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ABSTRACT 

J. P. HEATH: A light and electron microscopical study of the mechanisms 
of pathogenicity of Trichomonas-va inalis, in epithelial cell cultures. 

T. vaginalis is a urogenital protozoan parasite of man, causing 
the disease known as trichomoniasis. In males the disease is often 
symptomless; in females acute infections are often associated with 
inflammation of the cervical and vaginal wallsi superficial erosions 
of the vaginal epithelium and a heavy, purulent vaginal discharge. 

In this study I have used an in vitro model of trichomoniasis in 
order to elucidate some of the mechan-isms of pathogenicity of the 
parasite. The behaviour and cytopathogenicity of T. vaginalis in 
epithelial cell cultures was examined using phase contrast and inter- 
ference reflection 1' ight microscopy, and scanning and transmission 
electron microscopy. 

The trichomonads attack the epithelial cell monolayers causing 
pathological changes within the cells which lead to the detachment and 
lysis of the cells. The lysed cell debris is phagocytosed by the 
trichomonads. Two aspects of the behaviour of T. vaginalis are of 
prime importance in the pathogenic processes that lead to the death of 
the cell cultures: 

1) T. vaginalis readily adheres to the exposed surfaces of the 
epithelial cells and to the glass substratum on which the cells are 
grown. The adhesions are of the intermediate junction type, charac- 
terised by a gap of 10 - 20 nm. Damage to the monolayer of epithelial 
cells is restricted to those cells with adherent trichomonads. 

- 
2) When T. vaginalis adheres to a solid substratum it loses its 

characteristic-a-pherical shape which is assumed in suspension and it 
develops pseudopodia, which it uses to locomote in an amoeboid manner. 
The amoeboid trichomonads are capable of migrating between and under 
the monolayer mechanically breaking the adhesions of the cells to each 
other and to the substratum. The pseudopodia, and regions of active 
phagocytosis, of T. vaginalis contain actin-like microfilaments. 

Mechanisms that may be involved in the adhesiveness and amoeboid 
movements of T. vaginalis are discussed, and the possible relevance of 
these phenomena and of chemical factors to the cytopathogenicity of T. 

vaginalis in cell cultures and in humans is considered. 
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INTRODUCTION 

1.1 History of Trichomonas vaginalis and trichomoniasis 

In 1836 a French physician, Alfred FranSois Donne"q discovered a 

"microscopic animal" in the vaginal discharge of a woman with severe 

vaginitis. The animal was the size of a leucocyte but possessed several 

motile appendages. Donne (1836) named it Tricomonas-vaginale but the 

name was later amended to Trichomonas vaginalis. by Ehrenberg (1838) to 

follow taxonomic convention. The full scientific name of the urogenital 

protozoan of man is thus Trichomonas vaginalis_Donneg 1836, emend. 

Ehrenberg, 1838 (Honigberg, 1963; 1978b). Despite Donne''s discovery and 

the subsequent isolations of the parasite from the genital tracts of both 

women (Scanzoni and Kolliker, 1855) and men (Marchan d, 1894) it was not 

until H8hne (1916) associated the presence of T. vaginalis in the urogenital 

tracts of humans with specific clinical symptoms that the disease of tri- 

chomoniasis was properly recognised. Furthermore, trichomoniaois was 

still not accepted as a venereal disease until Catterall and Nicol (1960) 

showed that the primary means of transmission of T. vaginalis between 

humans was sexual intercourse. 

T. vaginalis and trichomoniasis have a world-wide distribution 

(Honigberg, 1978b). T. vaginalis is primarily a parasite of the human 

urogenital tract. There is no known non-human animal reservoir of the 

parasite; however experimental infections may be established in some 

animals. 

1.2 Taxonomy of the order Trichomonadida 

Trichomonas vaginalis is a member of the phylum Protozoa, sub-phylum 

Sarcomastigophora, super-class Mastigophorav class Zoomastigophoreaq 

order Trichomonadida (Honigberg et Ll., 1964 a). A detailed discussion of 

the characteristics and evolutionary relationships of the members of the 

order Trichomonadida is given by Honigberg 0963) and Brugerolle (1976); 
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an outline classification is given below. 

ORDER TRICHOMONADIDA; General characters: - 

Generally 4 to 6 flagellaq one of which is recurrent, per mastigont system; 

undulating membrane, if present, associated with recurrent flagellum; 

axostyle and parabasal body (= Golgi body) in each mastigont; division 

spindle extranuclear; sexuality unknown; true cysts unknown; nearly all 

parasitic or symbiotic. 

Four families, each with several sub-families have been described 

(Brugerolle, 1976). Listed below are the four families, their sub-families 

and brief details of representative genera and species. Fig. la shows 

simple line drawings of seven species of trichomonads including T. vaginalis; 

the organisms are drawn to the same scale but it must be noted that there 

is commonly a wide variation in size, and shape, within each of the species. 

A. Family MONOCERCOMONADIDAE 

Sub-family MONOCERCOMONADINAE 

Monocercomonas (large intestine of reptiles), Hexamastix, Tricercomitus 

Sub-family PROTRICHOMONADINAE 

Histomonas (H. meleagridis, caecum of turkeys and other galliform 

birds), 

Parahistomonas (P. wenrichi) 

Sub-family DIENTAMOEBINAE 

Dientamoeba (D. fragilis, large intestine of man) 

Sub-family CHILOMITINAE 

Chilomitus 

Sub-family HYPOTRICHOMONADINAE 

Hypotrichomonas, Pseudotrichomonas 

B. Family TRICHOMONADIDAE 

Sub-family TRICHOMONADINAE 

Trichomonas (T. vaginal_is, urogenital tract of man; T. gallinae, Mouth 

pharynx, oesophagus, crop of pigeons, turkeys and a wide variety of 

birds; T. tenax, oral cavity of man) 
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Tetratrichomonas (Tet. gallinarum, caecum of turkeys, chickens and 

many other gallinaceous birds) 

Pentatrichomonas (P. hominis, large intestine of primates, including 

man, cats, dogs and rodents) 

Trichomitus 

Sub-family TRITRICHOMONADINAE 

Tritrichomonas (Tri. foetus, urogenital tract of cattle; Tri. suis, 

nasal cavity, stomach and intestine of swine; Lri. muris, large 

intestine of rodents) 

Sub-family TRICHOMITOPSIINAE 

Trichomitopsis, Pseudotrypanosoma 

Sub-family PENTATRICHOMONOIDINAE 

Pentatrichomonoides 

C. Family DEVESCOVINIDAE 

Devescovinia 

D. Family CALONYMPHIDAE 

Calonympha 

1-3 Gross morphology of T. vaginalis 

When swimming freely in a liquid medium T. va_ginalis is normally 

spherical or ellipsoidal in shape. The size of the organism can vary 

greatly; measurements made on fixed and stained material generally give 

smaller values from those made on living organisms from clinical material 

or cultures (Honigberg, 1978b). The average size of T. vaginalis is 10 ýIm 

long by 7 jLm wide (Honigberg and King, 1964) but since the body of the 

organism is very plastic the range of sizes within any population may lie 

between 4 to 30 jim in length and 2.5 to 15 ýLm in width. 

Figs. la and lb show the gross morphological features of T. vaginalis; 

the fine structure is discussed later. 
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1.4 Motility of T. vaginalis 

In suspension in a liquid medium T. vaginalis swims by beating the 

four anterior flagella and undulating membrane but the organism can also 

move in an amoeboid mannerl possibly without the involvement of the 

flagella, when adhering to a solid substratum (Christian, Miller, Ludovici 

and Riley, 1963)- Until now there has been no detailed study of the 

amoeboid movements of T. vaginalis. 

Nutrition of T. vaginalis 

In natural or experimental infections T. vaginalis feeds on the 

bacteria, cell debris and tissue fluids present at the site of the in- 

fection. Solid material is phagocytosed and nutrients in solution are 

absorbed by pinocytosis and presumably, although there have been no 

experimental studies on this aspect. by active or passive transport 

through the plasma membrane. Electron microscopical studies on human 

vaginal discharges have shown that trichomonads phagocytose bacteria and 

epithelial cell debris (Tamayo, Montiel and Garcia, 1972; Nielsen and 

Nielsen, 1975; Ovcinnikov, Delektorskij, Turanova and Yashkova, 1975). 

1.6 Reproduction of T. vaginalis 

T. vaginalis divides by longitudinal binary fission. At present the 

exact details of the division process have not been elucidated but it 

appears that the first signs of division are the replication of the flagella 

and their kinetosomes (Hawes, 1947). Brugerolle (1975) has published what 

is probably the most extensive account to date of the division process in 

T_. vaginalis and other trichomonads. As the two new sets of kinetosomes 

and their flagella move apart to opposite sides of the body a band of 

microtubules forms between them; some of the microtubules insert into the 

nuclear membrane, which remains complete during division. The chromosomes 

divide and the daughter chromosomes migrate to opposite sides of the 

nucleus which then divides into two nuclei. It seems likely that the 
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microtubules are responsible in some way for both the separation of the 

kinetosomes and the daughter nuclei but clearly further work is necessary 

before the mitotic mechanisms of T. 
-vaginalis are fully understood. The 

replication of the other cytoplasmic organelles is followed by cytokinesis 

and the formation of two separate daughter trichomonads. Brugerolle (1975) 

has used the term "cryptopleuromitosis" to describe the division process 

of T. vaginalis. 

Multiple fission has never been observed in T. vaginalis but multi- 

nucleate forms are commonly seen in cultures (Wirtschafter, 1954; John and 

Squires, 1978; this study). Such forms may be caused by a random failure 

of cytokinesis or, as Wirtschafter (1954) suggested, may be due to high 

oxygen tensions in the culture medium. 

The mean generation time of T. vaginalis during the logarithmic phase 

of growth in culture is generally between 5 and 16 h (Honigberg, 1961; 

Farris and Hon-igberg, 1970; Heath, 1972; Perjul Grigoriu, Antonescu and 

Iercan, 1974). 

There is no evidence for a cystic stage in the life-cycle of T. 

vaginalis. 

1.7 Fine structure of T. vaginalis 

1.7-1 Introduction 

The first transmission electron microscopical (TEM) studies on the 

fine structure of T. vaginalis were published twenty years ago by Akashi, 

Hashimoto, Komori, Mori, Kawasaki, and Tomita (1959), and Inoki, Nakaniski 

and Nakabayishi (1959). Subsequently Inoki et al. (1960), Ludviki 

Stoklosowa and Weglarska (1961), Smith and Stewart (1966) and Yeh Ying, 

Huang Mei-Yu and Wei-Neng (1966) published similar studies. However all 

these early reports were incomplete and hampered by poor preservation of 

fine structure. Significantly, however, these authors noted the absence 

of mitochondria, a characteristic which was correlated with the anaerobic 

growth of the protozoon. In 1966, Nielsen, Ludvik and Nielsen produced the 



14 

first and as yet the only fully comprehensive description of axenically- 

cultured T. vaginalis which has served as the main reference work on the 

fine structure of T. vaginalis. Later reports dealt with the fine 

structure of T. vaginalis in human vaginal secretions (Tamayo et al., 

1972; Nielsen, 1975), and in the tissues of mice (Brugerolle, Gobert and 

Savel, 1974) and of humans (Nielsen and Nielsen, 1975). The structure of 

T. vaginalis was redescribed by Ovcinnikov, Delectorskij and Kosmacheva 

(1974) and Ovcinnikov et al (1975) in two long and comprehensively illus- 
Z--* 

trated papers but their accounts contained some errors which were pointed 

out by Heath (1974) and Honigberg (1978b). (Heath, 19749is at end of thesis). 

In contrast to the numerous TEM studies, there have been surprisingly 

few scanning electron microscopical (SEM) studies on T. vaginalis. 

Ovcinnikov et al. (1975)1 Kazanowska, Jodczyk, Kuczynska and Karpowicz 

(1977), Kurnatowska and Hajdukiewicz (1977), John and Squires (1978) and 

Warton and Honigberg (1979) have published scanning electron micrographs of 

T. vaginalis but none of these p apers was particularly detailed or compre- 

hensive. 

The following description of the fine structure of T. vaginalis is 

based on the TEM and SEM studies published to date and, although it does 

not include the results of this study, is illustrated by my own electron 

micrographs. Fig. lb shows the spatial relationship of the main organelles 

of T. vaginalis. 

1.7.2 Plasma membrane 

In glutaraldehyde- and osmium-fixed organismsi the plasma membrane 

has the typical trilaminar structure (Fig- 38), and is about 7 rim thick. 

Pinocytosis occurs all over the surface of the body; pinocytotic pits and 

cytoplasmic pinocytotic vesicles generall; possess an internal fibrillar 

surface coat 20 to 40 nm thick (Filadoro, 1970), (Fig. 69), but it is a 

contentious point as to whether this surface coat is always present on the 

remainder of the plasma membrane. Nielsen et al. 's (1966) electron micro- 
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graphs of cultured T. vaginalis show no such coat. However Filadoro 

(1969) reported that cultured organisms fixed and stained with ruthenium 

red and lanthanum dyes, without prior washing to remove the serum- 

containing culture medium, possess a surface coat up to 35 nm thick which 

stains strongly with the dyes, indicating that the coat contains anionic 

polysaccharides. The coat was only seen on a small area of the plasma 

membrane of each organism. Later Filacloro (1970) stated that the coat 

covered the whole surface of the organism and was continuous with the 

internal coat of pinocytotic vesicles during their invagination. 

Ovcinnikov et al. (197.5) also observed that T. vaZinalis fixed directly in 

human vaginal discharges and stained with ruthenium red exhibited a con- 

tinuous 30nm thick surface coat, but the coat was not seen in unstained 

trichomonads. Other authors have noted that only small parts of the 

membrane possess a coat which may be filamentous (Nielsen, 1970; Nielsen 

and Nielsen, 1975) or amorphous (Brugerolle et al., 1974); these observa- 

tions were made on T. vaginalis taken from both culture and from natural 

and experimental infections making it unlikely, by analogy with the try- 

panosomes (Vickerman and Preston, 1976), that the organism only adopts a 

surface coat within its host. Until there is unequivocal evidence to the 

contrary, it seems likely that T. vaginalis does not possess a surface 

coat and that the material sometimes seen on the plasma membrane is ad- 

sorbed from the serum or tissue components surrounding the'parasite; an 

opinion which is shared by Brugerolle et al. (1974). 

1.7-3 Flagella, undulating membrane and accessory structures 

T. vaginalis has four anterior flagella each about 10 ýLm long and a 

fifth recurrent flagellum which passes posteriorly attached to a thin 

fold of cytoplasm called the undulating membrane. The kinetosomes of 

the flagella lie in the anterior pole of the cell at the bases of the 

flagella; those of the four anterior flagella have their long axes parallel 

and are distributed radially around the fifth kinetosome of the recurrent 
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flagellum which is tilted at about 90' with respect to the others (Fig. 

84). The structure of the flagella and kinetosomes is identical to that 

of the cilia and flagella of many other protozoa (Sleigh, 1973)- 

The kinetosomes are closely associated with several fibrous structures, 

the whole complex being called the mastigont system. Full details of the 

mastigont systems of T. vaginalis and other species of trichomonads and 

pertinent references are given by Honigberg (1978a; 1978b). The largest 

fibrous structure is the costa which is rod-shaped, 10 ýLm long by 1 ýLm wide, 

and passes backwards from the kinetosome of the recurrent flagellum running 

beneath the undulating membrane (Fig. 38); its function may be to support 

the undulating membrane. 

The undulating membrane is a fold of the plasma membrane which arises 

at the point of emergence of the anterior flagella from the anterior pole 

of the trichomonad and runs posteriorly for about half the length of the 

cell (Figs. 14 and 17) It protrudes for a distance of 0.5 - 1-0 ýIm from 

the body of the trichomonad. The distal edge of the undulating membrane 

forms the marginal lamella which contains electron dense material but the 

proximal portion encloses little structured cytoplasmic material (Figs- 35 

and 37). The recurrent flagellum is attached to the undulating membrane at 

the proximal edge of the marginal lamella but no specialisation of the 

apposed membranes nor any material between them has been seen (Fig- 37). 

1.7.4 Other cytoplasmic organelles and inclusions 

The nucleus is ellipsoidal and located in the anterior half of the cell. 

The nucleus is about 4 Jim long by 2 ýim wide and is surrounded by a double 

unit membrane which is continuous with the rough endoplasmic reticulum 

which forms a corona around the nucleus (Figs. 35 and 36). 

The axostyle is made up of a single sheet of parallel microtubules 

(Fig. 43) which runs from the kinetosomes down the length of the body and 

projects from the posterior pole for a distance of up to 10 itm (Figs. 10 

and 71) . At the anterior pole of T. vaZinalis the axostylar sheet is 
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planar but as it passes the nucleus it becomes rolled up longitudinally 

like a scroll. The number of microtubules in the axostyle is gradually 

reduced from about 55 at the anterior pole to less than 10 in the axo- 

stylar projection. In cross section the microtubules are linked by 

lateral cross bridges which may maintain the integrity of the sheet. 

The Golgi body, also called the parabasal apparatus or body by light 

microscopists (Honigberg and King, 1964), lies on the opposite side of 

the nucleus from the axostyle and between the nucleus and the costa (Fig. 

35). The Golgi body consists of a stack of parallel flattened, membrane- 

boundq cisternae (Fig. 39). According to current theories on the role of 

the Golgi body in cell physiology (Cook, 1973), this orgarielle has two 

physiologically different sides. The "forming face" receives vesicles 

containing newly synthesised material from the endoplasmic reticulum; 

after further metabolism the material is released in vesicles into the 

cytoplasm from the 11secretory face" to perform its various functions (Fig. 

39). 

The cytoplasm of T. vaginalis contains a population of spherical 

granules each approximately 0.5 ýLm in diameter (Fig. 35). Light micro- 

scopists called these structures the paracostal and paraaxostylar granules 

from their juxtaposition to those organelles in stained preparations of 

trichomonads. Following electron microscopical and biochemical studies 

these granules have been renamed hydrogenosomes since they are the sites 

of terminal respiration and hydrogen evolution (Lindmark, Muller and Shio, 

1975). 

Hydrogenosomes have an electron dense but structureless matrix 

surrounded by a limiting unit membrane and they are scattered throughout 

the cytoplasm occupying about 6 per cent of the volume of T. vaginalis 

(Nielsen and DiemQr, 1976). 

The remaining cytoplasmic inclusions include large vesicles 0.5 to 

2.0 ý= in diameter some of which contain particulate material and are 
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phagosomes (Fig- 35), numerous free ribosomes and many glycogen granules 

which are reserves of carbohydrates. (Figs- 37 and 38). 

1.7.5 Pseudopodia 

Many authors have noted from both light and electron microscopical 

studies that T. vaginalis is capable of extending small irregularly- 

alliaped processes - pseudopodia- from its body. Using light microscopy, 

Honigberg and King (1964) noted that living organisms used pseudopodia to 

ingest particulate material and to attach themselves to solid objects. 

Pseudopodia are only infrequently seen in cultured T. vaginalis and so it 

is only relatively recently, when investigators examined trichomonads in 

vaginal secretions and in tissue, that their fine structure was revealed. 

Typically the pseudopodia of T. vaginalis contain few cytoplasmic organelles 

but instead contain an abundance of 5 nm diameter microfilaments (Figs. 60 

and 63) which form a1 to 2 -pm thick layer beneath the plasma membrane; 

Nielsen and Nielsen (1975) called this layer "ectoplasm" from its simi- 

larity to the cortical cytoplasm of rhizopod amoebae (see Jeon, 1973). 

1.8 PhYsiology and biochemistry of T. vaginalis 

1.8.1 Anaerobic metabolism 

'2- vaginalis is a predominantly anaerobic protozoan. It has no 

mitochondria, no cytochrome c and so the trichomonad has very low 02 con- 

sumption which is cyanide and azide insensitive (Baernst ein, 1963). The 

tri-carbOxYlic acid cycle is inoperative in T. vaginalis; of the enzymes 

in this pathway only malic and succinic dehydrogenases have been found 

(Baernstein, 1963; Brugerolle and Metenier, 1973). Growth in media 

exposed to air decreases the activity of glycolytic enzymes; growth under 

N2 increases their activity (Arese and Cappuccinelli, 1974). Although it 

will survive in aerobic conditions, high oxygen tensions are toxic due to 

the production of H2021T. vaginalis having no catalase. Thus most 

culture media contain a reducing agent such as cysteine or thioglycollate. 
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1.8.2 Carbohydrate metabolism and energy production 

T. vaginalis obtains most of its energy by the anaerobic metabolism 

of carbohydrates, glycolysis being the major metabolic pathway. The 

chief end products of fermentation are lactic acid, malic acid, acetic 

acid, and the gases CO 2 and H 2' 

The main carbohydrates used by T. vaginalis are glucose and its 

polymers maltose, starch and glycogen. Read (1957) showed that maltose 

is a better substrate than glucose yielding 5 times as many organisms in 

culture and he also observed that glucose polymers with a P-1.4-glucoside 

linkage were required for optimum growth. All of the enzymes of the 

glycolytic pathway are found in the non-sedimentable fraction of homoge- 

nates of T. vaginalis (Muller and Lindmark, 1974). The pentose phosphate 

pathway is also used for glucose metabolism providing precursors for 

nucleic acid synthesis (Arese and Cappuccinelli, 1974). Pyruvate break- 

down involves at least two pathways. Firstly, pyruvate is metabolised to 

lactate by a NAD-linked lactate dehydrogenase, and secondly a phosphoro- 

clastic-type pathway is used in which pyruvate is decarboxylated to 

Acetyl-CoA and CO 2 by pyruvate synthase (Edwards, Dye and Carne, 1973)- 

This latter pathway generates electrons (linked to an electron transfer 

protein, Possibly ferredoxin or flavodoxin) which are combined with 

protons by a hydrogenase located in the hydrogenosomes of T. 
__vaginalis 

to 

give molecular H2 (Lindmark and Muller, 1974a). The pathway leading to 

the formation of H2 is one of the sites of action of the trichomonacidal 

drug metronidazole (Lindmark and Muller, 1974b). 

Detailed and comprehensive reviews of anaerobic carbohydrate meta- 

bolism in T. vaginalis have been presented by Shorb (1964) and Honigberg 

(1978b). 

1.8-3 Other metabolicpathways 

T. vaginalis is one of the non-chlorophyll containing protozoa 

capable of fixing CO 2' 
14 C- labelled CO 2 is incorporated in to the carboxyl 
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group of lactic acid (Wellerson, Doscher and Kupferberg, 1960). 

De novo synthesis of amino acids takes place in T. vaginalis despite 

its complex nutritional requirements. When given 
14 C-labelled glucose or 

succinate the radioactivity was subsequently detected in amino acids and 

proteins (Kunitake, Stitt and Saltman, 1962). 

T. vaginalis cannot itself synthesise sterols and other classes of 

lipids and so must obtain them from its. environment, such as from the 

serum component of culture media (Etinger and Halevy, 1965; Roitman, 

Heyworth and Gutteridge, 1978). 

IM_ 1.8.4 HydrolytiLfnz es 

Biochemical and cytochemical studies on both whole organisms and 

homogenates of T. vaginalis have demonstrated the presence of at least 

five hydrolytic enzymes which are able to digest many biomolecules and 

may be involved in tissue destruction in experimental and natural infections. 

Acid phosphatase and P-N-acetylglucosaminidase, which are enzyme 

markers for lysosomes are predominantly located in a population of 

lysosomal-like membrane-bound vesicles from 0.1 to 5.0 jim in diameter; 

the smaller of these bodies are probably derived from the Golgi body, the 

larger are phagosomes (Takeuchi et al., 1972; Nielsen, 1974; Lindmark, 

et al-9 1975). Sharma and Bourne (1964) demonstrated P-glucuronidase 

activity in T. vaginalis using a cytochemical technique, however Fishman, 

Kasdon and Homburger (1950) were unable to detect this enzyme biochemically 

in homogenates of trichomonads. Hyaluronidase activity is present in 

homogenates of T. vaginalis and the enzyme is also secreted by living 

organisms (Boni and Orsi, 1958; Filadoro and Orsit 1960). 

1.9 Laboratory culture of T. vaginalis 

Many different media have been devised for the axenic culture of 

T. vaginalis. For details of recipes of the more common media see 

Lumsden et al. (1966)t Taylor and Baker (1968), Jirovec and Petru (1968) 

and Hess (1969). 
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The main energy source required by T. vaginalis in culture is glucose 

or maltose. Growth factors are supplied by the addition of about 10 per 

cent serum, generally human, horse or foetal bovine serum, although serum- 

free defined media have been devised for trichomonads (Lee, Asti Hutner 

and Allen, 1964). Since T. vaginalis is an anaerobe,. culture media include 

a reducing agent such as cysteine hydrochloride or sodium thioglycollate, 

and the medium is placed in tightly stoppered bottles. For the primary 

isolation of T. vaginalis from humans, when bacteria and fungi may be 

present, penicillin (1000 U/ml), streptomycin (500 Ulml) and a fungicide 

are often also included. It has been shown, however, that antibiotics may 

alter the antigenic character of T. vaginalis (Kott and Adler, 1961). 

Proteins and amino acids are supplied by the addition of a digest of liver 

or other tissue. 

The optimum pH for the growth of T. vaginalis is between 5.8 and 6.8 

(Lumsden et al., 1966; Heath, 1972) and media are buffered accordingly. 

The optimum temperature for growth is 37'C but growth proceeds more slowly 

but still adequately at 280C (Abarbachuk and Voronina, 1969). Lower 

temperatures generally inhibit multiplication (Jirovec and Petru, 1968). 

T. vaginalis may also be grown in semi-solid media (Lowe, 1972) or on 

solid media made with agar (Ivey, 1961); in the latter situation the 

trichomonads grow as colonies and use of this characteristic has been made 

for cloning (Samuels, 1962). T. vaginalis will also grow as colonies on 

mycoplasma medium (Andrews and Thomas, 1974). 

In suitable media trichomonads will multiple to a density of 1 to 2 

x 10 
6 

cells per ml when the cultures enter the stationary phase of growth 

due to the inhibitory effect of the low pH (about 4) caused by the acidic 

products of fermentation such as lactic acid. 

1.10 Epidemiology of human urogrenitaltrichomoniasis 

1.10.1 Prevalence 

Many people have argued that trichomoniasis is the commonest of the 
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primarily sexually transmitted diseases (Morton, 1975; Honigberg, 

1978b). Catterall (1972) estimated that about 1 million women in the UK 

were infected with T. vaginalis, and Morton (1975) estimated that one 

woman in every five is infested at some time during her sexually active 

years. These judgements are not however always sustained by the statis- 

tics available in the UK. Table 1 gives data on the prevalence of 

trichomoniasis in England from 1973 to 1977 and shows that gonorrhoea, for 

example, is more prevalent than trichomoniasis in both males and females. 

On the other hand, these statistics are collated from venereal disease 

clinics only and so do not include the many cases of trichomoniasis treated 

by general practitioners (Dr. V. J. Heath, personal communication). It is 

clear however from Table 1 that trichomoniasis and other sexually trans- 

mitted diseases are becoming increasingly prevalent. Another significant 

feature of the data in Table 1 is that trichomoniasis is approximately 

twelve times more frequently diagnosed in females than males. This dis- 

parity is probably because infected males are commonly symptomless and 

have few parasites making diagnosis more of a problem (Morton, 1975)- 

Comprehensive reviews of the prevalence of trichomoniasis throughout 

the world are given by Jirovec and Petru (1968), Morton (1975) and Honigberg 

(1978b). 

1.10.2 Transmission 

In the vast majority of cases T. vaginalis is transmitted by sexual 

intercourse; the rarity of trichomonal infections in babies (Bramley, 1976), 

pre-pubertal children and virgins (Jirovec and Petru, 1968) only emphasises 

this fact. Nevertheless, as Honigberg (1978b) points outi in some cases 

of trichomoniasis a non-venereal route is the only possible way in which 

the infection could be acquired. Al-Salihi, Curran and Wang (1974) and 

Postlethwaite (1975) have documented cases of trichomoniasis in neo-natal 

boys and girls who were delivered of mothers with the disease and were 

probably infected during parturition. The ability of T. vaginalis to 

survive in tap water at 21'C for 12 h (Honigberg, 1978b), and on moist 
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towels at room temperature for 23 h (Burch, Rees and Reardon, 1959) 

makes it at least theoretically possible that infections may be acquired 

non-venereally from infected persons by the sharing of baths and towels. 

1.11 Trichomoniasis in females 

1.11.1 Infection sites 

The most common and typical site of T. vaginalis is the vagina. In 

about 15 per cent of women with trichomonal vaginitis T. vaginalis is 

also found in the urethra and bladder (De Leon, 1971; Honigberg, 1978b). 

In some instances parasites are also found in Skene's ducts and in 

Bartholin's glands (Honigberg, 1978b). Trichomonads do not normally 

ascend above the external os of the cervix unless there is other disease 

present (Allen and Butler, 1946). Grys (1966) suggested that the mucus- 

filled endovervical canal presented a physical barrier to entry of T. 

vaginalis into the uterus from the vagina. 

1.11.2 Symptoms 

Many infected women are symptom-free and others have only a slight 

vaginal discharge (Schofield, 1972). 

In acute infections, named florid vaginitis (Frost, 1962)1 there is 

a copious and foul smelling greenish-yellow vaginal discharge. The vulva, 

perineum. and patches on the inner sides of the thighs are often inflamed 

(Schofield, 1972) and the patient may complain of an itching and a burning 

sensation in and around the genitals (De Leon, 1971). Typically the 

vaginal walls and the cervix are inflamed and oedematous and there are 

often minute petechial haemorrhages of the vagina and cervical epithelia 

(Jirovec and Petru, 1968; De Leon, 1971); the inflammation gives rise to 

a characteristic strawberry-red appearance of the cervix and vagina. The 

surface of the cervix is also often covered with the discharge which 

collects in pools in the posterior fornix (De Leon, 1971). When the 

urethra and bladder are infected dysuria and urinal urgency are common 

(King and Nicol, 1975) and the urine often contains mucus and leucocytes 
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(Glebski, 1965). Complications include bartholinitis, skenitis, cystitis 

(Schofield, 1972) and infected women often complain of dyspareunia 

(Honigberg, 1978b). Exacerbation of the symptcms may occur during the 

menses (De Leon, 1971), during pregnancy (Schofield, 1972) and in the 

puerperium (Nielsen and Nielsen, 1975). 

If the disease is not treated the acute or florid phase may be 

followed by an asymptomatic latent phase (Frost, 1962) in which the 

parasites are present only in the endocervical canal (De Leon, 1971), 

causing a chronic endocervicitis. 

1.11-3 Pathological changes in the cervix and vagina 

1.11-3.1 Introduction 

We now know a good deal about the pathological changes in the vaginal 

and cervical tissues that occur ininfected women. However the mechanisms 

by which T. vaginalis causes these changes is less clear. Extensive 

histological (based on tissue biopsies) and cytological (based on smears) 

light microscope studies have been performed by, among others, Trussel 

(1947), Bechtold and Reicher (1952), Koss and Wolinska (1959), Frost (1962), 

Lotoki (1962) and Frost (1974) and the following sections are based on 

their findings. The electron microscopical studies of Nielsen and Nielsen 

(197-5) and Garcia-Tamayo et al. (1978), because of their direct relevance 

to this thesis, are treated in a separate section (1-11-3-5). 

In about a third of women with trichomonal vaginitis no histological 

or cytological abnormalities are found (Koss and Wolinska, 1959). 

1.11-3.2 Histology of the normal cervix and vagina 

Histologically the cervical and vaginal walls are comprised of three 

layers, an inner mucous membrane or mucosa, which lines the cervico- 

vaginal vault, a central muscular layer and a surrounding connective 

tissue sheath (Novak, Jones and Jones, 1965). The mucous membrane consists 

of the lamina propriat containing connective tissue and blood vessels, and 

the superficial epithelial layer. The epithelial layers of the vagina and 
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ectocervix are made up of a 150 to 200 4m thick layer of non-cornified 

stratified squamous epithelial, cells; the outermost cells contain large 

amounts of glycogen which is metabolised by the vaginal flora giving rise 

to the acidic (pH 4 to 5) conditions in the vagina. Finger-like processesq 

or papillaeg containing connective tissue and capillaries project into the 

stratified epithelial layers from the lamina propria. Unlike the vagina 

and ectocervix, the endocervix is lined by a single layer of columnar 

epithelial, cells which secrete most of the mucus which lubricates the 

vaginal walls. 

1.11-3.3 Changes in the vaginal and ectocervical mucosae 

The most common finding in the vaginal and ectocervical mucosae is a 

sub-epithelial inflammation with an increase in the vascularity of the 

papillae. The papillae are often elongated with their inflamed tips 

separated from the surface by only a few layers of epithelial cells. The 

clinical appearance of the so-called strawberry vagina and cervix is con- 

sidered by many authors to be due to the increased vascularity of the 

papillae and the focal extravasation of blood at their tips (Honigberg, 

1978b). 

Oedema of the squamous epithelium frequently occursq causing a partial 

separation of the epithelial cells which subsequently remain attached to 

their neighbours by only thin cytoplasmic bridges, giving the epithelium 

a chicken-wire appearance (De Leon, 1971). The spaces between the cells 

are infiltrated by leucocytes. The epithelium may be thinner than normal 

due to an increase in the rate of desquamation of the peripheral layers 

(Lotoki, 1962); the denuded cells may be enlarged, irregular in shape and 

occasionally bi-nucleate. Cellular necrosis of the epithelial surface is 

also common, however necrotic ulceration of the entire epithelial thickness 

is only rarely seen. 

The most frequently encountered cytological changes in the epithelial 

layers are: 

a) an intracellular vacuolisation which largely occurs around the nucleus 
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causing a transparent perinuclear halo, and b) enlargement of the nucleus 

with associated abnormalities of the chromatin, such as margination and 

pyknosis (Koss and Wolinska, 1959). These changes are more common in the 

outer layers of the epithelium especially if the surface is covered with 

purulent vaginal discharge. Only rarely are the basal epithelial cells 

affected and in such cases they show a slight hyperplasia. 

1.11-3.4 Changes in the endocervical mucosa 

Abnormalities of the endocervical mucosa are not often seen possibly 

because the parasites have difficulty in penetrating the mucus-filled 

endocervical canal (Grys, 1966). Occasionally the columnar epithelium may 

be replaced by squamous epithelial cells of varying maturity; in other cases 

there may be a slight inflammation of the columnar epithelium which may 

contain a few abnormal or hypersecretory cells (Koss and Wolinska, 1959; 

Frost, 1974). 

1.11-3.5 Interaction of T. vaginalis and vaginal and cervical epithelia 

The early light microscope studies on the histological changes asso- 

ciated with trichomonal vaginitis made little progress in elucidating the 

mechanism whereby T. vaginalis caused the observed changes. 

Koss and Wolinska (1959) were unable to find T. vaginalis within the 

epithelium of the cervix of women with trichomonal vaginitis although they 

did find the parasite trapped within the discharge covering the cervical 

surface and both they and Bechtold and Reicher (1952) observed groups of 

trichomonads adhering to desquamated cells. Frost, Honigberg and McLure 

(1961) observed T. vaginalis in a non-phagocytic squamous epithelial cell 

and suggested that the parasite was capable of invading healthy cells. 

Nevertheless at that time it remained an open question whether T. vaginalis 

actually adhered to anVor invaded the epithelium and attacked cells or 

alternatively exerted its injurious effects indirectly by secreting toxic 

factors. 

Some light was shed on this problem following transmission electron 
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microscopic studies of tissue biopsies (Nielsen and Nielsen, 1975), vaginal 

scrapes (Garcia-Tamayo et al., 1978) and vaginal secretion (Tamayo et al., 

1975) from infected women. A significant finding, common to all these 

studies, was the high frequency with which amoeboid T. vaginalis were 

found adhering, often in groups, to squamous epithelial cells. The para- 

sites often lay in very close contact with the cells; in some areas of the 

contact the apposed plasma membranes of the trichomonads and cells were 

separated by a gap of 10 to 15 nm, placing these contacts in the class of 

intermediate-type adhesive junctions (Trinkaus, 1969). At the contacts 

with the cells the trichomonads' cytoplasm was differentiated and contained 

a meshwork of microfilaments 2 to 5 nm in diameter within which bundles of 

microfilaments lay, commonly situated at right angles to the contact. In 

many instances short microfilament-containing pseudopodia interdigitated 

with processes from the epithelial cells; these pseudopodia appeared to be 

nipping off parts of the cell cytoplasm and indeed epithelial cell consti- 

tuents were seen within phagosomes in the cytoplasm of the trichomonads 

indicating that phagocytosis of the cells was taking place. Nielsen and 

Nielsen's (1975) study of cervical biopsies showed amoeboid T. vaginalis 

often adhered to the under surface of partly desquamated epithelial cells 

which showed necrotic changes. They concluded that the parasites adhered 

only to necrotic cells but they did not consider the possibility that the 

necrotic changes may have occurred after the parasites had adhered to the 

cells. Nielsen and Nielsen (1975) did not find T. vaginalis within the 

intact non-desquamating epithelium but they did find minor clusters of the 

organisms lying in shallow depressions of the epithelial surface which 

suggests that the organisms may be capable of eroding the superficial 

epithelial cells. These authors noted a slight hyperplasia of the cervical 

epithelium accompanied by an epithelial inflammation with an invasion of 

neutrophils which were located in laciziae between the epithelial cells. 

Although they did not detail the cytological changes in the epithelium 
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they noted that severe inflammation was accompanied by hyperchromasia and 

nuclear enlargement of the cells. 

The important finding of these EM studies was that T. vagrinalis is 

capable of adhering to the superficial cells of the vaginal and cervical 

epithelia and so exerting its injurious effects at close range however, 

as Nielsen and Nielsen (1975) pointed out the widespread inflammatory 

response in infected patients and the occurrence of cytological changes in 

the less superficial layers, away from the direct influence of the para- 

sites, indicates the additional involvement of diffusable parasite-derived 

toxic factors in the pathogenicity of T. vaginalis. 

1.12 Trichomoniasis in males 

1.12.1 Infection sites 

The most commonly infected sites in males are the urethra and the 

prostate gland (Jiroves and Petru, 1968; Schofield, 1972; Morton, 1975; 

Honigberg, 1978b). In uncircumsised men T. vaginalis may be found in the 

subpreputial. sac (Schofield, 1972). There is little clear evidence that 

the parasite invades any other urogenital organs. Although trichomonal 

infections in men may be associated with an epididymitis (Amar, 1967; 

Fisher and Morton, 1969), haematospermia (Walton, 1969), and the presence 

of parasites in the semen (Whittington, 1951; Bernfeld, 1972), these signs 

and symptoms do not necessarily imply that T. vaginalis is capable of in- 

fecting the seminal vesicles, epididymes and testes since firstly, as Amar 

(1967) noted, inflammation of the prostate could cause a reflux of urine 

into the vas deferens and epididymes thus causing a secondary inflammation 

of these organs, and secondly parasites could contaminate the semen as it 

passes down the urethra during ejaculation. 

1.12.2 Symptoms 

Men are frequently sYmptomýess carriers of T. vaginalis (Schofield, 

1972). In acute cases there is a muco-purulent urethral discharge, the 

early morning urine is cloudy and in uncircumsised men there may be a 
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sub-preputial discharge. Itching of the penis, prostatitis, discomfort 

during urination and painful erections are also common findings (Schofield, 

1972; Honigberg, 1978b). Other, less common, symptoms include epididymi- 

tis, haematospermia, inguinal adenitis and littritis (Schofield, 1972; 

Honigbergq 1978b). Persistent infections in men are commonly associated 

with some degree of urethral stricture (Weston and Nicol, 1963) which, by 

restricting the flow of urine, may reduce the rate at which the parasites 

eike-a- 
are expelled from the urine. Morton (1975) regards urination as important 

in making trichomoniasis a short-lived affection in many men. 

1.12.3 Pathological changes 

Some indication of the paucity of our knowledge about what, if any, 

pathological changes occur in the organs of infected males is given by the 

fact that no mention of this subject is made in the reviews of trichomonia- 

sis by Jirovec and Petru (1968), De Leon (1971) and Honigberg (1978b). 

However some studies have been made on the role of T. vaginalis in infer- 

tility in men. Kolesow (1950) observed that T. vaginalis phagocytosed 

spermatozoa in trichomonad-infected semen and more recently Tuttle, Holbrook 

and Derrick (1977) found that a striking decrease in spermatozoal motility 

occurred within 6h at 370C when 0.2 ml semen was mixed with an equal 

volume of Diamond's broth containing 10 
6 

or 10 
7 T. vaginalis per ml.; 

similar experiments with 104 and 105 organisms per ml. caused only a minor 

retardation in spermatozoal motility. These studies showed that T. 

vaginalis is potentially pathogenic to spermatozoa and indeed some infer- 

tile men have been found harbouring the parasite in their semen (Bernfeld, 

1972) but nevertheless no-one has yet shown that eradication of trichomo- 

niasis in sub-fertile men enhances fertility, a necessary step if we are 

to implicate T. vaginalis as a cause of male infertility. 

1.13 Diagnosis of trichomoniasis 

1.13-1 Collection of material from patients 

In women the most fruitful source of trichomonads is the pool of 
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secretion found in the posterior fornix of the vagina. This material may 

be collected with a pipette, a charcoal impregnated cotton wool swab or 

soaked up into a polyester sponge (Robertson, Lumsden, Fraser, Hosie and 

Moore, 1969; Oates, Selwyn and Breach, 1971)- In men the best sources are 

the urethral discharge, urethral scrapings, a centrifuged deposit of early 

morning urine, semen and prostatic fluid. 

Once the material has been collected from the patient there is a 

variety of techniques available to the clinician and parasitologist for 

the demonstration of T. vaginalis. There has been considerable disagree- 

ment among workers as to which diagnostic method is the most sensitive (see 

reviews of Honigberg, 1978b), and Jirovec and Petru, (1968), but preferably 

at least two, more if possible, different methods should be employed to 

ensure a correct diagnosis; the two methods most commonly used are wet 

film microscopy and culture. Robertson et al. (1969) showed that the com- 

bined use of wet film and culture methods gives the greatest number of 

correct diagnoses. 

1,13.2 Wet film microscopy 

A sample of the material collected from the patient is examined 

directly, or after mixing with a drop of normal saline, on a slide by phase 

contrast microscopy. Trichomonads retain their motility for several hours 

at room temperature and can be distinguished from leucocytes and epithelial 

cells by their undulating membranes and beating flagella. An improved sen- 

sitivity of wet film examination was obtained by Robertson et al. (1969) 

who showed that centrifugation of vaginal secretions, thereby concentrating 

the density of T. vaginalis in the material used for wet film examination 

and for inoculating cultures, increased the number of correct diagnoses in 

females. 

1.13.3 Culture 

A specimen from the patient is placed in a bottle of Trichomonas 

culture medium. Cultures are incubated at 370C and examined daily for the 
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presence of T. vaginalis (Lumsden et al., 1966). Inoculated cultures 

should be incubated for at least seven days or more since many primary 

isolates of T. vaginalis, especially if they are from pathogenic strains, 

grow only slowly in culture (Whittington 1957; Kulda et al., 1970). 

The sensitivity of cultural methods for the diagnosis of trichomo- 
b 

niasis may be determined by the composition of the culture media (Hess, 

1969; Lowe, 1972; Rayner, 1968) and the number of trichomonads in the 

cultured sample (Rayner, 1968). 

1.13.4 Other diagnostic methods 

Other methods available for the diagnosis of trichomoniasis include 

both protozoological methods, such as the microscopic examination of fixed 

and stained smears of material collected from patients, and serological or 

immunodiagnostic techniques (see Honigberg, 1978b for review). The latter 

have been employed in two ways. Firstly by using fluorescentlY labelled 

antibodies to T. vaginalis to detect the parasite in clinical material 

(Hayes and Kotcher, 1960), and secondly, and potentially more importantly, 

by diagnosing the disease by demonstrating an immune response to T. vaginalis 

in the patient (Jirovec and Petru, 1968; Ackers, Lumsden, Catterall, and 

Coyle, 1975; Ackers, Catterall, Lumsden and McMillan, 1978). Although none 

of these methods has so far proved to be superior to wet film examination 

and culture, immunodiagnostic methods may yet be of value in asymptomatic 

infections or in cases where parasite numbers are low; however, serological 

methods have the drawback that they may detect both current and earlier, 

eliminated infections. 

1.14 Treatment of trichomoniasis 

The most widely used and successful drug for the treatment of tricho- 

moniasis is metronidazole (Flagyl; May and Baker Ltd. ) -Prior to its dis- 

Where the author of a work cited in this thesis has used the term 
"strain" to designate a particular population of T. vaginalis, the 
designation is retained. 
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covery the treatment of the disease was always a problem and cure rates 

were low* For reviews of the history of the treatment of trichomoniasis 

see Trussel (1947), Jirovec and Petru (1968), Michaels (1968) and Forgan 

(1972). 

Metronidazole, I-(2-hydroxyethyl)-2methyl-5nitro-imidazoleI was first 

synthesised and shown to be trichomonacidal by Cosar and Jolou (1959). 

Metronidazole has a very low toxicity; the ID 50 for mice with a single 

oral dose is 4-3 g/kg. The drug has a wide spectrum of activity and is 

also used for the treatment of anaerobic bacterial infections, amoebiasis, 

giardiasis, balantidiasis, Vincent's stomatitis, Crohn's disease and for 

some nematode infestations (Ings, McFadzean and Ormerod, 1974; Tanowitz, 

Wittner, Rosenbaum and Kress, 1975; Roe, 1977). Its action is limited 

however to infections with anaerobic or facultatively aerobic organisms 

(Coombs, 1973). 

The standard regime for the treatment of trichomoniasis in both men 

and women is 200 mg metronidazole orally, 

(Catterall, 1972). Cure rates of between 

with the standard regime (Feo and Fetter, 

oral dose of 2g metronidazole gives cure 

cent (Morton, 1975). 

We now know a good deal about the me 

3 times daily for 7 days 

90 and 100 per cent are common 

1961; Morton, 1975). A single 

rates of between 82 and 100 per 

chanisms of action of metronida- 

zole. In T. vaginalis, metronidazole competes with pyruvate synthase and 

hydrogenase for low redox potential electrons thus inhibiting the forma- 

tion of molecular hydrogen in the hydrogenosomes (Lindmark and Muller, 

1974b). The evolution of H2 is inhibited before CO 2 evolution suggesting 

that interference with the terminal electron acceptors is the primary action 

of the drug (Edwards and Mathison, 1970); both the nitro- group -and the 

imidazole ring of metronidazole give the drug the properties of an electron 

sink. This may not be the only mechanism of action of metronidazole in T. 

vaEinalis. since the reduced metronidazole, possibly as a hydroxylamine, 

goes on to react with DNA to inhibit the action of DNA and RNA polymerases 
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(Ings, et al., 1974). Nucleic 

of exposure of T. vaginalis to 

zole and death of the parasite 

Nielsen (1976) noted that cell 

4 jig per ml metronidazole. It 

cribed above contribute to th 

metronidazole. 

acid synthesis is inhibited within 30 min 

solutions containing 5 jig per ml metronida- 

occurs about 5h later (Ings et al., 1974). 

division was inhibited within 1h by 1 to 

is likely that both of the mechanisms des- 

e death of T. vaginalis in the presence of 

Other drugs used to treat trichomoniasis are, like metronidazole, all 

derivatives of nitroimidazole, and include nitrimidazine (De Carneri et 

al., 1969), tinidazole (Wallin and Forsgren, 1974), ornidazole (Skold, 

Gnarpe and Hillstrom, 1977) and carnidazole (Notowicz, Stolz and De Konig, 

1977). Clinical trials have shown that these drugs are generally as 

efficacious as metronidazole. 

1-15 Pathogenicity of T. vaginalis in experimentally infected animals 

1.15-1 Introduction 

Experimental models of trichomonal infections using animals have been 

studied for many years as a method of elucidating and comparing the patho- 

genicity of strains of T. vaginalis and for the testing of therapeutic 

agents. The most extensively used animals have been mice and guinea pigs. 

The results of T. vaginalis infections in other animals, including rhesus 

monkeys, rabbits, hamsters and rats, have been reviewed by Trussel (1947), 

Jirovec and Petru (1968) and Honigberg (1978b) and will not be dealt with 

here. 

The most commonly employed infection routes are intravaginal, intra- 

peritoneal and subcutaneousi intravaginal infections in mice, rats, guinea 

pigs and hamsters are more reliably established if the animals are first 

induced into permanent oestrus with exogenous oestrogens (Honigberg, 1978b). 

1.15.2 Guinea pigs 

The majority of studies on T. vaginalis infections in guinea pigs 

have used the intravaginal route. Soszka, Kazanowska and Kuczynska (1962) 
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found that inflammation of the vaginal epithelium occurred 2 to 75 h post- 

inoculation and was accompanied by a heavy purulent vaginal discharge con- 

taining trichomonads. The vaginal epithelium was heavily infiltrated by 

leucocytes which collected in spaces between the layers of cells. Cytolo- 

gical changes in the epithelial cells included nuclear enlargement and a 

peri-nuclear vacuolisation. In a similar study Sztykiel (1962) noted that 

T. vaginalis caused cell shape changes, multiple nucleation and cytoplasmic 

vacuolisation in the vaginal epithelium. Infections in pregnant guinea 

pigs may cause the abortion of macerated foetuses (Ginel, 1962)4 A de- 

tailed histological and histochemical study of vaginal T. 
_ 

vaginalis in- 

fections in guinea pigs was made by Skrzypiec (1975). 

1.15.3 Mice 

1.15-3-1 Intravaginal infections 

There have been few attempts to establish T. vaginalis infections in 

the mouse vagina (Honigberg, 1978b). Cappuccinelli, Lattes and Martinetto 

(1973) achieved 100 per cent infection rates in oestrogenised Balb/c and 

Swiss T mice; the infections lasted for 3 months and could be transferred 

from one female to another by intercourse with a common male mate. The 

infections caused dysplasia and superficial lesions of the cervical and 

vaginal epithelium. 

1-15-3.2 Intraperitoneal infections 

The pathological changes in the abdominal organs of mice inoculated 

intraperitoneally with large numbers (10 6 
or more) of pathogenic strains 

of T. vaginalis have been characterised by Reardon, Ashburn and Jacobs 

(1961), Teras and Roigas (1966) and Gobert, Georges, Savel, Genet and 

Piette (1969). Typically, the infection causes an exudative peritonitis 

with the accumulation of ascitic fluid. Caseous masses consisting of 

numerous parasites and leucocytes adhere to the abdominal organs. The 

trichomonads commonly invade the abdominal organs starting with the liver 

and pancreas causing inflammation and subsequent necrosis. The invaded 

liver develops necrotic foci and the parasites are found palisaded on the 
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border between the necrotic and uninjured tissue. Death generally occurs 

5 to 7 days post-inoculation. 

The fine structural changes in the parasitised livers of infected 

mice were studied by Brugerolle et al. (1974). T. vaginalis was first 

seen in the sinusoids which became dilated and obstructed by numerous 

parasites, neutrophils, lymphocytes and macrophages. The trichomonads 

were amoeboid possessing many pseudopodia with which they closely adhered 

to the hepatocytes lining the sinusoids. These hepatocytes showed degen- 

erative changes including a depletion of glycogen granules, an increase in 

lipid globules and vacuoles and dilatation of endoplasmic reticulum and 

mitochondria. The trichomonads lysed the hepatocytes and phagocytosed 

their contents, and then proceeded outwards into normal tissue leaving a 

necrotic zone in their wake. The cells surrounding the infected areas were 

normal except for an absence of glycogen. The authors suggested that T. 

vaginalis destroyed the liver tissue by a combination of active phagocyto- 

sis and by the secretion of toxins, the latter being responsible in part 

for the reduced glycogen content of the hepatocytes lying adjacent to the 

parasitised areas. Of interest in this study was the authors' discovery 

of microfilament meshworks in the pseudopodia of T. vaginalis, similar to 

to those found in trichomonads adhering to the human vaginal epithelium 

(Nielsen and Nielsen, 1975); commenting on this finding, Brugerolle et al. 

suggested that the microfilaments formed part of an internal contractile 

system in T. vaginalis but they did not relate this system to the invasive 

and pathogenic behaviour of the parasite in the mouse liver. 

1-15-3-3 Subcutaneous infections 

Subcutaneous infections in mice are of interest chiefly because they 

offer a reliable method of evaluating the inherent pathogenicity levels 

of strains of T. vaginalis. The "subcutaneous (SC) mouse assay" was 

developed by Honigberg (1961) and involves the SC inoculation of 8 to 9 

x 105 T. vaginalis in 0.5 ml of an agar-containing medium into the flanks 
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of 6 week old C57/BL6J mice, although other strains of mice may be used 

(Jirovec and Petrug 1968). The relative pathogenicity of a strain of T. 

vaginalis is then obtained from the mean volume of the trichomonad-filled 

swellings protruding from the mouse flanks after 6 days. The pathology 

of the swellings or lesions was described by Frost and Honigberg (1962). 

The development of the lesions involves an orderly progression of events 

following the inoculation of the parasites; these events may be summarised, 

in sequence, as, (a) an influx of leucocytes into the infected area, (b) 

multiplication of the organisms, (c) destruction of the leucocytes and the 

surrounding host tissues, (d) oedema of the adjacent tissues and a second 

influx of leucocytes, (e) further multiplication of the parasites, which 

is followed by a continuation of the cycle. This progression leads to the 

formation of mantles of leucocytes and parasites lining the walls of a pus- 

and sometimes gas-filled lesion. SC infections are rarely fatal; with more 

pathogenic strains of T. vaginalis the lesions burst open after about 1 

week and then heal, with milder strains the lesion may be walled off by a 

fibrous layer and the parasites degenerate. The severity of the lesions 

may be enhanced by treating the mice with cortisone before infection 

(Jeffries and Harris, 1967). 

Using the SC mouse assay, Honigberg, Livingston and Frost 0966) and 

Kulda, Honigberg, Frost and Hollander (1970) were able to show that there 

was a good correlation between the level of pathogenicity of several 

strains of T. vaginalis in mice with the severity of the clinical and 

cytological findings in the female patients from which the organisms were 

isolated. Honigberg. 2t al. (1966) studied 8 strains of T. vaginalis and 

found that the woman harbouring the strain least pathogenic for mice was 

an asymptomatic carrier of T. vaginalis; the woman harbouring the most 

pathogenic strain was found to have moderate vaginal discharge, cystitis, 

chronic cervicitis, marked inflammation of the cervical mucosa and carci- 

noma of the cervix. The other 6 strains which were of intermediate patho- 

genicity in mice were associated in the patients with vaginal and cervical 
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disease of corresponding intermediate severity. Kulda et al. (1970) 

obtained similar results to Honigberg et al. (1966) and they further 

noted that there was a positive correlation between the pathogenicity of 

7 strains of T. vaginalis in mice and humanst and their rates of growth 

in axenic culture. The least pathogenic strain had a mean generation 

time in culture of 6 h; the most pathogenicq 13-5 h. As Kulda. et al. 

(1970) pointed out, this discovery does not imply any causal relationship 

between high pathogenicity and slow growth since it is possible that the 

more pathogenic strains of T. vaginalis, living in a nutritionally-rich 

environment of pus, necrotic cells, many bacteria and tissue fluids, 

typical of severexaginitis, may have become dependant on host growth 

factors and so adapt less well to growing in an artificial Trichomonas 

culture medium. 

1.16 Pathogenicity of T. vaginalis in cell cultures 

1.16.1 Introduction 

There has been a widespread interest in the behaviour and patho- 

genicity of T. vaginali s in cell and tissue cultures since the pioneering 

studies of Hogue (1943,1947). T. vaginalis-infected cell cultures, as 

models of trichomoniasis, offer the simplest and most direct way of 

studying the inherent cytopathogenic mechanisms of the parasite. 

In most of the studies in this field T. vaginalis was inoculated 

into a culture vessel containing a continuous sheet or monolayer of cells 

on a glass coverslip. A wide range of cell types has been used including 

human embryonic epithelial cells, fibroblasts and myoblasts (Hogue, 1943; 

Kotcher and Hoogasian, 1957), WISH (human amniotic epithelium) cells 

(Dyner and Korbecki, 1974), HeLa cells (human adult cervical carcinoma) 

(Christian et al., 1963), monkey kidney fibroblasts (Kulda, 1967; 

Samoilescu et al., 1974), and chick embryo fibroblastsq hepatocytes and 

macrophages (Kotcher and Hoogasian, 1957; Farris and Honigberg, 1970). ' 

Despite this variety close similarities have been observed in the behaviour 
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of T. vaginalis towards the different cell types. 

To date, almost all of the studies on T. vaginalis-infected cell 

cultures have been made with the aid of the light microscope; no detailed 

electron microscope studies have been published although in a brief ab- 

stract, devoid of particulars, Samoilescu et al. (1974) stated that they 

had examined the effects of the parasite on monkey renal cells using 

electron microscopy. 

1.16.2 Early studies 

The first experimental infections of tissue cultures with, T. 

vaginalis were described by Hogue (1943)- She used primary explants of 

human embryo intestine, lung and muscle and chick embryo intestine. * The 

infections caused granulation and vacuolisation of the cytoplasm of both 

epithelial and fibroblast cells; cell-free areas developed as a result of 

retraction of the cytoplasm and the cultures died within 24 h. Cell-free 

filtrates of "old" trichomonal cultures caused similar changes and so 

Hogue concluded that T. vaginalis destroyed the cells by producing toxins. 

Later Kotcher and Hoogasian (1957) studied infections in cultures of chick 

embryo cells, HeLa cells and human fibroblasts but although they noted 

cytopathological changes similar to those found by Hogue in her cultures, 

they considered that T. vaginalis caused the changes by mechanical means 

rather than chemical since they were unable to demonstrate any patholo- 

gical effects of parasite-free T. vaginalis culture filtrates. Although 

these early studies were lacking in many details they served to stimulate 

further and more extensive studies the most significant of which were made 

by Christian et al. (1963). Kulda (1967) and Farris and Honigberg (1970); 

some of the details of these authors' studies are summarised in Table 2t 

which shows the specifications of the cell cultures, the details of the 

strains of T. vaginalis used, the size of the inoculum of parasites, the 

pathological changes which the parasites cause to the cultures, and the 

times taken for the parasites to destroy the cultures. As the table shows 
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direct comparisons of the results of the various studies on T. vaginalis- 

infected cell cultures are not easy due to the differences in the type of 

cells, in the relative pathogenicity of the strains of parasite, and in 

the sizes of the inocula of parasites used in the studies, nevertheless 

some salient features of the behaviour and pathogenicity of T. vaginalis 

towards cells are common to each of the various studies. 

1.16.3 Behaviour of T. vaginalis in cell cultures 

When a monolayer of cultured cells is infected with a population of 

T. vaginalis one of the first and most characteristic events is the 

affinity of the parasites for the cells; the organisms settle on and ad- 

here to the cells within the first few hours of the infection (Hogue 1943)- 

Kulda (1967) infected monkey kidney fibroblast cultures with 4x 105 T. 

vaginalis. and noted that most of the organisms were adhering to the cells 

between 4 and 8h post-inoculation. Some strains of T. vaginalis adhere 

less well to cell monolayers than others; Farris and Honigberg (1970) 

showed that the adhesiveness of a particular strain may be related to its 

pathogenicity level in humans. These workers infected embryonic chick 

liver cell cultures with two strains of T. vaginalis, JH30A and JH32A, the 

former was isolated from a woman with severe vaginitis and the latter from 

a woman with mild disease and only slight vaginal discharge; they found 

that at 2h post-inoculation of the chick cell cultures with 10 
5 

parasites, 

85 per cent of the more pathogenic JH30A strain were adhering to the cells 

compared to only 50 per cent of the milder JH32A strain; at 20 h there 

were still twice as many parasites of the pathogenic strain adherent to the 

cells as compared to the mild strain. 

Following adhesion to cells T. vaginalis frequently becomes amoeboid 

and extends pseudopodia over the surfaces of the cells (Farris and Honigberg, 

1970). Christian et al. (1963) used cinemicrography to study the inter- 

action of T. vaginalis with monolayers of Hela cells and noted amoeboid 

organisms moving above and beneath the monolayers and they concluded that 
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the activity of the parasites was responsible for the subsequent detach- 

ment of the HeLa cells from their glass substratum. 

Both Hogue (1943) and Christian et al. (1963) observed an interesting 

behavioural characteristic of T. vaginalis in their cell cultures; they 

noted that the parasites frequently aggregated into large clumps comprising 

of many active organisms and they called this process "rosetting" (Hogue, 

1943) or "swarming" (Christian et al., 1963). Although unsure of the 

cause of this behaviour Christian et al. (1963) speculated that the orga- 

nisms were participating in a process of "genetic recombination". At 

present there is no evidence that T. vaginalis can pass on and/or exchange 

genetic material between individuals but clearly this possibility merits 

further study following the discovery of Honigberg, Livingston and Stabler 

(1971) that the exposure of a non-pathogenic strain (as measured by the SC 

mouse assay) of T. gallinae to the native DNA and RNA of a highly patho- 

genic strain of To gallinae resulted in an enhanced pathogenicity of the 

former strain. 

1.16.4 Pathological changes in T. vaginalis-infected cell cultures 

In general pathological changes are more evident in cells to which 

amoeboid T. vaginalis are adhering (Farris and Honigberg, 1970), These 

changes include retraction of the peripheral areas of the cytoplasm which 

leads to spaces appearing between adjacent cells, an increased vacuolation 

of the cytoplasm, and morphological abnormalities of the nuclei such as 

nuclear swelling and a condensation of the chromatin into granules. The 

gradual degeneration of the cells culminates in cell lysis. These changes 

are similar to those seen in the cells of the vaginal and cervical epithe- 

lium in natural T. vaginalis infections; this similarity is cogent evidence 

for the value of'T. vaginalis-infected cell cultures as models of human 

trichomoniasis. 

The cytochemical changes which T. vaginalis caused in chick liver cell 

cultures were extensively studied by Sharma and Honigberg (1966,19670969,1971) 

They noted that typically the cells showed abnormally high levels of various 
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metabolic enzymes such as acid phosphatase and non-specific esterase and 

there was a large accumulation of lipid granules in the cells, and the 

authors considered that these and the other cytochemical changes which 

they found in the cells reflected a general decrease in metabolic activity 

and an increase in autophagocytosis which are changes which are not speci- 

fically related to the actions of T. vaginalis since they are also charac- 

teristic of diseased or degenerating cells in general. 

As Table 2 shows, the times at which these changes are first seen 

after the inoculation of a cell culture with T. vaginalis may vary 

accordingly to the inherent pathogenicity of the strain of T. vaginalis 

used, and the size of the infecting inoculum. Christian et al. (1963) 

found that few pathological changes were elicited in HeLa cell cultures by 

an inoculum of 500 parasites and they likened this situation to an asymp- 

tomatic T. vaginalis infection in humans. 

One of the features of T. vaginalis-infected cell cultures is that 

the pathological changes often occur not throughout the cell culture but 

in discrete foci with the result that the culture or monolayer of cells is 

dotted with cell-free areas where the cells have been lysed (Christian. et 

al. 1963; Farris and Honigberg, 1970). These areas, or lesions, contain 

numerous parasites which adhere to the exposed glass substratum and to the 

cells lining the lesions. As the infections progress the lesions enlarge 

as the parasites migrate outwards lysing more cells. This feature suggests 

that a close association of the parasites with the cells is necessary for 

cell lysis since those cells lying in the intact areas of the cultures are 

often undamaged (Christian et al. 1963)- 

1.16.5 Mechanisms of pathogenicity of T. vaginalis 

Most of our understanding, albeit rather limited at present, of the 

inherent mechanisms of the cYtopathogenicity of T. vaginalis has come from 

studies using cell cultures. Broadly there are two schools of thought; the 

first holds that the parasites secretes chemical factors into its environ- 

ment which are potentially injurious to cells and tissues, and the second 
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proposes that the parasite mechanically damages cells as a consequence of 

its ability to adhere to them. It is by no means clear that either 

mechanism alone is responsible for the cytopathogenicity of T. vaginalis. 

A. Chemical mechanisms 

Hogue (1943) proposed that T. vaginalis secreted toxins when she 

found that parasite-free filtrates of "old" (sic) T. vaginalis cultures 

were capable of killing cell cultures in the absence of the organisms. 

Farris and Honigberg (1970) also found that filtrates of "actively growing" 

cultures of a strain of T. vaginalis, highly pathogenic in mice, produced 

pathological changes in chick liver cells which were qualitatively similar 

to those caused by the parasites (see Table 2) but the level of the 

changes and the number of cells affected was much lower. On the other 

hand no such pathogenic effects of culture filtrates on cells could be 

demonstrated by Kotcher and Hoogasian (1957), Christian et al. (1963) or 

Kulda (1967); these workers found that cell damage only occurred in the 

presence of the parasite. These apparently contradictory results may have 

arisen due to the differences in strains of T. vaginalis used and to 

differences in the states of the cultures from which the filtrates were 

obtained; there is clearly a need for more standardisation in experiments 

designed to test the effects of culture filtrates before this question can 

be resolved. It is possible that the putative toxic factors in filtrates 

may be very labile which might explain why the most extensive cytopatholo- 

gical changes are seen in those cells to which T. vaginalis is adhering 

(Farris and Honigberg, 1970), but as yet no one has been successful in 

identifying, isolating or characterising any potentially cytopathogenic 

substances from culture filtrates. Hogue (1943) found that filtrates of 

old T. vaginalis cultures did not digest gelatin and concluded that the 

cytopathogenicity of filtrates was not due to the presence of proteolytic 

enzymes. 
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B. Mechanical mechanisms 

It has been argued that because T. vaginalis characteristically ad- 

heres to cultured cells the parasite may be capable of mechanically in- 

juring the cells' surfaces causing cell death but the ways in which the 

parasite may do so have not been fully investigated. Farris and Honigberg 

(1970) observed amoeboid organisms which were "pulling away" pieces of the 

cytoplasm of chick macrophages and at times the organisms ingested the 

pieces. Christian et al. (1963) also thought that it was the "intense 

activity" of amoeboid T. vaginalis both on top of and underneath a mono- 

layer of HeLa cells that caused the break-up of the monolayer and the death 

of the cells; since the amoeboid organisms were able to crawl over the HeLa 

cells' surfaces it is possible that the tensile forces generated during 

movement of the parasites could mechanically disrupt the cells, plasma 

membranes leading to a lethal leakage of cytoplasmic components. Such a 

possibility was suggested by Nielsen and Nielsen (1975) who found amoeboid 

T. vaginalis adhering to the surfaces of human vaginal epithelial cells. 

The lack of any conclusive evidence that T. vaginalis can mechanically 

damage cells is to a large extent due to the fact that the intimate asso- 

ciation of the parasite with cells has not been examined in detail at the 

fine-structural level, consequently at present we have little idea of what 

events are occurring at the sites of contact between T. vaginalis and cells. 

1.17 Aims of this study 

The purpose of this study is to fill some of the gaps in our knowledge 

of the behaviour and pathogenicity of T. vaginalis in cell cultures which 

I have pointed out in the preceding review of the literature. Particular 

attention is paid to the following topics: 

1) The fine structure of the adhesions between T. vaginalis and epithelial 

cells. 

2) The fine structural changes caused within epithelial cells by the 

parasite. 
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3) Scanning electron microscopic examination of T. vaginalis. 

4) The amoeboid movements of T. vaginalis. 

5) The mechanism of adhesion and amoeboid motility in T. vaginalis. 

6) The role of hydrolytic enzymes in pathogenicity of T. vaginalis. 

7) Possible mechanisms of pathogenicity of T. vaginalis in experimental 

infections and in humans. 
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2. MATERIALS AND METHODS 

2.1 Culture media and culture techniques 

2.1.1 T. vaginalis culture medium 

The culture medium used for the primary isolation of T. vaginalis and 

for its maintenance in the laboratory was that described by Lumsden et al. 

(1966) with the modifications detailed below. This modified medium is 

hereafter referred to as Lumsden's-T_ricliomonas Medium (LTM). The recipe 

is given below; AnalaR reagents and distilled water were used throughout. 

Recipe for 1 litre of LTM 

Neutralised Liver Digest (Difco Ltd), 40g per 1.300 ml 

Dextrose, 0.308 M 100 ml 

Calf serum (Wellcome Ltd) 100 ml 

Salts solution: 392.5 ml 

Prepared by mixing the following 4 solutions in the ratio indicated: 

NaCl 0.154 M 100 

KC1 0-154 M4 
108 vols 

MgCl 
2 

0-103 M3 

CaCl 2 0-103 M1 

Phosphate buffer pH 6.8 100 ml 

Prepared by mixing the following 2 solutions in the ratio indicated: 

NaH 2 
PO 4 0.154 M 4.13 

10 vols 
Na 2 HPO 4 0-103 M 5.87 

1 

Bromocresol purple 15 mg 

Sodium thioglycollate 1g 

Benzyl penicillin (Glaxo Ltd), 200,000 U/ ml 5 ml 

Streptomycin sulphate (Glaxo Ltd), 200,000 U/ ml 2.5 ml 

Nystatin (Squibb Ltd) 0.25 9 

The salts solution and the buffer component were made up separately. The 

ingredients were mixed at room temperature and the final pH of the medium 

was checked and adjusted to 6.8 if necessary with 1M HC1.4 litres of 
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medium were made up at one time and then sterilised by Seitz filtration 

and dispensed into sterile 15 ml, 100 ml, 200 ml and 500 ml screw-capped 

bottles. The 15 ml bottles were stored at VC and the larger volumes at 

-20'C. The bottles were filled to the brim to exclude as much air as 

possible to maintain the anaerobic conditions of the medium. 15 ml 

bottles of LTM were fitted with centrally-perforated screw caps with 

white rubber wads to allow inoculation and sampling of the culture 

medium with a syringe and needle through the rubber wad after the wad 

had been sterilised by wiping with 70 per cent alcohol. Nystatin was 

added to the medium after filtration because of its Particulate nature. 

MM containing Nystatin was only used for the primary isolation of T. 

vaginalis; for laboratory maintenance of trichomonads Nystatin was 

omitted. 

The modifications to the recipe of Lumsden et al. (1966) for LTM 

were: 

1) The replacement of liver digest with neutralised liver digest. 

2) The alteration of the PH of the buffer component from 7.4 to 6.8. 

These changes gave a final pH of 6.8 to the medium compared to 6.1 to 

6.4 with the original formulation of Lumsden et al. Heath (1972) showed 

that T. vaginalis grows equally well in culture media with initial pH 

values of 6.4 and 6.8. 

2.1.2 Maintenance of T. vaginalis in culture 

For raising large numbers of parasites for use in experiments, T. 

vaginalis was removed from cryopreservation (see 2-3) and grown in LTM- 

One or two glass capillary tubes, diameter 1 mm, of a selected stock of 

T. vaginalis were removed from liquid nitrogen storage and thawed in tap 

water at room temperature. The tubes were wiped with 70 per cent alcohol, 

the ends were broken off and the contents were expelled into a 15 ml 

bottle of LTM prewarmed to room temperature. The inoculated cultures 

were incubated at 37'C until the organisms had multiplied to a density of 
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about 105 per ml-or more which generally took 2 to 3 days. At this stage 

the trichomonads were subcultured by withdrawing 0.5 to 1 ml of medium 

through the rubber wad of the culture bottle and transferring the 

organisms to a fresh bottle of LTM prewarmed to 37'C, again through the 

rubber wad. 

Parasites for use in experiments were always taken from the first 

subculture post-thawing of cryopreserved stocks. Only cultures in the 

logarithmic phase of growth were used, i. e. between 5x 10 
4 

and 10 
6 

organisms per ml (Heath, 1972). As the density of organisms increases in 

the cultures the acidity of the medium increases due to their production 

of lactic acid; consequently a change in the colour of the bromocresol 

purple in the LTM, from purple to yellow, indicates an infected culture. 

The presence of trichomonads can then be checked by microscopy of a sample 

of the culture medium. 

Organisms were harvested by centrifugation at 250 g for 10 min. 

Counts of parasite density were made either with a haemocytometer or on a 

Coulter counter model B. 

2.1.3 Epithelial cell culture medium 

RK 13 epithelial cells were grown in Medium 199, hereafter abbreviated 

to M199. 

Recipe for 100 ml Medium 199 

I 

Medium 199 (Wellcome Ltd) 

Foetal calf serum (Wellcome Ltd) 

HEPES buffer 1M (Wellcome Ltd) 

Benzyl penicillin (Glaxo Ltd) 100,000 U/ ml 

Streptomycin sulphate (Glaxo Ltd) 50,000 U/ ml 

Amphote+in B (Squibb Ltd) 2.5 mg/ml 

The final pH of M199 was 7.2. The medium was stored at -20'C. 

2.1.4 Maintenance of epithelial cell cultures 

90 ml 

10 ml 

2.5 ml 

0.1 mi 

0.1 mi 

0.1 MI. 

RK'13 cells were grown on one side of flat sided 50 or 100 ml sterile 



48 

screw capped glass bottles in 10 ml M199, and incubated at 37'C. The 

medium was changed every 2 days. Cells were passaged weekly. The cells 

were removed from the glass bottles by adding 10 ml of a solution of 0.02 

per cent w/v Versene (Wellcome Ltd) containing 0.25 per cent w/v trypsin 

(Wellcome Ltd). The cell monolayers were incubated for 10 min. at 37'C 

in this cell dispersant until the cells were just starting to detach from 

the glass; the dispersant was decanted and the cells suspended in fresh 

M199 (40 ml) and distributed into fresh bottles. By using a split ratio 

of 1: 4 (i. e. the cells from one bottle distributed into four bottles) the 

epithelial cells formed a confluent monolayer within 3 to 4 days. 

For use in experiments the cells were grown on a variety of glass 

0 c, substratA: 

1) For preliminary light microscopical studies the cells were grown on 

9x 35 mm coverslips in Leighton tubes with 1-5 ml M199 overlay. 

For transmission electron microscopy the cells were grown on 32 mm 

diameter round glass slides in 60 mi screw-capped plastic specimen 

jars (Sterilin Ltd) with 5 ml M199 overlay. 

For scanning electron microscopy the cells were grown on 22 mm 

diameter coverslips in jars as described in (2). 
, 

These cultures were incubated at 37'C with a daily change of M199 until a 

confluent monolayer of cells, with a density of about 2'x 10 3 
cells per =2 

had formed which generally took 3 to 4 days. 

2.2 Source, collection and isolation of T. vaginalis and epithelial cells 

2.2.1 T. vaginalis 

Trichomonas vaginalis was isolated from new female patients attending 

the clinic at James Pringle House, Middlesex Hospital, London W1. The 

isolation technique used was modified from that of Robertson et al. (1969) 

and has been described by Ackers et al. (1975)- 

The physicians at the clinic were asked to collect vaginal secretions 

from all new female patients during the period of examination of the 
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patient. Sterile pieces of polyester sponge 20 x5x5 mm were held in 

a pair of Rampley's forceps and inserted into the posterior fornix of 

the vagina and allowed to soak up any secretions present, then withdrawn 

and placed directly into a sterile screw-capped 5 ml bijou bottle. The 

bottles were labelled with the patient's code number and stored at room 

temperature until they were collected and brought to the Department of 

Medical Protozoology for processing. Specimens were collected twice 

daily at 12 noon and 4 p. m. thus each specimen reached the laboratory 

within 4h of collection from the patient. Preliminary experiments had 

shown that T. vaginalis remain viable in these conditions for up to 24 h. 

In the laboratory I ml of sterile saline was added to the'sponge and 

the bottle was then attached to the top socket of a sterile Hemmings 

filter apparatus (R. B. TurnerEast Finchley, London) which was without a 

filter pad and which carried an empty 5 ml bijou bottle on the lower 

socket. The assemblies were centrifuged at 250 9 for 10 min; during the 

centrifugation the sponge was compressed against the central perforated 

plate of the Hemmings apparatus and its contents were expelled into the 

lower bottle, collecting as a deposit and a clear supernatant. The super- 

natant was removed with a pasteur pipette and stored at -200C for immuno- 

logical analysis (Ackers et al., 1975). 

The deposit was suspended in 0.2 ml of LTM and inoculated through the 

cap into a 15 ml bottle of LTM and incubated at 37 C. A small sample of 

the deposit, approx 0.01 m-14 was retained and placed on a microscope slide 

under a coverslip to make a wet preparation for an immediate microscopical 

examination for the presence of T. vaginalis. 

The wet preparations were examined under the 40x phase contrast 

objective of a wild light microscope and a record was made of the presence 

or absence of T. vaginalis, epithelial cells and leucocytes, using the 

following arbitrary scale: 

For T. vaginalis: 0= no trichomonads seen; 11 trichomonad per field; 



50 

2=1 to 2 per field; 3=3 to 4 per field; 4=4 per f ield. 

For epithelial. cells and leucocytes: 1=a few cells per field; 2= many 

cells per field; 3= cells almost confluent. 

After examination the coverslips were removed and the wet films were 

allowed to dry at room temperature, and stored for reference. 

The inoculated cultures were incubated for 7 days and examined daily 

for indicator colour change signifying an infected culture. The presence 

of trichomonads in cultures changing colour was confirmed by light micro- 

scopy of a sample. Most positive cultures were detected within 3 days; 

cultures still negative after 7 days as judged by no colour change were 

discarded. 

The trichomonads were harvested in the late logarithmic or 

stationary phase of growth at a density of between 7.5 x 105 and 1.5 x 10 
6 

cells per ml (Heath, 1972) by centrifugation at 250 g for 10 min. The 

pelleted organisms were resuspended in 1 ml of fresh LTM and cryopreserved 

for subsequent use. (see 2-3). 

T. vaginalis was isolated from 42 vaginal secretions out of 508 

examined in the above manner. Some clinical and laboratory details of each 

stock ofIT. vaginalis are given in Table 3- 

The two main modifications that were made to the isolation technique 

described by Robertson et al. (1969) and which were used in this study 

were: 

The use of smaller pieces of sponge, 20 x5x5 mm compared to 

40 x 10 x 10 mm, which were easier to fit into the 5 ml bijou 

bottles of the Hemmings apparatus. 

2) The inoculation of the whole deposit into one 15 ml bottle of LTM 

instead of two 5 ml bijou bottles, in order to have larger numbers 

of organisms in positive cultures for cryopreservation. 

2.2.2 RK_13 epithelial cells 

RK 13 rabbit kidney tubule epithelial cells were obtained from Gibco 
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BioCult Ltd., Glasgow. 

2.3 Cryopreservation of T. vaginalis 

The majority of the stocks of T. vaginalis were cryopreserved for 

use in experiments at a later date. Cryopreservation preserved the in- 

herent level of pathogenicity of T. vaginalis as judged by the severity 

of infections in mice (Ivey, 1975). 

The technique used is a routine procedure in the Department of 

Medical Protozoology, LSHTM, and was developed by Lumsden, et al. (1966) 

and Lumsden, Herbert and McNeillage (1973). A suspension of T. vaginalis 

in fresh LTM was cooled to O'C in an ice bath. 0.2 ml of the suspension 

was mixed with 0.8 mi of 12.5 per cent v/v dimethyl sulphoxide in LTM. 

This mixture was then dispensed into sterile capillary tubes which were 

then sealed at each end with a microburner. The volume of suspension in 

each tube was about 20 lil. The tubes were placed in methanol at room 

temperature and the methanol was then cooled on dry ice to -790C in an 

insulating jacket of polystyrene for 24 h and then stored in liquid N2 at 

-196'C. 

Each stock of T. vaginalis was given a LUMP (London University Medical 

ProtozoolOgY) code number and the details of the stock, i. e. date of 

isolation, length of time in culture before cryopreservation, concentration 

of organisms in the tubes and the total number of tubes frozen, were 

recorded (Table 3)- 

2.4 Infection of RK 13 epithelial cell cultures with T. vaginalis 

2.4.1 Stocks of T. vaginalis used 

In all 42 separate stocks of T. vaginalis were available for use in 

these experiments but since I had neither the time nor the resources to 

test each stock for its pathogenicity in epithelial cell cultures, only 

the following randomly-selected stocks were used: LUMP Nos 8661 873,889, 

896. No qualitative differences were found in the behaviour of these four 
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stocks in the call cultures and for this reason the data obtained from 

experiments with these stocks of T. vaginalis have been pooled. The 

relative merits of this approach are discussed later (Section 4.1.2). 

2.4.2 Medium used in T. vaginalis-infected cell cultures 

Preliminary experiments showed that T. vaginalis would not multiply 

in Medium 199 which was used for the maintenance of the epithelial cell 

cultures (see Christian et al., 1963, md Kulda, 1967, who also noted the 

inability of standard tissue culture medium to maintain growth of T. 

vaginalis). However a mixture of two parts LTM to one part Medium 199 was 

found suitable and did not have any adverse effects on either T. vaginalis 

or the epithelial cells over the experimental periods. The pH of the LTM/ 

M199 mixture was 6.8. 

2.4.3 Procedure 

The culture medium of 3 or 4 day old epithelial cell cultures was 

decanted and replaced with the LTM/Migg mixture culture medium containing 

2x 105 T. vaginalis; the total volume of the culture medium depended on 

the vessel in which the cells were grown (see 2.1.4). The cultures were 

incubated at 57'C for the duration of the experiments. Parallel control 

cell cultures without T. vaginalis were set up using the LTM/M199 mixture 

or M199 alone as culture media. Generally 10 to 20 epithelial cell cultures 

were infected with T. vaginalis in any one experiment and these were fixed 

at varying intervals from I to 36 h post-infection for microscopical examina- 

tion. Changes in the pH of the medium of the infected cultures over the 

experimental period of 36 h were monitored by measuring the pH of the de- 

canted medium from cultures fixed for microscopical study. 

2.5 Light microscopical techniques 

2.5-1 T. vaginalis-infected cell cultures 

Living cultures 

Living T. vaginalis-infected. cell cultures were removed from the 
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incubator and observed for a few minutes on an inverted microscope with 

phase contrast optics. For the first 6h of infection, observations were 

made every 30 min; from 6h until 36 h post-infection, every 2 to 3 hours. 

The start-times of experiments were staggered so that all phases of the 

infections could be examined during normal working hours. 

2-5-1.2 Fixed cultures 

The call cultures'were fixed for light microscopical examination at 

varying intervals. The fixation procedure was as follows: 

1) The culture medium was carefully decanted from the vessels. 

2) The cultures were fixed in either absolute methanol for 1 min. or in 

5 per cent v/v glutaraldehyde in 0.066 M sodium cacodylate buffer pH 

7.21 for 5 min. Both fixatives gave satisfactory preservation of 

detail. 

3) The cultures were stained in 10 per cent Giemsa stain in phosphate 

bufferg pH 7.2 for 10 min., air dried and embedded in Euparal Vert 

mounting medium on a slide. 

Photomicrographs were taken on Kodak Pan-X 35 mm film using a Zeiss 

photornicroscope. 

2-5.2 Studies on the morphology and motility of T. vaginalis on glass 

coverslips. 

2-5.2.1 Observation chamber 

An observation chamber was constructed from two coverslips placed 

either side of a 20 mm diameter hole in a stainless steel slide 75 x 35 x 

1 mm. A 32 mm. 
2 

glass coverslip was fixed over one side of the hole with 

silicone grease. A suspension of T. vaginalis in LTM, containing approxi- 

mately 1x 104 organisms per ml, was placed in the chamber. A second 

coverslip was sealed over the exposed side of the hole with paraffin wax, 

taking care to exclude air bubbles to ensure anaerobic conditions. The 

completed chamber was incubated horizontally at 37'C for 4h to allow the 

trichomonads to settle on and attach to the coverslip on the lower side of 
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the chamber. 

2.. 5.2.2 Photomicroscopical techniques 

The observation chamber was removed from the incubator, inverted and 

placed on the stage of a Zeiss photomicroscope which was equipped for phase 

contrast, Nomarski and interference reflection light microscopy. The 

chamber was maintained at 37'C with an air curtain incubator. 

Phase contrast and Nomarski differential interference contrast micro- 

graphs of the morphology and motility of T. vaginalis were taken of those 

organisms which remained adherent to the upper coverslip of the chamber 

after inversion. 

The attachments to the Zeiss photomicroscope used for interference 

reflection (IR) microscopy consisted of a mercury-arc epi-illuminator from 

which the 546 imn line was isolated with a filter. A 40x oil immersion 

objective, numerical aperture 1.0, was used. 

As the motility of the trichomonads led to distortion of the image 

during exposure, the parasites were fixed before IR photography. The 

chamber was disassembled and the coverslip to which the trichomonads were 

adherent was immersed in glutaraldehyde fixative (see 2.6.1.1) at room 

temperature for 10 min. The chamber was reassembled and filled with 

cacodylate buffer. 

Photomicrographs were taken on Kodak Pan-X 35 mm film. 

2.6 Electron microscopical techniques 

2.6.1 Transmission electron microscopy (TEM) 

Standard fixation and embedding procedure 

The culture medium of the T. vaginal is-inf ect ed cultures was carefully, 

so not to dislodge any trichomonads, decanted from the incubation vessels 

and the cultures were processed for TEM as follows: 

1) Fixed in 3 per cent v/v glutaraldehyde in 0.066 M sodium cacodylate 

buffer pH 7.2 at VC for 1 h. 
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2) Washed in cacodylate buffer for 30 min. at 4'C. 

3) Post-fixed in 1 per cent osmium tetroxide plus 4 per cent sucrose 

in cacodylate buffer at room temperature for 1 h. 

4) Washed in buffer for 10 min. 

5) Stained in 0.5 per cent uranyl acetate in 10 per cent ethanol for 

30 min. 

6) Dehydrated in ascending concentrations of ethanol, 50,70,80,90, and 

100 per cent, 10 min. each. 

7) Washed in toluene 30 min. 

8) Embedded in Araldite and polymerised for 2 days at 600C. 

The same procedure was used for TEM of uninfected epithelial cell 

cultures and axenic cultures of T. vaginalis. Monolayers of RK 13 cells 

were embedded in situ. Suspensions of trichomonads were embedded in I per 

cent agar after fixation and then handled as tissue pieces through the sub- 

sequent processing. 

After polymerisation the embedded cultures were examined on a light 

microscope; sometimes phase contrast micrographs were taken of the embedded 

cells and trichomonads before sectioning. Areas of the cell monolayer 

selected for EM were removed from the glass substratum by boring around the 

selected area with a microscope attachment described by Bird and Chapman 

(1977). The resulting plug of Araldite containing the cells was easily 

detached from the coverslip by cooling the plug with solid CO 
20 The 

Araldite plug was glued to a perspex rod with cyanoacrylate adhesive and 

placed on an ultramicrotome. 

Gold and silver coloured sections, 50 to 80 nm. thick, were cut from 

the blocks on a Huxley Mk I ultramicrotome using glass knives. The 

sections were picked up on formvar-coated 100 mesh, 3 mm copper grids; 

sections were stained with lead citrate (Venables and Coggeshall, 1965) 

for 5 min and then examined in either a Zeiss EM9AS or a AEI/GEC EM6B 

electron microscope at 60 kV.. 
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2.6.1.2 Ruthenium red (RR) stainLnZ 

Some infected cell cultures were stained with RR prior to TEM. The 

fixation procedure was as above (2.6.1.1) except that 0.01 per cent v/v 

ruthenium red was included in both the glutaraldehyde and osmium fixatives. 

The effects of a preliminary washing in salts solution and of 

neuraminidase on the staining of T. vaginalis with RR was tested in the 

following way. T. vaginalis was harvested from culture and washed 4 times 

by centrifugation and resuspension in sterile salts solution (for recipe 

see 2.1.1). The final pellet of T. vaginalis was resuspended in 6 mi of 

phosphate buffered 0.9 per cent sodium chloride, pH 7.2, and divided into 

3 aliquots of 2 ml, each containing 1.2 x 107 organisms, which were then 

treated in one of the following ways: 

1) Incubated with 50 U per ml of neuraminidase (BDH Ltd) at 37'C for 30 

min. 

2) Incubated as (1) without enzyme. 

3) Untreated. 

At the end of this period the trichomonads were checked for viability 

using motility as the criterion; in each of the 3 aliquots more than 99 

per cent of the cells were motile. The organisms were then centrifuged at 

500 9 for 5 min and the pelleted trichomonads were fixed and processed for 

transmission electron microscopy (see 2.6.1.1) with the inclusion of 0.01 

per cent v/v ruthenium red in both glutaraldehyde and osmium fixatives. 

2.6.1.3 Cytochemical localisation of acid phosphatase in T. vaginalis 

T. vaginalis-infected cultures of RK 13 cells were processed for the 

cytochemical localisation of acid phosphatase using the following method 

(Venkatesen, 1973): 

Solutions used: 

1.0.2 M acetate buffer pH 4.85. 

2. Substrate medium: 

0.2 M acetate buffer pH 4.85 



57 

Cytidine monophosphate (C 
5 MP) (BDH Ltd) 10 mg (omitted in controls) 

2M sucrose 1.0 ml 

0- 79 M' ýIa' '12 0.5 ml 

0.075 M PbNO 3 o. 6 ml 

Add reagents in order. Filter and preincubate for 30 min at 37'C 

before use. 

3- 3 per cent glutaraldehyde in 0.066 M sodium cacodylate buffer pH 7.2. 

4. Pre-incubation washing buffer: 0.066 M cacodylate +0.25 M sucrose, 

pH 7.2. 

5. Post-incubation washing buffer: 0.5 M acetate +0.25 M sucrose, pH 4-85. 

6.1 per cent tetroxide in 0.066 M cacodylate buffer containing 4 per 

cent sucrose pH 7.2. 

Procedure: 

1. Fix the cultures in glutaraldehyde at OOC for 30 min. 

2. Rinse in pre-incubation washing buffer at OOC for 10 min. 

3- Incubate in the substrate medium for 30 min at 370C- 

4. Rinse in acetate buffer at O'C for 30 min. 

5. Post-fix in osmium for 1h at O*C. 

6. Dehydrate in ascending concentrations of alcohol and embed in Araldite 

(see 2.6.1.1). 

Controls were incubated in the substrate medium without the substrate 

C5 MP. 

2.6.2 Scanning electron microscopy (SEM) 

The preparation and fixation of the infected cell cultures for SEM 

was as for TEM up to step 4 (see 2.6-1.1). After washing in buffer the 

cultures were dehydrated in ascending concentrations of acetone, 50,70, 

80, go, 100 per cent, 10 min each. The culturest in 100 per cent acetonej 

were then placed in a critical point drying apparatus, infiltrated with 

liquid carbon dioxide and critical point dried (Anderson, 1951). The 

coverslips were then broken into smaller pieces approximately 10MM2 in 



58 

area, glued to stubs, coated with a 40 nm thick layer of gold and examined 

in a Cambridge Stereoscan S4.10 scanning electron microscope operating at 

20 U at a tilt angle of 45'- 

2.7 Enzyme assays on T. vaginalis 

2.7.1 Introduction 

Qualitative and semi-quantitative biochemical assays were performed 

on homogenates of T. vaginalis in order to detect the presence of the 

enzymes acid phosphatase, P-glucuronidase and neuraminidase in the cyto- 

plasm of the organism. 

2.7.2 Preparation of homogenates--of T. vaginalis 

Pellets of living organisms were obtained by centrifugation from LTM 

cultures of T. vaginalis; the pelleted organisms were resuspended in 

either 0.25 M sucrose or in a buffer appropriate for the particular 

enzyme assay (see below). The various cytoplasmic fractions of T. vaginalis 

assayed for enzyme content, and the methods used to prepare them are set 

out in the flow charts below (2-7.2-1). The organisms were lysed either 

by rapidly freezing the suspension to -79'C in a bath of methanol con- 

taining solid CO 
2 

followed by rapid thawing to room temperature, and/or 

by homogenisation in a Waring blender equipped with a Teflon pestle at 

300 rpm for 2 min. at OOC. 

Counts of organism density in the pellets were made with a haemocyto- 

meter. The protein concentration of some of the cytoplasmic fractions was 

determined by a Folin assay (Lowry, Rosebrough, Farr and Randall, 1951). 
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2.7.2.1 Flow chart showing the sequence of techniques used to obtain 

cytoplasmic fraction of T. Vaginalis, and the enzyme assays 
performed on each fraction. 

A. Acid-P-hosphatase: 

Pellet of living T. vaginalis 

Suspend 
A 

ml 0.25 M sucrose repeat Homogenise in blender. 
twice Centrifuge 00 g 10 min. 

Pooled supernatants containing Sediment containing unbroken 
particles cy osol rcells and nuclei 

(discarded after final step) 

-centrifuge 105,000 g 

)F 
1h 

Sediment = Particle fraction Supernatant = Cytosol 
Assay: ACID PHOSPHATASE 

Suspend i3 ml 0.25 M sucrose 
Divide into 2 parts. 

Add 1 drop Triton X-100 
Assay: ACID PHOSPHATASE Homogenise in blender 

centrifuge 10_5,000 g 
10 Min. 

Supernatant = Solubilised 
particle. fraction 
Assay: ACID PHOSPHATASE 

P-Glucuronidase 

Pellet of living T. vaginalis 

Suspend iý3 ml 0.2 M acetic 
acid/NaOH buffer pH 5.0. 
Freeze/thaw 4 times. Homogenise 
blender with 1 drop Triton X-100. 

centrifuge 105,000 
10 min. 

Is 

Sediment (diScarded) 

in 

g 

Supernatant = Cytosol + Solubilised 
particle fraction. 
Assay: P-GLUCURONIDASE 
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C. Neuraminidase 

Pellet of living T. vaginalis 

-4-. Suspend in 3 ml 0.2 M acetate 
buffer pH 6.1 
Freeze/thaw 4 times 
Divide into 2 parts 

centrifuge 105,000 9 
Add 1 drop Triton X-100 1h 

Supernatant = Cytosol 
Assay: NEURAMINIDASE 

-centrifuge 105,000 g 
10 min. 

Is 0? Supernatant = Cytosol + solubilised 
particle fraction. 
Assay: NEURAMINIDASE 
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2.7.3 Assay for acid phosphatase (Venkatesan, 1973) 

Solutions used: 

1.0.25 M sucrose. 

2.0.2 M acetate buffer pH 5-0. 

3- 0.4 M glycine/NaCl/NaOH buffer pH 10-0. 

0.025 M paranitrophenol-phosphate (Pnp) (Calbiochem Ltd. ) in 0.2 M 

acetate buffer pIl 5.0. 

5 per cent trichloroacetic acid. 

The T. vaginalis fraction to be assayed for acid phosphatase. 

Procedure: 

1.0.5 ml of fraction was added to 0.5 ml PnP solution and incubated in 

a water bath at 37*C for 10 min. 

2.2 ml of 5 per cent trichloroacetic acid was added to terminate the 

reaction. 

3.1 ml was removed from the reaction tube and added to 2 ml of glycine 

buffer. 

The absorption at 435 nm was determined on a spectrophotometer. The 

results were compared with a standard curve constructed from the 

absorbances of a set of standards of known concentrations of para- 

nitrophenol ranging from 20 to 100 nM. 

A set of controls was run simultaneously: a) with T. vaginalis 

fraction replaced with 0.5 ml of sucrose solution, and b) with the 

Pnp solution replaced with acetate buffer. 

2.7.4 Assay for P-glucuronidase (Fishman, 1974). 

Solutions used: 

1.0.2 M acetic acid/NaOH buffer pH 5.0. 

2.0.04 M para-nitrophenol-P-D-glucuronide. (PnpG) 

3- 0.4 M glycine/NaCl/NaOH buffer pH 10.0. 

4. A solution of the T. vaginalis fraction to be assayed for 

glucuronidase. 
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Procedure: 

1.0-5 ml of the fraction was added to 1 ml acetic acid/NaOH buffer 

PH 5.0,0.5 ml of PnpG and 2 ml of water. 

2. The mixture was incubated at 37'C for 2h and then the reaction 

terminated by the addition of 2 ml glycine buffer. 

2 ml samples were removed and the absorbance at 435 nm was read in 

a spectrophotometer and the results compared with a standard curve 

constructed from the absorbances of a set of standard solutions of 

paranitrophenol ranging from 20 to 100 nM. 

A set of controls was run simultaneously a) without T- vaginalis 

fraction, b) with T. vaginalis fraction boiled for 10 min, C) without 

PnPG and d) without both fraction and PnpG. The latter was used to 

establish the baseline in the spectrophotometer. 

2.7.5 Assay for neuraminidase and sialic Aci_d (Aminoff, 1961 . 

Solutions used: 

1.0.025 M periodic acid in 0.125 NH2 so 4 pH 1.2. 

2.2 per cent sodium arsenite in 0.5 N HC1. 

0.1 M 2-thiobarbituric acid, adjusted to pH 9 with 2N NaOH- 

Butan-l-ol containing 5 per cent 12 N HC1. 

0.2 M acetate buffer pH 6.1. 

Collocalia sialomucoids (gift of Dr. J. P. Ackers) containing 10-12 

per cent sialic acids. 

Solution of T. vaZinalis fraction to be assayed for neuraminidase 

Procedure: 

1. Into the incubation tubes was placed 0.5 ml of acetate buffer, 1 ml 

of an aqueous solution of 0.1 per cent w/v Collocalia sialomucoids 

and 0-5 ml of T. vaginalis fraction. 

The mixture was incubated at 37'C for 30 min. 

3. After incubation 0.5 ml was removed and added to 0.25 ml of periodate. 

This mixture was incubated for 30 min in a water bath at 37'C. 
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1[* 0.2 ml sodium arsenite was added. 

5- When the yellow colour of iodine had disappeared, 2 ml of thiobarbi- 

turic acid were added. 

6. The mixture from 5 was placed in a boiling water bath for 7.5 min. 

7. Cool in an ice-water bath for 5 min. 

8.5 ml acid butanol were added and the tubes shaken vigorously. 

9.2 ml of the acid butanol was removed and the absorption at 549 nm was 

read on a spectrophotometer. The molar extinction of the chromogen 

at 549 nm is 70.7 X 10 
3 

and the extinction is directly proportional to 

the concentration of N-acetylneuraminic acid in the samples after 

incubation. The concentration of neuraminidase in the T. vaginalis 

fraction can thus be expressed in terms of the number of nmoles of 

N-acetylneuraminic acid released per min at 37'C. 



64 

RESULTS 

3-1 Light microscopical studies on T. vaginalis-infected RK 13 epithelial 

cell cultures 

3-1-1 Introduction 

The general characteristics of the infection of 3-day-old RK 13 

epithelial cell cultures with 2x 105 T. vaginalis were obtained from 

light microscopical observations on more than 80 living and fixed cell 

cultures. These studies enabled me to isolate the more important features 

of the infection which were subsequently examined in greater detail in the 

electron microscopical and morphology/motility studies that are described 

later (Sections 3.2,3.3 and 3-4). 

3.1.2 Epithelial cell cultures - controls 

The appearance of a typical 3-day-old culture of RK 13 epithelial 

cells is shown in Figure 2. After 3 days in culture the cells form a 

continuous sheet of polygonal cells; most of the cells had a single nucleus 

but bi- and multi-nucleate cellswere sometimes present. Once the cells had 

formed a confluent sheet, or monolayer, multiplication of the cells ceased 

and no mitosing cells were seen. Many of the cells possessed empty cyto- 

plasmic vacuoles, 5 to 30 gm in diameter, which may have been a symptom 

of in vitro culture. The surface morphology and the fine structure of the 

epithelial cells are illustrated in Figures 19,47,48 and 49 and will be 

described later in the relevant sections. 

3.1.3 Epithelial cell cultures infected with T. vaginalis 

The progression of the events which occurred following the inoculation 

of 2x 10 5 T. vaginalis into 3 to 4 day old epithelial cell cultures was 

seen to be made up of 5 sequential phases. The duration and the signs of 

these phases were: 

Phase 1: 0 to 2h post-inoculation; aggregation of T. vaginalis and 

adhesion of the organisms to the cell monolayer. 



65 

Phase 2: 2 to 6h post-inoculation; first appearance of cell-free 

areas, or lesions, in the monolayer. 

Phase 3: 6 to 10 h post-inoculation; enlargement of the lesions to 

about 10 per cent of the area of the cultures. 

Phase 4: 10 to 24 h post-inoculation; coalescence of the lesions. 

Phase 5: 24 to 36 h post-inoculation; cell monolayers totally 

destroyed. 

The behaviour of the parasites and the pathological changes in the 

cell monolayer during each phase are described below. 

Phase 1. 

Within 30 min. of the addition of the parasites to the cell cultures, 

most of the organisms had settled out of suspension under gravity and were 

swimming actively over the upper surfaces of the cells. After one hour's 

infection many of the organisms aggregated into large clumpsi 100 to 200 4m 

wide, which comprised of up to 200 individuals (Fig- 3)- It was clear that 

at this time the clumps were formed by the aggregation of many individuals, 

however at later stages of the infection aggregates may have aris&n or 

increased in size following the multiplication of small groups of organisms, 

the resulting daughter organisms remaining within the parental clump. The 

aggregates were commonly surrounded by single organisms and smaller groups 

of trichomonads (Fig. 3). By this time the organisms, whether aggregated 

or not, lay almost motionless on the cell monolayer and gentle agitation 

of the culture vessel showed that they were sticking to the surfaces of 

the cells. However if the cultures were shaken vigorously the trichomo- 

nad. -- could be detached from the cells; the cells on the other hand were 

not detached from the coverslips in this manner, showing that the adhesions 

of the cells to the glass coverslips were stronger than those of the para- 

sites to the cells. Although the organisms were sticking to the monolayer, 

their flagella and undulating membranes were still actively beating in the 

culture medium. Sometimes the organisms were seen to be adhering to the 
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cells by their axostyles. During this first phase of the infection no 

morphological changes were seen in the cell cultures; the appearance of 

small areas of cell lysis marked the beginning of the second phase. 

Phase 2. 

After about 2h infection the first signs of damage to the cell 

monolayer were observed. Small cell-free areas, or lesions, appeared 

beneath or to one side of the aggregates of organisms which adhered to 

the monolayer (Fig. 4). Initially these lesions were not more than 50 to 

100 Jim wide but during the next 4 hours they doubled in width. No lesions 

were seen beneath smaller clumps or individual T. vaginalis and neither 

did the unparasitised areas of the monolayer contain lesions (Fig. 4). As 

the lesions widened so the aggregates of T. vaginalis, flattened and spread 

on to the exposed glass coverslips, marking the third phase of infection. 

Phase 3. 

By 6h infection most of the aggregates of T. vaginalis had flattened 

into lesions and had spread out leaving cell- and parasite-free areas of 

the substratum (Fig. 5). During this phase the monolayer was dotted with 

lesions and about 10 per cent of the area of the cell monolayers was des- 

troyed by the trichomonads. By using high power phase contrast microscopy 

of fixed, unstained cultures it was possible to see in some detail what 

was occurring in the lesions. 

Figures 6 and 7 shows typical lesions in the monolayer. The centres 

of the lesions were frequently free of cells and parasites. Most of the 

parasites were found pallisaded, sometimes two or three d3ep, against the 

edges of the cells bordering the lesions from where the parasites burrowed 

underneath the cells; the organisms were often seen lying either partly or 

totally beneath intact areas of the monolayer (Fig. 6). Many of the 

organisms were amoeboid in shape and closely flattened on the coverslips. 

The enlargement of the lesions was due to the outward migration of the 

trichomonads lining the edges of the lesions; this migration occurred 
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mainly under the cell monolayer where the organisms had pushed themselves 

between the coverslip and the lower surfaces of the cells so lifting them 

away from the substratum. When relieved of some of their adhesions to the 

glass the normally polygonal epithelial cells often became elongated 

leaving long cytoplasmic processes, or retraction fibres, projecting out 

into the lesion (Fig. 7). This centripetal retraction of the epithelial 

cell cytoplasm was probably an important factor in the initial establish- 

ment of the lesions during phase 2; by causing the cells beneath them to 

retract, exposing the underlying substratum, the aggregates of T. vaginalis 

would have been able to flatten on the substratum and start migrating under 

the monolayer. As the parasites moved outwards they lysed the cells with 

which they were in contact; lysed cells often showed an increase in phase 

contrast of the cytoplasm and nuclei, and the latter were pyknotic (Figs. 

6 and 7). 

The unparasitised areas of the monolayer lying between the lesions did 

not appear affected by the trichomonads; pathological changes were res- 

tricted to the cells bordering the lesions and in contact with the para- 

sites (Figs. 6,7 and 8) suggesting a very local pathological effect of 

the organisms on the cell monolayer. The pH of the incubation medium at 

the end of Phase 3, i. e. about 10 h post-infection, had changed to 6.5 

(from 6.8 at time 0 h) so it was unlikely that an increase in acidity of 

0-3 units could have contributed to the lysis of the epithelial cells. 

As the lesions grew, so adjacent lesions started to coalesce marking 

the next phase. 

Phase 4. 

From about 10 to 24 h post-inoculation the lesions continued to en- 

large as the parasites moved outwards and left large areas of the cover- 

slips devoid of cells (Fig. 8). The organisms removed the tracts of cells 

between adjacent lesions linking them up into larger and larger lesions. 

No differences in the behaviour of the parasites was noted in this phasei 
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they still adhered readily to both the cells and to the substratum, 

however there were also numerous organisms swimming freely over the 

lesions and intact areas of the monolayer and these were found in the 

decanted culture medium when the cultures were fixed for microscopy. By 

24 h about 50 per cent of the cell monolayer was destroyed. 

Phase 

During a period 24 to 36 h post-inoculation of the cell cultures 

with T. vaginalis the majority of the remaining cells were completely 

destroyed; only a few islets of cells remained attached to the coverslips, 

surrounded by many T. vaginalis (Fig. 9). The culture medium contained 

the debris of lysed cells and small sheets of abnormal cells. The damage 

to the cell cultures during this final phase was probably not due entirely 

to the action of the parasites but partly due to acidic conditions and 

medium exhaustion. In the majority of cultures the pH of the medium was 

4.5 to 5.0 and the parasite density was 1.0 to 2.0 x 10 
6 

organisms per ml. 

3.1.4 Summary of results 

These results showed that when T. vaginalis is introduced into 

epithelial cell cultures the pathological changes in the cultures occur 

initally in small areas, i. e. the lesions, and that these damaged areas 

increase in size as the infection progresses. Thus the pathological 

effects of T. vaginalis on the cultures are discrete and do not affect all 

the cells at the same time. The two main factors in the formation of the 

lesions were the aggregation of the parasites and the adherence of the 

aggregates to the monolayer of cells, and to the coverslips once a lesion 

had formed. From then on the lesions enlarged by the destruction of the 

cells lining the lesions and with which the parasites were in contact. The 

epithelial cells lying within the intact areas of the monolayer between the 

lesions were unaffected by the presence of T. vaginalis in the cultures. 

The enlargement of the lesions was to a large extent due to the ability 

of the trichomonads to adhere to the glass coverslips and to migrate in an 
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amoeboid manner under the cells at the edge of the lesions. Therefore 

each lesion contained all the elements of the infection, which were the 

adhesion of T. vaginalis to other parasites, and to the cells and glass 

substratum, migratory amoeboid forms of T. vaginalis and finally epithe- 

lial cells undergoing various stages of attack from the parasites. 

For these reasons, and to exclude as far as possible the effects of 

a changing acidity in the culture medium, the lesions produced after 6h 

of infection were selected for further study by electron microscopy. For 

both the TEM and SEM studies, larger areas of RK 13 cell monolayers were 

used (see 2.1-4) but in both cases the standard inoculum of 2x 105 T. 

vaginalis, was used. These small differences in the experimental techniques 

had no bearing on the behaviour of T vaginalis or on the formation of 

lesions in the monolayers. 

3.2 Scanning electron microscopy of T. vaginalis-infected RK 13 cell 

cultures. 

3.2.1 Introduction 

Scanning electron microscopy (SEM) was used in order to understand 

the three-dimensional aspects of the interaction of T. vaginalis. and 

epithelial cells. In particular this part of the study revealed the 

morphological specialisations of T. vaginalis as it adhered to and moved 

on the glass substratum and the cell monolayer and so complemented the 

motility studies which are described later. 

3.2.2 External morphology of amoeboid T. vaginalis 

3.2.2.1 Shape 

In general the shape of the amoeboid T. vapinalis, whether adhering 

to the glass or to epithelial cells, was of two kinds, rounded with one 

large pseudopodium or elongated with several small pseudopodia. Figs. 10 

and 11 illustrate the rounded shape; both organisms have a rounded an- 

terior mass from which the flagella and undulating membranes project and 

which extends up into the medium away from the substratum. These trichomo- 



0 

70 

nads have extended a single broad flat pseudopodium from their posterior 

poles and with which they adhere to the substratum. Although the upper 

(i. e. away from the substratum) surfaces of the pseudopodia of T. vaginalis 

were normally free of any surface projections their edges often possessed 

short thin projections, or filopodia, 0-5 ýLm in diameter and between 2 and 

5 ýLm in length, which were attached to the substratum at their tips (Fig. 

11). Fig. 12 shows the second type of shape which T. vaginalis, adopted 

when adhering to the substratum. The Figure shows two elongated or 

polarised organisms, which are stretched out along their anterio-posterior 

axes. Small pseudopodia project from the sides of the body, but in polari- 

sed organisms the pseudopodia and filopodia are mainly confined to the 

poles of the body (Figs. 12 and 28). Polarised organisms often had the 

central portion of the body lifted off the substratum and the catenary 

curves at the edges of these raised parts suggested that the organisms 

were stretched out between the adhesions of their peripheral parts to the 

substratum (Fig. 12). Filopodial extensions from amoeboid T. vaginalis 

were normally straight and since they were often only adhering to the 

substratum at their distal ends their straightness may have been due to 

tensions developed between the adhesive tips and the main body of the 

organism (Figs. 10,11). Occasionally groups of several organisms adhered 

to the substratum forming confluent sheets with their pseudopodia (Fig. 13)- 

3.2-2.2 External features 

The plasma membrane of T. vaginalis is generally fairly smooth over 

the pseudopodia but more wrinkled over the body (Figs. 10,11). Some of 

the wrinkling may be partly due to the collapse of the membrane on sub- 

membraneous structures during specimen preparation. Small pits, 0.1 um in 

diameter, were occasionally seen in the membrane and may be the openings 

of pinocytotic vesicles in the process of formation (Fig. 26). 

Figures 14 to 17 show the arrangement of the anterior flagella and 

undulating membrane at the anterior pole of T. vaginalis. Hitherto these 



71 

structures have not been examined in detail by SEM. The four anterior 

flagella, the fifth recurrent flagellum and the undulating membrane (UM) 

emerge from the ant. erior pole in a shallow depression of the body which I 

shall refer to as the flagellar pocket (Fig. 15). This pocket is not 

always seen in TEM studies of cultured T. vaginalis (Nielsen et al., 1966) 

and so it is an open question whether the pocket is a permanent structure 

or only arises as a result of pseudopodial protrusion of the cytoplasm 

around the point of emergence of the flagella and UM. 

The anterior flagella are 0.5 ýLm in diameter and about 10 ýtm long 

(Figs. 149 17). - The UM is a thin fold of cytoplasm about I jim wide which 

takes a sinuous course as it passes posteriorly down the body. The re- 

current flagellum is attached to the UM at a distance of 0.5 ýLm from its 

free edge (Figs. 14,15 and 16). -The UM and recurrent flagellum pass 

backwards down the body of T. vaginalis and terminate together (Figs. 14 

and 17)- 

The axostyle, which is so rarely seen completely in thin sections by 

TEM, projects from the posterior pole (Figs. 10,32). It is normally about 

5 11m in length and 0.5 ýLm in diameter when'it emerges from the body; the 

axostyle tapers to a point in its distal portion. 

3.2-2-3 Dividing forms of T. vaginalis 

Some examples of trichomonads in various stages of division were ob- 

served in the infected cell cultures and these are shown in Figures 10,17 

and 18. One of the first signs of division seen was the presence of two 

sets of flagella and two UMs (Fig. 10). Figure 17 shows a late stage of 

division in which a cleavage furrow is present lying longitudinally between 

two daughter trichomonads. It is clear from these figures that the fact 

that the organisms were adhering to a substratum did not inhibit division. 

Future students of the mechanisms of binary fission in T. vaginalis could 

take advantage of the ability of the organism to divide on a substratum; 

in this situation T. 
- 

vaginali_s could be fixed for fine structural examina-, 
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tion at any stage of division which the observer chooses. 

Figure 18 shows an abnormal dividing form of T. vaginalis; the 

organism has at least 5 separate sets of flagella. Such forms were 

rarely seen in cultured trichomonads and may represent degenerating 

vaginalis in which the mechanisms of cytokinesis are deficient. However 

this point merits further investigation. 

3.2-3 External morphology of RK 13 epithelial cell cultures 

In SEM the monolayer of RK 13 epithelial cells was seen as a con- 

fluent sheet of cells which were generally polygonal in shape and about 

20 to 50 11M in diameter (Fig. 19). The spaces between the cells were undoubtedly 

caused by the critical point drying process since they were not seen in the 

TEM studies (see Figs. 47,48,49). The dorsal surfaces of the cells are 

I 
covered with many microvilli (Fig- 33)- 

No morphological differences were apparent between the control cell 

cultures incubated in the Mlqq/LTM mixture and those incubated in M199 

alone over a period of 6 h, i. e. during the time the T. vaginalis-infected 

cell cultures were incubated. 

Uninfected monolayers of cells frequently contained smooth-surfaced 

spherical structures, about 3 ýLm in diameter, which were also found in 

parasite-infected cultures (Figs. 121 34); the nature of these objects 

could not be established. 

3.2.4 Morphology of the lesions in T. vaginalis-infected RK 13 cell 

cultures 

to 4 day old monolayers of epithelial cells were infected with 2x 

105 T. vaginalis for 6h and then fixed and the lesions produced in the 

monolayers were examined. 

A typical lesion is shown in Fig. 20. The infected monolayers were 

dotted with lesions which were surrounded by large areas of complete mono- 

layer to which a few aggregated and individual T. vaginalis were adhering 

(Fig. 20).. Much of the central regions of the lesions were devoid of 
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epithelial cells (Figs. 21 and 22); the few isolated cells that remained 

in the centres of the lesions were often rounded up and possessed long 

cytoplasmic fibres which remained attached to the substratum as their 

peripheral cytoplasm retracted towards the cell centre. (Figs. 21 and 31)- 

The epithelial cells lining the edges of the lesions were frequently more 

rounded and projected further up into'the medium than cells in the intact 

parts of the monolayer (Figs. 22 and 23, ) and some of the cells at the 

lesions' edges were lifted off the substratum (Fig. 22). 

In contrast however, some of the isolated epithelial cells and those 

lining the edges of the lesions instead of retracting, extended broad flat 

lamellar processes over the cell-free areas of the lesions (Figs. 23,24); 

this protrusive activity was presumably facilitated by the removal of 

neighbouring cells by the trichomonads so giving these cells extra sub- 

stratum over which-to spread. Thus it seems likely that the spreading of 

some of the epithelial cells was not a direct consequence of attack by T. 

vaginalis whereas the retraction of other cells may have been a sign of 

injury. 

The majority of: 
_. 
the trich. omo. nads wer, e fo=d within the lesions; few 

organisms were seen on the intact areas of the epithelial sheet which lay 

around the lesions. Some of the organisms were adhering to the exposed 

substratum either singly (Figs. 10,11 and 12) or in groups (Fig- 13) while 

others were adhering to the epithelial cells (Figs. 21,22 and 23). Almost 

all of the parasites showed some degree of pseudopodial activity giving 

them an amoeboid morphology. 

The exposed areas of the substrat= in the centres of the lesions 

provided the trichomonads with a surface to which they could adhere and 

move on in an amoeboid manner. The protrusive activity of amoeboid 

organisms at the edges of the lesions appeared to be at least partly res- 

ponsible for the lifting of epithelial, cells away from the substratum* 

Figures 249 25 and 26 show one such amoeboid I. vaEinalis which has extended 
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a large pseudopodium under a cell; the cell is lying above the substratum 

where it may have been pushed as the organism moved under it. 

Those T. vaginalis which adhered to the upper surfaces of the 

epithelial cells had a variable morphology; some were rounded (Fig. 27) 

and others were polarised (Fig. 28). Generally contact with the cells was 

made with the pseudopodia (Figs. 28,32 and 33) leaving the body of the 

trichomonad and its flagella and undulating membrane projecting away from 

the cell (Figs. 29 and 30)- Indeed, the flagella were rarely seen to be 

adhering to the cells; Figure 31 illustrates a single example in which the 

flagella of a parasite were looped around a retraction fibre of a cell. 

The axostyle of T. vaginalis was similarly not involved in the adhesion of 

the parasites to the epithelial, cells (Fig- 32). The pseudopodia of T 

vaginalis were normally in very intimate contact with the cells (Figs- 32 

and 33) and sometimes enmeshed with the microvilli of the cell (Fig- 33); 

parasites such as those shown in Figs- 32 and 33 appeared to have been 

crawling over the surfaces of the cells at the time of fixation. 

3.2-5 Pathological changes in the epithelial cells 

, It, was obviously not possible to, see what internal changes occurred 

within the cells by SEM but some, surface changes were seen in the epithelial 

cells which, may have been a sign of injury caused by the action of the 

trichomonads. One of these signs was the absence of microvilli on the 

surface of some cells which was only seen in cells to which T. vaginalis 

was adhering or lying adjacent to* Figure 34 shows two rounded epithelial 

cells one of which has lost most of its microvilli. 

The surfaces of many T. -vaginalis and of the epithelial cells in the 

lesions were covered with numerous vesicles and particles of variable 

sizes which were presumably released from lysed epithelial cells (Fig. 29). 

In Figure 34 the remains of a lysed cell are shown lying above a trichomonad. 

The full extent of the pathological changes within the cells is best seen 

in thin section by TEM and these changes are described in the next section. 
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3-3 Transmission electron microscopy (TEM) of T. vaginalis-infected 

epithelial cell cultures 

3-3-1 Introduction 

The lesions produced in the RK 13 cell monolayers 6h post- 

infection with T. vaginalis were ideally suited to a TEM study of the 

pathogenic mechanisms of the parasite. Because of the focal nature of 

the interaction of T. vaginalis and the monolayer, the many different 

stages of the interaction, from initial contact of trichomonad and cell 

to the lysis of the cells could be identified in each lesion. Figures 

351 36,37,38 and 39 illustrate the main fine structural features of 

T. vaginal_is which were described in the Introduction (1-7). The 

following sections deal firstly with the fine structural specialisations 

seen at the points of contact between individual trichomonads and bet- 

ween the organisms and the substratumq and secondly with the fine 

structure, of the contacts of T. vaginalis with the epithelial cells and 

the pathological changes that occurred in the cells as a result of their 

interaction with T. vaginalis. 

3-3.2 Specialised contacts between adjacent T. vaginalis 

, 
In the lesions the trichomonads were often tightly packed with 

large areas of their surfaces in close, and often parallelt apposition 

with a clear gap of about 50 to 100 nm between the apposed plasma mem- 

branes (Fig- 50)- In some of these areas specialised contacts, which 

may have been sites of adhesiong were seen between adjacent trichomonads. 

These were chiefly of two types. The first consisted of the reciprocal 

interdigitation of the cytoplasm of two trichomonads. The interdigita- 

tions were formed-from up to 10 thin pseudopodia, devoid of organelles 

but full of microfilamentous material, which made indentations up to 2 

ýtm long and 0-5 ýLm wide in the cytoplasm of the opposite trichomonad. 

(Fig. 40). The microfilaments within the interdigitations were often 

organised into bundles I to 2 ýLm in length which were oriented 
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perpendicularly to the opposite organism (Figs. 41 and 42). The 

apposed plasma membranes of the tricnomonads were generally separated 

by a clear gap of 20 to 50 = (Fig. 42). 

The second type of contact was seen in regions of close and parallel 

contact between two organisms and did not involve the formation of 

pseudopodia. These adhesions were about 1 I= in length; the apposed 

membranes were separated by a uniform gap of 75 nm. The extracellular 

space contained a central band of electron dense material lying parallel 

to the membranes which was traversed by filaments 5 to 10 nm thick. which 

passed from one membrane to the other (Figs. 43 and 44). 

3-3-3 Specialised contacts between T. vaginalis and tne- glass sub- 

stratum 

Much of the lower surface of many T. vaginalis, especially those 

lying beneath cells, was in close and parallel contact with the glass 

substratum (e. g. Fig- 51). The interface'of the glass coverslips with' 

the culture medium is marked by an electron-dense line, 5 to 10 = thick, 

which probably consists of serum proteins ads orbed by the glass (Fig. 

45). In some sections this line was absent, most likely because it 

remained attached to the glass when the Araldite blocks were detached 

(Figs. 51,52 and 53). Nevertheless it was still possible even in these 

cases to see that the closeness of contact of T. 
_vaginalis 

with the 

glass was similar to that between the cells and the glass. No cyto- 

plasmic specialisations were noted when the central part. of the body 

of T. vaginalis was lying in close contact with the substratum but the 

more peripheral parts which were generally in the form of pseudopodial 

extensions contained few cytoplasmic organelles except for a meshwork 

or matrix of microfilaments (Fig. 45). These pseudopodia were frequently 

lying within 30 nm of the substrýtum. The meshwork of microfilamentous 

material within the pseudopodia sometimes contained tracts or bundles of 

filaments oriented towards the tips of the pseudopodia where they 
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approached the substratum most closely (Figs. 45 and 46). 

3-3-4 Fine structure of the epithelial cell monolayer 

Figures 47 to 49 illustrate the salient features of the epithelial 

cells within the monolayer before infection with T. vaginalis,. The 

monolayer consists of a single sheet of cells with their lower surfaces 

closely applied to the substratum. The upper surfaces are covered with 

microvilli (Fig. 47). Small spaces occurred beneath the cells at the 

sides of thin lamellar cytoplasmic extensions (Fig. 48). The medium 

facing sides of the cells were joined laterally by'tight junctions; 

intermediate-type junctionsq commonly associated with an interdigita- 

tion of the adhering cells, were pr esent between the lower surfaces of 

the cells (Fig. 49). Many of the cells had a small number of I to 2 4AM 

diameter vacuoles (Fig. 47); in a few cells these vacuoles were much 

larger but since they were present in the cells prior to infection with 

T. 
_vaginalis 

they were probably a consequence of in vitro culture. 

However, following infection with T. vaginalis there was generally an 

increase in the number of these vacuoles in cells with adhering para- 

sites. 

3-3.5 General characteristics of the lesions in T. vaginalis-infected 

cell cultures 

Figures 50 to 54 illustrate the spatial relationships between T 

vaginalis and the epithelial cell monolayer in lesions present 6h post- 

infection. Figure 50 is a horizontal section, taken parallel to the 

substratumg through the edge of a lesion and shows numerous closely- 

packed organisms palisaded against epithelial cells at the lesion's 

edge; some of the parasites have an amoeboid shape. 

Vertical sections through the edges of the lesions showed that 

T. vaginalis frequently migrated a considerable distance under the 

complete parts of the monolayer at the edge of the lesions (Figs- 51 and 

52). This finding confirmed the earlier light microscopic observations 



78 
(see Fig. 6) in regard to the ability of T. vaginalis, to migrate under 

cells at the edges of lesions. This migratory activity of T. I vaginalis 

appears to be an important factor in detaching the cells from their 

substratum (Figs- 52 and 53). As Figures 511 53 and 54 show, when tne 

epithelial cells were lifted from their substratum they became thicker 

and more rounded and the number of microvilli on their surfaces in- 

creased as compared to their counterparts in the intact areas of the 

monolayer (Figs. 47 to 49). 

When the trichomonads were pýlisaded against. the cells or lying 

under the monolayer their flagella and undulating membranes (UM) were 

restricted to the small spaces between the organisms (Figs- 50 and 55); 

in these situations it seems unlikely that the flagella and UM could 

operate. normally to cause the translocation of the organisms thus the 

motility of T. vaginalis in the lesions must have been largely amoeboid. 

This possibility was supported by the finding of numerous pseudopodia 

in those T. vaginalis which lay beneath the monolayer (Figs- 55 and 

56). Of significance, with respect to, possible pathogenic mechanisms 

of T. vaginalis, was the discovery that the presence of many such 

pseudopodia_caused indentations of the cytoplasm of the epithelial cells 

and further, tziat in some instances the pseudopodia lay within 250 

of the cell nucleus (Fig. 56).. 

3-3.6 Contacts between T. 
_vaginalis 

and epithelial cells 

It was pointed out earlier that T. vaginalis readily adhered to 

botn the epitnelial cells and so the points of contact between T. 

vaginalis and the cells were examined in detail in order to understand 

how the parasite may, form adhesions witn tne epithelial cell surface. 

Broadly, two types of contact could be distinguished; "type 111 contacts 

involved little differentiation of the cytoplasm of T. vaginalis at the 

points of'contact, whereas "type 211 contacts occurred between the 

highly morphologically differentiated pseudopodia of the parasite and 

the epithelial cell surface. 



79 

Figures 57 and 58 show examples of type I contacts which are 

regions where the plasma membranes of the parasite and cell lie in 

parallel apposition for distances of 3 ýLm or more, separated by a 

space of 100 = or less. In some of these contacts there were only 

small points where the gap narrowed to about 10 - 20 nm (Fig. 57); 

in others the parasite and cell was separated by a gap of about 20 

over the whole length of the contact (Figs. 58 and 73). The cytoplasm 

of the trichomonads at the contacts appeared no different in structure 

or content from that elsewhere in the organismt' however numerous, 

vesicles 0.1 to 0-5 'ýLm in diameter were commonly found close to the 

contacts (Figs. 57 and 58). These-vesicles were similar in size to 

those associated with the Golgi body and may have been transporting 

digestive'enzymes to be released at the'points of contact. 

, Type 2 contacts are shown in Figures 59 to 64. These contacts 

varied in complexity from the close apposition of pseudopodia with a 

cell (Fig- 59) to the highly convoluted interdigitation of pseudopodia 

with similarly-shaped-processes from tne cell surface (Figs. 60,61 and 

62). Despite the difference in complexity, these contacts shared a 

fairly uniform 10 to 15 nm separation of the apposed membranes over 

much of the length of the contacts. In no case was the gap smaller 

than 5 nm and not once did I find conclusive evidence for the fusion of 

the plasma membrane of T. vaginalis with that'of the epithelial cells 

(Fig. 62). In many of the. type 2 contacts those pseudopodia of T.. 

vaginalis intimately surrounding finger-like processes from the epithe- 

lial cells appeared to be pinching off these parts of the cell cyto- 

plasm (Fig- 59). Sometimes there were 10 or more thin cell processes 

surrounded by T. vaginalis; Figures 60 and 61 show transverse and long- 

itudinal sectionst respectively, through such contacts. 

A common feature of all the pseudopodia seen in type 2 contacts 

was the presence of an''Iectoplasmic" layer at their periphery which 

extended for up to 2 jLm into the body of the triphomonads and excluded 



8o 

almost all of the cytoplasmic constituents; this layer was composed 

of a matrix of microfilamentous material. In this respect the 

pseudopodia were morphologically similar to those seen at the points 

of contact both between individual T. vaginalis (Fig. 42) and between 

T. vaginalis and the substratum (Figs. 45 and 46). The matrix consisted 

mainly of short filaments 5 to 10 nm in diameter and about 50 nm in 

length but within this matrix some longer filaments were often aligned 

into bundles (Figs. 60 and 63)s which sometimes pointed towards the 

tips of the pseudopodia. Similar filaments were found within the cyto- 

plasm of the epithelial cells (Figs. 49 and 62); the microfilaments of 

epithelial cells are known to be composed of F-actin (Dipasquale, 1975) 

so, at least on the grounds of purely morphological similarities, the 

microfilaments of T. vaginalis may also be composed of F-actin but this 

possibility was not examined further in this study. 

The difference between the types 1 and 2 contacts seen between T. 

vaginalis and the epithelial cells may have been largely temporal rather 

than absolute inasmuch as type I contacts may form as the trichomonads 

first encounter and adhere to the cells and then as the parasites become 

amoeboid, developing pseudopodia, and move into close apposition with 

the cells, type 2 contacts develop. The-latter contacts probably are, 

as a result of the interdigitation, mechanically stronger than the 

former, thus enabling the parasite to resist detachment more easily; 

additionally the type 2 contacts involve a much larger surface area of 

the cell against Which mechanical and chemical cytopathogenic factors 

from the organism ban be directed. 

3-3-7 Ruthenium red stained T. vaginalis-infected cell cultures 

Some of the infected cell cultures were stained with ruthenium red 

(RR) in order to investigate some of the cell surface components of T. 

vaginalis that may be involved in the adhesions with the epithelial 

cells* RR binds to acidic polysaccharides and glycoproteins, including 
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those containing sialic acid, and its small molecular size (1.1 nm 

diameber) enables it to penetrate into most adhesive junctions between 

biological surfaces except those involving molecular contact of the 

surfaces, e. g. tight junctions (Luft, 1971). 

Figures 65 and 66 show two T. vaginalis stained with RR. Most of 

the external surface of the plasma membranes of the parasite, and of 

the cells, is covered with a fairly uniform electron-dense deposit of 

RR-positive material varying from 10 to 50 nm in thickness; the staining 

is also present in the small spaces of the type 1 contacts between para- 

sites and cells. Figures 67 and 68 show high magnification views of 

contacts between, T. vaginalis and epithelial cells; RR-positive material 

covers the surfaces of both parasites and cells and is present between 

the points of closest approach of the apposed plasma membranes. In no 

case did I find that RR was unable to penetrate into and stain surfaces 

involved in either type I or type 2 contacts; this suggests that T. 

vaginalis did not form tight junctions with the cells since such junc- 

tions are impenetrable to RR (Luft, 19? 1). RR did not penetrate the 

cytoplasm of T. vaginalis but was able to enter cytoplasmic organelles 

which had an opening to the outside medium such as phagosomes or pino- 

cytosomes which were in the p. rocess of formation (Fig. 67). These 

results showed that there was some kind of acidic component of the plas- 

ma membrane of T. vaginalis in the cell culture. 

In order to ascertain whether the component(s) were an integral 

part of the surface of T. vagiýalis and not adsorbed from the culture 

medium or from lysed cells, cultures of T. vaginalis, were washed 

thoroughly in serum-free salts solution and then stained with RR. As 

a further test, some of these washed T. vaginalis were also incubated 

in neuraminidase, which removes the sialic acid residues from glyco- 

proteins, in order to see if the RR-positive material could be removed 

by the enzyme. Figure 69 shows the surface of T. vaginalis which was 
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fixed directly (i. e. without washing) in serum-containing medium; an 

irregular 40 nm thick RR-positive layer is present. In contrast 

Figure 70 shows that the staining is almost totally removed by washing 

T. vaginalis in serum-free medium. Neuraminidase treatment made no 

difference to the amount of staining of washed trichomonads (Fig. 71). 

Thus it appears that most, if not all, of the RR-positive material at 

the surface of T. vaginalis, was probably adsorbed from the culture 

medium and was not an integral part of the plasma membrane. Conse- 

quently there can be little intrinsic acidic material in the membrane 

of T. vaginalis that is able to bind RR. 

3.3.8 Pathological changes in epithelial cells 

3.3.8.1 Introduction 

Within each lesion in the epithelial cell monolayers there was a 

spectrum of pathological change which varied from completely normal cells 

(Figs- 509 51 and 54)9 through slightly damaged cells (Figs. 65,72 and 

73) to lysed cells (Figs. 751 76 and 77). The presence of pathological 

changes within a cell were almost invariably associated with the ad- 

herence of one or more T. Vaginalis to the external surface of that cell. 

No trichomonads were found inside the cytoplasm of normal, undamaged 

cells in any of the many cultures examined; thus the injurious effects 

of T. vaginalis were probably mainly, if not entirely, exerted on the 

external surfaces of the cells and not intracellularly. 

No pathological changes could be found in those cells lying in the 

intact areas of the monolayer between the lesions (Fig. 85)- 

3-3.8.2 Early pathological changes 

One of the first signs of injury to a cell was the presence of 

abnormally-shaped mitochondria with reduced cristae (Figs. 72 and 710. 

Figure 72 shows an abnormally shaped cell which projects 30 = into 

the medium; two trichomonads are lying above the cell which contains 

many small vacuolesq about IM in diameter, and abnormal mitochondria 
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fixed directly (i. e. without washing) in serum-containing medium; an 

irregular 40 nm thick RR-positive layer is present. In contrast 

Figure 70 shows that the staining is almost totally removed by washing 

T. vaginalis in serum-free medium. Neuraminidase treatment made no 

difference to the amount of staining of washed trichomonads (Fig. 71). 

Thus it app ears that most, if not all, of the RR-positive material at 

the surface of T. vaginalis was probably adsorbed from the culture 

medium and was not an integral part of the plasma membrane. Conse- 

quently there can be little intrinsic acidic material in the membrane 

of T. vaginalis that is able to bind RR. 

3-3.8 Pathological changes in epithelial cells 

3-3.8.1 Introduction 

Within each lesion in the epithelial cell monolayers there was a 

spectrum of pathological change which varied from completely normal cells 

(Figs- 50,51 and 54)9 through slightly damaged cells (Figs. 65,72 and 

73) to lysed cells (Figs- 75,76 and 77). The presence of pathological 

changes within a cell were almost invariably associated with the ad- 

herence of one or more T. Vaginalis to the external surface of that cell. 

No trichomonads were found inside the cytoplasm of normalq undamaged 

cells in any of the many cultures examined; thus the injurious effects 

of T. vaginalis were probably mainly, if not entirely, exerted on the 

external surfaces of the cells and not intracellularly. 

No pathological changes could be found in those cells lying in the 

intact areas of the monolayer between the lesions (Fig. 85)- 

3-3.8.2 Early pathological changes 

One of the first signs of injury to a cell was the presence of 

abnormally-shaped mitochondria, with reduced cristae (Figs. 72 and 74). 

Figure 72 shows an abnormally shaped cell which projects 30 ýLm into 

the medium; two trichomonads are lying above the cell which contains 

many small vacuoles, about 1 lim in diameter, and abnormal mitochondria 
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(cf. Fig. 49). Changes were noted in cells with which T. vaginalis 

had formed both type 1 (Fig- 73) and type 2 (Fig. 74) contacts. Other 

signs of injury to the cells included a rarefaction of the cytoplasm 

(Figs. 65 and 68) which was due to the aggregation of cytoplasmic 

structures into small amorphous foci leaving electron-lucent areas bet- 

ween them. As far as one could see most of these early changes took 

place without any damage to the plasma membrane of the affected cells 

(Figs. 73 and 74). Once the membrane was ruptured the cells lysed and 

their appearance changed dramatically. 

3.3.8-3 Lysis 6f cells 

Lysed cells were often seen lying above the monolayer where they 

were pushed by the burrowing activity of the trichomonads (Fig. 75)- 

By lifting the cells off the substratum the organisms were able to 

attack a larger surface area of the cell. The plasma membrane of the 

cells was generally only ruptured at the points of contact with T. 

vaginalis (Figs. 76,77 and 78). Figure 76 shows two organisms lying 

beneath the epithelial cell monolayer; one of the parasites has invaded 

the cytoplasm of a lysed cell and is phagocytosing its contents. The 

upper plasma membrane of the lysed cell is still complete although it 

is lifted away from the cytoplasm. The nucleus of the cell is swollen 

and electron-lucent. A similar example of cell lysis is shown in Figure 

77. As Figures 76 and 77 demonstrate, the epithelial cells were lysed 

singly rather than in groups and so lysed cells were usually surrounded 

by, and retained their adhesions to, undamaged cells. The cytoplasmic 

organelles of the lysed cells lost much of their normal structure once 

the cell membrane was lysed. Figure 79 is a high power view of the area 

of contact between T. vaginalis and a cell; the plasma membrane is 

absent only at the site of contact (Fig. 78), the endoplasmic reticulum 

is swollen. ribosomes are absent, and the mitochondria are swollen and 

lack cristae. 
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3-3-9 Phagocytosis of lysed epithelial cells by T. vaginalis 

Following lysis of the plasma membrane, the trichomonads invaded 

the cytoplasm of the cells and phagocytosed the cytoplasmic contents 

(Figs. 76,77 and 8o). The organisms protruded large pseudopodia which 

surrounded the contents of the cell; these contents were then enclosed 

in cytoplasmic membrane-bound phagosomes which moved away from the sites 

of phagocytosis and were seen in all parts of the body of the organisms 

(Figs. 79 and 80). The pseudopodia of T. vaginalis were morphologi- 

cally similar to those seen at the type 2 contacts and contained mesh- 

works of microfilamentous material (Figs. 81 and 82). All parts of the 

surface of T. vaginalis were able to engage in the phagocytosis of lysed- 

cell debris; Figure 84 shows phagocytosis taking place at the anterior 

pole of the parasite, close to the anterior flagella. 

Scattered about the cytoplasm of T. vaginalis was a population of 

vesicles 50 to-100 nm in diameter which probably were derived from the 

Golgi body (see Fig. 39) although some of them may have been pinosomes. 

Nevertheless it is possible that these vesicles contained digestive 

enzymes which were released into the phagosomes since many of the 

vesicles were observed to be in close contact with the phagosomes (Fig. 

82). Additionally many vesicles were lying close to the adhesions of 

T. vaginalis with intact epithelial cells (see 3-3.6). When axenic 

cultures of T. vaginalis were used in acid phosphatase-localisation 

experiments, acid phosphatase was found in the Golgi body and its asso- 

ciated vesicles (not shown) and also in large vacuoles and in smaller 

vesicles (Fig. 83)- My findings confirm the results of others who have 

also found acid phosphatase in the same sites in T. vaoinalis_(Brugerolle, 

1971; Nielsen, 1974). Thus it appears that T. vaginalis possesses a 

type of lysosomal system similar to that in other protozoa and metazoan 

cells (De Duve and Wattiaux, 1966) in which primary lysosomes, which 

would be the acid phosphatase-containing Golgi-derived vesicles, are 
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exported from the Golgi body to fuse with phagosomes and so form 

secondary lysosomes within which the phagocytosed material is digested. 

3.4 Morphology and motility of T. vaginalis when adherent to a glass 

substratum 

3.4.1 Introduction 

During the studies on the infection of epitlielial cell cultures 

with T. vaginalis it became clear that the parasite readily adhered to 

both the cells and the glass substratum and that the amoeboid movements 

of the organisms both on and, more importantly, under the monolayer 

played an important role in the enlargement of the lesions and the des- 

truction of the cells. In order to understand more about the ways in 

which T. vaginalis is capable of performing substratum-based movements, 

as distinct from its motility in suspension, the morphology and motility 

of the organism on a plane glass substratum and the dimensions of its 

contacts with the glass, were examined in detail using a variety of light 

microscopical techniques. Details of the observation chambers are 

given in Section 2-5-2.1; the chamber was inverted before observation 

thus only those T. vaginalis which had attached to the coverslip were 

photographed. 

3.4.2 Morphology of T. vaginalis 

Figure 86 shows a living population of T. vaginalis adhering to a 

glass coverslip in culture. There is a diversity of morphology within 

the population with about half the organisms retaining a more or less 

spherical or rounded shape which is characteristic of T. vaginalis when 

in suspension, and the rest being flattened and irregular in outline. 

When examined at higher magnification, the flattened organisms were 

pronouncedly amoeboid and possessed large pseudopodia up to 20 ýLm long. 

Figure 87 illustrates two amoeboid T. vaginalis as seen in Nomarski 

differential interference optics; each has protruded a single broad 

flat anterior pseudopodium, which contain no large organelles, and 
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smaller filopodial protrusions are present at the rear of the organisms. 

The rounded trichomonads did not have such large pseudopodia as 

flattened organisms. nevertheless pseudopodial and filipodial exten- 

sions of smaller size were protruded by the former organisms (Fig. 88). 

All the organisms possessed at least one pseudopodial extension which 

could be found protruding anteriorly, laterally or posteriorly from the 

body (Figs. 87,88,89 and 90). By focussing through the thickness of 

the organisms 'it was -found that pseudopodia were sometimes formed on the 

upper surfaces (i. e. away from the substratum) of T. vaginalis and so 

ýhey were not always in contact with the substratum. 

T. vaginalis can divide by binary fission whilst adherent to a 

substratum. Figure 91 shows two daughter trichomonads about to separate 

following division. Occasionally large, highly-flattened organisms (e. g. 

Fig. 92) were observed some of which had two or more sets of flagella 

indicating that they were undergoing division (Fig. 93)- 

There was a similar morphological variation within any population 

of T. vaginalis adhering to the glass coverslips to that seen in the SEM 

study of T. vaginalis adhering to the epithelial cell cultures (compare 

for example Figs. 28 and 32 with Figs. 87 and 89) indicating that the 

development of amoeboid forms by the organism is not necessarily re- 

lated to the nature of its substratum. 

Most of the trichomonads on the glass coverslips were continuously 

changing shape, protruding and retracting pseudopodia and filopodia and 

many of these changes were related to the movements of the organism on 

the coverslips. 

3.4-3 Motility of T. vaginalis 

The motility of T. vaginalis on the coverslips was studied by both 

direct observation and by time-lapse still photomicrographs. Figure 94 

is a sequence of stills, taken at 10 sec. intervals, which shows an 

irregularly shaped amoeboid T. vaginalis which develops a more polarised 

form as it crawls over the substratum at a speed of about 20 ILm per 
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min. Figure 95 is a similar time-lapse sequence, taken over a period 

of 11 min., of a rounded T. vaginalis. The speeds of the rounded T. 

vaginalis were not greatly different from that of the more flattened 

organisms; however the net displacement in a given time was lower in the 

former since they often moved around in circular paths whereas the 

flattened trichomonads showed a greater persistence in the direction of 

their movement. In general the body of the trichomonads moved in the 

direction of protrusion of the largest pseudopodium (e. g. Fig. 95, frames 

2 to 5) and since pseudopodia could develop or disappear within a few 

seconds so the direction of movement of an organism frequently changed 

during any one period. Whilst T. vaginalis crawls on a substratum in 

an amoeboid manner, its flagella and undulating membrane were invariably 

still beating and so may have contributed to some extent to the forces 

required to bring about the displacement of the organism. 

By studying the movements of T. vaginalis it was found that the 

presence of both rounded and flattened organisms within a population of 

T. vaginalis adhering to glass (Fig. 86) was not a sign of any funda- 

mental intrinsic difference between the two morphological groups but 

rather a reflection of the ability of T. vaginalis to change from a 

rounded to a flattened shape, and vice versa, in a short period of time. 

Figure 96 illustrates this phenomenon occurring in a group of 5 T. 

vaginalis. One organism remains almost stationary but the others con- 

tinuously change shape as they move on the coverslip; the assumption 

of a flattened morphology is easily seen by the reduction in the phase 

halo, characteristic of rounded organisms, as the organisms spread onto 

the substratum. From these observations it was clear that the rounded 

organisms were no less adhesive than their flattened counterparts which 

had greater areas of their surface adherent to the substratum. Indeed 

if, as frequently happened during a long period of observation, a rounded 

trichomonad detached itself from the coverslip and sank down through the 

chamber to the lower coverslip it reattached itself to that substratum 
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and exhibited a similar cycle of flattening and rounding up. For these 

reasons it is possible that the presence of numerous T. vaginalis in 

the decanted supernatants of the epithelial cell cultures when they 

were fixed for light or electron microscopy (see 3-1-3, P. 68) did not 

mean that these unadherent, freely swimming organisms had not at some 

time been attached to the epithelial cell monolayer. 

3.4.4 Substratum contacts of T. vaginalis as seen by interference 

reflection microscopy 

Interference reflection microscopy may be used to examine the 

spatial separation of the lower surface of a cell from its substratum 

when it is adhering to a plane glass coverslip in culture. The optical 

principles of interference reflection (IR) microscopy have been des- 

cribed in detail by Curtis (1964) and Izzard and Lochner (1976) and 

will not be reiterated in detail here. Briefly, the IR image is derived 

from the first order interference pattern generated by the light re- 

flected from each of the boundaries of the thin film of culture medium 

lying between the trichomonads and the glass coverslip to which they 

were adhering, i. e. the glass/medium interface and the medium T. Zýa 

nalis interface. Where the organism is lying within 10 nin of the glass 

substratum the IR image will be black; the image will progressively 

light eri, through grey to white, as the organism lies further away from 

the glass up to a distance of about 150 nm. If the organism is further 

from the substratum than 150 nm no IR image is obtained. 

Figures 97 to 100 demonstrates the typical IR images of T. vaginalis 

when adhering to a glass substratum in culture. Each organism is shown 

in both phase contrast and interference reflection optics. When T. 

vaginalis was flattened and amoeboid all of its lower surface lay bet- 

ween 10 and 30 = from the substratum as was shown by a dark grey IR 

image (Figs. 97 and 99). The rounded organisms (Figs. 98 and 99) were 

generally in less close contact and their IR images were light grey with 

patches of white showing that they were less closely adherent to the 
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glass than the flattened organisms; the white areas demonstrated that 

a separation of about 100 nm exists between some parts of the ventral 

surface of the organism and the glass. Those organisms which were almoot 

completely rounded up as shown by their phase contrast haloes (e. g. the 

organism on the right in Fig. 99) had only a very small part of their 

surface lying less than 100 nm from the substratum. 

Typically the pseudopodia of T. vaginalis were always among those 

parts of the body in closest apposition to the substratum (Figs. 98,99 

and 100) although in long pseudopodia only the leading edge lay 10 to 

30 nm from the glass with the rest further away. Figure 100 shows a 

pseudopodium of which only the tip is. seen in IR; the proximal parts of 

the pseudopodium. are not seen in IR and so lie about 150 nm or more 

above the substratum. 

3.4.5 Summary: on theamoeboid motility of a flagellate 

It is axiomatic that if an organism is to perform active substratum- 

based movements then it must make temporary but stable attachments to 

its substratum in order that tractive forces, developed by the organism, 

may be applied to the substratum and so cause its forward movement over 

the substratum enabling it to form new adhesions with fresh parts of the 

substratum. How then can a protozoan like T. vaginalis which is equipped 

with four anterior flagella and an undulating membrane for swimming in 

a liquid medium fulfil these criteria for substratum-based movements? 

The combined light and electron microscopical studies presented here 

provide some of the answers to-this problem. 

Firstly the surface of T. vaginalis is sticky enabling it to adhere 

to both a glass coverslip and to the surfaces of epithelial cells. 

These adhesions were clearly of sufficient strength and stability to 

allow T. Vaginalis to remain attached to an inverted coverslip and also 

to resist detachment from the cell cultures when they were shaken gently. 

Secondly T. vaginalis can form pseudopodial and filopodial processes 

which it extends away from its body and over the surrounding substratum 



90 

and these processes can make close, 10 to 30 nm, contacts with the 

substratum. Since the movement, of the amoeboid organisms generally 

proceeds in the direction of protrusion of the largest pseudopodium 

it is probable that the tractive forces necessary for displacement are 

largely developed within the pseudopodia and exerted between the sub- 

stratum adhesions of the pseudopodia and the central parts of the body. 

The presence of microfilaments, to the virtual exclusion of all other 

organelles and structures, within the pseudopodia suggests that they 

play a part in the mechanism of protrusion of the pseudopodia and of 

movement of the body as a whole. 

3-5 Enzyme assays on T. vaginalis 

3.5.1 Preparation of homogenates of T. vaginalis 

The techniques used to prepare homogenates and lysates of pellets 

of living T. 
_vaginalis 

(see 2.7-2-1) were designed to obtain two 

fractions of the organisms that could be assayed for their enzyme content, 

the cytosol fraction and the particle fraction. The cytosol fraction 

contained the soluble components of the cytoplasm of T. vaginalis from 

which all insoluble or particulate material had been removed by cen- 

trifugation at 105,000 g; thus any enzymes present in this fraction 

would be those which were not bound to any of the organelles or struc- 

tures present within the cytoplasm of T. vaginalis. In contrast, the 

particle fraction contained those enzymes that were bound to the in- 

soluble components of the cytoplasm or contained within membrane-bound 

particles and organelles such as phagosomes, vesicles, endoplasmic 

re'E, iculum and the Golgi body. The presence of an enzyme within a 

membrane-bound particle frequently means that this enzyme is not 

accessible to the exogenous substrate of that enzyme supplied in the 

assay procedure since the membrane acts as a permeability barrier to 

the substrate (Muller, 1973). For this reason, the particle fractions 

of T. vaginalis were sometimes also prepared in the presence of the 
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non-ionic detergent Triton X-100 which solubilises membranes thus 

allowing access of -the substrate to the enzyme. 

3.5.2 Acid phosphatase 

The results of assays for acid phosphatase on two stocks of T. 

vaginalis are shown in Table 4. In this assay only, the homogenates 

were treated with a preliminary low speed centrifugation (500 g) which 

removed unbroken cells, nuclei and large cytoplasmic structures such 

as the axostyle, flagella and mastigont apparatus. The particle 

fraction was examined as a negatively stained preparation in the 

electron microscope and was found to be comprised mainly of membrane- 

bound organelles such as hydrogenosomes, vesicles, phagosomes and 

elements of the endoplasmic reticulum and Golgi body. 

The results show that the highest specific activity of acid 

phosphatase in T. vaginalis is present in the particle fraction. For 

LUMPs 889 and 993 the total specific activity of the particle fraction 

was not dissimilar, however the ratios of the activities of the 

particle and cytosol fractions differed by an order of magnitude, 

being 5-5: 1 and 55: 1 respectively. This difference may of course have 

been real or alternatively artefactual and due perhaps to the leakage 

of enzyme from the particles of the organisms of LUMP 889 during pre- 

paration as a result of insufficient osmotic protection. Nevertheless 

the results of these assays when added to the results of the cyto- 

chemical-localisation studies described earlier (see 3-3-9) demonstrate 

that T. vaginalis contains the enzyme acid phosphatase and that most 

of the activity of the enzyme is associated with particulate membrane- 

bound structures in the cytoplasm of the organism such as the Golgi 

body, phagosomes and small vesicles. 

3.5-3 P-glucuronidase 

T. vaginalis from LUMP 849 was assayed for P-glucuronidase 

activity. A homogenate of 10 
8 

organisms comprising of both the 

cytosol fraction and the sOlubilised particle fraction was assayed, 
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however no enzyme activity could be demonstrated under the assay 

conditions. Therefore it is possible that either T. vaginalis con- 

tains no P-glucuronidase activity or else the enzyme is present in 

such small amounts that cannot be detected by a standard assay tech- 

nique. 

3-5.4 Neuraminidase 

The results of neuraminidase assays on two stocks of T. vaginalis 

are shown in Table 5. No enzyme activity was demonstrated by either 

the living organisms or the lysates of T. vaEinalis from LUMPs 840 and 

896, as measured by their ability to release sialic acid from sialo- 

mucoids. The slightly higher activity of the cytosol and solubilised 

particles of LUMP 896 over the H20 controls, i. e. 3-449% compared to 

2.6%, is most likely a sign of experimental error and cannot be relied 

on as indicative of neuraminidase activity without further investigation. 
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DISCUSSION 

4.1 The_T. vaginalis-infected RK 13 epithelial cell culture as a 

model of human urogenital trichomoniasis 

Although studies on the interaction of T. vaginalis with the 

vaginal and cervical epithelia of females with trichomonal vaginitis 

(Koss and Wolinska, 1959; Nielsen and Nielsen, 1975; Garcia-Tamayo et 

al., 1978) have been of great value in our understanding of the 

mechanisms of pathogenicity of the parasite we always have to bear in 

mind the possibility that the behaviour and pathogenicity of the para- 

site may be modified, either directly or indirectly, by variations in 

the local or systemic conditions of its host. For example, it is well 

known that exacerbation of the symptoms of trichomonal vaginitis may 

occur during the menses (De Leon, 1971) and during pregnancy, (Schofield, 

1972). For these and other reasons it is, I believe, important that we 

have a controllable experimental system in which the inherent mecha- 

nisms of pathogenicity of T. vaginalis may be analysed in detail and 

where factors such as innate resistance, hormonal status and concomi- 

tant bacterial flora, which are possible complicating factors present 

in natural infections (see review of Honigberg, 1978b), are absent. In 

this thesis I have shown that the T. vaginalis-infected RK 13 epithelial 

cell culture can offer a suitable experimental method of elucidating 

the mechanism of pathogenicity of T. vaginalis; the following points 

concerning the design of these experiments merit some discussion with 

reference to earlier studies of T. vaginalis in cell cultures. 

4.1-1 Choice of cell culture 

Rabbit kidney tubule (RK 13) epithelial cells were selected 

because they are easily cultured in vitro and form a coherent monolayer 

of flattened polygonal cells on a glass substratum. The monolayers 

were therefore morphologically similar to the outer layer of squamous 

epithelial cells of the human vagina and ectocervix and since the 
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latter cells are not commercially available as a continuous cell 

line, the RK 13 cells are a suitable alternative. In fact, earlier 

studies using a wide range of avian and mammalian tissue cells (listed 

in section 1.16.1) suggest that T. vaginalis behaves similarly to 

different cell types however since only epithelial cells, of whatever 

origin, form a cohesive monolayer of cells in culture (unlike, say, 

fibroblasts which are spindle-shaped so that even in dense cultures 

there are frequently small spaces between adjacent cells) they are to 

be preferred as a model of the vaginal and cervical epithelium. 

4.1.2 Choice of T. vaginalis 

The results of the IM, SEM and TEM studies of T. vaginalis- 

infected RK 13 cell cultures whirh I have presented in this thesis re- 

present the collected findings of separate studies using four stocks 

of T. vaginalis, LUMPs 866,873,889 and 896. Under the experimental 

conditions used in this study, I found no significant qualitative 

differences in the behaviour of the four stocks in the cell cultures. 

Each stock destroyed a monolayer of cells within about 36 h and the 

sequence of events leading to the death of the cell cultures as a 

result of infection with each stock appeared to be similar. It is of 

course possible that there were some differences in the behaviour and 

mechanisms of cytopathogenicity of each stock which I did not detect, 

however I believe that they must have been small and they in no way 

invalidate the main findings of this study. 

4.1.3 Selection of size of inoculum, 

One of the important considerations in any study of T. vaginalis- 

infected cell cultures is the selection of a suitable number of para- 

sites for inoculation of the cell cultures so that the most informative 

picture of the cytopathogenic changes associated with the interaction 

of T. vaginalis and the cells may be obtained. In this study I used 

an inoculum of 2x 105 parasites per RK 13 cell culture chiefly for two 
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reasons. With this inoculum of parasites large lesions, ideal for a 

close study at both the light and electron microscope level of the 
_T. 

vaginalis - RK 13 cell interaction, occurred within 6 to 10 h post 

inoculation at a time when the conditions in the culture medium, such 

as the pH and the level of nutrients, had not altered significantly 

from those prevailing at the start of the infection and so were unlikely 

to be a contributing factor in the cytopathogenicity of T. vaginalis. 

Furthermore other workers (Kuldag 1967; Farris and Honigberg, 1970) 

employed similar numbers of parasites in their studies of T. vaginalis- 

infected cell cultures (see Table 2) so the results of this study may 

be more directly compared to these earlier studies. On the other hand 

Christian et al. (1963) infected HeLa cell culture with only 5x 103 T. 

vaginalis but despite this small inoculum of parasites obtained a 

picture of the sequence of events leading to the destruction of the 

cells by the parasites which bears many similarities to this study; 

however I did not examine the possibility that low parasite inocula of 

the stocks of T. vaginalis at my disposal were capable of producing the 

same cytopathogenic effects on RK 13 cells as the relatively high 

inoculum of 2x 105 which I routinely used to infect the cell cultures. 

Inasmuch as many workers, including myself, have infected cell 

cultures with sufficient numbers of T. vaginalis to cause extensive 

cytopathological changes in the cells thereby adding to our understanding 

of the mechanism of pathogenicity of T. vaginalis in natural infections 

in humans, it is apparent that future studies in which cell cultures 

are infected with very low numbers of parasites, numbers insufficient 

to cause much cell injury, may prove of equal value in elucidating the 

nature of latent asymptomatic infections in humans. This possibility 

is suggested by the work of Christian et al. (1963) following their 

demonstration that HeLa cell cultures inoculated with only 500 T. 

vaginalis could be maintained for up to I month with minimal cell 

injury and little parasite growth, a situation which, they argued, 
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paralleled latent trichomonal infections in humans in which the patient 

is an asymptomatic, but potentially infective, host. 

4.2 Pathogenicity of T. vaginalis in RK 13 epithelial cell cultures 

4.2.1 General characteristics 

The results of this study indicate that, under the experimental 

conditions employed, the four stocks of T. vaginalis selected for study 

are highly pathogenic when inoculated into cultures of monolayers of 

RK 13 epithelial cells and the parasites are capable of totally des- 

troying the monolayers within about 36 h. The most significant feature 

of the infections was that during the first few hours post-inoculation 

of the cultures with parasites cytopathological changes and cell lysis 

occurred not throughout the monolayers but in discrete foci, i. e. the 

lesions. The lesions enlarged as the infection progressed as a result 

of the parasites' attack on and lysis of a narrow band of cells, not 

more than 3 cells wide, which lined the edges of the lesions and against 

which the parasites were palisaded. Having destroyed this band of 

cells, and thereby enlarged the lesion, the parasites continued to move 

outwards attacking the as yet undamaged and intact areas of the mono- 

layer. This feature of the T. vaginalis-RK 13 monolayer interaction is 

one which others have also observed in studies using different types of 

cell culture (Christian et al., 1963; Kulda, 1967; Farris and Honigberg, 

1970) but, unlike this study, these authors did not, or were unable to, 

examine in any detail the fine structural aspects of the interaction of 

T. vaginalis and the cells at the edges of the lesions. 

This study enables us to understand the lesion-forming ability of 

T. vaginalis in cell cultures more comprehensively than previously; the 

reasons for this ability are, I believe, three fold: a) the tendency of 

T. vaginalis to aggregate into clumps of up to 200 individuals soon 

after inoculation into the cell cultures, b) the adhesion of these 

aggregates to the monolayer of cells, and c) having cleared a small area 
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of the monolayer by lysis of the cells beneath the aggregates, the 

ability of the organisms to adhere to the glass substratum, develop 

pseudopodia and then move in an amoeboid manner both under and over 

the cells at the edge of the lesion destroying them as the parasites 

move outwards. 

Since it has been observed previously (vide supra and may there- 

fore be a characteristic of many stocks of, T. vaginalis, the lesion- 

forming ability of-the organism suggests a possible method of an in- 

vitro assay of the cytopathogenicity of different stocks of T. vaginalis. 

By using a standardised monolayer of cultured cells inoculated with a 

standard number of parasites of each stock of T. vaginalis, the areas 

of the lesions relative to total area of the monolayer after, say, 6h 

of infection could be used as a measure of the inherent pathogenicity 

of the stocks and so provide a suitable, and certainly less expensive, 

alternative to Honigberg's (1961) SC mouse assay which is at present 

the main method of assaying the inherent pathogenicity of T. vaginalis. 

4.2.2 Pathological changes in epithelial cells 

T. vaginalis. disturbed the integrity of the RK 13 monolayers in 

two ways, firstly by detaching individual cells from the coverslips or 

from neighbouring cells and secondly by causing degenerative changes 

within the cells which lead to lysis. 

The activities of the amoeboid trichomonads at the edges of the 

lesions caused some of the cells to adopt a more rounded morphology as 

a result of the retraction of the peripheral areas of their cytoplasm, 

while other cells which the organisms almost totally detached from the 

substratum, or from neighbouring cells, assumed a nearly spherical 

shape. The ability of T. vaginalis to detach cells from a surface, 

whether it be living or non-living, is something whicn Christian et al. 

(1963) also noticed in T. vaginalis-infected HeIa cell cultures; they 

saw parasites "tumbling" detached HeLa cells with their flagella in the 
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centre of lesions in the HeLa cell monolayer. 

The pathogenic effects of T. vaginalis on the RK 13 cells caused 

fine structural changes within the cells which included tne swelling 

of mitochondria and a loss of their cristae, an increase in tne numbers 

of cytoplasmic vacuoles, a disorganisation and rarefaction of tlie 

cytoplasmic matrix and an increase in autocytophagocyzosis. These 

changes are broadly similar to those seen in the vaginal and ecto- 

cervical epithelia in acute human trichomonal vaginitis (De Leon, 1971; 

Honigberg, 1978b). At 6-h post-inoculation of the RK 13 cultures with 

T. vaginalis these changes were only present in cells to which parasites 

were adhering which suggests that conLact between T. vaginalis, and a 

cell surface plays an important part in cytopathogenesis. Inasmuch as 

these changes occurred in cells which possessed an intact plasma 

membrane it seems likely that they were caused by the actions of the 

parasites on the surfaces of the cells. The changes may have been a 

result of the breakdown of the selective permeability of the plasma 

membrane which in turn may have caused a loss of soluble cytoplasmic 

components, a reduction in the uptake of nutrients, an accumulation of 

toxic metabolic waste products and an increase in hydrostatic pressure 

of the cytoplasm due to a loss of the osmotic control of the plasma 

membrane over cytoplasmic tonicity. Unfortunately these rather per- 

functory speculations as to the consequences of the attack of T. 

vaginalis on the plasma membrane of RK 13 cells are not ones which are 

easily validated simply on the basis of a fine structural study as this 

present study and so further investigation of the physiological changes 

in cells attacked by T_. 
_ 

vaginalis is required. 

4.2.2.1 The question of intracellular T. vaginalis 

It has been suggested previously that T. vaginalis can cause 

injury not only from its actions on the surfaces of cells but also from 

within a unit-membrane bound vacuole inside a healthy cell. In an EM 
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study of T. vaginal is -inf ecte d mouse livers Brugerolle 
-et -al. 

(1974) 

noted that the parasites were frequently phagocytosed by macrophages 

and that, enclosed within a phagosome in the cytoplasm of the macro- 

phages, the trichomonads caused vacuolation, dilatation of endoplasmic 

reticulum, and plasma membrane breakage in these cells. Similarly 

Farris and Honigberg (1970) in a IM study of T. vaginalis-infected 

chick liver cell cultures, comprising macrophages, fibroblasts and 

epithelial cells, found that the macrophages ingested the parasites and 

were frequently destroyed by their ingested trichomonads. However 

evidence that T. vaginalis. can invade healthy non-phagocytic tissue 

cells is less conclusive. Frost et al. (1961) reported a single 

instance when they observed a trichomonad in a vaginal squamous epithe- 

lial cell in a smear from a woman with trichomonal vaginitis, and 

Farris and Honigberg (1970), in the same study as above, observed chick 

fibroblasts and epithelial cells which had one, and sometimes two, para- 

sites lodged within I'vacuoles" in their cytoplasm. In both these 

reports the evidence that the trichomonads were intracellular was 

based on light microscopic examination of fixed and stained material 

and so it is quite possible that rather than being within the cells, 

the trichomonads were in fact lying under the cells giving a false 

impression of intracellularity. 

In this study I have shown that T. vaginalis commonly crawled 

under healthy epithelial cells but did not invade them whereas the 

parasites did invade cells in which the plasma membrane had been rup- 

tured and which showed extensive structural degeneration. Although 

many of the undamaged RK 13 cells contained large vacuoles (e. g. Fig. 

2) 1 did not find parasites within them and so I would agree with 

Hogue (1947) who also noted that chick embryo epithelial cells, 20 to 

24 h post-infection with T. vaginalis, contained many vacuoles which 

"although .... much larger than the trichomonads they were never seen 
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to contain any of the animals". Since the majority of the chick fibro- 

blasts and epithelial cells seen by Farris and Honigberg (1970) to be 

harbouring T. vaginalis were swollen and had a highly vacuolated cyto- 

plasm these authors did however consider the possibility that their 

parasites entered the cultured cells after the process of degeneration 

had set in, but they argued that since they found parasites during the 

first few hours of the infection withýn what they considered healthy 

cells this possibility was unlikely; but equally, it may be argued 

that what constitutes a "healthy" cell as seen at low resolution under 

the light microscope by Farris and Honigberg may be one which at the 

EM level is showing signs of degeneration so it is a pity that these 

workers did not back up their assertions with electron micrographs. The 

question of intracellular T. 
_vaginalis 

in healthy non-phagocytic cells 

is one which could be resolved in the future with the aid of a combined 

cinemicrographic and electron microscopic study of parasite-cell inter- 

actions. 

4.2.3 Specificity of T. vaginalis-induced cytopathogenesis 

The pathological changes which T. vaginalis caused in the RK 13 

cells are typical of T. Vaginalis infections in general whether they be 

in cell cultures (Farris and Honigberg, 1970)9 in laboratory mice 

(Brugerolle et al., 1974) or in the human vagina (De Leon, 1971). How- 

ever these changes are not specific to T. vaginalis since qualitatively 

similar pathological changes are found in chick liver cell cultures in- 

fected with pathogenic strains of other trichomonads such as. Tri. foetus 

(Kulda and Honigberg, 1969) and T. gallinae (Honigberg et al., 1964b). 

The mitochondrial distension, cytoplasmic vacuolisation and rarefaction 

which my T. vaginalis produced in RK 13 cells are also changes which 

Entamoeba histolytica (Evans strain) produces in the name cells (Knight, 

Bird and McCaul, 1975) and which occur within the caecal tissue of 

turkeys and chickens infected with Histomonas meleagridis (Lee, Long, 

Millard and Bradley, 1969) and Tet. gallinarum (Lee, 1972) respectively. 
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The ability of T. vaginalis to form lesions in cell monolayers is a 

characteristic which is also shared by E. histolytica (Knight et al., 

1975), and Naegleria fowleri and Acanthamoeba culbertsoni (Cursons and 

Brown, 1978). Furthermore, these changes may also be produced in cell 

cultures by non-living agents such as certain drugs, poisons and by 

irradiation (Bang, 1966). 

4.2.4 Roles of the adhesiveness and amoeboid motility of T. vaginalis 

in cytopathogenicity 

In this study I have indicated that the adhesiveness and amoeboid 

motility of T. vaginalis may play important roles in the ability of 

the parasite to injure cells. Before considering the mechanisms of 

pathogenicity of T. vaginalis, I shall consider in some detail these 

two important, but hitherto little-studied aspects of the biology of T. 

vaginalis. 

4.3 Adhesiveness of T. vaginalis 

4.3-1 Specificity 

In this study I have shown that T. vaginalis is able to adhere to 

other trichomonads, to RK 13 epithelial cells and to glass coverslips. 

Other workers have shown that the organism will adhere to a wide variety 

of cells, both in vitro and in vivo, including avian and mammalian 

fibroblasts and epithelial cells (Hogue, 1943; Christian et al., 1963; 

Kulda, 1967; Farris and Honigberg, 1970) and human vaginal squamOus 

epithelial cells (Nielsen and Nielsen, 1975). It has also been known 

for some time that T. vaginalis readily adheres to non-living substrata 

such as glass (Lumsden et al., 1966), tissue-culture grade plastic 

(Cappuccinelli, Lattes and Cagliani, 1973), and to fibres of unknown 

constitution which occur in culture media, although not if they are of 

vegetable origin such as cotton fibres (Lumsden et al. ", 1966). So it 

is evident that the adhesiveness of, T. vaginalis is largely non-specific 

and that it can adhere to a wide range of both organic and inorganic 
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substrata. This non-specificity of adhesiveness is therefore a 

feature which T. vaginalis shares with some other protozoa, such as 

the rhizopod amoebae (Jeon, 1973) and kinetoplastid flagellates 

(Vickerman, 1972), and most metazoan cells, all of which will also 

adhere to a variety of substrata. 

4.3.2 Areas of the surface of T. vaginalis involved in adhesion 

I found that in general T. vaginalis adhered to the epithelial cells 

and the glass coverslips with its body and pseudopodia. Except for the 

single instance when the flagella were wrapped around a cell process 

(Fig. 31), 1 could not show that the flagella and undulating membrane 

of T. vaginalis were involved in adhesion. This is perhaps surprising 

in view of the fact that amongst the kinetoplastid flagellates adhesion 

of the flagella to a variety of substrata such as cellulose, chitin and 

membranous debris (Brooker, 1970,1971; Vickerman, 1972) is a common 

occurrence. It is Possible that the plasma membrane of the flagella 

and undulating membrane of T. vaginalis is less sticky than that over 

the rest of the body however such a possibility does not explain the 

fact that the recurrent flagellum adheres to the undulating membrane 

over the whole of its length. The answer to this puzzle may be quite 

simply that the continual motion of these organelles means that they do 

not stay long enough in contact with a surface to be able to adhere to 

it. In contrast the immobile axostylar projection of T. vaginalis was 

sometimes involved in the adhesion of the organisms to the epithelial 

cells but only during the first phase of the infection as the parasites 

settled onto the cells. Both Rogue (1943) and Christian et al. (1963) 

also noted that T. vaginalis adhered via its axostyle to the surfaces 

of cells. 

4-3-3 Morphology of adhesions between T. vaginalis and surfaces 

Most of our understanding of the morphology and function of adhesive 

junctions between cells has come from studies on metazoan cells but it 
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is becoming clear that some of the characteristics of metazoan ad- 

hesions are shared by protozoans (Vickerman, 1972). Broadly, four 

types of adhesive junctions may be distinguished, on both morpholo- 

gical and physiological grounds, in metazoan tissues (Trinkaus, 1969; 

McNutt and Weinstein, 1973): a) tight junctions, in which the apposed 

plasma membranes are in molecular contact, which function as a permea- 

bility barrier in tissues; b) gap junctions, in which the apposed 

membranes are separated by a gap of about 2 to 6 nm and which are in- 

volved in electrotonic coupling and intercellular transport between 

cells; c) desmosomes, which are characterised by a gap of about 10 nm 

and the presence of dense cytoplasmic plaques, associated with 5 to 10 

rim diameter tonofilaments, subjacent to the apposed membranes; these 

junctions are largely responsible for the structural integrity of 

tissues; and finally, d) intermediate junctions, which are regions of 

10 to 20 nm separation of the apposed membranes which show little specia- 

lisation of the subjacent cytoplasm but are one of the most frequently 

encountered type-s of intercellular adhesions, and are also typical of 

the adhesions of cells to non-living substrata. Using this classifi- 

cation can we relate the adhesions of T. vaginalis to those of metazoan 

cells? 

Firstly I did not find any tight junctions between T. 
__vaginalis and 

the epithelial cells which lends some support to Vickerman's (1972) 

statement that tight junctions do not occur at protozoan-host cell 

contacts. Similarly I-found no clear evidence that gap junctions occur 

at the areas of contact of T. vaginalis and cells; on only a very few 

occasions did the plasma membrane of the parasite approach to about 5 

nm from that of the cells. On the other hand Nielsen and Nielsen (1975) 

have shown that in the areas of close contact between adjacent T. 

vaginalis, and between T. vaginalis and human vaginal epithelial cells 

contacts of the size of gap junctions do occur, but whether such junc- 

tions between trichomonads are sites of interparasite communication is 
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an open question. 

No desmosomal-like junctions were found between T. vaginalis and 

either the epithelial cells or the glass coverslip. In this respect 

T. vaginalis would appear to differ from the kinetoplastid flagellates, 

for example, which form hemidesmosomal plaques at the sites of attach- 

ment of their'flagella to non-living substrata (Brooker, 1970,1971) 

and full desmosomal plaques at the adhesions of the flagellum to their 

bodies (Vickerman, 1972) but, as Vickerman and Preston (1976) record, 

there has been only one report of these flagellates forming demosomes 

with the plasma membrane of their host cells. 

Turning now to intermediate junctions, it is clear from this study 

that the majority of the sites of adhesion between T. vaginalis and the 

epithelial cells were-typified by a gap of 10 to 20 nm so on morpholo- 

gical grounds the adhesions of T. vaginalis to cells may be called inter- 

mediate junctions. This type of junction has been found previously 

between T. vaginalis and other types of cells including human vaginal 

squamous epithelial cells (Tamayo et al., 1972; Nielsen and Nielsen, 

1975; Ovccinikov et Ll., 1975; Garcia-Tamayo et al., 1978) and mouse 

hepatocytes (Brugerolle et al., 1974); furthermore, intermediate-type 

junctions are seen between the tiscue-invasive forms of H. meleagridis 

(Lee et al., 1969) and Tet. gallinarum (Lee, 1972) and their host cells, 

and between E. histolytica and cultured RK 13 epithelial cells (Knight, 

et al., 1975)9 consequently the ability to form intermediate junctions 

with host cells may be a-property of many protozoa. 

The 10 to 20 nm-gap or intermediate junction was also present at 

the regions of adhesion between trichomonads; however in this situation 

a second type of junction was occasionally present in which the plasma 

membran(r. of the adhering organisms weregeparated by a gap of 75 nm 

(Figs. 43 and 44). This type of junction has not been previously des- 

cribed in T. vaginalis. One interesting feature of these junctions is 

that, unlike the intermediate junctions between trichomonads, the 
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apposed membranes were linked by extracellular fibrilsq thus the 

junction resembled a desmosome except that no cytoplasmic plaques or 

filaments were found, but at present the nature of these fibrils and 

the functional significance of the junction remains a mystery. 

Finally, interference reflection microscopy (IRM) studies have 

shown that the adhesions of various metazoan cells, such as chick 

fibroblasts (Abercrombie and Dunn, 1975) and rabbit leucocytes (Armstrong 

and Lackie, 1975), to plane glass coverslips are of the intermediate 

junction type, in that the gap between the cell surface and glass 

coverslip is about 10 to 30 nm. In this study I have shown that when 

T. vaginalis adheres to glass much of its lower surface lies within 30 

nm of the substratum; this demonstrates a further similarity of the 

adhesive. junctions'of T. vaginalis with those of metazoan cells. 

This is the first study in which IRM has been used to investigate 

the adhesions of T. vaginalis to glass. The technique of IRM, although 

widely used to study metazoan cells, has been little used in protozoology 

except by Opas (1978) and Preston and King (1978)- In an IRM study of 

the adhesions to glass of Naegleria Rruberi, a free-living amoebo- 

flagellate, Preston and King (1978) showed that, like my findings on T. 

vaginalis, the points of contact of amoeba to glass were characterised 

by a gap of about 20 rim; however unlike T. vaginalis, which I have 

shown may have large areas of its lower surface lying 10 to 30 nm from 

a glass substratum, Preston and King found that N. gruberi had only a 

few, discrete parts of its lower surface in such close contact, the 

rest of the amoeba lay more than 110 rim from the glass. Amoeba proteus 

adheres to glass in a manner similar to N. gruberi (Opas, 1978). 

4.3.4 Mechanisms of adhesion in T. vaEinalis 

What mechanisms may be involved in the formation of the inter- 

mediate junctions between T. vaginalis and surfaces? Curtis (1967,1972) 

considers that there are basically only two general mechanisms that can 



lo6 

account for the existence of the 10 to 20 nm gap of intermediate 

junctions, the "secondary minimum mechanismIl is derived from the 

physical nature of cell surfaces, whereas the "bridging mechanism" 

involves the formation of a chemical bridge between the surfaces. 

However, as Curtis (1972) points out, there is no unequivocal experi- 

mental evidence in favour of, or against, either of these mechanisms. 

The "secondary minimum" theory (Curtis, 1967) states that when 

two apposed cell surfaces are 10 to 20 nm apart they adhere because 

they are in the secondary minimum of the potential energy diagram of 

interaction; the minimum occurs when the attractive forces between the 

surfaces, due to the London-van der Waals dispersion force of each 

surface, are balanced by the electrostatic forces of repulsion, which 

in turn are due to the negative charge present on most cell surfaces. 

The attractive London-van der Waals forces arise from the polarisation 

of the charges of neutral atoms and so, at least theoretically, these 

forces may be present at the surfaces of T. vaginalis and of the 

objects with which it comes in contact. The repulsive electrostatic 

forces between metazoan cell surfaces are due mainly to the fact that 

most, if not all, metazoan cells possess sialic acids which are ter- 

minally located on the side chains of membrane glycoproteins and it is 

these acids which give the surface its negative charge (Lloyd, 1975)- 

However in this study I have shown from the inability of the plasma 

membrane of washed organisms, treated with neuraminidase, to bind 

ruthenium red that T. vaginalis can have little sialic acid at its 

surface. Of course the apparent lack of sialic acid does not mean that 

there are not other non-ruthenium red-binding acidic molecules at the 

surface of T. vaginalis, that may be involved in a secondary minimum 

adhesion; Rodriguez-Martinez, Rosales, Bello and Moreno (1973) found 

that T. vaginalis stained "adequately" with periodic-acid Schiff stain 

indicating acidic polysaccharides were present at the surface of the 

parasite, although it must be noted that their parasites were stained 
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directly after removal from human vaginae and so the organisms may 

have adsorbed acidic molecules on their surfaces from vaginal discharge. 

Nevertheless other studies on protozoa have shown that their surfaces 

are negatively charged and also that the charge is not necessarily due 

to sialic acids; a net negative surface charge was demonstrated on N. 

gruberi by electrophoretic mobility studies (Forrester, Gingell and 

Korchoda, 1967) and by the ability of the amoeba to bind cationised 

ferritin evenly all over its surface (King and Preston, 1977). Simi- 

larly Dwyer (1975) showed that the surface of blood and culture forms 

of Trypanosoma lewisi binds cationic dyes and that neuraminidase, which 

specifically removes sialic acids from glycoproteins, did not diminish 

the staining which indicates that the dyes were binding to types of 

acidic molecules other than sialic acid. Further, the free-living soil 

amoebae A. proteus and Acanthamoeba castellani have no sialic acid in 

their plasma membranes, the major acidic group in their membranes is 

respectively phosphate (Allen, Ault, Winzler and Danielliq 1974) and 

lipophosphonoglycan (Korn, Dearborn and Wright, 1974). 

The bridging theory (see Curtis, 1967) states that the apposed 

surfaces are bridged by molecules which are bi- or polyfunctional so 

that one end of the bridging agent binds to one surface and the other 

to the opposite surface. Some evidence that a surface molecule may be 

involved in the adhesion of T. vaginalis to glass has come from the 

work of Cappuccinelli and colleagues on a strain of T. vaginalis (FC) 

which readily adheres to glass coverslips in culture (Cappuccinelli, 

Lattes and Cagliani, 1973). Cappuccinelli (1973) showed that the 

adhesiveness of this strain was almost totally abolished if the culture 

medium contained either 4 mg per ml trypsin or 0.2 mM ethylene-diamine- 

tetra-acetic acid (EDTA). In a later paper Cappuccinelli, Cagliani 

and Cavallo, (1975) showed that EDTA removes a surface concanavalin-A- 

binding glycoprotein from the FC strain of T. vaginalis; they were able 
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to isolate and purify this glycoprotein and demonstrated that it was 

involved in adhesion in the following elegant way. 4x 10 
4, 

T. 

vaginalis were incubated in 5 mM EDTA, in phosphate buffered saline 

(PBS) pH 7.0, for 15 min. at 37'C, and then washed free of EDTA, 

placed in PBS containing 10 ýLg per ml. cyclo-hexamide (a protein syn- 

thesis inhibitor which prevented the organism resynthesising the 

removed glycoprotein) and allowed to attach to glass coverslips for 1 h. 

They found that following this treatment only 7 per cent of the para- 

sites were adhering after 1 h, however this percentage increased to 63 

when they added 10 jig per ml of the surface glycoprotein indicating 

that the glycoprotein was specifically involved in the adhesion of T. 

vaginalis to glass. Although Cappuccinelli's studies suggest that EDTA, 

and possibly trypsin also, interfere with adhesion by removing a 

surface glycoprotein, we cannot necessarily assume that this molecule 

provides part of a bridging mechanism in the adhesion of T. vaginalis 

since it is equally possible that the removal of the glycoprotein 

alters the surface charge of the parasite so reducing the opportunity 

of the organism to form adhesion by a secondary minimum mechanism. 

However these studies do imply that T. vaginalis shares glycoprotein- 

dependent mechanisms of adhesion with metazoan cells (Lloyd, 1975; Lloyd 

and Cook, 1975). 

In further investigations, Cappuccinelli, Cagliani and Cavallo 

(1973) and Cappuccinelli and Varesio (1975), have found that colchicine 

and vinblastineq which are inhibitors of microtubule assembly, do not 

affect the adhesion of T. vaginalis, whereas cytochalasin B at concen- 

trations in excess of 50 jig per ml causes about 50 per cent inhibition. 

Cytochalasin B interferes with microfilament-mediated contractile 

processes in cells, such as motility and phagocytosis (Tanenbaum, 1978); 

however in metazoan cells inhibition of such processes may be achieved 

with concentrations in the order of 0.5 to 10 jig per ml cytochalasin B 
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whereas Cappuccinelli and Varesio (1975) found that similar concen- 

trations were without effect on the adhesion of T. vaginalis1which 

suggests that this drug may be of little value in elucidating the 

mechanisms of adhesion of the parasite. On the other hand cytochalasin 

B may prove to be of value in studies on the microfilaments of T. 

vaginalis and their involvement in amoeboid movement and phagocytosis 

(see 4.4-2). 

In summary, until we know more about the surface chemistry of T. 

vaginalis we can only speculate as to what mechanism are involved in 

the adhesion of T. vaginalis to surfaces and whether they involve an 

electrostatic interaction, as in the secondary minimum mechanism, or 

specific surface glycoproteins, as in the bridging mechanism. Among 

the questions still unanswered is that concerning the role of calcium 

in the adhesions of T. vaginalis. Calcium ions are important in meta- 

zoan cell adhesion (Trinkaus, 1969) and since EDTA is a calcium chelator, 

the release of a surface glycoprotein from T. vaginalis by EDTA might 

suggest a role for calcium in stabilising the surface of T. vaginalis, 

and maintaining its adhesiveness. 

4-3-5 Importance of adhesion in the biology of T-_ vaginalis 

The ability of T. vaginalis to adhere to surfaces is important for 

several reasons. Firstly adhesion, when coupled with an internal con- 

tractile system, enables the organism to locomote in an amoeboid 

manner since a priori no cell can move on a substratum unless it can 

make stable adhesions to that substratum. Secondly the adhesiveness 

of the parasite may be important in enabling it to remain in a particular 

site in its host. In human trichomoniasis the potential ability of T. 

vaginalis to cling to the epithelial surfaces of the vagina or male 

urethra offers the organism a means of resisting removal from the sites 

of infection in any Outflowing discharge. Thi, rdly the cytopathogenic 

mechanisms of the parasite will be of greater effect if they are applied 
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at close range by an organism to a cell to which it is adhering than 

if that organism was only swimming freely at some distance from the 

cell. 

4.4 The amoeboid movements of T. vaginalis 

It may come as a surprise to some people that T. vaginalis can 

move on a solid substratum like an amoeba. Textbooks of parasitology 

commonly describe the organism as an ovoid protozoon equipped with 

four anterior flagella and an undulating membrane which enable it to 

swim through liquids, and so it is perhaps understandable that little 

attention has benn paid in the past to the possibility that T. vaginalis, 

a flagellate, may possess an alternative mode of locomotion. 

This is the first detailed study of the amoeboid movements of T. 

vaginalis. I have made use of time-lapse still photomicrography to 

show the motility of the organism on glass; undoubtedly future studies 

using time-lapse cinemicrography will be of greater value in elucidating 

the finer points of the behaviour of amoeboid T. vaginalis. In fact 

both Hogue (1947) and Christian et al. (1963) made movie films of cell 

cultures infected with T. vaginalis but so far as I am aware they did 

not use their films to analyse the motility of the parasite. 

4.4.1 General characteristics 

Some of the features of the amoeboid movements of T. vaginalis 

are similar to those of many true amoebae, i. e. members of the class 

Rhizopodea (Honigberg 
. 
2t al. 1964). Typically, the ability rapidly to 

protrude and retract pseudopodia and filopodia, the optically uniform 

density and lack of organelles of the peripheral parts of the pseudo- 

podia, and the ability to move either as a monopodial or multipodial 

form, are features which amoeboid T. vaginalis share with, for example, 

Acanthamoeba spp., Naegleria, spp., (Griffin, 1978) Entamoeba spp. 

(Albach and Booden, 1978) and Amoeba proteus (Jeon, 1973)- 

An amoeboid T. vaginalis moves at a speed of about 20 ýLm per 
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min., thus its amoeboid motility is comparable to that of a similar- 

sized amoeba such as Naegleria fowleri which moves at a speed of 28 

to 37 lim per min (Griffin, 1978). The changes in the direction of 

movement of T. vaginalis appeared to be fairly randomly spaced over a 

given period of time however the monopodial forms often persisted 

longer in moving in one direction than the multipodial forms. This 

raises the intrigueing question as to whether the direction of movement 

of T. vaginalis may be influenced by a chemical gradient, i. e. chemo- 

tactically. It is noteworthy that Hogue (1943) observed that T. 

vaginalis was "attracted by some fluid" exuding from cultured explants 

of human tissues infected with the parasite. Many other protozoa 

exhibit chemotaxis (Westphal, 1976) and such a behavioural characteris- 

tic, if shown in T. vaginalis, could have profound implications in the 

biology of the parasite. 

4.4.2 Mechanism of amoeboid movements of T. vaginalis 

As mentioned earlier, since T. vaginalis can crawl like an amoeba 

on a substratum it must possess an internal contractile system capable 

of generating the forces necessary to pull its body towards its 

anterior adhesions with the substratum and also capable of projecting 

pseudopodia in front of the body so that they may make new adhesions to 

the substratum. 

The pseudopodia of T. 
_vaginalis 

contain a meshwork of microfila- 

ments, about 5 nm in diameter and of variable lengths, some of which 

are arranged into bundles up to 3 jim long. These microfilaments are 

morphologically similar to the filamentous polymerised form of the 

protein actin, known as F-actin (Pollard, 1973). The sliding interaction 

of actin and myosin forms the molecular basis for contraction and force 

generation in metazoan skeletal muscle (Huxley, 1973). It is now 

widely recognised that actin- and myosin-like proteins are also present 

in many, if not all, metazoan non-muscle cells (Huxley, 1973)t in 

rhizopod amoebae, such as A. proteus and Acanthamoeba castellanii 
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(Pollard, 1976), in slime molds (Wohlfarth-Bottermann and Isenbergt 

1976), and in characean algae (Williamson, 1976). The discovery of 

actins and myosins in animalsq protists and plants suggests that 

actomyosin systems developed very early in evolutionary terms and that 

muscle contraction is a highly specialised example of a more generalised 

mechanism of producing movement in cells (Pollard, 1973; Huxley, 1973)- 

In view of the morphological similarities of the microfilaments 

of T. vaginalis to those of the rhizopod amoebae (which are known to 

be composed of F-actin [Pollard 19763) mid the similarities of the 

amoeboid movements of T. vaginalis with those of amoebae (which inci- 

dentally illustrates the basic evolutionary affinities of general 

flagellates and amoebae [Honigberg et al., 196 41)it seems not unreason- 

able to presume that the amoeboid movements of T. vaginalis may have 

the same molecular basis as those of the rhizopod amoebae. Indeed 

recent evidenceg although much of it only circumstantialq suggests that 

the cytoplasmic movements of many protozoaq other than amoebae, may 

also involve actomyosin systems. Tucker (1978) discovered a ring of 

microfilaments in the cytopharyngeal basket of the ciliate Nassula 

which appeared to be involved in the closure of the basket after the 

ingestion of food. The gregarine Zeylanocystis burti has bundles of 

microfilaments deep within its cytoplasm which are most clearly evident 

when the parasite is flexed, implying an involvement of the microfila- 

ments in torsion of the body (Sathananthan, 1977). Bundles or mesh- 

works of 3 to 5 nm diameter microfilaments have been observed in 

several kinetoplastid flagellates (see review of Vickerman and Preston, 

1976). In all these protozoans., and in T. vaginalisq the evidence that 

the microfilaments are actin rests on morphological similarity only and 

needs to be confirmed by biochemical tests or by. showing that the fila- 

ments bind heavy meromyosin (Pollardq 1973) or antibodies to actin. 

This latter test was used by Erlandsen et'al--ý (1978) on Giardia muris; 
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staining, that the fibrous masses associated with the adhesive disc, 

axonemes and axostyle of the parasite contained actin- and myosin-like 

proteins, and they suggested that an actomyosin system was involved in 

shape changes of the adhesive disc. 

It is possible therefore that the microfilament meshworks of the 

pseudopodia of T. vaginalis may bS contracting and squeezing the cyto- 

plasm of the parasite cause the-extension of the pseudopodia over the 

substratum during locomotion, or around an ingestible object during 

phagocytosis. In a similar way the bundles of microfilaments which 

often lay perpendicularly to the points of contact of the pseudopodia 

with the epithelial cells, the glass substratum or other trichomonads, 

could by contracting draw the body of the organism into closer contact 

with the surface to which it is adhering. Whatever the ways in which 

the microfilaments of T. Vaginalis are involved in movementt it is clear 

that the organism must also possess a mechanism controlling the appear- 

ance of the filaments since I found none in non-phagocytosing T. vagina- 

lis prepared directly for EM from axenic cultures whereas they were 

always present in the pseudopodia of the amoeboid organisms which were 

adhering to a surface. This suggests that it is only when T. vaginalis 

comes into contact with a surface that the microfilaments are synthe- 

sised and operate. It may be that the cytoplasm of a non-phagocytosing 

trichomonad which is swimming freely in suspension contains a pool of 

G-actin, the soluble monomeric form of actin, and that when part of its 

surface makes contact with an object, whether it be a food particle or 

a substratum, the contact triggers the polymerisatin of G-actin into 

F-actin, in the form of a microfilament meshwork, which by interacting 

with other contractile proteins such as myosin results in the extension 

of pseudopodia over-the object. Only further experimentation will 

elucidate the molecular basis of amoeboid motility in T. vaginalis. 



114 

4.4-3 Importance of amoeboid motility in the biology of T. vaginalis 

The ability of T. vaginalis to move either as a flagellate, using 

its flagella and undulating membrane, or as an amoebaq employing 

pseudopodiaq or indeed using both mechanismsq must be of advantage to 

a parasite of the human urogenital tract which may at times be 

surrounded by fluids of varying viscosity. For examples T. vaginalis 

may use its flagella to move about the urethra if there is a thin film 

of urine present; however if the parasite is surrounded by a highly 

viscous and purulent discharge, such as is common in florid trichomonal 

vaginitis, and in which its flagella may not operate properly, then 

amoeboid locomotion using either the vaginal epithelium or the cells 

within the discharge as a substratum would be a more efficient mode of 

movement. 

The fact that T. vaginalis can adopt an amoeboid morphology quite 

different from the spherical or ovoid form typical of the organism 

when suspended in a liquid suggests that to the untrained eye the para- 

site could easily be mistaken for an epithelial cell or leucocyte in a 

wet film preparation of urogenital secretions a technique widely used 

in the diagnosis of trichomoniasis in human, thus leading to errors in 

diagnosis. Textbooks on venereal diseases such as those of Schofield 

(1972) and King and Nicol (1975) make no mention of amoeboid forms of 

T. vaginalis so clearly this is a situation which could be remedied. 

4.5 Mechanisms of pathogenicity of T. vaginalis 
I.. I.. .. 

Earlier studies showed that parasite-free filtrates of T. . vaginalis 

cultures contained substances which were injurious to cultured cells 

(Hogue, 1943; Farris and Honigberg, 1970). Culture filtrates have also 

been shown to cause the haemolysis of human and rabbit erythrocytes by 

Grys and Hernik (1973) however these authors did not make it clear if 

haemolysis was due to the presence of lytic agents in the filtrates or 

simply due to a possible hypotonicity of the filtrates. Nevertheless 

these observations suggest that the parasite secretes cytotoxic factors 
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into its environment which cause the pathological changes observed in 

trichomonal infections'both in vivo and in vitro. However other 

workers, unable to detect any cytopathogenic effects of culture fil- 

trates on cells, argued that T. 
-vaginalis mechanically injures cells as 

a. result of the ability of the organism to adhere tog and perform 

amoeboi'd movements ont cell surfaces (Kotcher and Hoogasiani 1957; 

Christian et al.,, 1963; Kulda, 1967).. 

The data 'presented in this study when added to the large volume of 

previous, work on'T. '-vaginalis enables us to postulate some mechanical 

and chemical mechanisms which may be involved in the cytopathogenicity 

of T. vaginalis in cell cultures and in humans. 

4.5.1 Mechanical mechanisms 

The results of this study suggest several ways in which T. vaginalis 

could mechanically injure tissues and cells. In the RK 13 cell cultures 

amoeboid T. vaginalis were able to migrate under the monolayer of cells 

indicating that the protrusive activities of the pseudopodia of the 

parasites provided the necessary force to break the adhesions of the 

cells to the substratum. Although one might expect the cells of a tissue 

to beýstrongly cohesive in order to maintain its integrity, it is well 

known that the adhesions between cells do not always prevent the passage 

of another"-cell between them asq for example, in the diapedesis of 

leucocytes between the endothelial cells lining capillary walls. Of 

more-direct relevance to this study is the report of Middleton (1973) 

who found that when chick fibroblasts were placed on top of a confluent 

sheet of cultured chick retinal epithelial cells, which as far as their 

intercellular and cell-substratum adhesions are concerned were similar 

to a confluent monolayer of RK 13 cellst the fibroblasts penetrated the 

sheet"and, came to lie between the lower surfaces of the epithelial cells 

and the substratum, i. e. in a similar position as the amoeboid trichomo- 

nads in RK 13 cell cultures. Thus if sufficient numbers of motile para- 

sites migrated into an area of the human vaginal epithelium they could 



116 

disrupt the mutual adhesions of the superficial epithelial cells causing 

erosion of the epithelium. This mechanism may account for the occurrence 

of shallow depressions in the superficial layers of the vaginal epithe- 

lium found in some cases of human trichomoniasis (Nielsen and Nielsen, 

1975). 

A second way in which T. ýaginalis may mechanically damage cells 

is by nipping off pieces of cell cytoplasm thus rupturing the plasma 

membrane of the cell and causing the leakage of soluble cytoplasmic 

material. In the RK 13 cultures I found several instances when the 

pseudopodia of T. Vaginalis appeared to be nipping off peripheral pro- 

jections and microvilli of the cells. A similar phenomenon was observed 

by Farris and Honigberg (1970) in the regions of contact between T. 

vaginalis and chick macrophages, and by Tamayo et al. (1972) at contacts 

between the parasite and human vaginal epithelial cells. Mechanical 

rupture of the plasma membrane of a cell to which T. vaginalis is ad- 

hering may also arise as a result of the tensions applied to the cell 

surface as the organism moves over the cell. Using SEM I found cases 

when amoeboid T. vaginalis were stretched out on the surface of RK 13 

cellsq and both I and Nielsen and Nielsen (1975) have shown that bundles 

of putatively-contracti-le microfilaments pass into the cytoplasm of the 

organism from its adhesions with another cell or a solid surface. On a 

non-deformable substratum such as glass the forces generated by the 

microfilament bundles would tend to draw the body of T. vaginalis to- 

wards the adhesions; however if the adhesions are to a deformable sub- 

stratum such as the plasma membrane of a cell the opposite may occur and 

the cell surface may be drawn towards the parasite and phycically 

damaged. 

Another way in which T. vaginalis may mechanically cause cell in- 

jury is suggested from the work of Munro and Daniel (1965) on the 

lethal effects of nuclear membrane rupture in cells. They found that 
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the insertion of a3 ýLm diameter tungsten needle into the nucleus of 

cultured hamster fibroblasts was always lethal, resulting in an in- 

crease in phase density of the nuclear membranes and chromatin, rounding 

up of mitochondria, ballooning of the cytoplasm and death of the cells 
I 

within 15 min. Insertion of the needle into the cell cytoplasm had 

little or no injurious effects unless the plasma membrane was torn by 

lateral movements of the needle in which case the cell died, possibly as 

a result of a large change in cytoplasmic tcnicity. It is conceivable 

therefore that the axostyle of T. vaginalis, which is, judging by its 

straightness, a fairly rigid structure, may penetrate cell plasma mem- 

branes and nuclear membranes causing injury. However, although T. 

vaginalis adhered to the epithelial cells by its axostyle there was no 

evidence in my electron micrographs of the axostyle penetrating cells. 

If indeed the axostyle can injure cellst such an occurrence may be more 

common when the parasite is lying deep in the tissues of a host where 

pressure from adjacent host cells or from the motility of the parasite 

may aid penetration. On the other hand I did observe several instances 

when pseudopodial projections from amoeboid T'. 1 
vaginalis made deep inden- 

tations into the surface of epithelial cells in regions close to the 

nucleus; although there is no evidence to suggest that the pseudopodia 

of T. vaginalis are rigid, on the contrary I found that they appeared 

to be fairly flexible, they could exert injurious pressure on the sensi- 

tive nuclear membrane. 

Attractive as the above mechanisms may be it will be extremely 

difficult to prove conclusively that they operate in the absence of 

additional chemical factors secreted by T. vaginalis. 

4.5.2 Chemical mechanisms 

Two possible sources of cytotoxic factors secreted by T. vaginalis 

are: 1) the main end products of carbohydrate metabolism, lactic acidg 

acetic acid, CO 2 and H2 (Honigberg, 1978b), and 2) catabolic enzymest 
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such as the hydrolases present in the phagosomes and lysosome-like 

vesicles of T. vaginalis (Lindmark et al. 9 1975). 

4.5.2.1 Metabolic waste products 

Taylor (1962) has shown that cultured cells are sensitive to an 

increase in acidity of the culture medium; changing the pH of the 

medium of cultured avian and human epithelial cells from 7.3 to 5.6 

caused a cessation of cell movements an increase in cytoplasmic and 

nuclear granularity and eventual cell lysis after 5 h. Although T. 

vaginalis secretes lactic and acetic acid into its environment it is 

unlikely that acidity played any role in the initial stages of the in- 

fection of RK 13 cultures with T. vaginalis since I found that the 

medium of the cultures had a pH of about 6-5 six hours after inoculation 

of the parasites by which time there were many lesions. Farris and 

Honigberg (1970) also considered the possible injurious effects of low 

pH in chick liver cell cultures infected with T. vaginalis but dis- 

counted them when they found that 24 h post-infection, when all the 

cells were destroyed, the culture medium was pH 6.0 compared to 6.7 at 

the start. However in the later stages of my T. vaginalis-infected RK 

13 cultures, i. e. phases 4 and 59 the acidity increased to PH 5-0 or 

less and so the metabolic products of the parasites, and also a probable 

concomitant decrease in nutrients in the culture medium, probably con- 

tributed to the death and lysis of the remaining cells. Howeverg in 

natural infections in females it is not clear how metabolic waste 

products of T. vaginalis could be involved in pathogenicity since 

acidic conditions (about pH 4) prevail in the normal human vagina. 

, 
4-5-2.2 Enzymes 

Earlier biochemical and cytochemical. studies on T. vaginalis (see 

below) and other members of the Trichomonadida such as Monocercomonas 

sp. (Lindmark and Muller, 1974) and Tri. foetus (Muller, 1973) have 

shown that these trichomonads possess many acid and neutral hydrolytic 
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enzymes which are involved in the intracellular digestion of ingested 

particulate and'soluble material (see also reviews of Eekhoutt 1973; 

Honigbergt 1978a, 1978b). 

Acid phosphatase is present in the Golgi body, in the 50 to 100 

nm diameter membrane-bound vesicles derived from the Golgil in phagosomes 

and in pinosomes'of T. vaginalis (Ohashi, 1972; Tamayo et al., 1972; 

Nielseng 1974; Lindmark, et al., 1975.; this study). These organelles 

and particles-also contain neutral ATP-ase (Nielsenj 1974) and P-N-acetyl- 

glucosaminidase (Lindmark et al., 1975). Sharma and Bourne (1964) using 

a light microscopic cytochemical method detected P-glucuronidase activity 

in the cytoplasmic granules of T. vaginalis however both Fishman et al. 

(1950) and I, in this study, have not been able to confirm the presence 

of, this enzyme from biochemical assays on homogenates of the organism. 

Although further work is necessary to characterise the subcellular dis- 

tribution'of hydrolytic enzymes in T. vaginalis and to discover if 

stocks of the parasite differ in their enzyme content, all the present 

evidence suggests that T. vaginalis possesses a lysosomal system, similar 

to that of metazoan cells (De Duve and Wattiauxq 1966), in which 

hydrolase-containing vesicles or primary lysosomes are formed at the 

Golgi body and then fuse with and release their contents into phagosomes 

so forming secondary lysosomes in which nutrients are digested. 

It is possible therefore that exocytosis of the digested remains 

of the contents of the phagosomes, or perhaps exocytosis of the enzymes 

inýprimary lysosomes, with the consequent release of digestive enzymes 

into-the environment of, T. vaginalis may be related to the cytopatho- 

genicity of the parasite. In this study I found that the cytoplasm of 

T. vaginalis at the areas of adhesion to the RK 13 cells contained 

enzymesq which may have been en route to the plasma membrane to undergo 

exocytosis so releasing hydrolytic enzymes which could digest the 

surfaces- of the RK 13 cells. 
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Other enzymes which may be considered as possible factors in the 

pathogenicity of T. 
_vaginalis 

are hyaluronidaset neuraminidase and 

phospholipase. 

Boni and Orsi (1958) and Filadoro and Orsi (1960) using a vis- 

cometricassay showed that both the living organisms and homogenates 

of 8 strains of T. vaginalis were able to digest bovine sinovial fluid 

and human hyaluronic acid indicating the presence of the enzyme hyal- 

urinidase in the parasites. Hyaluronic acid occurs widely as an inter- 

cellular mucopolysaccharide of metazoan tissues; secretion of hyaluro- 

nidase by T. 
_vaginalis may facilitate the invasion of host tissues by 

amoeboid forms of the parasite by breaking down intercellular cements. 

Neuraminidases are secreted by several different parasites of 

mucosal surfaces, such as viruses and bacteria (Haskell, Peterson, 

Watson, Plessas and Culbertson, 1970) and Tri. foetus (Romanovska and 

Watkins, 1963)- Mucosal secretions are rich in sialic acids and these 

acidic sugars may be involved in maintaining the viscosity of secretions 

(Haskell et al., 1970); neuraminidase selectively removes sialic acids 

from glycoproteins thus parasites which secrete this enzyme possess a 

mechanism for penetrating the protective mucosal secretions lining the 

respiratory and urogenital tracts. Muller and Saathof (1972) consider 

that the secretion of neuraminidase by Tri. foetus enables the parasite 

to degrade the mucus of the bovine cervical surface so permitting in- 

vasion of the uterus (the typical habitat of this parasite in bovine 

trichomoniasis) with the result that Tri. foetus may cause abortion and 

i nfertility in cattle. I was unable to detect neuraminidase in homo- 

genates of T. vaginalis and if the absence of this enzyme in the organism 

is confirmed by future studies on many other stocks of T. vaginalis it 

may partly explain why the uterus is not infected in cases of human tri- 

chomoniasis. 

Recent studies have indicated that the cytopathogenicity of 
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Entamoeba histolytica and E. invadens (McCaull Poston and Bird, 1977) 

and Naegleria fowleri and Acanthamoeba culbertsoni (Cursons and Brown, 

1978) may be related to the injurious effects of phospholipases of 

these amoebae on the plasma membranes of their host cells. As far as I 

am aware no-one has looked for phospholipases in T. vaginalis so this 

could be an avenue worthy of investigation in view of the similar cyto- 

pathogenic effects which occur in RK 
. 
13 epithelial cell cultures when 

infected with T. vaginalis (this study) or E. histolytica (Knight et al., 

1975). 

In summary-P it is clear that further work is needed on the charac- 

terisation of the enzymes of T. vaginalis and their subcellular distri- 

bution - before we can draw any firm conclusions concerning their rela- 

tionship to the cytopathogenicity of the parasite. In addition we need 

to know which, if anyq of the metabolic enzymes of the organism are 

involved in extraceilular digestion; an analysis of the parasite-derived 

enzyme content of filtrates of T. vaginalis cultures may provide some 

of the answers to the problems of chemical mechanisms of pathogenicity 

of this fascinating parasite. 
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CONCLUSIONS 

T. Vaginalis can adhere to a variety of living and non-living 

surfaces. The adhesions between the organism and a surface are 

generally of the intermediate-junction type and characterised by a 

gap of 10 to 30 nm. 

2. In natural human infections the ability of T. vaginalis to adhere 

to the epithelial surfaces of the urogenital tract may be a 

mechanism which enables the parasite to resist removal from its 

host by outflowing discharges or urine. 

T. vaginalis can move either as a flagellate or like an amoeba. 

Amoeboid motility is possible because T. vaginalis possesses an 

internal force-generating system, probably based on actin-like 

microfilaments, that is capavie of being assembled and organised on 

contact of the surface of the organism with a substratum or an in- 

gestible object, and this system provides the mechanism for the 

protrusion of pseudopodia over the substratum during amoeboid loco- 

motion or around the object during phagocytosis. 

4. In natural infections the amoeboid motility of T. vaginalis would 

enable the parasite to move about within its host in situations 

where its flagella and undulating membrane cannot operate effic- 

iently as locomotory-organelles, such as in viscous vaginal discharge 

and in spaces between the cells of host tissue. 

T. vaginalis infections of monolayers of cultured mammalian epi- 

thelial cells provide a valuable experimental method for studying 

the inherent mechanisms of pathogenicity of the parasite at the 

light and electron microscope levels. The lesion-forming ability 

of the parasite in cell monolayers may with suitable developments 

prove to be the basis for an efficacious method of assaying the 
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pathogenicity of stocks of T. vaginalis.. 

6. The cytopathogenicity of T. vaginalis probably involves a com- 

bination of mechanical and chemical mechanisms. Amoeboid forms 

of the parasite may mechanically damage tissues and cells by 

breaking the adhesive junctions between cells, and between cells 

and their substratag and by rupture of the plasma membrane of cells 

with their pseudopodia or axostylýs. T. vaginalis may chemically 

injure cells by secreting toxic waste products or hydrolytic enzymes 

such as acid phosphataset ATP-aseq P-N-acetyl-glucosaminidase and 

hyaluronidase. 

Chemicals or drugs which inhibit the adhesiveness and amoeboid 

motility of T. vaginalis may be valuable tools for distinguishing 

the contribution of mechanical mechanisms, which depend on adhesion 

and motility, from that of chemical mechanisms in the pathogenicity 

of T. vaginalis. 

Differences in the inherent pathogenicity of strains and stocks of 

T. yaElnalis may be related to differences in their adhesiveness 

and abilities to perform amoeboid movements. 
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TABLE 

Acid phosphatase assay of T. vaginalis 

Specific Activity_of acid phosphatase 

nanoMoles paranitrophenol released per pg 
Fraction of homogenate of 

T. vaginalis protein per min. at 37*C 

T. vaginalis assayed T. vaginalis LUMP 889 T. vaginalis LUMP 993 

1.25 x 10 
8 

cells 2x 107 cells 
I 

1) Soluble fraction of the 
-3 -3 6 cytoplasm = cytosol 32.7 x 10 4x 10 3. 

2) 10.51000 g sedimentable 
particle fraction 

a) Free activity 140.1 x 10-3 80.2 x 10-3 

b) Activity releasable 
by Triton X-100 
solubilisation -3 40.9 x 10 -3 123.6 x io 

c) Total activity 181. o x lo 203-8 x 10 

Ratio of enzyme activities, 
particle fraction: cytosol 5-5: 1 55: 1 

1. Number of organisms from which each fraction of the homogenate was 

obtained. 
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TABIE 

Neuraminidase assay of T. vaginalis 

Material assayed 
1 Optical 

2 
. 
ýensitv %3 

Parasites 

1) T. vaginalis LUMP 840: 
a) 5x 105 living organisms 0.000 0.0 

b) CYtosol Of 5x 105 lysed organisms 0.000 0.0 

2) T. vaginalis LUMP 896: 

a) CYtosol of 5x 106 lysed organisms 0.001 0.26 

b) CYtosoý + solubilised particles of 
5x 10 lysed organisms 0-013 3.44 

Controls 

3) Neuraminidase (BDH Ltd) 250 International units in 
H20 0.378 100.0 

4) Neuraminidase (Wellcome Ltd) 1: 10 dilution in H20 0-136 36. o 

5) 0.1 per cent aqueous soln. sialomucolds + 0.4 N 
H2 so 4 incubated at 800C for 30 min before assay 0.236 62.4 

6) H20 0.010 2.6 

1. Volume of each material = 0-5 ml. Each material was added to an 

incubation vessel containing 0-5 ml 0.2 M acetate buffer4 pH 6.1, and 

1 ml 0.1 per cent aqueous soln. of sialomucoids; the mixtures were in- 

cubated at 37'C for 30 min., witn tne exception of material (5) when 

the sialomucoids soln. was replaced with I ml H20. For the assay 

procedures and,. the determination of optical density see 2.7-5- 

2. Optical density is directly Proportional to the concentration of 

sialic acid released from tne sialomucoids by each of the test materials. 

Value given is the mean of 2 experiments. 

Neuraminidase activity of material as a percentage of the activity 

of 250 IU of neuraminidase in 

!P 
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FIGURES 

Main abbreviations used on figures, for others see figure legends. 

af anterior flagellum or flagella 
ax axostyle 

c costa 

ec epithelial. cell 
ecm epithelial cell monolayer 
er endoplasmic reticulum 

f flagellum or flagella 
fi filopodium 
fp flagella pocket 

9 Golgi body 
gl glycogen granule 

h hydrogenosome 
HS horizontal section, cut parallel with the substratum 

ij intermediate-type junction 
IR interference reflection 

k kinetocome 

L lesion 
la lamellar cytoplasmic extension 

m mitochontrion 
med medium-facing side of monolayer 
mf microfilaments 
ml marginal lamella, 
mv microvillus 

n nucleus 
nl nucleolus 

p pseudopodium. 
PC phase contrast 
pe pelta 
pf parabasal filament 
ph phagosome 
pm plasma membrane 

rf recurrent flagellum 
rt retraction fibre 

s substrat= 

t microtubule 
tj tight junction 
tv T. vaginalis 

um undulating membrane 

v cytoplasmic vesicle 
va cytoplasmic vacuole 
VS vertical section, cut perpendicular to the substratum 



Fig. la. Some members of the order Trichomonadida. Original. drawings 

based on the descriptions given by Honigberg (1978a, 1978b)q showing the 

main organelles. T. vaginalis and T. gallinae are morphologically similar& 

Each member is drawn to the same relative scale as they appear in stained 

preparations from axenic cultures; however it must be noted that there is 

often a wide variation in the sizes of the individuals of any population of 

trichomonads. 

Bar = 20 gm. 
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Fig. 1b. Sketch showing the main organelles of T. vaginalis. See list 

of abbreviations for explanation of symbols. 

The organýsm is depicted as a longitudinal section of the body with the 

flagella and undulating membrane appearing in transverse section. 
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Fig. 2. Phot-omicrograph of a3 day old monolayer of rabbit kidney 13 

epithelial cells. Giemsa stained preparation. Some binucleate (small 

arrows) and multinucleate (large arrow) cells are present. The cytoplasm 

of the cells contain numerous cytoplasmic vacuoles (va) UP to 30 ýIm in 

diameter. 

Bar = 100 jim 

Fig. 
_ý. 

Phase contrast micrograph of a RK 13 monolayer (ecm) 1h post- 

infect-Lon with T. varinalis showing an aggregate of about 100 organisms 

(Lv) lying on the monolayer- Araldite embedded preparation. Two smaller 

clumps of T. v Cinalis can be seen at the top and at bottom left of the 

figure. Note that only a few isolated T. vaginalis are seen between the 

aj,, ý,: rev, ates (O-g- arrow). 

Bar = 100 11m. 
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Fig. 4. RK 13 monolayer 2h Post-infection with T. vagrinalis. Giemsa 

stained preparatiian. Darkly stained aggregates of trichomonads are 

adherent to the monolayer. A small cell-free area, or lesion (L), can 

be seen on the right of the largest aggregate. No lesions are present 

in the unparasitised areas of the monolayer. Some of the cells contain 

cytoplasmic vacuoles (arrow). 

liar = 2ýO pm. 

Fig. 5. PC micrograph of a RK 13 monolayer 6h post-infection with T. 

vaginalis. Araldite embedded preparation. Numerous lesions are present 

in the monolayer. In the centre (arrow) a lesion is filled with tri- 

chomonads. Note the clear areas of substratum in the lesions (L). 

Bar = 250 ýLm- 
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Figs. 6 and 7. High power phase contrast micrographs of lesions (L) 

produced in RK 13 monolayers 6h post-infection with T. vaginalis. 

Araldite embedded preparations. 

Bars = 50 4m 

Fig. 6. Two lesions separated by a large aggregate of T. vaginalis. Note 

that few T. vaginalis are lying in the centres of the lesions: many amoe- 

boid organisms are lying either partly (small arrows) or completely (open 

arrow) beneath the epithelial cells which line the lesions. The nuclei 

of damaged or lysed cells are often pyknotic with an increased density 

in phase contrast optics (large arrow). The monolayer of cells (ecm) 

surrounding the lesions appears undamaged, but some cells contain large 

vacuoles (va). 

Fip;. 7. Many T. vaginalis are palisaded against the epithelial cells 

lining the lesions. The nucleus of a lysed cell is arrowed. Note the 

retraction fibres (rt) which extend across the lesion from cells at the 

(, cll;; ( -. 
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Fi_g, 8. RK 13 monolayor 10 h post-infection with T. vaCinalis. Giemsa 

stý ,, -tined preparaLion. A large lesion, approximately 860 m by 470 m is 

present in the monolayer. There are many darkly stained T. vaginalis 

lining the edge of the lesion. Note that the unparasitised area of the 

monolayer at lower right appears undamaged and is free of lesions. 

Bar = 100 m. 

Fig. 9. RK 13 mono-Layer ý6 h poot-infection with T. vaginalis. Giemsa 

stained preparation. Most of the monolayer has been destroyed leaving 

umall islands of cells to which many T. vaginalis are adherent. Many 

orj,;, a-0-cms are adl-wring to the (, xposed substratum. An unusually large 

trichomon, id i. 6 arrowed. 

Bar = 1, )0 iirn. 
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Fig. 10. Scanning electron micrograph of an amoeboid T. vaginalis adhering 

to a Class substratum, showing the main surface features of the organism. 

The anterior flagella (af) emerge from the anterior pole. This is probably 

an early dividing form of T. vaginalis since two undulating membranes (um) 

are present. At the rear of the organism the axostyle (ax) projects for 

6 ýtm; the axostyle is 0.5 ýLm in diameter at its base but tapers to a fine 

point. Note the flat pseudopodium (p) at the rear and on the left side of 

the body, and the short filopodium (fi) on the right side. 

Bar =5m. 

Fig. 11. Scanning electron micrograph of an amoeboid T. Vaginalis adhering 

to the glass substratum in the centre of a lesion in an epithelial cell 

monolayrr. A single broad and flat pseudopodium (p) has been protruded 

from the posterior pole of the trichomonad; the anterior half of the 

organism from which the flagella (af) and undulating membrane (um) project, 

is rounded and lifted off the substratum. Note the straight filopodia 

(fi) which project from the sides of the pseudopodium and are attached to 

the substratum at their distal ends (the filopodia have fractured during 

the critical point drying process). 

Bar = Prn - 
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Fil,,. 12. Amoeboid T. varp-nalis adhering to a glass substratum. The upper 

Lricliomonad is polarised along its anterior-posterior axis; the flagella 

(af) can be seen projecting from the anterior pole. Note how the tri- 

chomonad appears to be stretched out between adhesions to the substratum 

at the poles of the body; the cenLral part of the body is lifted away from 

the substratum and its side describes a catenary curve (arrow). The 

spherical object next to the lower trichomonad originates from the epi- 

thelial cell monolayer. 

Bar = 10 pm. 

1-5. A 1""Oup of eight T. vaCinalis adhering to the exposed substratum 

in the contre of a lesion. Note the broad flat pseudopodia (arrows) 

which li-e beneath the roiuid(, d central parts of the bodies of the organisms, 

fo. T. -m-inj,, - -i confluent sheet of pseudopodia. 

P'"ll. ý 10 11m. 





Fig. 14. Anterior pole of T. vaginalis showing the four anterior flagella 

and the undulating membrane (um). The um is a thin fold of cytoplasm to 

which the recurrent flagellum (rf) is attached at a distance of 0.5 Tim 

from its free edge. The um and rf pass backwards together and terminate 

half way down the body of T. vaginalis (arrow). The parasite lies in close 

contact with an epithelial cell (ec). 

Bar =2 ýan - 

1'-. High maj,, nification view of the anterior pole of T. vaginalis 

ohowing the flal-ellar pocket (fp) from which the four anterior flagella, I 

the recurrent flagellum and the undulating membrane emerge. 

Bar =1 Pm. 
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Fig. 16. High magnification view of the anterior flagella (af), un- 

dulating membrane (um) and recurrent flagellum (rf) of T. vaginalis. 

Bar =1 ýim. 

Fig. 1'ý. A late dividing form of T. vaginalis. Two daur, hter trichomonads 

are seen separated by a cleavage furrow (between black arrows). Both 

daug, hter-s have undulating membranes which pass backwards on the upper 

surface and terminate halfway along the body. Note that the undulating 

membrane and recurrent flagellum terminate together (open arrow). 

Bar =2 ýLm- 





Fig. 18. Abnormal dividing form of T. vaginalis. The body is disc-shaped, 

25 ýtm in diameter, and has at least 5 separate sets of flagella. There 

is a long pseudopodium on one side of the body. 

Bar = 10 ýLm. 

Fig. V). Scanning electron micrograph of a3 day old monolayer of RK 13 

epithelial cells. The monolayer consists of a sheet of polygonal-shaped 

cells 20 to 50 w in diameter. The spaces between the cells are an artefact 

of the critical point drying process. 

Bar = loo ýim. 



4 IW 'i 

1 



FiG. 20. A lesion in a monolayer of epithelial cells infected for 6h with 

T. vaf_-inalis. The lesion is 400 jim at its widest diameter; only a few 

epithelial cells are present in the centre of the lesion, which is occu- 

pied mainly by T. vaginalis (small arrows). An aggregate of T. vaEinalis 

lies on the monolayer at the top left of the figure. Uarý7e arrow). 

Bar = 100 jLm. 

Fig. 21. Detail of Fig. 20 showing the centre of the lesion. Note the 

coll free spaces in the lesion which are traversed by retraction fibres 

extendino from the epithelial cells (arrows). Some trichomonads (tv) are 

adhering to the upper surfaces of the cells. 

Bar := rýo jiln. 
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Fir,. A small lesion (L) in an cpithelial cell monolayer infected for 

6 11 with T. vaginal i;; ]',, krasites are adhering to the cells at the edge 

of the lesion. Colls at one side of the Tesion. have been lifted away 

from the substratum (arrow). 

Bar = 20 im. 

F-i fI- t- -. SC, '", T. v, -wi-nal. ij adlicring to epiLlielial cell (, c) at the edge of 

a le", ioll. . 'jomL- of the cello have rounci(, d up losing their normal flattened 

morpho'101, ý. y. NoLv tho large lame-11a pr-oif, (, tjnf7 into the cell free areas of 

the jesion from a cell at thf, top of the figure 

Bar = 20 4m. 





Fig. 24. An amoeboid T. vaginalis. which has extended a pseudopodium 

beneath an epithelial cell. Note the large lamella (la) which is part 

of the peripheral cytoplasm of a cell out of view in this figure. This 

figure should be examined in conjunction with Figs. 25 and 26. 

Bar = 10 iim- 

Fig. 2ý. Same area as Fig. 24 but the specimen has been rotated through 

1500 in the SEM to show the pseudopodium of an amoeboid T. vaginalis 

lying on the substratum beneath an epithelial cell. (The cell has 

fractured during the critical point drying process). 

Bar = 10 ýim. 
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Fij,, - 20. Detail of Fig. 24 showing an amoeboid T. vaginalis which has 

(ýxt-nded a pseudopodium under an epithelial cell. Note the small pseu- 

dopodia at the rear of the parasite (small arrows). The surface of the 

large pseudopodium is smooth. The opening of a pinocytotic pit can be 

seen (large arrow). The vesicular material on the upper surface of the 

parasite is debris from lysed cells which has adhered to the parasite. 

Bar =3 ýLm - 

Fig. 27. Throe T. vaginalis adhering to the sides of a rounded epithelial 

COII; the cell surface is covered with many microvilli. 

Bar :=1o jim. 





Fig. A polarised amoeboid T. vaginalis adhering to the upper surl', 'I('(, or 

an epithelia]. cell at the edge of a lesion. The organism is polarised 

along its longitudinal axis: two small pseudopodia (arrows) project 

forwards in front of the anterior flagella and are in close contact with 

the epithelial cell. 

Bar =5 ilm - 

-l'). T. vaj,, inalis adhering to the side of an epithelial cell. Note 

that the flagella project up into the medium. The cell surface is 

covered with debris from lysed epithelial cell. s. 

Ba r=5 um - 
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Fig. Two trichomonads adhering to a group of epithelial cells. Note 

Uvit on(-, j), imsite (arrow) lies underneath the cells. The fl.,,,, (, Ila and 

undulatinj7 mr, mbrrmo of Oin other parasite. project out into the medium. 

S= SuLutratum. 

Bar =5 pm. 

Fifý. "I. T. 
- vnjý, in, 'A] iS adficring to the Old', of an epithelial cell. The 

A has looped its flagella around a long retraction fibre (rt) 

which extendo away from the cell over a cell-free area of the substratum. 

I il, I r, -, 
I -) 

'jim. 
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,- 32. An nmoeboid T. vaginalis which appears to have been crawling over 

Uie surface of an epithelial cell at the time of fixation. The axostyle 

projects from the rear of the organism. Two broad flat pseudopodia extend 

over the cell. NoLe that this trichomonad possesses one anterior flagellum 

which does not arise, as normal, from the flagellar pocket (arrow). 

Bar =5 itm. 

Fip, ý"). lliý, h majrnification view of the region of contact between a 

pseudopodium of T. vaginalis and an epithelial cell. Note the microvilli 

on Lhe ccll'u surface which are approximately 0.1 jim in diameter and 0.6 wn 

in lený,, th. 

Bar -2 )im- 
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Fii', - 34.9'.. vatjnalis lying beneath the remains of a lysed epithelial cell. 

The small spherical bodies (arrows) 0.5 to 1.0 4m in diameter may be 

miLochondri, ri and/or vesicles, and the large body on the left, the nucleuS. 

The nature of the smooth-surfaced body (b) is unknown but similar bodies 

were :; --n in cell cultures uninfected with parasites. Note that the cell 

on tho lower rif-; ht ((., C) 11,10 lost most of its microvilli as compared with 

the upper ctý'I I. 

Bar =ým. 





ý'). Trinsmiosion electron micrograph of a trinsverse section through 

tlv! m. id-rej-r, ion of T. vaginalis. The nucleus (n) is surrounded by a corona 

of rough endoplasmic reticulum (er). The axostyle (ax) and Golgi body (F, ) 

lie on opposite sides of the nucleus. Parts of the anterior flagella (af) 

and the undulating membrane (um) are shown. The cytoplasm contains a 

population of electron-dense granules 0.5 to 1.0 jim in diameter which are 

Lft,. ý IiyrIro),: (, rjo,; om(, s (h), and a heterogeneous po-pulation of phagOsOmes (ph) 

and v, -, ý; ic*I. (. -,; (v). 

Bar =2 ILM. 

Fil, 9',. Lon6tudinal section through T. va! 7inalis showing tne kin(-tosollies 

(k) of the ontorior flagella, the nuclou, -, (n) and the axostyle (ax) which 

passes, poGt-loriorly from the kinetosomes to the posterior pole of the body. 

h= hydrojý, (! nosnmý.. 

2 13, tr =C 
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Fif-r, s- 3/ to 39. ],, I(! ctron micrographs of thin sections throut,, h T. vaginnlis 

showinr, the fine structure of some of Lho organelles. 

Fij, 
l. ý7. Transverso sf! ction through the undulating membrane and re- 

current flagellum. The flagellum has the normal 9+2 arrangement of 

mi. crotubules (t) and is attach(ýd to the undulating membrane at a point 

about ý00 nm from its free Note the electron-dense marginal 

lam(, 1.1. t (ml) with. in the distal portion of the undulating membrane. There 

i,, -, j of 6 nm between the flagellum and undulating membrane which does 

noL . ontain any elec t ron- dense material. h= hydrogenosome; gi = glycogen 

granule; r= ribosomes. 

Bar = 250 nm 

Fig. 38. Coota and plasma membrane. The costa is a filamentous rod 

which beneath the undulating membrane. The costa is divided trans- 

versely into segments (s) by electron-dense bands (bl) 12 nm wide witli a 

centro-to-centre spacing to 60 nm. Each segment contains longitudinally 

aligned filaments which are traversed by secondary electron-dense bands 

(b2). The plasma membrane (pm) has a trilaminar structure and is 7 nm 

thick. Note that no surface coat is evident on the outer surface of the 

mombn, tne Ln this section. rl = glycogen granules; r= ribosom(-,, s; h= 

hydrotýcnosom(ý; v= vesicles. 

Bar = 250 nm 

F. ij,:. 39. Golgi body and endoplasmic reticulum. The Golgi body (g) con- 

ot' many parallel membr, -uie-bound cisternae (c). The forming face 

(. r) U(,, s, clon,, to the i, ndoplasmic reticulum (er) from which vesicl(ýs 

(,,. Irr, ow.,.; ) appi-ar to pnoo and fun, ý with the for-mint, face of the Golgiq On 

thiý opposite fa(-, ths, -, ecrctory f,. ice the cisternae break up into 

vesicles ý() to 100 nm in diamet(ýr which are released into the cytoplasm. 

Bar = 500 nm 
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Fij, 
)G. 

40 to 112. Interdigiation-tYPe contacts between T. vaf,, inalis in 

infected opi-Llielial cell cultures. 

Fig. W. Two T. var,, inalis showing the reciprocal interdigitation of 

pr-, oudopodi, ýj (p) in the area of contact. 

Bar =3 I'm 

111- D(J-rlil of Fig. 40, showing bundles of microfilaments within the 

p,,, 3(-, udopodi.,,, of T. vaginal-is. The bundles are oriented along the long axis 

Of th" F)t3-udopodium (arrows) and perpendicularly to the surface of the 

adjacent organism. 

Bar =1 jim 

FIF"- I'P- Reciprocal interdigitation, of pseudopodia of two T. vaginalls. 

A bundli, 01' microfilaments lies in tho contre of one pseudopodium (arrow). 

'Pho 'API)O, -, ('d Pjanmrl mombrrmen of the two trichomonads are separated by a 

i7ap Of '() to 50 nm in the region of interdigitatt-ion. Note the exclusion 

of and ri-bosomes from the pseudopodia, which contain a filamen- 

tOUL; nl(': 7, IIWOI",, 

Bar 1 I'm 
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Figs. l13 and lili. Specialised contacts between T. vaginalis 

Fig. 113. Section through two T. vaginalis showing a region of close con- 

tnct (arrow) which is characterised by a parallel apposition of plasma 

rw-mbranes over a distance of 1 4m; the membranes are separated by a gap 

of 75 nm which contains filamentous material., The section has passed 

through the axostyle (ax) of one trichomonad and shows the sheet of 22 nm 

diameter microtubules (t) in transverse section. 

Bar = 500 nm 

lil, - I of' 113 showing Lhe specialised contact at high mag- 

ni. fication, Lying in the gap between the apposed membranes is a central. 

electron dense band (large arrow) which is traversed by filaments (small 

, 11*1, ()Vj) ý ý, () 1() 11,11 ill whicli Aretcli between the membranes. 

P,: Ir , ý()() Iml. 
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Figs. 45 and 46. Contacts between T. va-i. n-ili, -, and the substratum 

Bars = 500 nm 

Fig. 45. Vertical section, perpendicular to the substratum, through the 

lower surface of T. vaginalis showing three pseudopodia (p) which are 

in close contact with the substratum (s). The former position of the 

glass substratum is marked by an electron-dense line (arrow) which is 

probably composed of serum proteins adsorbed from the culture medium. 

The pseudopodia contain a meshwork of filamentous material (mf) which, 

in the central pseudopodium, contains tracts or bundles oriented towards 

the substratum. The plasma membrane of the trichomonad is separated from 

the substratum by a gap of not more than 30 nm (arrow). 

46. Výýrtical section through a pseudopodium at its point of contact 

w-ith the substratum. Note the oriented bundles of microfilaments (MO 

which pass obliquely away from the, substratum, and the 30 nm gap (arrow) 

between the trichomonad and the substratum 

k 
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Figs- W to ý9. Vertical sections through a3 day old monolayer (ecm) 

of RK 13 epitholial cells, illustrating the cellular fine structure. 

Fig. 47. The medium facing, or uPper, surfaces of the cells are covered 

with microvilli (mv). The lower surfaces of the cells are closely 

adherent to the substratum (s). 

n -= nucleus; nl = nucleolus; va. = vacuole; med. = medium 

Bar =5 pm 

Fig. 48. In many areas of the monolayer (ecm) lamellar processes of the 

peripheral cytopInsm of cells out of the plane of the section are seen 

lying beneath other cells. The presence of these processes create small 

spaces (arrow) between the lower surfaces of the monolayer and the sub- 

s tr,, -Atum . 

Bar = ', ) im 

Fijý- It'). Literal adhesions of epithelial colls. Tight junctionr, (tj) are 

found on t1w medium side of the monolay(-r. Intermediate-type junctions 

(ij) , iro charact. (ýristically found closer to the subs t ratum -apposed sur- 

f, -Iccý, [, of the monolayer in areas of lateral interdigitation of the cells' 

siirfac (ý,,; - Th,, of the c(ýIlr, to the slibstratum are usually asso- 

cj.,, t, q1 Wýtli ,, m,, t c)f microfilaments (mt'). 

m= mitochondrion 

Ba r=2 I'm 
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Fig. 50. Horizontal section, taken parallel to the substratum, through the 

edge of a lesion in a monolayer of epithelial cells infected for 6h with 

T. vaginalis. Parts of cells (ec) can be seen at top left and right, and 

bottom riv; M. The edge of the lesion is packed with T. v-tF, --Lnaljl: s some of 

whicl, ar(ý -Lyi. nl:,, in close (about 50 nm) contact with their neighbours 

(arrown). Note the flagella (f) lying in the lari, 
_, er spaces between the 

trichomonads. At Uie, top of the figure the trichomonads are in close 

contact with the epithelial cells. 

Bar = 10 *jim 
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Fign- 51 to Vertical sections, taken perpendicular to th-- substratum. 

through the odges of lesions in epithel ial cell monolayers ((-(. 'm, )- Note 

thAt the electron dense line which generally m, -Lrked the interfac- 1),, 'uw(, en 

the Araldite and glass substratum is absent in these sections. 

Fig. ', 'I. Two trichomonadU3 lyin#r, betwoon the substratum and tile lower 

surfw-s of two epithelial celln. The trichom. onads appear to be coin- 

pressed b-twoon the cello and the substratum: their lower surfaces are 

flnttt, npd againnt tho subntrntum (nmnll arrows) and their upper surfaces 

are In close contact with the cells (large arrow). Note that the epi- 

thr-lial cc, I lo appear undnmag-d- 

Bar a5 um 

Hit. T. vt-AgijMUg lying beneath epithelial cells at the edge of a 

loniori, Th, Pftr"itDIO hAvs, completely lifted one cell away from the 

pubatratVa. 

Mr- um 

Fie.. ')ý. A Kroup of four T. yMirwlts Palinaded agAinst the cells at one 

nwo or a I-slon. Tim parasites have dinplaced two cells from the sub- 

stratum which ara roundad with an ineresood numbor of microvilli on their 

Purfaceo (nrroua) as c(papa"d with a third cell which still adheres to tl,. p 

Pubn' rat %im. Ploto tho largo autoplagoome (ph) within the latter cc 

Mr -r- " um 
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Fig. 51-1. VS) through the edge of a lesion showing an epithelial cell which 

has been lifted off the substratum by a trichomonad. Note that the lifted 

coll and the cell adjacent to it appear morphologically normal. 

Bar =5 jim 

Fig. 55. Two '11. varjnalis lyinf_, beneath the epithelial cell monolayer. 

NoLc that the anterior flagella (af) of both organisms lie in a small, 

i. e. less than 2 jLm wide, space between the cells and substratum; the 

size of the space makes it improbable that the flagella of T. vaFinalis 

can make a siCnificant contribution in the, motility of the, organism 

whilst lying under the monolayer of cells. Note the pseudopodia (p) 

of the trichomonad on the left. 

B, ir - -1 prn 

Vir. 
-', 

(, 
. T. vav: ina-l *1 -, lyinpý betwoen the substratum and the lower surface 

of an epitheli. al cell. Noto the pseudopodium (p) which makes a deep in- 

duntatioll in the cytoplasm of the cell and lies about 2, )0 nm from the 

nuclear rni, mbrane of the epithelial cell (ec). 

I- = Golp, i body, n= nucleus of epithelial cell. 

Bar =1 I'm 
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Fif,, s- 57 and 58. Type 1 contacts between T. vaginalis and epithelial cells. 

Bars =1= 

Fig. 57. In some regions of the contact (large arrows) the parasite and 

cell are separated by a gap of 10 to 20 nm. Note the vesicles (small 

arrows) which lie close to the contacts. 

Fij,;. 58 . Pejjon of parallel apposition of the plasma membranes of T-i 

v, qýinali-., -, and an epithelial cell. The contact is 3 4m in length and the 

membranes are separated by a gap of about 20 nm. Note the vesicles (arrows) 

close to the contact. 
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Fig. 59. Type 2 contact between T. 
__vaginalis 

and an epithelial cell. The 

parasite has produced two pseudopodia which are nipping off a small cell 

process (large arrow). A cell microvillus is being phagocytosed (small 

arrow). Note the presence of numerous vesicles in the trichomonad (open 

arrows). The nucleus of the cell lies close to the region of contact with 

the trichomonad. 

Bar =1 iim 

Fit,, 60. Type 21 contact between T 
. t. -vaginalis and an epithelial cell. Two 

microfilament-containing pseudopodia have surrounded a finger-like process 

of the cell. Note the 10 nm gap between the parasite and cell (large arrow). 

On the right the section passes transversely through several cell processes 

(small arrows) which are enclosed by the pseudopodium. Note the bundle 

of microfilaments (mf) in the pseudopodium. 

Bar =1 jim 
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Fig. 61. Type 2 contact between T. vaginalis and an epithelial cell 

showing interdigitation of finger-like processes of the cell and para- 

site. This section passes longitudinally through a contact which is 

similar to that sectioned transversely in Fig. 60. 

Bar =1 ýun 
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Figs. 62 to 61t. Type 2 contact between T. vaj,, inalis and an epithelial cell 

showing the complex interdigitation of pseudopodia with cell processes. 

Fig. 62. The pseudopodia of the trichomonad contain a meshwork of micro- 

filaments which are concentrated in the regions of contact with the cell. 

Where the section has passed perpendicularly through the points of 

closest contact, the apposed membranes of T. vaginalis and the cell are 

clearly resolved (small arrows); but where the section passes obliquely 

through a contact (large arrow) the cytoplasm of trichomonad and cell 

misleadingly appear to be continuous. Note the similarity in appearance 

of the microfilament meshworks of T. vaginalis and cell (mf). 

Bar = 0.5 4m 

Fig. 63. Detail of Fig. 62 at higher magnification showing the 5 to 10 nm 

diameter microfilaments in a pseudopodium of T. vaginalis. Note the 

orientation of the filaments (indicated by the drrow) towards the tip of 

the pseudopodium. 

Bar = 200 nm 

Fig. 6)1 - Detail of Fig. 62 at higher magnification showing a point of 

closest aPPOoition of the membranes of T. vaginalis and epithelial cell 

(a3---row). TI-ie trilaminar structure of both membranes is clearly resolved 

and there is a Cap of 6 nm between them which does not contain any 

olectron-dense material. 

Bar = 200 nm 
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Figs. 65 and 66. T. vaginalis-infected epithelial cell cultures stained 

with ruthenium red (RR). The cultures were not washed before staining. 

Type 1 contacts are seen between the parasites and the cells. 

Bars = 

Fif', 65. A trichomonad adhering to two epithelial cells. Note the 

uniform electron-dense staining of the plasma membranes of both the 

parasite and cells. The cytoplasm of the cells appears rarified. 

Fig. 66. Uniform staining of the plasma membrane of T. vaginalis. Note 

the microfilament bundle (arrow) within the cytoplasm of the parasite. 
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Figs. 67 and 68. High magnification views of the regions of contact of 

T. vaginalis (tv) with epithelial cells (ec) in cultures stained with 

ruthenium red. 

Bars = 500 nm 

Fig. 67. The plasma membranes of both trichomonad and cell are covered 

with a 15 nm thick electron-dense ruthenium red positive layer. Note 

that the stain has penetrated between even the closest points of contact 

(arrow). The cytoplasm of the epithelial cell is much less electron- 

dense than normal. There is some PR stained material lying within a 

phagosome (ph) and within a stack of membranes (open arrow) indicating 

that these structures must have an opening to the surface of the organism 

since RR does not penetrate the plasma membranes of cells. 

Fig. 68.15 nm thick layers of RR positive material on the plasma mem- 

branes of trichomonad and epithelial cell (arrows). Note that the stain 

penetrates between the closest points of contact. The cytoplasm of the 

epithelial cell is rarefied due to the condensation of particulate 

material into small amorphous aggregates. 

Fig. 69. Ruthenium red positive staining of the plasma membrane of T. 

vai,, inalig fixed without prior washing. There is an irregular 40 nm thick 

surface layer to which larger particles of RR stained material are ad- 

herjný,, ý- Two pinocytotic vesicles (v) lie within the cytoplasm. Both 

vesicleo have an internal 40 nm thick surface coat; that of the lefthand 

vesicle has stained with RP, indicating that the vesicle has an opening 

to the exterior out of the plane of section. 

Bar = 500 nm 
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Fig. 70. T. vaginalis stained with ruthenium red after a thorough washing 

in serum-free medium. Note the greatly reduced amount of staining of 

the plasma membrane. 

Bar =2 ým 

Fig. V1. T. vaf,, inalis stained with ruthenium red after washing in serum- 

free medium and incubation in neuraminidase at 37'C for 30 min. There 

is an almost total absence of staining of the plasma membrane. Note the 

axostylar projection (ax) at the posterior pole of the body. 

n= nucleus 

Bar =5 4m 
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Fig. 72. Early morphological changes in epithelial cell cultures infected 

for 6h with T. vaginalis. Two trichomonads lie above an epithelial cell. 

The cell projects much further into the medium than normal and its cYtO- 

plasm contains many small vacuoles (va) and mitochondria (m) which have 

lost their cristae. 

Bar =5 ilm 

Fig. 73, A type 1 contact between T. vaginalis and an epithelial cell. 

Note the close, average 20 nm, gap between the apposed membranes (small 

arrow). The epithelial cell contains three large vacuoles (va); the 

vacuoLii, m(, mbranes show signs of damage and disorganisation (large 

arrows) - 

Bar =1 ýtm 
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Fig. 74. Early morphological changes in epithelial cells. The mitochond- 

ria (M) of this cell, to which a trichomonad is adherent, are rounded in 

cross section and some have lost their cristae (arrows). Note that the 

trichomonad has produced pseudopodia only in the area of contact with the 

cell (P). 

Bar =2 ýLm 

FiU, - '/5. Lysis of epithelial cells by T. vaginal-O., A group of three 

trichomonads have attacked a cell and lysed it. One parasite is phago- 

cytosinv, the cell contents (arrow). Note that the cells in the monolayer 

beneath the trichomonads appear normal. 

Bar = I'm 
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Fig. 76. Vertical section through the edge of a lesion showing two 

trichomonads lying beneath a lysed epithelial cell. The plasma mem- 

brane of the lysed cell is still complete on its upper surface but is 

lifted away from the cytoplasm (long arrow). The lysed cell is still 

adherent to an adjacent, unlysed cell (short arrow). The nucleus and 

cytoplasm of the lysed cell have lost most of their electron density 

(cf. the unlysed cell on the right). One trichomonad has invaded the 

lysed cell and is phagocytosing the contents with its paeudopodia (p)- 

Bar =5 ILm 
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Fig. 77. Horizontal section through the edge of a lesion (L) showing a 

trichomonad invading and phagocytosing the contents of a lysed epithelial 

cell. Note that the epithelial cells adjacent to the lysed cell appear 

undamaged. The area of phagocytosis is shown at higher magnification in 

Fig. 8P. 

Bar = 10 itm 
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Fit, m. 'ý8 an-I 79. Ils-) throuj,, h thn edge of a ]-ý, ý, -; ýion show. mr-, T. vaginal-is ad- 

hering to the side of an epithelial cell. 

Fig. 'ý8. Low power view showing the morphological changes in the epi- 

thelial cell. The plasma membrane of the cell is intact either side of 

the trichomonad (arrows) but is absent at the points of contact with the 

trichomonad. The mitochondria W are rounded and have lost their cris- 

tae. The nucleoplasm and cytoplasm are less electron-dense than normal. 

Bar " 14 4M 

Fig. 79. Detail of Fig. 78 at higher magnification showing the region of 

contact between T. v, '1Finnlj-r-, and COA. The pl, 'Asma membrane of the cell 

is absent, the endopLasmic reticulum (er) is swollen, ribosomes are absejiý, 

mitochondria (m) have lost their cristae and the cytoplasm consists mainl,, 'Y 

of' empty morribrane-bound vesiclon. Although the nuclear membrane is still 

complete, the nucIt, oplasm Kt, --ý lost much of its electron density. Note 

the phafroý-, om(-,; (ph) within tli4., tricliomontid whýCIL contain material similar 

in strticture to that in the lysed cell. 

Bar =1 wn 
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Figs. 80 and 81. Phagocytosis of lysed epithelial cells by T. vaginalis. 

Fig. 80. Low power view of the edge of a lesion showing T. vaginalis in- 

vading a lysed epithelial cell and phagocytosing its contents. 

Bar =5 pm 

i),: h marn i. f* i cd. ion de tail of Fig. 80 showing the region of phago- 

cytoL; io. The epithelial cell debris (d) consists of mitochondria, fila- 

mentous material (f) and membrano-bound vosicltý, 3- The trichomonad has 

protruded several. micro f ilament -containing pseudopodia (p) which are 

activoly pliigocyto. 3ing the debris. Some of the debris is already included 

(ph) within the body of the trichomonad. Note the absence 

of within th(,, pseudopodia, and the close (C-0 nm) contact of 

the ps(_ýudopo(. ji,, with the debris. 

Bn r-1 4m 
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Fig. 82, Phagocytosis of epithelial cell debris by T. vaginalis. High 

magnification view of an area of T. vaginalis which is engaged in phago- 

cytosis of debris released from a lysed epithelial cell which is shown in 

Fig. 77. Note the small vesicles (small arrows) 75 nm in diameter which 

lie in the region of phagocytosis. One vesicle (large arrow) lies next 

to a large phagosome and may be about to fuse with it. 

Bar = 500 nm 

Fig. 8ý. Acid phosphatase-containing vacuoles in the cytoplasm of T. 

w. iginalis. Dense precipitates of lead line the internal surface of the 

membrane of a large vacuole. A omall pinocytotic vesicle also shows 

enzyme activity (arrow). 

Bar ýI jim 
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Fig. 84. Phagocytosis of epithelial cell debris by T. vaginalis. Note 

that the region of phagocytosis is close to the anterior flagella. Two 

particles of epithelial debris are in the process of being ingested 

(arrows). Three kinetosomes (k) are seen in this section; that of the 

recurrent flagellum (rf) lies at an angle of about 60' to those of the 

other two kinetosomes which lie at the bases of the anterior flagella. 

Bar =1 itm 

Fig. 85. A rc, g. ion of the monolayer lying between the lesions in an RK 13 

culture infected for 6h with T. vaginalis. Note that the epithelial cells 

shown in this section appear morphologically similar to those cells in un- 

infected cultures, e. g. Figs. 4? to 49. 

Bar =2 ýun 



I 'It, 

Vr 

rf 

84 

85 

) ':; -; 
- 

5-aw 

k 
jo 

lip q 



Fig. 86. Phase contrast photograph of a living population of T. vaginalis 

adhering to a plane glass coverslip in culture. Note the presence of 

approximately equal numbers of rounded trichomonads (r) ýLs shown by a 

peripheral phase-contrast halo) and flattened amoeboid trichomonads (a). 

Bar = 100 iim 

Fi-1,;. 8'/. Nomarski differential interference contrast photographs of 

liv-J-Dr, ' 'mioeboid T. vaginalis moving on a glass substratum in culture. 

Note the absence of organelles in the advancing anterior pseudopodia. 

p= pseudopodia, ax = axostyle, f= flagella, fi = filopodia, g= 

cytoplasmic granules (probably hydrogenosomes). The plane of focus is 

at thn -; ubstratimn-medium interface. 

Bar = 10 pm 
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Figs. 88 to 93. Phase contrast photographs of living amoeboid T. vaginalis 

adhering to a glass substratum showing the diversity in morphology present 

in a population of organisms. 

Bar = 20 jim (all photographs are the same magnification) 

Fig. 88. A rounded T. vaginalis showing the axostyle (ax), undulating 

membrane (um) and an irregularly shaped lateral pseudopodium (p). Note 

the filopodial processes around the periphery. 

Fig. 89. A trichomonad which is Polarised along its anterio-posterior 

axis. The anterior flagella (af) and undulating membrane (um) can be seen 

at the anterior pole. A single pseudopodium, (p) extends from the poster- 

ior pole. Note the absence of cytoplasmic granules in the pseudopodium. 

FiG. 90. A flattened T. vaginalis with filopodial projections (fi). 

Fig. 91. Cytokinesis in a dividing T. vaginalis. The two daughter tri- 

chomonads are joined by a cytoplasmic bridge (arrow) and are about to 

separ'l t ('. 

Fig. 92. A large flattened amoeboid T. vaginalis. A phagosome (ph) can 

be seen within the cytoplism- 

T.. vafinalis. Two sets of flagella (f) are present. Fig. 93. A diviclintr - : -; ý 
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Fig. 914. A time-lapse sequence at 10 second intervals of Nomarski 

differential interference contrast photographs of a living amoeboid 

T. vaginalis showing the motility of the organism on a glass sub- 

stratum in culture. Each frame shows the same area of the substratum. 

In the 50 second period the organism changes from an irregular to a more 

polarised form and moves to the right of the field by extending a 

pseudopodium (arrow). The mean speed of the organism over 50 seconds 

is about 20 ýtm per min. 

Bar = 30 ýim 
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Fig. 95. A time-lapse sequence of phase contrast photographs of a living 

amoeboid T. vaginal, . -s showing the motility of the organism on a glass 

substratum in culture. Each frame, taken at 1 min. intervals, shows the 

same area of the substratum. Over the 11 min. period the path of the tri- 

chomonad describes a circle; the organism continuously protrudes pseudo- 

podia from its periphery but generally moves in the direction of protru- 

sion of its largest pseudopodium e. g. frames 2 min. to 5 min. 

Bar = 30 ýtm 
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Fig. 96. A time-lapse sequence at 10 second intervals of phase contrast 

photographs of a group of living T. vaginalis which are adhering to a 

glass substratum in culture. The organisms have been numbered in some 

of the frames to enable the reader to follow the movements of individual 

organisms. This figure illustrates both the motility of T. vaginalis on 

a substratum and also the rapid changes in shape that may occur as the 

organisms move. For example the trichomonad numbered 5 (T5) changes from 

a flattened form to a spherical form between frames 0 seconds to 30 

seconds but in the following 30 second period, to frame I min., it regains 

its flattened form. T4 remains flattened throughout the sequence. T1, CD 

T2 and T3 also change their degree of flattening as they move over the 

substratum; these three trichomonads move at speeds of up to 25 jim per 

min. 

Bar = 50 ýim 
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Figs. 97 to 100. Interference reflection photographs of amoeboid T. 

vaginalis moving on a glass substratum in culture, showing the separation 

of the organisms from the substratum. See text for explanation of the 

technique. Each figure shows the phase contrast (PC) and interference 

reflection (IR) images of the trichomonads. 

Bar = 20 4m 

Fig. 97. A flattened amoeboid T. vaginalis. In IR the lower surface 

gives a uniform dark grey image indicating a separation of 10 to 30 nm- 

Note that the areas of the PC and IR images are similar showing that most 

of the lower surface of the organism is in contact with the substratum. 

Fig. 98. A rounded T. vaginalis with three small pseudopodia (p). The 

IR image shows that although much of the body and pseudopodia lie with- 

in 30 rim of the substratum (grey areas) there are several areas which 

are about 100 nm from the glass (white areas). 

Fig. 99. A group of three T_. vaginalis. The central and righthand 

organisms have protruded pseudopodia (p) which the IR image shows to be 

lying within 10 to 30 run of the substratum. However the organism on 

the right is barely visible in IR (arrow) although it is clearly seen in 

PC by its circular phase-contrast halo. This shows that this organism 

can have only a relatively small part of its surface in contact with the 

substratum. 

Fil, -. 100. T. vaginalis with a long posterior pseudopodium (P). Note 

that only the distz)l tip of the pseudopodium is in contact with the sub- 

stratum (arrow); the central part of the pseudopodium does not appear in 

the IR image showing that it must be lying 150 nm, or more from the sub- 

stratum. The body of this organism gives a grey to white image in IR in- 

dicating that the lower surface is not uniformly in contact with the glass. 
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UEATHt -T-P- (1974). Ultrastructure of Tvaginalis. (letter) Brit. J. 
vener, Dis, 50,240 - 241 

IRtrastructure of T. vaginalis 

To THz rDiToR British Journal of Venereal Memo 

Six-The paper by Oveinnikov, Delektorskij, and 
Kosmacheva (1974) requires some comment in the light 
of recent advances in the study of the ultrastructure and 
biochemistry of Trichomonas vaginalis and other tricho- 
monad species, including the urogcnital'parasite of cattle 
Trichomonas foetus. 

My work in this laboratory on the ultrastructure of 
T. vaginahs confirms that reported by Nielsen, Ludvik, 
and Nielsen (1966) with regard to the association of the 
flagellar apparatus and the axostyle. - The axostyle is a 
single sheet of microtubules running parallel to the 
longitudinal axis of the cell. The sheet is coiled like a 
cone at the posterior end where it projects from the cell 
for a distance of several microns; at the anterior end of 
the cell the sheet flattens out and terminates at the side 
of the kinctosomes of the five flagella. Lying next to, but 
apparcntly not attached to, the anterior end of the axo- 
style is a smaller sheet of inicrotubules running at right- 
angles to the axostyle and curving around the kinctosomes; 
this is known as the pelta. The organelle identified by 
OvIinnikov and others (1974) as the 'parabasal apparatus' 

is, I believe, the anterior end of the axostyle and the pelts 
and not, as they suggest, a separate structure. 

The identification as lYsOsOmes of the numerous electron 
dense granules with their single membrane and granular 
matrix, a characteristic component of the cytoplasm of 
trichomonads, lacks corroboration by other workers. 
Lysosomes have the common propcrty of containing acid 
hydrolases encompassed in a scmi-permcablc limiting 
membrane. Their role in the cell is thought to involve the 
intracellular digestion of both endogcnous and exogenous 
material (Cohn and Fcdorko, 1969). Miller (1973) 
investigated the enzyme content of the different subcellular 
components of T. foerus and found that the electron dense 
granules contained no acid phosphatase, an czyme marker 
of lysosomes, but th3t the enzyme was found in a larger 
population of granules more heterogeneous in size with 
pleomorphic contents, probably phagocytosed material. 
Subsequently, Lindmark and MOller (1973) named the 
electron dense granules of T. foerus as hydrogenosomcs, due 
to their involvcmcnt in the anacrohic trichomonads in the 
production of hydroZen. Brugerolle and Mctenier (1973) 

were able to demonstrate malate dehydrogenase activity in 
the electron dense granules of T. vaginalij and Brugerolle 
(1972) excludes the possibility that they are lysosomes. 
Mfiller (1973) demonstrated malate dehydrogenase and 
a-glycerophosphatc dehydrogenase in the electron dense 
granules of T. foetus. I have not seen in any of my electron 
micrographs of T. vaginalis any evidence of fusion of the 
electron dense granules with vacuoles containing phago- 
cytosed material, a process primary lysosomcs undergo 
in the formation of secondary lysosomes (De Duvc and 
Wattiaux, 1966). 

77hus the evidence suggests that the electron dense 
granules of trichomonads are involved in the energy 
producing mechanisms of the cell and they should not be labelled as lysosomes. It is likely that the numerous 
Small vesicles, and the Golgi apparatus from which they 
are thought to have originated, participate in the digestion 
of phagocytosed material in T. vaginalit. Furthir research is needed on the cytoplasmic contents 
of Tridwmonas vaginalit to elucidate their role in the 

metabolism of the parasite and in the pathogenicity of 
trichomoniasis. 

Yours faithfully, 
J. P. HEATH 

DEPARTmENT OF MEDICAL PROTOZOOLOGY, 
LONDON SCHOOL OF HYGIENE AND TROPICAL MEDICINE, 
KEPPEL STREET, LONDON WCIE MT. 

, Warch 19,1974 
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