix. 

(1) Fit the model using an unstructured covariance matrix, ~ 

(2) Shrink the eigenvalues of the unstructured estimator to obtain a more stable 
A 

estimate, ~st 

(3) Fit the model assuming some covariance structure, ~s· 

(4) Compute estimates of the parameters that determine the amount of shrinkage 

using :Est and :Es 

(5) Compute a shrinkage estimator of the covariance matrix, 'Esh using the esti

mates in steps 2-4. 

(6) Refit the model conditional on ~sh 

The advantage of this approach is that it is easily computed using exi~tiIlg ~tati~ti

cal software such as SAS proc mixed (SAS Institute, 1999) with steps (--1) and C") I 
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requiring a simple macro. The structured covariance matrix which the unstructured 

matrix is smoothed towards may be chosen according to the usual criteria (AIC. 

Ble or likelihood ratio tests). However, the approximations and asymptotic results 

needed to simplify the computations means that these estimates are less reliable 

in the small sample situations where they are most likely to be useful. Also, it is 

not clear if independent modelling of the variances and correlations in the sample 

covariance matrix is appropriate in a repeated measures or longitudinal data setting. 

Daniels and Kass suggest alternative parameterizations should be pursued for shrink

ing the covariance matrix towards a structure which do not involve asymptotic ap

proximations and are computationally efficient. They suggest also that the approach 

be extended to include linear mixed effects models. Daniels and Cressie (2001) and 

Daniels and Pourahmadi (2002) provide further examples of this approach in appli

cations involving time series and longitudinal data respectively. 
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Chapter 4 

A Direct Smoothing Approach 

4.1 Introduction 

Although there have been recent advances in Bayesian techniques for smoothing 

between unstructured and structured covariance estimates where the data are not 

sufficient for a well-fitting unstructured model, such methods are not accessible to 

those involved in everyday analysis. Where straight-forward 'plug-in' estimates are 

provided by way of approximations, these are not reliable in the small sample setting 

where they are most likely to be adopted. The aim of this research is to consider the 

development of adaptive-estimation techniques in a frequentist setting that attempt 

to retain the degree of structure appropriate for the analysis of small samples. 

We approach the problem of choosing between unstructured and structured covari

ance estimators by attempting to smooth directly between them, with the amount 

of smoothing being determined by the data. 

An intuitive first approach, analogous to that of Chen (1979), is to consider the 

linear combination of the unstructured and structured covariance estimators ~ and 

t s , given by 

(-l.1.l) 
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where the smoothing parameter, A, determines the degree of smoothing. That is. for 

A = 0 we have the unstructured estimate, whilst at the other extreme A = 1 results 

in the structured estimate being adopted. 

Initially, simple forms of ~s such as identity and compound symmetry are consid

ered. The effects of smoothing towards such structures will be illustrated here and 

in subsequent chapters by reference to the following data set. 

4.1.1 Cardiac Enzyme Data 

Data were collected to compare the effects of four preserving liquids on the enzyme 

content of 23 preserved dog hearts. The four test liquids were defined by the pres-

ence and absence of two components A and B, and repeated measurements of the 

adenosine triphosphate (ATP) level as a percentage of total enzyme (%ATP) were 

made on 9 occasions at one and two hourly intervals. 

The sample variance-correlation matrix for these data is shown in Table 4.1.1. (This 

shows variances on the diagonal, with covariances above and correlations below). 

Subject and mean profiles for the four preserving liquids are shown in Figures 4.1.1 

and 4.2.2 respectively. 

29.01 12.26 10.41 21.39 8.76 27.68 28.62 16.08 8.40 
0.36 39.86 10.25 27.70 7.72 30.22 45.62 15.20 1.38 
0.31 0.26 38.71 -1.20 7.97 9.84 30.14 -5.48 0.76 

0.39 0.43 -0.02 105.12 -1.95 41.60 66.27 34.87 -2.33 

0.24 0.18 0.19 -0.03 45.31 39.36 37.15 13.65 42.26 

0.43 0.40 0.13 0.34 0.49 141.36 99.53 72.19 105.61 

0.42 0.57 0.38 0.51 0.44 0.66 159.70 73.00 59.21 

0.27 0.21 -0.08 0.30 0.18 0.54 0.51 126.22 79.08 

0.12 0.02 0.01 -0.02 0.50 0.71 0.37 0.56 158.01 

Table 4.1.1: Sample Variance-Correlation Matrix for the Cardiac Enzyme Data 
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Figure 4.1.1: Cardiac Enzyme data: Subject Profiles for the Four preserving liquids 

4.2 Smoothing Towards an Identity Structure 

We begin by smoothing the unstructured estimated covariance structure ~ to-

wards an identity structure. To motivate development of this technique, atten-

tion is restricted in the first instance to balanced and complete data, for which the 

REML log-likelihood of :E collapses to the log-likelihood of the Wishart distribu

tion. That is :E = S, the sample covariance estimate, follows a Wishart distribution, 

m:E rv W p(:E, m). It follows that :EI = (lip )tr(S)I, the identity (structured) maxi-

mum likelihood estimator of :E given the sample covariance matrix S. 

Thus, identity smoothing is defined as 

~ ~ tr(:E) 
:EA = (1 - A):E + A I 

p 
(.t~.l) 

6--1 
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13 

That is, gIven a suitable value of the parameter A, the unstructured matrix is 

smoothed towards an identity structure with a constant variance across time (that 

is the average of the unstructured variances). i.e. treE>,) = tr(t) = p, for all 

o < A < 1, so that the average variance is maintained. 

Figure 4.2.1 shows the effect of smoothing the variances for various values of A for 

the Cardiac Enzyme data. 

Two questions are immediately apparent about such a smoothing approach: 

(1) How is the fit of the smoothed matrix to be assessed? For example, can the 

(reduced) log-likelihoods of both t and t>, be compared? 

(2) What is the effective number of parameters in the smoothed matrix? Is there 

an intermediate number of parameters between the p(p + 1)/2 of the unstruc-

tured model and the single parameter of the identity structure for 0 :::; A :::; I? 
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Figure 4.2.1: Variances by Time for the Cardiac Enzyme data. Direct Smoothing 
to an Identity form. Legend: Solid Line, smoothed estimate; Dashed Line, identity 

form; Dotted Line, unstructured form. 

Appropriate answers to these questions may lead to an AlC type penalised likelihood 

measure, which can be used to determine an appropriate value of A. 

An alternative procedure would be to assess the variabilty and inherent bias in 

the smoothed estimator, and to choose A to minimise the mean squared error of a 

suitable function of :EA· 

M.S.E.{f(:E A)} = Var{f(:E A)} + [bias{f(:EA)}]2 
(4.2.2) 

= Var{f(:E A)} + {f(:E A) - f(:E A)}2 
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4.2.1 A Likelihood Based Approach to finding A 

We begin by considering a likelihood based approach. Note that :E maximises the 

Wishart log-likelihood 

£(~; S) = const. - mlogl~1 + ~(m - p - l)loglSI _ m tr(~-lS) 
222 

(-1.2.3) 

so that equivalently, ignoring constants, :E (= S) minimises (minus the log-likelihood) 

(-1.2.4) 

Writing ¢i, (i = 1, ... ,p), to be the eigenvalues of :E, we have that the minimised 

value of (4.2.4) is given by 

p p 

10gl:E1 + tr(:E-
1
:E) = 10g(II ¢i) + tr(I) = L log(¢i) + p (4.2.5) 

i=l i=l 

The smoothed estimator ~>. does not follow a Wishart distribution, but it is in-

formative to consider the value of the (maximised) log-likelihood of ~ when ~>. is 

substituted via the 'smaller is better' formulation 

-f,;(t,\;S) = loglt'\l+tr(t~lt) = log [g{(l-A)<!>i+A1>}] + t,[(l- Ai;i + A<!>] 
(-1.2.6) 

P A 

where ¢ = 2:= ¢i/p is the mean eigenvalue of ~. 
i=l 

Consider now the difference in the (maximised) log-likelihoods of the unstructured 

and smoothed estimates, £(:E>.; S) - £(:E; S), for 0 < A < l. 
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f(EA; S) - f(E; S) = loglEAI + tr(E~lE) - {loglEI + tr(I)} 

= log [IT {(I - )..)<I>i + )..<I>}] + t [ ¢i ]- log(IT ¢d _ p 
~=1 i=l (1 - )..)¢i + )..¢ . 

1=1 

_ ~{(l-)..)¢i+)..¢} ~ { A.. } - ~ - ~ log 'f'~ _ P 
i=l ¢i i=l (1 - )..)¢i + )..¢ 

p 

= L {~i -log(<I>d} - p 
i=l 

where <I>i = ¢i (h ~-1~ 
(1 _ )..) ¢i + )..¢i are t e eigenvalues of :E A :E) . 

That is, the difference in the maximised log-likelihoods of E and E.x may be written 

(4.2.7) 

Also, it is easily seen that for 0 < ).. < 1 

p 

f~(EA; S) - f(E; S) = L {<I>i -lOg(<I>i)} - P 
i=l 

( 4.2.8) p 

> L1-p=p-p=0 
i=l 

(since log(x) is concave and below all of its tangents, so that x-I > log(x). I.e. 

x -log(x) > 1, for all x > 0). That is, as we might expect, the fit of the smoothed 

estimate to the data reduces as the degree of smoothing, determined by).., increases. 

However, this reduction in fit may be offset by penalising the likelihood measure 

by the effective number of parameters in the smoothed estimate :EA. leading to a 

measure which can be used to determine a suitable value of )... 

An intuitive estimate of the degrees of freedom associated with :EA is given by' 

(4.2.9) 
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which is a simple weighted combination of the ~p(p + 1) parameters of the unstruc

tured estimate and the single parameter of the identity form. 

This suggests a penalised measure of the form 

(4.:2.10) 

where g is a suitably chosen function of the effective number of parameters in t,\. 

Unfortunately this method proves to be too heavily dependent on a suitable choice 

of function g. Also, it is not obvious that the effective number of parameters in 

:E,\ will change linearly in ,\ as (4.2.9) suggests. Indeed, work presented in the next 

chapter suggests that the smoothed estimator differs more greatly for low values of 

,\ than for large. 

Such a penalised approach is not pursued further in this context. A penalised like

lihood approach to the problem of smoothing between unstructured and structured 

covariance estimators is presented in Chapter 5. 

4.2.2 Finding). via the M.S.E. of a function of t,\ 

An alternative approach to the direct smoothing problem is to consider a method 

for choosing ,\ in :E,\ via a suitable measure of the mean squared error (M.S.E.). To 

do this, however, we need to define a meaningful measure of Var(t,\) which leads to 

a scalar quantity which can be minimised in the objective function. Two measures 

of variation suggested from multivariate statistics are tr(:E), the total variance, and 

I:E I, the generalised variance. 

As we have seen, when smoothing towards an identity structure, tr(t,\) = tr(t). 

for all 0 < ,\ < 1, so that there is clearly no advantage in considering the former. 

However it may be possible to find ,\ through mimimising t he mean squared error 

of the generalised variance \'ia l\I.S.E. (In It,\ I)· 
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M.S.E.(ln 1 E), I) 

The mean squared error of the quantity In IE), I is defined 

(--1.2.11) 

Here, approximate expressions can be obtained for E(ln IE),!), using E(:t)=:E so that 

E( o-ij) = O"ij, i.e. using the rule that for a general variable X, E{f(X)} = f {E(X)}. 

Also, Var(ln l:t)'l) can be evaluated by considering the Taylor expansion of In I:tAI as 

a function of vec(:t) = (0- 11 ,0-21, ... , o-pp) , via the 'delta' method. (See, for example, 

Stuart and Ord (1994), Chapter 10). That is, we have 

M.S.E.(ln IE)'I) = Var(ln IE)'I) + {bias(In IE)'I)}2 

~ ~ TW ~ + (In I:EAI -In 1:E1)2 

where W = Cov{vec(E), vec(E)}, and 

0-11=0"11 

(4.2.12) 

( 4.2.13) 

Also, following Searle (1982), defining K as the 'commutative' matrix, K = L:~,j=l (Hij0 

HT) (where H·· has i J'th element 1 and all other elements zero), we have 
ZJ ' ZJ' 

W = Cov{vec(E), vec(E)} = ~(Ip2 + K)(:E 0:E) 
m 

(-1.2.1-1) 

Recall for an (m x n) matrix A, with i,jth element aiJ' and a (p x q) matrix B, the 

kronecker product A ® B is given by 
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Since, 

(4.2.15) 

and 

( 4.2.16) 

where, as before, Hij is a matrix of O's with 1 in the i, jth position and 6ij = 1 when 

i = j, else 6ij = O. We have the following expression (elementwise) for ~. 

(4.2.17) 

This allows us to construct M.S.E.(lnlt>.i) to plot, or we can find A by minimising 

(4.2.12) using a generic optimization routine in SAS or S-Plus. 

Another approach is to consider M.S.E.(aTt>.a) where, for a non-null vector a (with 

aT a = 1), aTt>.a is a linear combination of the elements of t>.. This is developed 

below. 

T~ 

M.S.E.(a ~>.a) 

A is chosen to minimise the mean squared error of the quantity aTt>.a, given by 

(-1.2.18) 

Now, 
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T A A tr(jb) 
Var(a :E,xa) = Var{ (1 - -\)aT:Ea + -\ } 

P 
2 T A -\2 A -\ T A A 

= (1- -\) Var(a :Ea) + 2Var{tr(:E)} + 2(1 - -\)-Cov{a :Ea, tr(:E)} 
p p 

so that, noting that jb follows a Wishart distribution, mjb r-v Wp(~, m), Var(aTjb,Xa) 

can be evaluated by reference to the standard results 

i=l 

where ¢i are the eigenvalues of :E, (see, for example, Anderson (1958) or Muirhead 

(1982)). However, we have the complicated covariance term Cov{aTjba, tr(jb)} to 

deal with. A simpler approach is to consider the alternative writing of aTjb,Xa as 

where 

TAT A tr (:E) A T-\ 
a :E,Xa = (1 - -\)a :Ea + -\ = tr[:E{ (1 - -\)aa + - I}] 

p p 

= tr(jbA) 

-\ 
A = (1 - -\)aaT + -I 

p 

(4.2.19) 

( 4.2.20) 

Using this form, we can determine the following expressions for the mean and vari

ance of aTjb,xa 

so that, 

Var(aTjb,Xa) = Var{ tr(jbA)} 

2 
= -tr(:EA:EA) 

m 
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Also, 

bias(aT:Ea) = E(aT:Ea) - aT~a 

,\ 
= -tr(~) - '\aT~a 

p 

( 4.2.22) 

( 4.2.23) 

This leads to the following (quadratic) expression in ,\ for the mean squared error. 

p p 

Recalling that tr(~) = z= CPi and tr(~2) = z= CPT, the R.H.S. can be written, 
i=l i=l 

where {CPi} are the eigenvalues of~. It follows that, for a suitable choice of a, 

M.S.E.(aT:Ea) is minimised by 

2p(aT~a)2 - 2aT~2a 
,\ = -2p-(-a-T ~-a-:) 2 __ 4a--::T=-~---;:2~a_+_2V_a_r-:-{ cp-i-} -+-2-(E-{-=-CP-i:-} )-=-2 -+-m-p-(-E---=-{-CP1-· }-a--:T=-~-a---=-) 2 

( 4.2.26) 
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But how should a be chosen? 

Noting that aT:Ea is bounded within the interval [¢min, ¢max], with a the corre

sponding eigenvector, (c/f Principal Components Analysis), it seems sensible to 

take aT:Ea = ¢*' a (particular) eigenvalue of :E. That is, if a is an eigenvector of~, 

we have aT:Ea = ¢*' the corresponding eigenvalue, and we have 

A = 2(p - 1)¢; 
2(p - 2)¢; + 2Var{ ¢i} + 2(E{ ¢d)2 + mp(E{ ¢i} - ¢*)2 

W 
.. A Var{¢d E{¢i} 

ntmg = 2 and B = , we obtain 
¢* ¢* 

1 
2(1 - -) 

,- P 
/\ - 2 2 

2(1 - -) + -(A + B2) + m(B - 1)2 
p P 

( 4.2.27) 

so that it would seem sensible to choose ¢* to be the largest eigenvalue of~. As 

¢* -+ E{ ¢d, so that Var{ ¢d -+ 0, we have A -+ 1, since the underlying structure 

will be close to an identity form. It is also seen that A -+ 0 as m -+ 00 as we would 

intuitively expect. 

The above approaches to determining the value of the smoothing parameter A for 

directly smoothing towards an identity structure will be tested in Section 4.4 through 

a simulation study. 

4.3 Smoothing Towards a Compound Symmetry Struc

ture 

In the context of repeated measures, where data often display high dependencies, an 

identity (independence) form may be considered too restrictive as a suitable choice 

of 'smoothing structure'. Hence, consideration is also given to smoothing towards 

a compound symmetry structure, which allows for a uniform correlation between 
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observations on a subject. 

Again, for data which is balanced and complete, we have 

f:cs = p(p ~ 1) [{tr(SllT) - tr(S)}llT + {ptr(S) - tr(SltT)}I] (4.3.1) 

the compound symmetry (structured) maximum likelihood estimator of:E given the 

sample covariance matrix S. In this case the smoothed estimate :E>. preserves the 

total of the diagonal entries, that is tr(:E>.) = tr(:E) for all 0 < A < 1, and also the 

total of the off-diagonal entries, tr(:E >.11 T) = tr(:E 11 T). 

Then, for 0 < A < 1, compound symmetry smoothing is defined 

As with the identity smoothing of the previous section, expressions can be obtained 

for A via the minimisation of the mean squared error of the quatntities In I:E>.I and 

aT:E>.a. Attention here is restricted to a statement of comparable results to those 

given for identity smoothing in subsection 4.2.2. 

M. S. E . (In I:E >.1 ) 

To obtain the mean squared error of In I:E>.I, for smoothing towards a compound 

symmetry structure, we proceed as in the previous section, with 

O~>. = +((1- A):E + ~ [{tr(:E11T) - tr(:E)}llT + {ptr(:E) - tr(:EI1T)}I]) 
O(jij o(jtJ p(p 1) 

= (1 - 'x)(Hij + Hji - oijH iJ ) + p(p ~ 1) [{(2 - Oij) - Oij}llT + {POij - (2 - Oi j )}!] 
(4.3.3) 

so that, 

75 



Ui;~Uij = tr{ i::~1 ((1 -A)(H'j + Hj' - O'jH'j) 

TA 
M.S.E.(a ~Aa) 

+ p(p ~ 1) [2(1- Oij)n
T + {O,j(p + 1) - 2}I]) } ( 4.3.4) 

Again, the value of A. is chosen to minimise the mean squared error of the quantity 

aTtAa. Proceeding as before, but for compound symmetry smoothing, we can write 

aTi::.xa = (1 - A)aTi::a + p(p ~ 1) [{ tr(i::nT) - tr(i::)}aTn T a - {ptr(i::) - tr(i::n T)}] 

= (1 - A.)aTta + A. [(aT 11 T a - 1)tr(t11 T) - (aT 11 T a - p)tr(t)] 
p(p- 1) 

= tr(tA) 
(4.3.5) 

where A is now the matrix 

(4.3.6) 

Then the variance and bias of aTtAa are given as , 

and, 
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hias(aT:ta) = E [(1- .\)aT:ta + p(p ~ 1) {(aTn T a - l)tr(:tnT) - (aTn T a - p)tr(:t)} 1 
-aT~a 

= -.\aT~a + p(p ~ 1) {(aTnT a - l)tr(~nT) - (aTnT a - p)tr(~)} 
(4.3.8) 

which again leads to a (quadratic) expression in A for the mean squared error. This 

is given by 

TA 1 {2 2 2 2} 2 M.S.E.(a ~,\a) = 2( )2 2p (p - 1) A - 4p(p - l)B + 2C + mD A 
mp p-1 

- / ) {p(p - 1)A2 - B}A + ~A2 (4.3.9) 
mp p -1 m 

where, 

B = (aTIlT a - 1)(aT~a)2 - (aTIlT a - p)aT~2a 

C = (aTIlT a _ 1)2(aT~a)2 - 2(aT ll T a - l)(aT IIT a - p)aT~2a + (aTIlT a - p)2tr(~2) 

D = p(p - l)aT~a - {(aTIlT a - l)aT~a - (aTIlT a - p)tr(~)} 
(4.3.10) 

It is easily shown that the M.S.E. is minimised by choosing 

A = 2p2(p _ 1)2 A2 - 4p(p - l)B + 2C + mD2 
(4.3.11) 
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4.4 A Simulation Study 

Here we attempt to compare the estimates of the smoothing parameter A, arising 

from the various direct smoothing techniques discussed, using simulated data. The 

datasets arising from the Pilot Study of Chapter 2, Section 2.2, are used initially 

since they are complete and balanced, as our methods based on the Wishart likeli

hood necessitate. That is, we have 1000 datasets, each comprising two (identical) 

treatment groups of size 8 (m=16) measured at p=5 time points arising from seven 

underlying covariance structures including identity, compound symmetry, AR1 (low 

and high correlation), antedependence and two 'unstructured' forms. 

Since the methods developed are based on minimisation of the mean squared error 

of a function of the smoothed estimate ~>., and for simulated data the underlying 

('true') covariance structure is necessarily known, it is possible to check the perfor-

mance of the mean squared error approach in determining an appropriate value of 

the smoothing parameter A, against an empirical measure, viz. 

N 
TA 1"" TA T 2 Empirical M.S.E.{f(a ~>.a)} = N ~ {f(a ~,\a) - f(a ~a)} 

i=l 

(4.4.1) 

where N (=1000) is the number of simulations. This can be compared with the 

theoretically derived M.S.E. substituting the known underlying covariance structures 

in the approaches developed in sections 4.2 and 4.3. 

We begin by assessing the use of M.S.E.(lnl:E>.I) in providing an estimate of the 

smoothing parameter A. 

M.S.E. (lnl :E>.I) 

Figures 4.4.1 and 4A.2 show plots of the empirically and theoretically calculated 

M.S.E. for data arising from the underlying covariance structures for smoothing 

towards an identity and compound symmetry form respectively. 
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Figure 4.4.1: Plots of both Empirical and Theoretical M.S.E. functions for given A in 
M.S.E.(lnIE.xI), Identity Smoothing. 1000 simulations of the Pilot Study. Legend: 

o Empirical, + Theoretical 

79 



M.S.E. Identity M.S.E. Compound Symmetry 

'" N ~ 

0 

" 0 

N 0 
0 

0 

0 

~ 0 
N 0 

0 0 
0 0 ... 

w 
• 

00 

0 

U) :! 
w 0

0000 ::E 000 

U) 

::E 
0

0 '" '" 
0

000 

~ 

~ 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

lambda lambda 

M.S.E. AR1 (rho=O.2) M.S.E. AR1 (rho=O.8) 

~ :0: " 
" 

, 
, 

~ 
N 0 ~ ........ 

0 

" 0 
" 0 " 0 

0
0 

W Go 
(f) '" 

w 

::E '" 
00 

U) 
:;! 

00 

::E 

00 

~ 

-- "- ,-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

lambda lambda 

M.S.E. Antedependence M.S.E. Unstructured 

~ 

Ii 

i 
S! 

w 
w II) 
II) 
::E 

::E 

!i 

", 

..... 0° :0: " 
••• 0°0 " 

.... aOo 
........... 

0 •••• 000 oJo '\0 -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 1.0 

lambda 
lambda 

M.S.E. Unstructured (Q.R.E.) 

§ 
;! 

" ~ 

~ 
~ 

w 
II) 
::E 8 

Ii 

~ 

~ 
, 
•• ;S 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

lambda 
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Study. Legend: 0 Empirical, + Theoretical 

80 



Underlying ('True') 
Covariance Structure 
Identity Smoothing 
Identity 
Compound Symmetry 
AR1 (p = 0.2) 
AR1 (p = 0.8) 
Antedependence 
Unstructured 
Unstruct. (Q.R.E.) 

.x .x Estimated from Data 
Known~ Mean I S.D. I Min 

- 0.086 0.024 0.016 
0.189 0.147 0.024 0.037 
0.133 0.092 0.026 0.025 
0.172 0.159 0.015 0.088 
0.023 0.031 0.015 0.003 
0.251 0.117 0.018 0.061 
0.104 0.101 0.005 0.089 

Compound Symmetry Smoothmg 
Identity - 0.092 0.031 0.015 
Compound Symmetry - 0.536 0.320 0.034 

ARI (p = 0.2) 0.125 0.102 0.038 0.021 

AR1 (p = 0.8) 1.000 0.748 0.285 0.113 

Antedependence 0.026 0.037 0.022 0.003 

Unstructured 0.119 0.258 0.126 0.065 

Unstruct. (Q.R.E.) 0.190 0.185 0.011 0.148 

I :0.Iax 

0.157 
0.190 
0.163 
0.192 
0.097 
0.162 
0.128 

0.269 
1.000 
0.327 
1.000 
0.228 
1.000 
0.258 

Table 4.4.1: Minimising values of .x in M.S.E.(lnl:E)'I), Identity and Compound 
Symmetry Smoothing. 1000 simulations of the Pilot Study. 

Two things are apparent from these plots. Firstly, that the theoretically calculated 

M.S.E. gives a flat profile when smoothing towards the actual 'true' underlying 

structure. Secondly, that there is some difference between the theoretically and 

empirically calculated mean squared errors. These features are repeated across the 

range of data offered by the Pilot study. 

Further investigations show that the latter point is explained by the Taylor Series 

approximation for Var(lnl:E)'I) which is not close for small sample sizes rendering 

such theoretically determined estimates unreliable. That is increasing m, the num

ber of subjects, results in a closer match between the theoretically and empirically 

calculated M.S.E.s. 

Using this method to calculate .x from each of the 1000 datasets arising from the 

seven underlying covariance structures gives the results in Table 4:.40.1. 

The table shows that little smoothing is suggested for direct smoothing towards 

an identity structure, with a maximum value of .x suggested from 1000 simulations 

of each of sevell underlying covariance structures of 0.192. Smoothing towards a 
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compound symmetry structure results in a greater degree of smoothing as we might 

expect. The amount of smoothing being generally greater for data arising from 

structures close to compound symmetry, such as the AR1 structure with a high 

correlation (p = 0.8), with a mean value of A of 0.748 from 1000 such datasets. 

TA M.S.E.(a ~,xa) 

Figures 4.4.3 and 4.4.4 show plots of the theoretically and empirically calculated 

M.S.E. for data arising from the underlying covariance structures for smoothing 

towards an identity and compound symmetry form respectively, using ¢* = ¢max, 

the largest eigenvalue of ~. 

It is seen that there is close convergence between the theoretical and empirical 

M.S.E.s with minimising values of the smoothing parameter A close to that we would 

intuitively expect. That is, for smoothing towards an identity structure we obtain 

A = 1 for data arising from a 'known' underlying identity structure and significantly 

lower smoothing parameter estimates from structures which are known to be far 

from independence. 

A similar pattern is noted for smoothing towards a compound symmetry form, al-

though the flat profiles for data arising from underlying structures close to compound 

symmetry should be noted. This is because the eigenvector corresponding to the 

largest eigenvalue ¢max is proportional to 1, the unity vector, for which aTt,xa is 

constant for all 0 < A < 1. 

Estimates of the smoothing parameter A for 1000 simulations from each of the un-

derlying structures are given in Table 4.4.2. 

These values match those of the plots. For data arising from underlying covariance 

structures which are close to independence, such as the Identity or an ARI form 

with a low correlation, a higher value of the smoothing parameter is suggested when 

smoothing towards an identity structure, as we might expect. 
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Figure 4.4.3: Plots of both Empirical and Theoretical M.S.E. functions for given A in 
T" Identity Smoothing. 1 000 simulations of the Pilot Study. Legend: 
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Underlying (' True') 
Covariance Structure 
Identity Smoothing 
Identity 
Compound Symmetry 
AR1 (p = 0.2) 
ARI (p = 0.8) 
Antedependence 
Unstructured 
Unstruct. (Q.R.E.) 

). ). Estimated from Data 
Known~ Mean I S.D. I Min 

1.000 0.323 0.067 0.189 
0.190 0.191 0.031 0.151 
0.589 0.299 0.061 0.183 
0.165 0.167 0.015 0.143 
0.229 0.206 0.029 0.154 
0.173 0.174 0.018 0.145 
0.139 0.139 0.0002 0.139 

Compound Symmetry Smoothmg 

Identity 1.000 0.361 0.114 0.200 
Compound Symmetry - 1.509 1.246 0.242 

AR1 (p = 0.2) 1.273 0.403 0.235 0.193 

AR1 (p = 0.8) 6.997 2.422 2.343 0.203 

Antedependence 0.288 0.262 0.085 0.158 

Unstructured 0.628 0.494 0.130 0.175 

Unstruct. (Q.R.E.) 0.187 0.187 0.004 0.175 

I ~Iax 

0.615 
0.--176 
0.538 
0.2--1--1 
0.336 
0.269 
0.140 

1.119 
12.858 
2.987 
23.920 
0.716 
1.322 
0.202 

Table 4.4.2: Minimising values of ). in M.S.E.(aTt),a), Identity and Compound 
Symmetry Smoothing. 1000 simulations of the Pilot Study. 

In practice, however, the underlying covariance structure is unknown, and calcu

lating ). using the eigenvalues of t = S, the estimated sample covariance matrix, 

appears problematic. For badly estimated covariance structures, the eigenvalues are 

also badly estimated, and the simulation show that the estimates of ). obtained from 

the data are not close to those found theoretically. Since such estimates always re-

sult in covariance structures with greater heterogeneity, the values of ). obtained are 

always smaller than would be the case if the real underlying structure were known. 

For direct smoothing towards a compound symmetry form, estimates are more prob-

lematic, since taking ¢* = ¢max can lead to estimates of ). > 1. This is more likely' 

to occur for data arising from underlying covariance structures close to compound 

symmetry which are likely to have flat profiles (e.g. for compound symmetry' or ARI 

(high correlation)), but not exclusively so. In such cases there is little to be lost in 

simply adopting). = 1 as the estimate of the smoothing parameter, but this doe:-; 

point to problems with this approach. 

A further possibility to improve estimation in the case of direct smoothing toward:-; an 
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Underlying ('True') 
Covariance Structure 
Identity Smoothing 
Identity 
Compound Symmetry 
AR1 (p = 0.2) 
AR1 (p = 0.8) 
Antedependence 
Unstructured 
Unstruct. (Q.R.E.) 

A A Estimated from Data 
Known~ Mean I S.D. I ~Iin I ~Iax 

1.000 0.726 0.302 0.219 1.000 
0.190 0.231 0.090 0.163 1.000 
0.589 0.618 0.308 0.210 1.002 
0.165 0.186 0.023 0.153 0.322 
0.229 0.257 0.078 0.168 1.000 
0.173 0.197 0.029 0.155 0.390 
0.139 0.148 0.0003 0.148 0.150 

Table 4.4.3: Minimising values of A in M.S.E.(aTt.,\a), Identity Smoothing (using 
the smoothed eigenstructure of t). 1000 simulations of the Pilot Study. 

identity structure, is to take aT~a = (1 - A)¢max + AcP, the corresponding (largest) 

eigenvalue of the smoothed matrix ~.,\ and determining A iteratively to improve 

estimation when the underlying structure of ~ is unknown. Results from 1000 

simulations of the Pilot Study are shown in Table 4.4.3. 

This somewhat ad-hoc approach does show some improvement in the estimates of 

A, and is probably the best approach in this badly estimated case. It is worthy of 

note however that this iterative approach: 

1. increases the estimate of A in each case (over that obtained using aT~a = 

cPmax), and 

2. estimates of A outside the range [0,1] are possible. (Also, care must be taken 

since A = 1 is also a solution of the iterative procedure in each case). 

4.5 Discussion 

Methods have been presented which attempt to find a suitable value for the smooth

ing parameter A in the estimator t.,\, based on minimising the mean squared error 

of a function of t.,\. Two such functions were considered, namely lnlt"\l and aT:E.,\a 

(for a non-null vector a). In the first case l\I.S.E·(lt.,\l) W(1:-; calculated dependent 

on a Taylor series approximation of Var(lnlt.,\l) which has been shown to be inClc-
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curate in a small sample setting. The alternative formulation, ~I.S.E.(aT:EAa) gave 

differing results in the cases of smoothing towards identity and compound symmetry 

forms respectively. 

There was found to be close convergence between the theoretical and empirical forms 

with minimising values of the smoothing parameter}. close to that which we would 

intuitively expect in each case. However, in practice where the underlying structure 

is unknown there were found to be problems with substituting the eigenvalues from 

the sample covariance matrix, since such estimates were necessarily more hetere-

ogenous than those of the true underlying structure so that little smoothing was 

suggested. There are also doubts about the validity of the procedure in introducing 

an unknown vector a whose choice is subjective and clearly affects the chosen value 

of}.. This is more evident in the case of smoothing towards a compound symme

try structure where there is less justification for taking aT:EAa = cPmaxl the largest 
A 

eigenvalue of :EA. 

N either of the chosen methods for determining}. are successful in practice. Estimates 

are improved when m, the number of subjects is greatly increased but in this case 

little smoothing is warranted when the covariance estimates are well-estimated. Also, 

it is not clear how, so dependent on the distributional properties of the Wishart 

distribution, they could be easily adapted to more complex situations. The approach 

of directly combining the two forms of covariance structure is appealing however 

and in the absence of alternative methods for determining an appropriate value for 

}. cross-validation may be used. Such an approach will be investigated in Chapter 

5. 
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Chapter 5 

A Penalised Likelihood 
Approach 

5.1 Introduction 

Maximum penalised likelihood methods are used widely in non-parametric and semi

parametric regression. Such applications are reviewed by Green (1998). Here, an 

alternative approach to finding a smoothed covariance estimate is considered through 

the maximisation of the penalised (log-) likelihood 

lp(~; S) = l(~; S) + al*(M; ~), (5.1.1) 

where the penalty l*(M,~) acts as a likelihood ratio, measuring the fit of the un

structured covariance matrix ~ to some structured model M. The higher the weight 

given to the penalty, determined by the smoothing parameter a, the more the pe

nalised estimate :E is forced away from the unstructured form ~ and towards the 

structured form M. We have 

lp(~; S) = -In I~I- tr(~-lS) + a{ -In IMI + In I~I- tr(M-l~)} (0.1.2) 

Again the data are initially assumed to be balanced and complete so that the simpli-
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fied log-likelihood of ~ based on the Wishart distribution has been used to moti,"ate 

development, although in this approach an extension to cover data with missing 

values by using a penalised REML likelihood is immediately apparent. 

It can be shown that maximising the penalised likelihood with respect to the pa-

rameters of both ~ and M, we obtain M to be the maximum likelihood estimator 

of the structured form given :E. That is, to find jointly the m.l.e.s of :E and M in 

lp(:E; S), is to solve simultaneously 

alp =0 fori=1, ... ,p(p+1)/2 
aa("E)i 

alp = 0 f 1 or j = , ... , r 
aa(M)i 

(1) 

(5.1.3) 

(2) 

for each of the p(p + 1) /2 and r parameters in the unstructured and structured 

estimates of :E and M respectively. However, (2) implies that 

ex a {-lnIMI + Inl:El- tr(M-1:E)} = 0 
aa(M)i 

=> a {-lnIMI- tr(M-1:E)} = 0 
aa(M)i 

so that (a/aa(M)i)l(M;:E) = 0, and M is the m.l.e. of M given:E. Then, 

tr(M-1:E) = p and the penalised likelihood may be written 

lp(:E; S) = -In I:EI - tr(:E-1S) + ex( -In IM*I + In I:EI) 

= -(1 - ex) In I:EI - tr(:E-1S) + ex In IM* I 

(5.1.4) 

where M* is the m.l.e. of M given:E. This simplifies the calculations where 'plug-in' 

estimates exist for the structured covariance forms. It can be shown further that the 

penalised estimate :t has the property tr(:E-1S) = p which it shares with maximum 

likelihood estimators. This is shown below. 
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Writing the penalised likelihood, from (5.1.2), as 

(.5.1.5) 

we have, differentiating with respect to an element of :E, ai say, for a given M 

8l ( 8:E-
1

) (8:E-
1

) ( 8:E) 8~ = (1 - a)tr :E 8ai - tr 8ai 8 - atr M-
1 

8ai 

Now, 

so that, 

and hence 

so that, equating to zero, we find :E is a solution of 

where, 

8lp = tr{ 8:E-
1 

(:E _ 8*)} = 0 for i = 1, ... ,p(p + 1)/2 
8ai 8ai 

8* = 1 (8 - 0:EM-1:E) 
1-0 
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(5.1.8) 



Now, considering the unstructured (penalised) covariance matrix as :E = ~T ·z" L.."J=1 (JJ J 

for fixed matrices Z j, we have further that 

and so 

It follows that t satisfies 

That is, 

which implies that, 

r 

'" 'f}~ alp = 0 
~ J 8(J" 
j=1 J 

r {8:E-1 
_ } L 'f}jtr (:E - S*) = 0 

j=1 8(Jj 

tr{t-1 (t - S*)} = 0 

~tr{ 1- 1 ~ a (t-Is - aM-It) } = 0 

1 - -1 
=;,.p - tr(:E S) - ap = 0 

I-a 
- -1 

=;,.tr(:E S) = p 

(5.1.9) 

(5.1.10) 

Also, (5.1.8) suggests the following iterative approach to finding t for a given value 

of smoothing parameter a, 

(5.1.11) 

A -where Mr is the m.l.e. of M glven :Er· Unfortunately, this method (,Oll\·t'rg;e~ 

on the correct solution only for small values of a « < 0.2), so is not reliable in 

general. Howeyer, for a given 0 > 0, the penalised estimator :E can be computed 
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Figure 5.1.1: Variances and 'Inverse' Variances by Time for the Cardiac En
zyme data. Penalised Likelihood Smoothing to an ARl form. Legend: Solid Line, 
smoothed estimate; Dashed Line, ARl form; Dotted Line, unstructured form. 

by maximising the penalised likelihood given in (5.1.4) using a numerical procedure 

(such as Newton Raphson, 'B.F.G.S.') in S-Plus or PROC IML in SAS. 

The direct smoothing approach of the previous Chapter has shown that little smooth-

ing results where the identity form is adopted as the smoothing structure, the form 

that the estimated covariance structure is directed towards. In this Chapter, we 

consider smoothing towards both compound symmetry and AR1 structured forms. 

Figure 5.1.1 shows the effect of smoothing the variances and diagonal elements of 

the inverse covariance structure ('inverse variances'), when a = 2 for smoothing 

the Cardiac Enzyme data towards an AR1 form. It can be seen that the effect 

of the penalised likelihood approach is actually to smooth between t be illn)r~e~ 

of the unstructured and structured covariance matrices. This may be considered 

advantageous, as our interest in the covariance structure is in its use in inference 
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Figure 5.1.2: 'Inverse' Variances by Time for the Cardiac Enzyme data. Penalised 
Likelihood Smoothing to an ARl form. Legend: Solid Line, smoothed estimate; 
Dashed Line, identity form; Dotted Line, unstructured form. 

where the inverse matrix is used. It is also a major difference between this method 

and the direct smoothing approach where the smoothing is directly on the matrix 

itself. Figure 5.1.2 shows the effect of smoothing the diagonal elements of the inverse 

covariance matrix similarly, for various values of 0:. 

5.1.1 A Cross-validation algorithm for finding a 

The value of the smoothing parameter can be chosen by cross-validation, (see, for 

example, Efron and Tibshirani (1993), Chapter 17). Using a saturated means model 

the approach is to drop subjects in turn and to use the smoothed covariance estimates 

based on the remaining data (and the means from the complete data) to predict each 

of the dropped observations. The smoothing parameter is chosen to minimise the 

total predictive squared error across all subjects. This is a computationally intensin' 
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method as it requires the maximisation of the penalised likelihood for each value of 

the smoothing parameter considered and observation dropped, but it can be carried 

out reasonably efficiently in SAS (PROG IML) for small to medium sized data sets. 

Given an m x p data matrix Y, the cross-validation algorithm is as follows: 

(A) For a given choice of ex: 

(1). Remove subject i from the data, so we have the (m - 1) x p data matrix Y 1i · 

(2). Calculate the sample covariance matrix, Sli' for the reduced data matrix Y 1i · 

(3). Find the penalised likelihood estimate ~ of the covariance structure of the 

reduced data matrix, which minimises the penalised (log-) likelihood 

(4). Use :E and the means flj (calculated from the complete data), to predict the 

values of Yij, j = 2, ... , p, given the previous observations on that subject, 

using the conditional distribution of Y2 given Y1, i.e. using 

j = 2, ... ,p, so that 

~ ~ (T21 ( ~ ) ~ ~ + (-Yi2 = J-L2 + -_ - Yi1 - J-L1 , Yi3 = J-L3 (T31 
(T11 

- ) (0-11 0-21 ) (Yi1 - fl1) tc (T32 _ _ ~ ,e . 
(T21 (T22 Yi2 - J-L2 

(5). Calculate the (total) predictive squared error PSEi = r.~=2(f/ij - flj)2. 

(6). Repeat steps (1)-(5) removing each subject, i = 1, ... , m in turn. 

1 
(7). Calculate the mean (total) predictive squared error, m r.::1 PSEi· 

(B) Repeat steps (1)-(7) from (A) for various choices of ex, taking as the value of 0 

that which minimises the mean (total) predictive squared error. 

The procedure is easily adapted to grouped data by smoothing the pooled wit hin

groups (sample) covariance structure. In this case the treatment group of a 'dropped' 
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Figure 5.1.3: Choice of 0: by cross-validation for the Cardiac Enzyme data. Penalised 
Likelihood Smoothing to a Compound Symmetry form. 

subject is noted before smoothing the revised within-groups covariance structure and 

predicting the dropped observations using the means from that complete treatment 

group. 

The approach can be speeded up by noticing that in many cases there is a flattening 

out of the cross-validatory function above a certain value of 0:, which suggests that 

further smoothing is of little consequence. One way to determine whether this is 

the case is to consider at each value of 0: the difference in the log-determinants 

between the current smoothed covariance structure and the last. Then, the optimal 

value of the smoothing parameter is reached when either there is a rise in the cross-

validatory function so that a 'proper' minimum has been attained or the difference 

in the log-determinants falls below a prescribed level. Adopting such a procedure 

allows the automation of the cross-validatory approach to determining the smoothing 

parameter. An example of choosing () by cross-validation for the Cardiac Enzyme 
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data, smoothing towards a compound symmetry structure, is shown in Figure 5.1.3. 

Values of a were restricted to the set {O, 0.5,1,2,4,8,16,32,64} and the automated 

procedure chose a = 4 in this instance. 

5.2 A Comparison with Direct Smoothing 

We have seen that the two approaches differ in that the penalised likelihood method 

acts upon the inverse covariance matrix whilst the direct approach smooths the 

elements of the covariance matrix itself. Also, the penalised likelihood method is 

grounded in the well understood principles of maximum likelihood, but is com

putationally intensive. The direct smoothing approach is simplistic but is easily 

computed (A can be found by substituting :E.x = (1 - A):E + A:ES in step (A)(4) of 

the cross-validation procedure described in the preceding section). It is appropriate 

however to determine whether there is any real difference between the approaches 

in terms of inference. 

The pilot study of Chapter 2 is again repeated to compare the efficiency of each of the 

two approaches to smoothing, in making inferences. The two smoothing approaches 

were compared on a number of simulated data sets with p = 5 time points and 

m = 16 subjects, arbitrarily split into two (identical) treatment groups of 8. In each 

case a saturated means model was fitted and the smoothed covariance matrices for a 

suitable value of the relevant smoothing parameter chosen by cross-validation were 

calculated. Values of a and A considered in the cross-validation procedure were 

restricted to the sets a E {O, 0.5, 1, 2, 4, 8,16,32, 64} and A E {O, 0.1, 0.2, ... , 1.0} 

respectively. 

The methods were compared for smoothing towards both compound symmetry and 

ARI forms and for a number of underlying covariance structures including iden

tity, compound symmetry, ARI (low correlation), ARI (high correlation) and two 

'unstructured' forms. Using 1000 simulated data sets from each of the various UIl-
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derlying covariance structures gives values of both 0: and A as we would intuitively 

expect. That is, a low degree of smoothing is suggested for data which arises from an 

underlying covariance structure which is far from the smoothed form, with greater 

amounts of smoothing suggested as the underlying form approaches the form of the 

structured matrix. The distributions of these parameters can be seen in Figure 5.2.1. 

Note that for data sets arising from the 'badly behaved' Q.R.E. structure no smooth

ing at all was suggested towards either of the stationary Compound Symmetry or 

AR1 structures in the majority of cases. (i.e. 0: = 0 and A = 0). 

The smoothed covariance estimates were then used to test an overall interaction 

and a set of polynomial contrasts for each data set. For each smoothing method 

and underlying covariance structure, the number of significant test results from 1000 

such data sets given by each smoothing approach was noted. These were compared 

with the number of significant test results which would have been obtained if the 

unstructured covariance estimate had been used. 

5.2.1 A 'Scaled' Kenward Roger Adjustment 

In comparing the results using the smoothed estimates with those achieved using the 

unstructured and structured estimates themselves, it is necessary to consider small 

sample adjustments. It was earlier shown that small sample Wald tests have nominal 

properties for complete data problems using the Kenward Roger (KR) adjustment 

with an unstructured covariance estimator or an estimator with a low number of 

parameters, where this is appropriate for the data. That is, for testing the general 

linear hypothesis 

Ho : Lf3 = 0 

for L (l x r), we use the usual \Vald test statistic, (1.3.3) 
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Figure 5.2.1: Distributions of Smoothing Parameter Estimates Q and A obtained 
from 1000 simulations of the Pilot Study. Penalised Likelihood and Direct Smoothing 
towards both ARl and Compond Symmetry forms 
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F = (13 - ,8)TLT(L<PLT )-lL(i3 - ,8) 
I 

where <P = var(i3) = (XT~X)-l is replaced by <P A = <P + 2A in the test statistic F* 

and tests ')'F* f"'V F(l, m), where m is the adjusted denominator degrees of freedom 

parameter. 

An intuitive if somewhat ad-hoc approach therefore to small sample adjustments 

using smoothed covariance estimates is to adopt a 'scaled' KR adjustment. That 

is, in the case of penalised smoothing towards a compound symmetry structure, for 

example, we use the KR adjustment with 

m = mUN + )..*(mcs - mUN) (5.2.1) 

<P A = <P + 2Acs 

where the subscript terms UN and CS refer to the KR parameters under the un-

structured and compound symmetry forms respectively. ).. * is chosen by a suitable 

transformation of the smoothing parameter 0: E [0,00) onto the interval [0,1] to give 

a precise measure of the degree of smoothing towards the structured estimate. 

A family of transformations).. * = 1 - exp( - ko:) was investigated for differing values 

of k, a < k < 1 but the preferred transformation for the penalised smoothing 

parameter is 

A * = log { 1 + 1 : " (e - 1) } (5.2.2) 

\V hich gave the closest match to nominal test sizes across the range of tests. The 

effect of this transformation for values of (l E {a, 0.5,1,2, -1. 8,16,32.6-1} is shown in 

Figure 5.2.2. (This function behaves similarly to the earlier transformation taking 

k = 1). 
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Figure 5.2.2: Transforming ex E [0, inf) to A* E [0,1]. 

Surprisingly, in providing a 'scaled' KR adjustment for inference using a directly 

smoothed covariance estimator, taking A * = A did not achieve nominal test sizes for 

the corresponding adjusted Wald statistics. Instead the non-linear transformation 

of the smoothing parameter A, given by 

(5.2.3) 

is adopted to better represent the degree of smoothing. 

5.2.2 Results 

Tables 5.2.1 and 5.2.2 show the test sizes for \Vald tests for an overall treatment time 

interaction and a set of orthogonal poly'nomial contrasts (Cl, linear: C2, quadratic: 

C3, cubic; and C~, quartic) for data arising from the yarious stationary and nOIl-
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Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (N ull model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 I C3 I C4 
StatIOnary Structures 
Identity Unstr 0.044 0.055 0.037 0.046 0.049 

AR1 0.051 0.058 0.037 0.056 0.057 
Penal(AR1) 0.058 0.060 0.043 0.058 0.060 
Direct (AR1) 0.049 0.059 0.038 0.052 0.054 
Comp Sym 0.046 0.053 0.040 0.055 0.059 
Penal(CS) 0.054 0.056 0.044 0.059 0.061 
Direct(CS) 0.050 0.050 0.041 0.052 0.059 

Compound Unstr 0.047 0.059 0.063 0.059 0.056 
Symmetry AR1* 0.045 0.004 0.016 0.060 0.082 

Penal(AR1) 0.053 0.022 0.036 0.073 0.080 
Direct (AR1) 0.039 0.014 0.028 0.060 0.066 
Comp Sym 0.048 0.050 0.054 0.056 0.055 
Penal(CS) 0.053 0.055 0.058 0.062 0.058 
Direct(CS) 0.048 0.048 0.054 0.054 0.051 

AR1 Unstr 0.051 0.056 0.048 0.054 0.065 
(p = 0.2) AR1 0.047 0.054 0.048 0.048 0.060 

Penal(AR1) 0.050 0.057 0.054 0.052 0.065 
Direct(AR1) 0.044 0.052 0.048 0.045 0.063 
Comp S* 0.050 0.080 0.052 0.039 0.036 
Penal(CS) 0.050 0.083 0.059 0.048 0.041 
Direct(CS) 0.044 0.070 0.050 0.041 0.042 

AR1 Unstr 0.039 0.062 0.044 0.041 0.033 
(p = 0.8) AR1 0.031 0.051 0.038 0.032 0.020 

Penal(AR1) 0.034 0.059 0.041 0.040 0.025 
Direct(AR1 ) 0.027 0.053 0.038 0.034 0.024 
Comp S* 0.082 0.195 0.034 0.003 0.002 
Penal(CS) 0.062 0.137 0.052 0.033 0.016 
Direct(CS) 0.042 0.098 0.041 0.024 0.010 

Table 5.2.1: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of type 1 errors (Size), using a Wald statistic with a 'KR' 

adjustment. 
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Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (N ull model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 I C3 I C4 
N on-StatIOnary Structures 
Ante- Unstr 0.036 0.051 0.049 0.043 0.051 
dependence AR1* 0.075 0.052 0.053 0.049 0.027 

Penal(AR1) 0.069 0.087 0.086 0.077 0.059 
Direct (AR1) 0.037 0.054 0.055 0.045 0.041 
Comp S* 0.072 0.116 0.062 0.036 0.010 
Penal(CS) 0.074 0.131 0.101 0.074 0.045 
Direct(CS) 0.029 0.075 0.058 0.040 0.023 

Unstr. Unstr 0.044 0.047 0.041 0.052 0.052 
AR1* 0.057 0.033 0.026 0.051 0.059 
Penal(AR1) 0.057 0.044 0.039 0.053 0.066 
Direct(AR1) 0.047 0.038 0.028 0.052 0.054 
Comp S* 0.061 0.065 0.040 0.050 0.044 
Penal(CS) 0.059 0.072 0.047 0.055 0.055 
Direct(CS) 0.045 0.064 0.041 0.052 0.049 

Unstr. Unstr 0.057 0.053 0.056 0.056 0.063 
(Q.R.E.) AR1* 0.137 0.278 0.017 0.000 0.000 

Penal(AR1) 0.053 0.057 0.058 0.054 0.062 
Direct(AR1) 0.051 0.054 0.056 0.053 0.060 
Comp S* 0.142 0.321 0.002 0.000 0.000 
Penal(CS) 0.056 0.053 0.056 0.055 0.063 

Direct(CS) 0.049 0.053 0.056 0.053 0.059 

Table 5.2.2: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of type 1 errors (Size), using a Wald statistic with a 'KR' 

adjustment. 

stationary covariance structures which should be compared with a nominal level of 

5%. 

For each underlying ('true') structure the Kenward Roger adjusted sizes are given for 

the appropriate Wald tests based on an unstructured, AR1 or compound symmetry 

covariance structure, which can be compared with the test sizes resulting from the 

smoothed estimate and adopting the scaled adjustment. Test sizes for AR1 and 

compound symmetry structures are marked with an asterisk (*) where they are not 

appropriate for the underlying data. 

Note that under the null hypothesis of no difference between treatment groups a 

95% probability interval for the proportion of tests out of 1000 leading to a rejection 
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of the test is (0.036, 0.064). This indicates that the test size for the interaction 

using an AR1 structure for data which actually does arise from an AR1 structure 

(p = 0.8) is a little low, falling below the lower bound of this interval and may impact 

upon the scaled adjustments of the smoothed estimates. As discussed previously the 

adjustments for the AR1 structure are not exact and may not perform quite so well 

in such small samples. 

A further ten simulations of 1000 data sets showed that whilst there is a tendancy 

for adjustments based on a 'true' AR1 structure to be low (below the nominal level 

of 0.05) they are largely within the 95% probability interval suggesting that the 

extremely low size of 0.031 was obtained by chance. 

Test sizes for the smoothed estimates are close to nominal levels using the scaled 

Kenward Roger adjustment for all underlying covariance structures, even where 

smoothing towards a structure that is inappropriate for the data. 

Having fixed the size of these tests at the nominal level, power can be meaningfully 

considered. Power levels for the Wald tests are shown in Tables 5.2.3 and 5.2.4. 

Power was calculated by superimposing a (linear) difference between the means of 

the two treatment groups in each simulated data set, and retesting using the small 

sample adjustments as previously described. As with the Pilot Study in Chapter 

2, for each underlying structure the mean difference between groups was fixed to 

achieve a power of around 75% using an unstructured matrix. 

For each of the underlying stationary covariance structures the tests for no treat

ment/time interaction using the smoothed estimates show a greater power than that 

obtained using the unstructured matrix, and close to that obtained using an AR1 or 

compound symmetry matrix where these are the true underlying types. A similar 

pattern of results is displayed for the linear contrast Cl. The power calculations 

suggest no real advantage of one method over another. 

For the data arising from the non-stationary covariance structures, the pattern is 
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Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (N ull model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 I C3 I C4 
StatIOnary Structures 
Identity Unstr 0.747 0.974 0.037 0.046 0.049 

AR1 0.913 0.988 0.037 0.056 0.057 
Penal(AR1) 0.906 0.982 0.043 0.058 0.060 
Direct (AR1) 0.897 0.980 0.038 0.052 0.054 
Comp Sym 0.896 0.980 0.040 0.050 0.059 
Penal(CS) 0.910 0.979 0.044 0.059 0.061 
Direct(CS) 0.903 0.978 0.042 0.052 0.063 

Compound Unstr 0.754 0.965 0.063 0.059 0.056 
Symmetry AR1* 0.523 0.819 0.016 0.060 0.082 

Penal(AR1) 0.741 0.919 0.036 0.073 0.080 
Direct (AR1) 0.686 0.904 0.028 0.060 0.066 
Comp Sym 0.897 0.979 0.057 0.058 0.056 
Penal(CS) 0.901 0.980 0.058 0.062 0.058 
Direct(CS) 0.893 0.979 0.054 0.054 0.051 

AR1 Unstr 0.765 0.978 0.048 0.054 0.065 
(p = 0.2) AR1 0.901 0.988 0.048 0.048 0.060 

Penal(AR1) 0.907 0.991 0.054 0.052 0.052 
Direct (AR1) 0.900 0.988 0.048 0.045 0.063 
Comp S* 0.939 0.995 0.052 0.039 0.036 
Penal(CS) 0.938 0.996 0.059 0.048 0.041 
Direct(CS) 0.927 0.991 0.050 0.041 0.042 

AR1 Unstr 0.744 0.967 0.044 0.041 0.033 
(p = 0.8) AR1 0.879 0.977 0.038 0.032 0.020 

Penal(AR1) 0.895 0.976 0.041 0.040 0.025 
Direct(AR1 ) 0.880 0.975 0.038 0.034 0.024 
Comp S* 0.984 0.994 0.036 0.003 0.002 
Penal(CS) 0.956 0.991 0.052 0.033 0.016 
Direct(CS) 0.890 0.983 0.041 0.024 0.010 

Table 5.2.3: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of significant results (Power), using a Wald statistic with a 'KR' 
adjustment. 
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Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (N ull model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 I C3 I C4 
Non-StatIOnary Structures 
Ante- Unstr 0.764 0.748 0.049 0.043 0.051 
dependence AR1* 0.543 0.789 0.053 0.049 0.027 

Penal(AR1) 0.774 0.848 0.086 0.077 0.059 
Direct(AR1 ) 0.598 0.787 0.055 0.045 0.041 
Comp S* 0.688 0.876 0.062 0.036 0.010 
Penal(CS) 0.864 0.882 0.101 0.074 0.045 
Direct(CS) 0.682 0.818 0.058 0.040 0.023 

Unstr. Unstr 0.777 0.948 0.041 0.052 0.052 
AR1* 0.824 0.957 0.026 0.051 0.059 
Penal(AR1) 0.857 0.962 0.039 0.053 0.066 
Direct (AR1 ) 0.853 0.957 0.028 0.052 0.054 
Comp S* 0.902 0.980 0.040 0.050 0.044 
Penal(CS) 0.911 0.979 0.047 0.055 0.055 
Direct(CS) 0.898 0.973 0.041 0.052 0.049 

Unstr. Unstr 0.782 0.177 0.056 0.056 0.063 
(Q.R.E.) AR1* 0.287 0.511 0.017 0.000 0.000 

Penal(AR1) 0.778 0.189 0.058 0.054 0.062 
Direct(AR1 ) 0.744 0.179 0.056 0.053 0.060 
Comp S* 0.332 0.556 0.002 0.000 0.000 
Penal(CS) 0.782 0.181 0.056 0.055 0.063 
Direct(CS) 0.770 0.178 0.056 0.053 0.059 

Table 5.2.4: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of significant results (Power), using a Wald statistic with a 'KR' 
adjustment. 

a little different. For the highly non-stationary antedependence structure, the pe-

nalised likelihood estimates give greater power than the directly smoothed esti-

mates. Also, more power is gained when smoothing towards a compound symmetry 

structure rather than an AR1 structure, and the power achieved using a structure 

smoothed towards AR1 falls short of that obtained from simply adopting an un-

structured estimate. 

This latter point is perhaps surprising since the AR1 structure is nested within the 

antedependence structure and would have appeared to be the more reasonable choice 

of smoothing structure in this case. 

The results from the data arising from the underlying unstructured covariance forms 
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are of further interest. The smoothed estimates for the Q.R.E. structure appear to 

behave no differently in general from the unstructured estimates, but as we have 

seen there was no smoothing in the majority of cases so that the smoothed and 

unstructured estimates were in fact the same. For the data arising from the re

maining unstructured form, the results follow a similar pattern as for the underlying 

stationary structures. 

5.3 Discussion 

The results reported above may be summarised as follows. 

• Both the direct and penalised likelihood smoothing approaches appear to be 

reasonable, giving scaled Wald tests which attain nominal properties. 

• For data arising from covariance structures which are stationary, adopting a 

smoothed estimate for the covariance structure results in greater power over 

adopting an unstructured estimate . 

• For data arising from covariance structures which are highly non-stationary, 

the choice of smoothing approach and smoothing structure appears to be im

portant. 

• For very highly non-stationary data, both smoothing approaches lead to little 

or no smoothing, as we might expect. 

To investigate further the properties of the smoothed estimates for data which are 

non-stationary, the simulations were repeated using the correlation structures from 

the antedependence and unstructured forms, but allowing the variances to vary. 

These further results showed that little or no smoothing was obtained from the 

Q.R.E structure with equal variances, and from the remaining structures as the 

difference in variances (by time) became large. This confirms that these methods 

are not suitable for data which are highly non-stationary, in correlations or variances. 
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since either little smoothing will be necessary or the resulting estimates may not be 

more powerful than simply adopting an unstructured estimate. This is important as 

it is the case in many repeated measures problems that data will be non-stationary. 

A further modification to the penalised likelihood smoothed estimate will be pre

sented in Chapter 6, which attempts to improve the performance of the smoothed co

variance estimate, for data which are non-stationary, by adopting a local-stationarity 

penalised likelihood approach. 

However, the restriction of the smoothing techniques to data which is balanced and 

complete is clearly too great, making them of little benefit in practice. To be of 

practical use it will be necessary to extend both the direct smoothing and penalised 

likelihood methods to include data sets which are unbalanced or have missing values. 

In the case of the penalised likelihood approach this will mean defining a penalised 

REML likelihood. Recalling the penalised likelihood form, lp(:E; S) = l(:E; S) + 

al*(M; :E), we could use the REML log-likelihood 

(5.3.1) 

(5.3.2) 

where :E and M now have block diagonal structures. The direct smoothing approach 

can be updated by simply replacing the maximum likelihood estimates of the un

structured and structured forms, :E and :Es in :E). with the corresponding block 

diagonal REML estimates. 

FUrther, the extension of such procedures to use block diagonal forms will prove 

computationally expensive in the case of the penalised likelihood approach where 

numerical algorithms are required to solve the likelihood. This may make the use of 
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cross-validation impractical as a method for determining the value of the smoothing 

parameter ex in anything other than small data sets with few covariance parameters. 

Given the numerical problems encountered in the restrictive setting considered (it 

was increasingly infeasible to carry out the penalised likelihood procedure as the 

number of time points increased), this is unlikely to prove successful. It is also 

unlikely to be of any practical benefit given the results obtained from the simple 

setting. 

Another solution to this problem would be to determine the effective degrees of 

freedom (number of parameters) of the smoothed covariance estimate, which would 

allow the formulation of a measure such as Akaike's information criterion for deter

mining the value of the smoothing parameter. Little has been published in this area 

in the context of covariance structures, although Schwarz (1978) and Spiegelhal

ter et al. (2002) use Bayesian formulations to determine the appropriate dimension 

of a polynomial regression model and a hierarchical model respectively, where the 

effective number of parameters is not clearly defined. 

It should also be noted that the ad-hoc approach to scaling the Kenward Roger small 

sample adjustments, although useful in providing a simple comparison of the tech

niques, lacks rigour and a formal methodology for testing using smoothed estimates 

would need to be developed. 

It increasingly appears that, in small sample settings, there is a need for methods 

which are less dependent on the estimated covariance structure. This will be the 

focus in parts III and IV of this thesis. 
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Chapter 6 

Local-Stationarity Penalised 
Likelihood 

6.1 Introduction 

It is clear from the examples presented in the previous chapter that very small val-

ues were achieved for the smoothing parameters where the underlying covariance 

structure of the data was highly non-stationary, such as the Q.R.E. structure, even 

where the small number of observations means that such structures are poorly esti-

mated. A consideration therefore is the generalisation of the technique in smoothing 

towards additional structured, particularly non-stationary covariance matrices. The 

success of a general smoothing approach in practice will ultimately be dependent 

on a suitable choice of 'smoothing' structure. Another approach to this would be to 

consider localised smoothing. Such an approach was suggested by Kenward (1997), 

who proposed the penalised likelihood function, 

p-q+1 

lp(~; S) = l(~; S) + a L l*(M; ~t) (6.1.1) 
t=1 

where ~ has a non-stationary antependence(l) structure and M has a stationar~' 

AR(l) form estimated from successive submatrices ~t from the diagonal of~. i.e. 

~t is the submatrix of ~ at the q successive times t . ... , t + q - 1. This penalises 
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the fit of the covariance structure E by its departure from M along its diagonal. 

By taking E to be an antedependence(l) structure and M to be an AR(l), initially, 

we are penalising departure from local stationarity. The choice of these structures is 

intuitive as both depend only on the elements of the diagonal and subdiagonal of S 

(the sample covariance matrix), so that there is no loss of information in either case 

by considering only submatrices E t from the diagonal. As ex ---+ 00 we move towards 

an AR(l) estimate, but for ex = 0 we are effectively smoothing the off-diagonal 

elements of the covariance structure by adopting an antedependence structure as 

a starting point rather than the unstructured. The generalisation to higher order 

structures is obvious. 

Additionally to the choice of smoothing parameter ex we need to consider an appro

priate number of time points q to be included in the submatrix E t · 

6.2 Properties of the Estimator 

As in the previous chapter, development is motivated by restricting ourselves ini

tially to data which are balanced and complete so that the simplified log likelihood 

expressions for E based on the Wishart distribution are appropriate. 

The local stationarity penalised log likelihood may be written 

p-q+l 

lp(E; S) = -In lEI - tr(E-1S) + ex L {-In IMI + In IEtJ- tr(M-1E t )} (6.2.1) 
t=l 

or equivalently, 

p-q+l 

lp(E; S) = In IE-11- tr(E-1S) - ex L (In JM*I + In JEtl) (6.2.2) 

t=l 

where, as before, M* is the ma..'{imum likelihood estimator of the structured form 
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given ~t. Again, the penalised estimator t has the desirable property tr(t-1S) = p. 

To show this, we write from (6.2.1) 

p-q+l 

lp(~; S) = In I~-ll_ tr(~-lS) + ex L {In 1M- I I-In I~tll- tr(M-l~t)} (6.2.3) 
t=l 

so that for a given M, differentiating with respect to an element of ~, ai say, 

And, following the same argument of Chapter 5, we have, writing 

so that t satisfies 

~ TJ~ alp = 0 
~ J aao 
j=l J 

(6.2.4) 

r - -1 ( ) } p-q+l {at-1 
( ) }] ~ '7; [tr{ 8:,,; i; - S - a ~ tr 8:

i 
i;, - i;,M-li;, = 0 

p-q+l 

=>tr{t-1(t - S)} - ex L tr{t;l(tt - ttM-ltt)} = 0 
t=l 

p-q+l 

=>tr(I) - tr(t-1S) - ex L {tr(Id - tr(M-1tt)} = 0 

- -1 
=>tr(~ S) = P 

t=l 
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Figure 6.2.1: Variances and 'Inverse' Variances by Time for the Cardiac En
zyme data. Local-Stationarity Penalised Likelihood Smoothing. Legend: Solid Line, 
smoothed estimate; Dashed Line, ARl form; Dotted Line, antedependence form. 

The effect of this form of smoothing can be seen by looking at plots of variances 

and 'inverse variances' by time, (see Figures 6.2.1 and 6.2.2). As with the penalised 

likelihood smoothing of the previous chapter it can be seen that we are smoothing 

the elements of inverse covariance matrix. The size of the submatrix :E t is taken as 

q = 3, the smallest possible value, which ensures a fine degree of smoothing allowing 

for a maximum account to be taken of local stationarity. 

Adopting an autoregressive parametrisation of :E allows us to consider the effects of 

smoothing both the autoregressive and variance parameters separately. That is, for 

an antedependence(l) structure on p time measurements we may write 

'" + t - 'J Yt=\f/tYt-l Et, -- .... ,p 
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Figure 6.2.2: 'Inverse' Variances by Time for the Cardiac Enzyme data. Local
Stationarity Penalised Likelihood Smoothing. Legend: Solid Line, smoothed esti
mate; Dashed Line, ARl form; Dotted Line, antedependence form. 

or equivalently, 

Y1 = E1 
(6.2.6) 

Yt-¢tYt-1=Et, t=2, ... ,p 

where E(Et) = 0 and Var(Et) = (7;, t = 1, ... ,po In vector-matrix form this may be 

written as Uy = e, where 

1 0 0 0 Y1 E1 

-¢ 1 0 0 Y2 E2 

U= ,y= , e= 

0 0 1 0 Yp-1 Ep-1 
0 0 -¢ 1 YP Ep 

and Var(Uy) = Var(e) = A = diag(¢i). 
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Figure 6.2.3: Variance and Autoregressive Parameters by Time for the Cardiac En
zyme data. Local-Stationarity Penalised Likelihood Smoothing. Legend: Solid Line, 
smoothed estimate; Dashed Line, ARl form; Dotted Line, antedependence form. 

Then A = Var(Uy) = UVar(y)UT = U:EUT so that :E = UA(UT)-I and :E-
I 

= 

UTA-IU. 

Hence, the antedependence :E can be partitioned in terms of its autoregressive pa-

rameters (¢d and variance parameters (O"t). Figure 6.2.3 shows the effect of smooth-

ing both the autoregressive and variance parameters of :E for various values of 0:. 

6.3 A comparison with other forms of smoothing 

The value of the smoothing parameter 0: for a particular data set can be determined 

by cross validation using the algorithm of the pre\"ious chapter, and inferences made 

using a 'scaled' Kenward Roger (KR) adjustment. For the cardiac enzyme data we 
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Figure 6.3.1: Distributions of Smoothing Parameter Estimates ex obtained from 1000 
simulations for Local-Stationarity Penalised Likelihood Smoothing. 

obtain a value of ex = 1 which indicates only moderate smoothing. This is perhaps 

unsurprising as likelihood ratio tests indicate the lack of fit of an ARI structure to 

this data. 

We repeat the simulations of the pilot study of Chapters 2 and 5 to assess the 

efficiency of this method of smoothing, with ex chosen by cross validation from the 

set ex E {a, 0.5,1,2,4,8,16,32, 64} for data arising from a number of underlying 

covariance structures including identity, compound symmetry, ARI (low and high 

correlations), antedependence and two 'unstructured' forms. 

The distributions of ex from 1000 simulations of each of these underlying structures 

can be seen in Figure 6.3.1. Again, we see what we might intuitively expect, al-

though some differences with penalised smoothing which are worthy of note. In 

particular, the distributions show that this method suggests a higher proportion of 

smaller values of ex for data arising from underlying stationary covariance structures 

(identity, compound symmetry etc) where departures from constant variance in the 

poorly estimated covariance structures are given greater weight. The distributions 

are more uniformly distributed than for the other methods in these cases. There is 

still a preference for small values of ex for data arising from non-stationary struc-

tures. For the Q.R.E. structure, ex = 0 in all 1000 datasets, indicating no smoothing 

at all. 
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6.3.1 Results 

Table 6.3.1 shows the test sizes for Wald tests for Wald tests for an overall treatment

time interaction and a set of orthogonal polynomial contrasts (C1-C4) for the sim

ulated data described above. 

Once again, for each underlying ('true') structure Kenward Roger adjusted sizes are 

given for the appropriate Wald tests based on an unstructured, antedependence or 

AR1 covariance structure, which can be compared with the test sizes resulting from 

the smoothed estimate adopting the scaled adjustment. Test sizes resulting from 

AR1 and antedependence estimates are marked with an asterisk (*) where they are 

not appropriate for the underlying data. Recall that under the null hypothesis of no 

difference between treatment groups, a 95% probability interval for the proportion 

of tests out of 1000 leading to a rejection of the test is (0.036, 0.064). 

Test sizes for the smoothed estimates are close to nominal levels using the scaled 

KR adjustment for all underlying covariance structures (except Q.R.E.), even where 

smoothing towards an AR1 structure that appears inappropriate for the data. 

For the data arising from the Q.R.E. structure, the scaled test sizes are necessarily 

the same as for the antedependence structure. The nominal test size is not achieved 

in this instance since the antedependence structure is not appropriate for these data. 

Power levels for the Wald tests are shown in Table 6.3.2, for detecting a linear 

difference between the means of two treatment groups (fixed to achieve a power of 

around 75% using the unstructured matrix). Hence, the power levels are directly 

comparable with those given in Tables 5.2.3 and 5.2.4 of Chapter 5 for the direct 

and penalised smoothing estimates. 

As before, we see a noticeable improvement in power over adopting an unstruc

tured covariance estimate in all cases, except for data arising from an underlying 

compound symmetry structure. In this case both ends of the smoothing spectrum 

116 



Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (Null model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 I C3 I C4 
StatIOnary Structures 
Identity Unstr 0.044 0.055 0.037 0.046 0.049 

Ante 0.061 0.062 0.044 0.059 0.060 
AR1 0.051 0.058 0.037 0.056 0.057 
Loc-Penal 0.056 0.058 0.039 0.060 0.062 

Compound Unstr 0.047 0.059 0.063 0.059 0.056 
Symmetry Ante* 0.053 0.003 0.022 0.072 0.100 

AR1* 0.045 0.004 0.016 0.060 0.082 
Loc-Penal 0.055 0.005 0.019 0.066 0.092 

AR1 Unstr 0.051 0.056 0.048 0.054 0.065 
(p = 0.2) Ante 0.060 0.058 0.059 0.055 0.066 

AR1 0.047 0.054 0.048 0.048 0.060 
Loc-Penal 0.052 0.061 0.052 0.052 0.067 

AR1 Unstr 0.039 0.062 0.044 0.041 0.033 

(p = 0.8) Ante 0.050 0.059 0.048 0.042 0.035 
AR1 0.031 0.051 0.038 0.032 0.020 
Loc-Penal 0.037 0.057 0.043 0.036 0.029 

N on-Stationary Structures 
Ante- Unstr 0.036 0.051 0.049 0.043 0.051 

dependence Ante 0.051 0.049 0.047 0.051 0.064 

AR1* 0.075 0.052 0.053 0.049 0.027 

Loc-Penal 0.065 0.076 0.072 0.079 0.067 

Unstr. Unstr 0.044 0.047 0.041 0.052 0.052 

Ante* 0.042 0.040 0.034 0.049 0.065 

AR1* 0.057 0.033 0.026 0.051 0.059 

Loc-Penal 0.060 0.037 0.032 0.055 0.067 

Unstr. Unstr 0.057 0.053 0.056 0.056 0.063 

(Q.R.E.) Ante* 0.100 0.055 0.057 0.074 0.135 

AR1* 0.137 0.278 0.017 0.000 0.000 

Loc-Penal 0.100 0.055 0.057 0.074 0.135 

Table 6.3.1: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of type 1 errors (Size), using a Wald statistic with a 'KR' 

adjustment. 
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Underlying Covariance Proportion of Significant Test Results (out of 1000) 
Covariance Estimate (Null model- No treatment/time differences) 
Structure Inter- Orthogonal Polynomial Contrasts 

action C1 I C2 T C3 I C4 
Non-StatIOnary Structures 
Identity Unstr 0.747 0.974 0.037 0.046 0.049 

Ante 0.842 0.981 0.044 0.059 0.060 
AR1 0.896 0.982 0.037 0.056 0.057 
Loc-Penal 0.897 0.984 0.039 0.060 0.062 

Compound Unstr 0.754 0.965 0.063 0.059 0.056 
Symmetry Ante* 0.486 0.833 0.022 0.072 0.100 

AR1* 0.523 0.819 0.016 0.060 0.082 
Loc-Penal 0.544 0.833 0.019 0.066 0.092 

AR1 Unstr 0.765 0.978 0.048 0.054 0.065 
(p = 0.2) Ante 0.864 0.988 0.059 0.055 0.066 

AR1 0.901 0.988 0.048 0.048 0.060 
Loc-Penal 0.906 0.991 0.052 0.052 0.067 

AR1 Unstr 0.744 0.967 0.044 0.041 0.033 
(p = 0.8) Ante 0.862 0.975 0.048 0.042 0.035 

AR1 0.879 0.977 0.038 0.032 0.020 
Loc-Penal 0.886 0.979 0.043 0.036 0.029 

N on-Stationary Structures 
Ante- Unstr 0.764 0.748 0.049 0.043 0.051 

dependence Ante 0.859 0.778 0.047 0.051 0.064 
AR1* 0.534 0.789 0.053 0.049 0.027 

Loc-Penal 0.822 0.838 0.072 0.079 0.067 

Unstr. Unstr 0.777 0.948 0.041 0.052 0.052 

Ante* 0.845 0.949 0.034 0.049 0.065 

AR1* 0.824 0.957 0.026 0.051 0.059 

Loc-Penal 0.852 0.960 0.032 0.055 0.067 

Unstr. Unstr 0.782 0.177 0.056 0.056 0.063 

(Q.R.E.) Ante* 0.801 0.182 0.057 0.074 0.135 

AR1* 0.287 0.511 0.017 0.000 0.000 

Loc-Penal 0.801 0.182 0.057 0.074 0.135 

Table 6.3.2: Summary of results from 1000 simulations of Pilot Study Design. Table 
gives the proportion of significant results (Power), using a Wald statistic with a 'KR' 

adjustment. 
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(antedependence to AR1) are inappropriate for these data and so that the tests using 

the penalised estimate are less powerful, as we might expect. It is also worthy of note 

that for data arising from an underlying antedependence form, the local-stationarity 

penalised estimates are less powerful than simply adopting an antedependence struc

ture for the data, even in such a badly estimated context. 

In all cases the power levels achieved using the local-stationarity penalised estimates 

are below those for the corresponding tests using the direct and penalised smoothing 

estimates of Chapter 5. 

6.4 Discussion 

The results reported above are somewhat disappointing in that they do not point 

to any significant advantages in adopting a local-stationarity penalised likelihood 

approach over the methods discussed in Chapter 5 in this small sample setting. 

There are two possible reasons for this. 

• Firstly, the starting point for the smoothing process being an antedepen

dence(l) structure may not be entirely appropriate for data which is highly 

non-stationary as it matches only the first two diagonals of the unstructured 

matrix. (This effectively smooths the remaining covariance elements before 

we start). This could be remedied by considering smoothing between higher 

order structures, such as antedependence(2) and ar(2) etc. 

• Secondly, it is also possible that with only p = 5 time points considered in the 

pilot study, the 'smoothing window' of size q = 3 yields only 3 submatrices 

from the diagonal from which to assess departures from local stationarity, thus 

limiting the procedure. There is no way to improve upon this in the case of 

only 5 time points, but it is possible that considering data sets with a greater 

number of time points would allow the procedure greater scope. (e.g. p = 10 

time points .\"ields 7 submatrices of size 3). 
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In both these cases numerical problems are likely to be a limiting factor. As the num

ber of time points increases, the maximisation of the penalised likelihood expression 

in (6.2.2) by numerical methods becomes unstable, and increasing the available data 

makes cross-validation infeasible as a means of choosing the smoothing parameter. 

Such problems were encountered in the penalised smoothing estimator of Chapter 

5, but are amplified in this approach with the additional fitting (by maximum like

lihood) of the AR(l) estimates of the submatrices from the diagonal of~. Also, 

were more data are available, there would be little reason for not simply adopting 

the (unstructured) sample covariance matrix without recourse to computationally 

expensive techniques. Such problems can only be further amplified in extending 

these procedures beyond the restrictive setting of balanced and complete data. 

It seems, as was flagged in the discussion of the previous chapter, that for data 

sets arising from very small samples of repeated measurements, there is little scope 

for adaptive methods based on the estimation of a covariance model which improve 

upon existing methods. 
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Part III 

Methods -with Less Dependence 
on the Covariance Structure 

121 



Chapter 7 

The Elllpirical 'Sandw-ich' 
Estilllator 

7.1 Introduction 

Part II showed the problems involved in developing appropriate adaptive methods 

for the estimation of the covariance structure in repeated measures analyses with 

small samples. It is clearly not possible in the very small sample setting to determine 

an adequate model for the covariance structure of the data of low dimensionality 

(i.e. based on few parameters) that outperforms the unstructured estimate. This 

was seen to be the case in the restricted setting of complete and balanced data, where 

a saturated means model ensured that the estimated covariance structure did not 

inform the mean estimates, but was necessary only for the appropriate estimation 

of their standard errors for the purposes of inference. In more complicated settings, 

where data are unbalanced (by design or due to missing values), the covariance 

structure, which may be poorly determined, affects both the parameter estimates (3 

and their standard errors. 

In this part of the Thesis attention is focused on methods which are less dependent on 

the covariance structure. That is, on methods which do not rely upon the covariance 

structure for estimation of the mean parameters, but make inferences using their 

ordinary least squares estimates and use some consistent estimate of Var(y) to derive 
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their standard errors. 

One such method is the so called robust approach of Section 1.3 which uses the 

empirical sandwich estimator for the covariance matrix of the fixed effects parameters 

{3, which are based on their least squares estimates. Use of this estimator attempts 

to make inferences about {3 robust to misspecification of the covariance structure. 

It is the favoured approach when analysing categorical data, in finding a marginal 

regression for the mean response through a multivariate extension to quasilikelihood 

methods for generalised linear models given by generalised estimating equations 

(GEEs). 

It is well known that such a robust approach has poor small sample properties 

(see, for example, Gunsolley et al. (1995)), but recent attempts to improve the 

performance of the sandwich estimator are worthy of consideration in the context of 

small samples, to determine whether the use of a modified estimator, together with 

a suitable adjustment, can lead to a test with nominal properties for continuous, 

normally distributed data. 

7.2 The GEE Approach 

Let Yij represent jth observation on the ith subject, j = 1, ... ,ni and i = 1, ... , ,m. 
m 

That is there are ni observations on subject i and n = 'L ni observations in total. 
i=l 

Let the vector of observations on the ith subject be Yi = (Yil,' .. ,YinJ
T with corre-

sponding vector of means lLi = (Mil, ... , MinJ T. Also, let Xij be the r-dimensional 

vector of explanatory variables, so that Xi = (x~, ... ,x'fn)T is the design matrix 

corresponding to the ith subject. 

The generalised linear model approach is to model 

(7.2.1) 
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where 9 is a ('link') function of the expected response and (3 is the usual vector of 

estimated regression coefficients. 

Writing, 

Xill xini 1 

D! = 8J-L; = 
g' (/-Lil) g' (/-LinJ 

~ 8{3 
Xilr xinir 

g' (/-Lid g' (/-Lini) 

the generalised estimating equation (GEE) approach of Liang and Zeger (1986) finds 

(3 by solving the following estimating equations 

m 

S({3) = L D;V;l{Yi - J-Li({3)} = 0 (7.2.2) 
i=l 

where Vi is the covariance matrix of the Yi, which is typically modelled as Vi 
1 1 

¢AlRi(o:)Al, where Ai is an ni x ni diagonal matrix with Var(/-Lij) as the jth 

diagonal element, ¢ is a dispersion parameter, and Ri(O:) is a 'working' correlation 

matrix that is specified by the vector of parameters 0:. Hence, if Ri (0:) is the true 

correlation matrix of Yi, then Vi is the true covariance matrix of Yi. 

The equations are solved iteratively and (under mild regularity conditions) the so

lutions in the vector /3 are consistent and asymptotically normal. The covariance 

matrix of the fixed effects estimates /3 is consistently estimated by the empirical 

'sandwich' estimator 

= VM{ f DTv,lVar(Yi)V,lDi}V M 

l=l 

(7.2.3) 
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where V M = CE D;Vi'Di ) -, is the model based estimate of Var(iJ). In practice 

Var(Yi) is replaced by rirT = {Yi - J.Li (,8)}{Yi - J.Li (,8)}T, its estimate based on the 

ordinary model residuals. 

The sandwich estimator is a consistent estimator of the covariance matrix of ,8, even 

if the working correlation matrix is misspecified. If Var(Yi) = Vi, then the sandwich 

estimator reduces to V M, the model-based estimate. 

For (continuous) responses, with normally distributed errors, and an identity link, 

we find 

so that, 

m 

8(13) = L XTV;l(Yi - X i j3) (7.2.,:!) 

i=l 

and setting this expression equal to zero gives us the usual 'normal' equations, with 

solution vector 

m 

,8 = L(XTV;lX)-lXTv;lYi (7.2.5) 

i=l 

This leads to the robust approach referred to in Chapter 1, where a 'working' co

variance structure W- 1 = V is used for calculation of the regression coefficients, 

but their standard errors are given by the sandwich estimator. That is, 

~ T -1 T 
j3w = (X WX) X Wy (7.2.6) 

with 
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where V = diag(Vi) has a block diagonal structure. 

As before, taking Var(Yi) = rirT = (Yi - XJ3)(Yi - XJ3)T uses the observed 

correlations between the residuals. Also, taking W- 1 = I means that the regression 

parameter estimates will be their ordinary least squares estimates, {30LS' but with 

their standard errors adjusted to account for the observed correlation structure. 

This will be the approach adopted throughout this Chapter. 

7.3 Small Sample Properties of the Sandwich Estimator 

Gunsolley et al. (1995) compare the performance of the sandwich estimator of the 

covariance matrix for the fixed effects parameters V S with the model based estimate 

V M to show that testing based on the GEE approach results in type 1 error rates that 

are too liberal when dealing with small samples. They showed this through a number 

of simulation studies based on binary responses, and suggest that 'appropriate' size 

is obtained only when the number of subjects exceeded the number of observations 

per subject. 

Mand and DeRouen (2001) consider bias in the robust estimator V S = VarCB) due 

to the use of ordinary residuals ri = {Yi - /Li({3)} to estimate Var(Yi), where the 

number of subjects is small. 

They show this by considering a Taylor series expansion of the residual vector ri 

about {3, 

ae· ~ 
r' = e + _7 ({3 - (3) 

t I a{3T (7.3.1) 

where ei = {Yi - J.Li({3)} and i = 1, ... , Tn. 
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This leads to the following expression of the expectation of Var(Yi), 

where 

E(rirf) ~ (I - Hii)Var(Yi)(1 - Hid T + I: Hij Var(Yi)Hl; 
iIi 

( 7.3.2) 

(7.3.3) 

Taking the summation term in (7.3.2) to be negligable, and hence zero, this leads 

to the bias corrected sandwich covariance estimator, V S(BC), of Var(!3), given by 

Mancl and DeRouen show that this bias corrected robust approach improves the type 

1 error rate when the sample size (number of subjects) is low, through simulations 

of binary responses involving 10-40 subjects in varying cluster sizes of between 16 

and 24 observations. They find in separate tests, of null hypotheses involving each 

of two regression parameters and their interaction (all on 1 d.f.), that Wald-type 

tests using the bias-corrected sandwich estimator achieved test sizes closer to the 

nominal level of 5% than tests involving the unadjusted sandwich estimator. Their 

approach also outperforms other robust approaches such as the Jackknife. They 

do find, however, that test sizes using a X2 null distribution are still somewhat 

inflated and it is necessary to adopt an F distribution to achieve tests with nominal 

properties. In this context they adopt the number of subjects minus the number of 

regression parameters as the 'appropriate' measure of the denominator degrees of 

freedom, although they do recognise the arbitrary nature of this choice. 

For normal errors, the l\Iancl and DeRouen approach suggests a bias corrected H'T

sion of the sandwich estimator, which replaces ri in V S with (I - Hd-1ri, whert' 
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(7.3.5 ) 

Table 7.3.1 shows the results from 1000 simulations each of study designs (A), (B) 

and (C) of Chapter 2, Section 2.3, for Wald tests using both the sandwich estimator 

and the bias corrected sandwich estimator suggested by Manel and DeRouen in the 

context of a normal response. In each case the test sizes, for a treatment/time 

interaction on 4 dJ. for designs (A) and (B), and a treatment effect on 4 dJ. for 

design (C) are given with reference to both a chi-squared distribution and an F 

distribution using residual degrees of freedom in the denominator (the number of 

observations minus the number of parameters). 

It can be seen from these results that, in this small sample setting, nominal test 

sizes (of 5%) are not achieved by the bias corrected sandwich estimator using either 

a X2 of F distribution, although this approach does offer some improvement over the 

unadjusted sandwich estimator. Pan and Wall (2002) note that performance of this 

approach, particularly the Wald chi-squared test, is worse when testing multiple 

parameters rather than a single parameter. This may account for the difference 

between these results and those reported by Manel and DeRouen. 

7.4 An Adjusted F-test for the Sandwich Estimator 

A number of attempts have been made to give adjusted tests based on the sandwich 

estimator to deal with the problem of inflated test sizes for small samples. For 

example, Kauermann and Carroll (2001) show that the (bias adjusted) sandwich 

estimator V S(BC) always results in greater variance than the model based covariance 

matrix for the fixed effects V M, where the model is correct, and suggest adjusted 

t-tests for individual regression parameters based on the bias adjusted sandwich 

estimator. Alternatively, Fay and Graubard (2001) consider a bias adjustment to 

V S which is dependent on the assumption that the working covariance matrix is 

a scale factor of the true covariance matrix. In the GEE case this implie~ that 
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Underlying Method of Null Proportion of Significant Test 
'True' Covariance Inference Dist. Results (out of 1000) (' Size') 
Structure Design A Design B Design C 

Identity Sand X2 0.426 0.482 0.388 
F 0.388 0.449 0.339 

Bias Adj. X2 0.248 0.293 0.225 
F 0.207 0.252 0.196 

Compound Sand X2 0.419 0.444 0.397 
F 0.394 0.396 0.364 

Symmetry Bias Adj. X2 0.254 0.272 0.225 
F 0.223 0.229 0.198 

AR1 (p - 0.2) Sand X2 0.428 0.485 0.384 
F 0.391 0.444 0.345 

Bias Adj. X2 0.275 0.290 0.214 
F 0.249 0.264 0.185 

AR1 (p - 0.8) Sand X2 0.416 0.452 0.380 
F 0.383 0.399 0.349 

Bias Adj. X2 0.275 0.253 0.215 
F 0.245 0.221 0.188 

Antedependence Sand X2 0.422 0.494 0.372 
F 0.385 0.459 0.336 

Bias Adj. X2 0.257 0.292 0.208 
F 0.225 0.259 0.178 

Unstructured Sand X2 0.423 0.459 0.378 

F 0.390 0.411 0.337 

Bias Adj. X2 0.269 0.247 0.209 

F 0.230 0.211 0.184 

Unstr (QRE) Sand X2 0.430 0.397 0.335 

F 0.386 0.349 0.294 

Bias Adj. X2 0.257 0.210 0.132 

F 0.228 0.189 0.106 

Table 7.3.1: Results from 1000 simulations of Designs (AJ, (BJ and (CJ. 

the correlation matrix is correctly specified. They suggest testing single parameters 

based on an F(l, d) distribution (or equivalently a t(d) distribution) where d is a 

function of the bias adjusted sandwich estimator. 

A more general approach is suggested by Pan and Wall (2002) who propose an F-test 

for the Wald statistic which takes account of the additional variability inherent in 

the sandwich estimator, but without restriction to assumptions about the working 

correlation matrix. They describe their approach as being analogous to the testing 

the mean of a normal distribution with unknown variance where a t-test is preferred 
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over a z-test. 

Their approach is developed in the GEE setting in terms of the hypothesis Ho:{3 = O. 

although they note the possibility for its extension to the general linear hypothesis 

Ho:L{3 = 0, which is presented below. 

Consider the Wald statistic under the null hypothesis, 

(7.4.1) 

A T 
where L{3 rv Nz(O, LV sL ). If we assume further that vLV SLT has a scaled Wishart 

distribution, that is vLV SLT rv Wz(v, LVar(,B)LT), then it follows that W has the 

same distribution as Hotelling T2. That is, 

v -l + 1 
vl W rv F(l, v - l + 1) (7.4.2) 

where v is chosen from the data to match Va; { vec( vLV SLT)} = v2Va;{ vec(LV SLT)} 

from the Wishart distribution with an empirically based estimator. 

From the Wishart distribution, we have 

(7.4.3) 

where K is the 'commutative' matrix and ® is the kronecker product operator, 

(see Chapter 4, subsection 4.2.2). Also, since V s is a reasonable estimator of the 

covariance matrix of the fixed effects parameters, we have vO is an estimator of 

Var{ vec( vLV SLT)} where 

A T T n = (1{2 + K){(LV sL ) ® (LV sL )} (7.4.-l) 
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To calculate an empirically based estimator, the Pan and Wall adjusted statis

tic assumes in the GEE approach that, under correct modelling assumptions, the 

model-based covariance estimator V M is an appropriate measure, and hence con-

centrates on the estimated variance of the middle piece of V s from (7.2.3), that is 
m 
L: D;Vilrir;VilDi' treating D i, Vi and V M as fixed. 
i=l 

Let Pi = vec(D;Vilrir;VilDi)' Then, the covariance matrix of the mean vector 
m 

Q = L: Pi / m is estimated empirically by 
i=l 

m 

i=l 
1-

= -2 Var(Pi) 
m 

m m 

(7.-1.5) 

where P = L: Pi/m. This follows since L: Pi/m is itself an unbiased estimator of 
i=l i=l 

Q. Then, the covariance matrix of vec(LV SLT), that is 

m 

Var(LV SLT) = (LV M ® LV M) L Pi 
i=l 

is given (empirically) by 

(7.4.6) 
A T 

= m2(LV M ® LV M)T(LV M ® LV M) 

v is chosen to match as closely as possible the quantities vO, the estimated covari

ance matrix of vLV SLT under the Wishart assumption with v2~, its empirically 

calculated estimate. The solution favoured by Pan and Wall is to find v to minimise 

the sum of squared errors between vvec(~) and vec(O). 

Writing, a = vec(~) and b = vec(O), the least squares estimate of u mmlmlSl'S 

(va - b) T (lia - b), so that differentiating and setting equal to zero, we find 
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That is, 

2vaT a - 2aT b = a 
aTb 

v=-
aTa 

tr(~n) 
v = --.".-

~ 2 
tr(w ) 

(7.4.7) 

Pan and Wall compare their adjusted F -statistic for a Wald test using the sandwich 

estimator with the usual X2 (l) distribution, and show in the context of a logistic 

model that their adjusted test reduces the inflated test sizes achieved using a X2 test 

to nominal levels. 

Pan and Wall note that it is possible to combine their approach with a bias correc

tion such as that of Mancl and DeRouen. This is achieved by simply replacing rj 

with (I - Hii)ri in Pi and using the bias-adjusted estimator to determine v. This 

results in a Wald statistic that accounts for both the bias and variability of the 

sandwich estimator. However, they find in simulations that there is no need for such 

a combination as their adjusted statistic alone is somewhat conservative for simple 

hypotheses in the GEE setting, giving type 1 error rates below the nominal level. 

As before, in the context of continuous normally distributed data, we proceed in the 

above approach by substituting Pi = vec(XiWirirTWiXi) in (7.4.5). To test this 

approach we again consider simulations of study designs (A), (B) and (C). Results 

from 1000 simulations are shown in Table 7.4.1, using both the adjusted F-test of 

Pan and Wall and a combined adjustment using the bias adjusted sandwich estimator 

of Mancl and DeRouen. 

Looking at the table it is clear in testing the (multiple parameter) hypotheses of no 

treatment/time interaction in the simple repeated measures studies of designs (A) 

and (B), and no treatment effect in the crossover study of design (C) that adjusted 

tests using the Pall and 'Vall approach alone are still somewhat inflated, but that. 
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Underlying Method of Proportion of Significant Test 
'True' Covariance Inference Results (out of 1000) ('Size') 
Structure Design A Design B Design C 

Identity PW 0.115 0.135 0.094 
Comb Adj. 0.055 0.056 0.039 

Compound PW 0.119 0.130 0.081 
Symmetry Comb Adj. 0.057 0.051 0.034 

AR1 (p = 0.2) PW 0.142 0.152 0.098 
Comb Adj. 0.068 0.068 0.037 

AR1 (p = 0.8) PW 0.166 0.160 0.073 
Comb Adj. 0.083 0.064 0.03-1 

Antedependence PW 0.109 0.132 0.051 
Comb Adj. 0.047 0.055 0.018 

Unstructured PW 0.109 0.088 0.067 
Comb Adj. 0.051 0.042 0.025 

Unstr (QRE) PW 0.206 0.136 0.027 
Comb Adj. 0.100 0.063 0.009 

Table 7.4.1: Results from 1000 simulations of Designs (AJ, (BJ and (CJ. 

the combined adjustment (accounting for both bias and variability) comes close to 

achieving nominal levels in each of these designs. It would appear that the Pan and 

Wall approach, of an adjusted F-test using the sandwich estimator (combined with 

a suitable bias adjustment), leads to an appropriate test based on the general linear 

hypothesis for small sample repeated measures which are normally distributed. 

Further consideration of the performance of this combined adjustment for tests in-

volving the sandwich estimator will be presented in Chapter 9. 
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Chapter 8 

Box's Correction: A Modified 
ANOVA Statistic 

8.1 Introduction 

We have seen that removing the estimated covariance structure from the estimation 

of the regression parameters leads to an improvement in the small sample behaviour 

of tests involving those parameters in repeated measures designs. 

We saw this in the assessment of existing methods in Chapter 2, where Wald tests 

using the Kenward Roger adjustment for balanced data which allowed for exact tests 

(such as Hotelling T2 and split-plot ANOVA) give adequate control over the type 

1 error rate in the small sample setting. In such cases, the estimated covariance 

structure is not used in the estimation of the mean parameters, but is necessary for 

estimates of their precision. This control is seen to deteriorate where the covari

ance structure enters the estimation step, and is worse still in situations which are 

unbalanced. 

We have also seen in Chapter 7 how testing based on robust methods. using the 

empirical sandwich estimator can be modified to account for bias and variability in 

this estimator to give an appropriate test statistic and (adjusted) null distribution 

based on ordinary least squares estimates of the mean parameter estimates. 
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A natural extension of this approach is to consider removing the estimated covari

ance structure from estimates of precision also. That is, to develop a method which 

ignores the covariance structure completely in calculating the test statistic, using 

ordinary regression or ANOVA, and then corrects the null distribution for the de-

pendence in the repeated measurements. 

One such approach, outlined in Chapter 1 (Section 1.3), is offered by Box's cor

rection, Box (1954a,b), which suggests a modification to the one-way ANOVA F-

statistic to account for departures from this model. 

This approach is advocated by Bellavance et al. (1996) in the context of crossover 

designs, to account for the correlations within subjects arising from repeated mea-

surements. They show that it gives adequate control over the type 1 error rate 

compared with ordinary least squares (OLS) for data arising from a variety of co-

variance structures which do not allow exact tests. It is considered here in a wider 

context. 

8.2 Box's Correction 

Let X be the (n x r) design matrix with all terms included, and XR (n x (r -

c)) have the terms to be tested removed, and define A = I - X(XTX)-lX
T 

and 

B = X(XTX)-lXT - XR(X~XR)-lX~. Then, under the ANOVA assumptions of 

independence between observations (on a subject) and homogeneity of variance, the 

appropriate test statistic is given by 

F = (n - r) yTBy r'-.J F(c, n - r) 
c yTAy 

(8.2.1) 

Box's correction suggests an adjustment to the (null) F distribution which attempts 

to make the ANOVA statistic robust to departures from the assumption of inde

pendence. It is easily derived using standard results for quadratic forms in normal 

variates. 
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Let y rv Np(O, :E), and consider the quadratic form Q = yT Ay, for a fixed matrix 

A. Then, 

r 

Q = yT Ay rv L AiX; (8.2.2) 
i=l 

where Ai are the eigenvalues of A:E, and the X; are i.i.d. X2(1) variates. In particular, 

we have the following results. 

E( Q) = tr(A:E) (8.2.3) 

and, 

Var( Q) = 2tr(A:EA:E) (8.2.4) 

Also, for Ql = yTBy and Q2 = yT Ay, we have 

(8.2.5) 

The key approximation (Satterthwaite (1941)) is to consider the quadratic forms to 

be distributed as a constant times a chi-squared distribution. That is, 

Q TA approx 2 (h) = y y rv 9X 

The constant and the degrees of freedom parameters, 9 and h are chosen by match

ing the first and second moments of yT Ay with those of the scaled chi-squared 

distribution. i.e. 

E{gX 2 (h)} = gh = tr(A:E) 
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and, 

from which we obtain 

tr{(A:E)2} {tr(A:E)p 
9 = tr(A:E) and h = tr{(A:E)2} 

Box thus describes the ANOYA F-statistic, the ratio of quadratic terms Q1 

yTBy and Q2 = yT Ay, assumed independent, to be approximated by a scaled 

F -distribution. 

below. 

where, 

(8.2.6) 

tr(B:E) 
tr(A:E)' leading to the result of Section 1.3, which is repeated 

F = (n - r) y;~y ap~ox 'l/JF(vl, v2) 
c y y 

(n - r) tr(B:E) 
'l/J = --'-------'- ----'------'-

c tr(A:E) 

vI = {tr(B:E) }2 
tr{ (B:E)2} 

{tr(A:E)}2 
v2 = --'-----

tr{ (A:E)2} 

(8.2.7) 

(8.2.8) 

(8.2.9) 

(8.2.10) 

In practice, any consistent estimator of :E = Yar(y) may be used to compute the 

adjusted F-distribution parameters. Jones and Kenward (2003) suggest the use 

of the ordinary least squares covariance estimate is in keeping with the spirit of 
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Underlying Method of Proportion of Significant Test 
'True' Covariance Inference Results (out of 1000) ("Size·) 
Structure Design A I Design B I Design C 

IdentIty I Box F 0.026 0.024 I 0.038 

Comp Sym I Box F 0.023 0.017 I 0.032 

AR1 (p - 0.2) I Box F 0.039 0.030 I 0.028 

AR1 (p - 0.8) Box F 0.035 0.024 I 0.020 

Antedependence Box F 0.046 0.050 I 0.021 

I Unstructured Box F 0.027 0.025 I 0.021 

I Unstr (QRE) Box F 0.061 0.040 I 0.004 

Table 8.2.1: Results from 1000 simulations of Designs (Aj, (Bj and (Cj. 

this approach. However, for data which are unbalanced or have missing values, 

so that the OLS and REML estimates do not coincide, it may be more practical 

to simply adopt the unstructured REML estimate, which is widely implemented 

in existing software. In cases where an unstructured REML estimate cannot be 

computed (as can occur, for example, where there are too many measurements on 

too few subjects), ~ may be taken to be the most complex covariance structure 

that the data will support, such as a (high order) antedependence structure. A 

further advantage of this method is that it does not require a non-singular estimate 

of the covariance structure, so that, in such cases, it is possible to proceed using an 

'empirical' estimator, such as the sample covariance matrix. 

Bellavance et al. show that this modified F-test approximation gives adequate con-

trol over the type 1 error in the context of crossover studies. Table 8.2.1 shows the 

results of 1000 simulations of each of designs (A), (B) and (C) of Chapter 2, which 

are undertaken to show how Box's correction performs across a wider variety of data 

problems. 

Looking at the table we see that Box's correction reduces the test sizes under each 

of the study designs to below the nominal level of 5%, resulting in a test statistic 

which is largely conservative. 
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8.3 A Further Modification to the ANOVA Statistic 

The results of the simulations of the last section show that Box's modified F-statistic 

is conservative, giving excessive control to the type 1 error rate and resulting in test 

sizes well below the nominal rate. In this section we consider a modification to 

Box's correction, which attempts to find a simplified (ANOVA-type) test statistic 

for repeated measures problems, based on ordinary least squares estimates of {3, and 

giving test sizes close to nominal levels. 

One such approach is to consider the numerator term yTBy as a scaled non-central 

chi-squared distribution 

T approx 2 ( 8) Ql = Y By rv glX hI; (8.3.1) 

which under Box's assumption of independence between the numerator and denomi-

nator quadratic terms, Ql and Q2, would lead to a scaled non-central F-distribution 

for the ratio Ql/Q2. i.e. 

Ql = yTBy ap~ox bF(h h' 8) 
Q TA 1, 2, 

2 Y Y 

This approach is intuitively attractive as it follows closely to Box's original approach, 

and it is hoped that the addition of the non-centrality parameter 8 may improve 

the performance of the approximation. However, to solve for gl, hI and 8 in (8.3.1), 

requires us to match the first three cumulants (central moments) of Ql = yTBy to 

those of the gIX2(h1; 8) distribution, viz. 

gl (hI + 8) 

2gr(hl + 28) 

8gr(h 1 + 38) 
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and the addition of the third-order term tr(B:EB:EB:E) leads to unstable estimates 

of the approximated distribution parameters. 

An alternative is to consider this ratio directly as a scaled F -distribution (rather 

than as a ratio of scaled chi-squared distributions). That is, to consider 

(8.3.5) 

Approximate moments of the ratio Q1/Q2 can be obtained using the 'delta' method 

for standard errors of functions of random variables, (see Chapter 4, subsection 

4.2.2). In particular, for two variables, Xl and X 2, we have, restricting ourselves to 

first order deviations for the mean 

and, 

(
Xl) '" Var(Xd {E(X1)}2Var(X2) _ 2E(X1)COV(X1' X 2) 

Var X 2 '" {E(X2) P + {E(X2)}4 {E(X2) P 
_ {E(X1)}2 [ Var(Xd Var(X2) _ 2Cov(X1, X 2)] 
- {E(X2)P {E(X1)P + {E(X2)P E(XdE(X2) 

(8.3.6) 

Then, substituting Xl = Q1 = yTBy and X 2 = Q2 = yT Ay, we obtain 

(8.3.7) 

and, 

( 
yTBY) {tr(B:E) }2 [2 tr{ (B:E)2} + 2 {tr(A:E)2} _ 4 tr(A:EB:E) ] 

Var T Ay ~ {tr(A:E) P {tr(B:E) P {tr(A:E) P tr(A:E)tr(B:E) 
y (8.3.8) 
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Equating these moments with those of the scaled F-distribution, 'xF(VI' V2), we ob

tain 

and, 

1 tr(B~) 
,X tr(A~) 

(8.3.9) 

~ {tr(B~)}2 [2tr{(B~)2} 2tr{(A~)2} -4 tr(A~B~) ]_ 2V~(V2 + VI - 2) 
,X2 {tr(A~) p {tr(B~) p + {tr(A~) p tr(A~)tr(B~) - VI (V2 - 2)2( V2 - c±) 

(8.3.10) 

Fixing v1 = c, the dimensionality of the test (similarly to the Kenward Roger and 

Sandwich adjustments), we can use these final two equations to find the scaling factor 

,X and the denominator degrees of freedom V2 for our approximating distribution. 

From (8.3.9), we obtain 

,X = _v2 __ 2 tr(B~) 
V2 tr(A~) 

so that, substituting for ,X in (8.3.10), we find 

V2 + C - 2 _ [tr{(B~)2} + tr{(A~)2} _ 2 tr(A~B~) ] 
c( V2 - 4) - {tr(B~) p {tr(A~) p tr(A~)tr(B~) 

so that, writing 

[
tr{ (B~)2} tr{ (A~)2} tr(A~B~)] 

V = {tr(B~)p + {tr(A~)p - 2tr(A~)tr(B~) 

it follows that 

1c±1 

(8.3.11 ) 

(8.3.12) 

(8.3.13) 



c(4Y+1)-2 
V2=---~-

cY -1 (8.3.14) 

Assuming that the numerator and denominator terms, yTBy and yT Ay, are in

dependent, so that the covariance term Cov(yT Ay,yTBy) = tr(A~B~) = 0, we 

obtain the following improved statistic based on Box's modified F-statistic. 

F = (n - r) yTBy ap~ox AF(c v2) 
c yTAy , (8.3.15) 

where, 

A = (n - r) V2 - 2 tr(B~) 
c V2 tr(A~) 

(8.3.16) 

c(4Y'+1)-2 
v - ---'-----:-----'---

2 - cV' - 1 (8.3.17) 

and, 

Y' = [tr{ (B~)2} tr{ (A~)2} 1 
{tr(B~)p + {tr(A~)p (8.3.18) 

Results from 1000 simulations of designs (A), (B) and (C) are shown in Table 8.3.1, 

and show that this modified Box correction gives test sizes much closer to nominal 

levels than Box's original statistic. 

A further modification was considered using second order deviations about the mean 

in (8.3.7). That is, taking 

(
yTBY) tr(B~) [ tr{(A~)2} tr(A~B~) 1 

E yT Ay ~ tr(A~) 1 + 2 {tr(A~) p - 2 tr(A~)tr(B~) (8.3.19) 

and proceeding as above (with tr(A~B~) = 0). However, simulations show that 

there is little advantage in following this more complicated approach, since this 

results in an adjusted statistic which is more conservative, with test sizes closer to 

those given by the Box correction which we are attempting to inflate. 



Underlying Method of Proportion of Significant Test 
'Tr 'C ' ue ovanance Inference Results (out of 1000) CSize') 
Structure Design A Design B Design C 

Identity Box F 0,026 0.024 0.038 
Mod Box 0.048 0.042 0.056 

Compound Box F 0.023 0.017 0.032 
Symmetry Mod Box 0.042 0.040 0.046 

AR1 (p = 0.2) Box F 0.039 0.030 0.028 
Mod Box 0.061 0.053 0.048 

ARI (p = 0.8) Box F 0.035 0.024 0.020 
Mod Box 0.068 0.061 0.043 

Antedependence Box F 0.046 0.050 0.021 
Mod Box 0.078 0.096 0.042 

Unstructured Box F 0.027 0.025 0.021 
Mod Box 0.065 0.059 0.047 

Unstr (QRE) Box F 0.061 0.040 0.004 
Mod Box 0.120 0.118 0.038 

Table 8.3.1: Results from 1000 simulations of Designs (Aj, (Bj and (Cj. 

8.4 Properties of Box-type Modified F -statistics 

It is of interest to compare the properties of the improved Box-type statistic derived 

above with that of Box's original. 

Note firstly that, for matrices A and B defined in the ANOVA statistic, we have 

and, 

tr(A) = tr{In - X(XTX)-lXT} = tr(In) - tr{XTX(XTX)-l} 

= tr(In) - tr(Ir ) = n - r 

tr(B) = tr{X(XTX)-lXT - XR(X~XR)-lX~} = tr(Ir ) - tr(Ir - c ) 

= r - (r - c) = c 

Further, tr(A 2) = tr(A) and tr(B 2) = tr(B), since these 'projection' matrices are 

(symmetric and) idempotent. 
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Now, under the ANOYA assumptions of independence and homogeneity of variance, 

the covariance estimator has the block diagonal form ~ = 1m ® (j21p = (j2In' so that 

the Box Modified F-statistic parameters, (8.2.8)-(8.2.10), become 

1j; = (n - r) tr(B) = 1 
c tr(A) 

vI = {tr(B)}2 = tr(B) = c 
tr(B2) 

{ tr(A)}2 
v2 = tr(A2) = tr(A) = n - r 

(8.4.1) 

(8.4.2) 

(8.4.3) 

That is, under the usual ANOYA assumptions, Box's Modified F -statistic recaptures 

the correct degrees of freedom for the exact one-way ANOYA test statistic given in 

(8.2.1). 

F= (n-r)yTBy "'F(c,n-r) 
c yTAy 

For the modified Box correction, we have, the same assumptions, from (8.3.18) 

so that, 

y'= [ 
tr(B2) tr(A 2) 1 1 1 
--~+ - +--
{tr(B)p {tr(A)p - tr(A) tr(B) 

1 1 
--+
n-r c 

4c2 + 4c(n - r) + c2 (n - r) - 2c(n - 1') 
c(.JY'+I)-2= () cn-r 

.Jc+c(n -1')+2(11 -r) 
(n - r) 

(8.4 . .J) 



and 

c V' _ 1 = C
2 + C( n - r) - C( n - r) 

c(n - r) 
c 

(n - r) 

and hence the further Modified F-statistic parameters, (8.3.16)-(8.3.17), become 

_ c( 4 V' + 1) - 2 _ 4c + c( n - r) + 2 (n - r) 
V2 - I - -----'-----=-----.:.....-~ 

cV -1 c 

and so, 

A = (n - r) V2 - 2 tr(B) = V2 - 2 
C V2 tr(A) V2 

2c + c( n - r) + 2 (n - r) 

4c + c( n - r) + 2 (n - r) 

Hence, if the usual ANOVA assumptions are satisfied, we have, 

where, 

and, 

A= 2c+c(n-r)+2(n-r) 
4c + c( n - r) + 2 (n - r) 

V2 = 
4c + c( n - r) + 2 (n - r) 

C 

(8.4.5) 

(8.4.6) 

(8.4.7) 

(8.4.8) 

(8.4.9) 

That is, the modified Box correction does not recover the exact one-way ANOVA 

statistic, where assumptions would allow its use. However, this discontinuity is of 

small order. 
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To illustrate this difference, consider the following study based on simulation study 

design (A). We have m = 10 subjects, split equally into two treatment groups, 

measured at each of p = 5 time points, so that the number of observations is n = 50. 

If we are concerned with whether there is a significant treatment-time interaction, 

then we have r = 10 parameters (1 intercept, 4 time, 1 group, 4 interaction), so that 

n - r = 40 and c = 4. 

We have from Box, the standard ANOVA test statistic 

F ""' F( 4,40) 

but the further Modified F -statistic gives us 

F ap~ox 0.96875 x F( 4,64) 

That is, the modified correction inflates the denominator degrees of freedom to 

account for the 'scaling' of the statistic. 

The differences in the densities of these distributions is shown in the Figure 8.4.1. It 

is seen that is very little difference between them and, in particular, the difference 

is not large in the 'tail end', where hypotheses are decided. The 95% quantiles are 

given by 2.606 and 2.596 for the F( 4,40) and 0.96875 times the F( 4,64) distributions, 

respecti vely. 

A possible solution to this problem is to consider the addition of further small order 

terms to the approximated moments of the quadratic ratio F in (8.3.7) and (8.3.8), 

taking 

E (yTBY) ~ tr(B:E) (1 + 0') yT Ay tr(A:E) 
(8.4.10) 

and, 
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Figure 8.4.1: F-distributions. Legend: Solid Line, the F(4,40) distribution; Dashed 
Line, 0.96875 times the F(4,64) distribution 

v (yTBY) '" {tr(B~)}2 [2tr{(B~)2} {tr(A~)2} tr(A~B~) 1 
ar yT Ay '" {tr(A~)p {tr(B~)p + 2 {tr(A~)p - 4tr(A~)tr(B~) + {3 

(8.4.11) 

where a and f3 represent higher order terms in the Taylor series expansion, which 

are of small magnitude, but ensure the correct parameter estimates (i.e. ,\ = 1 and 

v2 = n - r) are obtained when the ANOVA assumptions are satisfied. This is similar 

to the approach taken by Kenward and Roger (1997) to ensure their small sample 

adjusted Wald test recovers exact tests. 

In this context, the further expansion leads to complicated terms for the parameter 

estimates in the modified Box correction which become unstable as the estimated 

covariance matrix moves further away from the independence model (identity struc-

ture), and it is not pursued. Although it is desirable to have a statistic which 
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recovers the exact test in appropriate circumstances, it is worth noting that such 

circumstances are unlikely to arise in practice. 

In comparing the properties of these Box-type statistics, it is useful to consider also 

the relationships between the parameters given by the two corrections. 

Figures 8.4.1-8.4.3 show the distributions of the scaling parameter 'If; given by the 

Box correction and its relationship with the degrees of freedom parameters, vI and 

v2, from 1000 simulations of study designs (A)-(C) for data arising from the various 

underlying covariance structures. 

The distributions of the scaling parameter A and its relationship with v2, under the 

same scenarios, are shown similarly in Figures 8.4.4-8.4.6. 

The key points to note from these plots are as follows: 

• For both corrections, values greater than 1 are possible for the scaling param

eters, 'If; and A. 

• For data arising from an identity structure (independence), the central value 

of the distributions of the scaling parameters is clearly at 1. 

• In general, for data arising from structures further from independence (AR1, 

high correlation, antedependence, etc.), the central value of the scaling param

eter is below 1, and the spread of possible values is greater. The exception is for 

data arising from the 'unstructured' covariance matrix based on the 'badly be

haved' quadratic random effects model. For these data, the estimated scaling 

parameters are tightly clustered around a central value at or below 0.5 

The observations above are seen across the three study designs (A)-(C). However, 

there are some interesting differences with regards to the degrees of freedom param

eters, vI and v2. Firstly, considering the Box correction: 

• In general, for increasing 'If;, there is a corresponding increase in the denomina-
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tor degrees of freedom parameter v2, with less variation in v2 for data which 

are further from independence. 

• There is a weaker relationship between 'l/J and the numerator degrees of freedom 

parameter v 1. 

• There is a moderate positive correlation between vI and v2. 

• For the crossover study of design (C), vI is seen to push against its upper limit 

of c (=4), its value under independence. No values of v2 exceed n - r (=40). 

• There is little variation in the estimates of v 1 and v2 for the data arising from 

the Q.R.E. structure, as we might expect from the estimates of'l/J. 

Secondly, for the modified Box correction, there is no clear relationship between A 

and v2 in any of the settings, although it is interesting to note that the independence 

measure n - r for v2 is exceeded in design (C). 

8.5 Box's Correction and 'Compound Symmetry' 

Throughout this Chapter we have considered Box's correction (and its proposed 

modification), which adjust for departures from the one-way ANOVA assumptions 

of independence between observations and homogeneity of variance. It is useful to 

consider, however, how such a correction behaves under the assumption of 'com

pound symmetry', and the relationship between this approach and repeated mea

sures ANOVA. 

Repeated measures ANOVA was often adopted for 'practical' analyses before mod

ern computing power allowed widespread access to the general linear mixed effects 

model, which is more commonly used for such data. (See Fitzmaurice et al. (2004) 

for an outline of the approach, and Crowder and Hand (1990) for more detail). The 

general formulation, as with the one-way approach, is to treat 'time' (occasions of 

measurement) as an additional within-subjects factor, and to model the Jth mea

surement on the ith subject as 
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(8.5.1) 

where JLij are suitably specified fixed effects, bi rv N(O, al) are random (indiddual 

specific) subject effects, and eij rv N(O, (]"2) are the usual error terms. 

The two sources of variation, between-subjects and within-subjects, lead to a com

pound symmetry covariance structure for the repeated measurements, viz. 

(]"~ + (]"2 (]"2 (]"2 
b b 

(]"2 (]"~ + (]"2 (]"2 
Var(Yi) = 

b b 

(]"2 
b 

(]"2 
b (]"~ + (]"2 

Figure 8.5.1: Compound Symmetry Covariance Structure. 

This model implies that we have a constant variance, (]"~ + (]"2, at every measurement 

time, and also that the correlation between any pair of repeated measurements on 

the same subject, given by (the intraclass correlation) 

(8.5.2) 

is constant. 

Such an approach is appropriate in randomised block designs, where the subjects are 

considered as blocks, and in extended examples involving error strata. (See NeIder 

(1965a, b ) ). However, this approach is often not appropriate for many repeated 

measures analyses, since measurement times are defined and cannot be allocated to 

the subjects at random. Also, a constant correlation between observations on the 

same subject is not typically seen, since correlations tend to decay in time. 

Box (1954b) suggested that departures from compound s)"mmetry could be ac

counted for by reducing the degree of freedom parameters for the two-way ANO\":\ 
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F ratio by a multipicative factor E. 

The parameter E, l/(p - 1) < E < 1, is estimated USIng the sample covariance 

matrix. This approach was extended to the split-plot design by Greenhouse and 

Geisser (1958) and to the (multivariate) setting of profile analysis by Greenhouse and 

Geisser (1959), through an adjustment to the MANOVA test statistic. Huynh and 

Feldt (1976) show that in general for such a model to be appropriate it is necessary 

only for the within-subjects covariance matrix to comply with the assumption of 

sphericity. This is a less restrictive condition than compound symmetry, which 

requires only that the variance of differences in a within-subjects design are equal 

across all groups. 

The correction uses 

2 
(J approx ( ( ) ( ) ) 

2 2 F rv F EC, E m - 9 P - 1 
(Jb + (J 

(8.5.3) 

where C is the number of terms being tested, m is the number of subjects, 9 is the 

number of treatment groups, and p is the number of repeated measurements on a 

subject. 

The general approach to adjusting for sphericity, in tests which involve the factor 

'time', is to adjust only if a significant result is found, since the corrections necessarily 

increases p values. If F is significant, it can be tested again using the lower bound 

E = 1/ (p - 1) and only if this leads to a non-significant result will E need to be 

estimated. Adjusted tests using E defined by both Greenhouse and Geisser and 

Huynh and Feldt are widely implemented in software packages. 

Using the Box correction of Section 8.2, under the assumption of compound sym-

metry, we find 
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That is, the Box correction adjusts the one-way ANOVA F statistic to that which 

would be obtained from the (more restrictive) two-way setting. This is equivalent 

to an (unadjusted) Wald statistic for the regression parameters in the mixed model, 

based on a compound symmetry covariance structure. However, although the nu

merator degrees of freedom are fixed as c, the denominator degrees of freedom are 

lower than from their two-way counterpart, since we are accounting for departures 

from independence. A similar relationship is found with the modified Box correction 

under compound symmetry. 

In the context of very small samples of repeated measurements, the one-way ANOVA 

approach with a suitable correction is preferred, since it is more widely applicable 

across a range of settings. The Greenhouse and Geisser approach, based on the 

split-plot design, is simply too restrictive to be of use generally, since it requires 

complete and balanced data and would not, for example, accommodate missing 

data or crossover designs. 
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Chapter 9 

A Comparative Study 

9.1 Introduction 

Chapters 7 and 8 considered two approaches for inference in repeated measures 

problems in the small sample setting, both of which are less dependent on the 

covariance structure. 

In Chapter 7, an adjusted test based on the sandwich estimator incorporating both 

the bias correction of Manel and DeRouen and the adjustment for variation proposed 

by Pan and Wall was seen to control the type 1 error rate, resulting in a Wald statistic 

with nominal properties. 

In Chapter 8, Box's correction based on a modified ANOVA F-statistic was shown 

to also control the type 1 error rate, but was conservative, giving excessive control. 

A modification to this procedure was proposed which resulted in a test size eloser 

to nominal levels. 

In this chapter these approaches are compared in greater detail, using simulated data 

over a range of settings. In particular, having adequately controlled the type 1 error 

rate ('size') of tests resulting from these procedures, it is appropriate to consider their 

power to determine significant treatment differences or effects, where such exist. It 

is also informative to compare these approaches with existing methods. For small 
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sample repeated measures problems where a suitable low dimensional covariance 

structure cannot be determined, this will be a Wald test using an unstructured 

covariance estimate with the Kenward Roger (KR) adjustment. 

We begin, once again, by revisiting the simulation study designs of Chapter 2. 

9.2 An initial Simulation Study 

Recall from Chapter 2, Section 2.2.2, study designs (A) and (B), each based on a 

simple repeated measures design with 5 time points and 10 subjects in two treatment 

groups. For each design, 1000 data sets are simulated from each of 7 underlying 

'known' covariance structures, ranging from stationary types such as identity and 

compound symmetry, to highly non-stationary types such as an antedependence 

form (of order 1) or a 'badly behaved' structure based on a quadratic random effects 

model. 

In design (A) the data are complete and balanced, so that a Wald test with the 

KR adjustment based on an unstructured covariance estimator is an exact Hotelling 

T2 test. In this setting mean estimates for each treatment by time combination 

are equivalent to their ordinary least squares estimates, so that tests for no treat

ment/time interaction are directly comparable with both the adjusted sandwich and 

Box correction procedures. The simulation studies of Chapter 2 indicated that this 

is the only setting where existing methods are reliable for very small samples. 

In design (B) missing values are introduced by allowing one subject in each of the two 

treatment groups to drop out at some random time following the first observation. 

In this instance mean estimates using the existing REML methods are dependent 

on the estimated covariance structure, and test sizes using the KR adjustment have 

been shown to be slightly inflated from the nominal 5% level. 

The results of the simulations for study designs (A) and (B), comparing \Vald tests 

using the unstructured covariance estimator with a KR adjustment, the adjusted 
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sandwich estimator, and both the Box correction and its proposed modification are 

shown in Tables 9.2.1 and 9.2.2. 

In these tables, power levels are compared for a linear (in time) treatment difference 

which is fixed to achieve a power to detect a significant treatment/time interaction 

of around 75% using the KR adjustment in design (A). Hence, power is directly 

comparable between methods for each underlying covariance structure across both 

these tables. 

Looking at the tables, we see that for design (A), each of the methods of inference 

considered achieves nominal test sizes close to 5%. Recall, under the null hypothesis, 

a 95% probability interval for the proportion of tests out of 1000 leading to a rejection 

of the test is (0.036, 0.064). Whilst the Box correction is conservative, the modified 

Box statistic achieves test sizes comfortably within these limits across the range 

of data arising from the different underlying covariance structures. However, the 

sizes using both the adjusted sandwich estimator and modified Box correction are 

somewhat inflated for data arising from the unstructured covariance matrix based 

on the quadratic random effects (Q.R.E.) model. 

Considering power, we see that the power levels obtained for the two Box correction 

methods are consistently higher than the KR adjusted Wald test, whilst the adjusted 

sandwich estimator is consistently lower. The single exception to this is for the data 

arising from the 'badly behaved' Q.R.E. model. It is apparent however that, leaving 

aside this structure, the increase in power achieved by the Box corrections is less 

marked for data arising from the non-stationary covariance structures which are far 

from the independence (identity) model. 

Similar results are seen for design (B), where missing data are introduced. The 

Box corrections appear to be robust to the missing observations, while the power is 

seen to fall for the Wald tests using the KR adjustment or the adjusted sandwich 

estimator. 
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I Underlying I Method of Proportion of Significant Test Results (out of 1000) 
Covariance Inference (N ull model- No Treatment/Time Interaction) 
Structure Type I error rate Power 

('Size') 
StatIOnary Structures 
Identity Unstr (KR) 0.053 0.735 

Sand Adj 0.055 0.629 
Box F 0.026 0.947 
Mod Box 0.048 0.976 

Compound Unstr (KR) 0.045 0.747 
Symmetry Sand Adj 0.057 0.660 

Box F 0.023 0.964 
Mod Box 0.042 0.984 

AR1 Unstr (KR) 0.050 0.735 
(p = 0.2) Sand Adj 0.068 0.659 

Box F 0.039 0.980 
Mod Box 0.061 0.986 

AR1 Unstr (KR) 0.056 0.775 
(p = 0.8) Sand Adj 0.083 0.793 

Box F 0.035 0.992 
Mod Box 0.068 0.999 

Non-Stationary Structures 
Ante- Unstr (KR) 0.058 0.760 
dependence Sand Adj 0.047 0.593 

Box F 0.046 0.762 
Mod Box 0.078 0.863 

Unstr. Unstr (KR) 0.045 0.768 
Sand Adj 0.051 0.607 
Box F 0.027 0.809 
Mod Box 0.065 0.918 

Unstr. Unstr (KR) 0.048 0.740 
(Q.R.E.) Sand Adj 0.100 0.824 

Box F 0.061 0.200 
Mod Box 0.120 0.367 

Table 9.2.1: Summary of results from 1000 simulations of Design (A). Table gives 

the proportion of type 1 errors (Size) and Power. 
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Underlying Method of Proportion of Significant Test Results (out of 1000) 
Covariance Inference (N ull model- No Treatment jTime Interaction) 
Structure Type I error rate Power 

('Size') 
StatIOnary Structures 
Identity Unstr (KR) 0.073 0.633 

Sand Adj 0.056 0.569 
Box F 0.024 0.892 
Mod Box 0.042 0.949 

Compound Unstr (KR) 0.074 0.632 
Symmetry Sand Adj 0.051 0.523 

Box F 0.017 0.882 
Mod Box 0.040 0.937 

AR1 Unstr (KR) 0.089 0.637 

(p = 0.2) Sand Adj 0.068 0.592 

Box F 0.030 0.963 

Mod Box 0.053 0.984 

AR1 Unstr (KR) 0.078 0.637 

(p = 0.8) Sand Adj 0.064 0.677 

Box F 0.024 0.966 

Mod Box 0.061 0.989 

Non-Stationary Structures 
Ante- Unstr (KR) 0.084 0.645 

dependence Sand Adj 0.055 0.514 

Box F 0.050 0.619 

Mod Box 0.096 0.775 

Unstr. Unstr (KR) 0.077 0.640 

Sand Adj 0.042 0.392 

Box F 0.025 0.626 

Mod Box 0.059 0.797 

Unstr. Unstr (KR) 0.046 0.516 

(Q.R.E.) Sand Adj 0.063 0.546 

Box F 0.040 0.158 

Mod Box 0.118 0.330 
I , 

Table 9.2.2: Summary of results from 1000 simulations of Design (B). Table gives 

the proportion of type 1 errors (Size) and Power. 
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Design (C) is a five period-five treatment crossover design with 10 subjects allocated 

to treatments according to a pair of Williams' designs, (see Table 2.2.3). Here 

KR adjusted tests for no treatment effect were shown to have type 1 error rates 

hugely inflated from nominal test sizes, but a Wald test using the adjusted sandwich 

estimator and the Box correction procedures have nominal properties. The results 

of these simulations are repeated in Table 9.2.3. 

Since tests using the adjusted sandwich estimator and Box corrections adequately 

control the size, it is appropriate to consider their power, but it is not immediately 

apparent at what level they should be compared. However, since by the nature of 

these simulations the 'true' underlying covariance structure is known, it is possible 

to consider the true power of the Wald test to determine a treatment difference using 

these known structures by reference to a non-central chi-squared distribution. That 

is, for a Wald test of the null hypothesis Ho : L,6 = 0, using the known covariance 

structure ~, the power is given by 

1 - P(W < X~.95(l; 8)) (9.2.1) 

where X2 has a (non-central) chi-squared distribution with l degrees of freedom, the 

dimensionality of the test, and non-centrality parameter 8, given by 

(9.2.2) 

Recall that (3 is the vector of estimated regression parameters, with estimated stan

dard errors cP = (XT~-lX)-l. 

Figure 9.2.1 shows the 'true' power of the Wald test to determine a treatment differ

ence in design (C), for data which arise from compound symmetry and antedepen

dence covariance structures. Superimposed are the power levels of the corresponding 

tests using the adjusted sandwich estimator and Box corrections from the simula-
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Figure 9.2.1: Power levels of a Wald test using the 'true' compound symmetry and 
antedependence covariance structures. 

tions at various levels. Powers corresponding to a 'true' level using the Wald test of 

90% and 100% are shown in solid. 

Power levels of the tests using the adjusted sandwich estimator and the Box cor-

rections, based on the above procedure, are compared in Table 9.2.3 at these two 

levels; power 1, the treatment difference at which the 'true' test achieves a 90% power 

level, and power 2, the level at which the 'true' test settles to 100%. Such levels are 

clearly unachievable in practice, where the true underlying covariance structure is 

unknown and must be estimated from the data. The powers noted are therefore for 

comparison only within the table. 

Looking at the table, we see a similar pattern to that reported for designs (A) and 

(B). However, note that the test sizes achieved using the adjusted sandwich estimator 

and Box corrections are no longer inflated in the case of the Q.R.E. data. As we 

have previously seen, KR adjusted \Vald tests using the unstructured cm"ariance 
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I Underlying 
I 

Method of Proportion of Significant Test Results (out of 1000) 
Covariance Inference (Null model- No Treatment Effect) 
Structure Type I error rate Power Power 

('Size') 1 2 
StatIOnary Structures 
Identity Unstr (KR) 0.654 -- --

Sand Adj 0.039 0.385 0.568 
Box F 0.038 0.796 0.963 
Mod Box 0.056 0.837 0.977 

Compound Unstr (KR) 0.690 -- --

Symmetry Sand Adj 0.034 0.393 0.564 
Box F 0.032 0.750 0.958 
Mod Box 0.046 0.833 0.977 

AR1 Unstr (KR) 0.660 -- --

(p = 0.2) Sand Adj 0.037 0.391 0.568 
Box F 0.028 0.811 0.958 
Mod Box 0.048 0.848 0.969 

AR1 Unstr (KR) 0.672 -- --

(p = 0.8) Sand Adj 0.034 0.181 0.313 
Box F 0.020 0.447 0.738 
Mod Box 0.043 0.557 0.827 

Non-Stationary Structures 
Ante- Unstr (KR) 0.712 -- --

dependence Sand Adj 0.018 0.037 0.057 
Box F 0.021 0.126 0.221 
Mod Box 0.042 0.037 0.309 

Unstr. Unstr (KR) 0.677 -- --

Sand Adj 0.025 0.082 0.115 
Box F 0.021 0.069 0.132 
Mod Box 0.047 0.139 0.220 

Unstr. Unstr (KR) 0.698 -- --

(Q.R.E.) Sand Adj 0.009 0.012 0.012 
Box F 0.004 0.014 0.016 
Mod Box 0.038 0.049 0.066 

Table 9.2.3: Summary of results from 1000 simulations of Design (C). Table gives 
the proportion of type 1 errors (Size) and Power. 
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estimate are hugely inflated, so it is not appropriate to consider their power. Again. 

the power obtained using the Box corrections is generally much greater than that 

achieved by the sandwich estimator, which gives very poor results by comparison. 

The power levels for the data arising from the underlying non-stationary structures 

is very low for these methods compared to the ·true' test. 

It is perhaps worth noting that if we consider instead a null hypothesis of no period 

effect, all methods, including the KR adjusted Wald test give adequate control over 

the test size. In this case, as noted by Kenward and Roger (1997), the period effect 

levels are the variables defining the covariance structure and, in the absence of a 

treatment effect, this test takes the form an exact Hotelling T2 test. 

The results of these simulations, across study designs (A)-(C), show that the modi

fied Box correction appears to provide a test statistic with nominal properties, being 

less conservative than Box's original statistic, and that this method has good power 

to detect significant differences from the null hypothesis across a range of settings. 

This power exceeds that of the exact Hotelling T2 test, given by the KR adjusted 

Wald test, where the data allow. However, there is some uncertainty as to the real 

performance of this approach in small sample settings where the data are unbal

anced, or arise from covariance structures which are non-stationary. Whilst the use 

of the 'badly behaved' Q.R.E. structure in simulations has been of interest, such 

a structure is unlikely to be found in practice, where data exhibiting large differ

ences in variance across time would likely be stabilised prior to an analysis being 

undertaken. 

There is a need for a wider range of simulations including consideration of changes 

to both the number of time points (measurement occasions) and subjects observed, 

in order to determine whether the modified Box correction can be widely endorsed 

for the analysis of very small samples of repeated measurements. This will be the 

focus of the next section. 
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9.3 Further Simulations 

Consideration is given to extending the simulations based on designs (A)-(C), ac

commodating both a range of time points (p) and subjects (m), and including data 

arising from a wider variety of 'believable' non-stationary covariance structures. 

The extended simulation designs are detailed below. For the simple repeated mea-

sures designs, we have 

(A') A simple repeated measures experiment, with m subjects randomly allocated 

to two treatment groups (of equal size), and a response recorded for each 

subject at each of p time points. 

(B') As design (A'), but with missing values. An equal number of subjects in each 

treatment group drop out at some random time following the first observation. 

In designs (A') and (B'), we will consider p = 5 time points with m = 10 and 20 

subjects, and p = 10 time points with m = 20 and 40 subjects. Additionally, in de

sign (B'), the numbers of subjects allowed to drop out are given in Table 9.3.1, below. 

N umber of measurements 
per subject (p) 
5 

10 

Number of subjects 
(m) 
10 
20 
20 
40 

Number of subjects 
to drop out 
2 
4 

4 

8 

Table 9.3.1: Number of drop out subjects in extended study design (B'). 

For the crossover designs, we have 

(C') A five treatment-five period crossover trial, with m = 10 and 20 subjects 

allocated randomly to treatments according to Table 2.2.3, using a pair of 

Williams' squares. 
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(D) A nine treatment-nine period crossover trial, with m = 18 and 36 subjects 

allocated randomly to treatments according to Table 9.3.2 below. 

Subject Period 
1 2 3 4 5 6 7 8 9 

1 A B C D E F G H I 
2 B D A F C I H G E 
3 C F E G D B I A H 
4 D G F I B H E C A 
5 E A I C H D F B G 
6 F H B E I G A D C 
7 G I D H F A C E B 

8 H C G B A E D I F 

9 I E H A G C B F D 

10 I H G F E D C B A 

11 E G H I C F A D B 

12 H A I B D G E F C 

13 A C E H B I F G D 

14 G B F D H C I A E 

15 C D A G I E B H F 

16 B E C A F H D I G 

17 F I D E A B G C H 

18 D F B C G A H E I 

Table 9.3.2: A crossover design for 9 treatments (A, B, C, D, E, F, G, H, J). 

For the extended simulations involving additional subjects (m = 20 in design (C'), 

and m = 36 in design (D)), the allocation tables are simply repeated. 

As before, data samples are independently generated arising from a Gaussian dis-

tribution with zero mean for a number of underlying covariance structures, and the 

appropriate null hypotheses under consideration are those of no treatment/time in-

teraction in designs (A') and (B'), and no treatment effect in designs (C) and (D). 

Two underlying stationary covariance structures, compound symmetry and ARI 

(high correlation) are considered, together with three non-stationary structures, het-

erogeneous compound symmetry, heterogeneous ARI and first order independence. 

For each of the non-stationary structures, variances are restricted so that they differ 

by no more than a factor of 10 over the range of the measurement times. These 

structures are shown in Figures A.2.1-A.2.5 of Appendix A. 
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Results from the extended simulations of study designs (A') and (B') are shown in 

Tables 9.3.3 and 9.3.4. 

For p = 5 time points in design (A'), we see that as the number of subjects rises from 

10 to 20, the power of the tests using the Box corrections is still above that of the 

KR adjusted Wald test for data arising from the stationary covariance structures. 

However, for data arising from the non-stationary structures, the increase in power 

is generally lower in comparison to the level attained by the KR adjusted test. This 

is particularly noticeable for the data arising from the antedependence structure, 

which is furthest from the AN OVA assumptions of independence and homogeneity 

of variance. This is as we might expect, the performance of the KR adjusted test 

improving as the sample size increases, and the Box corrections performing compara

tively less well for large departures from independence. A similar pattern is observed 

in design (B'), although the loss of power relative to the KR adjusted Wald test is 

more apparent for increased sample sizes where we have missing values. 

As the number of time points increases to p = 10, the loss in power of the Box 

corrections relative to the KR adjusted test is less marked. That is, as the number 

of subjects and time points is increased in the balanced and complete data setting 

of design (A'), the modified Box correction appears to hold its own against the KR 

adjusted Wald test. For design (B'), where the missing values introduce imbalance, 

the KR adjustments no longer give an exact Hotelling T2 test, and must be calculated 

individually for each data set. For the (10 x 10) matrices necessitated by considering 

p = 10 time points, this is too expensive in terms of available computational time 

for such a practical study. In order to provide a comparison, the KR adjusted test 

results in Table 9.3.4 have been estimated in each case using the 'known' underlying 

covariance structure and an average number of observations. This gives a measure 

of the best that could be achieved using the KR method, that is, a 'ceiling' to its 

performance. (The estimated results are marked with an asterisk in the table). 

Throughout Table 9.3..-1, the KR adjustment is seen to gIve a test stati~tic with 

inflated size (for both p = 5 and 10 time points), although this size is seen tll 
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Underlying Number of Proportion of Significant Test Results (out of 1000) 
Covariance Times(p) & (Null model- No Treatment/Time Interaction) 
Structure Subjects(m) Method Unstr Sand Box F Mod 

of Inf. (KR) Adj Box 
StatIOnary Structures 
Compound p=5,m=10 'Size' 0.045 0.057 0.023 0.042 
Symmetry Power 0.747 0.660 0.964 0.984 

p=5,m=20 'Size' 0.057 0.037 0.024 0.036 
Power 0.749 0.663 0.808 0.843 

p=10,m=20 'Size' 0.049 0.035 0.013 0.020 
Power 0.756 0.510 0.950 0.964 

p-10,m=40 'Size' 0.049 0.034 0.031 0.038 
Power 0.756 0.645 0.827 0.840 

AR1 p=5,m=10 'Size' 0.056 0.083 0.035 0.068 
(p = 0.8) Power 0.775 0.793 0.992 0.999 

p=5,m=20 'Size' 0.042 0.037 0.032 0.052 
Power 0.756 0.884 0.937 0.958 

p=10,m=20 'Size' 0.048 0.065 0.038 0.060 
Power 0.753 0.698 0.995 0.996 

p=10,m=40 'Size' 0.052 0.048 0.037 0.053 
Power 0.779 0.728 0.968 0.972 

Non-StatIOnary Structures 
Hetero p=5,m=10 'Size' 0.053 0.044 0.026 0.052 

Comp Sym Power 0.773 0.534 0.961 0.981 

p=5,m=20 'Size' 0.042 0.017 0.033 0.052 

Power 0.740 0.586 0.788 0.823 

p=10,m=20 'Size' 0.052 0.016 0.026 0.040 

Power 0.758 0.207 0.980 0.989 

p=10,m=40 'Size' 0.063 0.023 0.023 0.028 

Power 0.765 0.550 0.901 0.910 

Hetero p=5,m=10 'Size' 0.049 0.076 0.034 0.069 

AR1 Power 0.744 0.765 0.981 0.994 

(p = 0.8) p=5,m=20 'Size' 0.043 0.046 0.037 0.053 

Power 0.770 0.721 0.922 0.947 

p=10,m=20 'Size' 0.051 0.042 0.035 0.054 

Power 0.767 0.604 0.990 0.996 

p=10,m=40 'Size' 0.053 0.044 0.031 0.047 

Power 0.755 0.687 0.912 0.932 

Ante- p=5,m=10 'Size' 0.060 0.053 0.038 0.059 

dependence Power 0.767 0.611 0.861 0.924 

p=5,m=20 'Size' 0.058 0.032 0.041 0.053 

Power 0.741 0.600 0.624 0.688 

p=10,m=20 'Size' 0.043 0.003 0.041 0.052 

Power 0.749 0.070 0.83~ 0.861 

p=10,m=40 'Size' 0.056 0.010 0.038 0.043 

Power 0.764 0.403 0.70-1 o -')5 . I-
I , 

Table 9.3.3: Summary of results from 1000 silllidations of extended Design (.-\). 

Table gives the proportion of type 1 errors (Si:;c) (1nd Power. 
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Underlying Number of Proportion of Significant Test Results (out of 1000) 
Covariance Times(p) & (NUll model- No Treatment/Time Interaction) 
Structure Subjects(m) Method Unstr Sand Box F ~Iod 

of Inf. (KR) Adj Box 
StatIOnary Structures 
Compound p=5,m=10 'Size' 0.074 0.051 0.017 0.040 
Symmetry (miss 2) Power 0.632 0.523 0.882 0.937 I 

p-5,m=20 'Size' 0.059 0.036 0.041 0.050 
(miss 4) Power 0.644 0.505 0.733 0.772 
p=10,m=20 'Size' 0.053* 0.050 0.012 0.023 
(miss 4) Power 0.624* 0.361 0.857 0.890 
p=10,m=40 'Size' 0.057* 0.038 0.046 0.052 
(miss 8) Power 0.624* 0.449 0.610 0.643 

AR1 p=5,m=10 'Size' 0.078 0.064 0.024 0.061 
(p = 0.8) (miss 2) Power 0.637 0.677 0.966 0.989 

p=5,m=20 'Size' 0.067 0.050 0.052 0.067 
(miss 4) Power 0.662 0.586 0.869 0.900 

p=10,m=20 'Size' 0.068* 0.096 0.036 0.068 

(miss 4) Power 0.645* 0.618 0.993 0.995 

p=10,m=40 'Size' 0.062* 0.040 0.054 0.070 

(miss 8) Power 0.674* 0.614 0.925 0.9~~ 

Non-Stationary Structures 
Hetero p=5,m=10 'Size' 0.084 0.056 0.019 0.042 

Comp Sym (miss 2) Power 0.609 0.412 0.843 0.927 

p=5,m=20 'Size' 0.054 0.032 0.043 0.059 

(miss 4) Power 0.634 0.439 0.681 0.739 

p=10,m=20 'Size' 0.062* 0.025 0.022 0.037 

(miss 4) Power 0.627* 0.162 0.910 0.939 

p=10,m=40 'Size' 0.063* 0.020 0.030 0.038 

(miss 4) Power 0.667* 0.318 0.796 0.810 

Hetero p=5,m=10 'Size' 0.083 0.066 0.031 0.072 

AR1 (miss 2) Power 0.631 0.578 0.914 0.975 

(p = 0.8) p=5,m=20 'Size' 0.048 0.025 0.052 0.070 

(miss 4) Power 0.683 0.562 0.836 0.884 

p=10,m=20 'Size' 0.048* 0.049 0.048 0.075 

(miss 4) Power 0.602* 0.413 0.948 0.974 

p=10,m=40 'Size' 0.058* 0.038 0.042 0.054 

(miss 4) Power 0.658* 0.505 0.851 0.894 

Ante- p=5,m=10 'Size' 0.065 0.042 0.038 0.072 

dependence (miss 2) Power 0.664 0.494 0.748 0.862 

p=5,m=20 'Size' 0.054 0.028 0.040 0.057 

(miss 4) Power 0.658 0.472 0.558 0.634 

p=10,m=20 'Size' 0.071 * 0.000 0.034 0.049 

(miss 4) Power 0.604* 0.040 0.767 0.813 

p=10,m=40 'Size' 0.048* 0.005 0.036 0.043 

(miss 8) Power 0.65~* 0.174 0.603 0.628 
I I 

Table 9.3.4: Summary of l'f.!-iults from 1000 silllulatioll.!-i of el·tended Design (B'). 

Table gives the proportion of type 1 errors (Size) and Power. 
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approach the nominal level of 5% as the number of subjects increases. 

In the extended simulations of study designs (A') and (B') tests involving the ad

justed sandwich estimator are seen to control size, but these tests appear to haye 

little power to detect differences from the null hypothesis in comparison to the other 

methods. This is particularly true for data arising from underlying covariance struc

tures which are far from the independence (identity) 'working' covariance structure. 

Also, for increased time points (p = 10), there were problems with this adjustment 

in the low subject setting (m = 20), resulting in illegal (negative) estimates for the 

denominator degrees of freedom given by (7.4.2), as v < (I - 1) is possible. In these 

instances, requiring that v > (I - 1) is achieved by setting v = I, the dimensionality 

of the test, which results in a single denominator degree of freedom test. These 

issues do not, however, reccur as the number of subjects increases, and the results 

for 10 time points and 20 subjects do not appear to be out of line. 

Consider now the extended crossover studies of designs (C') and (D). 

Table 9.3.5 shows the results from the extended study design (C') based on the 

five treatment-five period design. As the number of subjects increases from 10 

to 20, the test sizes using the KR adjustment are closer to the nominal level of 

5%, but are still too inflated for power to be considered. As with design (C), 

power is compared for the adjusted sandwich estimator and the Box corrections 

for treatment differences which lead to 'true' powers using the Wald statistic (with 

'known' covariance structure) of 90% and 100%, power 1 and power 2, respectively. 

Again, the modified Box correction is seen to give a test with nominal properties 

and good power in comparison to the 'true' test. 

Results from the simulations under study design (D) are shown in Table 9.3.6. The 

power of tests using the adjusted sandwich estimator and Box corrections are com

pared, as in designs (C) and (C'), against 'true' power levels for the corresponding 

Wald test, and the modified Box correction is seen to giYe the better performance. 

Again the adjusted sandwich estimator results in illegal parameter estimates where 
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Underlying Number of Proportion of Significant Test Results (out of 1000) 
Covariance Times(p) & (N ull model- No Treatment Effect) 
Structure Subjects(m) Method Unstr Sand Box F Mod 

of Inf. (KR) Adj Box 
StatIOnary Structures 
Compound p=5,m=10 'Size' 0.690 0.034 0.032 0.046 
Symmetry Power 1 - 0.393 0.750 0.833 

Power 2 - 0.564 0.958 0.977 
p=5,m=20 'Size' 0.126 0.045 0.049 0.062 

Power 1 - 0.679 0.860 0.881 
Power 2 - 0.900 0.981 0.983 

AR1 p=5,m=10 'Size' 0.672 0.034 0.020 0.043 
(p = 0.8) Power 1 - 0.181 0.447 0.557 

Power 2 - 0.313 0.738 0.827 
p=5,m=20 'Size' 0.123 0.024 0.036 0.053 

Power 1 - 0.325 0.584 0.642 
Power 2 - 0.533 0.837 0.867 

Non-StatIOnary Structures 
Hetero p=5,m=10 'Size' 0.682 0.032 0.016 0.047 

Comp Sym Power 1 - 0.233 0.563 0.649 
Power 2 - 0.372 0.840 0.899 

p=5,m=20 'Size' 0.124 0.033 0.038 0.053 
Power 1 - 0.450 0.693 0.732 

Power 2 - 0.691 0.904 0.926 

Hetero p=5,m=10 'Size' 0.597 0.037 0.012 0.028 

AR1 Power 1 - 0.126 0.225 0.295 

(p = 0.8) Power 2 - 0.226 0.442 0.536 

p=5,m=20 'Size' 0.111 0.024 0.029 0.043 

Power 1 - 0.214 0.404 0.465 

Power 2 - 0.370 0.665 0.717 

Ante- p=5,m=10 'Size' 0.697 0.028 0.024 0.037 

dependence Power 1 - 0.140 0.383 0.~73 

Power 2 - 0.206 0.618 0.698 

p=5,m=20 'Size' 0.122 0.028 0.048 0.054 

Power 1 - 0.226 0.445 0.479 

Power 2 - 0.398 0.688 0.712 
, 

Table 9.3.5: Summary of results from 1000 simulations of extended Design (C'). 

Table gives the proportion of type 1 errors (Size) and Power. 
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Underlying Number of Proportion of Significant Test Results (out of 1000) 
Covariance Times(p) & (N ull model- No Treatment Effect) 
Structure Subjects(m) Method Unstr Sand Box F Mod 

of Inf. (KR) Adj Box 
StatIOnary Structures 
Compound p=9,m=18 'Size' 0.472* 0.037 0.033 0.040 
Symmetry Power 1 - 0.338 0.838 0.872 

Power 2 - 0.531 0.991 0.994 
p=9,m=36 'Size' 0.063* 0.029 0.041 0.047 

Power 1 0.781* 0.698 0.868 0.881 
Power 2 0.977* 0.941 0.997 0.997 

AR1 p=9,m=18 'Size' 0.497* 0.020 0.020 0.033 
(p = 0.8) Power 1 - 0.074 0.352 0.406 

Power 2 - 0.139 0.656 0.706 
p=9,m=36 'Size' 0.086* 0.023 0.037 0.052 

Power 1 0.820* 0.204 0.453 0.474 
Power 2 0.985* 0.406 0.778 0.796 

N on-Stationary Structures 
Hetero p=9,m=18 'Size' 0.499* 0.016 0.028 0.037 
Comp Sym Power 1 - 0.159 0.550 0.599 

Power 2 - 0.300 0.864 0.892 
p=9,m=36 'Size' 0.065* 0.032 0.044 0.048 

Power 1 0.783* 0.352 0.643 0.670 
Power 2 0.974* 0.671 0.922 0.929 

Hetero p=9,m=18 'Size' 0.473* 0.023 0.016 0.030 

AR1 Power 1 - 0.054 0.242 0.295 

(p = 0.8) Power 2 - 0.100 0.471 0.535 

p=9,m=36 'Size' 0.069* 0.026 0.036 0.046 
Power 1 0.795* 0.091 0.293 0.324 
Power 2 0.987* 0.237 0.591 0.619 

Ante- p=9,m=18 'Size' 0.483* 0.018 0.029 0.023 

dependence Power 1 - 0.068 0.286 0.309 
Power 2 - 0.126 0.515 0.403 

p=9,m=36 'Size' 0.066* 0.016 0.044 0.051 

Power 1 0.785* 0.123 0.324 0.338 

Power 2 0.951* 0.242 0.579 0.592 

Table 9.3.6: Summary of results from 1000 simulations of Design (D). Table gives 

the proportion of type 1 errors (Size) and Power. 
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the number of time points is increased and the number of subjects is small (m = 18), 

so that the denominator degrees of freedom of such tests are fixed at 1, close to the 

boundary. 

In this setting, with an estimated (9 x 9) covariance structure, the KR adjustments 

are again computationally expensive in terms of 1000 individual simulations, so are 

estimated, for comparison purposes, using the 'known' structure to give a 'ceiling' 

of performance. (Again these estimated values are marked with an asterisk in the 

table). These show that the test size reduces towards nominal levels as the number 

of subjects increases, so that it may be appropriate to consider power. However, it 

is clear that these values cannot be achieved in practice. 

9.4 Discussion 

The extensive simulation studies of this Chapter show that the modified Box cor

rection results in a test with nominal properties which is more powerful than the 

other methods considered across a range of small sample settings for the analysis of 

repeated measurements. 

Tests based on the adjusted sandwich estimator are also seen to have nominal prop

erties across the range of settings considered, but this approach lacks power. Also, 

estimation of the adjusted test parameters are seen to be non-robust, resulting in 

illegal estimates of the denominator degrees of freedom where the number of time 

points is large in comparison to the number of subjects. 

The simulations confirm that Wald tests using an unstructured covariance matrix 

with the Kenward Roger adjustment give inflated type 1 error rates where the data 

do not allow for exact tests, although the size of such tests does approach nominal 

levels as the sample size increases as we might expect. Where nominal properties are 

achieved, so that it is appropriate to consider power, we see that where the sample 

size (number of subjects) is small, tests using the Box corrections give greater power 
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than the corresponding Wald tests. As the sample size increases the improvement 

in power from using the modified Box correction over the KR adjustment becomes 

less as the underlying covariance structure moves further from independence. 

The modified Box correction developed in Chapter 8 is preferred to Box's original 

statistic which is conservative and hence less powerful. 
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Chapter 10 

Examples 

10.1 Introduction 

Following the simulation studies of the previous Chapter, some examples are pre

sented which illustrate the use of the modified Box correction in practical analyses. 

Attention is restricted to this method since the results of the simulation studies in

dicate that this is the most suitable method for dealing with small sample repeated 

measures problems, since it produces a test statistic with nominal properties and 

has the greatest power, of the methods considered, across a range of settings. 

10.2 Cardiac Enzyme in Preserved Dog Hearts 

Consider again the Cardiac Enzyme example of Section 4.1.1, where four test liquids, 

defined by the presence or absence of two components A and B, were compared for 

their preserving qualities on 23 preserved dog hearts, measured by the percentage 

of total enzyme (%ATP) at nine repeated intervals of one and two hours. 

Here we consider the reduced data set of 12 dog hearts, restricting our interest to 

the presence or absence of component A in the preserving liquid (B absent). The 

subject and mean profiles for the two liquids are shown in Figures 10.2.1 and 10.2.2 

respectively, and the sample variance-correlation matrix is shown in Table 10.2.1. 

178 



c.. 
t: 
~ 

o co 

0 
<0 

0 
v 

o 

Absent 

c.. 
t: 
~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 

hours 

o 
o 

o co 

0 
<0 

0 
v 

o 
N 

o 

Present 

1 2 3 4 5 6 7 8 9 10 11 12 13 

hours 

Figure 10.2.1: Cardiac Enzyme data: Subject Profiles for the Presence/Absence of 
preserving liquid A 

(This shows variances on the diagonal, with covariances above and correlations be-

low). 

37.08 11.29 4.04 32.53 24.78 37.22 51.32 19.08 15.89 
0.34 29.27 -3.52 12.80 7.64 10.02 18.66 8.14 -7.84 
0.12 -0.11 33.08 -7.70 15.43 6.91 15.80 -11.43 30.00 
0.47 0.21 -0.12 128.08 -27.86 6.51 58.84 19.38 -43.17 
0.58 0.20 0.38 -0.35 48.85 46.33 33.20 24.45 53.01 
0.57 0.17 0.11 0.05 0.62 114.22 86.48 44.59 61.27 
0.78 0.32 0.25 0.48 0.44 0.75 117.38 51.39 48.76 
0.30 0.14 -0.19 0.16 0.33 0.40 0.45 111.24 42.10 
0.27 -0.15 0.54 -0.39 0.78 0.59 0.46 OA1 94.24 

Table 10.2.1: Sample Variance-Correlation Matrix for the Cardiac Enzyme Data 

Treating these data as a simple repeated measures design. a test for a treatment by 

time interaction using the unstructured covariance matrix with a Kenward Roger 

(KR) small sample adjustment is equivalent to an exact Hotelling T2 test. Table 
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10.2.2 shows the results obtained from Wald tests using various covariance models 

and the modified Box correction. It can be seen that the test results differ according 

to the choice of structure. As the data are complete and balanced, the same mean 

estimates (by ordinary least squares) are obtained under each method, but they 

differ in their measures of the standard errors. 

Num Den 
Covariance Structure df df F P 
Identity - Independence 8 90 1.49 0.1713 
Unstructured 8 3 8.73 0.0509 
Compound Symmetry 8 80 2.07 0.0485 
AR1 8 73.8 1.24 0.2904 
Mod Box (,\ = 0.68) 8 11.2 2.21 0.1109 

Table 10.2.2: Cardiac Enzyme Data: Comparison of Results, complete data 

The exact Hotelling T2 test obtained using the unstructured covariance matrix indi-

cates that there is insufficient evidence (at the 5% level) to reject the null hypothesis 
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of no treatment by time interaction. This is confirmed by the modified Box corrected 

statistic, although in this instance the evidence is less marginal. 

To show how such results can differ where there is imbalance, and the estimates of 

the mean parameters as well as their standard errors are dependent on the choice 

of covariance structure, we introduce an artificial dropout to this reduced data set. 

To achieve this, consider that the three final measurements are missing from one 

of the dog hearts which receives the preserving liquid from which component A 

is absent. The profile for this heart, following dropout, is shown as a dotted line 

in Figure 10.2.1. Repeating the tests for a treatment/time interaction with this 

artificial dropout gives the results shown in Table 10.2.3. 

Num Den 
Covariance Structure df df F P 
Identity - Independence 8 87 1.87 0.0753 
Unstructured 8 1.6 88.63 0.0252 
Compound Symmetry 8 77.2 2.32 0.0274 
AR1 8 12.2 1.51 0.1686 
Mod Box (A = 0.77) 8 2.4 10.48 0.0901 

Table 10.2.3: Cardiac Enzyme Data: Comparison of Results, with dropout 

Now the tests using the KR adjustment (with the identity, unstructured and com-

pound symmetry structures) are no longer exact, and so these results are less be

lievable given the evidence of our simulations. There is a higher significance of an 

interaction using the unstructured form once the three observations from the 'ab

sent' group are removed, but the test using the modified Box correction remains 

non-significant. 

10.3 Antihistamines and Mental Performance 

The data in this example arise from a crossover experiment to test the effects of 

antihistamines on mental performance. There are 9 subjects who take part in 8 test 

sessions per day, with each subject taking one drug (of six) per day. Testing days 
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are spaced at least 7 days apart to minimise carryover effects. 

The six drugs (antihistamines) are as follows: 

Placebo; Promethazine, 20 mg; Maratadine, 5 mg; Maratadine, 10 mg; Solfe

nadine 20 mg; Solfenadine, 40 mg. 

Promethazine is a sedating antihistamine and is used as an active control, as it is 

known to impair performance. Maratadine and Solfenadine are thought to be non

sedating antihistamines and so performance is expected to be unaffected by these 

drugs. 

The drugs are taken by each of the 9 subjects at 10.30 on each of six (testing) days, 

and are administered according to a latin square. Mental performance is tested at 

8 sessions during the day: 

9.30 (pre-dose); 11.00 (post-dose); 12.00; 13.30; 15.30; 17.30; 19.30; 21.30. 

At each session a number of tests of mental performance are undertaken, but we 

focus here on 'choice reaction time' (CRT), which measures the speed of a correct 

response by subjects who are required to press one of four buttons which correspond 

to the position and value of single digits displayed on either the left or right side of 

a PC display. The response profiles of each of the 9 subjects for tests of each of the 

six drugs are shown in Figures 10.3.1 and 10.3.2 respectively. 

Following a similar example, Example 5.6 in Jones and Kenward (2003), we analyse 

the data using a linear (mixed) model, with repeated measurements within periods. 

An appropriate model here has fixed subject effects and a factorial structure for time 

and treatment (drug), since no particular form for the treatment effect O\"er time is 

suggested by Figure 10.3.2. Also, the use of the baseline (pre-dose) measurement 

as a covariate reduces the contribution of t he subject effects, which account for 
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the between-period dependencies. An unstructured model for the within-periods 

covariance structure is adopted, and is shown in Table 10.3.1. 

2798.16 481.64 1065.70 920.05 1990.57 2092.34 1528.29 
0.17 2951.34 2246.65 2125.46 2480.89 1747.42 1087.08 
0.25 0.52 6359.39 3767.16 5054.03 3915.04 3257.63 
0.23 0.51 0.61 5909.75 4870.05 4204.56 3061.88 
0.40 0.49 0.67 0.67 8840.50 6815.84 4443.98 
0.45 0.37 0.56 0.62 0.83 7708.59 4449.78 
0.42 0.29 0.60 0.59 0.69 0.74 4628.74 

Table 10.3.1: Within-Period Variance-Correlation Matrix for the CRT Data 

Jones and Kenward discuss the merits of fixed versus random subject effects in 

this situation, and conclude that fixed effects should be used unless there is a good 

justification for the additional complexity inherent in modelling the random effects. 

such as the recovery of interblock information. In a well constructed experiment, 

the loss of such information should be of little consequence. In fact, due to subject-
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period orthogonality in this design, tests involving time are identical under both 

approaches in the absence of carryover effects. 

Table 10.3.2 shows the results of the analysis using Wald tests with the Kenward 

Roger (KR) adjustment and the modified Box correction. 

Num Den 
Effect df df F p 
Wald tests with KR adjustment 
subject 8 34 6.54 <0.0001 
baseline 1 34 59.24 <0.0001 
period (week) 5 27.4 0.76 0.5876 
treatment (drug) 5 26.9 8.23 <0.0001 
time 6 38 8.06 <0.0001 
period *time 30 89 1.23 0.2284 
time*treatment 30 89 1.26 0.2005 

Modified Box Correction 
subject (A=2.76) 8 191.81 9.57 <0.0001 

baseline (A=2.77) 1 454.75 23.70 <0.0001 

period (week) (A=0.74) 5 208.36 2.17 0.0583 

treatment (drug) (A=0.73) 5 214.27 4.20 0.0012 

time (A=0.71) 6 29.04 1.20 0.3339 

period *time (A=0.74) 30 70.78 1.11 0.3561 

time*treatment (A=0.74) 30 70.78 2.05 0.0070 

Table 10.3.2: CRT data: Comparison of Results 

Both methods of analysis flag a significant drug effect, but the conventional (KR 

adjusted) Wald tests suggest the effects of drug and time are additive, whereas 

the modified Box correction points to a significant drug/time interaction. This 

suggests that the drug effect is different at different times, which would appear 

to be consistent with the mean profile plot in Figure 10.3.2. The modified Box 

correction also suggests that there is marginal evidence of a period (week) effect. 

That is, results on a particular day (adjusted for other variables) are low or high for 

no apparent reason. Where the results differ from these two methods of analysis, the 

simulations of the previous chapter indicate that those obtained using the modified 

Box correction are more believable in this setting. 

A sensible route for the further analysis of these data would be to consider indi-

185 



vidual contrasts between the drugs at particular time points to test whether the 

supposedly non-sedating antihistamines, maratadine and solfenadine, behave like 

the placebo, and that the treatment differences observed are due almost entirely to 

the active control. One approach to this problem using the modified Box correction 

would be through the appropriate specification of the design matrix. However, an 

alternative approach based on Scheffe's method for contrasts is presented in the next 

section, which accounts both for the departures from independence (measured by 

the modified Box correction) and for multiplicity of testing. 

10.4 Electrocardiogram Abnormalities in the Guinea Pig 
Papillary Muscle 

As a final example, recall the Guinea pig papillary muscle (GPPM) example of 

Brammer (2003), presented as motivation in Chapter 2, Section 2.1. These data 

comprise measurements taken from papillary muscles dissected from the right ven-

tricles of each of just three guinea pigs' hearts in two experiments. The purpose 

of the experiments was to determine whether the compounds are likely to cause 

electrocardiogram abnormalities. Brammer recognises that analysis from such small 

samples is unlikely to be definitive, but notes that such small samples are common 

in isolated tissue or organ experiments. 

Since the isolated tissue assays from the guinea pigs deteriorate in time, there is a 

limited period in which to test different concentrations of the compounds on each 

muscle, so a control measure is followed by six increasing concentrations of the 

compound. In such an ascending dose design, the carryover effect is considered to be 

minimal in comparison to the current dose. Concentration and time are confounded. 

but a separate 'control' experiment with no compound present showed that there 

were no important changes over time. Five variables were measured, but we focus 

here on AP (amplitude of action potential). Individual tissue profiles and mean 

profiles under each compound are shown in Figures 10.-1.1 and 10.4.2 respecti\'ely. 
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These experiments can be considered as block designs, with concentration of com

pound as the treatment and tissue as the blocking factor, but the compound symme

try structure imposed by such a design may not be appropriate. Instead, Brammer 

treats the experiments as simple repeated measures designs with concentration as 

the time variable and tissue as the subject, and compares the resulting analyses 

from adopting various covariance models to account for the correlation between 

measurements on the same tissue (subject). 

To analyse these experiments in such a way requires the fitting of a (7 x 7) covariance 

structure using just three subjects, so unsurprisingly the unstructured covariance 

models did not converge. Brammer compares those correlation structures that can 

be fitted by informal comparison of the (reduced) log-likelihoods and prefers an ARI 

or heterogeneous ARl model in each case over the more usual compound symmetry 

approach adopted for such experiments. However, the results of the simulations in 

Chapter 2 show that, for small samples, such methods are unreliable for choosing 

an appropriate structure. 

Brammer's results for individual tests of difference from control of each concentration 

are reproduced in Table 10.4.1. For each compound, tests using an AR(I) and 

ARH(I) structure are compared with compound symmetry (2-way ANOVA) and 

paired t-tests of each level of concentration with the control. Additionally, Brammer 

fits an autoregressive moving average ARMA(I,l) model to the data for experiment 

2. Also shown are results from fitting an antedependence model of order 1 to the 

data from compound 1, being the highest order structure which fits these data. For 

each method the mean levels to be compared are unchanged, so that the methods 

differ only in the calculation of the standard errors for the difference from the control 

(SEDC). Note that the results based on the paired t-tests are less powerful, being 

based only on 2 degrees of freedom, rather than the 11 df available for each of the 

other tests. Brammer makes no adjustment for small samples, or multiplicity of 

testing in his analysis. Table 10.4.1 also shows the effect of using the Kenward 

Roger (KR) adjustment to the tests for each compound. 
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Compound 1 
~- ~-

Cone AR(l) ARH(l) ANTE(l) Compound Symmetry Paired t-tests 
mM Mean SEDC t df p SEDC t df p SEDC t df p SEDC t df p SEDC t df p 

0 122.3 
0.1 122.3 0.89 1.50 11 0.16 0.61 2.17 11 0.05 0.67 2.00 11 0.07 1.05 1.27 11 0.23 0.67 2.00 2 0.18 
0.3 124.0 1.23 1.36 11 0.20 0.48 3.45 11 0.005* 0.43 3.91 11 0.002* 1.05 1.59 11 0.14 0.33 5.00 2 0.04* 
1 124.7 1.47 1.59 11 0.14 1.16 2.01 11 0.07 1.15 2.03 11 0.07 1.05 2.22 11 0.05* 1.20 1.94 2 0.19 
3 125.0 1.65 1.62 11 0.13 0.99 2.69 11 0.02* 0.85 3.12 11 0.01* 1.05 2.54 11 0.03* 0.88 3.02 2 0.09 
10 124.3 1.80 1.11 11 0.29 1.04 1.92 11 0.08 0.92 2.17 11 0.05 1.05 1.91 11 0.08 0.58 3.46 2 0.07 
30 121.7 1.93 -0.35 11 0.74 2.61 -0.26 11 0.80 2.37 -0.28 11 0.78 1.05 -0.64 11 0.54 2.19 -0.30 2 0.79 

-

With KR small sample adjustment 
0 122.3 
0.1 122.3 1.16 1.15 11.6 0.27 0.64 2.07 2.31 0.16 0.71 1.89 2.00 0.20 1.05 1.27 12 0.23 
0.3 124.0 1.60 1.04 12.6 0.32 0.55 3.03 4.13 0.04* 0.48 3.47 2.16 0.07 1.05 1.59 12 0.14 
1 124.7 1.91 1.22 13.4 0.24 1.24 1.88 2.41 0.18 1.22 1.91 2.09 0.19 1.05 2.22 12 0.05* I 

3 125.0 2.16 1.24 13.9 0.24 1.10 2.42 2.91 0.09 0.93 2.86 2.22 0.09 1.05 2.54 12 0.03* I 

10 124.3 2.35 0.85 14.0 0.41 1.17 1.71 3.07 0.18 1.03 1.94 2.64 0.16 1.05 1.91 12 0.08 

I 30 121.7 2.51 -0.27 13.7 0.79 2.74 -0.24 2.20 0.83 2.48 -0.27 2.08 0.81 1.05 -0.64 12 0.54 

b(; Compound 2 
~ 

Cone AR(l) ARMA(l,l) ARH(l) Compound Symmetry Paired t-tests 
mM Mean SEDC t df p SEDC t df p SEDC t df p SEDC t df p SEDC t df p 

0 122.3 
0.1 122.7 0.54 0.61 11 0.55 0.54 0.61 11 0.55 0.51 0.66 11 0.53 1.11 0.30 11 0.77 0.33 1.00 2 0.42 
0.3 123.0 0.77 0.87 11 0.40 0.77 0.87 11 0.40 0.81 0.82 11 0.43 1.11 0.60 11 0.56 0.33 2.00 2 0.18 
1 121.7 0.93 -0.71 11 0.49 0.94 -0.71 11 0.49 0.94 -0.71 11 0.49 1.11 -0.60 11 0.56 0.88 -0.76 2 0.53 
3 121.7 1.07 -0.62 11 0.55 1.08 -0.62 11 0.55 1.05 -0.64 11 0.54 1.11 -0.60 11 0.56 0.88 -0.76 2 0.53 
10 120.0 1.20 -1.95 11 0.07 1.20 -1.95 11 0.08 1.11 -2.10 11 0.06 1.11 -2.11 11 0.06 1.45 -1.61 2 0.25 
30 115.0 1.31 -5.62 11 0.0002~ 1.31 -5.61 11 0.0002* 1.39 -5.29 11 0.0003* 1.11 -6.63 11 0.0001 ~ 2.03 -3.62 2 0.07 

-------

With KR small sample adjustment 
0 122.3 
0.1 122.7 0.75 0.44 12 0.66 0.75 0.44 12 0.66 0.60 0.56 5.24 0.60 1.11 0.30 12 0.77 
0.3 123.0 1.06 0.63 12.2 0.54 1.06 0.63 9.57 0.54 0.94 0.71 3.96 0.52 1.11 0.60 12 0.56 
1 121.7 0.29 -0.52 12.4 0.61 1.29 -0.52 8.33 0.62 1.11 -0.60 5.01 0.57 1.11 -0.60 12 0.56 
3 121.7 1.48 -0.45 12.6 0.66 1.48 -0.45 7.78 0.67 1.25 -0.53 5.88 0.61 1.11 -0.60 12 0.56 
10 120.0 1.65 -1.41 12.7 0.18 1.65 -1.41 7.50 0.20 1.35 -1.72 7.09 0.13 1.11 -2.11 12 0.06 
30 115.0 1.80 -4.07 12.9 0.001* 1.81 -4.06 7.36 0.004* 1.64 -4.46 4.12 0.01* 1.11 -6.63 12 0.0001 ~ 

Table 10.4.1: GPPM data: Comparison of results using different methods of analysis (both compounds). 



In the table results which are significant at the 5% level (or below) are flagged (*). 

For compound 1, the non-stationary heterogeneous AR1 and antedependence models 

give a much higher SEDC for the highest concentration. Looking again at the 

individual profiles in Table 10.4.1 shows that this is due to the large drop in AP for 

one of the tissues, a possible outlier. For compound 2, such a drop is noticeable in 

all three tissues, and this difference from control for this concentration is seen to be 

significant across all methods other than the paired t-tests. It is also noticeable with 

compound 1 that few significant results are repeated when the KR small sample 

adjustment is adopted. 

It is of interest to compare Brammer's approach with that offered by the modified 

Box correction in this extreme small sample setting. Whilst the unstructured co-

variance model did not converge for either of the two experiments, it is possible to 

construct the (singular) sample covariance matrix in each case. These are shown in 

Table 10.4.2 below. 

Compound 1 

2.33 3.67 3.00 4.17 3.50 3.83 7.17 
0.95 6.33 5.00 7.83 6.50 6.17 12.83 
0.98 0.99 4.00 6.00 5.00 5.00 10.00 
0.85 0.97 0.93 10.33 8.50 7.17 16.33 
0.87 0.98 0.94 1.00 7.00 6.00 13.50 
1.00 0.97 0.99 0.89 0.90 6.33 12.17 
0.91 0.99 0.97 0.99 0.99 0.94 26.33 

Compound 2 

21.33 22.67 24.00 22.67 22.67 20.00 20.00 
0.99 24.33 25.50 24.83 24.83 22.50 23.00 
1.00 0.99 27.00 25.50 25.50 22.50 22.50 
0.96 0.98 0.96 26.33 26.33 25.00 26.50 
0.96 0.98 0.96 1.00 26.33 25.00 26.50 
0.87 0.91 0.87 0.97 0.97 25.00 27.50 
0.78 0.84 0.78 0.93 0.93 0.99 31.00 

Table 10 . .,1.2: Sample Variance- Correlation AI atrix for the GPPM Data: Com-

pounds 1 and 2. 
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Whilst these matrices do not allow the construction of the usual Wald tests which , 

require invertible matrices, they can be used directly in the modified Box correction 

to allow the tests to reflect the 'observed' dependencies in the data. 

Although it is possible to replicate Brammer's tests by suitable parametrization of 

the design matrix, with columns representing contrasts between each concentration 

with the control measurement, a more appropriate method is suggested as follows. 

1. Use the modified Box correction to test for an overall treatment (concentration) 

effect. 

2. If significant, use Scheffe's method, in conjunction with the adjusted F -statistic, 

to test individual contrasts. 

This approach ensures that the type 1 error rate for individual tests is controlled 

for multiplicity of testing, as well as to departures from independence in the small 

sample setting for which the modified Box correction has been shown to be successful 

for the analysis of repeated measurements. 

Scheffe's method (Scheffe (1953)) allows for the comparison of any or all possible 

contrasts between treatment means, ensuring that the type 1 error rate is at most a 

for any of the possible comparisons. It takes advantage of the union-intersection test 

properties of the AN OVA test statistic, by simultaneously considering all possible 

contrasts in the treatment means: 

(10.4.1) 

for any a=(al, ... , aT). with 2: ai = O. The corresponding contrasts in the treatment 

averages fk. are hence 

(10.4.2) 
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and the standard error of this contrast is 

r 

Sea = 0-2 L(ar /ni) (10.4.3) 
i=l 

where ni is the number of observations of the ith treatment, and 0-2 is the mean 

squared error (MSE) of the data. 

To use Scheffe's method with the modified Box corrected ANOVA statistic from 

(8.3.15), we have 0-2 = MSE = yT Ay /(n - r), and the critical value to which Ca 

should be compared is 

(10.4.4) 

so that a 100(1-a)% confidence interval for Ca is given by 

(10.4.5) 

An advantage of Scheffe's method is that it will always agree with the ANOVA F-

test in the sense that if the F -test detects differences, then at least one Scheffe test 

will detect a difference. Conversely, if the F-test does not detect any differences, 

then none of Scheffe's tests will. This is illustrated below using Brammer's data. 

We begin by considering the overall tests for a concentration effect, given in Table 

10.4.3. 

The results show that there is only marginal evidence of a significant effect of con

centration with compound 1, but the evidence of a significant effect in compound 2 

is much stronger. 

Turning to the Scheffe tests of individual contrasts (differences from control), we 
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Num Den 
Effect df df F p 
concentration (A=0.1131) 6 5.1756 4.4977 0.0570 
(compound 1) 

concentration (A=0.0429) 6 5.0861 20.8472 0.0020 
(compound 2) 

Table 10.4.3: GPPM data: Results using the modified Box correction 

have, for compound 1, 0-2=8.9524, so that the standard error for the first, and 

actually all, the contrasts is given by 

7 

SCI = 0-2 L(a; /ni) = y'8.9524(1 + 1)/3 = 2.4430 
i=l 

and, since the 0.95-quantile of F(6,5.1756) is 4.8063, we find the 95% confidence 

interval for the first contrast is 

1.333 ± 2.4430J6 x 0.1131 x 4.8063 = 1.333 ± 4.4120 = (-3.08,5.75) 

Confidence intervals for the remaining contrasts are calculated similarly, (for COffi-

pound 2, 0-2 = 25.9048). The results are shown in Table 10.4.4. 

As is expected, since the overall concentration effect was non-significant at the 5% 

level, none of the 95% confidence intervals for mean difference from control for 

compound 1 exclude zero. Of the contrasts with compound 2, only the final con-

centration is significantly different from control, 95% CI (-11.99, 2.67). (In fact this 

contrast is also significant at the 1% level, 99% CI (-14.14, -0.52)). 
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Compound 1 

Mean Diff 
Cone from Control 
0 
0.1 1.3333 
0.3 1.6667 
1 2.3333 
3 2.6667 
10 2.0000 
30 -0.6667 

Compound 2 

Cone 
o 
0.1 
0.3 
1 
3 
10 
30 

Mean Diff 
from Control 

0.3333 
0.6667 

-0.6667 
-0.6667 
2.3333 

-7.3333 

95% CI 

(-3.08,5.74) 
(-2.74,6.08) 
(-2.07,6.75) 
( -1.74,7.08 ) 
(-2.71,6.41) 
(-5.07,3.74) 

95% CI 

( -4.33,4.99) 
( -3.99,5.33) 
( -5.33,3.99) 
( -5.33,3.99) 
(-6.99,2.33) 
(-11.99,-2.67) 

Table 10.4.4: GPPM data: Individual Contrasts using Scheffe's method with the 
modified Box correction 
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Part IV 

Conclusions 
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Chapter 11 

Concl us ions and 
Recommendations 

11.1 Summary 

The aim of this thesis has been to investigate methods for the analysis of repeated 

measurements which arise from very small samples with continuous, normally dis

tributed responses. 

We have seen in Part I, Chapters 1 and 2, that conventional methods for analysing 

such data, Wald tests using the small sample adjustment of Kenward and Roger 

(1997), are often inadequate where the sample size is very small. That is, where 

exact tests such as Hotelling T2 or split-plot ANOVA are not appropriate, or where 

the data are unbalanced so that the covariance structure affects the mean parameter 

estimates as well as their standard errors. Such tests often fail to achieve their 

nominal properties, having largely inflated type 1 error rates. 

Also, the correct choice of an appropriate covariance structure is problematic, since a 

low parameter model may not always be determined which provides an adequate fit 

to the data. That is, methods for choosing between possible covariance structures 

are not reliable for small samples. Often longitudinal or repeated measures data 

are highly non-stationary, with variances and correlations that change with time. 

Adoption of an unstructured form will always reflect the observed dependencies, but 
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this may lack power to detect differences from a general linear hypothesis involving 

the mean parameters. 

Two approaches were suggested in the thesis for dealing with such data. both of 

which are primarily concerned with the role of the covariance structure in the anal

YSIS. 

The first approach involved smoothing the covariance matrix between unstructured 

and structured forms, such as AR1 or compound symmetry. This was the focus of 

Part II of the thesis, Chapters 3 to 6. This intuitive approach sought to find an 

appropriate estimator which adequately describes the key features of the data in a 

low dimensional representation. A number of alternative methods were considered 

ranging from direct smoothing, a simple weighted average between the unstructured 

and structured forms, to penalised likelihood methods, which penalise the estimated 

covariance matrix by its lack of fit to the simpler form. Each of these alternatives 

was beset by computational difficulties, and development of these techniques was 

motivated by initially considering only complete and balanced data in order to sim

plify distributional assumptions. However, even in this restrictive setting, it was 

found that the benefits of such smoothing approaches were critically dependent on 

the 'correct' choice of smoothing structure, so that no general solution to the small 

sample problem was identified. 

The second approach involved methods of analysis which are less dependent on the 

covariance structure. This was the focus of Part III of the thesis, Chapters 7 to 10. 

Two alternative methods were investigated, the first of which, the empirical sand

wich estimator, borrows from the generalised estimating equations (GEE) approach. 

This suggests dropping the covariance structure from the estimation of the mean pa

rameters, basing them on their ordinary least squares estimates and adjusting their 

standard errors in the resulting Wald statistic to reflect the observed correlations in 

the data. Such an approach is known to have poor small sample properties, but sev

eral recent attempts to adjust this statistic were considered. One such adjustment. 

by Pan and \Vall (200:2) was extended to deal with all)" general linear hypoth('~i~, 
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and together with a bias adjustment (Mand and DeRouen (2001)), was shown to 

result in a test statistic with nominal properties. 

The second method considered in Part III was an adjusted ANOVA statistic, first 

suggested by Box (1954a, b ) , which drops the covariance structure from estimates of 

both the mean parameters and their precision. Instead, it suggests inferences are 

based on ordinary least squares (OL8) estimates under the assumption of indepen

dence, and adjusts the null distribution of the resulting test statistic to account for 

departures from this assumption. This method results in a type 1 error rate that 

is conservative, and a modified correction was developed that gives a test statistic 

with nominal properties. 

Having identified two methods in Part III, the adjusted sandwich estimator and 

modified Box correction, which give adequate control over the type 1 error rates for 

repeated measures problems with small samples, Chapter 9 compared them exten

sively through a series of simulation studies. An important consideration was the 

power offered by these methods, and here the adjusted sandwich estimator was seen 

to perform poorly in comparison to the methods based on the Box correction. It 

was also seen to be less numerically robust in small sample settings as the number 

of time points (repeated measurements) increased relative to the sample size. 

The modified Box correction was shown to perform adequately across the range 

of settings investigated, providing a test statistic which not only achieves nominal 

test properties (correct 'size'), but is also more powerful than exact tests such as 

Hotelling T2 where they are appropriate for the data. 

Chapter 10 illustrated the use of the modified Box correction through the practical 

analysis of three datasets. 
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11.2 Practical Recommendations 

For repeated measures studies involving very small samples, the modified Box correc

tion, (8.3.15) and (8.3.16) - (8.3.18), is recommended as a method of analysis which 

results in an adjusted test statistic with both nominal properties and acceptable 

power. 

The extensive simulations of Chapter 9 show that where the sample size is small, 

the modified Box correction is more powerful than exact tests such as Hotelling 

T2. As the sample size increases and the underlying covariance structure is far 

from independence, the advantage over such methods diminishes, but the modified 

correction remains an effective method for inference. 

This method can, by suitable parametrization of the design matrix, be used to 

test any hypothesis involving fixed effects, based on their OLS estimates under the 

assumption of independence, and using any consistent estimator of the covariance 

matrix of the data, such as the REML estimator. It can be easily implemented using 

statistical software with minimal programming. Also, as shown in the GPPM data 

example of Section 10.4, it is easily combined with Scheffe's method for simultaneous 

contrasts to examine questions of interest arising from significant results, providing 

appropriate control for multiple testing. 

11.3 Possible Further Work 

A number of further areas for development are suggested in connection with the use 

of the modified Box correction in small sample analyses. 

Firstly, what is an appropriate (consistent) estimator of the covariance structure for 

the data to be used? Jones and Kenward (2003) suggest the use of an ordinary least 

squares approach. Whilst this is attractive in principle, and in keeping with the 

spirit of the approach, it is not easily implemented. Throughout the examples and 
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simulations of this thesis, the unstructured REML estimator has been adopted. This 

is easily found, but is not always guaranteed to converge with small sample sizes, as 

was the case in the GPPM data example of Section 10.4. Here the singular sample 

covariance matrix was used in the modified Box correction, which does not require 

the estimator to be invertible, however, such a matrix may not be appropriate in 

other settings, for example where there are fixed subject effects. 

Secondly, although the modified Box correction is suggested as a general solution for 

very small sample repeated measures problems, the question of what exactly con

stitutes a very small sample remains largely undefined. In particular, where exactly 

do the existing small sample adjustments, such as the Kenward Roger adjustment, 

become untenable so that the modified Box correction is preferred? Also, do any 

problems arise from the analysis of very small samples which are simply too small to 

determine anything? Certainly, the G PPM data of Brammer must be approaching 

such a territory. To answer such questions in a definitive way would require a very 

extensive series of simulations covering a great number of possible study designs. 

Finally, having considered small sample issues in the context of continuous responses, 

can similar methods be proposed in the generalized linear modelling framework for 

categorical responses? That is, can such analyses be performed under the assump

tion of independence, and a generalized Box procedure be developed for this setting. 

We have seen how the adjusted sandwich estimator of Pan and Wall (2002) can 

be extended from hypotheses involving single parameters to the general linear hy

pothesis setting. Also, when combined with a bias adjustment this gives adequate 

control over the type 1 error rate for normal responses, but is not powerful. Guo 

et ai. (2005) allude to this lack of power in turning their attention to the use of 

the (robust) score statistic for testing, but experience suggests that involving the 

likelihood is not an answer for very small samples. It may also be of interest to 

consider the power of tests involving the sandwich estimator more generally. across 

a range of sample sizes. 
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Appendix A 

Covariance Matrices 

A.I Covariance Matrices I 

The following (5 x 5) symmetric matrices are used as the underlying covariance 

structures for the data generated in the simulations of the Pilot Study and Designs 

(A), (B) and (C) used throughout the thesis, as outlined in Chapter 2, Section 2.2.2. 

Identity 

1 
0 1 

CJ2 0 0 1 
0 0 0 1 
0 0 0 0 1 

with CJ2 = 1. 

Figure A.1.1: Identity Covariance Structure. 
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Compound Symmetry 

at + a2 2 
at ar + a 2 1 2 
a 2 

1 a 2 
1 ar + a2 1 1 2 

ar a2 
1 a 2 

1 ar + a 2 1 1 1 2 
ar a 2 

1 a2 
1 a2 

1 ar + a2 1 1 1 1 2 

with ar = 1 and a2 = 1. 

Equivalently, the Compound Symmetry form can be considered as the 'Uniform 
Correlation' model, with a 2 = 2 and p = 0.5, 

1 
p 1 

a2 p p 1 
p p p 1 
p p p p 1 

Figure A.1.2: Compound Symmetry Covariance Structure. 

ARl 

1 
p 1 

a 2 p2 p 1 
p3 p2 P 1 
p4 p3 p2 P 1 

Two forms of AR1 are used, both with a 2 

respectively. 

1 1 

0.2 1 0.8 

0.04 0.2 1 and 0.64 

0.008 0.04 0.2 1 0.512 

0.0016 0.008 0.04 0.2 1 0.4096 

1, and with p 

1 
0.8 1 
0.64 0.8 1 

0.512 0.64 0.8 

Figure A.1.3: ARl Covariance Structure. 
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0.2 and p = 0.8 
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Antedependence 

(J"r 

(J"1(J"2Pl (J"~ 
(J"1 (J"3Pl P2 (J"2(J"3P2 (J"2 

3 

(J"1 (J"4Pl P2P3 (J"2(J"4P2P3 (J"3(J"4P3 

(J"1 (J"5Pl P2P3P4 (J"2(J"5P2P3P4 (J"3(J"5P3P4 

With (J"r = 1, (J"~ = 4, (J"~ = 9, (J"J = 16, (J"g = 25, PI = 0.8, P2 = 0.6, P3 = 0.4, and 
P4 = 0.2, we have 

1 
1.6 4 

1.44 3.6 9 
0.768 1.92 4.8 16 
0.192 0.48 1.2 4 25 

Figure A.1.4: Antedependence Covariance Structure. 

Unstructured 

(J"2 
1 1 

(J"21 (J"2 
2 0.28 2 

(J"31 (J"32 (J"2 
3 1.04 1.96 3 

(J" 41 (J" 42 (J" 43 (J"2 
4 0.80 0.56 2.08 4 

(J"51 (J"52 (J"53 (J"54 (J"2 
5 1.79 1.89 3.10 1.79 5 

This has variance/correlation matrix,(variances on the diagonal, correlations below) 

1 
0.2 2 
0.6 0.8 3 
0.4 0.2 0.6 4 
0.8 0.6 0.8 0.4 5 

Figure A.1.5: Unstructured Covariance Structure. 
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Unstructured (QRE) 

1 1 1 1 1 1 
T 

1 2 
1 2 4 

[ ~2 J 1 2 4 0 1 3 10 
1 3 9 (J2\ (J2 1 3 9 +(J2 0 0 1 7 21 50 2 
1 4 16 (J31 (J32 1 4 16 0 0 0 1 13 39 91 170 
1 5 25 1 5 25 0 0 0 0 1 21 63 147 2'1:3 44~ 

i.e. with (J2 = 1 and (Jt = (J21 = (J2 
(J31 = (J32 = (J2 1. This has vari-2 3 

ance / correlation matrix 

2 
0.67 10 
0.70 0.94 50 
0.71 0.95 0.99 170 
0.71 0.95 0.99 1.00 442 

Figure A.1.6: Unstructured (QRE) Covariance Structure. 
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A.2 Covariance Matrices II 

The following (5 x 5) and (10 x 10) symmetric matrices are used as the underlying 

covariance structures for the data generated in the simulations of extended designs 

(A'), (B')and (C') used in the Further simulations of Chapter 9, as outlined in Section 

9.3. The (9 x 9) matrices required for study design (D), are simply extracted from 

the first nine rows and columns of the (10 x 10) structures noted above. 

Compound Symmetry 

at +a2 

a 2 
1 at +a2 

a 2 a 2 at + a 2 
1 1 

a 2 a 2 a 2 at + a 2 
1 1 1 

a 2 a 2 a 2 a 2 at + a 2 
1 1 1 1 

a 2 
1 a 2 

1 a 2 
1 a 2 

1 a 2 
1 at + a 2 

With at = 1 and a 2 = 1, we obtain the (5 x 5) and (10 x 10) matrices 

2 
1 2 
1 1 2 

2 1 1 1 2 
1 2 1 1 1 1 2 
1 1 2 and, 

1 1 1 1 1 2 
1 1 1 2 

1 1 1 1 1 1 2 
1 1 1 1 2 

1 1 1 1 1 1 1 2 

1 1 1 1 1 1 1 1 2 

1 1 1 1 1 1 1 1 1 2 

Figure A.2.1: Compound Symmetry Covariance Structures. 
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ARI 

1 
p 1 

p2 P 1 
(72 p3 p2 P 1 

p4 p3 p2 P 1 

p9 p8 p7 p6 p5 P 

With (72 = 1 and p = 0.8, we obtain the (5 x 5) and (10 x 10) matrices 

1 
0.8 1 
0.64 0.8 1 and, 

0.512 0.64 0.8 1 
0.4096 0.512 0.64 0.8 1 

1 
0.8 1 

0.64 0.8 1 
0.512 0.64 0.8 1 
0.4096 0.512 0.64 0.8 1 
0.3277 0.4096 0.512 0.64 0.8 1 
0.2622 0.3277 0.4096 0.512 0.64 0.8 1 
0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1 
0.1678 0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1 
0.1343 0.1678 0.2098 0.2622 0.3277 0.4096 0.512 0.64 0.8 1 

Figure A.2.2: ARl Covariance Structures. 
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Heterogeneous Compound Symmetry 

Considering the Compound Symmetry form as the 'Uniform Correlation' modeL 
from Figure A.1.2, we obtain the heterogeneous form 

(J2 
1 

(J2(J1P (J2 
2 

(J3(J1P (J3(J2P (J2 
3 

(J4(J1P (J4(J2P (J4(J3P (J2 
4 

(J5(J1P (J5(J2P (J5(J3P (J5(J4P (J2 
5 

(J1Q(J1P (J10(J2P (J1Q(J3P (J10(J4P (J10(J5P 2 
(J 10 

For the (5 x 5) structure, we use P = 0.5, with (Ji = 1, (J~ = 2, (J5 = 3, al = 4, and 
(Jg = 5, to obtain 

1 
0.7071 2 
0.8660 1.2247 3 
1.0000 1.4142 1.7321 4 
1.1180 1.5811 1.9365 2.2361 5 

For the (10 x 10) structure, we use P = 0.5, with ai = 1, a~ = 2, (J~ = 3, aJ = ~, 
(Jg = 5, (J~ = 6, (J? = 7, (J~ = 8, a~ = 9 and aio = 10, to obtain 

1 
0.7071 2 
0.8660 1.2247 3 
1.0000 1.4142 1.7321 4 
1.1180 1.5811 1.9365 2.2361 5 
1.2247 1.7321 2.1213 2.4495 2.7386 6 
1.3229 1.8708 2.2913 2.6458 2.9580 3.2404 7 
1.4142 2.0000 2.4495 2.8284 3.1623 3.4641 3.7417 8 

1.5000 2.1213 2.5981 3.0000 3.3541 3.6742 3.9686 4.2426 9 

1.5811 0.2361 2.7386 3.1623 3.5355 3.8730 4.1833 4.4721 4.7434 10 

Figure A.2.3: Heterogeneous Compound Symmetry Covariance Structures. 
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Heterogeneous ARI 

(j2 
1 

(j2(j1P (j2 
2 

(j3(j1p2 
(j3(j2P (j2 

3 
(j4(j1p3 (j4(j2p2 

(j4(j3P (j2 
4 

(j5(j1p4 (j5(j2p3 (j5(j3p2 (j5(j4P (j2 
5 

(j1Q(j1p9 (j1Q(j2p8 (j1Q(j3p7 (j1Q(j4p6 (j1Q(j5p5 2 (j1Q 

For the (5 x 5) structure, we use p = 0.8, with (ji = 1, (j~ = 2, (j~ = 3, (j~ = ~. and 
(jg = 5, to obtain 

1 
0.1314 2 
1.1085 1.9596 3 
1.0240 1.8102 2.7713 4 
0.9159 1.6191 2.4787 3.5777 5 

For the (10 x 10) structure, we use p = 0.8, with (ji = 1, (j~ = 2, (j~ = 3, (j1 = ~. 
2 - 5 2 - 6 2 - 7 2 - 8 2 9 d 2 10 b' (j 5 - ,(j 6 - ,(j 7 - ,(j 8 - ,(j 9 = an (j 10 = ,to 0 taln 

1 
0.1314 2 
1.1085 1.9596 3 
1.0240 1.8102 2.7713 4 
0.9159 1.6191 2.4787 3.5777 5 
0.8026 1.4189 2.1722 3.1353 4.3818 6 
0.6936 1.2261 1.8770 2.7092 3.7863 5.1846 7 
0.5932 1.0486 1.6053 2.3170 3.2382 4.4341 5.9867 8 

0.5033 0.8897 1.3621 1.9661 2.7477 3.7624 5.0798 6.7882 9 

0.4244 0.7503 1.1487 1.6579 2.3170 3.1727 4.2837 5.7243 7.5895 10 

Figure A.2.4: Heterogeneous ARl Covariance Structures. 
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Antedependence 

u 2 
I 

UIU2PI 

UIU3PIP2 

UIU4PIP2P3 

UIU5PIP2P3P4 

U~ 
U2 U3P2 

U2 U4P2P3 

U2 U5P2P3P4 

U~ 
U3 U4P3 

U3 U5P3P4 

W'th 2 - 1 2 - 2 2 - 3 2 - 4 2 1 U I - ,U2 - ,U3 - ,U4 - ,U5 = 5, PI = 0.8, P2 = 0.6, P3 = 0.-1. and 
P4 = 0.2, we have the (5 x 5) matrix 

1 
1.1314 2 
0.8314 1.4697 3 
0.3840 0.6788 1.3856 4 
0.0859 0.1518 0.3098 0.8944 5 

For the (10 x 10) structure, we use ui = 1, u~ = 2, u~ = 3, u~ = 4, u~ = 5, u~ = 6, 
u? = 7, u~ = 8, u~ = 9 and uio = 10, with PI = 0.8, P2 = 0.725, P3 = 0.65, 
P4 = 0.575, P5 = 0.5, P6 = 0.425, P7 = 0.35, P8 = 0.275 and P9 = 0.2 to obtain 

1 
0.1314 2 
1.0046 1.7759 3 
0.7540 1.3329 2.2517 4 
0.4847 1.8569 1.4475 2.5715 5 
0.2655 0.4693 0.7928 1.4085 2.7386 6 
0.1219 0.2154 0.3640 0.6466 1.2572 2.7543 7 
0.0456 0.0806 0.1362 0.2419 0.4704 1.0306 2.6912 8 

0.0133 0.0235 0.0397 0.0706 0.1372 0.3006 0.7640 2.3335 9 

0.0028 0.0050 0.0084 0.0149 0.0289 0.0634 0.1611 0.4919 1.897 --l 10 

Figure A.2.5: Antedependence Covariance Structures. 
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Appendix B 

Computer Code 

B.l Introduction 

Examples are presented of the computer code used to implement the small sample 

methods investigated in this thesis. In particular, code for carrying out the Box 

correction methods and adjusted sandwich estimator in SAS is given for the reduced 

Cardiac Enzyme data example of Chapter 10, Section 10.2. 

Subsections B.1.1-B.1.3 show how a standard linear mixed model can be fitted using 

PROC MIXED, which provides the REML estimate of the covariance structure of 

the data and implements the Kenward Roger small sample adjustment. The Box cor

rections and adjusted sandwich estimator methods require additional programming 

using PROC IML, which is illustrated in Sections B.2 and B.3. 

Section B.4, gives an example of the use of cross-validation to provide a smoothed 

estimate of the covariance structure for the full Cardiac Enzyme data set, using the 

penalised likelihood method for smoothing towards a compound symmetry form, 

which was described in Chapter 5, Section 5.1. 

We begin by inputting the Cardiac Enzyme data into SAS using standard data steps. 

Throughout this Appendix, code is shown as plain text type and the correspoIld

ing output from SAS is shown boxed. 
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B.1.l The Cardiac Enzyme Data 

The full Cardiac Enzyme data set, introduced in Chapter 4. subsection 4.1.1 is input 

below. 

titlel "Cardiac Enzyme Data"; 
data doghearts; 

input dog a b yl-y9; 
datalines; 

1 1 1 74.56 84.25 84.05 78.41 79.93 71.60 69.90 63.52 57.14 
2 1 1 72.77 86.93 61.47 88.08 64.15 63.27 57.89 53.02 26.47 
3 1 1 66.67 77.57 73.12 47.50 77.69 64.38 48.06 49.52 52.18 
4 1 1 80.72 71.99 77.32 87.01 73.25 74.84 75.95 51.44 51.36 
5 1 1 82.46 83.16 76.45 79.30 81.38 70.66 59.37 42.16 43.99 
6 1 1 60.54 71.94 77.50 76.28 57.84 41.54 36.06 30.77 29.46 
7 1 2 79.61 79.58 73.09 78.78 71.90 71.86 46.02 53.02 56.34 
8 1 2 71.96 79.00 77.14 66.32 74.65 42.68 51.68 31.37 23.39 
9 1 2 85.60 85.48 84.29 70.02 68.99 50.89 33.47 24.03 25.83 
10 1 2 86.67 84.90 86.04 82.09 77.78 71.29 53.31 47.79 39.92 
11 1 2 82.44 84.74 79.35 78.65 65.97 69.93 53.63 62.20 51.05 
12 2 1 82.98 76.48 77.86 66.26 77.31 79.10 68.05 49.03 58.91 
13 2 1 81.62 79.81 74.95 77.40 70.38 77.35 74.80 62.88 62.40 
14 2 1 82.95 70.79 69.16 74.36 74.63 65.44 61.04 77.10 60.17 
15 2 1 85.51 81.30 77.19 70.59 76.01 56.26 65.58 56.38 58.29 
16 2 1 85.88 80.80 76.01 80.63 70.94 60.00 71.68 54.66 52.22 
17 2 1 87.34 80.99 75.78 82.16 71.50 67.62 72.36 66.90 48.96 
18 2 2 80.24 73.75 77.31 68.65 72.23 67.34 70.52 62.34 71.58 
19 2 2 79.86 81.61 80.06 79.65 67.04 68.26 64.12 47.32 43.60 
20 2 2 80.64 79.41 65.07 81.33 65.11 59.42 54.90 57.12 56.44 
21 2 2 84.96 84.59 79.73 66.88 56.38 71.67 68.88 58.93 63.06 
22 2 2 79.68 58.59 66.91 52.67 54.94 42.46 22.53 42.52 46.30 
23 2 2 86.24 76.26 83.80 67.27 53.84 44.40 59.44 58.74 28.14 

proc print data=doghearts; 
run; 
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Cardiac Enzyme Data 

Obs dog a b y1 y2 y3 y4 y5 y6 y7 y8 y9 

1 1 1 1 74.56 84.25 84.05 78.41 79.93 71.60 69.90 63.52 57.14 
2 2 1 1 72.77 86.93 61.47 88.08 64.15 63.27 57.89 53.02 26.47 
3 3 1 1 66.67 77.57 73.12 47.50 77.69 64.38 48.06 49.52 52.18 
4 4 1 1 80.72 71.99 77.32 87.01 73.25 74.84 75.95 51.44 51.36 
5 5 1 1 82.46 83.16 76.45 79.30 81.38 70.66 59.37 42.16 43.99 
6 6 1 1 60.54 71.94 77.50 76.28 57.84 41.54 36.06 30.77 29.46 
7 7 1 2 79.61 79.58 73.09 78.78 71.90 71.86 46.02 53.02 56.34 
8 8 1 2 71.96 79.00 77.14 66.32 74.65 42.68 51.68 31.37 23.39 
9 9 1 2 85.60 85.48 84.29 70.02 68.99 50.89 33.47 24.03 25.83 

10 10 1 2 86.67 84.90 86.04 82.09 77.78 71.29 53.31 47.79 39.92 
11 11 1 2 82.44 84.74 79.35 78.65 65.97 69.93 53.63 62.20 51.05 
12 12 2 1 82.98 76.48 77.86 66.26 77.31 79.10 68.05 49.03 58.91 
13 13 2 1 81.62 79.81 74.95 77.40 70.38 77.35 74.80 62.88 62.40 
14 14 2 1 82.95 70.79 69.16 74.36 74.63 65.44 61.04 77.10 60.17 
15 15 2 1 85.51 81.30 77.19 70.59 76.01 56.26 65.58 56.38 58.29 
16 16 2 1 85.88 80.80 76.01 80.63 70.94 60.00 71.68 54.66 52.22 
17 17 2 1 87.34 80.99 75.78 82.16 71.50 67.62 72.36 66.90 48.96 
18 18 2 2 80.24 73.75 77.31 68.65 72.23 67.34 70.52 62.34 71.58 
19 19 2 2 79.86 81.61 80.06 79.65 67.04 68.26 64.12 47.32 43.60 
20 20 2 2 80.64 79.41 65.07 81.33 65.11 59.42 54.90 57.12 56.44 
21 21 2 2 84.96 84.59 79.73 66.88 56.38 71.67 68.88 58.93 63.06 
22 22 2 2 79.68 58.59 66.91 52.67 54.94 42.46 22.53 42.52 46.30 
23 23 2 2 86.24 76.26 83.80 67.27 53.84 44.40 59.44 58.74 28.14 

B.1.2 The Cardiac Enzyme Data - Reduced Data set 

The following data steps give the reduced Cardiac Enzyme data set (two levels of A 
within level 1 of B), which was analysed in Chapter 10, Section 10.2. 

titlel "Cardiac Enzyme Data - Reduced Data"; 

data reddogs; 
set doghearts; 
where (b=1); 

trt=a; 
drop a b; 
run; 

proc print data=reddogs; 

run; 
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Cardiac Enzyme Data - Reduced Data 

Obs dog yl y2 y3 y4 y5 y6 y7 y8 y9 trt 

1 1 74.56 84.25 84.05 78.41 79.93 71.60 69.90 63.52 57.14 1 
2 2 72.77 86.93 61.47 88.08 64.15 63.27 57.89 53.02 26.47 1 
3 3 66.67 77.57 73.12 47.50 77 .69 64.38 48.06 49.52 52.18 1 
4 4 80.72 71.99 77.32 87.01 73.25 74.84 75.95 51. 44 51. 36 1 
5 5 82.46 83.16 76.45 79.30 81.38 70.66 59.37 42.16 43.99 1 
6 6 60.54 71.94 77.50 76.28 57.84 41.54 36.06 30.77 29.46 1 
7 12 82.98 76.48 77.86 66.26 77.31 79.10 68.05 49.03 58.91 2 
8 13 81.62 79.81 74.95 77.40 70.38 77.35 74.80 62.88 62.40 2 
9 14 82.95 70.79 69.16 74.36 74.63 65.44 61.04 77 .10 60.17 2 

10 15 85.51 81.30 77.19 70.59 76.01 56.26 65.58 56.38 58.29 2 
11 16 85.88 80.80 76.01 80.63 70.94 60.00 71.68 54.66 52.22 2 
12 17 87.34 80.99 75.78 82.16 71.50 67.62 72.36 66.90 48.96 2 

The data must now be formatted for analysis using P ROC MIXED and other meth
ods, which require each row to correspond to an observation, so that both subject 
(dog) and time need to be identified. 

data d; 
set reddogs; 
array response yl-y9; 
do time=l to 9; 

run; 

atp=response(time); 
output; 
end; 
drop yl-y9; 

proc print data=d (obs=18); 
run; 

Cardiac Enzyme Data - Reduced Data 

Obs dog trt time atp 

1 1 1 1 74.56 

2 1 1 2 84.25 

3 1 1 3 84.05 

4 1 1 4 78.41 

5 1 1 5 79.93 

6 1 1 6 71. 60 

7 1 1 7 69.90 

8 1 1 8 63.52 

9 1 1 9 57.14 

10 2 1 1 72.77 

11 2 1 2 86.93 

12 2 1 3 61.47 

13 2 1 4 88.08 

14 2 1 5 64.15 

15 2 1 6 63.27 

16 2 1 7 57.89 

17 2 1 8 53.02 

18 2 1 9 26.47 
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B.1.3 PROC MIXED Analysis 

The PROG MIXED code usmg the reduced data set follows. This fits a satu
rated means model with an unstructured covariance matrix (type=un) using a Ken
ward Roger (ddfm=kr) adjusted test for treatment/time interaction ghoen b~' the 
contrast statement, which is equivalent to a Hotelling T2 test. The r option gives 
the REML sample covariance matrix shown in Table 10.2.1, which is output for use 
in the Box correction methods. Replacing type=un with type=simple, type=cs 
and type=ar (1) give the test results using identity, compound symmetry and AR1 
structures respectively, which were reported in Table 10.2.2. 

ods output r=rmat; 
proc mixed data=d; 
class dog trt time; 
model atp=trt*time/noint ddfm=kr s; 
repeated time/type=un subject=dog r; 
contrast "INT" trt*time 1 -1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0, 

trt*time 1 0 -1 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0, 
trt*time 1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0, 
trt*time 1 0 0 0 -1 0 0 0 0 -1 0 0 0 1 0 0 0 0, 
trt*time 1 0 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0 0 0, 
trt*time 1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1 0 0, 
trt*time 1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 0, 
trt*time 1 000 000 0 -1 -1 000 0 000 1,; 

run; 

A selection of the output showing the estimated REML covariance structure and the 
Kenward Roger adjusted Wald test for the treatment/time interaction are ind.uded 
below. The unstructured covariance matrix given by REML is the sample covarIance 

matrix reported in Table 10.2.1. 
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Cardiac Enzyme Data - Reduced Data 

Row 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Coll 

37.0795 
11.2930 
4.0387 

32.5322 
24.7819 
37.2189 
51.3186 
19.0824 
15.8863 

Co12 

11. 2930 
29.2673 
-3.5233 
12.7951 
7.6419 

10.0188 
18.6594 
8.1420 

-7.8437 

Effect trt time 

trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 
trt*time 

1 
1 
1 
1 
1 
1 

1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Label 

INT 

The Mixed Procedure 

Estimated R Matrix for dog 1 

Co13 Co14 Co15 

4.0387 32.5322 
-3.5233 12.7951 
33.0793 -7.7002 
-7.7002 128.08 
15.4256 -27.8605 

24.7819 
7.6419 

15.4256 

6.9128 6.5081 

-27.8605 
48.8472 
46.3273 
33.2024 
24.4498 
53.0142 

15.8034 58.8382 
-11.4270 19.3796 

29.9951 -43.1651 

Estimated R 
Matrix for 

dog 1 

Row Co19 

1 15.8863 
2 -7.8437 
3 29.9951 
4 -43.1651 
5 53.0142 
6 61.2687 
7 48.7605 
8 42.1046 
9 94.2355 

Solution for Fixed Effects 

Estimate 

72.9533 
79.3067 
74.9850 
76.0967 
72.3733 
64.3817 
57.8717 
48.4050 
43.4333 
84.3800 
78.3617 
75.1583 
75.2333 
73.4617 
67.6283 
68.9183 
61.1583 
56.8250 

Standard 
Error 

2.4859 
2.2086 
2.3480 
4.6202 
2.8533 
4.3631 
4.4231 
4.3059 
3.9631 
2.4859 
2.2086 
2.3480 
4.6202 
2.8533 
4.3631 
4.4231 
4.3059 
3.9631 

Contrasts 

Num 
DF 

8 

Den 
DF 

3 

F Value 

8.73 
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Co16 

37.2189 
10.0188 
6.9128 
6.5081 

46.3273 

Co17 Co18 

114.22 
86.4826 
44.5883 
61.2687 

51.3186 19.0824 
18.6594 8.1420 
15.8034 -11.4270 
58.8382 19.3796 
33.2024 24.4498 
86.4826 44.5883 

117.38 51.3943 
51.3943 111.24 
48.7605 42.1046 

DF t Value 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

Pr > F 

0.0509 

29.35 
35.91 
31. 94 
16.47 
25.36 
14.76 
13.08 
11.24 
10.96 
33.94 
35.48 
32.01 
16.28 
25.75 
15.50 
15.58 
14.20 
14.34 

Pr > It I 

<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 



B.2 Box Correction Methods 

P ROG .IML is used to program the Box correction methods. The data input in 
subsectlOn~ B.l.l and B.2.2, used in the PROG MIXED analysis. and the resulting 
REML estlmate of the unstructured covariance matrix must be imported as ~hOWIl 
below. 

title2 IIInference Using Box Corrections ll ; 

proc iml; 

m=12; /* number of subjects */ 
p=9j /* number of time points */ 

use d var{atp}; 
read all; 

y=atp; 

use rmat var{co11 co12 co13 co14 co15 co16 co17 co18 co19}; 
read all; 
rmat=col1l I co121 I co131 I co141 I co151 I co1611 co171 I co1811 co19; 

SIGMA=rmat; 

The following commands create the design matrices X and X R , the 'full' and reduced 
matrices which differ by the removal of the (interaction) terms to be tested. The 
columns of X correspond to a model with an intercept, time and treatment effects 
and a time by treatment interaction, given by ie, time, trt and int respectively. 
(Corner point constraints are adopted for the time and treatment factors, so that 
the first level of each is set to zero). The variables parm and e give the number of 
mean parameters in the model and the number of parameters in the 'dropped' terms 
respectively. 

ic=j (m*p, 1,1) ; 

trt1=j(m*p/2,1,O)//j(m*p/2,1,1); 
trt2=j(m*p/2,1,1)//j(m*p/2,1,O); 
trt=trt2; 

time=i(p) ; 
do i=2 to m by 1; 

time=time//i(p); 
end; 

time=time[,2:p]; 

int=j(m*p,(p-1),.); 
do i=1 to (p-1); 

int[,i]=time[,i]#trt; 
end; 

x=iclltrtlltimellint; 
Xr=ic I I trt I I time; 

parm=ncol(X); 
c=ncol(X)-ncol(Xr); 
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The next section of code is necessary to accommodate any mIssmg \'alues in r he 
response. We define the variables tot to be the total number of obseryations (m xp). 

including any missing values; ind to an indicator variable for whether an observation 
is missing (O=missing, l=present); mobs to be the number of observations present 
on each subject; and, cnt to be the total number of observations. excluding any 
missing observations. 

tot=m*p; 
ind=j(tot,1,1); 
do i=1 to tot by 1; 

if y[i]=. then ind[i]=O; 
end; 
nobs=sum(ind); 

mobs=j(m,1,.); 
do i=1 to m by 1; 

mobs[i]=sum(ind[(i-1)*p+1:(i*p)]); 
end; 

cnt=j(m,1,.) ; 
do i=1 to m by 1; 

cnt[i]=sum(mobs[1:i]); 
end; 

These variables allow any missing values to be removed from the response vector 
and the corresponding rows in the design matrices X and XR to be deleted. \\"(' 
must also create an appropriate block diagonal covariance structure. 

yrem=y[loc(ind=1)]; 
Xrem=X[loc(ind=1),]; 
Xr_rem=Xr[loc(ind=1),] ; 

start block_V(Mat) global(m); 
ans=i(m)@Mat; 
return(ans); 

finish block_V; 

start block_Vrem(Mat) global(m,p,cnt,mobs,nobs); 
ans=j(nobs,nobs,O); 
do i=1 to m by 1; 

if mobs[i]=p then Mati=Mat; 
else Mati=Mat[1:mobs[i],1:mobs[i]]; 
if i=1 then ans [1: cnt [1] ,1: cnt [1]] =Mati;. . 
else ans[cnt[i-1]+1:cnt[i] ,cnt[i-1]+1:cnt[1]]=Mat1; 

end; 
return(ans) ; 

finish block_Vrem; 

Vrem=block_Vrem(SIGMA); 

. . .' roceed without the abo\'l'. replaciIl~ 
If there are no mIssmg values then we rna.' Pd' (l tl 'full' 

d X 
'th y X and Xr in the code that follows an USlll . ..., l(:' 

yrem, Xrem an r _rem WI , . 

block diagonal REML covariance structure V glyen by 
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start block_V(Mat) global(m); 
ans=i(m)<DMat; 
return(ans); 

finish block_V; 

V=block_Vrem(SIGMA); 

although there is some advantage in having code that will deal appropriately ,,"ith 
missing values where they do occur. 

We are now in a position to calculate the unadjusted ANOVA statistic for the chosen 
interaction term, and to test using the Box and modified Box corrections, given by 
(8.2.7) with (8.2.8)-(8.2.10) and (8.3.15) with (8.3.16)-(8.3.18) respectively. 

/* ANOVA F-test */ 

A=i(nobs)-Xrem*inv(t(Xrem)*Xrem)*t(Xrem); 
B=Xrem*inv(t(Xrem)*Xrem)*t(Xrem)-Xr_rem*inv(t(Xr_rem)*Xr_rem)*t(Xr_rem); 
F=(nobs-parm)#(t(yrem)*B*yrem)/(c#t(yrem)*A*yrem); 

numdf=c;dendf=nobs-parm; 

/* Box Correction */ 

psi=(nobs-parm)#trace(B*Vrem)/(c#trace(A*Vrem)); 
v1_BOX=«trace(B*Vrem))##2)/trace(B*Vrem*B*Vrem); 
v2_BOX=«trace(A*Vrem))##2)/trace(A*Vrem*A*Vrem); 

F_BOX=F/psi; 

/* Modified Box Correction */ 

E=trace(B*Vrem)/trace(A*Vrem); 
V=(trace(B*Vrem*B*Vrem)/«trace(B*Vrem))##2)) 

+(trace(A*Vrem*A*Vrem)/«trace(A*Vrem))##2)); 

vLMOD=c; 
v2 MOD=(c#(4#V+1)-2)/(c#V-1); 
1~bda=«nobs-parm)/c)#«v2-2)/v2)#E; 

F_MOD=F/lambda; 

prob_F=1-cdf("F",F,numdf,dendf); 
prob_F _BOX=1-cdf ('IF" ,F _BOX, vLBOX, v2_BOX) ; 
prob_F_MOD=1-cdf("F",F_MOD,vLMOD,v2_MOD); 

The results of the calculations performed inSAS can be obtained using 

print / "ANOVA F Statistic"; 
print F numdf dendf prob_F; 

print "Box Correction"; 
print psi F_BOX v1_BOX v2_BOX prob_F_BOX; 

print "Modified Box Correction"; 
print lambda F_MOD v1_MOD v2_MOD prob_F_MOD; 
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which leads to the following output The result . . . s concermng the mod'fi d B 
rectlOn were reported in Table 10.2.2. 1 e ox cor-

B.3 

Cardiac Enzyme Data - Reduced Data 
Inference Using Box Corrections 

ANOVA F Statistic 

F NUMDF DENDF 

1.4918491 8 90 0.1712727 

Box Correction 

PSI 

0.7209445 2.0692983 3.7191163 32.976026 0.1114655 

Modified Box Correction 

LAMBDA 

0.6772191 2.2029047 8 11.175407 0.1108818 

Adjusted Sandwich Estimator 

Continuing in PROG IML, we begin by reparametrising the design matrix based on 
the saturated means model. 

title2 "Inference Using Adjusted Sandwich Estimator"; 

rl=j(m/2,1,1)//j(m/2,1,O); 
r2=j(m/2,1,O)//j(m/2,1,1); 
XX=rlllr2; 

X=XXCOi(p); 

parm=ncol(X); 

Xrem=X[loc(ind=l),J; 

We can calculate the ordinary least squares estimates of the mean parall[('tl'r~ (one 
per treatment by time combination), using an identity structure for the workillg 

covariance matrix. 

Wrem=inv(block_Vrem(i(p))); 
Bsand=inv(t (Xrem) *Wrem*Xrem)*t(Xrem) *Wrem*yrem; 

The estimates in the parameter vector Bsand match the fixed effect:"' :"'()lut iOll:"' rt'

ported earlier from PROG AIIXED. 
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We create the bias-adjusted 'sandwich' covariance t' t 
(7 3 4) d ( ) es Ima or covBsand based on 

" an 7.3.5, for the fixed effects parameters as follows Th f ' . 
. d fi d t . e unctIOn vecO 
IS e ne 0 construct a vector of elements from h k' . 
columns. an x matrIX by stackmg the k 

start vee (M) ; 
h=neol(M); 
k=nrow(M); 
ans=j(1,(h*k),.); 
do i=1 to k by 1; 

ans[«i-1)*h+1):(i*h)]=M[i,]; 
end; 
return(t(ans»; 

finish vee; 

ressig=j(parm,parm,O); 
T=j(parm#parm,parm#parm,O); 
Pbar=j(parm#parm,1,0); 

do i=1 to m by 1; 

end; 

if i=1 then do; 
yremi=yrem[1:mobs[i]]; 
Xremi=Xrem[1:mobs[i],]; 
Wremi=Wrem[1:mobs[i],1:mobs[i]]; 
end; 
else do; 

yremi=yrem[ent[i-1]+1:cnt[i]]; 
Xremi=Xrem[ent[i-1]+1:ent[i],]; 
Wremi=Wrem[ent[i-1]+1:ent[i],ent[i-1]+1:ent[i]]; 
end; 

Hi=Xremi*inv(t(Xrem)*Wrem*Xrem)*t(Xremi)*Wremi; 
iparm=i(mobs[i]); 
Ei=yremi-Xremi*Bsand; 
Pi=vee(t (t (Xremi) *Wremi*inv(iparm-Hi) *Ei*t (Ei)*inv(iparm -t(Hi»*Wremi*Xremi» 
ressig=ressig+t(Xremi)*Wremi*inv(iparm-Hi)*Ei*t(Ei)*inv(iparm-t(Hi»*Wremi*Xr 
Pbar=Pbar+Pi; 

Pbar=Pbar/m; 

eovM=inv(t(Xrem)*Wrem*Xrem); 
CovBsand=eovM*ressig*eovM; 

We now calculate the scale parameter v, given by (7.4.7), used in the adjusted \\'ald 
statistic. We must also define the matrix L, LIN, used to define the treatment-t ime 
interaction in the general linear hypothesis based on the mean parameters. 

LIN={1 -1 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0, 
1 0 -1 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0, 
1 0 0 -1 0 0 0 0 0 -1 0 0 1 0 0 0 0 0, 
1 0 0 0 -1 0 0 0 0 -1 0 0 0 1 0 0 0 0, 
1 0 0 0 0 -1 0 0 0 -1 0 0 0 0 1 0 0 0, 
1 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 1 0 0, 
1 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 0, 
1 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 1}; 

n_LIN=nrow(LIN); 
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do i=l to m by 1; 

end; 

if i=l then do; 
yremi=yrem[l:mobs[i]]; 
Xremi=Xrem[l:mobs[i],] ; 
Wremi=Wrem[l:mobs[i],l:mobs[i]]; 
end; 
else do; 

yremi=yrem[cnt[i-1]+1:cnt[i]]; 
Xremi=Xrem[cnt[i-1]+1:cnt[i] ,]; 
Wremi=Wrem[cnt[i-1]+1:cnt[i],cnt[i-1]+1:cnt[i]]; 
end; 

Hi=Xremi*inv(t(Xrem)*Wrem*Xrem)*t(Xremi)*Wremi· 
iparm=i(mobs[i]); , 
Ei=yremi-Xremi*Bsand; 

Pi=vec~t(t(Xremi)*Wremi*inv(iparm-Hi)*Ei*t(Ei)*inv(iparm-t(Hi»*Wremi*Xremi» 
T=T+(P1-Pbar)*t(Pi-Pbar); 

T=T/(m#(m-1»; 

COVSAM=(m##2)#«LIN*covM)@(LIN*covM»*T*t«LIN*covM)@(LIN*covM»; 

EE=j(n_LIN##2,n_LIN##2,O); 

do i=l to n_LIN; 
do j=l to n_LIN; 

Eij=j(n_LIN,n_LIN,O);Eij[i,j]=l; 
EE[(i-1)#n_LIN+1:i#n_LIN,(j-1)#n_LIN+1:j#n_LIN]=Eij; 

end; 
end; 

COVWIS=(i(n_LIN##2)+EE)*«LIN*covBsand*t(LIN»@(LIN*covBsand*t(LIN»); 

v=trace(COVSAM*COVWIS)/trace(COVSAM*COVSAM); 

The following code corrects for numerical issues in the estimation, by ensuring that 
a negative value for the denominator degrees of freedom cannot be obtained. In 
such cases the scale parameter v is set to the dimension of the test (the number of 
rows in LIN), which results in a single denominator degree of freedom as described 
in Chapter 9, p173, and a warning message is given. 

if (v<7) then do; 
print / "********************WARNING MESSAGE********************"; 
print v; 
print "v error v set to 8"; 
print 
v=8; 
end; 

"*******************************************************"; 

Finally, the Wald statistic can be calculated and the adjusted test undertaken as 

described in (7.4.2). 
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Bsand_LIN=LIN*Bsand; 

F_SAND=CtCBsand_LIN)*invCLIN*covBsand*tCLIN))*Bsand_LIN); 

ddf_ADJ=v-n_LIN+l; 

The test results for the reduced Cardiac Enzyme data set are reported below. 

B.4 

print Bsand; 
print F_SAND_ADJ n_LIN ddf_ADJ prob_SAND_ADJ; 

Cardiac Enzyme Data - Reduced Data 
Inference Using Adjusted Sandwich Estimator 

********************WARNING MESSAGE******************** 

v 

5.7220992 

v error v set to 8 

******************************************************* 

3.0309872 8 1 0.4185099 

Penalised Likelihood Smoothing 

The following code in PROG IML uses the full Cardiac Enzyme dataset defined 
in subsection B.l.l. The variable trt is defined to indicate the four tn'at lllellt 

combinations of the components A and B in the preserving liquids, whilst ms Iwt (':-' 

the number of subjects (dogs) in each of the treatment groups. 

proc iml; 

m=23; /* no. of subjects */ 
p=9; /* no. of time points */ 
t=4; /* no. of treatments */ 

use doghearts var {dog a b yl y2 y3 y4 y5 y6 y7 y8 y9}; 

read all; 
yy=yll I y21 I y31 I y41 I y51 I y61 I y71 I y81 I y9; 

trt=jC6,1,1)//jC5,1,2)//jC6,1,3)//j(6,1,4); 

ms={6 5 6 6}; 
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We construct the sample covariance matrix for this b 1 
follows. The output matrix sigmahat l'S h . T a anced complete dab :,et a~ 

s Own III able 4.1.1. 

means=j (t,p, .) ; 
do i=l to t by 1; 

yyr=yy[loc(trt=i),]; 
means [i , ] =yyr [ : ,] ; 
end; 

yy1=j (ms [1] , p, . ) ; 
do i=l to P by 1; 

yyr=yy[loc(trt=l),]; 
yy1[,i]=yyr[,i]-means[1,i]; 

end; 
yy2=j(ms[2],p,.); 
do i=l to P by 1; 

yyr=yy[loc(trt=2),]; 
yy2[,i]=yyr[,i]-means[2,i]; 

end; 
yy3=j(ms[3],p,.); 
do i=l to P by 1; 

yyr=yy[loc(trt=3),]; 
yy3[,i]=yyr[,i]-means[3,i]; 

end; 
yy4=j(ms[4],p,.); 
do i=l to P by 1; 

end; 

yyr=yy[loc(trt=4),]; 
yy4[,i]=yyr[,i]-means[4,i]; 

sigmahat=(1/(m-4))#(t (yy1)*yy1+t (yy2)*yy2+t (yy3)*yy3+t(y y4)*yy4); 
print sigmahat; 

Cardiac Enzyme Data 

SIGMAHAT 
CoLl CoL2 CoL3 CoL4 CoL5 

RoWl 29.006726 12.262463 10.409955 21.386835 8.7577418 
RoW2 12.262463 39.863795 10.250122 27.704943 7.7182342 
RoW3 10.409955 10.250122 38.707932 -1.203641 7.9699756 
RoW4 21.386835 27.704943 -1.203641 105.1243 -1.954497 
RoW5 8.7577418 7.7182342 7.9699756 -1.954497 45.313931 
RoW6 27.676798 30.2239 9.8373281 41.595911 39.355078 
RoW7 28.617607 45.615449 30.139332 66.27293 37.151005 
RoW8 16.083665 15.197651 -5.481736 34.871456 13.65297 
RoW9 8.3978712 1.3838009 0.7635205 -2.329594 42.259708 

CoL6 
SIGMAHAT 

CoL7 CoL8 CoL9 

RoWl 27.676798 28.617607 16.083665 8.3978712 
RoW2 30.2239 45.615449 15.197651 1.3838009 
RoW3 9.8373281 30.139332 -5.481736 0.7635205 
RoW4 41.595911 66.27293 34.871456 -2.329594 
RoW5 39.355078 37.151005 13.65297 42.259708 
RoW6 141.35633 99.529375 72.186262 105.61149 
RoW7 99.529375 159.69981 73.00254 59.208524 
RoW8 72.186262 73.00254 126.22189 79.076215 
RoW9 105.61149 59.208524 79.076215 158.00595 
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The following code creates the penalised likelihood function penlikO which is minu., 
that given hy (5.1.4) and, for a given value of the smoothing value Q, i, minim", d 
using nlpqn, a quasi-Newton optimisation technique included in PROC L\JI. This 
procedure is illustrated for a = 4. 

title2 "Penalised Likelihood Smoothing (Compound Symmetry)"; 
start cs (M) ; 

p=nrow(M); 

a=(l/(p#(P-l)))#(traCe(M*j(p))-trace(M)); 
b=(l/(p#(P-l)))#(p#traCe(M)-traCe(M*j(p))); 
ans=a#j(p)+b#I(p); 
return (ans); 

finish cs; 

start penlik(Xl) global(sigmahat,alpha); 

ans=(l-alpha)#log(det(sqrsym(Xl)))+traCe(inv(sqrsymeXl))*sigmahat) 
+alpha#log(det(cs(sqrsym(Xl)))); 

return(ans); 
finish penlik; 

alpha=4; 
print alpha; 

x=symsqr(sigmahat); 
call nlpqn(rc,xres,"penlik",x); 

sigmapen=sqrsym(xres); 
print sigmapen; 

Cardiac Enzyme Data 
Penalised Likelihood Smoothing (Compound Symmetry) 

CoLl 

ALPHA 
4 

SIGMAPEN 
CoL2 CoL3 CoL4 CoL5 

RoWl 67.536641 20.341755 20.327469 22.151662 19.808992 
RoW2 20.341755 69.646537 19.974233 22.964736 19.473603 
RoW3 20.327469 19.974233 69.697676 17.459412 19.463804 
RoW4 22.151662 22.964736 17.459412 82.207395 17.546892 
RoW5 19 808992 19.473603 19.463804 17.546892 70.763039 
RoW6 23·686856 24.037177 20.16306 25.909484 25.055023 
RoW7 2~ 47902 26.851307 24.605973 30.170389 25.29094 
RoW8 21 ~81442 20.733047 16.950912 24.221455 19.788758 
RoW9 19:417517 18.087486 18.441087 17.784237 25.339604 

SIGMAPEN 
CoL6 CoL7 CoL8 CoL9 

RoWl 23.686856 23.47902 21.081442 19.417517 
RoW2 24.037177 26.851307 20.733047 18.087486 
RoW3 20.16306 24.605973 16.950912 18.441087 
RoW4 25 909484 30.170389 24.221455 17.784237 
RoW525·055023 25.29094 19.788758 25.339604 
RoW6 87·624447 35.758485 29.671442 35.947795 
RoW7 35·758485 92.115266 30.801187 27.950366 
RoW8 29:671442 30.801187 85.306744 30.866428 
RoW9 35.947795 27.950366 30.866428 89.203153 

231 



The following code allows the appropriate value of ex to be determined by the data. 
using the cross-validation algorithm outlined in Chapter .5. Section 5. L 1. Attention 
is restricted to values of ex from the set {a, 0.5. 1, 2, 4. 8, 16, :32. 6-l}. 

alphaset={O 0.5 1 2 4 8 16 32 64}; 
nal=ncol(alphaset); 

start penlikmod(Xl) global(sigmahatrem,alpha); 
ans=(l-alpha)#log(det(sqrsym(Xl»)+trace(inv(sqrsym(Xl»*sigmahatrem) 

+alpha#log(det(cs(sqrsym(Xl»»; 
return(ans); 

finish penlikmod; 

cross=j(m,nal,.); 

do j=l to nal by 1; 
alpha=alphaset[j] ; 
do i=l to m by 1; 

q=trt [i] ; 
trtrem=trt[loc(dog-=i)]; 
msrem=j(t,l,.); 
do il=l to t by 1; 

msrem[il]=nrow(yy[loc(trtrem=il),]); 
end; 

yrem=yy[i,]; 
yyrem=yy[loc(dog-=i),]; 

meansrem=j(t,p,.); 
do i2=1 to t by 1; 

yyr=yyrem[loc(trtrem=i2),]; 
meansrem[i2,]=yyr[:,]; 

end; 

yyl=j(msrem[l],p,.); 
do i2=1 to P by 1; 

yyr=yyrem[loc(trtrem=l),]; . 
yyl[,i2]=yyr[,i2]-meansrem[1,12]; 

end; 
yy2=j(msrem[2],p,.); 
do i2=1 to P by 1; 

yyr=yyrem[loc(trtrem=2),]; . 
yy2[,i2]=yyr[,i2]-meansrem[2,12]; 

end; 
yy3=j(msrem[3],p,,); 
do i2=1 to P by 1; 

yyr=yyrem[loc(trtrem=3),] ; . . 
yy3[,i2]=yyr[,i2]-meansrem[3,12], 

end; 
yy4=j(msrem[4],p,.); 
do i2=1 to P by 1; 

yyr=yyrem[loc(trtrem=4),]; .. 
yy4[,i2]=yyr[,i2]-meansrem[4,12] , 

e~d; -(1/( _4_1»#(t(yyl)*yyl+t(yy2)*yy2+t(yy3)*yy3+tCyy4)*yy4); 
slgmahatrem- m 
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end; 

x=symsqr(sigmahatrem); 
call nlptr(rc,xres,"penlikmod" x). , , 

sigmapenrem=sqrsym(xres); 

ypred=j(l,(p-1),.); 
do k=l to (p-1) by 1; 

srem11=sigmapenrem[1:k,l:k]; 
srem21=sigmapenrem[(k+1),1:k]; 

end;ypred[k] =means [q,k+1]+(srem21)*inv(srem11)*(yrem[l:k] -t(means[q,l:k]) 

cross[i,j]=sum«yrem[2:p]-t(ypred))##2)· 
end; , 

crossval=j(l,nal,.); 
do i=l to nal by 1; 

crossval[i]=sum(cross[,i])/m; 
end; 

plotmat=t(alphaset)I It(crossval); 
print plotmat; 

Cardiac Enzyme Data 
Penalised Likelihood Smoothing (Compound Symmetry) 

PLOTMAT 

o 873.22578 
0.5 686.13708 

1 575.49412 
2 522.66917 
4 516.61074 
8 520.75059 

16 525.45114 
32 528.75805 
64 530.7112 

The output shows that the (total) predictive squared error given by the cross
validatory function is minimised for Q = 4. this is confirmed by the plot below 
which was included in Figure 5.1.3. 

call pgraf(plotmat,"*","alpha","crossval","Choice of alpha by Cross-validation") 
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