
Inference from estimates of exposure effects 
using stratification on the 

propensity score 

Elizabeth Williamson 

6 
0 

n 
x 
0 
0 

0 4ý 
ýp 3N3 101 

pp-- "'o 

At hesis submitted for the degree of Doctor of Philosophy of the 
University of London 

London School of Hygiene k- Tropical Medicine Mav 2007 

'tA 



LONDON SCHOOL OF HYGIENE & TROPICAL MEDICINE 

6, 

Statement of Own Work 

All students are required to complete the following declaration when submitting their thesis. A 
shortened version of the School's definition of Plagiarism and Cheating is as follows (the full 
definition is given in the Research Degrees Handbook): 

The following definition of plagiarism will be used. 

Plagiarism is the act of presenting the ideas or discoveries of another as one's own. To copy 
sentences, phrases or even striking expressions without acknowiedgement in a manner which may 
deceive the reader as to the source is plagiarism. Where such copying or close paraphrase has 
occurred the mere mention of the source in a biography will not be deemed sufficient 
acknowledgement; in each instance, it must be referred specificaily to its source. Verbatim 
quotations must be directly acknowledged., either in inverted commas or by indenting. (University of 
Kent) 

Plagiarism may include collusion with another student, or the unacknowledged use of a fellow 
student's work with or without their knowledge and consent. Similarly, the direct copying by 
students of their own original writings qualifies as plagiarism if the fact that the work has been or is 
to be presented elsewhere is not clearly stated. 

Cheating is similar to plagiarism, but more serious. Cheating means submitting another student's 
work, knowledge or ideas, while pretending that they are y%ý-jr own, for formal assessment or 
evaluation. 

Supervisors should be consulted if there are any doubts about what is permissible. 

Declaration by Candidate 

I have read and understood the School's definition of plagiarism and cheating given in the 
Research Degrees Handbook. I declare that this thesis is my own work, and that I have 
acknowledged all results and quotations from the published or unpublished work of other people. 

Signed 
.......... . 

Date: aq1, pVQl 
...................... 

Full name: ...  ................................ (please pdnt clearly) 



Acknowledgments 
I am very grateful to my supervisor, Dr. James Carpenter, for his support, encour- 
agement and excellent advice. I would also like to thank the staff and students of 
LSHTM who gave me ideas and inspiration, in particular Professor Stephen Evans. 
Professor Stuart Pocock and Dr. Joe Kim. I am grateful to Dr. Stijn Vansteelandt 
at Ghent university, and the staff at Freiburg university who gave me very helpful 
feedback on my thesis. I would also like to mention my fellow PhD students, witholit 
whose positivity, enthusiasm and company I could not have managed. 

Chapter 7 uses data from the ESCAPE trial from King's College, London, kindly 

provided by Dr. Mike Hurley. 



Table of Contents 

Abstract 

Acknowledgement s 

I Introduction 

2 Review of propensity score methods 

i 

ii 

1 

5 

2.1 The use of propensity score methods to estimate causal effects 

2.1.1 Adjusting for confounding using the observed covariates 7 

2.1.2 Adjusting for confounding using the propensity score 

2.1.3 Comparison of randomisation and propensity score methods . 10 

2.2 Methods of analysis using the propensity score ............. 12 

2.2.1 A hypothetical dataset 
...................... 13 

2.2.2 Stratification on the propensity score .............. 15 

2.2.3 Matching on the propensity score ................ 19 

2.2.4 Covariate adjustment including the propensity score 9. ) 

iii 



2.2.5 Weighting by the inverse of the propensity score ........ 25 

2.3 Comparison of propensity score methods ................ 29 

2.3.1 Links between the propensity score methods .......... 29 

2.3.2 Implications of estimating the propensity score ........ 33 

2.3.3 Review of empirical comparisons of propensity score methods 36 

2.4 Extensions of propensity score methods ................ 38 

2.5 Discussion 
................................. 40 

Theoretical properties of the stratified treatment effect estimator 43 

3.1 Introduction ............................... 
43 

Further notation ......................... 
44 

3.1.2 M-estimation theory ....................... 
46 

3.1.3 The stratified treatment effect estimator ............ 47 

3.2 Theoretical properties when the propensity score is known ...... 49 

3.2.1 Consistency, asymptotic normality and variance ........ 52 

3.3 Theoretical properties when the propensity score is estimated .... 55 

3.3.1 Consistency, asymptotic normality and variance ........ 
57 

3.4 Components of variability of the stratified treatment effect estimator 61 

3.4.1 The variance component V, ................... 
61 

3.4.2 The variance component V2 ................... 
62 



3.4.3 The variance component V3 
.......... ......... 63 

3.4.4 The variance component V, .......... ......... 65 

3.5 Discussion 
................................ 67 

4 The marginal and conditional variances of the stratified treatment 
effect estimator 70 

4.1 The relationship between marginal and conditional variances 1-1 

4.1.1 Are marginal or conditional variances more appropriatO ... 71 

4.2 The marginal variance of the stratified treatment effect estimator .- 1-2 

4.2.1 The conditional variance given treatment and covariates ... 72 

4.2.2 Marginalising the conditional variance ............. 1-3 

4.3 The variance formula used in applications ............... 76 

4.4 Discussion 
................................ 

5 Practical performance of the variance formulae for the stratified 
treatment effect estimator 79 

5.1 Application of the variance formulae to a hypothetical example -.. 80 

5.1.1 A hypothetical example ..................... 80 

5.1.2 Change in variance components as the outcome parameters vary 

5.1.3 Change in variance components as the propensity score param- 
eters vary ............................. 

S4 

5.2 Investigation of the convergence rates of the variance formulae 
.... , --, 7 



5.2.1 Simulated example (a) 
...................... 

5.2.2 Simulated example (b) 
...................... 

5.2.3 Simulated example (c) 
...................... go 

5.2.4 Simulated example (d) 
...................... 93 

5.3 Discussion ................................. 971 

6 Estimating the variance of the stratified treatment effect estimator 101 

6.1 Some mathematical tools ......................... 101 

6.1.1 Numerical integration using the trapezium rule ........ 102 

6.1.2 Kernel density estimation .................... 
103 

6.2 Kernel density estimation and regression for the propensity score -- 107 

6.2.1 The kernel density estimator for the propensity score ..... 108 

6.2.2 The kernel regression of the outcome on the propensity score . 112 

6.3 Estimating the four variance components from a sample dataset 114 

6.3.1 Estimating the variance component V, ............. 
115 

6.3.2 Estimating the variance component V2 ............. 
116 

6.3.3 Estimating the variance component V3 ............. 
119 

6.3.4 Estimating the variance component V4 ............. 
120 

6.4 An alternative approach ......................... 
122 

6.5 Estimating the variance using hypothetical examples ......... 
123 



6.6 Confidence intervals ........................... 

6.7 Discussion 
................................. 127 

Application to the ESCAPE dataset 129 

7.1 Introduction 
................................ 129 

7.2 Methods .................................. 130 

7.2.1 The ESCAPE dataset ...................... 130 

7.2.2 Outcome regression analysis ................... 1: 32 

7.2.3 Propensity score analysis ..................... 132 

7.2.4 Continuous exercise beliefs .................... 133 

7.2.5 Mixed effect models ........................ 
135 

7.3 Results ................................... 
136 

7.3.1 Trial characteristics ........................ 
136 

7.3.2 Outcome regression analysis ................... 
13 7 

7.3.3 Propensity score analysis ..................... 
138 

7.3.4 Continuous exercise beliefs .................... 
139 

7.3.5 Mixed-effects models ....................... 
1-11 

7.4 Discussion ................................. 
III 

7.4.1 Comparison of methods ..................... 
1.11 

7.4.2 Possible extensions of the analysis ................ 
112 



7.4.3 Clinical significance ........................ 113 

Discussion 144 

8.1 Summary 
................................. 14-1 

8.2 Strengths and weaknesses of this thesis ................. 117) 

8.2.1 Strengths 
............................. 14-5 

8.2.2 Weaknesses 
............................ 146 

8.3 Further work ............................... 

8.4 Practical implications for epidemiologists ................ 149 

A Proof of Theorem 3.1 151 

A. 1 Introduction ............................... 151 

A. 1.1 Estimating the stratified treatment effect ............ 151 

A. 2 Consistency 
................................ 

159 

A. 2.1 Consistency of the estimated strata boundaries ........ 153 

A. 2.2 Consistency of the estimated probabilities of being treated and 
in each stratum ......................... 

155 

A. 2.3 Consistency of the stratified treatment effect estimator .... 159 

A. 3 Asymptotic normality .......................... 
162 

A. 4 Asymptotic variance ........................... 
166 

A. 4.1 M-estimation theory ....................... 
166 



A. 4.2 The matrix A ........................... 169 

A. 4-3 The matrix B .......................... I -, 21 

A. 4.4 Variance of the stratified treatment effect estimator ...... 171 

B Proof of Theorem 3.2 176 

1 Introduction 
............................... 1 716 

B. 1.1 Estimating the stratified treatment effect ............ 176 

B. 2 Consistency 
................................ 11-8 

B-2.1 Consistency of the estimated propensity score parameters 11-8 

B. 2.2 Consistency of the estimated strata boundaries 
........ 178 

B. 2.3 ConsistencY of the estimated probabilities of being treated and 
in each stratum .......................... 180 

B. 2.4 Consistency of the stratified treatment effect estimator .... 181 

B. 3 Asymptotic normality .......................... 182 

BA Asymptotic variance ........................... 184 

B. 4.1 M-estimation theory ....................... 184 

B. 4.2 The matrix A ........................... 18-1 

B. 4.3 The matrix B ........................... 189 

B. 4.4 Variance of the stratified treatment effect estimator ...... 191 

B. 4.5 An alternative parameterization ................ 192 



B. 4.6 The re- parameterized variance of the stratified treatment effect 
estimator ............................. 

C Application of the variance f6mulae to a hypothetical situation 200 

1 The hypothetical situation ....................... 

C-2 Calculating the variance when the propensity score is known ..... 201 

C. 2.1 The probability density function of the propensity score ... 202 

C. 2.2 The population strata boundaries ................ 
203 

C. 2.3 The probability of being treated and in each stratum ...... 20-1 

C. 2.4 The conditional expectation of the outcome given treatment 
status and strata ......................... 

204 

C. 2.5 The conditional variance of the outcome given treatment status 
and strata ............................ 

206 

C. 2.6 The derivative of the conditional expectation of the outcome 
with respect to the strata boundaries .............. 

207 

C. 3 Calculating the variance when the propensity score is estimated ... 209 

C-3.1 The covariance matrix for the propensity score, parameters .. 210 

C. 3.2 The covariances of outcome, covariates and the propensity score 210 

C. 3.3 The derivative of the cumulative density function of the propen- 
sity score with respect to the propensity score parameters .. 211 

C. 3.4 The integrals If1ki Ifoki IYjk and hok 
.............. M 

D Appendix D: Computer programs 216 



D. 1 Stata program used to obtain empirical estimates of the variances .- 

D-2 Mathernatica program used to obtain the population strata boundaries 221 

D-3 Mathernatica program used to obtain theoretical values of the variances 223 

References 232 



List of Tables 

5.1 Change M variance components as -ýo vanes ............... 83 

5.2 Change in variance components as 72 varies .............. 81 

5.3 Change in varzance components as a, varies .............. S5 

5.4 Change in variance components as a2 varies .............. 86 

5.5 Maximum value of the dertvative of the probability density function of 
the propensity score with respect to a2 .................. 91 

6.1 9516 confidence intervals for hypothetZcal example (a) of Chapter 5, 
ustng 1,000 sZmulated datasets of size 2,000 ............... 127 

7.1 Baseline data for subjects with high and low exercise beliefs. Continu- 
ous variables are reported as median (range) 

.............. 13 

7.2 Estimated variance components for the stratified estimate of the effect 
of high exercise beliefs on WOMAC-function at 6 months ....... 140 

7.3 Point estimates and 95% confidence intervals for the effect of high ex- 
ercise beliefs on WOMAC-function at 6 months ............ 142 

xil 



List of Figures 

2.1 An artificZal observational dataset, where each figure represents a boy 
or gZrl- Each child's outcome is written below their figure ....... 14 

2.2 The stratified analysts of the dataset shown in Figure 2.1. In this ex- 
ample, stratifyZng on the estimated propensity score is equivalent to 
stratifying on gender ........................... It' 

2.3 The matched analysis of the dataset shown in Figure 2.1. In this exam- 
ple, matching on the estimated propensity score is equivalent to match- 
ing on gender ............................... 20 

2.4 The covariate- adjusted analysis of the dataset shown in Figure 2.1, 
where the fitted regression line from model (2.6) is shown in dotted 
lines, and the fitted regression line from model (2.6) with an added 
interaction of propensity score and treatment is shown in bold. 21 

2.5 The weighted analysts. Two 'potential' samples are created from the 
initial sample. Each 'potential' sample contains the initial treated or 
untreated subjects (unshaded) and replicated subj . ects (shaded) whose 
addition is intended to create two samples which both have the same 
covariate structure as the whole sample ................. 28 

5.1 Theoretical and empirical variances of 3s, for example (a), with the 
probability density function of the propensity score by treatment group. 89 

5.2 Theoretical and empirical variances of 4s, for example (b), with the 
probability density funchon of the propensity score by treatment group. 90 

5.3 Theoretical and empirical variances of 4,5, for example (c), with the 
probability density function of the propensity score by treatment group. 92 

xiii 



5.4 Theoretical and empirical vanances of ý', for example (c) with a) - 
0.0075, wZ z *th the probabzlzty density function of the propensly Score by 
treatment group .............................. 92 

5.5 Theoretical and empthcal variances of ý', for example (d), with the 
probability density function of the propensity score by treatment group. 94 

5.6 Histograms of the 4 estimated strata boundaries from 3,000 simulated 
datasets from example (d) with sample Aze n=5,004, with the proba- 
bility density function of the propensity score at each population strata 
boundary .................................. 95 

5.7 Histograms of four simulated datasets from example (d) with sample 
size n=2,000. The four solid vertical lines in each histogram show 
where the population strata boundaries lie. The four dashed vertical 
lines represent the estimated strata boundaries 

............. 96 

5.8 Theoretical and empirical variances of 4', for example (d) using four 
strata, with histograms of the estimated strata boundaries, with the 
probability density function of the propensity score at each population 
strata boundary 

.............................. 98 

6.1 The trapezium rule. The area under the solid curve is estimated by the 
area under the dashed lines 

........................ 102 

6.2 Two histograms of the dataset f 3.3,4.1,4.9,10 1. The histogram on the 
left uses three bins and the one on the right uses four bins. ..... 1011 

6.3 A kernel density estimate ustng the dataset 13.3,4.1,4.9,10 1. The 

solid lines indicate the four normal kernels for the four observed values. 
The dashed line indicates the resulting kernel density estimate. ... 105 

6.4 Kernel density estimates for the propensity score, applied to examples 
(a), (b), (c) and (d) of Chapter 5.................... 109 

6.5 Estimated derivatives of the probability density function of the propen- 
sZty score with respect to ao, applied to examples (a), (b), (c) and (d) 

of Chapter 5................................ 



6.6 Estimated derivatives of the probability density function of the propen- 
sity score with respect to cel, applied to examples (a), (b), (c) and (d) 
of Chapter 5................................ 112 

6.7 Estimated derivatives of the probability density function of the propen- 
sity score with respect to 02, applied to examples (a), (b), (c) and (d) 
of Chapter 5................................ 113 

6.8 Boxplots showZng the range of estimates of the four variance compo- 
nents from 1,000 stmulated datasets for hypothetZcal example (a) of 
Chapter 5, wZth a sample stze of 2,000 ................. 123 

6.9 Boxplots showing the range of estimates of the four variance compo- 
nents from 1,000 simulated datasets for hypothetical example (b) of 
Chapter 5, with a sample size of 2,000. ................ 124 

6.10 Boxplots showing the range of estimates Of VO"] and V, [ýS], using 
both the components method (separately estimating V1, V2, V3 and V4) 

and the direct method (Section 6.4) from 1,000 sZmulated datasets for 
hypothetical example (a) of Chapter 5, with a sample size of 2,000. 

. 
125 

6.11 Boxplots showing the range of estimates Of Vk[ýs] and V, [ý'], using 
both the components method (separately estimating V1, V2, V3 and V4) 

and the direct method (Section 6-4) from 1,000 simulated datasets for 
hypothetical example (b) of Chapter 5, with a sample size of 2,000. 

. 
126 

7.1 Histogram and kernel density estimate of the propensity score. .... 138 

7.2 Boxplots of tInc, estimmated propensity score within stra, ta, for subjects 
with high and low exerdse beliefs. ................... 

139 

7.3 Estimated dose-response function for WOMAC-funchon at six months 
for a range of exercise beliefs ....................... 

1,10 



Chapter 1 

Introduction 

Many observational epidemiological studies are concerned with estimating the causal 
effect of a treatment or exposure, hereafter referred to as the treatment. In addi- 
tion to substantial philosophical controversy surrounding the subject of causality [-III 

there are also considerable methodological difficulties in estimating causal treatment 

effects from observational data. In a randomised study, the randomisation leads us to 

expect, on average, that the treatment groups are comparable in all characteristics af- 
fecting the outcome other than treatment status. This comparability allows unbiased 

estimation of the causal treatment effect [37]. Conversely, in observational studies 
there are usually systematic differences in the characteristics of subjects between 

treatment groups. If these characteristics are related to the outcome then estimates 

of the causal treatment effect will be biased -a problem which epidemiologists refer 
to as confounding [110]. 

Despite the difficulties associated with estimating causal treatment effects in the pres- 

ence of confounding, observational studies continue to be used to investigate causal 

epidemiological questions. This is because randomised trials are often unfeasible, due 

to, for example, ethical, financial or practical reasons [10]. In these situations, we 

must rely on observational studies to estimate the causal effect of a treatment. It is 

therefore important to be able to tackle causal questions in the presence of confound- 

ing. 

Methods of dealing with confounding in observational studies can be split, rather 

crudely, into two categories - design-based and model-based. The design-based 

methods attempt to define classes of subjects within which subjects in different treat- 

ment groups are comparable iii all characteristics affecting the outcome other than 

treatment status. Each class of subjects then mimics a randomised study, allowing 

unbiased estimation of the causal treatment effect within that class. These methods 

1 



crucially rely on our ability to define such classes. The model-based methods, on the 

other hand, posit some causal relationship between treatment status, subject char- 
acteristics and the outcome, and use this structure to estimate the causal treatmelit 

effect. These methods produce unbiased estimates of causal treatment effects only 
when the model is sufficiently true to life. 

We now consider some types of design-based methods for dealing with confounding. 
A method popular with epidemiologists is stratification on the observed confounding 

variables, which includes standardization [25] and the Mantel-Haenszel methods (62]. 

Matching on the observed confounding variables is also a popular method [68]. The 

matched pairs or strata, however, will only mimic a randomised study, in terms of 

comparability of treatment groups within each matched pair or strata, when it is 

possible to stratify exactly by each confounding variable. When the number of con- 
founding variables is large this becomes unfeasible. As a solution to this problem, 

propensity scores methods were proposed [84]. Provided that all confounding variables 

are observed, stratifying or matching on the propensity score can produce unbiased 

estimates of causal treatment effects. This, since the propensity score is a scalar vari- 

able, is much easier than stratifying or matching simultaneously on many variables. 
All these methods, however, share one important disadvantage: they cannot adjust 
for confounding by unobserved variables. In order to overcome this problem, instru- 

mental variables methods can be applied [64]. If a suitable 'instrument' can be found 

a variable that is correlated with treatment status but independent of all con- 
founding variables - then both observed and unobserved confounding variables are 

dealt with. However, it has been noted that it is often difficult to find an instrument 

in epidemiological studies when the confounding is severe [64]. 

We briefly mention some model-based methods for dealing with confounding. In epi- 

derniology, the most popular methods of this type are maximum likelihood regression 

models [52]. It has been shown, however, that if the mathematical assumptions im- 

plicit in these models are violated, regression can produce biased estimates of causal 

treatment effects [88]. Structural equation models attempt to move beyond mod- 

elling merely the association between treatment status, subject characteristics and 

the outcome, by proposing a model for the within-subject causal relationship be- 

tween treatment and outcome, specifying the way in which confounding variables 

interrelate [31]. Again, the results are crucialk, dependent on the structural assump- 

tions made. Directed acyclic graph (DAG) methods can alleviate this problem by 
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making the causal assumptions explicit, and can be used to check whether the ob- 
served variables are sufficient and appropriate to control for [73]. Howeý, er, DAGs do 

not provide a means of testing the causal assumptions made. 

Of all these methods for dealing with confounding in observational studies, this the- 

sis focuses on propensity score methods. The reason for this choice is that since a 
landmark paper introducing propensity scores in 1983 [84], their use in epidemiolog- 
ical applications has increased greatly each year [1021. As we will see, however, it is 

not clear how well propensity score methods perform in comparison with maximum 
likelihood regression models, nor is there much guidance about which of the various 
propensity score methods should be used. In this thesis, we focus on the method of 

stratification on the propensity score. In particular, we consider the issue of making 
inferences from the resulting estimator, which we call the stratified treatment effect 

estimator. The first aim of this thesis, therefore, is to ascertain the large-sample 

properties of the stratified treatment effect estimator from a frequentist perspective 

- consistency, the asymptotic sampling distribution, and the asymptotic variance. 
The second aim is to investigate methods of constructing confidence intervals for the 

stratified treatment effect estimator. These aims have a two-fold purpose: to facili- 

tate the practical application of stratification on the propensity score, and to add to 

the growing methodological literature about propensity score methods in order that 

fair comparisons can be made between different propensity score methods and the 

standard regression models. 

The use of propensity score methods is motivated through a randomisation argument 

in Chapter 2, where we show that unbiased estimates. of causal treatment effects can 

be obtained when confounding is present by adjusting for the propensity score. We 

then describe four main propensity score methods in detail and apply them to an 

artificial dataset. We review published comparisons of the various propensity score 

methods, and attempt to draw links between them in order to more clearly understand 

the relative merits of each. 

In Chapter 3 we derive the large-sample properties of the stratified treatment effect 

estimator. In particular, we ascertain conditions under which it is consistent and 

asymptotically normally distributed. We calculate its asymptotic variance, assurnitig 

that the propensity score is: (i) a known function of the observed covariates, and 

(ii) estimated using a correctly specified logistic regression model. These variances 
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are denoted by Vk (X j and V, [, 3s ], respectlvely, and are expressed in terms of four 

variance components of which only the first has previously been derived. We then 
discuss the source of error measured by each of these components 

We begin Chapter 4 by calculating the variance of the stratified treatment effect 

estimator conditional on treatment status and the observed covariates. Assuming 

that the propensity score is a known function of the observed covariates, we then 

marginalise this conditional variance over the distribution of the treatment and ob- 

served covariates, using first-order approximations, obtaining the variance calculated 

previously, Vk[ý']. In this way, we see that Vk[/3"] and V, [, 3-] are asymptotic 

marginal variances of the stratified treatment effect estimator. 

In Chapter 5 we calculate the four variance components contained in Vk[, 3'] and 
V, [O'] for a simple hypothetical dataset. We vary the example parameters one at 

a time in order to see if the change in the four variance components accords with 

our intuition gained through a discussion of the mathematical meaning of these four 

variance components. We then proceed to investigate the convergence rate of the 

two variance formulaý, by comparing the calculated values Of Vk ( ýS ] and V, [ ý-' j with 

empirical estimates of the same variances, obtained using various sample sizes. 

In Chapter 6 we consider the estimation of the variances Vk [X ] and V, [ 0' ] from a 

sample dataset. We use kernel density estimation methods to estimate these variances. 

We then use these variance estimators to construct confidence intervals for a simulated 
dataset. 

In Chapter 7, we apply the methods developed in this thesis to an observational 

subset of data obtained from a randomised controlled trial of an exercise program 

aimed at alleviating knee pain in the elderly. We use this dataset to in,.,, estigate the 

effect of a non-randomised exposure that was observed during the trial. 

We end, in Chapter 8, by summarizing and discussing our results. Practical guidance 

for epidemiologists arising from the work in this thesis and suggestions about when 

the methods developed here should be used are given. Potential extensions of this 

work and other promising avenues of research in this area are also discussed. 



Chapter 2 

Review of propensity score methods 

In order to place the current research in context, we begin by reviewing the propensitý' 

score literature. We first explain the theoretical justification for the use of propen- 

sity score methods to estimate causal effects in the presence of confounding. We then 
describe four propensity score methods: stratification on the propensity score, match- 
ing on the propensity score, covariate adjustment including the propensity score, and 

weighting by the inverse of the propensity score. The advantages and disadvantages 

of each method are briefly discussed and the extent of their use is reviewed, with 

particular emphasis on epidemiological applications. 

2.1 The use of propensity score methods to estimate causal effects 

We begin by setting the scene. As usual in a frequentist setting, we assume repeated- 

sampling from a near-infinite 1 population indexed by fixed but unknown parameters. 
We first consider a simple scenario, where the outcome, Y, is continuous and depends 

on a binary treatment ', Z, and a set of covariates, X= (X,,..., X, ). We wish to 

estimate the causal effect of the treatment, Z, on the outcome, Y, from a sample of 

data, JYj, Zi, Xjj for i=I, -, n, drawn independently from the population. 

In order to clearly define the 'causal effect of the treatment', we introduce the potential 

outcomes framework, whose formalization is often attributed to Rubin [411, where, 

for a particular subject, Y, denotes the outcome we would have seen had that subject 

been treated (Z = 1) and YO denotes the outcome we would have seen had that 

subject not been treated (Z = 0). The observed outcome, Y, can be written as 

Y= YJ Z+ YO (i - Z). 

lWe will usually be dealing with finite populations but we assume that these are so large that 
the correction is negligible. 

21n observational epidemiological studies this will often be an exposure rather than a treatment. 
However, we refer to a 'treatment' throughout for consistency and brevity. 
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2.1 The use of propensity score methods to estiniate causal effect. s 

We now define the causal treatment effect using the potential outcomes notation. 
For a particular subject, any causal quantity can be described as a contrast betNveen 

the two potential outcomes, Y, and YO. In particular, we define the causal treatment 

effect for an individual as Y, - YO, the difference between the two outcomes they Could 

potentially have experienced. We are interested in the average causal treatment effect 

across the whole population. We call this the population average causal treatment 

effect, denoted by, 3,, where, 

, 3,, == E[Yl] -E[Yo I. (2.1) 

Although we focus on the estimation of 3,,, we sometimes discuss another causal 
treatment effect - the population average causal treatment effect on the treated. We 

denote this by 30 where, 

00=E[Y, I Z= 1] -E[Yo I Z= 1]. (2.2) 

The two estimands 00' and 30 will be different when the causal treatment effect for 

individual subjects, Y, - YO, depends on covariates related to treatment status. Which 

of these estimands we wish to estimate will depend on the question we wish to answer. 
For example, if we wanted to evaluate the efficacy of a flu vaccine, we would probably 

be interested in the effect it had on the weak and elderly - those who usually receive 

We would be less interested in estimates of the effect of vaccinating the whole 

population of Britain. In this case, 30 would be a more appropriate estimand than 

00. Conversely, suppose we were interested in estimating the effect of compulsory 

school meals on the obesity levels of British schoolchildren. In this case, we would 

want to know the effect of these healthier meals on the whole school population of 

Britain, rather than on the sub-population of children who are already likely to eat 

a healthy diet. The appropriate estimand here would be 0, Although both 0,, and 

00' are discussed later in this chapter, we focus primarily on the estimation of 00. 

Before considering particular methods of using the propensity score to estimate 00, 

two standard assumptions are made. 

Assumption 2.1 The potential outcomes, covariates and treatment, (Yo, YI, X, Z), 

are independently and identically distributed for each subject. Specifically, the dzstm, - 

button of the potential outcomes for one subject is independent of the O'catmcid status 

of another subject, given the observed covariates. 



2.1 The use of propensity score methods to estimate causal effect. s 7 

The second half of Assumption 2.1 has been called the Stable Unit Treatment ValLie 
Assumption (SUTVA) [90]. A nice example of a violation of SUTVA is given by Little 

and Rubin [57], which is as follows. Suppose you and I are in the same room, I)otli 

with headaches. Your taking aspirin will affect the state of my headache whether or 
not I take aspirin since if you don't take aspirin, your whinging will counteract any 
alleviating effect of my aspirin! 

Assumption 2.2 Treatment assignment and the potential outcomes are conditionally 

independent, given the observed covarzates, X. Mathemat *cally, I zfzI (YO, I-) IIX, 
where I is used to denote conditional independence [21]. 

This assumption is frequently termed strongly ignorable treatment assignment (given 

the observed covariates) [84]. It has also been called selection on observables [36], 

and merely states that there are no unobserved confounders. In a randomised study, 

we can expect this to be true even when no covariates are observed. In observational 

studies, since there is no statistical test of this assumption we must use our knowledge 

of the problem and the data collected in order to judge how plausible it is that all 

confounders have been observed. 

We now consider how, under Assumption 2.1, propensity score methods use Assump- 

tion 2.2 to estimate causal treatment effects from a sample of data when confounding 

is present. 

2.1.1 Adjushng for confounding using the observed covanates 

We seek to estimate the population average causal treatment effett, 0,,, from a sample 

of data. A naive way to estimate this would be to take the difference in mean outcomes 

of treated and untreated sampled subjects. This estimates 

E[Yll Z== l] -E[Yol Z= 0]. (2-3) 

In the absence of confounding, on average the treated and untreated groups are com- 

parable in terms of all characteristics that affect the outcome, other than treatment 

status. Then E(Y1 IZ = 1] = E[YI] and E[YoJZ = 0] = E(Yo]. Therefore, if 

there is no confounding, as in a randomised study, the difference in mean outcomes 

of treated and untreated sampled subjects is an unbiased estimate of 0,,. 
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In observational epidemiological data, confounding is invariably present. In this case, 
(2.3) is not equal to 3, so the difference in mean outcomes of treated and untreated 
sampled subjects is a biased estimate of 3,,. If, however, as in Assumption 2.2. 
treatment is strongly ignorable given the observed covariates, then of those sampled 
subjects whose covariate values are X=x, on average the treated and untreated 
groups are comparable in terms of all characteristics that affect the outcome, other 
than treatment status. Therefore, the difference in mean outcomes of treated and 
untreated sampled subjects whose observed covariate values are X=x estimates 

E[Y, IZ=I, X=x]-E[YoIZ=O, X=x] = E[Yi-YOIX=xj. 

In this way, an unbiased estimate of treatment effect can be obtained at each observed 

value of the covariates. It follows that an unbiased estimate of, O,, can be obtained by 

averaging these estimates over the distribution of the observed covariates, since 

, 3,, =E[Yi]-E[Yo] = Ex[E[Yi-YoIX=x]]. 

An analogous argument is now used to justify the use of propensity score methods to 

estimate causal treatment effects when confounding is present. 

2.1.2 Adjusting for confounding using the propensity score 

The propensity score was popularized by Rosenbaum and Rubin [84] and is defined 

as the conditional probability of receiving treatment given the observed covariates, 

which we write as p (X) =P (Z = 11 X). This score is assumed to be bounded 

away from zero and one, so each subject has a non-zero probability of being in ei- 

ther treatment group. Rosenbaum and Rubin showed that the propensity score is a 

'balancing score' - in other words, that at any value of the propensity score, the 

population covariate distributions of treated and untreated subjects are the same, so 

that {XIZIIp (X). The key idea, for causal inference, is that if treatment assign- 

ment is strongly ignorable given the observed covariates, then this balancing property 

of the propensity score implies that treatment assignment is strongly ignorable gi%-en 

the propensity score [84]. Mathernatic. ally, 

1Z i- (Yo, Yi) 11 x {Z -L (Yo, Yi) 11 p (X). 

If treatment is strongly ignorable given the propensity score, then of those sampled 

subjects whose propensity score value is p (X) = p, on average the treated and un- 
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treated groups are comparable in terms of all characteristics that affect outcome. 

other than treatment status. So if Assumption 2.2 is satisfied. we have a pseudo- 

randomised study at each value of the propensity score. Then the difference in mean 

outcomes of treated and untreated sampled subjects who have a propensity score of 

p (X) =p estimates 

E[Yllz=l, p(x)=P]-E[YOIZ=O, P(X)=P] = E[Yi-Yolp(X)=Pl. 

In this way, an unbiased estimate of the treatment effect at each value of the propen- 

sity score can be obtained by taking the difference in mean outcomes of treated and 

untreated sampled subjects who have that value of the propensity score. It follows 

that an unbiased estimate of 0,, can be obtained by averaging these estimates over 

the distribution of the propensity score, since 

0, = E[Yi]-E[Yo] = Ep(x)[E[Yi-Yolp(X)=p]]. 

This randomisation-based argument justifies the use of propensity scores to estimate 

causal treatment effects. 

It is important to note that although we have described propensity score methods as 

an attempt to recreate a randomised situation, there are two important differences 

between randomised trials and propensity score methods. The first concerns Assump- 

tion 2.2. Randomised trials will give an unbiased estimate of treatment effect even 

when no confounders are observed. Propensity score methods can only give unbiased 

estimates of treatment effect when all confounders are observed. The second differ- 

ence is the 'large-sample' aspect of propensity score methods [114]. In a randomised 

study, although randomisation leads us to expect the treated and untreated groups 

to be comparable in terms of all characteristics that affect the outcome, other than 

treatment status, there may be imbalance due to 'bad luck'. A large sample size de- 

creases the chance of extreme imbalance. In the same way, under Assumption 2.2, we 

expect the treated and untreated groups to be comparable in terms of all characteris- 

tics that affect outcome, other than treatment status, at each value of the propensity 

score. A large sample size at each value of the propenstty scom decreases the chance 

of large imbalance. Zhao likens this to having a mini randomised study at each value 

of the propensity score, with the quality of the overall estimate of causal treatmeiit 

effect depending on the quality of each of these mini randomised studies [1141. 



2.1 The use of propensity score methods to estimate caa.., sal rffect., I- 10 

Estimating the propensity score 
The argument above shows that unbiased estimates of causal treatment effects can be 

obtained by adjusting for the propensity score. Of course., in practice the propensitN, 

score is invariably unknown and must be estimated from the data. Rosenbauni and 
Rubin suggest estimating the propensity score from a discriminant anah'sis or logistic 

regression model [84]. The former assumes that the observed covariates follow a 

multivariate normal distribution whereas the latter assumes they follow one of a 
large number of exponential family distributions. Non-parametric estimators of the 

propensity score have also been proposed [40]. In epidemiological applications, the 

propensity score is typically estimated using a logistic regression model [111]. 

Since the implications of the estimation of the propensity score, in terms of the 

bias and variance of the treatment effect estimator, depend to some extent on which 

propensity score method is used, a discussion of these implications is left until the 

various propensity score methods have been described (Section 2.3.2). 

2.1.3 Comparison of randomtsatZon and propensity score methods 

From the preceding discussion we know that in theory, if all confounders are observed, 

propensity score methods can produce unbiased estimates of causal treatment effects. 

The relevant question now, therefore, is whether or not they do so in real-life applica- 

tions. We attempt to address this question by comparing treatment effect estimates 

from propensity score analyses with those from randomised trials since, as we have 

seen, randomisation of treatment leads us to expect an unbiased estimate of treatment 

effect. 

In practice, randomised trials may not completely eliminate bias due to problems 

such as non-compliance, exclusion after randomisation and unblinding. Furthermore, 

due to the inclusion criteria used in a trial, the treatment effect being estimated 

by a randomised trial may not be the same as the treatment effect being estimated 

by an observational study. Thus, a difference in treatment effect estimates between 

randomised data and propensity score methods may not indicate that one is -wrong .. 

Despite these issues, well conducted randomised studies are often considered the 

'gold standard' method of obtaining unbiased estimates of causal treatment effects. 

Therefore, bearing in mind the above discussion, we now review studies that compare 

estimates of treatment effect from randomised and observational data, where the 

latter is analysed using propensity score methods. 
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In labour economics, estimates of the causal effect of a particular manpower training 

program obtained from both randomised and observational data, where the latter 

was analysed using a structural equations approach, were found to differ greatly [56] 
[26], sparking a debate on the worth of observational evidence, and leading some 
to conclude that randomised studies are the only reliable method of evaluation for 

such programs [5]. Propensity score methods appeared to solve the problem when 
an analysis of a subset of one of these observational datasets, using carefully applied 

propensity score methods, produced similar results to the randomised study [23], 

although doubt was cast on this finding when a re-analysis of the whole dataset 

using propensity score methods gave dissimilar estimates to the randomised studY 
[98]. The authors of the first propensity score analysis argue that since subjects were 

excluded on the basis of lack of information with which to properly estimate the 

propensity score this disparity in causal estimates is to be expected [22]. Further 

work comparing randomised and observational estimates of causal effects suggests 
that propensity score methods tend to eliminate biases that are larger than average 

although they cannot be relied on to consistently produce unbiased estimates of causal 

effects [2,67]. 

Returning to the epidemiological literature, we find a similar debate about the relative 

merits of observational and randomised studies [9,15,48,54,66,75]. Two studies 

have addressed this issue by comparing results from a propensity score analysis of 

observational data with randomised evidence concerning the same clinical question. 

The first of these studies estimated the effects of statins in reducing all-cause mortality 

after acute myocardial infarction, using a clinical dataset, producing effect estimates 

that were comparable with randomised evidence [4]. The second investigated the 

causal relationship between tissue plasminogen activator on the all-cause mortality 

of ischernic stroke patients, using observational data from a German stroke registry 

(55]. Several propensity score methods were applied to the dataset, producing a 

wide range of estimates of causal treatment effects, contrasting markedly with the 

randomised evidence of no effect. After restricting the sample to subjects ýý-Ith a 

non-negligible chance of receiving the treatment - an estimated propensity score of 

more than 0.05 - the estimates of effect from all propensity score methods became 

comparable with the randomised evidence. In this sub-sample of the dataset, subjects 

were younger and healthier and therefore more similar to subjects who were ilicluded 

in the randomised study. This suggests that the disparity in causal effect estimates 

obtained from randomised and observational data may be, to some extent, due to 
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the lack of comparability in baseline characteristics of subjects included in the two 
types of study. In order to test this hypothesis, Tannen 'simulated' a particular 

randomised trial by selecting subjects from an observational dataset who satisfied the 
trial's inclusion criteria, were observed during the same time-frame, and who followed 

a similar treatment regimen [106]. He found that this observational sub-sample, 

when analysed by propensity score methods, gave estimates of causal treatment effect 

comparable with those obtained from the randomised trial. 

Taking all the evidence into account, we conclude that a carefully conducted propen- 

sity score analysis, performed on a rich and accurate observational dataset, can pro- 
duce estimates of causal treatment effects with small enough bias to be practically 

useful in real-life applications. With this conclusion, we proceed to look at four spe- 

cific methods of using the propensity score to estimate causal tieatment effects in the 

presence of confounding. 

2.2 Methods of analysis using the propensity score 

We now describe four particular propensity score methods in detail: stratification 

on the propensity score, matching on the propensity score, covariate adjustment in- 

cluding the propensity score, and weighting by the inverse of the propensity score. 

The treatment effect estimator obtained from each method is given for the simple 

scenario set up in Section 2.1, and applied to an artificial example dataset, which 

will be introduced shortly. We consider the bias and variance of each estimator and 

discuss proposed methods of reducing both. 

As before, the population average causal treatment effect and the population aver- 

age causal treatment effect on the treated are denoted by 0,, and 00, respectively. 

The treatment effect estimators obtained from the four propensity score methods 

are denoted by ýs, ý', ý' and ý', where the hat denotes an estimator and the su- 

perscripts refer to 'stratification', 'matching', 'covariate adjustment' and 'weighting' 

respectively. The asymptotic expectation of these estimators - the 'true', or popu- 

lation values, of the estimators - are denoted by 00,00 , 
30,00 , where the subscript 

of V denotes a fixed population parameter and, as before, the superscripts refer to 

the analysis method used. 
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2.2.1 A hypothetZcal dataset 

In order to see more clearly the different approaches taken by the four propensity 

score methods we apply each of them to an artificial example dataset, which NN, e now 
describe. Suppose the minister for education wished to know whether compulsory 

after-school homework clubs would increase the educational achievement of British 

schoolchildren. In order to investigate this question the minister might collect a sam- 

ple of data from a school that already runs an after-school homework club, observing a 

measure of educational achievement and any characteristics of the children that might 
impact on both their educational achievement and their attendance at the homework 

club. For simplicity, we assume that the only such characteristic is gender. Figure 

2.1 shows an artificial dataset containing information on a sample of 20 children, in- 

dependently selected from a particular school. The treatment - attendance at the 

homework club - is binary. The outcome is a measure of educational achievement 

and takes values of 1,2 or 3. The only observed covariate, gender, is represented by 

figures wearing skirts and trousers, denoting girls and boys, respectively. We assume 

that there is no sampling variability and so this sample exactly represents the whole 

population. We also assume that the outcome contains no error and so gender and 

treatment status exactly determine the outcome value. The effect of relaxing these 

assumptions will be discussed in the following section. 

In order to apply any of the four propensity score methods, we must make Assump- 

tions 2.1 and 2.2 3. The first of these assumptions implies that the attendance of one 

child at the homework club will not change the effect that attendance has for another 

child. It is easy to think of possible violations of this assumption. For example, if a 

particularly badly-behaved child went to the club, he or she might disrupt everyone 

else and thus the educational benefit of attending the homework club would be re- 

duced for all the other children there. The second assumption is that there are no 

unobserved confounders. A potential violation of this assumption is the unobserved 

socio-economic status of the children, since children with lower socio-economic status 

may be less likely to participate in after-school activities, and may also be likely to 

have lower educational achievement. However, at present we assume that this is not 

the case and that Assumptions 2.1 and 2.2 are satisfied. 

sis is perform(, (i. Note that these assumptions must also be made when a standard regession analy, 
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Figure 2.1: An artificZal observabonal dataset, IIJI CT'(, ' each figure rcprt-;, ýcnt., i a I)oy or 
girl. Each child's outcome is written below theff figure. 
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The causal treatment effects 
Attendance at the homework club increases a boy's outcome by two points, and 

increases a girl's outcome by one point. We have assumed that there is no sampling 

variability and therefore the fraction of girls in the whole population is the same as 

the fraction of girls in the sample, which is 60%. Then the true population average 

causal treatment effect is 

00 = 0.4 x2+0.6 x1=1.4. 

We also assume that the fraction of treated subjects in the whole population who are 

girls is the same as the fraction of treated subjects in the sample who are girls. Thus 

we assume that 75% of British schoolchildren who attend an after-school homework 

club are female. Then the population average causal treatment effect on the treated 

is 

0.25 x2+0.75 xI=: 1.25. 

Since girls are more likely than boys to attend the homework club, and attendance at 

the homework club has less effect on girls, the population average causal treatment 

effect on the treated, is smaller than the population average causal effect for the 

whole population, 0, 

The estimated propensity score 
Since there are both treated and untreated subjects at each combination of covariate 

values it is unnecessary to fit a model to estimate the propensity score. For eadi 



2.2 Methods of analysis us7ng the propensity score 15 

combination of covariate values we estimate the propensity score by the fraction of 

subjects who are treated, giving 

P(Treated girl) = 1/2 

P(Treated boy) = 1/4. 

Note that under the assumption of no sampling variability this estimated propensity 

score is equal to the true propensity score. 

2.2.2 Stratification on the propenstty score 

The use of stratification (or subclassification) on the observed covariates has a long 

history in epidemiology [14]. Since stratification involves direct comparison of treated 

and untreated groups that are thought to be comparable within each stratum, it is 

both understandable and convincing for non-technical audiences [84]. Assumptions 

about the mathematical form of the outcome, and how it depends on the covariates, 

are not needed. When there are many covariates, however, a large number of strata 

must be formed in order to create strata within which all observed covariates are the 

same, often producing strata where all subjects have the same treatment status and 

so preventing the necessary within-stratum comparisons. When stratifying on the 

propensity score, since it is a scalar quantity, this problem is less likely to occur. 

The arguments given in Section 2.1 show that exact adjustment for the propensity 

score can produce unbiased estimates of causal treatment effects. The propensit,, 

score, however, is often a continuous variable, in which case it is unfeasible to create 

strata that are exactly homogenous in the propensity score. Zhao suggests making 

the following assumption [114], 

Assumption 2.3 Subjects with similar propensity scores have similar covariate dis- 

tributions. Mathematically, if we let P(AIB) refer to the conditional probability of 

event A given event B, for two metrics d and d', and two propensity scores, pi and 

pj, this assumption can be stated as follows. Given 6>0, there is an f>0 such that 

(pi, pj) <f => d'(P(X =x1p (X) = Pi), IP(X =x1P (X) = Pj» < 6. (2.4) 

This assumption leads us towards creating strata that are only approximately ho- 

mogenous in the propensity score. 
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The stratified treatment effect estimator 

1 (-) 

A natural way to estimate the treatment effect would be to: (i) estimate the propen- 
sity score, (ii) split the sample into K groups using quantiles of the est, imated propen- 

sity score, (iii) estimate the within-stratum treatment effects by taking the difference 

in mean outcome between the treated and untreated subjects in each stratum, (iý) 

calculate the weighted average of the within-stratum treatment effect estimates, ýý'here 
the weight for a particular stratum is equal to the fraction of the sample within that 

stratum. 

Suppose we split the sample into K strata using quantiles of the estimated propensity 

score, where the 81h stratum contains a fraction r, of the sample, and we let S= 

(Sl) 
... ) 

SK) be a set of stratum indicators, where S, i is equal to one if subject i is in 

strata s and zero otherwise, for subjects i=1, 
..., n, and strata S K. The 

stratified treatment effect estimator, ý', can be written as 

Kn Yi Zi Ssi Yi (1 
- Zi) Ssi 

q yn n- Zi) ssi 
_., i=l 

Zi Ssi Ei=, (l 

Application to the example dataset 

We have already estimated the propensity score, finding that girls have an estimated 

propensity score of 1/2 and boys have an estimated propensity score of 1/4. Fol- 

lowing the procedure outlined above, we would create two strata - one for each 

value of the propensity score. The two strata are shown in Figure 2.2. Given these 

strata, the next step is to estimate the two within-stratum treatment effects. The 

difference in mean outcomes of treated and untreated boys is 2, and the difference in 

mean outcomes of treated and untreated girls is 1. We then calculate the weighted 

average of these within-stratum treatment effects. There are 12 girls in a sample of 

20 children so we weight the girls' treatment effect by 12/20 and the boys' treatment 

effect by 8/20. The stratified estimate of the effect of attendance at the homework 

club on educational achievement is then, 

ýs 8 12 
-x2+-x1=1.4. 20 20 

Comparing this estimate with the 'true' value of 3,, we see that we have correctly 

estimated the population average causal treatment effect. 
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Figure 2.2: The stratified analysis of the dataset shown i*n Figure 42.1. In th /., e; 3-u mpltý. 
stralifying on the estimated propensity score is equicalc-nt to stratifying on gender. 
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The bias and variance of the stratified estimator 
The asymptotic expectation of ýS, taken over our near-infinite population with all 

parameters fixed at their true values, is 

K 

00'=I: r, fE[YIZ= 1, So= 11-E[YIZ=O, SO= 111) 
5=1 

where now the stratum indicators) Sso, rather than referring to membership of the 

sample strata, refer to membership of the 'true' strata, i. e. the strata that are formed 

by splitting the population distribution of the propensity score into K groups, with 
the SIh stratum containing a fraction r, of the whole population, for strata s= 
11 .... K. Comparing 00' with 00 - the parameter we wish to estimate - we see that 

stratification on the propensity score will only produce a consistent estimator of the 

population average causal treatment effect if, for strata s=1, ... , 
K, 

E[YI Z= 1, S�= 1]= E[YIS�, = 1], 

E[YI Z= 0, Sso= l] = E[YolSo= 1). (2.5) 

We will have (2.5) if the covariate distributions within each population stratum are 

the same in the treated and untreated groups. In other words, the treatment twist 
be strongly ignorable given the strata, so we must have IZI (Yo, Yj) IIS, in which 

case 3S is equal to the population average causal treatment effect, 0,,. When the 0 
propensity score is discrete we can create strata within which the propensiLy score is 

exactly homogenous, as in the artificial example, and so (2.5) is true. It is also true 
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when, for example, all the covariates associated with both treatment and outcome 
are constant within each stratum but other variables associated only with treatment 

are not constant within the straturn. In this situation, the strata would not be 
homogenous in the propensity score but stratification on the propensity score would 
still produce a consistent estimator of the population average causal treatment effect. 
Of course, this is not a common scenario, so we need to consider the case where 
treatment is not strongly ignorable given the strata. Then appealing to Assumption 

2.3 we have, for strata s=K, 

E[Yll Z= 1, S�] -E[Yol Z= 0, Sj ý-E[Y, -YolSso], 

and so 
005 - Es[E[Yi-YoIS]]=-, 3,,. 

Therefore, by stratifying inexactly on the propensity score, we obtain a consistent 

estimator of the population parameter, 3, which is not exactly equal to the population 

average causal treatment effect, However, the similarity of the propensity score 

within strata leads us to expect the two population estimands to be similar to one 

another. 

Cochran shows that stratification at the quintiles of a single covariate will typically 

remove 90% of the bias due to that covariate when the covariate follows a number of 

common distributions [14], a result that has been extended to the case of stratification 

at the quintiles of the propensity score [851. Cox discusses the problem of grouping 

data into k groups on a continuous variable, and shows that equal-sized groups are 

rarely optimal [16]. Equal sized strata are recommended for examples where the 

distribution of the stratification variable is rectangular. We will see later that the 

distribution of the propensity score is not usually rectangular. However, in practical 

applications of stratification on the propensity score, 5 equal-sized strata are typically 

used. We therefore adopt this choice of strata and ignore the problem of choosing the 

strata boundaries in the remainder of this work, although the results derived can be 

applied to any choice of strata boundaries. 

In order to reduce the bias due to residual confounding within strata, Hullsiek and 

Louis compared two different methods of choosing the boundaries of the strata using 

simulation: choosing strata that balance the number of subjects and choosing strata 

that balance the inverse variance of the stratum-specific estimates of treatment effect 
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[44]. The latter method was found to be superior in terms of bias. An alternative 
approach to reducing the bias of the stratified estimator is to fit a regression model 

within each strata, including important predictors of outcome [59]. 

Although it has been suggested that bootstrapping should be used to estimate the 

standard error of the stratified treatment effect estimator [1071, standard practice is 
to ignore the estimation of the propensity score and use an average within-strattim 
variance [59]. 

2.2.3 Matching on the propens2ty score 

Matching on the observed covariates is an intuitive and tranvarent method of ad- 
justing for confounding [115], which, like stratification, needs no assumptions about 
the mathematical form of the outcome, or its relationship with the covariates. NVhen 

the observed covariate information is high- dimensional, however, finding matches for 

treated subjects is often impossible. Since the propensity score is a scalar variable, 
the problem of finding appropriate matches is greatly reduced. 

The arguments given in Section 2.1 show that exact adjustment for the propensity 

score can produce unbiased estimates of causal treatment effects. When continu- 

ous covariates are included in the estimation of the propensity score, however, exact 

matching on the propensity score may be impossible. Assumption 2.3 provides justifi- 

cation for inexact matching, although this will introduce some bias into the estimator. 

The matched treatment effect estimator 

In order to estimate a causal treatment effect using matching on the propensity score 

we might: (i) estimate the propensity score, (ii) for each treated subject, select a 

single control subject who has the same, or almost the same, value of the estimated 

propensity score, (iii) estimate the within-pair treatment effect by taking the dif- 

ference in the two outcomes, (iv) calculate the average within-pair treatment effect 

estimate. 

Suppose we manage to find appropriate matches for N of the treated subjects, and 

we let M= (Mli 
... . 

ýIN) be a set of matched-pair indicators where Mi is equal to 

one if subject i belongs to matched pair m and zero otherwise, for subjects 1=n 
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Figure 2.3: The matched analysis of the datasct shown in Figure 2.1. In t1i I,, 
matching on the estimated propensity score i's equivalent to matching on gendc r. 
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and m N. Then the matched treatment effect estimator is 3' , where 

1 

, 
em 

= Ef Yi Zi Mmi - Yi (1 - Zi) 11, miý. 
m=l i=I 

Application to the example dataset 

We have already estimated the propensity score for the artificial example given in 

Figure 2.1, finding that the girls have an estimated propensity score of 1/2 and the 

boys have an estimated propensity score of 1/4. Given this estimated propensity score 

we match each of the two treated boys to an untreated boy, and match each of the 

six treated girls to an untreated girl, giving the matched pairs shown in Figure 2.3. 

The two matched pairs of boys have a within-pair treatment effect of 2, and the 

six matched pairs of girls have a within-pair treatment effect of 1. Averaging these 

within-pair treatment effects across the eight pairs gives the matched estimate of the 

effect of attendance at the homework club on educational achievement, 

rn 
1 

(2 x2+6x 1) = 1.25. 

Comparing this with the 'true' population average causal treatment effects, . 3,, and 001 

we see that we have correctly estimated the population average causal treatment effect 

on the treated. In this example, since the individual-level treatment effect depends 

on the propensity score, 3,, and 3,, are different. 
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In this analysis, from a sample of 20 children, only 16 (80%) were used. Since this is 
an artificial situation with no error in the outcome, discarding some of the data does 
not change the estimate. In more realistic applications there is error in the outcorne. 
in which case discarding data leads to an increase in the variance of the matched 
estimator. 

The bias and variance of the matched estimator 
As we might guess from the example above, the asymptotic expectation of 3", taken 
over the near-infinite population with all parameters fixed at their true valuesi is 
equal to 

OM = E[YIZ=1]-E[YOIZ=l] = 01 0 
Matching on the propensity score produces a consistent estimator of the population 
average causal treatment effect on the treated, 30, which will be the same as the pop- 
ulation average causal treatment effect, 30, only when the individual- level treatment 

effect is independent of the propensity score. As discussed previously, whether we 
are more interested in estimating 0,, or 3,, will depend on the question we wish to 

answer. 

If we were interested in estimating 3,, but wished to use matching methods, we could 
apply more complex matching methods that match with replacement for both treated 

and control subjects and produce consistent estimators of 3,, (1]. 

Inexact matching on the propensity score can introduce bias into the estimator 
Different metrics on which to match [86,114] or better matching algorithms [831 

have been proposed to reduce this bias. Rubin and Thomas [93] found that regres- 

sion adjustment on a sample matched on the propensity score was superior to either 

regression adjustment or propensity score matching alone, in terms of bias. 

Estimators obtained from matched analyses also tend to have large variances, since 
the information contained in all unmatched subjects is discarded. This becomes 

a problem when a substantial proportion of the sample cannot be matched, which 

occurs frequently in epidemiological applications [102]. Solutions to this problerii 
include matching with a variable number of controls [70,97] and more complex forms 

of matching that use all the subjects [27,361. 
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A couple of studies have considered the issue of making inferences from a propen- 
sity score matched treatment effect estimator. Theoretical properties of an estimator 
matched on the propensity score, modified to estimate the population average causal 
treatment effect, were studied by Abadie and Imbens [I]. They showed that their 
estimator is consistent and asymptotically normal, and derived an estimator for the 
variance conditional on the observed covariates and treatment status. Hill and Reiter 
[38] investigated methods of constructing confidence intervals for the matched estima- 
tor 4m using simulation studies, and found that bootstrap procedures were generally 
the most reliable. 

2.2.4 CovarZate adjustment including the propensZty score 

Covariate adjustment including the propensity score refers to the method of fitting 

a regression model for the outcome, which is allowed to depend on treatment status 
and propensity score, where usually the relationship between the outcome and the 

propensity score is assumed to be linear. Maximum likelihood regression models are a 
common method of adjustment for confounding in epidemiological studies, and have 

certain attractive properties. In particular, if the fitted regression model is correctly 
specified, the treatment effect estimator will be asymptotically unbiased [17, p. 3041. 
Furthermore, as the sample size gets large, the variance of the treatment effect esti- 

mator will approach the Cramer-Rao lower bound. These properties will hold when 

using the covariate adjustment method. So, although this method does not appeal to 

the randomisation argument given in Section 2.1, if the fitted regression model is cor- 

rect then the resulting treatment effect estimator will be asymptotically unbiased and 

will have the smallest possible variance. Rosenbaum and Rubin showed that when 
the propensity score is a monotone function of the linear discriminant, regression on 
the observed covariates is equivalent to regressing on the linear discriminant only - 
a function of the propensity score [84]. 

The covariate-adjusted treatment effect estimator 
If the true relationship between the outcome and the propensity score is linear, then 

the treatment effect can be estimated by fitting a model where outcome depends lin- 

early on the propensity score and treatment status. Denoting the unknown regression 

coefficients by (o, (1, and 3, c,, for the constant, the effect of the propensity score, and 
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the treatment effect, the model is 

E[Y] - (o+(, p (X) +oý, e Z. (2.6) 

Fitting the regression model estimates, 30 by, 3' which is the covariate-adjusted treat- 
ment effect estimator. 

Application to the example dataset 

We have already estimated the propensity score for the artificial example given in 
Figure 2.1, finding that the girls have an estimated propensity score of 1/2 and the 
boys have an estimated propensity score of 1/4. We fit model (2-6) replacing the 

propensity score by the centred propensity score. This results in the same treatment 

effect estimate as model (2.6) but we later fit a more complex- model which is more 
easily interpretable using a centred propensity score. To calculate the centred propen- 

sity score we subtract the sample mean of the estimated propensity score from each 

child's propensity score, giving boys a centred propensity score of -0.15 and girls 

a centred propensity score of 0.1. Using least-squares to fit model (2.6) produces 
the two dotted regression lines shown in Figure 2.4. This model assumes that the 

treatment effect is constant for all values of the propensity score - in other words, 
the same for both boys and girls - which is not true in this example. The model 

estimates that the effect of attending the homework club on educational achievement 
is ýc . 1.33. This is equal to neither the population average causal treatment effect 
nor the population average causal treatment effect on the treated. Modifying model 
(2.6) to allow the treatment effect to vary with the propensity score results in the 

fitted regression lines shown in bold in Figure 2.4. This more complex model esti- 

mates that the effect of attending the homework club on educational achievement is 

Oc =: 1.4, the true population average causal treatment effect. 

Since model (2.6) will only produce an unbiased estimator of 0,, when the assump- 

tions of a linear relationship between propensity score and outcome and a constant 

treatment effect are valid, we must consider carefully what these assumptions imply. 

In this artificial example, a higher propensity score is linked with a lower treatment 

effect. It would not be surprising to find, in an observational epidemiological study. 

that the physician tends to recommend a particular treatment only to those patients 

he feels will benefit from the treatment. If this were the case, the treatment effect 

would increase with the propensity score, a violation of the model assumptions in 
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Figure 2.4: The covariate- adjusted analysZs of the dataset shown 1'ri Figurc 2.1.111,11ro 
the fitted regression line from model (2.6) I's shown M dotlcd hn(-S, und the filttd 
regression line from model (2-6) with an added mteractioiz of propcn,, ýity score and 
treatment is shown in bold. 

Outcome 

............. 

-0.15 Centred 0.1 

propensity score 

(2.6). Furthermore, in situations where the treatment effect varies with the propen- 

sity score, there is no clinical reason why it should do so linearly across the distribution 

of the propensity score, which is implied by the second, more complex model which 

was fitted in the example above. 

When there is an interaction between the treatment effect and the propensity score 

the population average causal treatment effect, 3,, and the population average causal 

treatment effect on the treated, 00, will be different. When this o. ccurs the methods of 

stratification on the propensity score and weighting by the inverse of the propensity 

score will both, without further modification, produce consistent estimators of 00. 

Matching on the propensity score, again without further modification, will produce a 

consistent estimator of 3,. Only the covariate-adjusted method needs to be adapted 

to produce a consistent estimator of treatment effect. 

The bias and variance of the covariate-adjusted estimator 
If the linear model specified by (2.6) is correct, the error is independent of both 

treatment status and the propensity score, and the treatment effect is constant across 

the propensity score, then the asymptotic expectation of this estimator, taken over 
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our near-infinite population with all parameters fixed at their true values, is 

, 
30 = E[Yi]-E[YO] = 3, 

The use of propensity scores was motivated in Section 2.1 by a randomisation ar- 
gument showing that if all confounders were observed adjustment for the propen- 
sity score would produce an unbiased treatment effect estimator. This pseudo- 
randomisation property of propensity score methods is often seen as their primary 
advantage [93]. The covariate adjustment method, however, in making the added 

assumptions implicit in fitting model (2.6), loses this advantage [4]. 

If, rather than the linear propensity score term in model (2.6), we included a cat- 

egorical variable indicating the quintiles of the propensity sco-re, then the resulting 

estimator would approximate the stratified estimator of treatment effect obtained by 

stratifying at the quintiles of the propensity score, with added assumptions about 
independence of the error term and the constancy of the treatment effect. Therefore, 

it could be argued that a procedure which compared a regression model with outcome 
depending linearly on treatment status and a categorical propensity score, to model 
(2.6) and found that the latter fitted better, may result in a gain in precision from 

using a continuous covariate as opposed to a categorical variable, with little loss in 
bias in comparison with the stratified treatment effect estimator. 

When the outcome surfaces are parallel - the treatment effect is constant across 

the propensity score - covariate adjustment including the propensity score has been 

found to reduce the bias of the treatment effect estimator [18]. Rosenbaum and Rubin 

[84] suggest allowing the treatment effect to vary with the propensity score in model 

(2.6) as we did in the artificial example. Important predictive covariates can also 

be added to model (2.6) in order to decrease the variance of the treatment effect 

estimator and to attempt to reduce bias [18]. 

2.2.5 Weighting by the Znverse of the propens2ty score 

The final propensity score method that we consider takes a different approach and 

does not directly use the randomisation argument outlined in Section 2.1. The out- 

comes of treated subjects are weighted by the inverse of the propensity score, p(X), 

and the outcomes of untreated subjects are weighted by the inverse of (I -p (X)). 
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The resulting estimator is one of a larger class of estimators called inverse-probabilm- 

weighted estimators. The theoretical properties of these estimators are discussed ex- 
tensively by Robins, Rotnitzky and Zhao [80] in the context of missing data. These 

methods can be directly applied to propensity scores by viewing whichever of tile 

pair (Yo, Yj) is not observed as a missing observation. The general idea in im-erse 

weighting is to create two 'potential' samples, that are intended to represent: (i) the 

sample we would have observed if everyone was treated, and (ii) the sample we would 
have observed if no-one was treated. 

We reconstruct the 'potential' treated sample as follows. A subject with an estimated 

propensity score of 20% has a one-in-five chance of receiving the treatment. There- 

fore, for each treated sampled subject with an estimated propensity score of 20%, we 

assume that four others exist who were not treated, so we create four replica subjects, 

assigning these replicas the outcome of the initial treated sampled subject. Repeat- 

ing this process for each value of the estimated propensity score, we reconstruct a 

potential treated sample that has the same size - or, if the estimated propensity 

score is continuous, approximately the same size - as the initial sample. Nlathemat- 

ically, this procedure is equivalent to weighting the outcome of each treated person 

by I lp (X) 
- 

The same process is then followed to create a potential untreated sample. For each 

four untreated sampled subjects with an estimated propensity score of 20%, we assume 

that one subject exists who was treated. Hence we create a single replica for each four 

such untreated subjects, assigning the replica the mean outcome of the four subjects 

he replicated. Repeating this process for each value of the estimated propensity 

score, we reconstruct a potential untreated sample, using only the untreated subjects 

in the sample and the estimated propensity score. Mathematically, this procedure is 

equivalent to weighting the outcome of each untreated person by 1/(I -p (X)). 

The mean outcomes of the potential treated and untreated samples are unbiased 

estimators of the mean outcome of the whole population if everyone were treated or 

everyone were untreated, respectively. Therefore, the difference in the mean outcomes 

in these two potential samples is an unbiased estimator of the populatioii a%'erage 

causal treatment effect. 
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The inversely- weighted treatment effect estimator 
The inversely-weighted treatment effect estimator produced by the process described 

above is 

'3W 

En Yi Z� En Yi (1-Zi) 
i=l P(Xi) i=' (1-P(xi» 

En Z, En (1 - zj * 
i=' p (Xi) i=' (1-P(xi» 

The two sums in the denominator merely ensure that the weights for treated and 

untreated subjects both sum to one. 

Application to the example dataset 

We previously estimated the propensity score for the example dataset, finding that 

girls had an estimated propensity score of 1/2 and boys had an estimated propensit,, %, 

score of 1/4. We first construct a potential treated sample that is intended to represent 
the sample we would see if everyone were treated. Since each treated girl has an 

estimated probability of 1/2 of receiving treatment, we assume that for each of these 

treated girls in the sample, there is one untreated girl in the sample with the same 

propensity score. Therefore, in our potential treated sample, a single replica of each of 

these treated girls is created, and allocated the same outcome as the treated girl, which 

in this case is 3. Similarly, the two treated boys have a one-in-four chance of receiving 

treatment. Therefore, we create three replicas of each treated boy. The potential 

treated sample is shown in the top half of Figure 2.5. This potential treated sample 

contains both the eight sampled children who were treated, depicted by unshaded 

figures, and the twelve replicas of these treated subjects, depicted by shaded figures. 

Similarly, the potential untreated sample was created from the untreated sampled 

subjects, using the estimated propensity score. 

The mean outcome in the potential treated sample is 3. The mean outcome in the 

potential untreated sample is (12 x2+8x 1)/20 = 1.6. Therefore, the inverse- 

weighting method gives an treatment effect estimator of 1.4, which is equal to 

the population average causal treatment effect 3,,. 

The bias and variance of the inversely-weighted estimator 

The asymptotic expectation of the estimator 4w, taken over the near-infinite popula- 

tion with all parameters fixed at their true values, is 

, 
3,, ' = Y, ]-E[ Yo I=3,,. 
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Figur-e 2.5-. Tht- welighted analysis. Two 'potential' ýamples are crtated from. the 
milial sautplc. Each 'potential " sample contains the initial treated or urilreated subjects 
(, un8haded) and repIllcated subjects (shaded) whose addition is intended to create tivo 

, 5amples which both have the sam-e covariate structure as the u.,, holp sample. 

'POTENTIAL' TREATED 
SAMPLE 

'POTENTIAL' UNTREATED 
SAMPLE 

The variance of the estimator ýw, when the propensity score is known or consistently 

estimated, has been calculated using NI-estiniation methods' by Lunceford and David- 

iaii [59]. For treated subjects who have a propensity score close to zero, or untreated 

subjects who have a propensity score close to one, the weight can be extremely large, 

producing an estimator with extremely large variance. 

More complex inversely- weighted estimators have been proposed. Both Hirano aii(l 

Lunceford and Davidian gi-ve estimators that ha-ve the smallest possible variance of all 

such seriii-paranietric in, ýýerselý, -weiglited-probabilitý, estimators. Hirano's estimator 
has the advantage of only requiring modelling of the propensity score [401. LI-inceford 

and Davidian's version requires both the outcome and the propensity score to be 

modelled [59]. However, their estimator is doubly robust: if either the model for 

the propensity score or the model for the conditional mean of the outcome, given 

treatment status and covariates, is wrong then the estimator will still be consistent, 

although it may then have a larger variance. 
"NI-cstimation methods, also called estimating equation methods, can be used to make asymptotic 

inferences from ail estimator without specifýling the full probability distribution of the data. For 

more details see Section 3.1.2 and references therein. 
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Doubly robust methods are particularly attractive in that it is only necessary to spec- 
ify one of two models correctly, giving the analyst an extra layer of protection again.,;, t 
bias. Although doubly robust propensity score methods are a promising method of 
analysis we do not pursue them any further here. This is because much is already 
known about the theoretical properties of general doubly robust estimators and others 
are researching their application within a propensity score context ý; 59]. Furthermore, 

as we will see (Section 2.3.3) epidemiologists appear to be reluctant to use the simpler 
inverse-weighting propensity score methods, perhaps due to unfamiliarity or a lack 

of understanding. It seems likely, therefore, that it will take time for doubly robust 
methods to become widely used in epidemiological studies. Since one of the aims 
here is to provide practical guidance for epidemiologists, we have chosen to MN'est I- 

gate improved methods of inference for a currently used method rather than studying 

a possibly superior but more complex and infrequently used ni-ethod. 

If we were interested in the population average causal treatment effect on the treated, 

we could use weighting to estimate this by assigning treated subjects a weight of one 

and untreated subjects a weight of p (X)/(l -p (X)) [551. 

2.3 Comparison of propensity score methods 

We have so far discussed the theoretical justification for propensity score methodology 

and described the four main propensity score methods. An important question now is: 

which of these methods should be used in applications? Are there situations in which 

one method will be 'better' than the others? Whilst a comprehensive answer to these 

questions is beyond the scope of this thesis, we attempt to show how the four methods 

are inter-related and to use this knowledge to explain various well-known features of 

the four estimators. We then consider the implications of estimating the propensity 

score for each method. We review analyses that have compared the various methods, 

and end with a few remarks about the comparative uptake of the four propensity 

score methods in epidemiology. 

2.3.1 Links between the propens2ty score methods 

In the previous section, we applied each of the four propensity score methods to 

an artificial example dataset. Inspection of the way in which these estimators was 



2.3 Comparison of propensity score mr-thods 30 

constructed should convince us that when the individual-level treatment effect is the 
same for all values of the propensity score, there is no error in the outcome. and 
the propensity score is discrete, then stratification and matching on the propensit%, 
score, and weighting by the inverse of the propensity score all produce exactly the 

same estimator. Covariate adjustment including the propensity score, when the fitted 

regression model is correctly specified, will also give the same estimator. So in a verý- 
basic situation, the four methods are essentially identical. We now consider Ný'hat 
happens when each of the three simplifying conditions above is relaxed. 

Non-uniform treatment effect 
If the treatment effect is not the same for all values of the propensity score, then 

the two estimands 0,, and 30 will be different. Stratification on the propensity score, 

weighting by the inverse of the propensity score and covariate'- adjustment including 

the propensity score all estimate, 3, whilst matching on the propensity score estimates 
00'. In fact, each of these methods can be adapted to estimate either 00 or '30, but 

these more complex versions are not frequently used in applications. 

Error in the outcome 
In practice, treatment status and covariates do not uniquely determine the outcome. 

This variation in outcome is due to, for example, random error, measurement er- 

ror and unobserved non-confounding variables. We still assume that there are no 

unobserved confounders but now allow the outcome to contain random error. For 

all propensity score methods this leads to error in the estimator. However, the im- 

plications of this error are more important for the matching and inverse- weighting 

approaches. Typically, when matching on the propensity score a large number of 

subjects are unmatched and therefore discarded. When there is error in the outcome, 

any information lost in discarding unmatched subjects will increase the variance of 

the treatment effect estimator. It is possible that this increase may sometimes be 

substantial. 

When weighting by the inverse of the propensity score, error in the outcome means 

that when some treated subjects have small propensity scores, or some untreated 

subjects have large propensity scores, then the treatment effect estimator can have 

extremely large variance. In order to understand why, let us return to the artificial 

dataset shown in Figure 2.1. Suppose that the outcome of one of the two treated boys 

was wrongly measured as 5, rather than 3. If we were to use this new measurement 
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when reconstructing the potential treated sample, the three replicas of this boy would 
also be assigned an outcome of 5. The potential untreated sample would remain the 
same, resulting in a treatment effect estimate of 3' == 1.8, larger than the true 

value, 3,, = 1.4. In this case, a small measurement error created a small bias in the 
estimator. In more extreme cases the effect of a small error is much more striking. 
Suppose that the treated boy in question had a propensity score of 1/1000 rather 
than 1/4. We would then create 999 replicas of him, rather than 3. The error in his 

outcome would be replicated 999 times, possibly resulting in a substantial bias in the 
treatment effect estimate. Thus error in the outcome will have the largest effect for 

subjects who are replicated many times. This will happen when either the subject 
is treated and has a very low propensity score, or the subject is untreated and has a 
very high propensity score. 

Continuous propensity score 
When some covariates are continuous it is unfeasible to estimate the propensity score 

at each different set of covariate values by the fraction of subjects with those covariate 

values who are treated, as in the artificial example. Typically, in epidemiological 

applications, a logistic regression model is used to estimate the propensity score [111]. 

A small amount of bias may be introduced into the matching estimator due to inexact 

matching. In the same way, bias can introduced into the stratified estimator due to 

the strata being non-homogenous in the propensity score. This is often referred to as 

residual confounding [59]. 

The effect of a continuous propensity score on the weighting method is more com- 

plicated. In the discrete case the propensity score is estimated by the fraction of 

treated subjects at each combination of covariate values. Then, for example, for each 

treated subject in the sample with an estimated propensity score of 1/3, there will 

be two untreated subjects in the sample with an estimated propensity score of 1/3. 

Therefore, when we reconstruct the two potential samples, each treated subject with 

this propensity score is replicated twice, and each two untreated subjects with this 

propensity score are replicated once. This ensures that each of the two potential sam- 

ples being compared have exactly the same number of subjects with that estimated 

propensity score. Therefore, we are comparing two 'identical' populations, in terms 

of the distribution of the propensity score. Now suppose that the propensity score is 

continuous. In this case, a treated subject with a propensity score of 1/3 is likelly to be 
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the only subject in the sample with exactly that propensity score. We would replicate 
this subject twice, resulting in the potential treated sample containing three subjects 

with an estimated propensity score of 1/3. Conversely, since there are no untreated 

subjects with that propensity score, the potential untreated sample would contain no 

subjects with an estimated propensity score of 1/3. Because of this, the two potential 

samples are no longer identical, in terms of their propensity score distributions, al- 

though in large samples they should be similar. This problem is particularly relevant 

when the tail end of the propensity score distribution is dominated by one treatment 

group. For example, if no treated subjects have low propensity score values and many 

untreated subjects do, then the two reconstructed potential samples may end up be- 

ing very dissimilar, producing a biased treatment effect estimator. In order to avoid 

such problems, a common support condition can be imposed which ensures that the 

range of propensity score values in the two treatment groups is the same [36]. This 

is a sensible criterion to impose when using any propensity score method, but the 

implications of not doing so will be most damaging when weighting by the inverse of 

the propensity score. 

Links with stratification 
We have seen that in very simple, unrealistic applications, all four propensity score 

methods will produce the same estimator. In more realistic settings, the different 

approaches taken by the four methods produce different estimators. In order to fur- 

ther understand the comparative benefits of each method, we now draw links between 

each method and the method of stratification on the propensity score. Stratification 

is taken as the 'baseline' method since, in our opinion, it is the method which most 

closely reflects the randomisation argument that we used to motivate the properisitý 

score approach. 

Matching on the propensity score can be viewed as an extremely fine stratifi- 

cation on the propensity score. Discarding all unmatched subjects loses infor- 

mation, and hence increases the variance of the treatment effect estimator, and 

also changes the composition of the study population, often leading to a change 

in the estimand. 

Stratification on the propensity score can be seen as a weighted estimator. Sup- 

pose we were unsure how to model the propensity score. We could use a logistIc 

regression model to get an 'initial guess' at the propensity score. Although 
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we expect this model to be wrong, we might hope that it is good enough to 
be able to group subjects into rough classes containing subjects with similar 

propensity scores. The propensity score could then be estimated separatelý- for 

subjects in each of these classes by the fraction of subjects in that class who 

are treated. We would then calculate the weighted treatment effect estimator 

using this new propensity score. This is exactl,,,, equivalent to estimating 
the treatment effect using stratification on the propensity score. Viewing the 

stratified estimator in this way, we would expect that if the propensity score is 

modelled correctly, the weighted estimator would be less biased than the strat- 
ified estimator, but we might expect the stratified estimator to be more robust 

to mis- sp ecificat ions of the propensity score model, and to be less sensitive to 

observations with particularly high or low propensity scores. 

9 Covariate adjustment including the propensity score applies extra mathematical 

constraints to the data, in exchange for added power. As has been mentioned, 

if the treatment effect is the same for all values of the propensity score, fitting 

a model where the outcome depends on treatment and a categorical variable 

indicating the quintiles of the propensity score is an approximation to strat- 

ification on the propensity score. Including the propensity score as a linear 

covariate adds yet more assumptions, and unless the model is correct, this risks 

introducing bias. 

2.3.2 Implications of estimating the propenstty score 

Having investigated the links between the four propensity score treatment effect. es- 

timators, we now consider the implications of estimating the propensity score. We 

begin by revisiting the artificial example introduced earlier in this chapter (see Section 

2.2.1). Suppose the minister for education subsequently found out that the children 

in her dataset had not been given the choice of attending the homework club. The 

headmaster had decided to make the new club compulsory for a random selection of 

40% of his pupils, in order to give it a trial-run before making the policy school-wide. 

In other words, the 'true' propensity score - the probabilitý, of attending the home- 

work club - is 0.4 for both boys and girls and the fact that more girls than boys were 

selected is merely due to chance. Armed with this new information, we re-aiialý'se 

the dataset with the four propensity score methods using the 'true' propensity score. 
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With only one prop ensity-score value, stratification on the propensity score estimates 
the treatment effect by the difference in mean outcomes between the treated and 
untreated subjects in the whole sample. This gives Js == 1.5, higher than the true 

population average causal treatment effect, 00 = 1.4, due to the lower baseline otit- 
come of boys, and the over- representation of girls in the treatment group. Since two 

subjects with the same propensity score can now have different covariate values, the 

estimate produced by matching depends on the selection of the matched pairs. If we 
were really unlucky, we might match each of the treated girls to an untreated boy. 

and each of the treated boys to an untreated girl. This would estimate the treat- 

ment effect by ým =: 1.75, much higher than either 30 or 00'. Covariate adjustment 
including the propensity score, since there is only one value of the propensity score, 
is now equivalent to estimating the treatment effect by the difference in mean out- 

comes between the treated and untreated subjects, and so ýC 
-71.5. Weighting by the 

inverse of the propensity score would produce a 'potential' treated sample consisting 

of 15 girls and 5 boys, all with an outcome of 3, and a 'potential' untreated sample 

consisting of 10 girls, with an outcome of 2, and 10 boys, with an outcome of 1. This 

also estimates the treatment effect by ý' = 1.5. 

This example illustrates a phenomenon that has often been observed [84,85] - that 

adjusting for the estimated propensity score often performs better than adjusting for 

the true propensity score. In an infinite sample, for any propensity score p, a fraction 

of exactly p of the subjects with that propensity score would be treated. Therefore, 

adjusting for the 'true' propensity score would give an unbiased treatment effect 

estimator. In finite samples, however, imbalances may arise due to chance. In this 

case adjusting for the 'true' propensity score adjusts only for systematic imbalances 

whereas using the estimated propensity score also adjusts for imbalances due to 'bad 

luck' (49]. There are two ways in which we can adjust for bad luck as well as systematic 

differences. The first is when we use the correct model for the propensity score, but 

estimate the coefficients. The second is called overfitting the propensity score model 

- including covariates related to outcome that are not truly related to treatment but 

happen to be unbalanced in our sample. Rosenbaum shows that a simple stratified 

estimator obtained by stratifying on the 'true' propensity score is unbiased but not 

conditionally unbiased given the observed data, whereas stratifying on an over-fitted 

propensity score produces a conditionally unbiased estimator [821, which is exactly 

what we have seen from the two analyses of the artificial dataset. We expea tliat 

removing a conditional bias will reduce the variance of the estimator. In line ýN-it h this 
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intuition, both simulation studies [32] and practical applications 84,85] suggest that 

estimation of the propensity score can decrease the variance of the treatment effect 

estimator. Theoretical results show that the large-sample variance of a treatment 

effect estimator obtained using weighting by the iný-erse of the propensity score is 

reduced by both estimating and overfitting the propensity score [59]. Although no 

analogous theoretical results have yet been proved for the methods of stratification or 

matching on the propensity score, there is some empirical evidence that estimation 

and overfitting of the propensity score have similar effects in these situations [59]. 

The effects on the covariate-adjusted estimator have not been investigated. 

If overfitting the propensity score model leads to a reduction in bias, then missing 

out a covariate related to outcome that is unbalanced in our sample -a confounder 

- will lead to an increase in bias. Simulation results have demonstrated that large 

biases can occur when a confounder is omitted from the propensity score model when 

stratifying or matching on the propensity score [24,115]. In fact, the above discussion 

shows that this will be true of all propensity score methods. This result and the 

results contained in the previous paragraph may encourage us to add every observed 

covariate into the logistic regression model for the propensity score. It has, however, 

been pointed out that the propensity score must be consistently estimated in order 

for the treatment effect estimator to be consistent, and therefore, there is a limit to 

the number of variables that can be entered into the propensity score model [50,79]. 

We now move on to consider the effect of wrongly specifying the form of the propensity 

score model. Simulation studies suggest that incorrectly specifying the form of the 

model fitted for the propensity score, for example applying a logistic model when 

the true propensity score is linear, introduces little bias when stratifying or matching 

on the propensity score [24,115]. Since weighting by the inverse of the propensity 

score attaches more importance to observations at the tail-end of the propensity 

score distributions, and fitting a linear rather than a logistic regression model would 

probably only differ substantially at the tail-ends of the distribution, we may expect 

the effect of fitting the wrong type of model to affect the weighted estimator more 

than either the stratified or matched estimators. There is little evidence concerning 

wrongly specifying non-linearities or omitting important interactions. 

Propensity score diagnostics 

Weitzen et. al. [111] review epidemiological applications of propensity score meth- 

ods and find no consensus about which model diagnostics are appropriate. Both 
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stratification and matching on the propensity score aim to create groups of subjects 
within which the observed covariate distributions are balanced. As long as this bal- 

ance is achieved, it does not matter how badly the propensity score was estimated. 
In particular, if our estimated propensity score is wrong, but is a monotone func- 

tion of the true propensity score, then the stratified and matched estimators will 
still be consistent. In view of this, the only diagnostics needed when stratiýying or 

matching on the propensity score are ones which assess the balance achieved within 
the strata or matched pairs [92]. Weighting by the inverse of the propensity score 

attempts to use the estimated propensity score to construct two potential samples, 
both of which have covariate distributions representing the whole sample. Since the 

estimated values of the propensity score are used to create these potential samples, 

we might expect that it is more important that the model should be correct than 

with the stratified or matched estimators, and so it may be nlýcessary to use model 
diagnostics that assess the accuracy of the estimated coefficients in the propensit, ý 

score model. Similarly, standard model diagnostics may be necessary when using co- 

variate adjustment including the propensity score, since in this case, the precision of 

the estimated propensity score is likely to impact on the treatment effect estimator. 

2.3.3 Review of empirtcal comparisons of propensity score methods 

We now review studies that have compared the various propensity score methods 

either with each other or with standard regression models. Most of these studies have 

applied propensity score methods to the estimation of odds ratios or hazard ratios, 

rather than differences in means, as described previously in this chapter. We will 

return later to the issue of discrete outcome data. 

Two papers have reviewed the epidemiological literature, looking for studies that have 

applied both standard regression models and at least one propensity score method in 

order to estimate a causal effect. The first found 43 studies containing 54 estimated 

odds ratios or hazard ratios [95]. They found that 8/54 of these had more than a 25% 

difference in the estimated effect (on the log scale) produced by standard regression 

and at least one of the propensity score methods. However, in none of these were the 

two point estimates both significant and on either side of unity, and in most cases 

the regression estimate was significant but the propensity score estimate was not. 

It appears that estimates from a regression model, as expected, are more likely to 
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produce significant results. However, these results are not sufficient to saý- A-hether 
this is because the regression model is appropriate, or whether regression models 

are giving us an unjustified sense of security. The second revie'ýN- Paper found 69 

estimated effects, 9/69 of which had more than a 20% difference in the estimated 

effect when compared with any of the propensity score estimates given [102]. In a 
further 4/69 of the studies, the covariate-adjusted estimate was the only propensity 

score method which differed substantially from the regression estimate, and in 1/69 

the matched estimate was the only propensity score estimate that differed from the 

regression estimate. The difference between the matched estimate and the regression 

estimate in this final study may be attributable to the difference in the two estimands 
that are analogous to Oo and 30 on the odds ratio scale. This cannot be said for the 

covariate-adjusted estimates. 

Several analyses have been conducted using various propensity score methods and 

regression models specifically for the purposes of comparison. Sturmer [1031 inves- 

tigated the effect of nonsteroidal anti-inflammatory drug use on one-year all-cause 

mortality, using several propensity score methods applied to Cox survival models. 

Stratification and matching on the propensity score, covariate adjustment including 

the propensity score, weighting by the inverse of the propensity score and a standard 

Cox regression model all produced effect estimates comparable with the randomised 

evidence of no effect. A second analysis studied the effect of statin therapy on all- 

cause mortality following acute myocardial infarction [4]. Various propensity score 

methods and standard regression methods were applied to the observational dataset, 

all of which gave fairly comparable point estimates, but the estimate from the re- 

gression model had the lowest variance. The estimate produced by matching on the 

propensity score gave an identical point estimate to a meta-analysis of trials, perhaps 

because the composition within the matched sample was younger and healthier - 

and therefore more similar to participants in the randomised trials. A final paper 

considered the effect of tissue plasminogen activator on death among ischernic stroke 

patients, using data from a German stroke registry, an example in which there was 

strong evidence of the treatment effect varying with the propensity score [55]. Using 

the whole dataset, matching on the propensity score, and weighting by the inverse 

of the propensity score, modified to estimate the population average treatment effect 

on the treated, both produced estimates comparable with the randomised evidence. 

Stratification on the propensity score, covariate adjustment including the propensity 

score, and standard regression models all appeared to overestimate the treatment 
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effect, whereas the unmodified method of weighting by the inverse of the propensitY 
score appeared to overestimate the treatment effect to a factor of about 10, due to 
the presence of many very small propensity score values. Since the treated subjects in 
the observational dataset appeared to more closely resemble those who participated 
in the trials, it is perhaps unsurprising that the two methods that estimate . 3t pro- 
duced estimates closer to the randomised evidence. Restricting the sample to those 

0 

subjects with a non-negligible propensity score - greater than 0.05 - resulted in all 
treatment effect estimates being fairly comparable with the randomised evidence. 

Theoretical results that compared weighting by the inverse of the propensity score 
with stratification on the propensity score, with additional within-stratum regression7 
found that the stratified estimator outperformed the weighted estimator in some 
situations but that the inverse- weighting method can be made "d ou bly- robust' adding 
a layer of protection for the analyst, although what happens when both models are 
incorrect is unclear [59]. 

Overall, it is not clear whether any of the four methods of using the propensity score 
is superior to the others. Neither is it clear whether propensity scores perform better 

or worse than standard regression models in practice. 

The uptake of the four propensity score methods 
Weitzen et al. [111] carried out a systematic literature review of all studies investi- 

gating a health or medical related question that were published in 2001, identifying 

47 studies using propensity score methods. Of these studies, 24 used covariate adjust- 

ment including the propensity score, 13 used stratification on the propensity score, 

and 8 used matching on the propensity score. The remaining 2 studies did not re- 

port the particular propensity score method used. None of the studies reported using 

weighting by the inverse of the propensity score. 

2.4 Extensions of propensity score methods 

It is beyond the scope of this thesis to discuss all avenues of research concerning 

propensity scores. We briefly draw attention to four major extensions of propensitv 

score methods: the application of propensity score methods to datasets with multiple 
treatments, missing data methods, the extension of propensity score methods to niore 
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complex study designs, and the application of propensity score methods from a non- 
frequentist perspective. 

The propensity score, as defined above, only applies to situations where there is 

one treatment of interest and one control treatment. Joffe and Rosenbaum [491 first 

studied the application of propensity score methods to situations wit, 11 more than one 
level of treatment. They proposed a multiple propensity score p (t, X) = P(Z =tI X) 

where the treatment status indicator Z takes multiple values. The distribution of 
Z must depend on the covariates only through this multiple propensity score, so 
that P(Z =tI X) = P(Z =tIp (t, X)). This will happen, for example, if treatment 

allocation follows a proportional odds model. If such a multiple propensity score 

exists, then treatment is strongly ignorable given the multiple propensitN' score, since 

at any value of this multiple propensity score all potent, ial outcomes are independent 

of the treatment status indicator. Imbens [46], however, notes that there is often no 

multiple propensity score that fulfils the criterion above but that weaker conditions 

can be imposed that are less likely to be violated, in which case propensity score 

methods can still be applied. 

Another important issue in observational epidemiology is that of missing data, since 

it results in a loss of precision and may lead to biased treatment effect estimates [58]. 

Rosenbaum and Rubin [851 suggested using the 'generalized propensity score' which 

has the same balancing properties as the usual propensity score. The generalized score 

is defined as P(Z = 11 Xobs, R) where Xob, denotes the observed covariate information 

and R is a missing data indicator. For discrete covariates, this is equivalent to adding 

an extra category of 'missing' to each partially-observed covariate. This approach, 

however, can be impractical if there are too many missing data patterns. More 

complex versions of this approach have been suggested [19]. 

We have so far concentrated on the analysis of cohort studies. Propensity score 

methods, however, have been used in other contexts. For example, they have been 

applied to multilevel data [42], survival data [1041, survey data [1131, repeated cross- 

sectional data [36], and case-control studies [491. Weighting by the inverse of the 

propensity score has been used in the context of marginal structural models in order 

to estimate the effect of time-varying treatments [781 and similar ideas have also been 

used to estimate treatment effects with censored time-lagged data [3]. 
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We end with a note on non-frequentist perspectives. It is possible to use propensity 
score methodology to create permutation tests of the null hypothesis of no treatment 
effect for any sampled subject, using the randomisation distribution induced by the 
treatment allocation mechanism [811. These tests are comparable with Fisher's exact 
test and do not appeal to the idea of repeated sampling from a near-infinite popu- 
lation. Finally, there has recently been some interest in applying propensity score 
methods within a Bayesian framework [65]. 

2.5 Discussion 

In this chapter we have used a randomisation argument to motivate the use of propen- 
sity scores to estimate causal treatment effects when confounding is present, demon- 

strating that when all confounders are observed, propensity scores can be used to 

create a pseudo- randomised situation, allowing unbiased estimation of causal effects. 
Four main propensity score methods were described in detail: stratification on the 

propensity score, matching on the propensity score, covariate adjustment including 
the propensity score, and weighting by the inverse of the propensity score. 

A commonly used method of analysing observational data in epidemiology is a max- 
imum likelihood regression model of the outcome. The question we must now ask is 

whether there is any benefit in using propensity score methods, rather than standard 

regression models. Robins and Mark [79] point out that using the correct regression 

model for the outcome will always be more efficient than modelling the propensity 

score. Regression, however, has some important limitations. Firstly, regression mod- 

els are highly dependent on the form of the fitted model. For example, Rubin [891 

presents simulation results that show that regression can produced biased estimates 

when the ind ivid ual- level treatment effect is not constant. Specifying the correct 

model is particularly difficult when information in the data about the form of the 

outcome is scarce, as is the case when the outcome is a rare event [11]. A second 

problem with regression is due to non- comparability of treatment groups in obser- 

vational studies. When this occurs, the problem will be immediately apparent from 

a propensity score analysis [91]. Conversely, with a regression approach, this non- 

comparability will not be evident and the resulting treatment effect estimator will 
be essentially based on extrapolation [591. It has been suggested that some sort of 

summary of the propensity score distributions in the treated and untreated groiips 
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should be provided in any analysis of observational data, whether or not propensity 
score methods are used for the primary analysis [47]. A final problem with standard 
regression models is the choice of covariates to include in the model. These can be 
selected on the basis of either their intrinsic interest, their ability to predict outcome 
or their ability to predict treatment. There is no clear method for choosing which 
criteria to use. It has been suggested that all modelling strategies contain implicit 
prior beliefs and hence all modelling strategies should be recognized as an approxima- 
tion to a formal Bayesian analysis [77]. Propensity score methods offer an alternative 
approach to the problem of estimating causal treatment effects, which may overcome 
some of these problems associated with standard regression models. 

We have seen that covariate adjustment including the propensity score is the most 
widely used propensity score method in epidemiological applications. despite little 

theoretical or clinical justification for its use. The assumptions implicit in this method 
are unlikely to hold in practice. We have seen that occasionally the covariate-adjusted 
estimate is dissimilar to both the standard regression estimate and the estimates ob- 
tained using the other propensity score methods. It seems likely, in these cases, that 

the covariate-adjusted estimate is the incorrect estimate. The other three propensity 

score methods discussed - stratification and matching on the propensity score, and 

weighting by the inverse of the propensity score - each have advantages and disad- 

vantages. Matching is conceptually simple and a familiar method to epidemiologists. 
Simple matching strategies, however, may estimate a quantity different to the one 

required. Weighting by the inverse of the propensity score does not appear to be 

much used in epidemiological applications, perhaps due to unfamiliarity. In datasets 

with many extreme propensity score values, the variance of the weighted estimator 

may be extremely large. The final method, stratification on the propensity score, is 

perhaps the most basic of the methods. It is computationally easy and conceptu- 

ally simple. Although the stratified estimator is biased, there exist simple remedies 
for this. We can create more strata, making the groups more comparable and thus 

reducing the bias. We can also fit regression models within each strata, containing 

the major predictive variables. This serves both to decrease bias and to allow us to 

investigate the way in which risk factors affect outcome, within the propensity score 

strata. We therefore feel that the stratified estimator offers a simple and flexible 

method of estimating causal treatment effects for epidemiological practitioiiers. 
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This motivates our thorough theoretical investigation, hitherto lacking. to establi: Ai 

precisely when stratified estimators are consistent and normally distributed. This 

throws up some unexpected conditions with important practical implications. We 

are then able to derive theoretical asymptotic variance formulae for the stratified 
treatment effect estimator facilitating, for the first time, a general comparison with. 

amongst other methods, standard regression models. Chapter 3 begins these calcu- 
lations by investigating the large-sample theoretical properties of the stratified treat - 
ment effect estimator. 



Chapter 3 

Theoretical properties of the stratified 
treatment effect estimator 

3.1 Introduction 

We discussed, in Chapter 2, the justification for the use of propensity scores to es- 
timate causal treatment effects in the presence of confounding, and described four 

main propensity score methods. We now focus on one of these methods in particu- 
lar: stratification on the propensity score. We derive theoretical properties for the 

treatment effect estimator obtained using stratification on the propensity score, and 

establish conditions under which this estimator is consistent, derive its asymptotic 

sampling distribution, and calculate its asymptotic variance. 

We begin by reviewing the notation given in the previous chapter, and introducing 

some additional notation. We then briefly outline the theory of M-estimation, since 
this will be used later in the chapter to calculate asymptotic variances. Although 

the propensity score is invariably unknown, and therefore must be estimated from 

the data, the variance formula typically used in epidemiological applications does not 

take account of this estimation, and treats the propensity score as if it were measured 

without error [59]. Therefore, we begin with the unlikely assumption that the propen- 

sity score is a known function of the observed data, and derive theoretical properties 
for this simplified estimator. We then extend this to the more realistic situation where 

the propensity score is estimated using a logistic regression model, and derive the- 

oretical properties for the resulting estimator. The asymptotic variances of the two 

estimators, denoted by Vk[Os] and V, [, 35] for the situations where the propensity 

score is known and estimated, respectively, turn out to be distinct. We show how the 

two variances can be expressed in terms of four variance components, reflecting the 

four different sources of variation affecting the stratified treatment effect estimator. 

43 
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Finally, we consider the practical implications of these four variance components for 

the estimation of the propensity score. 

3.1.1 Further notation 

We use a subscript 'o' to denote a population parameter, and a hat to indicate a 

parameter estimator. For example, the stratified treatment effect estimator - the 

estimator obtained by stratification on the propensity score - is denoted by 3', 

which is the sample estimator of the population parameter 00) which we will call 
the population stratified treatment effect. The population average causal treatment 

effect, the population parameter of interest, is denoted by 0,,. 

As before, we assume that the outcome is continuous and is denoted by Y At intervals 
in the argument, it is convenient to let Y, denote a particular subject's outcome had 

they received treatment and YO denote their outcome had they not received treatment 
(see Section 2.1). The treatment, denoted by Z, is assumed to be binary, where 
Z == I indicates that the subject received treatment and Z -- 0 indicates that the 

subject did not receive treatment. Each subject has a vector of observed covariates, 
denoted by X= (X1,..., X,,, ). A sample of data, JYi, Zi, XiJ for i=I, -, n, is drawn 

independently from the population. 

We denote the propensity score by p (X) == P(Z == II X), which is assumed to be a 

continuous function. We now introduce some new notation to describe the propensitý' 

score and the strata. The propensity score is assumed to be a linear function of 

the observed covariates on the logit scale, parameterized by a vector of parameters 

= a. ). Since the propensity score depends on these - possibly unknown 

parameters, we need to distinguish between the true and estimated propensity 

score. We write these as p,, (X) and fi(X), when the parameter ef is known and 

estimated, respectively. It will sometimes be useful to emphasize the dependence on 

ce, in which case we write p (X; ct,, ) and p (X; &). The probability density function 

of this propensity score is denoted by fp( - ). 

In order to define the stratified treatment effect estimator, we must choose ho%v man), 

strata to use and the fractions in which the population should be divided between 

the strata. The number of strata is denoted by K and the fractions of the population 
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contained in each stratum are denoted by r= (rl, r2,..., rK )T. In applications, the 

sample is typically split into five equal strata, so K=5 and r, = r. ) = .. = r5 = 1/'5. 
As we choose these numbers, the fraction of the population in each population St rat um 

will be the same as the fraction of the sample in each sample stratum. 

The quantiles of the propensity score distribution that split the population into strata 

containing fractions (, rl, ... , rK )T are denoted by q. = (q 
,, q2o i--., q(K - )O)T. The frac- 

tions of treated subjects in the population contained in each stratum are denoted bv 

d. = (dio, d2o7 
.... 

dKo) T. The fractions of untreated subjects in each stratum are then 

(ri - dio, 
..., rK - dKo )T. 

As in Chapter 2, we let S= (Si, 
.. -7 

SK) be a set of stratum indicators. ýVe now 

add hats when we refer to the sample strata, in order to emphasize that these are 

estimators. So for subject i, ý, 
i is equal to one if and only if that subject is in the Sth 

sample stratum, or in other words, S, i is equal to one if and only if 4(, 
-, ) :! ý p (Xi) < 

for subjects Z=1, ..., n, and strata s =: 1, ... ' 
K. Whether the propensity score 

is known or estimated, when referring to ý, 
i, should be clear from the context. To 

simplify this notation, we let 1(A] refer to the indicator function of event A, taking the 

value 1 if event A occurs, and 0 otherwise. Then we can write S, i 
In line with the subscript notation above, Sso = 1(q(, 

-1),,! ýpO(X)<q,, 'J is an indicator for 

the Sth population stratum. 

Vectors and matrices are written in bold. Dimensions of matrices are indicated by 

superscripts, so AK" denotes a matrix of dimension Kx2. Positions within a 

matrix are indicated by subscripts on a bracketed matrix, so the (1,1)1h component 

of matrix A is denoted by (A),,. By contrast, subscripts on matrices without brackets 

refers to one of a series of connected matrices, so for example all refers to a whole 

matrix rather than indicating a position within the matrix a. Superscripts of 'T' on 

a vector or matrix denote its transpose and superscripts of '-T' denote the transpose 

of the inverse. Variance, covariance, expectation and probability are denoted by 

V[-1, Cov [-1, E[-I and P( - ), respectively. These are always taken over the 'true' 

distribution of the data. The symbol --P-+ is used to indicate convergence in probabilltv. 

We occasionally use the Op notation, defined as follows. Suppose we have a sequence 

of random variables, jan I, depending on the sample size n, and a sequence of posit ive 

constants, {b, j. Then we say that a, is Op(bn) if, for all E>0, there exist two 
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constants k, and k2 where k, is positive and k2 depends on kl, such that 

an 

bn k, 
)<c 

for all > k2- 

3.1.2 M-estimation theory 

The theory of M-estimation will be used later in this chapter to calculate the asymp- 
totic variance of the stratified treatment effect estimator. The relevant ideas are 

summarized here. For a more comprehensive discussion of NI-estimation see, for ex- 

ample, Stefanski and Boos [100] or van der Vaart [108]. 

Suppose we wish to estimate an unknown - generally vector-valued - population 

parameter, 00 ", for some integer L>1. In order to do this a sample of n subjects 

is drawn from the population and data W are observed. For example, in a regression 

model W would consist of an outcome and a set of covariates and 0,, would be the 

vector of regression parameters. In our problem the population stratified treatment 

effect, 00, will be a component of 0,,. 

An M-estimator of 0, denoted by 0, is obtained as the solution of the estimating 

equations 
Z 

ýb (wi; 0) = 
i=l 

where ýbLxl is a vector of functions of the data and the unknown parameter, and 

Ew [ ýb (W; Oj ] z= 0) 

where the expectation is taken over the true distribution of the data. Assuming that 

the estimator 6 is consistent for 0,, and asymptotically follows a multivariate normal 

(MVN) distribution, we have 

1/2(b 
_ 

00) , MVN(O, E). 

Standard M-estimation theory states that this asymptotic covariance matrix, E, can 

be defined as follows. 
zLxL = A-lBA -T 

) 
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with 

and 

ALxL =E 
[_ ' 

j»(W; 0)1 
OOT 

BLxL =E[ ýb(W; 0�) ýb 
T(W; Oj ]. 

If the component equations of the vector V; are not smooth in 0 and therefore not 
differentiable with respect to 0, the matrix A is undefined. In this sit, uation, the 

order of differentiation and expectation may be interchanged as follows [100] 

ALxL = 
(9 fE [-ýb(W; 0)]l 

OOT 
o=OI. 

(3.2) 

The regularity conditions required for this interchange of differentiation and integra- 

tion are given, for example, by Huber [431. We do not state these conditions in full 

since, for our problem, the proof of normality includes a theorem that ensures the 

validity of (3.2) (see Appendices A. 3 and B. 3). When the component equations of 

the vector ýb are smooth in 0 then the two definitions of A are equivalent. It is, 

however, often easier to differentiate first, rather than take expectations and so when 

both definitions are valid we use (3.1). 

Assuming that the appropriate definition of A is used, the asymptotic covariance 

matrix of 6 is 
A 

-T COV(O) A-lBA 
n 

Suppose interest lies only in the first component of the parameter 0 and that the 

other components are nuisance parameters. The variance of that first component is 

given by 

V (A-1BA -T) 

n 

3.1.3 The stratified treatment effect estimator 

We introduced the stratified treatment effect estimator in Chapter 2. We now write 

this using the new notation (Section 3.1-1). When, as is usual, the propensity score is 

estimated from the data, ý, 
j = is an indicator for the 01 sainple stra- 

tum, where 4 represents the estimated strata boundaries, and P (X) is the estimated 

propensity score, and a represents the sample fractions of subjeas who are treated 
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and in each sample stratum, then the stratified treatment effect estimator is 

zi Y4 zi) ýsi 

ds 
(3.3) 

d, r, 

To calculate ý8 the steps are as follows: (i) estimate the propensity score parameters, 

ci; (ii) estimate the strata boundaries, q; (iii) estimate the fraction of subjects who are 
treated and in each stratum, d; and (iv) using these estimated parameters, calculate 
the stratified treatment effect estimator (3.3). Note that this procedure assumes that 

the propensity score is a continuous variable. If the propensity score were discrete, 

taking finitely many values, then we would define strata by the discrete propensitv 

score, rather than by the quantiles of its distribution. 

It is helpful to view each of these estimation steps as the solution to a set of estimat- 
ing equations. First, the estimated propensity score parameters, &, can be written as 

the vector-valued solution to the logistic regression estimating equations. Then given 
6z, the estimated strata boundaries can be viewed as the vector-valued solution to a 

further set of estimating equations. In the same way, the fractions of treated subjects 

in each stratum can be viewed as the vector-valued solution to a set of estimating 

equations. Finally, we can write 3' as the solution to an estimating equation involv- 

ing the sample data and all the other estimated parameters. By combining all the 

estimating equations, this sequential process of estimation can be viewed as the joint 

solution of a single set of estimating equations. Thus ý' is a component of a vector- 

valued solution to a set of estimating equations - the situation described in Section 

3.1.2. After establishing consistency and asymptotic normality, the M-estimation the- 

ory can then be applied directly to calculate the variance of the stratified treatment 

effect estimator. Once we have established consistency and normality, therefore, we 

proceed to calculate the variance of the stratified treatment effect estimator assum- 

ing that the propensity score is: (i) a known function of the observed covariates; and 

(ii) estimated using a correctly specified logistic regression model. The two resulting 

variances will be denoted byVk05 ] and V, [ý'] where the k' and V refer to the 

propensity score being known and estimated respectively. We shall see that Ný-Iiilst 

Vk [ ý91 is typically used in practice we should use V, [, j'], and that the difference 

between the two variances is often non-trivial. 
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3.2 Theoretical properties when the propensity score is known 

We first consider the simpler hypothetical situation where the propensity score param- 
eters, ct, are known and so the propensity score is a known function of the observed 
covariates. In this case, we replace the estimated propensit-v score, P (X), by the 
known propensity score, po(X), in the definition of the stratified treatment effect 

estimator (3.3). 

We derive three sets of estimating equations that are needed to obtain the three sets 

of estimated parameters, 4, a and ý', where the first two are vectors and the last 

is a scalar. We will use the estimating equations to demonstrate the consistency 

and asymptotic normality of each of these estimators. We combine the three sets 

of estimating equations into a single set of estimating equations where )' is the 

component of interest of the vector-valued solution. We then apply the NI-estimation 

theory (Section 3.1.2) to obtain the asymptotic variance of the stratified treatment 

effect estimator. Next, we therefore determine the three sets of estimating equations 
for 4, a and ý8. 

Estimating the strata boundaries 

We first wish to find a set of estimating equations that, when solved, estimate the 

strata boundaries, which are defined as quantiles of the population distribution of 

the propensity score. We write the propensity score as p, (X) since we are assuming 

that the propensity score parameters are known. The estimation of the the strata 

i=1 3 (Xi ; q) 0 for boundaries is equivalent to solving the estimating equations n ýb 

q, where, remembering that the stratum indicator S, j =1[q, 
-j: 

5p,, (Xj)<q, ] is a function 

of 

o(K-I)xl (Xi; q) 3 

Sli ri 

S(K-l)i - r(K-1) 

We define the strata boundaries qO and qK as 0 and 1, respectively. The fractions 

of the sample in each stratum, rl, r2, .... r(K-1) , are fixed by the analyst. Then the 

equation 
nn 

E(Sli 
- ri) = 

1: 
- ri) (1[0<p, 

(X, )<ql 

I 

I- 
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has only one unknown: q1. Solving this equation determines 41, the estimate of the first 

strata boundary, as the value of the propensity score such that exactly n r, subjects 
in the sample have a propensity score of less than Given the estimate of the 

second strata boundary is determined as the solution, 42, Of 

Z (S2i 
- 72) -": ý 

Z (1 
[ ýi 5p� (Xi) <q2 ]- r2) = 

i=l i=I 

n Proceeding in this way, the estimating equationsEi=1'03 (Xi ; q) =0 estimate the 

quantiles of the propensity score distribution in the population by the quantiles of 

the propensity score distribution in the sample. 

Estimating the fraction treated in each stratum 
Given the estimated strata boundaries, we now wish to find a set of estimating equa- 

tions that) when solved, estimate the fraction of subjects who are treated and in 

each stratum. Remembering that Zi denotes the treatment status of subject z and, 

given the estimated strata boundaries 4, the sample stratum indicator is defined as 

S, i the required fractions can be estimated by solving the estimating 

equations Ei=l ýb2 (Zi, Xi; d, 0 for d, with 

Zi Sli - di 

ýbK, 
l (Zi, Xj; d, 2 

Zi ýKi 
- 

dK 

To see this, note that given the estimated strata boundaries, 4, the only unknown in 

the equation 

n 
(Zi ýjj 

- di) (Zi 1[0<p,, (X, )<q, I- di) =0 

is dl. Solving the equation determines ý, as the fraction of subjects who are treated 

and who are in the first sample stratum. Given this estimate, ý2 is then determined 

as the fraction of the sample who are treated and in the second sample stratum. 

Continuing in this way, the population probability of being both treated and in the 

111i practice, some nr, may not be integers, in which case we choose. the strata bomidaries to 

'I approximately satisfy this condition. In ascertaining the theoretical propertles of the cstiniýitor.,, 

assume that all the estimating equations can be exactly solved. A small approximation, in practice, 
however, will not materially affect the variance, consistency or normality of the stratified trt-atinent 

effect estimator. 
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8 th stratum, d,,,, is estimated by the sample fraction of subjects who are both treated 
and in the Sth sample stratum, d,, for strata sK 

Estimating the stratified treatment effect 
Having estimated both the strata boundaries and the probabilities of being treated 
and in each stratum, the stratified treatment effect estimator (3.3) can be calculated 
by solving the equation 

ý51 (Yi, Zi, Xi; 1 äl 01 

i=l 

(3-4) 

for 0', where, remembering that Yi and Zi denote the outcome and treatment status of 
subject 1, and I[q', 

_,: 5p. (X), stratum indicator, 
. q, l is the sample estimate of the Sth 

K Yi Z, yi (I Zi) ýsi 

(yi, zi, xi; )3-S, 
S=l 

d, r, 

Solving the estimating equation (3.4) determines as 

zi Y, zi) ýsi 

d, r, ds 

A single set of estimating equations 
We have described how the stratified treatment effect estimator can be obtained by 

the sequential solution of the three sets of estimating equations discussed above. 
We can alternatively consider the simultaneous estimation of a vector of unknown 

02K x 1, OT =T 
T) 

parameters, 0 
defined by (O', d q. Essentially, if we 'stack' the three 0000 

sets of estimating equations on top of one another and solve them simultaneously, it 
is equivalent to the sequential solution described above. In particular, if we define a 

vector 02Kx 1 by ýb T ýb T, ýb T), then solving the set of estimating equations 23 

Z 
-0 (yi, zi, xi; 0) = 0, (3-5) 

i=l 

for 0 gives an estimator, 0, defined by 6T ýs' aT, 4T). To see that the two 

approaches are equivalent, note that working from the bottom of the new vector of 

estimating equations upwards, each component uniquely determines a component of 

0, given the previous estimates. 
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We have now done what we set out to do at the beginning of this section. NNe 

use this representation of the estimation process to demonstrate the consistency and 
asymptotic normality of the stratified treatment effect estimator. We will then be in a 
position to apply the M-estimation theory to calculate the variance of this estimator. 

3.2.1 Consistency, asymptotic normality and varzance 

We have seen that, assuming that the propensity score is a known function of the 

observed covariates, the stratified treatment effect estimator, 3', can be calculated as 
the first component of a vector of estimated parameters, 6, obtained by solving the 

joint estimating equation (3.5). We now investigate the theoretical properties o0S. 

Intuitively, we would expect the estimated strata boundaries, 4, to be consistent 

estimates of the population strata boundaries, q, and the estimated fractions of 

treated subjects in each stratum, a, to be consistent estimates of the equivalent 

population probabilities, d, We would also expect the stratified treatment effect 

estimator, ý', to be a consistent estimate of its 'true' value, 3, -, 

K 

135=1: rIE[YIZ=I, So=l]-E[YIZ=O, Sso=ll}- 
0 

S=l 

The following lemma establishes conditions under which the three sets of estimators, 

4, a and ý', are consistent estimators of the population parameters mentioned above. 

These conditions are not minimal, but they are sufficient for consistency and turn 

out to be necessary for asymptotic normality. 

Lemma 3.1 Suppose that the propensity score is a known function of the observed 

covariates. 

(i) Suppose that the cumulative distribution junction of the propensity score i's 

strictly monotone and continuous near the population strata boundaries, 

-P Then as n --+ oo, q --+ q,,. 

(ii) Suppose that condition (i) is satisfied, and so 4 is consz'stent. Suppose fw-ther 

that the probability density function of the propensity score, fp( - ). is bounded 

near the population strata boundaries and that the population probability of being 
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treated and in the SIh stratumy dsoy is not equal to either 0 or rs, for s K. 
Then as n ---ý oo, 

P-. 
> do. 

Suppose that conditions (i) and (it) are satisfied, and so both 4 and a are 
consistent. Suppose further that the following functions are bounded for all 

and t=0,1 : 

fp(p), E [Y IZ=t, p,, (X) = p], E [y2 IZ= tj P"(X) = P]. 

Then as n --+ oc, 03. 
0 

If all the above conditions are satisfied then as n --* oc, -P> 0, where 
OT 

(0 5) aT, 4T ) and OT dT, qT). 0000 
0 

Proof of this lemma can be found in Appendix A. 2. The following theorem establishes 

conditions under which 0 is asymptotically normally distributed and calculates the 

asymptotic variance of the stratified treatment effect estimator, 3'. 

Theorem 3.1 Suppose that the propensity score i's a known function of the observed 

covariates and that: 

(i) the conditions of Lemma 3.1 are satisfied; 

(ii) the probability density function of the propensity score, fp( is non-zero at 

each population strata boundary, q,,,, for s=K-1; 

(iii) the functions E[YIZ=t, p,, (X) =p] are continuous in p near the population 

strata boundaries, for t=0,1. 

ýT 
Then 6 is asymptotically normally distributed, where 0= (3', d T, qT). Furthermore, 

the asymptotic variance of the stratified treatment effect estimator, ýs zs I' 

Vk [051 ý-- V1 + V2) 

with 
1K2V ly IZ= "SsO 

V, 

nE 
ra dso 

S=l 
(9,3 (n Cov[ V2 

n i9q 
T 

0=0" aq 0=0. 

v [YI Z= 0, SSO =1] 

r.. - dso 
1 
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where (n Cov[4]) is a (K - 1) x (K - 1) matrix representing the asymptotic covari*ance 
matrzx of the estimated strata boundaries, defined for j, k=1, 

... ' 
K-1, j -'ý k. as 

(n COV [4 Dik ` 
P(Po(X) > qjo) IP(po(X) < qko) 

fp(qjo) fp(qko) 7 

and ±13L is a1x (K - 1) vector with , 9qT 
I 

0=0,, 

K 

=I: r, IE[Y I Z= 1, S, =I] -E[Y I Z=O, S, 
3=1 

which zs equal to the 'true' value of 05,0. ', but seen as a function of the strata 
boundaries, q, rather than evaluated at the population strata boundaries. 

0 

Proof of this theorem can be found in Appendices A. 3 and A. 4. 

We now discuss the practical implications of the conditions in Lemma 3.1 and Theo- 

rem 3.1. Condition (i) of Lemma 3.1 and condition (ii) of Theorem 3.1 both ensure 
that the strata boundaries are well defined and can therefore be estimated. Later on, 

we will see an example which almost violates one of these conditions - the probability 
density function is extremely close to zero at one of the population strata boundaries 

(Section 5.2-4). In this example the empirical sampling distribution of that estimated 

strata boundary is non-normal, and the empirical variance of the stratified treatment 

effect estimator is not equal to Vk [#91- It is worth noting that the variance Vk is 

an asymptotic result, due to the implicit reliance of the varianýe calculation on the 

central limit theorem. Therefore, when the conditions in Lemma 3.1 and Theorem 

3.1 are satisfied, the variance formulaVk is valid for 'large enough' samples but 

the sample size required to achieve this asymptotic variance will increase the closer 

we come to violating the conditions. 

Condition (ii) of Lemma 3.1 states that that the population probabilities of being 

treated and in each stratum) ds, must not be 0 or r, for s=K, which ensures 

that the estimand 3,, ' is well defined. It is easy to imagine a situation where this 

condition is violated. As an example, let us consider the use of statins to lower seruin 

cholesterol levels. These are given to patients with high cholesterol who also have an 

increased risk of a cardiovascular event, such as a prior myocardial infarction, angina 
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or characteristics including high blood pressure and large waist circumference. It 
may, however, be extremely hard to find subjects with these characteristics - and 
hence a high propensity score - who are not treated with statins. Then a stratified 
propensity score analysis might create strata in which the higher strata contain onh, 
patients taking statins and the lower strata contain only patients not taking statins. 
In this case, the stratified treatment effect estimator will be undefined. This problem 
will be apparent when the data is analysed using stratification on the propensity 
score, and is typically dealt with by widening the strata boundaries, although this 
often means that the treated and untreated groups within the strata are then not 
comparable. 

The remaining conditions demand that the probability density function of the propen- 
sity score, the conditional expectation of the outcome given the propensitY score, and 
the conditional squared expectation of the outcome given the propensity score are 
all bounded. It is hard to imagine a practical situation where this is not the case. 
However, it is easy to imagine situations where the probability density function is 

very large, for example when all subjects have a very similar propensity score. Then, 

although the condition is not absolutely violated, we might require a large sample size 
for the variance formula Vk [ ý'9 I to be valid. In fact, we will see a simulated example 
where this is the case later on (Section 5.2.3). 

3.3 Theoretical properties when the propensity score is estimated 

We have considered the theoretical properties of the stratified, treatment effect es- 
timator when the propensity score is a known function of the observed covariates. 
In applications, the propensity score is invariably unknown and therefore must be 

estimated from the data. In epidemiological applications, this estimation is typically 

performed using logistic regression of the treatment indicator, Z, on the observed 

covariates X. This assumes the following relationship, 

PON 
_= CXTX. In 

fI- 

POW 0 

We assume that the logistic regression model above is correctly specified. Fitting 

this model gives us our estimated propensity score parameters, & which are used 

to estimate the propensity score for each sampled subject. Then we calculate the 

stratified treatment effect estimator as we did when the propensity score was kno%%-ii. 
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When the propensity score is estimated, we can obtain the stratified treatment effect 

estimator through the sequential sequence of four sets of estimating equations. The 
first is the standard set of estimating equations for a logistic regression model. The 

other three are 'P3, '02 and V), - the estimating equations that we solve to obtain t lie 

stratified treatment effect estimator when the propensity score is known. We combine 
these four sets of estimating equations in order to obtain a single set of estimating 

equations where is the component of interest of the vector-valued solution. We 

can then apply the M-estimation theory (Section 3.1.2) to obtain the asYmptotic 

variance of the stratified treatment effect estimator. Next, we therefore deriN, e the 
fourth estimating equation that is needed to estimate the propensity score. 

Estimating the propensity score parameters 
For the estimation of the propensity score, we assume that there are m observed 

covariates including an 'intercept' vector of 1's, X= (XlX2,..., X, ). Fitting a 

logistic regression model with these covariates is equivalent to solving the estimating 
n 

equationsEi=l 7P4 (Zi, Xi ; a) =: 0 where 

exp (CXT X, ) 
Zi 

-1 +exp (CKT X 
Xii 

, Pm4 x1 (Zi 
, 

Xi 

exp (C, £Txi) ý(Zi 
- 1+exp(ciTXi» 

xmi 

where X1, denotes the observed value of covariate X, for subject i. These estimating 
n 

equations, Ei. 
1 

ý)4 (Zi, Xi ; oz) = 0, are the usual score functions for a maximum 

likelihood logistic regression model and so solving them gives the maximum likeli- 

hood estimator of oz, Once the propensity score parameters have been estimated, 

the propensity score can be treated as if it were a known function of the observed 

covariates and the stratified treatment effect estimator can be obtained as before. 

A single set of estimating equations 

The stratified treatment effect estimator can be obtained by the sequential solu- 

tion of four sets of estimating equations. We can alternatively consider the si- 

multaneous estimation of a vector of unknown parameters, 0(2K+m) x1, defined bv 
0 

OT ='dTqT, CtT . 0 
(00', 

00 0) 
As before, if we 'stack' the four sets of estimating equa 

tions on top of one another and solve them simultaneously. it is equivalent to the 
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sequential solution described above. In particular, if we define a vector lp(, 
2K- rn) ,1 by 

7pT = (01, OT', OT' IpT), then solving the set of estimating equati 2341 ions 

-0) =: ol (yi, zi, xi 
ý (3-6) 

i=l 

for 0 gives an estimator, 0, defined by bT 
= OS 

I 
aT, 4T, &T) 

. 
This is equivalent to 

the sequential solution of the four separate sets of estimating equations and results 
in the same estimators. 

We have now done what we set out to do at the beginning of this section. W'e 
use this representation of the estimation process to demonstrate the consisteiin- and 
asymptotic normality of the stratified treatment effect estimator when the propensitN, 
score is estimated. We will then be in a position to apply the NI-estimation theorý, 
to calculate the variance of the estimator. 

3.3.1 Consistency, asymptotic normahty and variance 

We have seen that, assuming that the propensity score is estimated using a correctly 

specified logistic regression model, the stratified treatment effect estimator, ýS, can 
be calculated as the first component in a vector of estimated parameters, 6, obtained 
by solving the joint estimating equation (3.6). We now investigate the theoretical 

S properties of ý. 

The following lemma establishes conditions uDder which the four sets of estimators, 
&) 47 a and ýs are consistent. These conditions are not minimal, but as before they 

are sufficient for consistency and turn out to be necessary for asymptotic normality. 

Lemma 3.2 Suppose that the propensity score is estimated using a correctly specified 

logtsttc regressZon model. 

(i) Suppose that the propensity score parameters, ct, are consistent and that tht- 

cumulative distribution function of the propensity score is strictly monotone 

and continuous near the population strata boundaries, q,,. Suppose al. ýo that the 

probability density function of the propensity score is continuous everywhrre, 

and that the derivatives afp(. ) exist and are bounded, for k 
aCkk 

p Then as n -+ oc) q --ý %). 



3.3 Theoretical properties when the. propensity score is estimatrd 5S 

(Zi) Suppose that 6z Zs conststent and that condition (i) is satisfied, so 4 i's con- 

sistent. Suppose further that the probability density function of the proptii, sity 

score is bounded near the population strata boundaries, and that the population 
probability of being treated and stratum s, d,,,, zs not equal to either 0 or r, for 

s= 11 , K. 

Then as n --+ ooy a 
-P-ý 

(iii) Suppose that & is consistent and that conditions (i) and (Ii) are satisfied., so 
both 4 and a are consistent. Suppose further that the following functions exist 

and are continuous in p and bounded everywhere, for t=0,1 and k= III : 

E [Y IZ=t, p,, (X) = 
a 

JE[Y IZ=t, p(X) =p]l, 
(9ak 

E[Y' IZ=t, p,, (X) =p], 
a- 

fE [y21Z= t, P(X) =p]). 
(90zk 

Then as n --ý oc, 08 
0* 

If all the above conditions are satisfied then as n -+ oc, 4 Oo, where 
OT 

dTqT, 61 T) 
and OT dT, q 

Tj CCT). 
00000 

0 

Proof of this Lemma can be found in Appendix B. 2. The following theorem now estab- 

lishes conditions under which 6 is asymptotically normally distributed and calculates 
8 the asymptotic variance of the stratified treatment effect estimator, ý. 

Theorem 3.2 Suppose that the propensity score is estimated using a correctly speci- 

fied logZstic regression model and that: 

(i) the conditions of Lemma 3.2 are satisfied; 

'WY density function of the propensity score is non-zero at each pop- (it) the probabz t 

ulatton strata boundary, q,,,, for s=K-1, but zero at 0 and 1. 

-T 
Then b is asymptotically normally distributed, where 0= (ýs, aT, 4T, CT). Fur- 

thermore, the asymptotic vaTiance of the stratified treatment effect estimator, 0-9, is 

Ve [ Os I V1 2 3 
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where V, and V2 are defined as in Theorem 3.1, and 

V3 =1C (n Cov[ & C' 
n 

V4 =1e (n Cov[ &eT 
n 

where C= (Cl,... 
' C, ) is defined, for k=1, ---, m, as 

K 
Ck E 

r, COV[ Y) Xk (I 
- Po(X)) IZ=: 1, Sso 

5=1 
K 

+ET, COV[ Y) Xk Po(X) IZ= 0) Sso =1 

S=l 

The covariance matrix (n Cov [ 6L ]) is amxm matn'x defined in terms of its i river,,; c, 
for j, k=1, ..., m, as 

(n Cov[&])j-,, ' = E[pý(X) (I -p,, (X)) Xi Xk 

Finally, e= (el,..., e,,, ), for k=m, is defined as e-k = eak + eqk, with 

ectk =K 

UYi 
k-E[YIZ=l, 

Sso = 11 Ifik) (IYok 
-E[YI Z= 0, Sso = 1]Ifok)1 

1 
Z 

r, dso rs - dso 
s=l 

where 

Ifi krI fp (r; a) } 1,9=,. dr 
19Cek 

q(., - 1), 

q,, 

Ifo k r) 
19 ffp(r; ct)llo=, g,, dr 

19Cik 
q(. 

q,, 

IY1 kr JE[Yllp(X; a)=r]fp(r; a)llo=o. dr 
19ak 

q(. - 1),, 
q,, 

ho k r) JE [ Yo Ip (X; a) =rI fp(r-, ct)} 10=0. dr, 
19Cek 

q(, c, 

and 
K-1 ao * 

fp (qj,, ) -1a JE [ l[p(X; 
a)<qj eqk =E 

i9qj 

I 

0=0. 
aak 

j=l 
0 
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Proof of the theorem above is given in Appendices B. 3 and B. 4. 

We have already discussed the implications of most of the conditions contained in 
Lemma 3.2 and Theorem 3.2. The additional ones are concerned with the existence 
of derivatives, taken with respect to the propensity score parameters. These will 
exist if the derivatives taken with respect to the propensity score exist. A derivative 

will not exist at points where, for example, the function has a discontinuity, or has 

a 'kink', or tends to infinity. Clinical examples where either the probability densitN, 
function of the propensity score or the conditional expectation of the outcome, given 
treatment status and propensity score, tends to infinity are hard to imagine. Such 

problems, moreover, would be apparent when carrying out the analysis on a dataset. 
Discontinuities and 'kinks' in these functions are more likely to occur. 

One example of a discontinuity in the probability density function of the propensity 

score is the BCG vaccination in Britain. This vaccination is given to schoolchildren 

aged 14 years old. Therefore, the propensity score for this treatment, the vaccine, 
is merely a function of age. Furthermore, if schools gave the vaccine to each child 

exactly on their 14th birthday then the cumulative density function of the propensity 

score would be 

Fp (p) 
0 if age < 14 

1 if age > 14 

This gives a non-continuous probability density function. However, since schools do 

not vaccinate each child so promptly after their 14 th birthday it is likely that the true 

propensity score here is continuous. 

Similarly, we can find examples of discontinuity of the conditional expectation of the 

outcome, given treatment status and propensity score. Suppose we wished to estimate 

the effect of a particular intervention that aimed to curb binge drinking in schoolchil- 

dren. Suppose we targeted the intervention primarily at the older schoolchildren, so 

the propensity score depended only on age. Then if these particular children lived 

in an area where it was hard to obtain alcohol illegally, we would expect an increase 

in binge drinking, the outcome, immediately after a child's 18 th birthday, creating a 

discontinuity. However, in practice this problem would not occur since we ýý, ould use 
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our knowledge of the situation to categorize the children into two groups - under 1S 

and over 18. 

Therefore, although it is fairly easy to think of examples in which these conditions 
would be violated, these examples are unlikely to occur in practice. Conversely, 

practical examples where these conditions are almost violated may be much more 
common. 

3.4 Components of variability of the stratified treatment effect estimator 

We have now ascertained various theoretical properties of the stratified treatment 

effect estimator, In particular, we have calculated, using NI-estimation methods, 
the variance of assuming that the propensity score is: (i) a known function of 
the observed covariates; and (ii) estimated by a correctly specified logistic regression 

model. The two variance formulae are denoted by Vk [ ý' ] and V, [ ý' ], where the k and 

e subscripts refer to the propensity score being 'known' and 'estimated' respectively. 
These variances can be written in terms of four variance components as follows: 

Vk [ #91 V1 + V2) 

Ve[ý'91 ý-- V1 + V2 + V3 + V4- 

We now consider the interpretation of V1, V2, V3 and V4. 

3.4.1 The variance component V, 

If, as before, we let K denote the number of strata, r, denote the probability of being 

in the S1h stratum, d,,,, be the population probability of being treated and in the S1h 

stratum, q,,, be the S1h population strata boundary, and S,,, = 1[q(,, 
-j),,! ýp,, (X)<q,. j be an 

indicator for the S1h population stratum, then, from Theorem 3.1, the first variaiice 

component is 

1K2 VIYIZ=" SSO='] V[YIZ=0, SSO= 11 
V, =ýY: r. dso rs - dso 

s=I 
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Since this variance component consists of the sum of variances, inversely weighted bý- 

positive probabilities, it is always positive. In the hypothetical situation where both 

the propensity score and the strata boundaries are known, and sampling is performed 
within strata, the variance of the stratified treatment effect estimator is exactly equal 
to V1. This variance component therefore measures the error due to the variability of 
the outcome, Y, within the true strata. Since this error occurs whether the propensitv 

score is known or estimated, both Vk [)3'3 ] and V, [, 3s ] contain this term. In all the 

simulated examples we consider later (Section 5.2), the component V, accounts for 

most of the variance of the stratified treatment effect estimator. 

3.4.2 The variance component V2 

From Theorem 3.1, the second variance component is 

V2 == 
i OX 

(nCov[ 
ao* 

n aq T 
0=0. i9q 0=0" 

where (n Cov [4]) is a (K - 1) x (K - 1) matrix representing the asymptotic covariance 

matrix of the estimated strata boundaries, defined for J, k=1, ... ' K-1, j>k, as 

(nCOV[41)jk > qjý) P(p,, (X) < qko) 
fp(qjo) fp(qko) 

and is aIx (K - 1) vector with 

K 
1: r, jE [Y IZ=1, S, E [Y IZ 

5=1 

I 

ol sr. .1 
]1. 

(3.7) 

Since the variance component V2 is a quadratic form centred around a positive definite 

matrix, it is always positive. The quantiles of the propensity score distribution - 

the strata boundaries - must be estimated whether the propensity score is known 

or estimated and so both Vk [ ýs ] and V, [ ýs j contain this term. Thus the estimation 

of the strata boundaries will always increase the variance of the stratified treatment 

effect estimator, although, as the following discussion will show, this increase can 

be expected to be negligible. We find that the component V2 is negligible in all the 

simulated examples considered later (Section 5.2). 
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We now consider situations in which we might expect V2 to be large. We begin by 

considering the derivative term that appears either side of the covariance matrix in 
V2. As mentioned previously, the quantity 3* is the 'true' value of Y, Y. seen as a 10 function of the strata boundaries, q, rather than evaluated at the population strata 
boundaries. The derivative of 3* with respect to the strata boundaries, therefore. 
describes the change in the population quantity being estimated caused by a change 
in the population strata boundaries. This term will be large if a small change in a 
strata boundary causes a large change in the treatment effect estimand. In practice, 
we would not expect this to be the case and so the derivative terms in V) will typically 
be small. 

The asymptotic covariance matrix of the estimated strata boundaries (3.7) Nvill onlY 
be large if the probability density function of the propensit', ', score is extremely low 

at the population strata boundaries, in line with our intuition that estimates of a 

quantile in an area with few observations will be very variable. In Section 5.2.4 we 

will meet a simulated example where this occurs. However, even when the components 

of the covariance matrix are large, the components of the derivative are likely to be 

small so we would expect V2 to contribute little to the overall variance, as is the case 
in the simulated example mentioned above. 

Note that one of the conditions for the validity of both the asymptotic variance 
formulae is that the probability density function of the propensity score is non-zero 

at the population strata boundaries. Therefore, if the probability density function 

of the propensity score is very low at a population strata boundary a bigger sample 

size will be needed for normality of the stratified treatment effe ct estimator and the 

validity of the variance formulae - possibly prohibitively bigger. This occurs in the 

example mentioned previously in Section 5.2.4 where we give some practical insight 

into reasons for this problem. 

3.4.3 The vanance component V3 

From Theorem 3.2, the third variance component is 

V3 
--1C (n Co,,,, CT 

n 
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Recalling that m is the number of covariates used to estimate the propensity score 
(including a constant vector) we define C= (Cl, C2, 

... 7 C,,, ) 
Iw here for k=1, ..., m, 

Ck 
=Er, Cov[ Y, Xk (1 - Po (X» 1Z=1, Sso =1] 

, 9=1 
K 

+Z rs COV[ Yi Xk Po(X) 1Z=0, Sso 

s=l 

The covariance matrix is defined, for J, k=M, M 

(n Cov [ 6z ])-' =E[p,, (X) (1 - Po W) Xj Xk jk 

The variance component V3 is also a quadratic form around a positive definite matrix. 
Since this quadratic form is preceded by a minus sign, V3 will always be negative. As 

we will see, this term measures the extent to which the estimation of the propensitY 

score reduces the variance of the stratified treatment effect estimator by increasing 

the balance of the distributions of covariates that are associated with outcome within 
the strata. Conversely, the estimation of the propensity score also introduces random 

error which increases the variance of the stratified treatment effect estimator, mea- 

sured by the positive variance component V4. In each simulated example considered 
later (Section 5.2) the overall effect of estimating the propensity score, measured by 

V3 + V4, is to decrease the variance. 

The matrix (3.8) at the heart of the component V3 is the asymptotic covariance matrix 

of the estimated propensity score parameters, &. This is the standard covariance 

matrix for logistic regression model parameters. We can see that this matrix will be 

large when many of the propensity score values are very close to either zero or one. 

The vector C is a measure of the covariance of the outcome, Y, and the covariates, 
X, weighted by a function of the propensity score. This term will increase as the 

covariance between Y and X increases. In order to better understand this term, 

we consider a much simpler situation. Suppose that each population stratum only 

contains a single value of the propensity score, and that the individual level treatmew 

effect is the same for each subject. Then 

K 
Ck = 

1: 
r, COV[ Yl, Xk P,, (X) = Ps 

S=l 
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In the simplest scenario, all subjects within a stratum would have exactly the same 

covariates, making C equal to zero. Intuitively, we can see that in this case we could 

not reduce the variance of the stratified treatment effect estimator bV allowing further 

stratification on the covariates. Conversely, we might find that subjects within each 

stratum had the same propensity score but different covariate values. in which casp 

we would expect C to be non-zero. Then if by chance in our sample dataset the 

covariate distributions happened to be imbalanced across treatment groups within 
the strata, we could reduce the variance of the estimator by further stratification on 

the covariates. This is exactly what stratification by the estimated propensitv score 

would do here. In the more complicated situation where the strata contain more than 

one value of the propensity score, the term C is a measure of the average covariance 
between the outcomes and the covariates, taking account of the imbalance of the 

propensity score distributions across treatment groups within the strata. 

We can therefore see that C measures the amount by which we can hope to reduce the 

variance of the stratified treatment effect estimator through creating strata based on 

the estimated propensity score which balance the covariates that are related to out- 

come better than they would be balanced by the strata based on the true propensity 

score. 

3.4.4 The variance component 
V4 

From Theorem 3.2, the fourth variance component is 

V4 =Ie (n Cov[ 6L ]) eT 
n 

Recalling that m is the number of covariates used to estimate the propensity score, 

we define e= (e 1, e2, ..., e,, ) by ek = ecxk + eqk for k= 1, - .. ' m, where 

K (IY1 
k-E[Y IZ=1, Sso =1 I Ifik) 

ectk Er, 
dso 

S=l 

and 

(IYok-E[YI Z=0, Sso = 11 Ifok) 1 

r, - d�, 

r lfp(r; ct)}10=0. dr If, k 
19Cik 

q(, - 1), 
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Ifo k r) {fp(r; ci)lle=e. dr 
19Cik 

q(,, - 1),, 

IY1 kr JE[Ylip(X; a)=rlfp(r; ci)llo=, g. 
dr 

19ak 
q(, 

IYo k r) JE [ Yo Ip (X; a) =r] fp(r; a) I 1,9=0. dr, 
(9 ak 

q(, 

and 

eqk = 

K-1 a)3* 
fp (qj,, ) -1 19 JE [ 1[p (X; cyi)<qjj 

III 
19=19. 

ý; 
aqj 0=0" 

aak 
J=l 

In order to understand what this component is measuring we first calculate the deriva- 

tive of 0* with respect to ak. The population parameter 0*, as mentioned before, is 

the same as the 'true' value of 33,30, but seen as a function of the parameters q and 

cc , rather than evaluated at their population values. Therefore, the derivative of this 

parameter with respect to ak measures the change in the population parameter being 

estimated, 3,,, caused by a change in the propensity score parameter Cek. Keeping all 

other propensity score parameters fixed, the strata boundaries are functions of the 

propensity score parameter Cek- We can then view 0* as a function of the parameters 

101k, qi(Cek), q&ek)) ..., qK-1(Cek)}. Then the derivative of 0* with respect to Ctk is 

dO* 
= 

LO: 
+ 

K-1 ao* aqj (3-9) 
dak 0=0,, 

aak 
0=0,, 

11 

i9qj 0=0, 
aak 

0=0,,. j=l 

Since the strata boundaries are estimated through the relationship 

1 [p (X; ct) <qj II= ri + r2 + 
... 

+ rj , 

we can apply the usual rules of implicit differentiation to get, 

-ýL{E[ 11 p (X;, u) <q, 

(9qj 
Oak 

JE [I [p (X; ct)<qj 
10=01 

Oak 

fp (qj,, ) 

10=0, 

19Cek 0=0. -LIE 
[ l[p(X; ct)<qj] 

11 
L9qj 0=0. 
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Then substituting this derivative into (3-9), we find that the deri%, atl%-e of . 3' witli 
respect tO Cek is 

do* k-1 a'3"' 
fp(q,, j)-l IE[l[p(X; 

a)<qjj]jjq=O. 
ý 

-E dCek 
0=0,, 19Ckk 0=0" j=l (9qj 0=0. 

aCf k 

2,3 Now, we show in Appendix B. 4.5 that !I= 
-Ck+eDk. Therefore, aak 

Le,, 

d, 3* 
- 

Ck+ eak + eqk dak 
0=0ý 

This last equation tells us that, keeping the other propensity score parameters fixed, 

changing the parameter Cfk has two effects: (1) changing the balance of covariates as- 
sociated with outcome across treatment groups within strata, measured by -Ck, and 
(ii) adding random error caused directl by the variability of the estimated propensity yI 

score parameters, measured by eak, and indirectly through adding to the variability 

of the estimated strata boundaries, measured by eqk- 

The variance component V3 has already taken into consideration the reduction in 

variance of the stratified treatment effect estimator caused by the estimation of the 

propensity score, through increasing the covariate balance within strata. The last 

variance component, V4, measures the increase in variance caused by the random error 
introduced by the estimation of the propensity score. The component V4 is a quadratic 
form around ap ositive- definite matrix and so is always positive. The total effect of 

the estimation of the propensity score on the variance of the stratified treatment effect 

estimator is measured by the sum V3 + V4. If we could show theoretically that the 

magnitude of V4 is always smaller than the magnitude of V3 then we would know that 

estimation of the propensity score always decreases the variance. This, however, has 

not yet been possible due to the complex nature of V4. In the simulated examples 

that we consider later (Section 5.2) it is always true that V3 + V4 < 0, indicating that 

in these examples the estimation of the propensity score decreases the variance of the 

stratified treatment effect estimator. In some cases, however, the magnitudes of the 

two components are almost equal. 

3.5 Discussion 

In this chapter we have ascertained the theoretical properties of the stratified treat- 

ment effect estimator, ý', in the situations where the propensity score is: (i) a known 
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function of the observed covariates, and (ii) estimated using a correctly specified lo- 

gistic regression model. In particular, under each of these assumptions. we derived 

conditions under which ý' is consistent and asymptotically normally distributed, and 
we calculated its asymptotic variance. The two asymptotic variances are denoted 
byVk0' I and V, [ý'] for the situations where the propensity score is known and 
estimated, respectively. We further showed that these two variance formulae cotild be 

expressed in terms of four variance components as follows, 

Vi + V2 

Ve [ ýs I V1 + V2 + V3 + V4 
i 

where 

V, = The variance when the population strata boundaries and propensity score are 
known. 

V2 = The increase in variance due to the random error introduced by estimating the 

strata boundaries. 

V3=: The reduction in variance due to the increased balance of covariates associated 
with the outcome within strata, caused by estimating the propensity score. 

V4 = The increase in variance due to the random error introduced by estimating the 

propensity score. 

Conditions under which we expect these variance formulae to be valid were derived and 

discussed. In particular, the conditions which required both the probability density 

function of the propensity score and the conditional expectation of the outcome gi%, en 

treatment status and propensity score, to be bounded and differentiable, are the 

conditions most likely to be violated, without the violation being apparent during the 

analysis of the dataset. We can imagine practical situations ýN'here these conditions 

are likely to be almost violated, in which case we might require very large sample 

sizes in order for the two variance formulae given above to be valid. These issues are 

further investigated in Chapter 5. 

We have seen, in this chapter, that the difficulty in finding a suitable variance esti- 

mator for ý3' comes from the non-continuity of the strata indicators under relwated 
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sampling from the near-infinite population. However, we can easily calculate the con- 
ditional variance of ý', viewing our covariates and treatment status as fixed, since 
the strata indicators are then fixed and therefore the problem of non-continuit%, van- 
ishes. We discuss, in Chapter 4, whether such a conditional variance estimator or a 
marginal estimator - where the covariates and treatment status indicators are seen 
as random variables under repeated sampling - is preferable. NVe show that our 
variance estimators, Vk[#] and V, [ý'], measure the asymptotic marginal variance 
of 

A 

Having calculated the variancesVk [X ] and V, and explored them mathemati- 
cally, we then apply them to hypothetical situations in Chapter 5. We take several 
simple example situations with known outcome, covariate and propensity score dis- 

tributions, allowing us to calculate the 'true' values of Vk[, 3' I and V, ['3' ], without 
having to estimate them from a sample dataset. We then obtain empirical variance 
estimators, by simulating many sample datasets from each example, in order to es- 
timate the sampling distribution of ý'. We compare the theoretical and empirical 

estimatesOf Vk [ ý'9 ] and V, [ ý' ], in order to investigate how large a sample is needed 
in order for the empirical variances to be close to the theoretical asymptotic variances' 
We also consider two examples where one of the conditions required for the validity of 
Vk[ý' ] and V, is almost violated, in order to see how this affects the convergence 

rate. 

We then proceed, in Chapter 6, to consider the issue of estimating the two variance 

estimators from a sample dataset. Whilst the component V, can be easily estimated 

from a sample dataset, and V2 can be expected to be negligible, and therefore ig- 

nored, neither of the components V3 and V4 can be expected to be negligible and the 

component V4, in particular, is not easy to estimate from a dataset. 

An alternative approach to calculating the variance is as follows. Rather than mul- 

tiplying out A-'BA-' and calculating an explicit formula for the variance, we could 

merely replace the expectations in A and B by sample averages and hence estimate 

A-'BA-' by multiplying the sample estimates of the two matrices. However, the 

presence of intractable derivatives in the matrix A complicates this approach. N-Ve 

will, however) return later to this idea. 



Chapter 4 

The marginal and conditional variances of 
the stratified treatment effect estimator 

We now digress a little and discuss two ways of measuring the uncertainty iii an es- 
timate of a statistic: the marginal and conditional variances. kN'hich of these types 

of variance is more appropriate is determined by the parameter of interest. We may 
wish to estimate a causal parameter that relates only to the sample at hand, in 

which case the conditional variance, given the characteristics of this sample, would 
be the appropriate measure of variance. In our problem, this is the variance of the 

stratified treatment effect estimator conditional on the observed distribution of the 
treatment status and covariates. Conversely, we might be interested in the param- 

eters of the near-infinite population from which the data were sampled, a premise 

which we assumed to be true in the previous chapters. In this situation, the marginal 

variance, which views all characteristics of the sample as random variables, would be 

the appropriate measure of variance. We begin this chapter with a brief discussion of 
the merits of both types of variance, with emphasis on our particular situation. We 

then calculate the conditional variance of the stratified treatment effect estimator, 

conditional on treatment status and covariates. Assuming that the propensity score 
is a known function of the observed covariates, we then marginalise this conditional 

variance over the distribution of the treatment status and covariates. In this calcu- 
lation we use first-order approximations and so the resulting variance is a first-order 

approximation to the marginal variance of the stratified treatment effect estimator. 
This turns out to be the variance calculated in Chapter 3, Vk In this waý-, we 

show that Vk[O. '], and by extension, V, [O'], are asymptotic (first-order) marginal 

variances of the stratified treatment effect estimator. 
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4.1 The relationship between marginal and conditional variances 
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We now define the conditional and marginal variances mathematicallý, and describe 
the relationship between the two. The marginal variance considers all obserý'ed N-ari- 
ables to be random variables. The conditional variance, on the other hand, treats all 
observed covariates as fixed quantities and allows only the outcome to %'ary, gi\'en that 
fixed covariate structure. Standard theory [7, p. 154] shows that if we have random 
variables Y and X with Y= Y(X) then the marginal variance of Y is 

V[Y] =E[(Y-E [y ])2 ]I 

and the conditional variance of Y given X is 

V[YIXJ =E[(Y-E[Y IX ])2 1X]. 

These two variances are linked by the formula 

V[Y] = EX[V[Y IX I] +VX[E[Y I X]]. (1.1) 

The second term in (4.1) cannot be negative since it is a variance. Therefore, the 

marginal variance of Y must be at least as large as the expectation of the conditional 

variances. Typically, a marginal variance estimate will be larger than a conditional 

variance estimate. 

4.1.1 Are marginal or condihonal variances more appropriateF 

Although some epidemiologists believe that we should onlY attempt to estimate causal 

parameters for the sample at hand [69], we often wish to generalise our results to 

a wider population. For example, in public health, we may wish to estimate the 

treatment effect we would see if we chose to make an intervention available throughout, 

the country, in which case the most appropriate variance would be the marginal 

variance. 

There are many examples of both marginal and conditional variances used routineIN, 

in epidemiology. Methods such as general estimating equations produce marginal 

estimates and variances, and robust standard errors are marginal. Bý- contrast, iii 

a standard regression model we assume that the covariates and treatment indicators 
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are fixed and so both the treatment effect estimate and the variance of the treatment 
effect estimate are conditional on these covariates and treatment indicators. Tile 
Mantel-Haenszel odds ratio also conditions on the fixed strata. 

In our situation, viewing the strata as fixed variables would remove the problems of 
non-continuity, greatly simplifying the variance formulae. There is, however, one key 
difference between stratifying on the propensity score and stratifying on, for example, 
age. If we calculated a Mantel-Haenszel odds ratio for a particular treatment and 
outcome, and wished to stratify by age, we might reasonably group subjects into 5- or 
10-year categories and then treat these strata as fixed. These age categories then haN'e 

a clinical meaning, as do the resulting within-strata odds ratios. The propensity score 
categories, however, have no such clinical meaning. It therefore seems appropriate to 

marginalise over the covariate and treatment status distributions. 

4.2 The marginal variance of the stratified treatment effect estimator 

We now calculate the variance of the stratified treatment effect estimator conditional 
on the observed treatment status indicators and covariates. We then assume that 
the propensity score is a known function of the observed covariates and marginalise 
the conditional variance over the distribution of the treatment status indicators and 
covariates using (4.1). In this way we obtain the marginal variance of the stratified 
treatment effect estimator. 

4.2.1 The condihonal vari*ance given treatment and covariates 

In the notation introduced in Section 3.1.1 when the propensity score is a known 

function of the observed covariates the stratified treatment effect estimator is defined 

as Kn ly 
i Zi ýý'i y i (I _ Zi) ýsi 

Ts ds 
S=l i=l 

where 
ýsj is an indicator for the Sth sample stratum and p,, (Xi) is 

the known propensity score. This can be re-written as 

Kny 
i 

ýsi y i s 
zi 

rs n 
i=l 

zi ssi I: n 
1(1 _Zi )S 

si S=l i=l Ei= 
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Assuming that the treatment status and observed covariates for each sampled subject 
are fixed, the outcomes, Yi, are the only quantities which can vary. Further assum- 
ing that subjects are independent and identically distributed gives the conditIonal 
variance of ý8, 

v ['35 1 Z, x r2 (4-2) 

where 

zjýsiv[Ylz=1, X=xi] 

2 
n (zi=l 

zi ýsi 

-Ei=, 
(1 - Zi) ýsiv [Y 1Z= OIX = Xi] 

2 
zi) ý, 

i 

Note that if we wished to use this variance in practice, we would have to fit some sort 

of model to estimate the variance of the outcome conditional on the treatment status 

and covariates. 

4.2.2 Marpnahsing the conditional variance 

Assuming that the propensity score is a known function of the observed covariates, 

we can obtain the marginal variance of the stratified treatment effect estimator from 

the conditional variance formula (4.2) using the general equation linking marginal 

and conditional variances (4.1), 

V[, 3'] = Ez, x[V[0'I Z, X]] +Vz, x[E[0'I Z, X] ]. 

The following lemma greatly simplifies the process of marginalising the conditional 

variance. 

Lemma 4.1 

Ez, x [V[ As 1 Z, X]] +VZ, x [E[A'l Z, X]] 

Ez, ý[V[A'91 Z, ý]]+VZ, A[E[A'I Z, ýj]. 
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Proof 
By applying the general relationship between marginal and conditional variances, we 
can write 

EZ, A [V[ý'I Z, ý]] = Ez, A[ Ex [V[ý'J Z, ý, X] ]J+Ez, ý(Vx[E[ýj'I Z, ý, X] ll 

=Ez, X[V[A'I Z, X] ]+Ez, A[Vx[E[A'I Z, ý, X]]], (1. -1) 

where the second line follows since X completely determines ý. By the usual rules of 
iterated expectation, we also have 

VZ, ä[E[A'J Z, A]] =VZ, A[ Ex [E[ý'I Z, §, X]] 1. (, l. 5) 

Therefore, combining (4.4) and (4-5) gives 

EZ, A [V[0,9 1 Z, S]] +Vz, ý [E[O'j Z, ý]] 

- Ez, x [V [A'l Z, X] ] 

+ EZ, ä[Vx[E[ý'I Z, A, X]]] +VZ, ý[ Ex[ E[A'I Z, ý, X]]]. (4.6) 

A final application of the general relationship between marginal and conditional vari- 

ances yields 

Ez, ý[Vx[E[ 
A' I Z, A, X]] ]+VZ, A[ Ex[ E[A'I Z, ý, X] ]] =Vz, x [E[A'I Z, X]]. 

And substituting this equality into (4.6) gives, as required 

EZ, ä[V[A'I Z, ý]]+VZ, ý[E[A'I Z, ý]]' 

Ez, x[V[A'I Z, X]] +VZx[E[ý'I Z, X] ]. 

0 

Therefore, assuming that the propensity score is a known function of the observed 

covariates we can calculate the marginal variance of the stratified treatment effect 

estimator from the conditional variance (4.2) using the following relationship, 

V[, ß'] =EZ, A[V[ß'I Z, S]] +VZ, A[E[0191 Z, Sl]. (4-7) 

We now proceed to calculate the expectation and variance above. 



4.2 The marginal variance of the stratified treatment effect e, stiinator 73 

Calculating Vz, g [EZ, 
Taking the conditional expectation of given treatment status, Z. and estimated 
strata, §, gives 

, g= 1 

This cancels to give 

zjý,, E[y I Z= 
n 
i=l 

zi 

(I -Zj)ý, jE[y IZ 
En 

i=, 
(i 

- zi) ýsi 

K 

E[O'IZ, S] JE[Y I Z= 1, ý, = I] -E[Y I Z=O, ý, = l 
5=1 

We now wish to calculate the variance of this conditional expectation over the joint 
distribution of the treatment status and estimated strata, Z and ý. Since the indicator 
Ss p. (x) < 4] depends only on the distribution of the random variable p, (X) 

and the estimated strata boundaries, the expectations E[YIZ1], for t 

0,1, depend on the observed Zi and S, j only through the estimated strata boundaries, 

Therefore, 

Vz, A[E[, ß'I Z, Sfl =Vý[E[, ß'I Z, S]]. 

We can view E[ ý' I Z, §] as a function of 4 and write E[ ý' I Z, §]= 0" (4) 

multivariate Taylor series expansion of 0*(el) about %, gives 

(q�) +W1 
q=q� 

(ý - qj + Op «4 - qo)') - 

(4-8) 

A 

Ignoring terms of order less than or equal to (4 - q,, )', we take the variance of the 

above equation. Using (4.8) we then see that the required variance is asymptotically 

equal to 

VZ, A[E[A'I Z, ýll= ýýo 
COV[4] 

03 * 

aqT 
q=q. 

Oq 
q=q�. 

This is equal to the variance component V2 (see Theorem 3.1). 
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Calculating Ez'g[V[ýsJZIýjj 
Taking the conditional variance of, 35 given treatment status, Z, and estimated strata, 
S, gives 

V [0'1 Z, S] == 
Yý V[Y I Z= I, ýs =1] 

En zi ýsi 
V[YI Z=0, ýs =1) 

Zi) ýsi 

A multivariate Taylor series expansion of the above variance about q,, ignoring terms 
of order less than or equal to (4 - q,, )', and using first-order approximations [ 12. p. 79] 

shows that the required expectation is asymptotically equal to 

V[YIZ=1, Sso=ll V[YIZ=0, Sso=ll 
E+ z, AiviA'giz, All= 5--, ' 

n dso rs - dso 
s=1 

This is equal to the variance component V, (see Theorem 3.1). 

Using (4.7) we see that the marginal variance of the stratified treatment effect es- 
timator, when the propensity score is a known function of the observed covariates, 
is 

[, 3'] == V, + V2 + Op((4 - q)2). 

This demonstrates that the varianceVk[ý'] = V, + V2 that we calculated in the 

previous chapter is a first-order approximation to the marginal variance of the strati- 
fied treatment effect estimator, when the propensity score is a known function of the 

observed covariates. By extension, we conjecture that the variance V, (O'] is also a 
first-order approximation to the marginal variance of the stratified treatment effect 

estimator, when the propensity score is estimated using a correctly specified logistic 

regression model. 

4.3 The variance formula used in applications 

Lunceford and Davidian [59] state that the routine variance formula for the stratified 

treatment effect estimator used in applications is 

N2+ 

Vlýsj (ns) 
n n. ý nc 

where &' is a sample estimate of the variance of the outcome amongst treate(I subjects 3 
in the s"' sample stratum, n, denotes the nuniber of subjects in tlie -st" s, -aiuple 



4.4 Discussion 77 

stratum, n. denotes the number of treated subjects in the s'h sample stratum, and 
the quantities with a superscript of V are defined similarly for the untreated group. 

This is a sample estimate of the variance component V1. We have already noted that 

we expect the variance component V2 to be negligible. Therefore, (4.9) is essentially 
a sample estimate Of Vk [ 3'9 1, the asymptotic marginal variance of the stratified treat- 

ment effect estimator when the propensity score is a known function of the observed 

covariates. 

4.4 Discussion 

In this chapter we calculated the variance of the stratified treatment effect estimator, 
conditional on treatment status and covariates. We condition in this way - treat the 

covariates and treatment status indicators as fixed - in a standard regression model. 
We then showed that by marginalising this conditional variance over the distribution 

of the covariates and treatment status indicators, assuming that the propensity score 
is a known function of the observed covariates, and using first-order approximations, 

we obtain Vk[ý"], the variance calculated in Chapter 3. In this way, we see that 

Vk[ý"] and V, [ý'] are asymptotic marginal variances of the stratified treatment 

effect estimator. 

We can visualise the difference between the conditional variance and the marginal vari- 

ance as follows. If we repeatedly sampled datasets of n subjects from our near-infinite 

population, each time selecting f Yi, Zi, Xi I afresh, and calculated the stratified treat- 

ment effect estimator for each dataset, then the variance of these treatment effect 

estimators would be the marginal variance - either Vk or V, depending on 

whether we had used a known or estimated propensity score. If, on the other hand, 

we kept the covariates and treatment status indicators from the first sample and 

merely re-sampled the outcomes, given the observed treatment status indicators and 

covariates, then the variance among the resulting stratified treatment effect estimators 

would be the conditional variance. Note that the distinction between marginal and 

conditional variances here is concerned with whether the covariates and treatment 

status indicators are viewed as fixed or random, and does not refer to marginalising 

over the estimated propensity score parameters. 
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We showed that the variance formula for the stratified treatment effect estimator 

commonly used in applications is essentially a sample estimateOf Vklt '3 the asymp- 
totic marginal variance when the propensity score is a known function of the observed 

covariates. Since the propensity score is invariably unknown and must be estimated 
from the data we should use V, [4']. In the following chapter, Nve will see that in 

all the hypothetical examples we consider, V, [ Os ] is smaller thanVk[3s often sub- 

stantially smaller. This suggests that the variance estimator being used in practice is 

overestimating the variance and thus the resulting confidence intervals and hypothesis 

tests are too conservative. 

Ii 
We now return to the two variances that we calculated in the previous chapter, Vk[, 3" 

and V, [, 3' ], that we have now shown to be asymptotic marginal variances. In Chapter 

5 we apply these variances to various hypothetical situations and look at hoýN' large a 

sample is needed in order for these asymptotic variances to be valid. 



Chapter 5 

Practical performance of the variance 
formulae for the stratified treatment effect 

estimator 

In Chapter 3, the variance of the stratified treatment effect estimator was calculated, 

assuming that the propensity score is: (i) a known function of the observed covari- 

ates, and (ii) estimated from the data using a correctly specified logistic regression 

model. We expressed these two variances, denoted by Vk [ ý-5 ] and V, [ 4s J, respec- 
tively, in terms of four variance components, V1, V2, V3 and V4 (Theorems 3.1 and 
3.2). In Section 3.4 we discussed the source of error measured by each of these vari- 

ance components. We therefore begin this chapter by calculating the four variance 

components for a simple hypothetical example, varying each of the parameters of the 

example one at a time in order to see if the change in variance components accords 

with our intuition, gained through this discussion. 

We then proceed to investigate the convergence rates of the asymptotic variances 
Vk [ ýs ] and V, [ ý' ]. Theorems 3.1 and 3.2 give conditions under which we can expect 

the stratified treatment effect estimator to be asymptotically normally distributed, 

with asymptotic variance equal to Vk [ ý5 I or V, [ ýs j- Provided that these conditions 

are satisfied, the variance formulae should be valid for 'large enough' samples. How 

large is large enough will depend on how close the example comes to violating the 

conditions. We therefore consider four simple hypothetical situations. The first two 

do not violate any of the conditions but each of the remaining two almost violate one 

of the conditions. For each of the four hypothetical examples, we calculate Vk[, 3-' 

and V, [ý'] using the formulae given in Theorems 3.1 and 3.2. Since we know tile 

distribution of the data we calculate the two variances mathematically, without hav- 

ing to estimate them from a simulated dataset. We then use simulation to obtain 
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empirical estimates of the two variances, for various sample sizes. This gives us some 
indication of how large a sample size is needed for these two variance formulaý to be 

valid in practice. 

The four variance components all tend to zero as the sample size gets large. Each 

variance component is a function of the form k/n where n is the sample size and k is 

a constant that does not depend on the sample size. For this reason, in this chapter 

we discuss the behaviour of n V1, n V2, n V3 and n V4, or n Vk [ ý'9 ] and n V, [ ý' ], since 
these are constants which do not depend on the sample size chosen. 

5.1 Application of the variance formulaý to a hypothetical example 

We now introduce a simple hypothetical example, and calculate the four variance 

components for this example. Since we specify the distribution of the data, it is 

possible to calculate these variance components mathematically, without estimating 

them from a dataset. This calculation is described briefly below. We vary the pa- 

rameters of the example one at a time to see whether the resulting changes in the 

variance components are in the anticipated direction, given the discussion of these 

variance components in Section 3.4. 

A hypothetical example 

Our hypothetical example has two covariates -a binary covariate, X1, and a contin- 

uous covariate, X2, with a distribution that depends on X1. The propensity score 

depends on both covariates. The outcome, Y, is continuous and depends on the co- 

variate X2 and treatment status, Z, only. The individual- level treatment effect is the 

same for all subjects and is therefore equal to the population average causal treatment 

effect. We define five population strata, each of which contains an equal fraction of 

the whole population. Details are as follows: 

Outcome: Y 70 + 72 X2 +2Z+c, e-N (0,102). 

Propensity score: In PON 
-- aO + Cýl XI + Cý2 X2- (5.1) (1- 

PON 

) 

Covariates: P(XI = 0) = 0.6, 

X2 I X1 =0- N (70,102), X2 I X1 =1- A"(60,15 2). 
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The 'default' values are: (-yo,, y2) = (35, -0.35), and (CEO, Cel - a2) = (- 2.0-15.0 -0 1). 
Each of these parameter values are varied one at a time, while the others remain fixed 

at their default value. 

The calculation of the variance components 
The four variance components, V1, V2, V3and V4, are defined in Theorems 3.1 and 3-9 
To calculate the 'true' values of these four variance components in the hypothetical 

example (5.1), it is necessary to calculate various expectations, probabilities and other 
population quantities. We give a brief outline of the calculation here. Full details of 
the calculation can be found in Appendix C. 

First, the probability density function of the propensity score in model (5.1) is calcu- 
lated using the Jacobian change of variables method, giving 

fp (P) = 
0.6 vo(p) + 0.4 vi (p) 

(5.2) 

where 

ja2l P (1 -AI 

r102 p 
(wo(p) - 

70)2 /V721_ In (lpp) 
- Cto 

vo (p) = ex 2x 102 
7r 102 wo (p) 

02 

(wl(p) - 
60)2 /V/2; 

152 
In pp ce0 - al 

vi (p) = exp 2x 152 
152 wi (p) = 

a2 

All probabilities and expectations involved in the four variance components are ex- 

pressed as integrals over this distribution of the propensity score. The integrals are 

then calculated by approximate numerical methods using the mathematical software 

Mathemahca [112]. We show how the first population strata boundary, qj, and the 

population probability of being treated and in the first stratum, dj, are calculated. 

The other quantities involved in the variance components are calculated in a similar 

way. 

Since we have five equal sized strata, the first population strata boundary solves the 

equation P(p,, (X) < ql,, ) = 1/5. We therefore find ql,, by solving the equation 

fp (p) dp = 1/5. 

Then ql,, is found by numerical approximation methods using the function FindRoot 

in the software Mathematica. 
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Remembering that Sl,, = 
1[0<p,, (X) <ql, ] is an indicator for the first population stra- 

tum, the population probability of being treated and in the first stratum, dl,,. is 
defined as 

P(Z = 1, Sl,, = 1) =E[Z Sl,, ]=E [p,, (x) Sl,, ]. 

We can therefore write the parameter dl,, in integral form as 

ql,, 

djý =Ip fp (p) dp. 

0 

Using the value for ql,, calculated above, we calculate dl,, using the numerical inte- 

gration function NIntegrate in the software Mathematica. 

All remaining quantities contained in the four variance components are calculated in 

a similar way. The Mathernatica program that calculates these variance components 

can be found in Appendix D. 2. 

5.1.2 Change M variance components as the outcome parameters vary 

We begin by investigating the effect of varying the parameters of the outcome, -yo and 

72, on the four variance components. 

Varying the parameter yo 
Changing the parameter -ýo merely changes the outcome of each subject by the same 

amount. Therefore, the variance of the stratified treatment effect estimator should 

not depend on the value of -yo. Three different values of -yo were tried: -35,4 and 35. 

The resulting variance components are shown in Table 5.1. As expected, the value of 

7o did not affect any of these components. 

Note that in Table 5.1 the first variance component accounts for the majority of the 

variance and the second variance component, as expected, is negligible. The third 

variance component is not negligible and indicates that strata based on the estimated 

propensity score would be more balanced in the covariateX2- the only covariate 

that affects the outcome - than strata based on the true propensity score. The 
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Table 5.1: Change in variance components (Ls ̂ fo vart't,, ý. 
I 

-ýo 1 -35 1" L 

n V, 637.82 637.82 637.82 
n V2 0.000008 0.000008 0.000008 
'rl V3 

-36.82 -36-82 -36-82 
n V4 1.69 1.69 1.69 

fourth variance component, as expected, is small in comparison to the first variance 
component, but much larger than the second, indicating that the estimation of the 

propensity score introduces more random error into the stratified treatment effect 
estimator than the estimation of the strata boundaries does. 

Varying the parameter72 
The parameter 72 measures the effect of the covariate X2 on the outcome. When 

'Y2 = 0, all variance of the outcome within a stratum and treatment group is due to 

random variation. As the magnitude of the covariate effect on the outcome increases, 
the variance of the outcome within the strata and treatment groups should increase. 

This part of the variance is measured by the variance component Vj. Therefore, we 

expect the variance component V, to be at its smallest when -N =0 and to increase 

with the magnitude Of 72- 

In the absence of any covariate effect on the outcome, estimation of the strata bound- 

aries should not affect the variance of the stratified treatment effect estimator. There- 
fore, we expect V2 =0 when ýY2 = 0. As the magnitude of the covariate effect increases, 

the error due to estimating the strata boundaries should increase and so we expect 
V2 to increase with the magnitude Of '72 - 

With no covariate effect on the outcome, the estimation of the propensity score should 

have no effect on the variance of the stratified treatment effect estimator. Therefore, 

we expect V3 =0 when -y2 = 0. As the magnitude of the covariate effect increases, the 

covariance between the outcome and the covariateX2 within the population strata 

will increase and so the magnitude of the variance component V3 should increase 

with the magnitude Of 72. This indicates that as the magnitude of the covitriate 

effect increases the potential for increasing the within-strata balance through using 

the estimated rather than the true propensity score also increases. 
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Since the estimation of the propensity score should have no effect on the %-ariance 

of the stratified estimator of treatment effect when ^ý2 = 0, Nve expect Iý= 

the covariate effect on the outcome increases, the random error due to estimation of 
the propensity score should increase. Therefore, we expect V to increase with the 4 

magnitude Of 'Y2 - 

Four values Of ýY2 are tried: -5, -0.35,0 and 5. All other parameters are set to their 
default values. The changes in variance components as IN varies can be seen in Table 

5.2. All changes are in the directions predicted. 

Table 5.2: Chanqe in varzance components as uaries. 
, Y2 -5 -0-35 01 

71 V, 10361.88 637.82 589-94 10361-88 
'rl V2 0.0017 0.000008 0 0.0017 

n V3 -7513.04 -36-82 -1.49 -26 -7514-04 
n V4 344.16 1.69 1.29-25 1 

Again, V, accounts for most of the variance and V2 is negligible. When -Y2 ý-- -5, 
the magnitude of the component V3 is about 70% of VI. Therefore, in this situation, 

a substantial proportion of the variance can be removed by the estimation of the 

propensity score. As before, V4 is small in comparison to V, but not always negligible. 

5.1.3 Change in variance components as the propensity score parameters vary 

We now investigate the effect of varying the parameters of the propensity score, ck, 

and a2, on the four variance components. 

Varying the parameter cil 
The parameter ce, measures the extent to which the covariate X, affects the propensity 

score. Since the outcome depends on the covariate X2 and treatment status only, the 

smallest outcome variance within the strata and treatment groups would be achieved 

by stratifying on X2 only. When a, = 0, stratifying by the propensity score is exactly 

equivalent to stratifying by the covariate X2. As the magnitude of a, increases, 

the variance of the covariate X2 within strata and treatment groups Nvill increase 

and therefore the variance of the outcome within strata and treatment groups will 

increase. So we expect the variance component Vi to increase Nvith the magnitude 
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of a,. Note that since the propensity score is not a symmetric function of a,, the 

component V, may not increase linearly with the magnitude of oil. 

We have noted that when a, =0 the smallest outcome variance within the st rat a and 
treatment groups is achieved by stratifying on the true propensity score. Therefore, 

we do not expect the estimation of the propensity score, when a, == 0, to reduce 
the variance of the stratified treatment effect estimator. As the magnitude of a, 
increases, however, the covariance betweenX2 and Y within strata and treatment 
groups increases and there is potential for improving the balance Of X2 within strata. 
Therefore, we expect the magnitude of the variance component V3 to increase as ce, 
increases. 

V- 
Four values of a, are tried: -0.25,0,0.15 and 0.25. All other parameters are set 
to their default values. The changes in variance components as ce, varies can be 

seen in Table 5.3 . 
As expected, the magnitude of both V, and V3 increase with the 

magnitude of cel. 

Table 5.3: Change in variance components as ce, varies. I 10'. 
1 -0.25 0 0.15 1 

71 V, 702.66 626.82 637.82 662.02 
n V) 0.0007 0.0001 0.000008 0.00006 
n V3 

-32.77 -1-84 -36.82 -77.90 
n V4 1.78 1.811 1.69 1.11 

As before, V, accounts for most of the variance and V2 is negligible. As the magnitude 

of a, increases, the imbalance0f X2- the covariate related to outcome - increases, 

creating more potential for the estimated propensity score to reduce this within- 

stratum imbalance between treatment groups. We noted that when a, = 0, we 

would not expect the estimation of the propensity score to affect the variance of the 

stratified treatment effect estimator. Table 5.3 shows that although, when a, = 0, 

V3 is non-zero and so we expect some benefit from estimating the propensity score, 

this is equal ' to the additional variance incurred from the random error introduced 

by the estimation of the propensity score. Therefore, estimating the propensity score 
has no effect overall. 

lln fact, the magnitude of the variance component V4 is fractionally smaller than the magnitude 
of V3. 



5.1 Application of the variance formuler to a hypothetical example ýýb 

Varying the parameter a2 
Since the outcome depends only on the covariateX2 and treatment, the smallest 
outcome variance within strata and treatment groups would be achieved by stratiýying 
on X2 only. When Ce2 is large in comparison with cel, stratifying by the propensity 
score is almost equivalent to stratifying by X2 only. As the magnitude of a. -) decreases, 

the propensity score is comparatively more influenced by the covariate X, 
, increasing 

the within-stratum variance0f X2which produces an increase in the outcome variance 
within stratum and treatment groups. Therefore, we expect the numerator of the 

variance component V, to decrease as the magnitude Of a2 increases. 

We also need to consider the effect of changing a2 on the population probabilities 

of being treated and in each stratum, the denominator of VI. Large values Of a2 

will greatly increase the range of the propensity score and produce very high or low 

probabilities of being treated and in some strata. This will increase the variance 

component V1. This is likely to happen when a2 is large. Therefore, we expect the 

variance component V, to initially decrease with the magnitude Of 02 but then to 

increase as 02 gets large enough to produce strata containing extreme propensity 

scores. 

Since the balance of the covariateX2within population strata should increase with 

the magnitude Of 02, we expect the magnitude of the variance component V3 to 

decrease as 012 increases. 

Three valuesOf Ce2are tried: 0.0075,0.01 and 0.05. The resulting variance components 

are given in Table 5.4. These are in agreement with the discussion above. 

Table 5A Chanqe in variance components as a, -) varies. 
a2 0.00'15 0.01 0.05 

n V, 724-20 637.82 701-34 

n "2 0.00004 0.000008 0.0033 

n I"r3 
-65-00 -36.82 -2.53 

n 1/4 1.49 1.69 1.43 

As before, Table 5.4 shows that V, accounts for most of the variance, V2 is negligible, 

the magnitude of V3 increases with the within strata varianceOf X2, and V4 is sinall 

but much larger than V2. 
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5.2 Investigation of the convergence rates of the variance formulae 

Recall that we have shown that the variance of the stratified treatment effect estimator 
is given by 

Vk [ ý91 
ý-- Vl + V2) 

Ve[ ý'9 1 
:: VI + V2 + V3 + V4, 

where the 'k' and V refer to the propensity score being known and estimated, re- 

spectively (Theorems 3.1 and 3.2). Having calculated the value of these four ý'ariance 

components, V1, V2, V3 and V4, for a hypothetical example, and shown that each 

component behaves as expected, we now compare Vk[ý'] and V, [ý'] to empirical 

estimators of the same two variances. The latter should give us unbiased estimators of 
the finite sample variance of the stratified treatment effect estimator. The calculated 

variances are asymptotic results which should be close to the true variance for 'large 

enough' sample sizes. Thus comparing the empirical estimators with the calculated 

variances for various sample sizes should give some indication of how large a sample 

size is needed for the calculated variance formulae to be approximately correct. 

We calculate the 'true' values Of Vk [ Os ] and V, [Os] as described in Section 5.1.1. 

Since we know the distribution of the data we can calculate the two variances mathe- 

matically, without having to estimate them from a dataset. We then obtain empirical 

estimates of the variance of the stratified treatment effect estimator, both when the 

propensity score is known and when it is estimated using a correctly specified logistic 

regression model, as follows. We simulate a dataset of size n and use it to obtain 

a stratified treatment effect estimate, stratifying on the 'true' propensity score. We 

then repeat the process 2,999 times, resulting in 3,000 stratified treatment effect es- 

timates. These estimates can be used to approximate the sampling distribution of 

the stratified treatment effect estimator and so the variance of these estimates is an 

empirical estimate Of Vk We obtain an empirical estimate of V, ýs I in the same 

way, replacing the true propensity score by the estimated propensity score - esti- 

mated for each simulated dataset using a logistic regression model of treatment status 

on the covariates X, andX2. These simulations are performed with the statistical 

software Stata [99] using the program given in Appendix D. I. 
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The four example situations we now consider are all variations on the example used 
previously (Section 5.1.1). In situations (a) and (b), all the conditions listed in Lem- 

mas 3.1 and 3.2 and Theorems 3.1 and 3.2, that guarantee consistency and asymptotic 
normality, are satisfied. In examples (c) and (d), although all these conditions are still 
satisfied, we pick examples which are clinically plausible where one of the conditions 
mentioned is almost violated. This is to see both how easily the necessary conditions 
can be violated and what effect this has on the sample size necessary for the empirical 
estimates of variance to be approximately equal to the calculated variances. 

In example situations (a) and (d) five strata are used. This is the typical number of 

strata used in applications. In the other two situations, (b) and (c), only two strata are 

used. In all examples, each strata contains an equal fraction of the sample, although 
the number of treated and untreated subjects in each stratum varies according to the 

distribution of the propensity score. All the empirical estimates of variances given in 

Figures 5.1 - 5.5 are based on 3,000 simulated datasets. 

5.2.1 Simulated example (a) 

In this example five strata are used. The propensity score is defined so that approxi- 

mately 20% of each sample are treated. Details are as follows: 

Outcome: Y 35 - 0.35X2+ 2Z+E, e- N(O, 102). 

Propensity score: In P0 (X) 
-=-2+0.15 

Xj+ 0-01 X2- 
1 P" N) 

Covariates: P(Xi = 0) = 0.6, 

X2 1 Xl 
-' 0- N (70,102), X2 1 Xl 

-:::::: 
1- N(60,15 2). 

For each subject, receiving treatment (Z = 1) increases the outcome by 2. There- 

fore, in this example the population average causal treatment effect, 00, is 2. The 

population stratified treatment effect, however, is defined as 

5 

, 
3, '=I: IE[YIZ=1, Sso=l]-E[YIZ=O, S, O='1115 

S=l 

where S,,, =1 [ q(3 - 1) 0: 5 p,, (X) < q,,, ]is an indicator for the SIh population straturn. There 

is little residual confounding here and the population stratified treatment effect is 
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similar to the population average causal treatment effect. Since j' is consistent for 

0, ',, the estimate 4' should be a fairly good estimate of our estimand of interest, 3, 

Figure 5.1: Theoretical and empirWal variances of Y, for example (a). willi the prob- 
abzlzt? j density function of the vroveniztv score by treatment aroup. 

nVk[ýs nV, [ýs] 
Theoretical 637.8 602.7 
Sample size (n) 
500 667.7 637.1 
11000 652.3 623.3 
21000 635.4 601.9 

T-ted 
g 

/ \ 
\ pmpeýty ý. P(X) 

Figure 5.1 shows the probability density function of the propensity score by treatment 

group, calculated using the formula given earlier (5.2). Empirical estimates of both 

variances are given for three sample sizes: n= 500, n=1,000 and n=2,000. With 

the two smaller sample sizes, the empirical variance estimates using both the known 

and estimated propensity scores are greater than the calculated variances, as we would 

expect. Even at these smaller sample sizes, however, the difference between the two 

empirical variances is in the direction we expect - estimation of the propensity score 

reduces the variance - and approximately the correct magnitude. By n=2,000 the 

empirical and theoretical results agree closely. 

5.2.2 Simulated example (b) 

In this example, two strata, are used. The propensity score is defined so that sub- 

jects in both treatment groups have a wide range of propensity score values but the 

probability density function of the propensity score is not too small at the strata 

boundaries (see Figure 5.2). Details of the example are as follows: 

Outcome: Y 35 + 0.3X2+ 2 Z+f, E-N 
(0,102). 

Propensity score: In Po (X) 
- ---: 3-0.5 X, + 0.05X2- 

1- Po (X) 

) 

Covariates: P(Xi = 0) = 0.61 

X2 1 Xl '2ý 0, N(70,102), X2 1 Xl 1- N(60,1,52). 

As in the previous example, for each subject, receiving treatment (Z = 1) increases 

the outcome by 2. Therefore, the population average causal treatment effect, A,, is 
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The population stratified treatment effect, is defined as 

8=EfE[YI Z= 1, S�= 1]-E[YI Z= 0, 0011 Sso =1] 1/2 = 3.03, 
s=l 

where S,,, =1 [ q(, g - 1),, :5 pc, (X) < q.,, ] is an indicator for the s" population stratum. There 

is a lot of residual confounding here - indicated by the difference between 3,, and 
0'. In practice more than two strata would be used for this example which would 0 
decrease the difference between T and 0 

Figure 5.2: Theoretical and empirical variances of ý', for example (b), with the prob- 
ability density function of the propensity score by treatment group. 

nVk nV, [, 3'] 
463.3 456.8 

478.4 477.2 

Theoretical 
Sample size (n) 
500 
1)000 
21000 

482.9 
461.1 

479.3 
457.5 

UM-1. d 

Pmpenmty 9ýre, p(X) 

Figure 5.2 shows that for all sample sizes, the empirical variances are all larger than 

the theoretical variances by an amount that decreases with the sample size, as we 

would expect. As in the previous example, with a sample size of 2,000 the empirical 

results agree closely with the calculated variances. 

5.2.3 Simulated example (c) 

In this example, two strata are used. The propensity score is centred around 0.5 %vith a 

very small variance (see Figure 5.3). This example approximates a typical clinical trial 

situation where all subjects have approximately a 50% chance of receiving treatment. 

Details are as follows: 

Outcome: Y 35 - 0-35X2 +2Z+E, E- X(0,2 2). 

Propensity score: In P0(X) 
-= -0.1 + 0.01 X, + 0.005X2- 

1 PON 

) 

Covariates: P(XI = 0) = 0.6, 
102 1,72). X2 I Xl =0' N(70, ), X2 I Xl A'(60, :), 
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Again, for each subject, receiving treatment (Z = 1) increases the outcome by 2 and 
so the population average causal treatment effect, 0, is 2. The population stratified 
treatment effect is defined as 

0' =: EfE[YI Z= 1, S�, = l] -E[YI Z= 0, 0 So =1] 1/2 = 1.88, 
s=l 

where S,,, =I[ q(. -I)O: 
ýp, (X) < q,,, j is an indicator for the Sth population stratum. There 

is little residual confounding in this example so we expect our estimator, ý-', to be a 
fair estimate of the parameter of interest, 3o. 

As we mentioned previously, this example was chosen since it nearly violates one of 
the conditions necessary for asymptotic normality of the stratified treatment effect 
estimator, when the propensity score is estimated. In particular, condition (iii) of 
Lemma 3.2 states that the derivative of the probability density function of the propen- 
sitY score with respect to each propensity score parameter must be bounded. Table 
5.5 shows the maximum of the derivative of the probability density function of the 

propensity score with respect to 02. This shows that in example (d), the maximum 
derivative is finite and hence satisfies the condition. It is, however, much larger than 
the maximum derivative in any of the other hypothetical examples chosen. Therefore, 

although the variance nV, [, 3'] is asymptotically valid in this example, we expect the 

empirical variance to converge more slowly to nV, [ý'] than it did for the previ- 
ous two examples. Note that we do not expect any problems with the convergence 
Of n Vk [ ýs I since the condition that is almost violated is only necessary when the 

propensity score is estimated from the data. 

Table 5.5: Maximum value of the derivative of the probability density function of the 
propensity score with 7-eSPeCt to a2- 

Simulated example 
1 

(ý2 TNlaxirllllr'lPE(0,1) 
ý 1112 

-(P aa2 

(a) 0.01 61312.5 
(b) 0.05 248.1 
(C) 0.005 21,369.9 
(d) 0.085 3.1 

In this example, the calculated variances suggest that estimation of the propensity 

score should not affect the variance. However, in practice, Figure 5.3 shows that est i- 
mation of the propensity score results in a decrease in variance for all sample sizes tip 

to n= 50,000. The decrease in variance associated with estimating the propen. -sity 
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Figure 5.3: Theoretical and emptrical variances of Y, for example (c). with the prob- 
ability density funchon of the 

_propensity 
score by tnýabn(., nt group. 

II --I 

nVk [, 3'1 nV, [ 0'] A 
Treated 

-A 
UM-Iwa 

Theoretical 50.2 49.9 
Sample size (n) 
500 50.3 40.9 
5)000 49.5 45.4 
10,000 49.3 46.1 
50,000 50.7 50.6 mi is 

Prope"ty scor e. p(X) 

score is reduced as the sample size increases. As predicted, the empirical variance is 

very close to the calculated variance when the propensity score is known, even for 

very small sample sizes. When the propensity score is estimated, however, very large 

sample sizes are needed for the empirical variance to be close to the calculated vari- 

ance. This shows that almost violating the condition discussed above has drastically 

slowed the convergence rate. 

In order to investigate the effect of this large derivative on the empirical variances, 

the simulation study was repeated for this example situation, replacing a2 = 0.005 by 

a2 = 0.0075. This produces only a small change in the propensity score distribution 

as is shown in Figure 5.4. The maximum derivative of the probability density function 

with respect to a2 then becomes 9,876.3 - still larger than all the other examples 

but smaller than it was. This small change in the propensity score parameters con- 

siderably improves the speed of convergence. Figure 5.4 shows that with a sample 

size of n=2,000, the estimation of the propensity score still appears to reduce the 

variance despite the calculated variances predicting no reduction in variance but that 

with a sample size of n=5,000, the theoretical and empirical variances agree closely. 

Figure 5.4: Theoretical and empirical variances of ý'., for example (c) with a., - 
0.0075, ivith the probability density function of the propensZty score by treatment group. 

T--d 

nVk[ nV, 
Theoretical 51.4 51.3 

Sample size (17. ) 
9000 

1-I:!, 
52.7 46.8 

5,000 51.6 49.9 
Pmponeft p(X) 
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5.2.4 Simulated example (d) 

In this example five strata are used. The propensity score has a bimodal distribution 
as can be seen in Figure 5.5. Details of the example are as follows: 

Outcome: Y=8-4X2+2 Z+c7 c-N'(0,8 2). 

Propensity score: In 
(1 P 

P) 
== -1 + 1.5 X, + 0.085 X2- 

Covariates: P (Xi = 0) = 0.61 

X2 I XI :=0- N(5,3 2), X21X, 
=I- N(10,4 2). 

As in the previous example, for each subject, receiving treatment (Z = 1) increases 
the outcome by 2. Therefore, the population average causal treatment effect, 3,, is 
2. The population stratified treatment effect, is defined as 

5 

08 =EfE[YI Z-1, S�= 1]-E[YI Z= 0, S�= 1]ý/5=0.88, 

where S,, =1 [ q(, - 1),, :5p,, (X) < q,,, ]is an indicator for the S'h population stratum. There 

is a lot of residual confounding in this example - 0,, is far from 38. In practice, since 0 
the distribution of the propensity score is so different in the two treatment groups, 

more than five strata would be used to analyse these data if the sample size allowed. 

This example was also chosen to almost violate one of the conditions required for 

the validity of the calculated variances. In particular, condition (ii) of Theorem 3.1 

states that the probability density function of the propensity score must be non- 

zero at each population strata boundary. This condition is necessary for the validity 

of both Vk [ ýs ] and V, [ ý' I. In this hypothetical situation, the probability density 

function of the propensity score at the third population strata boundary is very low, 

fp(q3o) = 0.028. We therefore expect that the empirical estimates of both variances 

will converge slowly to the calculated variances. 

The calculated variances suggest that estimation of the propensity score will decrease 

the variance by about 40. Figure 5.5 shows that in practice, estimation does decrease 

the variance, although this decrease is less than expected. However, all of the empir- 
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Figure 5.5: Theoretical and empirical variances of for example (d), with the prob- 
ability density function of the propensity score by treatment group. 

11 
TIVk [ ý8 I nV, [ ýs I 

Theoretical 630.9 590.8 
Sample size 
500 729.4 701.4 
5,000 711.6 689.6 
10)000 721.9 703.1 
50,000 752.2 731.5 

Treated 

1" 

I " 

/ \ 
I 
It 

'I \/ 
_j 

'. 
---, ' 

0i 46 I 

Untreated 

II /\ 

_____J 
\_/ 

Propensity scare, p(X) 

ical estimates are much larger than the calculated variances, even with a sample size 

of n= 50; 000. So as expected, the convergence rate of both variances is very slow. 

Figure 5.6 shows histograms of the four estimated strata boundaries from 3,000 sim- 

ulated datasets, each containing 5004 2 subjects. The probability density function 

of the propensity score at each population strata boundary is shown above the his- 

tograms. The histograms show that although the empirical sampling distributions of 

three of the strata boundaries appear to be approximately normal, the empirical sam- 

pling distribution of the third strata boundary is bi-modal. The probability density 

function of the propensity score is very low at this strata boundary, fp(q3o) = 0.028, 

which accounts for this non-normality. 

If the population strata boundary falls in an area with low probability density func- 

tion, whilst -this may make it hard to estimate the strata boundary, we might expect 

the chance of misclassification of propensity scores to be quite low. Thus we might 

expect this to have relatively little impact on the estimator or its variance. However, 

as predicted in discussions in Chapter 3 and confirmed in Figure 5.5, this does not 

appear to be the case. We now investigate further the reasons why we might expect 

the variance of the stratified treatment effect estimator to be affected by one of the 

population strata boundaries falling on a point where the propensity score probabil- 

ity density function is low. We concentrate on the simpler case where the propensjtýý 

score is a known function of the observed covariates. 
2 NNIe use 5004 subjects now and 5003 a little later because the emphasis here is on the 

strata boundaries, and so choosing a sample size such that all strata boundaries fall exactly on an 

observation prevents unnecessary interpolation. 
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Figure 5.6: Hi's togran-is of the 4 csti, i-natcd strata boandar'c-ý from 3,000 s tnulatcd 0 71 1 
dalasels from example (d) with sample size n=5.004, with the probability density 
function of the propensity score at each population. strata boundaml. 
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Figure 5.7 shows histograms of the (true) propensity scores from four simulated 

clatasets froin example (d) each containing 2,000 subjects. Four solid vertical lines 

in each histogram show the population strata boundaries. The four dashed lines in 

each histograin show the estimated strata boundaries. For each of the four strata 

boundaries only around 40 subjects are misclassified. At the first, second and fourth 

population strata boundaries, the probability density function of the propensity score 

is quite high so the 40 or so subjects either side of the population strata boundary have 

a propensity score similar to the population strata boundary. Therefore, the disparity 

between the estimated and true strata boundaries, other than the third, is small. In 

contrast, the 40 subjects either side of the third population strata boundarY have a 

much greater range of propensity scores due to the low probability density function 

at this point, which can lead to a much greater disparity between the estimated and 

trUe third strata boundary. 

Figure 5.7 shows that by estimating a strata boundary in an area with low probabilitv 

density function we can greatly increase or decrease the range of the propensity score 
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Figure 5.7: Histograms of fou7-sinzulated datasets fro-ni example (d) with sample s' 
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within the strata defined by that strata boundary. Since the propensity score is the 

probability of being treated, unless the population strata boundary falls on 0.5 and 
the disparity between that and the estimated strata boundary is quite small, we can 

expect the IlUmbers of treated and untreated subjects that are mischtssified to be 

different. If also, as is usual, the outcome is correlated with the propensity score, we 

can expect this differential inisclassification to change the within-straturn estimates 

of treatment effect, and hence the stratified treatment effect estimate. 

Even in larger samples, this misclassification will occur. However, in large enough 

samples, the error due to inisclassification will be well estimated by the second vari- 
ance component. In smaller samples, the empirical distribution of the propensity 

score inay be very dissimilar to the true probability density function of tile propen- 

sity score in areas of low density. This will lead to the misclassification error being 

even higher than expected. We therefore might predict that when a strata boundary 

falls on an area of low density, as in example (d), the finite-sample variance would 
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be higher than that predicted by the asymptotic variance formulaý. This. as we ha%, e 
seen, is exactly the case. In infinite or 'large enough' samples it is supposed that the 
formulae Vk [ ý' ] and V, [ ý' ], would give be very similar to empirical estimat es of 

variance. Testing this hypothesis, however, is prohibitively computer- intensi ve. 

In order to ensure that the variance formula-, are valid for this example when the pop- 

ulation strata boundaries do not lie on points where the probability densitly function 

of the propensity score is low, the same simulation study was performed with differ- 

ent population strata boundaries. Four equal sized strata were used, rather than five, 

since the probability density function at the each of the three resulting population 

strata boundaries is less close to zero. Figure 5.8 shows histograms of the three esti- 

mated strata boundaries from 3,000 simulated datasets, each of size n=5,003. The 

empirical sampling distributions of all the estimated strata boundaries now appear 

to be normal. With a sample size of n=2,000, both variances are underestimated, 
but the difference between the two is negligible, which is what is predicted by the 

formulae. With a sample size of n=5,000, the empirical and theoretical variances 

agree closely. 

5.3 Discussion 

In Chapter 3, we calculated the variance of the stratified treatment effect estimator, 

assuming that the propensity score is: (i) a known function of the observed covariates, 

and (ii) estimated using a correctly specified logistic regression model. We denoted 

ffiese varianccs byVk [X ] and V, [, 3'], respectively, and expressed them in terms of 

four variance components, V1, V2, V3 and V4. We discussed the mathematical mean- 

ing of these four components (Section 3.4). In this chapter, we therefore began by 

calculating V1, V2, V3 and V4 for a simple hypothetical situation, varying the example 

parameters one at a time, finding that the resulting change in variance components 

agreed with our intuition, gained from the discussion mentioned above. 

We then proceeded to investigate convergence rates for the two variance formula-. 

Vk[ý' I and V, [ ý5 1. Conditions under which these two variances are asymptotically 

valid are specified in Lemmas 3.1 and 3.2 and Theorems 3.1 and 3.2. We first looked 

at how large a sample size is needed to ensure that the two variance formulae are 

valid when these conditions are all satisfied, and then considered the effect of almost 
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Figure 5.8: Theoretical and empirical variances of J5, for example (d) using four 
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violating one of the conditions. For four hypothetical situations, variations on the 

example used previously, we calculated the two variances - as above, these were 

calculated iiiatheniatically rather than estimated from a dataset - and compared 

these variances to empirical estimates of the same variances, obtained using various 

sample sizes. Our conclusions were as foll ows. For the first two examples, (a) and (b), 

all conditions necessary for the validity of the two variance forrnulýe were satisfied. 

We found that for sample sizes of n=2,000, the empirical and calculated variances 

agreed well. Example (c) almost violated one of the conditions for the validity of 

V, that the derivative of the probability density function of the propensitv 

score 'with respect to each propensity score parameter should be bounded - and as a 

result, although the calculated and empirical estimates Of'Vk[ ýs ] agreed for all sarnple 

sizes consi(lered, it took a sample size of n= 50,000 for the calculated and empirical 

estimates of V, [)` ] to agree. Similarly, example (d) was chosen to almost violate 

a condition required for the validity of both variances - the probability density 

function of the propensity score was very close to zero at one of the population strata 
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boundaries. In this case, all the empirical and calculated variances were still dissimilar 

with sample sizes of n= 50,000. 

Looking at the conditions specified in Lemmas 3.1 and 3.2 and Theorems 3.1 and 
3.2, we can see that the conditions broadly fall into two categories. The first set 
merely ensure that the problem is well-defined, and the second set deal with the rate 

of convergence of the asymptotic variances. The first set cover conditions such as 
the population probability of being treated and in the Slh stratum being equal to 

neither zero nor r,,, for s -- 1,..., K, without which the population quantity being 

estimated, 0-', would be undefined. It also includes conditions such as the continuity 0 
of the probability density function of the propensity score, which ensures that we 

can measure the effect of the estimation of the propensity score. The second set of 

conditions, those that deal with the rate of convergence, are more relevant for our 

current discussion. These are as follows. 

1. The probability density function of the propensity score, fp( - ), must be non- 

zero at each population strata boundary, q,,,, for s= 1) .... K-1. 

2. The following functions must be bounded for all pC (0,1) and t=0,1: 

fp(p), E [Y IZ=t, p,, (X) = pl, E [y21Z =t, PON = Pl. 

3. The following functions must be bounded for pc (0,1), for t=0,1 and k 

1) 1 1*) M: 

af, (P) 
)a 

JE[YIZ=t, p(X)=Pll, 
a JE [y21Z = t, P(X) =p]j. 

19Cek 19Cek 19Cek 

In particular, we are concerned with the effect of almost, rather than absolutely, 

violating these conditions. We have seen that almost violating condition 1 means 

that a larger sample size is necessary for the validity of both variances. Almost 

violating condition 2 would similarly affect the convergence rate of both variances, 

whereas almost violating condition 3 only affects the convergence rates of the variance 

when the propensity score is estimated. 

In practice, we would not expect condition 2 to be a problem since the conditional 

expectations would have to be extremely large to pose a problem. Condition 1 could 

be detected by graphing the estimated density of the propensity score, and could be 



5.3 Discussion 100 

solved, if necessary, by redefining the strata, as we did in this chapter. Condition 3 is 
harder both to detect and solve. We can expect this problem to occur when a small 
change in a propensity score parameter greatly changes the shape of the probability 
density function of the propensity score. This is what we found in example (c). It is 

not clear, at present, whether it is possible to detect this problem in a dataset. 

So far, we have only considered hypothetical examples where the distribution of the 
data is known and so we have calculated the variances Vk [ ý'I ] and V, [ ýs ] mathe- 

matically. However, in practice, we will not be able to do this and must estimate 
these variances from a sample dataset. The next chapter, therefore, considers meth- 

ods of estimating the four variance components, V1, V2, V3 and V4, and hence the two 

variances, from a sample dataset. 



Chapter 6 

Estimating the variance of the stratified 
treatment effect estimator 

We have calculated formulae for the variance of the stratified treatment effect estima- 
tor when the propensity score is: (i) a known function of the observed covariates, and 
(ii) estimated using a correctly specified logistic regression model, denoted byVk[J'j 

and V, [ý-], respectively. We expressed these two variances in terms of four variance 

components, V1, V2, V3 and V4. In practice, we will not be able to calculate these vari- 

ance components mathematically as we did in Chapter 5. We now, therefore, consider 
the issue of estimating the variance of the stratified treatment effect estimator from a 

sample dataset. We will see that whilst the variance components V, and V3 are easily 

estimated, and V2 can be expected to be negligible, the component V4 is generally 

non-negligible and complex to estimate. To solve this estimation problem, we turn 

to the theory of kernel density estimation. 

We begin this chapter by reviewing the mathematical tools that we use later in the 

chapter. We briefly describe the application of the trapezium rule to estimate a defi- 

nite integral, after which we review the theory of kernel density estimation and kernel 

regression, applying the theory to our particular problem. We then demonstrate 

the estimation of the four variance components for two of the hypothetical datasets 

described in Chapter 5. We finish by using our variance estimators to construct 

confidence intervals for the stratified treatment effect estimator. 

6.1 Some mathematical tools 

We now provide an overview of the mathematical tools that will be used later in 

this chapter. We begin by showing how the trapezium rule can be used to estiln, 'Ite 
definite integrals and then move on to discuss the non-parametric methods of kerliel 

density estimation and kernel regression. 
101 
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Figure 6.1: The trapezium rule. 
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6.1.1 NumeT%cal Mtegration using the trapezium rule 

Suppose we wish to calculate the following definite integral of some function, g(y), 

g(y) dy. 

When the integral is analytically intractable we cannot calculate I exactly but must 

use numerical techniques to obtain an approximation. One such technique is the 

trapezium rule [105]. We illustrate this method with a simple example before giving 

the general formula. 

Figure 6.1 shows the function g(y) from a to b. We have partitioned the interval [a, b] 

into three sub-intervals, each of which has width (b - a)/3. Within the first of these 

sub-intervals we can estimate the integral of the function g(y) by the area under the 

straight (dashed) line which connects the points g(yi) and g(y,, ). Since the area under 

this dashed line is a trapezium it is equal to 

(g(yo) + g(yi)) 
32 

Repeating this for each sub-interval, we find that the total area under the dashed 

lines is 

32 
a) (g(yo) + 2g(yl) + 2g(Y2) + 9(Y3)) 

This can be used as an approximation of the integral I. In order to improve the 

approximation we could increase the number of sub-intervals. If we divide the interval 
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[a, b] into M sub-intervals, defined by a= yo < yj < ... < ykf-l < y. ýj = b, eachwith 

width (b - a)/M, then we can estimate the integral I by 

i= 
2M 

fg(yo) + 2g(yi) +... + 2g(y. 11-1) + g(y. kl)l. 

6.1.2 Kernel density estimation 

We now review another topic - the non-parametric method of kernel density estima- 
tion. Suppose we wish to estimate the probability density function of a continuous 

variable X, denoted by f (X), from a sample of data, jXj} for i=1, ... ' n, drawn 

independently from the population. One way of doing this would be to assume a 

parametric form for X and to use the data to estimate the unknown parameters of 
the specified distribution. For example, we might assume that X is normally dis- 

tributed with unknown mean and variance, which we would then estimate from the 

data. This approach assumes that we are able to correctly specify the parametric dis- 

tribution of X, despite empirical evidence that continuous data do not always follow 

a classical parametric distribution (see examples in [96]). Conversely, non-parametric 

estimators of the probability density function avoid the necessity of specifying a par- 

ticular distribution for X, which results in a more flexible, although less statistically 

powerful, approach. We consider the simplest non-parametric density estimator - 
the histogram - and show how this idea can be extended to produce a smooth es- 

timator of the probability density function of a continuous variable from a sample 

dataset. Since, in our problem, we will need to estimate the derivatives of a proba- 

bility density function, it is necessary to obtain a differentiable, and hence smooth, 

estimator of the density function. 

The histogram 

In order to construct a histogram for a sample of data, jXj} for z n, we would 

proceed as follows. First we choose the number of bins - equal width sub-intervals 

that partition the interval in which the observed data lie - which we denote by N. 

Too few bins inadequately represent the characteristics of the dataset and too many 

place too much emphasis on random error in the data. We call this oversmoothing 

and undersmoothing the data, respectively. We then choose a starting point, Xmin, 

which is less than or equal to the smallest sampled value of X, and a finishing point, 
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Xmax) which is greater than or equal to the largest sampled value of X. Then the 

width of each bin is h =(Xmax - Xmin)/N. If we let B(X) represent the bin in %%, hich 
the point X lies, then the density estimator at X is 

n 
PX) T 1[XiEB(X)J- 

nh 

We can imagine the construction of the histogram as follows. Each observed data 
point, Xj, is given a box of width h and height 1/nh. Note that this box has area 
I/n. In the histogram, Xi's box is placed in the bin to which Xi belongs. If a 
particular bin contains more than one observed value of X then the contributions of 
all these observed data points are added together. Or, in other words, the boxes are 
stacked on top of each other. The density estimator j(X) is then the height of the 
stacked boxes at point X. 

Figure 6.2: Two histograms of the dataset 13.3,4-1) 4.9,10 1. The histogram on. the 
left uses tki, ce bins and the one on the T-ight uses fo? LT- bins. 

f(X) f(X) 

xx 

We now consider a simple example. Suppose we collect a sample dataset containing 
four observations: f 3.3,4.1,4.9,10 1. Figure 6.2 shows two possible histograms that 

we could use to represent this dataset. The first uses three bins of width five, starting 
from zero. The second uses four bins of width four, again starting from zero. The 

first histogram might suggest that X has a bimodal distribution, whereas the second 

suggests a symmetric distribution. These two different representations of the data 

highlight an important disadvantage of the histogram: its dependence on the choice 

of both the starting point and the bin-width. A second disadvantage, Nvhich is more 

relevant to our problem, is that the density estimator - the histograni - is not 

smooth and therefore not differentiable. 

10 15 10 15 
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Figure 6.3: A kernel density estimate using the dataset 13.3.1.1,4.9,10 1. Th C solid 
lines indicate the four normal kernels for the four obscrvcd value. ý. Th(. dashvd 11TIC 
.- 11 1 if I,. IIII. I inatcates me resutung /cernet aensuy esumate. 
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A kernel density estimator 
The kernel density estimator of a probability density function is an extension of the 

histogram idea above. Rather than allocating each observed data point a box of area 
I/n, which is that observation's contribution to the density estimator, each observed 
data point is given a 'kernel' of area I/n. This kernel can be a box, a triangle, a 
bell-shaped normal curve, or a number of other shapes. With the histogram, an 

observation's box is placed, rather abitrarily, in the bin to which it belongs and so 

the contribution to the density estimator is usually not symmetric about the observed 

value. By contrast, the kernel is centred about the observed data point. Then to get 

the density estimator at a particular point, we merely add up the heights of all the 

kernel shapes at that point. 

To illustrate this idea, we revisit the simple example dataset 13.3,4.1,4.9,10 1. Using 

a bell-shaped normal distribution centred around the observed datapoints, with some 

pre-specified variance h' we obtain the density estimate shown in Figure 6.3. 

A general kernel density estimator using a normal kernel, centred around the observed 

values, each with variance h2, can be written as 

(X_X, )2 
ne 2h2 

(X) =n1: 
-�/-2-7rh2 ' 

i=I 

(6.1) 
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The scaling factor 1/n ensures that each kernel has area I/n, and so each observed 
data point contributes the same amount to the density estimator. If we write the den- 

sity of the standard normal distribution as K(u) = e-u 2/2/ vl'27-,, then the probabilitý- 
density function estimator (6.1) can be written as 

n 
j(X) =1Kx- 

xj 
(6.2) 

nh 

(h )' 

This is often called the Parzen- Rosenblatt kernel density estimator [72,87]. The 

function K( -) is called the kernel function. There are many other distributions that 

we could use in place of the normal distribution. However, from (6.2) we see that 

the density estimator f(X) will inherit properties of the kernel such as smoothness 

and differentiability. In our problem, these two properties will be very important, 

and most other common kernels do not share them. Since it has been shown that, the 

choice of kernel makes little difference to the density estimate [63], we concentrate 

solely on the normal kernel function. 

The square root of the variance of the normal densities used to construct the probabil- 
ity density estimator, h, is referred to as the bandwidth. The choice of this parameter 
determines the degree of smoothing applied to the data. As with histograms, it is 

important to smooth the data enough to remove most of the random error but not 

so much that genuine characteristics of the underlying data are missed. An h that 

is too large will oversmooth the data and an h that is too small will undersmooth 

the data. Intuitively, our choice of h should depend on two things. Firstly, if our 

data had very large variance we would wish to smooth it more than if there was little 

variance. Therefore, we expect h to increase with the variance of X, which we will 

call a'. Secondly, as our sample size grows we wish to give less weight to observations x 
further from the point of interest and so we want h to decrease as n increases. One 

way of choosing h is to minimise the mean integrated squared error (. v, IISE) of the 

kernel density estimator, which is 

MISE =1E[f (x) _f 
(X) ]2 dx +1V[ i(x) Idx. 

When the density f (X) is normal, this can be shown to be minimised asymptotically 

by the choice h P-Iý 1.06 n-1/5 ux [96]. As desired, this choice of h increases with the 
2 

variance of the data and decreases with the sample size. Estimating u., by a sample 

variance and plugging the resulting bandwidth into (6.2) gives the required densitY 

estimator. 
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Kernel regression 
Having seen how we might obtain a non-parametric estimator of the probability den- 

sity function of a continuous variable, we now proceed to a slightly more complex 

problem. Suppose we wish to estimate the regression curve that describes the rela- 
tionship between an outcome variable Y and an exposure variable X, from a sample 

of data, jYj, Xj} for i=1,... 'n, 
drawn independently from the population. This 

could be done parametrically by, for example, assuming that the relationship is linear 

and that the errors are normally distributed. We, however, consider the situation in 

which we do not know which parametric form to specify and hence estimate the re- 

gression relationship non-parametrically. In particular, we consider the use of kernel 

regression. A more comprehensive discussion of non-parametric regression methods 

can be found elsewhere [30,34]. 

Consider the general model 
Y= g(X) + 6, 

where E is some error term with E[EIX]=0. We wish to estimate the function 

g(X). We can write 

g(X) =E[Y I X] = 
1f 

(X) 
dy. 

Using kernel density estimation to estimate both the joint density f (X, Y) and the 

marginal density f (X) gives the Naclarya-Watson estimator [71,109]) 

n 

j(X) YiK 
xh xi (6.3) 

nh j(X) 
i=l 

where f (X) is the Parzen- Rosenblatt estimator given earlier (6.2) and the bandwidth 

h and kernel function K( -) are defined as before. 

6.2 Kernel density estimation and regression for the propensity score 

In order to estimate the variance of the stratified treatment effect estimator from a 

sample dataset, we will need to estimate both the probability density function of the 

propensity score and the conditional expectation of the outcome, given the propensitv 

score. We gave a brief overview of kernel density estimation and kernel regression in 
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Section 6.1.2. We begin by using kernel density estimation to estimate the probabilitý' 
density function of the propensity score. We then estimate the conditional expectation 
of the outcome given the propensity score using kernel regression. Using these kernel 

estimators we then estimate the derivatives of the two functions with respect to the 

propensity score parameters, cx. 

6.2.1 The kernel density estimator for the propensity score 

We now obtain a kernel density estimator for the propensity score. Since, in this 

chapter, we are assuming that the propensity score is unknown, and therefore must 
be estimated from the data, we cannot directly observe the propensity scores of our 

sample. Thus our sample consists of the estimated propensity scores for the sampled 

subjects, JP (Xi) I for i=1, ..., n. 

As discussed, we use a normal kernel, defined by K(u) =C _U2/2/ vý27r, in order to 

obtain a differentiable estimator of the probability density function. We have seen 

that the optimal choice of bandwidth, h, depends on the variance of the propensity 

score. We estimate this by the sample variance of the estimated propensity scores, 
defining 

n (Xi) n LX 21 
)2 

_Y -- 
2 

Ei=1 
1n 

(6.4) UP =--n1 

We set the bandwidth to be h=1.06 n- 1/5 6-P. Then from (6.2), the kernel density 

estimator for the propensity score is 

1nK (P -- ý (xi» fp(P) = nh 
E=l 

h- 
(P-J5 (X 1 

»2 

e 2h2 

(6-5) 
ý\/27r 

A sample of 2,000 was simulated from each of the examples (a), (b), (c) and (d) 

introduced in Sections 5.2.1 - 5.2.4. The density estimator (6.5) was calculated for 

each of the four datasets. Figure 6.4 shows both the kernel density estimates and the 

true probability density functions for each of the four examples '. The estimators for 

examples (a), (b) and (c) are fairly close to the true density functions. The kernel 

'See Appendix C for details of the calculation of the true probability density function of the 

propensity score. 
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density estimator for example (d) is less accurate. This is due to the fact that we 
chose the bandwidth to be optimal for an underlying normal (unimodal) density. In 

example (d), the underlying density is bimodal which leads to a sample variallce Owt 

implies that the propensity score is more varied than it actually is. This results in a 
bandwidth that is too large and so the density is oversmoothed. This problem could 
be remedied by choosing a smaller bandwidth. 

Figure 6.4: Kernel denstly est'Imates for the propensity score, applied to exampIcs ((z. ). 
(b), (c) and (d) of Chapter 5. 
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Derivatives of the kernel density estimator for the propensity score 

We now show how the derivative of the probability density function of the propensity 

score with respect to the propensity score parameters, Cf k, for k=1, ... ' M, 

a IMP; CO} le=o,, 
1901k 

can be estimated from a sample dataset. We estimate these derivatives by the deriva- 

tives of the kernel density estimator for the propensity score, with respect to the 

I Two f(p) 
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propensity score parameters, evaluated at 6, rather than the unknown 0,,. 

From (6.5), the kernel density estimator of the probability density function of the 

propensity score, viewed as a function of the unknown propensity score parameters. 
Cx) is 

K 
(P -p (xii 

(p; ci) 
nh h 

n 

nh v727r 
(6-6) 

Since changing the parameter Cek affects the density function fp( -) only through the 

change in the distribution of the covariates given p, the only part of the kernel density 

estimate of fp( which depends on ak is p (Xi; ce). Differentiating (6.6) with respect 
to ak gives 

l9fp (P) IEa K 
(p -p (X'; ck) ) ap (X'; a) 

19Cek nh -. _, 19P (Xi; cf) h (9Cf k bý 1 

-1nK 
(P -p (X'; c'» 

nh h 
p (Xi; CO) op (Xi; ce) 

h2 (9a k 
(6.7) 

The propensity score is connected to the propensity score parameters as follows, 

(Xi; ci) 
e 

CtTX, 

+ eCjjTXj) 

thus, remembering thatXki is the k th 
covariate observed on the ith subject, 

ap (Xi; ci) 
aak = Xki P (Xi; P (Xi; 

7 

Then substituting these two derivatives into (6.7) and evaluating the derivative at 

the estimated propensity score parameters, the required derivative estimator is 

n 
194(p) 

-hy: Kp- 
(9Cek 

Wl 
i=l 

p (Xi)) 
Xki P (Xi) (1 (Xi)) 

h2 
(6.8) 

Again, a sample of 2,000 was simulated from each of the examples (a), (b), (c) and (d) 

introduced in Sections 5.2.1 - 5.2.4. The estimator of the derivative of the probability 
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density function with respect to each of the three propensity score parameters, cko. 

a, and Cf 2 was calculated for each of them using (6.8). Figure 6.5 shows both the 
kernel density estimates of the derivatives and the true derivatjý-es. wItli respect to 

ce., for each of the four examples. Figure 6.6 shows the same derivatives, with respect 
to a,, and Figure 6.7 shows the derivatives with respect to a2- 

Figure 6.5: Estimated derivatives of the probability density function, of the. I)roj)cn., ýily 
score wZth respect to ao, applied to examples (a), (b), (c) and (d) of Chaphir 5. 
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Propoulty score 
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- 

Exainple (c) Example (d) 

For examples (a), (b) and (c), the kernel estimates of the derivatives are fairly good 

approximations, although, as expected, they are less accurate than the kernel density 

estimates of the probability density functions themselves. The estimated derivati%'(ýs 

for example (d) are much smoother than the true derivatives. This is because, as 

discussed previously, since the true distribution of the propensity score is bimodal, 

the bandwidth that we used, h == 1.06 n-1/5 &p,, is too large and the kernel density 

estimate over-smooths the data. This implies that the magnitude of the estimated 

derivatives will be too small, which is exactly what N\, e see in FigUres 6.5 - 6.7. 
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Figure 6.6: Estimated derivatives of the probability density function of tht- propcm-, ity 
score with respect to a,, applied to examples (a), (b), (c) and (d) of Chapter 5. 
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6.2.2 The kernel regressZon of the outcome on the propensity score 

We now turn to kernel regression to estimate the conditional expectation of the po- 

tential outcomes, (YO, Yj), given the propensity score, 

E[Y, lp (X) =p], E [Yo lp (X) = p]. 

We show how the first of these two expectations is estimated. To estimate the condi- 

tional expectation, we need the potential outcome Yj rather than the observed out- 

come, Y, which depends on the treatment status. We could re-write the expectation 

in terms of the observed outcome and treatment status, since 

E[Yllp (X) =pl = 
E[Y Z lp (X) =pl 
P(Z = lip (X) =PY 

We could then use kernel estimation techniques to estimate the expression on the 

right-hand side of this equation, requiring only the observed outcome rather than the 
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Figure 6.7: Estimated derivatives of the probability density function, of tht,, pr-opt-i2sily 
score with respect to a, ), applied to examples (a), (b), (c) and d) of Chapter 5. 
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potential outcomes. We found, however, that more accurate results could be obtained 
by estimating 

y if Zj = ýrl =z yi + ýs if Zi = 0. 
Then our sample consists of the estimated potential outcomes and propensity scores 
Yli, P (Xi)} for i n. As before, we use a normal kernel, defined by K(u) 

e -U2/2/V/-2-7, in order to obtain a differentiable estimator of the conditional expecta- 

tion. We define h=1.06n-'/'&p where -2 is the sample variance of the estimated 0,; 

propensity score (6.4). Then the Nadarya-Watson estimator (6.3) for the conditional 

expectation of Y, given the propensity score is 

n 
Cy, I p(x) =pl =1E 

ýjjK p- P(Xi) (6-9) 
nhip(p) i=l 

It 
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where jp(p) is the kernel density estimator for the propensity score derived earlier 
(6.5). 

Derivatives of the kernel regression of the outcome on the propensity score 
We now show how the derivatives of the conditional expectations of the potential 
outcomes, (Yo, Yj), given the propensity score, with respect to the propensitý- score 
parameters, ak , 

for k=1, 
... ' M, 

a 
JE[Yl I P(X) =P]11,9=0,,, 

a 
fE[Yo I p(X) =: pj I 10=0., Oak Oak 

can be estimated from a sample dataset. We estimate these derivatives by the deriva- 
tives of the kernel regression estimator of the expected outcome given the propensity 
score, with respect to the propensity score parameters, evaluated at 0, rather than 
the unknown 0, 

From (6.9), the kernel regression estimator of the conditional outcome Y, given the 

propensity score, viewed as a function of the unknown propensity score parameters, 
al is 

np-p (Xi; a) 
ii K (6-10) Yi IPN ce) =PIEzh 

nh fp(p; a) i=l 

The only parts of this which depend on ak are p (Xi; a) and the kernel density 

estimator jp(p; oz). Differentiating (6.10) with respect to Ok using the quotient rule 

and evaluating the resulting expression at the estimated propensity score parameters 

gives the required derivative estimator 

n aE [ Y, Ip (X; ce) =p]11: ý', Kp-p (Xi) afp(p; a) 
p 

(p) 2h aCek 
0=0" nhi, i=l 

19Cfk 

n 
ýjj Kp jp(p)nh 

i=l 
h 

p (Xi)) 
Xki P (Xi) (1 

h2 

6.3 Estimating the four variance components from a sample dataset 

0=0. 

(6.11) 

We now consider the estimation of the variance of the stratified treatment effect 

estimator from a sample dataset, when the propensity score is estimated using a 
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correctly specified logistic regression model. This variance, denoted by V, f 36 1. can 
be expressed as the sum of four variance components, 

Ve [ý 31 VI + V2 + V3 + V4 
i 

where the four variance components, Vj, V2, V3 and V4, are defined in Theorems 3.1 

and 3.2. We now consider the estimation of each of the four variance components in 
turn. 

6.3.1 EstZmahng the variance component V, 

From Theorem 3.1, the first variance component is defined as 

1K2 VIYIZ-: ý"SsO"::: --11 V[YIZ=: 0, SSO: 
-ý:::: 

11 
vi 

nZr, dso r, - dso 
s=I 

The r, are fixed and known. We therefore only need to estimate the population prob- 

abilities of being treated and in each stratum, d, and the within-stratum outcome 

variances. For s=1, ..., K7 

d�=E[ Z S�, ] =P(Z= 1, Sso= 1) 

which can be estimated by the proportion of the sample who are treated and in that 

sample stratum, 
n 

dso zi ýSil 

where ýsi =: 1[ (x) <4., j is an indicator for theS'h sample stratum. We can estimate 

the variance of the outcome, conditional on being treated and in the S, h population 

stratum by the sample variance of the outcomes of those subjects who are treated 

and in the SIh sample stratum, 

L Y', Z.. ý. 
' i Ei=, 

(Yi 
zi 

ý', 

i - 

y1Z=i, sso 
nZ Ei=, zi ssi 

and similarly, 

y n 
(1 - ZI) (yi 

zi) 
yn 

- 
s- 

rli= 

-1=1 
(1 zJ yiZ= 0) s, 

0 n Ei=, (1 
- 

Zi) ssi 
-1 
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6.3.2 Estimating the variance component V2 

As we discussed in Section 3.4.2, we expect the component Vý to be negligible and so it 
may not be necessary to estimate it. However, we now show how it can be estimated 
from a dataset, if desired. From Theorem 3.1, the second variance component is 
defined as 

V2 =1 
n 

Estimating (n Cov[4]) 

oo* 
(nCov[4]) '90* 

T aq 
=O" o9q 0=0,. 

We begin with the covariance matrix (n Cov [4]), defined, for j, k == 1, ..., K-1, J>k, 
as 

(n COV I)jk 
- 

P(po(X) > qjo) P(po(X) < qko) 
fp(qjo) fp(qko) 

The probability that the propensity score is less than (or greater than) the Sth popula- 
tion strata boundary can be estimated by the proportion of the estimated propensity 
scores in the sample that are less than (or greater than) the Sth estimated strata 
boundary, so for examPle, 

1n 
P(p,, (X) < q2o) ý-E 

'[ý 
N<42 I' 

n i=l 

We must also estimate fp(qj,, ), the probability density function of the propensity score 

at the jth population strata boundary, for j=1, 
.., 

K-1. We have already shown how 

to construct a kernel density estimator for the propensity score (Section 6.2.1). We 

merely evaluate this estimator of the probability density function of the propensit. y 

score at the sample strata boundaries. Then, defining h=1.06 n-1/5 &p, where &' 
P 

is the sample variance of the estimated propensity score, the required probability 
density function estimate is 

(41 -0 (X 
I 

)) 2 

1 1: e 2h2 
fp (qj,, ) =- -- 

(6-12) 
nh V27r 
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Estimating '90* ')q7r 
I 

0=0" 

This derivative is defined as 

0,3* aK 

19=6 
T 

ErI]E[Y I Z= 1, Ss= I] -E[Y I Z=O, S, = l 
90 Oq 

8=1 

We now show how we estimate -2-- fE[YIZS, == 1 ]1 1,9=0.. The ot her elements aqj 

of the derivative can be estimated in a similar fashion. 

Since 

f(p I Z= 1, S, =I) - 
P(Z = 1, S, = 11 po(x; a) = P) fp(p) 

P(z = I, S, = 1) 

Pf, (p) I[Pes') 
P(Z = 1, si = i)' 

and 

we can write 

ql 

P(Z = 1, S, = 1) =fp fp (p) dp, 

0 

ql 
f E[Y IZ =I, p,, (X) =p]pfp(p)dp 

E[Y I Z=1, Sl= I]= 0 
ql 

(6-13) 

fp fp (p) dp 
0 

We now appeal to the fundamental theorem of calculus, since we have already as- 

sumed that both the probability density function of the propensity score and the 

conditional expectation of the outcome given the propensity score are continuous in 

p. Remembering that when evaluated at the true strata boundaries the denominator 

of (6.13) is equal to d,,,, differentiating (6.13) using the quotient rule, with respect to 

qj, and evaluating at the population strata boundaries gives 

aEYZ=1, p,, (X) q, I q, fp(ql) 

aq, 
JE[y I Z= 1, Si 

0=0, 
=- dl,, 

EYZ=1, Sl,, q, fp(ql) 
dl,, 
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Due to the balancing property of the propensity score (Chapter 2), 

E[Y I Z= 1, p,, (X) =p] =E[Yl I p,, (X) =pl. 

So 

a 
JE [YIZ = 1, S, = I]l ql,, fp(ql,, ) 

JE [Yi I p,, (X) = ql,, ] -E [YIZ = 1, Sl,, 
aq, 0=0" dl,, 

The quantities on the right-hand side of this equation are easily estimated from the 

data. We estimate the population strata boundary by its sample estimate. We have 

already shown how the probability density function of the propensity score, fp(ql,, ), 

can be estimated using kernel density estimation (6.12). We use kernel regression to 

estimate the conditional expectation of the outcome, given the propensity score. The 

remaining two quantities, E[YIZ=1, Si,, =I] and dj, can be estimated using 

sample averages. However, we have found that the whole derivative is much more 

precisely estimated if we also use kernel density estimates of these two quantities. We 

can write qj 

di,, 
jp 

fp (p) dp. 

0 

To estimate this integral, we could replace the population strata boundary by its 

sample estimate, 41, replace the probability density function, fp( - ), by its kernel 

density estimate (6.5), and then use the trapezium rule (Section 6.1.1) to estimate the 

integral. Suppose we partition the interval [ 0,41 ] into 50 equal Width sub-intervals, 

with 0 == po < pi < ... < p5o == 41. Then 

q, q, 
d, - lpi fp (pi) +---+ P50 fp (P50) II P50 fp (P50) 

50 2x 50 

Similarly, using the definition of the conditional outcome given treatment and strata 

calculated previously (6.13), we can estimate E[YIZ=1, Si,, =1) using the trapez- 

ium rule and the kernel regression estimate of the conditional outcome giý'en the 

propensity score. 
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6.3.3 Estimating the variance component V3 

From Theorem 3.2, the third variance component is defined as 

V3 
--IC (n Cov[ CT 

n 

Estimating (n Cov [6e]) 

119 

The covariance matrix (n Cov [& ]) is defined in terms of its inverse, for j, k=1, ... ' M, 

as 
(n Cov [ 6z ]) -' =: E[p, (X) (I - p,, (X)) Xj Xk 

jk 

The covariance matrix above is easily estimated by substituting a sample average for 

the expectation, 

E[p, (X) (1 - p� (X» Xj Xk 1Zý (Xi) (1 
- fi (Xi» XjiXki 

- 
i=l 

Estimating C 

The term C= (C,,..., C,,, ) is defined as 

K 
Ck =Zr, COV[ Y) Xk (1 - Po(X» 1Z=1, Sso == 11 

s=l 
K 

r, C OV [ Yi Xk Po (X) 1Z::::::: 0, Sso 

s=l 

We show how to estimate the covariance COV [ Y; Xk (I - Po (X)) IZ : -- 1) Slo II- 

All the other covariances can be estimated in a similar manner. Using the equation 

linking correlation and covariance, Cov [ A, B] == Corr [ A, B] vN- [AI vlfV-- 
-[B 1, we 

have 
COV[ Y, Xk (I - Po(X)) IZ == 11 S10 = 11 

= Corr[ Y, Xk (1 - Po N) IZ=1, Sio =I] Gly Olxp, 

where oy is the variance of Y conditional on being treated and in the first population 

stratum, and oxp is the variance Of Xk (1 - P,, (X)) conditional on being treated and 

in the first population stratum. We then merely estimate the two variances and the 

correlation by their sample estimates. 
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6.3.4 Estimating the variance component V4 

From Theorem 3.2, the fourth variance component is defined as 

V4 =1 e(nCov[dt]) eT 
n 

where, e= (e 1, ---, e, ), for k=1, ... ' rn, is defined as e-k = ecxk+ eqk- 

Estimating eqk 
For k =: 1, ... 1 M) 

K-1 
190 * 

eqk =E 
i9qj 0=0" 

fp (qj,, ) 

j=l 

a 
fE [ 1(p(x;,,, )<qýj 

JII 
o=o,, 

(9ak 

12o 

We showed, in Section 6.3.2 how we could use kernel density estimation to estimate 
both the derivative 21-3. 

- and the probability density function of the propensity aqj 

I 

0=0" 

score, fp(qj,, ). We now discuss how to estimate 

a 
JE [I (p (X; ci)<qjl 

III 
e=e,, (9Cek 

We can write this as 
qj,, 

f (p; a) dp 
1901k 

IEII lp (x;,,, ) <qjl o=e,, = aok 
I 

0 0=01. 

Interchanging the order of differentiation and integration gives 

qj, 

JE [ l[p(x;,, )<qj] 0=0. =aIf (p; ct) 0=0. dp. 
19Cek 

J 

19ak 
0 

To estimate this integral, we merely substitute the kernel estimate of the derivative 

of the probability density function of the propensity score (6.8), with respect to ak, 

and estimate the integral using the trapezium rule (Section 6.1-1). 
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Estimating e,,,, k 
For k= 1,... IM7 

eak =Kr, 
(lYl 

k-E[YIZ= 11 Sso =II Ifik) (lYok- E [Y IZ=0, S,,, = 11 Ifok) 
E 

dso r, - dso 
S=j 

As for the component V2, although we could estimate E[YIZ=1, S,,, = 11 and 
d,,, by a simple sample average, we estimate them using kernel density estimation 
techniques (see Section 6.3.2) since this appears to produce more precise estimates of 
V4. Now 

Ifi kra Jfp(r; a)jjq=e,, dr. 
19ak 

q(. - 1). 

Thenlfl k can be estimated very simply by replacing the derivative of the probability 
density function of the propensity score with its kernel density estimate (6.8) and 

using the trapezium rule (Section 6.1.1) to estimate the integral. We estimateIfo kin 
the same way. 

The integral IYk is defined as 

q,,,, 

IY1 kr 
09 fE[Yllp(X; a)=: r]fp(r; a)llo=o. dr. 

aCek 

q(, - 1),, 

We can write 

q,,, 

lYj k == rE[Y, I p(X; a) =: r] 
a 

ffp(r; ci)11,9=0,, dr I 

19ak 
q(s 1),, 

qý,,, 

+ rfp(r; ce) 
'9 JE[Yllp(X; a)=r]lle=e,, dr. 

19Cek 
q(., 1),, 

We have already seen how we can obtain kernel density estimates of the two deriva- 

tives above, the conditional expectation and the probability density function of the 

propensity score. These are substituted into the equation above and the trapeziuili 

rule is used to estimate the integral. 
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6.4 An alternative approach 

Recollect that we calculated the variancesVk[O' ] and V, [, 3s ] using the formula 

V[, 3'] = A-lBA -T 

with 
A=E [- a 

flo(W; O)l I aoT 
19=0. 

and 
B=E[, O(W; 00) ýbT(W; 00) 

122 

(6-14) 

where the function O(W; 0) is defined in Sections 3.2 and 3.3 for the situations 

where the propensity score is known and estimated, respectively. By calculating all 
the components of the matrices A and B analytically and multiplying out the matrices 

we obtained the formulae Vk [ ý3 ] and V, [ ý' ]. However, there is an alternative - and 

much simpler - method of obtaining an estimator of the variance of the stratified 
treatment effect estimator. We simply estimate each component of the matrices A 

and B by a sample estimate and then substitute the estimates of A and B into (6.1-1). 

This is then an estimate of the variance of the stratified treatment effect estimator. 

To obtain a sample estimate of the matrix B we simply replace the expectation by a 

sample average. So 
hjk 

ýbj (Wi; 
k 

(Wi; 

n 

Similarly, when the component 0, is differentiable with respect tO'Ok, we can estimate 

Äjk týoj(wi; 0)1, (6-15) 
Ook 

When, however, the component ýbj is not differentiable with respect to Ok, this is not 

possible. For example, we cannot estimate the sub-matrix a14 in this way (Appendix 

B). In this case, we use the alternative definition of the matrix A, 

JE [-ýb(W; 0)]l 7 
(6-16) 

which we then estimate using the kernel density methods described earlier in this 

chapter. 
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We describe this method as the ýdirect' method, and the variance formuke calculated 
earlier as the 'components' method. 

6.5 Estimating the variance using hypothetical examples 

In order to see how precisely we can estimate the four variance components froin a 
sample dataset, we simulated 1,000 datasets each of size n=2.000 from examples 
(a) and (b) and estimated the four variance components for each dataset. Figure 6.8 

shows boxplots of the resulting 1,000 estimated variance components for example (a) 

and Figure 6.9 shows the analogous boxplots for example (b). 

Figure 6.8: Boxplols sh, owling Me range of csffmalcs of the. four variance coinponents 
J'YOM, 11,000 

. 57"1117dated datascts for hypothclIca/ c. ra mple (L) of Chaptet- 5, with a s(impir 
of 9,000. 

W'e see that the estimated variance components Vi and V3 are very variable. This 

is because we are not making any parametric assumptions about the variance of 

the outcome and hence we may only have four or five observations with whicli to 

estimate a withiii-stratuin outcome variance. The two components Vi and V3 are, 
however, negatively correlated since they both depend on the within-strata outcome 

variance. Thus some of the error incurred in estimating these components is cancelled 

out when the), are added together. 
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Figure 6.9: Boxplots showing the range of estimates of the four var-iance compo"ClItS 
from 1,000 simulaled dalasels for hypolhel'cal example (b) of Chaptcr, 5. IL''th a samPlO 
size of 2,000. 
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The variance component V4 is mostly well estiniated. In some clatasets, however, it is 

much too large. This tends to happen when the empirical distribution of the estimated 

propensity score in the sample dataset is very dissimilar to the true propensity score 

distribution. However, in practice we do not know when this occurs. Although we 
have not proved that the suln V3 + V4 is always negative, a procedure that uses the 

estimated variance V, + V2 + V3+ V., whenever the estimate of V3+ V is negative, as ýt 41 

we expect it to be, but uses the estimated variance V, + V2 if the estimate of V3 + V4 

is positive may perform well in practice. 

Figure 6.10 shows boxplots of the estimated variances Vk[Osl and V, [0'] from 1,000 

simulated datasets for hypothetical example (a) of Chapter 5, each of size n=2,000. 

These two variances were estimated using two different inethods. Firstly, each varl- 

ance was estimated by separately estimating the four variance components V1, V, 2, 2 V3 

and V4 (the components method). Secondly, the two variances were estimated by 

the direct, method (Section 6.4). Figure shows the boxplots for example (b). We see 

that although the variances are mostly well estimated, in some clatasets the variance 

estimates are unacceptably large. This is particularly true for the direct method. 
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Figure 6.10: Boxplots showing the Tange of cstimalcs Of 7\1 kan cl V, us 177 y 
V ind the d*rect 

_q 
V, VaT?, d both thc COMPOW-MJS ffl(', tllO(l (. SCP(IT'alCly C, sf7'rrwtl'rl 2,3 4) 

'melliod (Seclion, 6-1t) ft-om 1,000 . 0mulated data-sets for hypollielical examp/c ýa ) of 
9 Chapter 5, with a sample slize of I-, 000. 
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6.6 Confidence intervals 

We finish this chapter by using these variance estimators to construct confidence 

intervals for the stratified treatment effect estimator. We compare various normal- 

based confidence intervals ol the iuL L-ii 

1.96 x vTV, + 1.96 x \/V 
) 

where V is some variance estimator for )'. Five variance estimators are considered. 

Vk estimated using the components method, Vk [ Os ] estimated using the direct 

method, V, [ ý' ] estimated using the components method, V, [ ý' I estimated using the 

direct method, and a pragmatic approach to the estimation of ] that uses the 

direct method of estimation but replaces the variance estimator with an estimator of 

Vk when the latter is sinaller. For brevity, we refer to the resulting confidence 

intervals as Ck, Dki C, De, Pei where the C refers to the components method, D refers 
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Figure 6.11: Bojplots showing the range Of CStZMOC-ý Of 'Vk[,, 3" j and V, [ 3' J. using 
both flu., conyonc, 'ids method (separately c, ýI ý, rnat ý, ny V, 

ý 
Vý, Vý and Vý ) and the d'rect 1 7,1 2,3 4,1 

melhod (Section. 6-11) from 1,000 sz'm,, ulat. cd dalascls for hypotholical cxanylc (b) of 
Chapter 5, with a sample slize of 2,000. 

4iO 40 41ý0 Alit) 560 5ý0 460 4ýO 56o 5iO 
EsUrnated n Vk (compoýnls method) EsUmaled Ve (cornpoýts method) 

7i 

4ýO 4ýO 460 4iO 500 520 400 450 500 5.50 
Estimated n Vk (direct method) Esumaled n Ve idwect method) 

to the direct method and P refers to the pragmatic method and as before the k and 

e refer to the propensity score being assumed to be known or estimated, respectively. 

An alternative method for constructing confidence intervals for the stratified treat- 

ment effect estimator would be to use bootstrap methods [20]. For compc-trison, we 

use the percentile and bias-corrected and accelerated methods in our simulations. 

We simulated 1,000 datasets each of size n= 21 000 from hypothetical example (a) of 
Chapter 5. For each of these datasets, seven 95% confidence intervals were calculated: 

the percentile and the bias-corrected and accelerated bootstrap confidence intervals, 
Ck, Dki C, D, and P, Table 6.1 shows the resulting coverage probabilities, and the 

average confidence interval length. 

ýVe see tli, -i, t all seven methods have good coverage properties. The smallest average 

confidence interval length is achieved by the C, confidence interval. This is the 

confidence interval that uses the estimate of V, [, 3' j obtained by separately estimating 
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the four variance components. Confidence interval D, - the method which uses the 

estimate of V, obtained by the direct method - has large varlabIllty. This s due 

to the problem discussed previously in this chapter with the estimation of the variance 

using the direct method in some examples. Confidence interval P, - the method 
which uses the estimate of V, [ ý' I obtained by the direct method but substit ut es the 

estimateOf Vk[ý' ]when the latter is smaller - also has good coverage, small average 
length and small standard deviation of the length. 

Table 6.1: 955'o confidence intervals for hypothetical example (a) of Chapter 5, ii., ýIny 
1,000 su-nulated datasets of s%ze 2,000. 

Method Coverage Average length of C. I. 
(standard deviation) 

Percentile 94.6 2.230 (0.10) 
Bias-corrected and accelerated 94.6 2.231 (0-10) 
Ck 96.0 2.233 (0.09) 
C', 95.4 2.167 (0.07) 
Dk 96.0 2.222 (0.09) 
D, 95.5 2.455 (3.93) 
Pe 95.4 2.179 (0.07) 

6.7 Discussion 

In this chapter we have seen that the variance of the stratified treatment effect estima- 

tor can be estimated from a sample dataset using kernel density estimation methods. 

This estimation process appears to work relatively well, especially given the inherent 

variability of the sample estimate of the component V1, which is the variance estima- 

tor that is typically used in practice [59]. At present, however, it is not clear how 

we can tell in advance whether the kernel density estimation will perform well on a 

particular dataset. 

In the simulation study comparing confidence intervals obtained with these variance 

estimators with bootstrap confidence intervals, both performed well. The average 

length of the confidence interval was smallest for the method that used a variance 

estimate obtained by estimating the four variance components separately. Using the 

estimate of the variance obtained from the direct method but replacing this with an 

estimateOf Vk [ 4"1 when the latter was smaller seems to be a promising method. The 
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direct method has the advantage that it could be extended to different situations, 

such as non-continuous outcomes, fairly easily. 

So far we have only used these methods on hypothetical simulated datasets. Iii the 
following chapter, therefore, we apply these methods to a real dataset. 



Chapter 7 

Application to the ESCAPE dataset 

We have so far calculated formulae for the variance of the stratified treatment effect 
estimator both when the propensity score is known and when it is estimated using 
a correctly specified logistic regression model. We have shown how kernel density 

estimation methods can be used to estimate these variances from hypothetical sample 
datasets. We now apply these methods to a real dataset. The data is taken from a 
cluster randomised trial - the ESCAPE trial - designed to investigate the effect of 
an exercise programme on disability, for elderly patients with knee pain. 

7.1 Introduction 

The high prevalence of chronic knee pain in the elderly [74] leads to substantial 
disability and socioeconomic costs [60]. As the population ages this problem will 
increase. There are concerns about the efficacy and side-effects associated with the 

palliative drugs typically used to treat knee pain [51]. Furthermore, lessening pain will 

not necessarily decrease disability, which is often as important as pain [45]. There is 

therefore a need for safe and practical interventions that can lessen pain and dio-ability 

in elderly patients with chronic knee pain. 

It has been shown that psychosocial variables, such as depression and self-efficacy, 

are associated with perceived levels of pain, mood, and coping efficacy [53]. If these 

psychosocial variables can be manipulated through, for example, counselling and 

stress- management classes then it may be possible to reduce pain and disability of 

elderly patients with chronic knee pain in a safe and effective manner, removing some 

of the associated socioeconomic costs. 

The psychosocial variable we investigate here is the patient's belief in their abilitN, to 

influence their condition through exercise [28). This is comprised of four components: 

129 
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the patient's belief in their ability to exercise (self-efficacy for exercise). the patient's 

perception of barriers to exercise, the patient's expectations of the benefit of exercise, 

and the patient's expectations of the impact of exercise. Our primary hypothesis is 

that the higher a patient's belief in their ability to influence their condition through 

exercise, the lower their self-reported disability in the future. 

In order to investigate this question, data was taken from a cluster randomised trial, 

which was designed to estimate the effect of a personalised, progressive rehabilitation 

program on disability, when compared with standard GP care. 

7.2 Methods 

7.2.1 The ESCAPE dataset 

The data is taken from the ESCAPE cluster randomised trial, details of which can 
be found elsewhere [451. Data was collected on 418 patients from 54 different surg- 

eries, where the surgeries were block randomised in groups of three to receive one of 
three interventions: usual CP care, an individual rehabilitation program or a group 

rehabilitation program. The rehabilitation program, whether administered in groups 
(approx. 8-10 patients) or individually, consisted of 12 supervised sessions over the 

course of 6 weeks. During each session, the physiotherapist facilitated a discussion on 

a topic such as diet or pain control. This was followed by exercises focussing on bal- 

ance, control and function. The trial recruited people aged 50 years or older who had 

consulted their primary care physician previously for recurrent knee pain, without 

excluding those with stable co-morbidities common to that age group. People were 

excluded if they had had physiotherapy for knee pain in the preceding 12 months, 
intra-articular injections in the preceding 6 months, lower limb arthroplasty or un- 

stable medical conditions. Also excluded were those who were unable or unwilling 

to exercise, patients with a severe lack of mobility and patients who were unable to 

understand English. 

Primary outcome. The Western Ontario and 'Mc. M asters University Osteoarthritis 

Index (WOMAC) [8] was administered at baseline and approximately six months 

later. The questionnaire produces a total score consisting of three sub-scores: pilysical 

function, pain and stiffness. Our primary outcome is the sub-score measuring pliysical 
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function, or disability (WOMAC-function). Higher values on this scale indicate lower 
function (more disability). 

Exposure of interest. A questionnaire asking about the patient's belief in their ability 
to influence their condition through exercise (Exercise Beliefs) was also administered 
at baseline [28]. This gave a score comprised of four sub-scores: belief in ability to 

perform the exercise, perceptions of barriers to exercise, expectations of the benefit 

of exercise, and expectations of the impact of exercising. The total of these four sub- 
scores measures the patient's overall belief in their ability to influence their condition 
through exercise. Higher values on this scale indicate that the patient has more 
confidence in their ability to improve their knee condition. This is a slightly broader 

concept than self-efficacy which, strictly speaking, is measured by the first of the four 

sub-scores mentioned. Following Maliski et al. [61] we dichotomize the total score 
into low and high exercise beliefs on the basis of the empirical sample distribution. 

Since these exercise beliefs are not randomly allocated and are likely to be associated 

with other factors that affect the outcome, the ESCAPE dataset is then effectively 

an observational dataset within which some subjects also had access to an exercise 

program. 

Baseline data was collected on the following variables: sex, age, height, weight, BMI, 

duration of symptoms, aggregate functional performance time (AFPT) - an objective 

measure of the time taken to perform certain routine tasks, hospital depression and 

anxiety score (HAD-depression, HAD-anxiety) [116], and condition-specific health 

related quality of life (MACTAR) [13]. 

Patients who had missing data for the outcome, exposure or any of the potential 

confounders listed were excluded from the following analyses. 

Beliefs about exercise may influence function in various ways, one of which is through 

willingness to take advantage of available methods of exercise. For patients who were 

allocated to a rehabilitation arm of the trial, the number of exercise sessions attended 
(which ranged from 0 to 12) is likely to be associated with beliefs about exercise. 

Therefore, although we adjust for allocation to a rehabilitation arm of the trial, we 

do not adjust for the number of exercise sessions attended a's this is likely to be on 

the causal pathway. 
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All confidence intervals calculated in the following analyses are 95%, confidence inter- 

vals. 

7.2.2 Outcome regressZon analysis 

The ESCAPE data is hierarchical since patients are clustered within CP surgeries. 
However, the original analysis of the dataset [45] found no evidence of a surgery-level 
effect. We therefore begin by analysing the data as if it were independent. We later 

perform a sensitivity analysis to assess the effect of ignoring the clustering. 

An ordinary least-squares model was fitted to estimate the effect of the dichotomized 

exercise beliefs on WOMAC-function score at six months, adjusting for a set of covari- 

ates. Possible confounders of the relationship between exercise beliefs and function, 

measured at baseline, are: WOMAC-function, WOMAC-pain, WOMAC-stiffness, 

HAD-depression, HAD-anxiety, sex, age, height, weight, BMI, duration of symptoms, 
MACTAR quality of life, and allocation to rehabilitation. The selection of covariates 

to include in the regression model was done in two ways. Firstly, a model containing 

all candidate covariates was fitted. Secondly, backward selection was used to select a 

model from the list of candidate covariates above plus quadratic and logarithmic terms 

for each continuous covariate and also one-way interactions with age, using a p-value 

of 0.05 for retention in the model. Standard model checks were carried out for both 

models, using graphical methods and the Cook-Weisberg test for heteroskedasticity. 

7.2.3 Propensity score analysis 

The propensity score was estimated using a logistic regression model of dichotomized 

exercise beliefs on the following baseline covariates: WOMAC-function, WONIAC- 

pain, WOMAC-stiffness, HAD-depression, HAD-anxiety, sex, age, height, weight, 

BMI, duration of symptoms, MACTAR quality of life, and allocation to rehabilitation. 

Since parsimony is not a goal in a propensity score analysis, it is common to include 

non-linear terms and interactions. However, there must be few enough covariates 

for the estimated propensity score to be consistent. Since the ESCAPE dataset is 

relatively small, with only 418 subjects, non-linear terms and interactions %N, ere not 

included in the model. 
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The common support condition was imposed by deleting subjects Nvith high exercise 
beliefs who had a propensity score higher than any subject with low exercise beliefs 

and deleting subjects with low exercise beliefs who had a lower propensity score than 

any subject with high exercise beliefs. These subjects are ignored in the analysis since 
they may be intrinsically non-comparable with any subject in the other exposure 

group. The propensity score was then re-fitted on the smaller dataset. 

The dataset was split into 5 strata based on the quintiles of the estimated propensity 

score. The distribution of the propensity score was examined using both a histogram 

and a kernel density estimate. Balance of the distribution of the propensity score 

within strata between subjects with high and low exercise beliefs was assessed graph- 
ically using boxplots, and also analytically using two-sample Kolmogorov-Smirnov 

tests within strata. Balance of the observed covariates within strata was also as- 

sessed by within-strata Kolmogorov-Smirnov tests. 

The treatment effect within each strata was estimated by taking the difference in 

mean WOMAC function, measured at six months, between subjects with high and 

low exercise beliefs, in each strata. The stratified treatment effect estimate was 

calculated by taking the unweighted mean of the five within-strata treatment effect 

estimates. Confidence intervals for the estimate were calculated firstly by using a 

normal-based confidence interval with the variance derived previously in this thesis, 

and secondly using the bias-corrected and accelerated bootstrap confidence interval. 

7.2.4 Continuous exercise beliefs 

In the previous analyses, the exposure variable - exercise beliefs - was dichotomized 

in order to create two exposure groups. The questionnaire used to measure exercise 

beliefs initially returned a continuous score. Although in this thesis we have focussed 

mainly on dichotomous exposure groups, several propensity score methods have been 

developed to analyse situations where the exposure variable is continuous (see Section 

2.4). The method we now apply was developed by Hirano and Imbens [391. 

We assuine that the exposure Z lies in an interval, ZE[ zo, zi ]. The propensity score 

for the continuous exposure, which Hirano and Imbens term the generalised propen- 

sity score, is defined as the conditional density of the exposure given the covariates, 
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p (Z, X) = fz Ix (Z I X). The generalised propensity score has a similar balancing 

property to the usual propensity score, XII[ Z=, ]Ip (z, X) 
- 

The potential outcomes for subject i can be viewed as a function of the continuous 
exposure, Yi(z), called the unit-level dose-response function. We wish to estimate the 

expected outcome in the population that we would see if everyone were given level 

z of the exposure, E[ Yi (z) ]. Analogously to our assumption of strongly ignorable 
treatment assignment (Assumption 2.2), Hirano and Imbens assume that any poten- 
tial outcome is independent of the exposure conditional on the generalised propensity 
score, Y(z) IZIp (z, X). Using this assumption, 

E[Yi(z)] = Ep(� x)[ E[Yi(z)Ip(z, X)]] 

= Ep(z, x)[ E[YI Z= z, p(z, X)]]. 

Therefore, there are three steps to estimate E[ Yj(z) ]. We begin by estimating the 

generalised propensity score. We then estimate the outcome given exposure level and 

generalised propensity score. Finally, we estimate the expectation of this over the 

distribution of the generalised propensity score. 

More specifically, Hirano and Imbens assume that the continuous treatment is nor- 

mally distributed with some unknown constant variance and a mean that depends 

linearly on a vector of covariates, Z- N(a Tx 
) o, '). This model is fitted using least- 

squares to get estimated parameters &. Then the estimated generalised propensity 

score is 1 (z-6, T X)2 

P(Z)X) = 
vF27r U2 

e 2or2 

We then need to estimate E[YIZ=z, p (z, X) 1. Hirano and Imbens estimate this 

using the model, 

E[Y 1 Z= z, p(z, X)= P] = 7YO+lY1 Z+ 72 Z2+ 3f3 P+ 'Y4 P2+ _f5 Z P- 

Estimates (ýO, ý1) ý2) ý3) ý4) S) can be obtained by fitting a least-squares model. Then 

to estimate the expectation of the potential outcome at a particular exposure level, 

z, we take a sample average, 

1 
Z2 Xj) + ijp(Z' X )2 + ý5 Xi)). E[Y(z)] :=-E 

1ý0 + ýl Z+ ý2 + ý3 

n 
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For the ESCAPE data the generalised propensity score was estimated using an or- 
dinary least squares model of (continuous) exercise beliefs on the following baseline 

covariates: WOMAC-function, WOMAC-pain, WO'NIAC-stiffness, HAD-depression 
HAD-anxiety, sex, age, height, weight, BMI, duration of symptoms, NIACTAR qual- 
ity of life, and allocation to rehabilitation. Balance of the covariates was assessed 
as follows. The sample was split into three groups by the tertiles of the continuous 
exercise beliefs. The generalised propensity score was estimated at the median of the 
exercise beliefs in the first of the three tertiles. Then the whole sample was split into 
five strata by the estimated generalised propensity score. Within each of these five 

strata, we expect the distribution of, for example, age to be approximately the same 
in the first tertile as in the second and third tertiles combined. This was assessed 
using a two-sample Kolmogorov-Smirnov test. The expectation of the potential out- 
comes, E[ Y(z) ], was then estimated at ten values of exercise beliefs, equally spread 
over the observed range of exercise beliefs. In order to compare this method with 
the dichotomous propensity score method, the expectation of the potential outcome, 
E[ Y(z) ], was estimated using the generalised propensity score method at the median 
of each of the two groups of dichotomized exercise beliefs and the difference between 
these two expected potential outcome was compared with the previously obtained 
estimated of exposure effect. 

7.2.5 Mixed effect models 

The previous analyses all assumed that the data was independent, whereas in fact 

the subjects are clustered within GP surgeries. We now perform both an outcome 

regression analysis and a propensity score analysis taking account of the clustered 

nature of the data. 

For the outcome regression analysis, a random-effects model of WOMAC-function at 
three months was fitted including the dichotomous exposure and the following baseline 

covariates: WOMAC-function, WOMAC-pain, WONIAC- stiffness, HAD-depression, 

HAD-anxiety, sex, age, height, weight, BMI, duration of symptoms, MACTAR quality 

of life, and allocation to rehabilitation. A random effect at the surgery level was also 

added. A Breusch and Pagan test for random effects was used to assess the st at istical 

evidence Of Clustering. 
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There is no clear consensus about how to handle clustered data in a propensity score 
analysis. Some studies have estimated the propensity score separately within each 
cluster [76], some have ignored the clustering [941, and others have included cluster- 
level random-effects in the propensity score model. In the ESCAPE dataset, there are 
insufficient observations in many of the CP surgeries to estimate the propensity score 
separately within each surgery. The previous analysis ignored the clustering. We now 
adopt the third approach towards clustered data. The propensity score was modelled 
using a logistic regression model of dichotomized exercise beliefs on the following 

covariates: WOMAC-function, WOMAC-pain, WOMAC-stiffness, HAD-depression, 
HAD-anxiety, sex, age, height, weight, BMI, duration of symptoms, MACTAR quality 
of life, and allocation to rehabilitation. A random-effect was also added at the surgery 
level. The resulting estimated propensity score was then used to create five strata and 
the stratified treatment effect estimate was calculated as before. Since the variance 
formula calculated previously in this thesis is not valid for clustered data, a normal- 
based confidence interval was derived using a bootstrap estimate of variance. 

7.3 Results 

7.3.1 Trial characteristics 

Data was collected from 54 CP practices, on 418 patients. By 6-months 81 (19%) 

participants had withdrawn from the ESCAPE trial. Five of these patients agreed 

to fill in a postal questionnaire leaving available outcome data for 342 (82%) of the 

patients. A further 37 (8.9%) have data missing on either the exposure variable - 

exercise beliefs - or at least one of the following baseline covariates: WOMAC- 

function, WOMAC-pain, WOMAC-stiffness, HAD-depression HAD-anxiety, sex, age, 

height, weight, BMI, duration of symptoms, and MACTAR quality of life. This leaves 

complete data on 305 (73.0%) patients. 

Since most variables in this dataset are highly skewed, we report medians and ranges 

rather than means. The level of exercise beliefs, as measured by the questionnaire, 

had a median (range) of 69 (65 - 85) in the group with high exercise beliefs, and 60 (42 

- 64) in the group with low exercise beliefs. The median (range) of NVONTAC-function 

in subjects with high exercise beliefs was 15 (0 - 57) and the median in subjects with 

low exercise beliefs was 28 (0 - 62). 
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Table 7.1 shows the baseline covariates 

137 

The demographic covariates are all well 
balanced between subjects with low and high exercise beliefs. Covariates measuring 
pain and function, however, are less balanced. Aggregate functional performance time 
(AFPT) appears to be slightly lower in subjects with high exercise beliefs, indicating 
higher objective levels of function. Similarly, baseline WOMAC-function appears to 
be lower in subjects with high exercise beliefs, indicating higher perceived levels of 
function. Depression and anxiety are marginally lower in those subjects with high 
exercise beliefs and health-related quality of life is slightly higher for those subjects 
with high exercise beliefs. 

Mable 7.1: Baseline data for subjects with high and low exercise beliefs. Continuous 
variables are reported as median (range). 

Characteristic Low self-efficacy High self-efficacy 
N= 196 N =: 2 14 

De, mographic variables 
Sex (% feinale) 
Age (years) 
Height (metres) 
Weight (kg) 
BMI 
Symptom duration (yrs) 

Pain and function 
WOMAC-function 
WOMAC-pain 
WOMAC-stiffness 
AFPT 

Depression. 
HAD-anxiety 
HAD-depression 

Health-related quality of life 
NIACTAR. 

Trial variables 
Allocated to treatment 

7 (0,21) 
5 (0,19) 

30 (19,40) 

67.3 

69.9 
66 (51,90) 

1.65 (1.47,1.97) 
79 (47,133) 

28.4 (19.2,51.3) 
5.0 (0.3,56.0) 

21 (0,55) 
6 (0,17) 
4 (0,8) 

44.6 (24.4,225.7) 

5 (0,17) 
3 (0,14) 

33 (21,40) 

64.8 

7.3.2 Outcome regression analysis 

The first outcome regression model of WOMAC-function at six months contain- 

70.6 
66 (50, 91) 

1.62 (1-39 
, 1.89) 

80 (48, 139) 
30.5 (21.2 

, 49.8) 
6.0 (0.2, 60.0) 

32 (0,65) 
8 (0,20) 
4 (0,8) 

58.5 (28.0,282.0) 

ing all candidate covariates estimated that the effect of high exercise beliefs was 
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-2.92 (-5-38, -0.45), indicating an improvement in self-reported function. Standard 

model checks identified significant evidence of heteroskedasticity, (p = 0.01, Cook- 

Weisberg test). The second model, using a stepwise procedure including all candidate 

covariates plus quadratic and natural logarithm terms for each continuous covariate 
and all one-way interactions with sex, selected a model containing 31 covariates. The 

effect of high exercise beliefs on WOMAC-function at six months was estimated by 

this model as -3.43 (-5.93, -0.92), a slightly greater estimate of effect than tile 

previous regression model. This second, less parsimonious model also showed some 

evidence of heteroskedasticity, (p = 0.06, Cook-Weisberg test). No other violation of 
the model assumptions was detected for either outcome regression model. 

7.3.3 Propensity score analysis 

Imposing the common support condition resulted in the deletion of five subjects. 
Figure 7.1 shows a histogram of the estimated propensity score, along with a kernel 

density estimate. The density appears to be fairly continuous with a range froin 0.1 

to 0.93. Figure 7.2 shows boxplots of the distribution of the estimated propensity 

score within each of the five strata, for subjects with high and low exercise beliefs. 

The distribution of the propensity score across exposure groups appears to be fairly 

balanced within strata, although two-sample Kolmogorov-Sniirnov tests indicate some 

evidence of imbalance in the second and fifth strata (p = 0.09, p=0.05). Two-sample 

Kolniogorov-Sinirnov tests (results not shown) indicate no evidence of within-strata 

covariate imbalance across exposure groups among the covariates measuring pain and 

function, although there is some evidence of imbalance of the duration of symptoms. 

Figure 7.1: Histogram, and kernel density estimate oftht, propeti-sity score. 
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Figure 7.2: Boxplots of the estZmated propensity score ivithin strata, for subject., with 
high and low exercise beliefs. 

1 

H"R 

1 

AU-A 00 

0 
.2 .4 .6 .8 

Estimated propensity score 

Low exercise beliefs High exercise beliefs 

Stratification by this propensity score, using five equal-sized strata, estimated that tile 

effect of high exercise beliefs on WONIAC-function at six months was -2.99. Estilliated 

variance components are shown in Table 7.2. Estimation of the propensity score is 

estimated to have reduced the variance of the effect estimate by about 34.9%. Normal- 

based confidence intervals obtained using the variance estimated by the sum of the 

four variance components and using the variance estimated by the direct method 

described in Chapter 6 are respectively: (-5.60, -0.37) and (-5.73, -0.24). All con- 

ditions required for the validity of the variance formulae. calculated earlier in the 

thesis (listed in detail in Chapter 3) appeared to be satisfied. The bias-corrected and 

accelerated confidence interval is: (-6-07,0.19). The first two confidence intervals 

indicate that higher exercise beliefs are associated with a significant improvement in 

self-reported function. The bootstrap confidence interval is slightly wider and includes 

zero. 

7.3.4 Continuous exercise beliefs 

Two-sainple Kolmogorov-Smirnov tests indicated evidence of imbalance of baseline 

WOMAC-function between different levels of exercise beliefs, conditional on the gen- 
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Table 7.2: Estimated vaHance components for the stratified e-stzmab-, of Ott, tjft ct of 
high exercise beliefs on WOMAC-function at 6 itionths. 

Component Estimate 
V, 815.6 
V2 0.11 

V3 
-284.4 

V4 4.03 

eralised propensity score, (p = 0.04). Therefore, baseline WOMAC-functimi was 

added to the regression model of WOMAC-function at six moiiths on the gener- 

alised propensity score and exercise beliefs. This resulted in the estimated dose- 

response function shown in Figure (7.3). The relationship between exercise beliefs 

and WOMAC-function appears to be fairly linear, with higher exercise beliefs being 

associated with lower WOMAC-function (less disability). In order to compare this 

method with the previous propensity score analysis, the dose-response function was 

evaluated at levels of exercise beliefs of 60 and 69, the median exercise beliefs in the 

high and low exercise belief groups used in previous analYses. This estimated that 

the effect of high versus low exercise beliefs on WONIAC-function at six months was 

-3.22. 

Figure 7.3: Estimated dose-response function for WOMA C-function at SIIX months for- 

a range of exercise beliefs. 
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7.3.5 Mixed-effects models 

ill 

A mixed-effects model of WONIAC-function at six months including all candidate 
covariates, the dichotomised exercise beliefs, and a random effect of surgery estimated 
that the effect of high exercise beliefs was -2.51 (-4.96, -0-06). The Breusch and 
Pagan test for random effects showed no evidence of a surgery level effect (p = 0.16). 

The propensity score was modelled as before but with the addition of a random effect 
for surgery. The stratified treatment effect estimate was calculated as before witli the 

resulting estimated propensity score. As before, two-sample Kolmogorov-Smirnov 
tests showed no evidence of imbalance of covariates within strata between subjects 
with high and low exercise beliefs, other than the duration of symptoms. Since the 

variance formula calculated earlier in this thesis assumed that the propensitY score Ný'as 
calculated using a logistic regression model with no random effects, a normal-based 
bootstrap confidence interval was calculated. This analysis estimated that the effect 
of high exercise beliefs on WOMAC-function at six months was -3.03 (-6.02, -0-05). 

7.4 Discussion 

7.4.1 Companson of methods 

Table 7.3 shows the estimates of the effect of high exercise beliefs on WONTAC- 

function at six months with 95% confidence intervals from each of the methods used 
in this analysis. All methods produce similar point estimates. The highest estimate 

of effect comes from the non- parsimonious outcome regression model, and tile lowest 

comes from the outcome regression model including a surgery-level random effect. 
Only the confidence interval using the bias-corrected and accelerated bootstrap con- 
fidence interval in the propensity score analysis includes zero. 

For this analysis, the conditions for the validity of the formula for the variance of the 

stratified treatment effect estimate assuming that, the propensity score is estiiiiated 

using a correctly specified logistic regression model appeared to be satisfied. Tile 

resulting variance, when calculated using either the component or tile direct, iiietliod, 

was similar to the variances from the outcome regression models. However. simula- 

tions carried out in Chapter 5 suggest that a sample size of about n=2,000 is needed 
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Table 7.3: Point estimates and 9516 confidence intervals for the. effect of h igh fit-rcist, 
beltejý on WOMAC-function at 6 months. 

Method 
Outcome regression with all covariates -2.92 (-53, ý. -0.1.5) 
Less parsimonious outcoine regression -3.43 (-5-93, -0.92) 
Propensity score (components variance estimate) -2.99 (-6.29. -0-76) 
Propensity score (direct variance estimate) -2.99 (-6.27. -0.7, ý) 
Propensity score (BCa bootstrap variance) -2.99 (-6-07.0.19) 
Generalised propensity score -3.22 - 
Outcome regression with random effects -2., 51 (-, 1.96, -0.06) 
Propensity score with random effects -3.03 (-6.02, -0-05) 

for the asymptotic variance to be close to the finite-sample variance. Therefore, the 

bootstrap confidence interval may be preferable in this situation. 

The main limitation of this study is the sample size. Data was available only on 418 

subjects. Propensity score methods are typically used on larger datasets. Balance is 

more readily achieved in such datasets and, for example, whilst in such a small dataset 

a non-significant test for within-strata balance may be due to the small within-strata 

sample sizes, in a larger dataset any imbalance would be more likely to be detected. 

The propensity score method used for continuous exposure variables could not balance 

an important prognostic covariate, baseline WOMAC-function, and so the method 

had to be adapted to produce a reasonable estimate. In a larger sample this problem 

would be much less likely to occur. 

7.4.2 Possible extensions of the analysts 

When analysing an observational dataset that has also been used as part of a ran- 

domized trial, it is often possible to use the random treatment allocation as an instru- 

mental variable [101]. In this case, however, the exposure of interest has a very weak 

correlation with allocation to treatment, which precludes an instrumental variables 

approach (p = 0.624, t-test of continuous exercise beliefs by allocation to treatment). 

Various methods have been proposed to deal with missing data in the context of 

propensity scores. Rosenbaum and Rubin suggest a pattern-mixture model based ap- 

proach [851. When there are only missing discrete covariates, this method is equiý, alelit 

to creating a 'missing' category for each covariate with missing values. AlternatiN, ely, 
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when there are only a few missing data patterns, a separate logistic regression model 

can be fitted for each pattern. In this dataset, however, the missing values are all in 

continuous covariates so the first method cannot be used. Furthermore, there are too 

many different missing data patterns to use the second. More complex alternatives 
have been proposed [191 but these are often difficult to implement and there is, as 

yet, no available software that performs such analyses on general datasets. General 

missing data methods such as multiple imputation would be a better approach with 
this dataset. 

7.4.3 Clinical sZgnificance 

This study offers additional evidence of the importance of a patient's belief in the 

efficacy of an intervention on the outcome. In particular, we found that the higher a 

patient's belief in their ability to improve their chronic knee pain through exercise, 
the lower their self-reported disability when measured six months later. A patient's 
belief in their ability to influence their condition is not an unchanging characteristic. 
It can be modified through, for example, educational classes or stress-management 

classes. Various self-management programmes, that attempt to enhance coping skills 
for better symptom management, have been studied and found to be effective (331 

[35]. 

The magnitude of the effect of high exercise beliefs on WOMAC-function is small, in 

clinical terms. It is, however, comparable with the size of the effect of the exercise 

program that the ESCAPE trial was designed to assess [45]. If safe but effective 

interventions to raise beliefs about exercise could be produced, then it might be 

possible to substantially reduce the disability and the socioeconomic costs associated 

with chronic knee pain in the elderly. 



Chapter 8 

Discussion 

8.1 Summary 

In this thesis we began by placing the various propensity score methods in a clear, 
cohesive framework in order to better understand how they relate to each other. 
This was used to consider how we might expect each method to behave in different 

situations. 

We then moved on to ascertain the theoretical properties of the stratified treatment 

effect estimator, the estimator obtained by stratification on the propensity score. 
We derived conditions under which this estimator is consistent and asymptotically 

normal. We then calculated its variance, demonstrating that this variance is distinct 

from the variance used routinely in epidemiological applications. Simulation studies 

suggest that the variance of the stratified treatment effect estimator, assuming that 

the propensity score is estimated using a correctly specified logistic regression model, 
is always smaller than the variance when the propensity score is known. This, in 

turn, suggests that the variance used in applications is producing hypothesis tests 

and confidence intervals that are too conservative. 

We calculated the conditional variance of the stratified treatment effect estimator 

given the observed treatment and covariates and, by marginalising this conditional 

variance, demonstrated that the variances calculated previously in the thesis are 

asymptotic marginal variances. 

"Ale developed a method for estimating the variance of the stratified treatment effect 

estimator from a sample dataset using kernel density estimation methods, which we 

called the components method. For most datasets this estimates the variance well. 
However, occasionally the variance is greatly overestimated. It is not, at present, 

clear when this is likely to happen or how we can avoid this problem. 
144 
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We also developed a second, quicker, but less consistent method of estimating the 
variance of the stratified treatment effect estimator, which we referred to as the 
direct method. This method produces an unacceptably large variance estimate more 
frequently than the components method. 

Simulation studies were used to compare the frequentist properties of normal-based 
confidence intervals for the stratified treatment effect estimate using the variance 
formulae derived in this thesis and bootstrap confidence intervals. Despite the odd 
large variance estimate, the confidence intervals constructed using the variance esti- 

mated by the components method appeared to have good theoretical properties, as 
did the pragmatic (but biased) approach of taking the direct estimate of variance but 

substituting the routinely-used variance when the direct estimate was obviously too 
large. 

We ended by applying these methods to an example clataset, demonstrating that the 

results derived in this thesis produced similar inference to a well conducted outcome 

regression analysis. 

8.2 Strengths and weaknesses of this thesis 

8.2.1 Strengths 

The framework proposed in Chapter 2 clearly ties the various propensity score meth- 

ods together, allowing hypotheses to be more easily formed about the behaviour that 

can be expected from each of the methods in various situations. This was applied 

to the issue of the implications of estimating the propensity score. A similar ap- 

proach can also be used to think about the effect of, for example, non-linearities and 

interactions on each of the methods. 

The explicit variance formula for the stratified treatment effect estimator clearlý' shows 

the four sources of variance that effect the estimator. This throws lip some unexpected 

conditions about, for example, the placing of strata boundaries. In particular, we 
found that when viewed from a marginal frequentist perspective, placing a strata 

boundary at a point in which the probability distribution of the propensity score is low 
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often results in a large increase in both the finite-sample and the asymptotic variance. 
The mathematical discussion of the four variance components clearly shows that the 

estimation of the strata boundaries will always increase the variance, although Nve 

show that the increase can be expected to be negligible. The discussion of the third 

and fourth variance, along with empirical evidence both in this thesis and in other 

studies, provides a reasonable argument that the estimation of the propensity score 

will always reduce the variance of the stratified treatment effect estimate. 

The careful calculation of the conditional variance, and its marginalisation over the 
distribution of treatment and covariates, shows the link, in this problem, between 

the variance formula used typically in applications of stratification on the propensity 

score, conditional variance estimates such as those typically used in regression models, 

and marginal variance estimates such as the ones calculated in this thesis. 

8.2.2 Weaknesses 

Although we have focussed, for most of this work, on stratification on the propensity 

score, there is growing interest in the doubly robust methods of analysis. It is likely 

that this method produces less biased and less variable estimates than does stratifica- 

tion on the propensity score. However, despite this limitation of the analysis method 

studied, whilst epidemiologists continue to use stratification on the propensity score 

it is important to develop methods that improve the inferences obtained using that 

method as well as developing new methods. 

The marginal variance of the stratified treatment effect estimate was calculated in this 

thesis. Some epidemiologists would argue that we should only attempt to estimate 

causal parameters for the sample at hand [69] and therefore we would use a condi- 

tional variance, given the observed covariate distributions. However, we often wish to 

generalise our results to a wider population. For example, in public health, we may 

wish to estimate the treatment effect we would see if we chose to make an intervention 

available throughout the country, in which case the most appropriate variance would 

be the marginal variance. Moreover, conditioning on a variable that has no intrinsic 

meaning seems rather arbitrary, whereas marginalising over it is philosophically a 

more attractive approach. 
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One of the initial aims of this thesis was to use the variance formula to show that 
the estimation of the propensity score always reduces the variance of the stratified 
treatment effect estimator -a result which has been proven for other propensity 
score methods. Unfortunately, this was not possible due to the complex nature of the 

variance formula. 

The variance formula derived in this thesis, when the propensity score is estirnated, 
is rather complex and involves unknown derivatives. The methods developed to esti- 

mate the variance using kernel density estimation are promising but still have several 
drawbacks. The variance is occasionally drastically overestimated, especially with the 

second method of estimation, the direct method. It is not clear at present whether we 

can reduce this error in any way or whether we could develop methods that could tell 

us whether the kernel density estimation methods are likely to work for a particular 
dataset. A bootstrap estimate of variance, or confidence interval, has attractive the- 

oretical properties in this situation and may be an easier and more practical solution. 

The simulation studies used to assess the accuracy and the convergence rates of the 

variance formulaý all contained the same structure of covariates so these methods have 

not been tested on a wide variety of situations. Furthermore, in all examples used, 

the propensity scores were created from a combination of normal covariates. These 

examples are therefore likely to show the gaussian- kernel- based methods at their best. 

It would be sensible to try the methods on propensity score distributions that are less 

close to the normal distribution. 

The variance formulae calculated in this thesis are not easily extendible to more com- 

plex situations. The direct method is more promising in this respect, but there is still 

work to be done making this method less prone to substantial error if this is to be 

applied to other situations. 

8.3 Further work 

Further work is needed looking at the kernel density estimation method to estimate 

the variance of the stratified treatment effect estimate. For the components method, 

a promising idea is to use kernel density estimation techniques to estimate the third 

variance component as well as the fourth. Since these two components overlap greatlý- 
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in terms of the error measured, the two terms substantially cancel one another out - 
If both components are estimated with error where the error is in the same direction 
for each, then the subtraction of one estimate from the other will cancel out some 
of the error. Simulation studies are needed to assess the large sample properties of 
such a method. This solution will not increase the accuracy of the direct method. 
Methods that can identify situations where the direct method is likely to fail or that 

reduce the magnitude or frequency of the mis-estimation of the variance using the 
direct method would be useful. 

The variance formulae derived in this thesis can be applied to the estimation of 
E[Y, ]-E[ Yo ] for any type of data. If the data is continuous, this is the usual 

estimate of treatment effect. If the data is binary, this is the risk difference. Whilst 

the risk difference can only be used in observational datasets that are representative 

samples from the population, when this is the case, the risk difference may be the 

quantity of interest, in which case the variance formulae derived in this thesis can be 

used. Note, however, that with small samples or probabilities of success (or failure) 

close to zero or one, the normal-based confidence intervals may cross zero or one. 

The variance calculation in this thesis could be extended to calculate the marginal 

variance for the estimate of an odds ratio, using stratification on the propensity score. 
However, given the results of this calculation, it may be more sensible to use bootstrap 

methods, since it is likely that the explicit variance formula for the odds ratio variance 

will also be complex and hard to estimate. 

A B, -.,. yesian approach would be possible here, which would avoid the problem of 

the estimation of the variance components since we would estimate the variance by 

the variance of the posterior distribution. However, the goal here is to provide a 

simple method of analysis that is clear and easily applied. ýVhilst the kernel density 

estimation of the variance components is not simple, the frequentist point estimate 

is simple, and an epidemiologist using the method would not need to understand the 

kernel density estimation methods to make inferences from the resulting confidence 

intervals. A Bayesian analysis is more complex to apply and often involves specialist 

software. Therefore, we do not pursue the Bayesian option further. 

On a more general level, more work is needed to look at situations in which propelisity 

score methods are likely to produce 'better' results than the standard regression 
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analyses. Also, studies comparing the various propensity score methods. looking 
at situations where one method outperforms the others, would be instructive. In 
particular, the discussion in Chapter 2 suggests that the covariate-adjustment method 
of including the propensity score as a covariate is both the most likely to produce 
biased estimates of effect and the most popular choice of propensity score method. 
Clear guidelines indicating when each propensity score method is likely to Nvork Ný-ell 
would be very beneficial for epidemiologists and statisticians wishing to use propensity 
score methodology to estimate causal effects. 

8.4 Practical implications for epidemiologists 

We would recommend that propensity score methods be used when the treatment 

or exposure is common, and thus the propensity score can be well estimated, and 
the assumptions of a standard outcome regression model may be questionable. For 

example, when there are non-linear relationships between covariates and the outcome, 
it may be easier to use a propensity score than to correctly model the non-linearity. 
Situations in which the outcome is rare but the treatment is common are also suitable 
for propensity score analyses. 

When using the method of stratification on the propensity score, we would recom- 

mend that the variance V, should be used in applications, rather than Vk 

as is routinely used at the moment, since the latter appears to produce conservative 
hypothesis tests and confidence intervals. It is fairly easy to violate the conditions 

necessary for the validity of the variance formulaý, Vk and V, In most cases, 
however, we would expect these violations to be apparent during the analysis of the 

dataset. 

The investigation of the convergence rates of the variance formulae- suggest that, ide- 

ally, a sample size of at least 2,000 should be used for the variance estimator to be 

valid. Therefore, with small sample sizes we recommend that a bootstrap estimate of 

variance should be used. However, in our example dataset, the variance estimator of 
V, was very similar to that obtained using standard regression analysis. S1 nce t lie 

modelling assumptions appeared to be fairly well satisfied iii this case, this sugge., its 

that our variance estimator was valid in this dataset, even with such a small sample 

size. 
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The confidence intervals using kernel density estimation are appealing in that theN 
are non-parametric, much quicker than bootstrap confidence intervals, and there is 
some indication that they have nice theoretical properties - nominal coverage and 
a smaller average confidence interval length than the bootstrap confidence intervals. 
In particular, this will be useful in simulation studies comparing stratification on 
the propensity score with other methods since, previously, such simulations were 
limited by computation time. When the conditions for the validity of the variance 
formula V, [4'1 appear to be satisfied, and the sample size is relatively large, we 
would recommend use of the components method to derive a confidence interval for 
the stratified treatment effect estimate. When the conditions are not satisfied, and the 
problem cannot be modified to satisfy them, bootstrap methods can be used. This, 
however, is very comput er- intensive when large datasets are used. In such situations, 
a jack-knife estimate of variance is likely to be the best approach. 

If using a marginal frequentist approach to inference, it is important to make sure 
that the strata boundaries do not fall in areas where the probability density function 

of the propensity score is particularly low, as this results in large increases in variance. 

Although various missing data methods have been developed to use within a propen- 

sity score context, we found that in practice their application is limited. Until soft- 

ware is available to help epidemiologists and statisticians implement these methods, 
it seems at present easier to use standard missing data methods, such as multiple 
imputation. 



Appendix A 

Proof of Theorem 3.1 

A-1 Introduction 

In this appendix we investigate the asymptotic properties of the stratified treatment 

effect estimator, ý', assuming that the propensity score is a known function of the 

observed covariates. We begin, in Section A. 2, by using standard asymptotic theory 
to demonstrate that ý' is a consistent estimator of 30 1. We then, in Section A. 3, 

show that ý' is asymptotically normally distributed. We finish by determining its 

asymptotic variance using M-estimation theory, in Section A. 4. 

This appendix uses the notation given in Section 3.1.1. In order to ease our way into 
the proof, we give a brief review of the estimator, 3', and the estimating equations 

used to obtain it. 

Estimating the stratified treatment effect 

In the notation of Section 3.1.1, where, for subject i, Yi and Zi denote the outcome 
and treatment, ý, 

i - <p. (x)<d., ] is an indicator for the Sth sample stratum, r, is 

the fraction of the sample in the Sth stratum, and d, is the fraction of the sample who 
are treated and in the Sth sample stratum, the stratified treatment effect estimator is 

Yi Zi ýsi yi (1 
- zi) ýsi 

d 

'We, show that ý' is consistent for the population parameter J30. Since this is usually different 
fi-oin the population average causal treatment effect, 130, this means that 4ý' will usually not he 

consistent for 13, 

151 



A. 2 ConsZstency 152 

As discussed in Chapter 3, we obtain ýs as a component of the vector solution to the 

set of estimating equations 

ýb(Yj, Zi, Xi;, 33, d, q) == 0 (A. 1) 

We call the solution 0, defined by OT = 03 
7 
aT, 4T), where the population values 

of these parameters are: q, the population strata boundaries, d,,, the population 

probabilities of being both treated and in each stratum, and 3, ',, the 'true' stratified 
treatment effect. 

The estimating equations (A. 1) are defined by ýb2Kxl where ýbT ýbT, ýbT), with 231 

K 
r, 

YiZisýIi 011 '1 (Yi, Zi, Xi;, ß', d, q) = 
(Z 

, d, r., -d� 
-0 

, bKxl 
2 (Zi, Xj; d, q) 

ýb(K-l)xl (Xi; q) 3 

Zi Sli - di 

ýzi SKi- dK) 

Sli 7,1 

ýS(K-l)i ? '(K-l)j 

where Sj 1[q(., 
-j): 

ýp,, (X) <q, ]is an indicator for the SIh stratum. We define qO =0 

and qK = We now use this representation of the estimation process to ascertain 

the theoretical properties of the stratified treatment effect estimator, 0-1. 

A. 2 Consistency 

We now show that each component of the estimator 
bT 

= 
OS 

7 
aT, 4T) is consistent. 

We begin by establishing the consistency of the estimated strata boundaries, 4. We 

then consider the consistency of the estimates of the probabilities of being treated 

and in each stratum, a, treating the strata boundaries as nuisance parameters. Given 

the consistency of both 4 and a, we then demonstrate the consistency of the stratified 

treatment effect estimator, 
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2.1 Consistency of the estimated strata boundaries 

Intuitively, we would expect the estimated strata boundaries, ý= (41, 
.. .7 

4K- I )T to 

be consistent estimators of the population strata boundaries, qO = (qlo, 
.-., q(K- I)o )T, 

which are defined as the quantiles of the population distribution of the propensity 

score that split the population into strata containing fractions (rl,..., rK)' of the 
n 

population. We obtain 4 by solving the estimating equations Ei=1 lP3(Xi; q) = 07 

for q, where 1P3 is defined in Section A. I. We now show that the estimate of the first 

strata boundary, 41, is a consistent estimator of the r, h quantile of the population 
distribution of the propensity score, ql,,. The consistency of the estimators of all 

other strata boundaries can be demonstrated in the same way. 

The quantile qj,, is estimated by solving the first component of the set of estimating 
n 

equations Ei=1'03(Xj; q) = 0, which is 

(Sli 
- ri) 

Equivalently, if we define 

(l[ 
O<p�(Xi)<ql ]- ri) = 

1 if a>0 

sign (a) 
-1 if a<0 

0 otherwise 

then we can estimate qj, by solving the estimating equation 

In 
4fn(ql) =n sign (p,, (Xi) - ql) + (2r, - 1) 

In order to establish consistency of this sample quintile, we now use the following 

lemma from van der Vaart [108, p. 47]. This lemma is concerned with the situa- 

tion where the estimated parameter, ý, is obtained as the solution to an estimating 
n 

equation kP,, =0 where Tn Ei=l V)(0). 
n 

Lemma A. 1 Let E) be a subset of the real line and let 111 n be random functions and T 

a fixed function of 0 such that Tn -P-+ T for every 0. Assume that each map 0 T, (0) 

is continuous and has exactly one zero, ý, or is non-decreastng with ýVn(o) Op(l). 

P 
Let 0,, be a point such that xP(O,, - E) <0< xP(0,, + e) for every E>0. Then 0 -* 0, 
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By the law of large numbers, as n --+ oo, for any qj, 

xP,,, (ql) --P* T (ql) =E[ sign (p,, (X) - ql) I+2rI 

= 2(r, - P(p,, (X) < qj)). 

The map q, xF,, (ql) is non-increasing. So in order to prove consistency of 41, we 

merely need to show that there exists a value ql,, such that, for every c 

T<< ID (ql,, - c). 

th The equation T(qj) =0 is solved by qj, the r, quantile of the population distribution 

of the propensity score, since P(p,, (X) < ql,, ) = rl. If the cumulative distribution 

function of the propensity score is strictly monotone and continuous at ql,, then for 

every c 

T(ql� - e) = 2(ri -P (p�(X) < ql� - 

In this way we see that 

xP(ql,, + c) < T(ql,, ) =< xP(ql,, - E). 

Therefore, applying Lemma A. 1 shows that 41 --Pý ql,,. Under the same condition 

on the cumulative density function of the propensity score, we note further that the 

quantile ql,, is unique and therefore globally identifiable. This condition will be needed 

later to demonstrate the consistency of other parameters. 

We finally note that the r,, h quantile of the sample distribution of the propensity 

score, & can be obtained by solving the estimating equation 

n 

'Iln(qs) sign (p,, (Xi) - q, ) + (2(ri ++r, ) - 1) = 0. 

This parameterization removes the apparent dependency of the estmated strata 

boundaries on the other estimates and so the argument above can again be applied 

to show that q. is consistent and that q, is globally identifiable. 
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A-2.2 Consistency of the estimated probabzlitzes of bezng treated and in each stratum 

We now consider the consistency of d dK) T, the estimated probabilities of 
being treated and in each stratum. These are obtained by solving the estimating 

n equation Ei=l ýP2 Vi, Xj, 4, d) =0 for d, where '02 is defined in Section A. 1- The 

parameters a depend on the estimated strata boundaries, 4. Therefore, we need 
to take the estimation of the strata boundaries into account when we consider the 
consistency of a. 

Consistency in the presence of a nuisance parameter 
In order to demonstrate consistency in the presence of nuisance parameters, we use 

a theorem from Giurcanu and Trinidade [29]. The theorem considers consistency 

of an estimator, ý2, under consistent estimation of a nuisance parameter, 01. The 

estimator of interest, ý2, is obtained by finding the value Of 02 that maximises a 
(criteria) function Mn (ýl 

7 
02). The notation b* = arg maXb Mn (a, b) defines b* as the 

value of b that maximises the function Mn (a, b). 

Theorem A. 1 Let 0,, = 
(01o) 02o) define the population values of the two parameters, 

assumed to be an interior point of the parameter space, E). Let also M(01 1 
02) and 

Mn(01) 02) be the population and sample criteria functions respectively, where we have 
02o = ary maX02 M(Oloi 02) 

- Suppose that ý, Zs a consistent estimator of 01, and 
A 

0* (01) = arg ma Mn(01) 02). Assume further that the following conditions hold: 2 
X02 

(i) For all 01, Mn (017 02) is concave in02 with probability tending to 1; 

Oz) 0o (01o) 02o) is globally identifiable; 

(, V i*i) M(01)02) is *tz locally Lipschi in a in 01, uniformly in 02, neighbourhood of 0, '. 
That is, for all (017 02) and (01,02) in a neighbourhood of 0,,, there exists a 

constant k such that IM (01) 02) -M 
(017 02) 1 !ýk 101 - 01 1. 

Then (61) 
-P* 

02o- 02 : -: ý 02 

0 

Consistency in the presence of many nuisance parameters 

Theorem A. 1 deals with tile situation where there is a single nuisance parameter. In 

our problem, however, there are many nuisance parameters and we therefore need to 
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generalise the theorem to cover these situations. Inspection of the proof of Theorem 
A. 1 shows that the nuisance parameter 01 enters the proof only through the condition 
that for every c>0, as n -* oo, 

lp (SUP02EC 1 M(ýli 02) 
- M(Oloi 02)1 > E/2) ----> 0, 

where C represents a neighbourhood Of 02.. This is ensured by condition (12'1) of the 

theorem. We now consider the situation where there are two nuisance parameters, 
01 

-:: -- 
(OlaiOlb) with population values 01,, = 

(Olao701bo)7 
where 02 is estimated by 

maximising the criteria functionM(Ola) 01b; 02) 
. The same proof would show that 

02 =- 02* (01a7 01b) 
-P--ý 

02., provided that, for every E>0 as n -+ oo, 

P(S > E/2) ----+ 0) (A. 2) 

where 
SUP02EC I M01a) ýlb) 02) - M(Olao) Olbo) 02) 1- 

Under two Lipschitz conditions, rather than the single one used in Theorem A. 1, we 

can show that (A. 2) holds. To begin with, 

P (S > c/2) :5 P(SI + S2 > E/2)7 

where 
S' SUP02EC M(ýla) ýIbi 02) - M(61a) Olbo) 02) 

S2 SUP02EC M(ýla) Olbo7 02) - M(Olao) Olbo) 02) 

Suppose there exist Lipschitz constants k, and k2 such that for all (01a, 01bi 02)) 

(Ollct) 01b) 02) and (01a) 01b) 02) in a neighbourhood of 0, 

1M (Ola 
3 

Olb) 02) -M 
(ola 

, 
Olb 

1 
02) 1 5 ki 1 Ola - 

Ola 1 

1 M(Ola) Olbi 02) - 
M(Olai ofb, 02)1 

1 :5 k2 1 Olb - 
01 

lb 
1 

Using the Lipschitz constants k, and k2, 

P(Si + S2 ýý E/2) < P(ki 1 bla 
- 

Olao l+ k2 1 ýlb 
- 

Olbo 1 

since0lb --+ 01,,,, and Olb 01,,. Then condition (A. 2) is satisfied and so we have the 

required consistency, 
ý2 ý2* (61 

a161 b) -P-4 
02o 

- 
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Therefore, if we have more than one nuisance parameter, we merely replace condition 
(iii) in Theorem A-1 by the following condition: 

LxI (iii*) Suppose the nuisance parameter is 01 : -- (0117 
... 

01L) and the parameter of 
interest, 02 

1 
is obtained by maxzmiszng the sample criteria function 11In 

A) 02). Then 

suppose there exists Lipschitz constants kl,..., kL such that, for 1=1, 
... ' L, for all 0 

and 0' Ma neighbourhood of 0, 

I M(O) - M(O') I :ý ki 101, - 01,1, 

where 0= (011, 
..., 

011'..., OlLi 02) and 0' = (011,..., 1 ... ) 
01L) 02). Then provided that 

all other conditions of Theorem A. I are satisfied, we have the required consistency, 
02 = 0* (01) 

-P* 
02o- 

2 

An application of Theorem A-1 

We now apply the generalised version of Theorem A. 1 to (dl,..., dK) the es- 
timated probabilities of being treated and in each stratum. These probabilities are 

obtained by solving the set of estimating equations 

Z 
ýb2(Zil Xi; d, 4) == 01 

i=l 

where Vý 2 is defined in Section A. 1. We now demonstrate the consistency of dl, 

obtained by solving the first component of the above estimating equations, which is 

Z(Zi ýii 
- di) = 0. 

i=l 

(A. 3) 

As before, ýjj = 1[0<p. (X)<4, j is an indicator for the first sample stratum, which is 

a function of the previously estimated strata boundaries. In order to apply Theorem 

A. 1 to this problem we need to write this estimating equation as a criteria function 

-a function that is maximised by the same estimate, dl. Solving (A. 3) is equivalent 

to finding the value of d, that maximizes the criteria function 

n 
)2. T(Zjýjj-dj 

n 
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We now merely need to verify that all the conditions of Theorem A. 1 are satisfied. 
Firstly, the population parameters dl,, and q,, must be on the interior of the parameter 
space. Therefore, di,, cannot be equal to either 0 or rl, and the first population strata 
boundary cannot be zero or one -a condition which is satisfied since we have already 
assumed that the propensity score is neither zero nor one for each subject. The 
function M,, (dl; qj) is concave in d, and so condition (i) of the theorem is satisfied. 
We have seen that the population strata boundaries are globally identifiable. In order 
to satisfy condition (ii) of the theorem we now show that dl,, is globally identifiable. 
By the law of large numbers, as n --+ oc), for any qj, 

M, (di; ql) -p* M(di; ql) = -E [(ZS, - di )2 j. 

By expanding the expectation on the right-hand side of this equation, we can write 

2 M(dj; ql) = (1 - 2d, )E [ZS, + dl, (A. 4) 

which can be expressed as 

M(di; ql) = (d, -E[Z 
Sl ] )2 

-E[ZS, ](E [ZS, ]- 1). 

Then M(dj; ql,, ) is maximised when d, =E[Z Sl,, ]. This is exactly the definition of 
the population probability of being treated and in the first population stratum, di, 

which is the parameter we wish to estimate. Therefore, the function M(dj; ql,, ) is 

maximised when d, = dj, Since this point is unique, dl,, is globally identifiable and 

condition (ii) of Theorem A. 1 is satisfied. 

We have now verified each condition of Theorem A. I except condition In 

order to verify this condition we need to show that, given J>0, for all d, and 

q, E[ ql,, - J, ql,, +J], there exists a constant k such that 

I M(di; ql) - M(di; ql) 1 :5kIq, - ql 1. (A. 5) 

Using (A. 4) and conditioning on the observed covariates, X, we have 

I AI(dl; ql) - M(dl; ql) I= I (l - 2dj) E [A, (X)(1j0<p. (X)<qýj - 1[0<p,, (X)<ql])] I- 
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Then letting [ qj, q, I refer to the real interval between the two values q, and q1, 

M(di; ql) - M(dj; ql) < I(I - 2dj) If fp(r) dr 
[ql, qlj 

:5 1(1 - 2dj) IX SUPrE[ql, ql] 
Jfp(r)j xIq, - ql 1. 
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So provided that the probability density function of the propensity score is bounded 

near qj, we can choose k= I(l - 2di) Ix SUPrC-[ql,, -6, ql. +bj 
Ifp(r)j. Then condition 

(A. 5) is satisfied. Therefore, all the conditions of Theorem A. 1 are satisfied and di is 

consistent. 

Exactly the same argument can be applied to each estimated probability of being 

treated and in each stratum, showing that d,, is globally identifiable, and that when 
the probability density function of the propensity score is bounded near the population 
strata boundaries, a is a consistent estimator of d,,. The former result will be useful 
in demonstrating the consistencY of the stratified treatment effect estimator. 

A. 2.3 Consistency of the stratified treatment effect estimator 

We now show that when the strata boundaries and the probabilities of being treated 

and in each stratum are consistently estimated, the stratified treatment effect estima- 
tor, 8', is consistent. This estimator is obtained by solving the estimating equation 

n 
j= 101 (Yi, Zi, Xj; 13', 0 where 

Yi Zi ýs yi (I 
- Zi) S^S 

s - osa, 4) = 1: T, -01 oil xI (yi, zi, xi ) d, r, - 
ds 

S=l 

In order to apply Theorem A. 1 to this estimator, we need to find a criteria function 

-a function that is maximised by the estimator ý'. We can obtain this estimator 

by finding the value of 3' that maximises the criteria function 

nK 
rs 

ly 
iZis Mn (8s; ai 4) =-- 

1' 1: 
n 

=, S=l 
ds 

Yj (I zi ) ý, 
q 

I 
RS) 

r3-d5 J 

We now merely need to verify the conditions of Theorem A. I- The criteria function 

M,, (Ol; d, q) is concave in 0' and so condition (i) of the theorem is satisfied . We have 

seen that both %, and d,, are globally identifiable. We now need to show that P is 0 
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globally identifiable. By the law of large numbers, for any d and q, as n- : )c. 

(3'; d, q) -P* M (0'; q, d) 

where 

-Jý 

(KyZ Ss y (1 _ Z) Ss. 
s M (, 3'; d, q) = Y---" 

ds r, - ds - )3 (A-6) 
S=l 

By expanding the expectation on the right-hand side, we see that the criteria function 

M(Y; d07 q,, ) is maximised at the point 

E [Y ZS,,, ] 
dso 

E[Y(l -Z) Sso] 

r, - dso 
1- 

Remembering that d,,, =E[ ZS,,, J, this can be simplified to give 

00 
= Er, JE [YI Z= 1, S, 0=1]-E[YI Z= 0, So= 1]1. 

s=l 

This estimand 0,, ' is unique provided that the population strata boundaries are glob- 

ally identifiable. Then condition (ii) of Theorem A. I is satisfied. 

It only remains to verify condition (iii*) of Theorem A. 1. In order to do this, we need 
to show that the Lipschitz condition holds for each nuisance parameter with respect 
to the criteria function M(Y; d, q) in a neighbourhood of the population parameters. 
This is demonstrated for the first strata boundary, qj, and the probability of being 

treated and in the first stratum, di. 

Expanding the expectation on the right-hand side of (A. 6), since Si Sj =0 for i :ý 

we see that 

K2 y2 Z Ss 
M (iß'; d, q) Zr3E 

d2 
s=l 

13 

KYZ S3 
+ 201 Y: r, E 

[ 
d, 

s=l 

Y, (i Z) ss 

(r� d, )2 

Y (1 - Z) ss 
r. - d, 

1- 
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For the moment, we ignore all but the first term of this, and let 

()3'; d, q) 

K2E y2 Z Ss 

s d2 
s 

and show that the Lipschitz criteria holds for q, and d, with respect to this sub- 
function M*(, 3'; d, q). The whole Lipschitz condition can be demonstrated in the 

same way. Given d, q= (qj, q21 .... q(K-1))' and q' = (qj, q2j .... q(K-1))T, where 
qj, q', C[ ql,, - J, qi,, +J], 

K 
E rý2 

M* ()3'; d, q) - M* (Y; d, q') I=, E [y2 Zf 1[q(ý, 
-j)<pý(X)<q, d2 

5=1 
2 

[Zy2 
,21E qo:! ýpý (X) < qj qo. -5p,, (X) < q'j di 
r 12 E[ y2l Z=1, pý(X) == r] fp(r IZ 1) dr, 
d2 

[ql, qlj 

where, as before, qj, q, denotes the interval between the values q, and qj. Then, 

provided that E[ y2 IZ1, p,, (X) =r] and fp (r IZ= 1) are bounded near r= ql,,, 
we can pick 

2 

k= rl [y2 IZ= 11 po(X) = r] I XSUPrC-[ql,, 
-6, ql,, +6]ffP(T 

IZ 
d2 

XSUPrE[ql,, 
-b, ql,, +6]fE 

1 

in which case we have, as required, 

I M*(, 3'; d, q) - M*(, 3'; d, q') I<kIq, - q'l 1. 

Note that since IP(Z = 1) is non-zero, the condition that fp(r IZ= 1) is unbounded 
is equivalent to fp(r) being unbounded. We now show that the Lipschitz condition 
holds for d, with respect to the function M* (0'; d, q). Given q, d= (dj, d2 

i .... 
dK )T 

and d' = (dj, d21 
..., 

dK )T7 
where dl, d, E[ dl,, - J, dl,, +J], We have 

M* (0s; d, q) - M* (, 3; d', q) 2 (y2 
1 

rs EZ Ss 
(d')2 d2 

S=l ss 

=r 
2E [y2ZSJ] 

(_1) 

I d2l (dl)2 

By writing this as an integral, we find that the Lipschitz condition is satisfied provided 
that E[ y2l Z=1, p,, (X) =r] and fp(r) are bounded for all rE SI, and that di,, is 

not equal to zero. 
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In this way, we can show that all the required Lipschitz conditions are satisfied pro- 

vided that the functions E[ y2 IZ= t' PO(X) =r], E[YIZ=t, po(x) =r] and 
fp(r) are bounded everywhere, for t=0,1, and d, is not equal to zero or r, for 

S= 11 .... 
K. The same argument can be applied to each nuisance parameter in order 

to completely verify condition (iii*) of Theorem A. 1. Then all the conditions hax, e 
been satisfied and so the stratified treatment effect estimator is a consistent estimator 

of 001. The implications of the conditions attached to this consistency are discussed 

in the main text (Section 3.2). 

A. 3 Asymptotic normality 

We have established conditions under which the estimator 0 is consistent, where 
('33 

7dT, el T. We now consider the asymptotic distribution of 0. We refer to Theorem 
5.21 of van der Vaart [108, p. 52]. This theorem concerns the asymptotic distribution 

n 
of an estimator, 6, obtained by solving an estimating equation -1 Ej=j ýb(Wj; 0) = 0, 

n 

where W represents a sample of data. The theorem gives conditions under which 
is asymptotically normally distributed. 

Theorem A. 2 For each 0 in an open subset of Euclidean space, let W --+ ýb(W; 0) 

be a measurable vector-valued function such that, for every 01 and02 in a neighbour- 
hood of 0,, and some measurable function ýb' with E[ ýb'] c)o, 

* 02)l : 5- '01101 - 
021 1 V; (W; 01) - IP(W) 

Assume that E[ I O(W; 0,, ) I]< oc and that the map 0 ----> E[O(X; 'O)] Zs differentiable 

_I 
En 1/2) 

at a zero 0, with a non-singular derivative matrZx. If 
n j=1 

O(W; 0) = op(n- 

and b 
--P+ 0, then 

vn - 
01) =- OOT 

fE[ ýb(W; 0) ]} 
o=O. 

) 
ýb(Wi; Oo) + op(1). 

\/ n i=l 

In particular, the sequence vl'n--(b - 0o) is asymptotically normal with mean zero and 

covanance matnx 

0 
{E [ ýb( E[ ýb(W; 00)ýbT(W; 00 {E [ ýb(W 0) ]1 

le=OI) (9 
o=O. 

) 

aoT 
W; 0) 11 

0) 
1 

ä, -97 

0 
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The Lipschitz condition in Theorem A. 2 is in fact too strong a condition (see the 
discussion on p. 53 and Lemma 19-24, of van der Vaart [108]). The Lipschitz condition 
can be replaced by the following conditions: 

(a) the functions W -* ip(W; 0) are a 'Donsker class'. 
(b) the map 0 --+ ýb(W; 0) is continuous in probability. (A. 7) 

We have already shown that the estimator 6 is consistent. We have to verify the two 

conditions above and then show that the derivative matrix 2je-'2'r {E ['0 (W; 0) ]11 
O=, q. 

exists and is non-singular. Then we will have shown that 0 is asymptotically normal. 

We begin by verifying condition (a) of (A. 7) above. Our estimating equation is defined 
by 7p 

T= (V) 
1, ýb 

T, 
7p 

T), 
where 01,7P2 and 1P3 are defined in Section A. 1, and the sample 23 

data are W= (Y, Z, X). We need to show that the functions W --ý ýb (W; 0) are 
Donsker. This will be true if each component, W ýb^; 0), is Donsker. We note 
that the map W --+ ýb3j (W) 0) is Donsker, for j 1, 

..., 
K-11 by Example 19.6 of 

van der Vaart [108, p. 271], which states that the class of all functions of the form 

x --4 is Donsker. Example 19.20 of van der Vaart [108, p. 277] states that if 

functions f (x) and g(x) are both Donsker then the function f (x) + g(x) is Donsker 

and so is the function f (x). g(x). Therefore, each map W --+ 02j (W; 0) is Donsker, 

for J. = 11 
.... 

K. The same example also guarantees that the map W (W; 0) is 

Donsker. Therefore, the map W --+ ýb(W; 0) is a Donsker class. 

Condition (b) of (A-7) demands that the map 0 --+, O(W; 0) should be continuous in 

probability. This is equivalent to each of the three sets of maps 0 -* ýb3j (W *) 0) 
10 --+ 

IP2k (W; 0) and 0 ---+ 01 (W; 0) being continuous in probability, for j=I, -, 
K-1, 

and k= 

To show that the map 0 --ý 03j(W; 0) is continuous in probability we need to show 
that for 0 and 0' defined by OT = (0-9, qT, dT) and O'T = ((, 3s)', q fT 

7d 
IT), 

p(1 e3i (W; 0) 
- 3P3i (W; 01) 1> 

e) --+ 0, as 0 ---+ 

or, equivalently, that 

E[ l03i (W; 0) 
- e3j (W; 01) 1] 

--+ 0, as 0 ---+ 0'. 
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Using the definitionof '03 given in Section A. 1, 

E[1 'P3j(Wi 0) - ýb3j(W; 01) 11 
= E[ II[q(j-, 

): 5p,, (X)<qj] - 
l[q(j_, 

): 5p,, (X)<qj'll 
I- 

Using the triangle inequality, 

E[ 1 'P3i(W; 0) 
- 'P3j(W; 01) 11 < 

We can write this in integral form as 

ýb3j (W; 0) - 'P3j (W; 01) 11 < 

Then, 

E[I 'P3j (W; 0) 
- ýb3j (W; 01) 11 

E[ JI[q(j-j)! 
ýp,, (X)<qjj - l[q(j-j)! 

ýp,, (X)<q'jj 
I 

j 

+E[ II[q(j-, 
): 5p,, (X)<qj] I[q(j_, 

): 5p, (X)<qi']l 
I 

f 
fp (p) dp +f fp (p) dp. 

[qj, qjtl [q(j-, ), q(j_, )] 

qj - qj' Ix sup, c[q q, ]ffp(p) I+ I q(j-, ) -q'j-1) IX SUPrE[q(j-, 
), q' 

f fp (P) 
33U- 1) 

1 

as q(j-, ) --+ q(j-, ), and qj --+ qj,, provided that probability density function of the 

propensity score is bounded. Then the map 19 --+ ýb3j(W; 0) is continuous in proba- 
bility. 

We now turn to the map 0 --+ ýb2k(W; 0)* Using the definition of IP2 given in Section 

All 

ýb2k (W; 0) - 1P2k (W; 01) 11 

_1): 
5p�(X)<q'] -d'l 1 ]. =E[1 

{Z I[q(k-1): 5p�(X)<qkl - 
dkl 

-fZ [q(k 
kk 

And applying the triangle equality gives, 

E[1 e2k(W; 0) - ýb2k(W; 01) 11 

:5 
E[ ll[q(k-, 

)<p, (X)<qkl - 
I[q ýk-1) : ý. p, >(X)<q'kjl 

1+ Idk- d' 1 ---> 0, k 

as q(k-1) -+ q(k-l)', qk -* qk', and dk 
-* d' 

, provided again that the probability distri- k 

bution function of the propensity score is bounded. Then the map 0 ---+ 1P2k(WI 0) 
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is continuous in probability. 

We finally need to show that the map 0 ýbj (W; 0) is continuous in probability. 
This is the map 

0KYZ Ss 1: r. ds 
3=1 

(I Z) ss 3 r, ds 
0. 

Using the triangle equality, we see that this map will be continuous in probalAity 

provided that the expected outcome E[YIZ = t, S, =s] is bounded and that for 

each s=K, 

E 
S, 9 S" 
d, d' 

E- 
SS S5, 

--+0, (A. 8) 

-, r, - d, d' 

as q ---+ q' and d --+ d'. Now 

SS 
- 

SS, 
=EI 

[q(,, 
- 1): ý, p,, (X) <q, ] 1 [q(., 

- ly 5p,, (X)<qý', ] 
< el + e2 + e-37 d, d' d, 

where 

e1 -- 
1E[ jl[q(., 

-j)! 
ýp,, (X)<q, ] - 

l[q($-, 
), <po(X)<qll 

I 

ds 

e2 
IE[ 

ll[q(., 
-, )I<po(X)<ql - 

l[q(. 
_, )I<po(X)<q; jl 

ds 
l[q(, 

-, )I<po(X)<q'] 
I[q(, 

-j),! 
ýp,, (X)<ql 

e3EI. --- ss --S] d, dl 

We have already seen that when the probability density function of the propensity 

score is bounded, el --+ 0 and e2 --+ 0 as q --+ q'. Also, e-3 -+ 0 as d, d' provided 

that d, and d' are non-zero. If also, S 
d, and d' 

S are not equal to r,, then the map 

01 (W; 0) is continuous in probability. 

In this way, we see that if the probability density function of the propensity score 

is continuous and the population probabilities d,,, are not equal to zero or r, for 

S= 11 ... I 
K, then the map 0 --ý 0 (W; 0) is continuous in probability. 
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We have now verified each condition of Theorem A. 2 other than the requirement 
that the derivative matrix --2-- JE [, 0 (W; 0) should exist and be non-singular. aOT 

This matrix is calculated in Section AA, and conditions under which it exists and is 
invertible are stated. When the inverse of this derivative matrix exists, the probabilitN, 
density function of the propensity score is continuous, and the population probabilities 
d,, O are not equal to zero or r. for s=K, then all the conditions of Theorem A. 2 

are satisfied and the estimator b is asymptotically normally distributed. 

A. 4 Asymptotic variance 

We have now established conditions under which the estimator 0, defined by 6T 

dT4T, is consistent and asymptotically normally distributed. We now use its 

asymptotic distribution to calculate the asymptotic variance of the stratified treat- 

ment effect estimator, ý'. We denote this by Vk where the 'k' subscript refers to 

the propensity score being known. 

A-4.1 M-eshmatton theory 

The general M-estimation theory outlined in the main text (Section 3.1.2) shows that 

if we let 

E0 {ýb (Y, Z, X; 0) 1 (A. 9) 
1- 

aoT o=O, 

1 

B=E[ ýb (Y, Z, X; 00) ýbT (y) Z, X; 00) ]1' 

then the large-sample covariance matrix of 6 is given by 

COV(O) -1 A-lBA -T (A. 10) 
n 

We furthermore stated that when the functionO(Y, Z, X; 0) is not differentiable witli 

respect to 0, as in our example, the order of differentiation and expectation can be 

exchanged and so 

7{E[e(YZ, X; 0)]l 5-0- o=O, 
(A. 11) 

Although we do not list the regularity conditions under which this exchange is valid, 

the application of Theorem A. 2 shows that it is valid in our problem. Therefore, when 

a component of 0 (Y, Z, X; 0) is not differentiable with respect to 0 we use (A. 11). 
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For components of ýb(Y, Z, X; 0) that are differentiable with respect to 0, however, 

since the two versions of A are then identical, we usually use (A. 9), since this is often 
more convenient. 

Allowing for definition (A. 11) to be used if necessary, (A. 10) is then equal to the 

variance given at the end of Theorem A. 2, and the large-sample variance of the 

stratified treatment effect estimator, ý` is 

1 
Vk[Osl ==V[(0)1] == -(A 'BA 

n 

We have partitioned the unknown parameter, 0, into three components as follows, 
OT = (3-9, dT, qT). The matrices A""' and B"x2K can be partitioned in the same 
way. Then, 

all a12 a13 

a21 a22 a23 

a31 a32 a33) 

where for j= 11 2,3, 

aj, =- 
19 JE [ýbj 11 

i9)3s 0=0" 
aj3 =- 

09 
TfE[, Oj ]I aq 0=0. 

aj2 =: -fE [ýbj ]I 
i9dT 0=0" 

These sub-matrices of A have the following dimensions: 

IxI 

Dim KxI 
(K - 1) x1 

1xK lx(K-1) 
KxKKx (K - 1) 

(K-I)xK (K-l)x(K-1)) 

(A 
- 12) 

We can simplify the matrix A immediately. Since the functions '02 and ýb3 do not 

contain 0,9, differentiating with respect to 3' results in zero and so the sub-matrices 

a21 and a31 are zero matrices. Similarly, the function 03 does not contain d, so 

a32 is a zero matrix. Differentiating V), with respect to 3' gives -1 and similarlY, 

differentiating '02with respect to d gives -I, where I is the identity matrix. Then 
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the matrix A is 

which has inverse 

I 

1 a12 a13 

1 a23 

0 a33 

-a12 
(al2a23 

- al3)a-1 33 

-a23a-1 33 

0 a-' 33 

16S 

The conditions under which the sub-matrices a12, a13, a23, and a-' exist are investi- 33 

gated later in this section. The existence of these sub-matrices and hence the existence 

of the inverse A` is one of the conditions for asymptotic normality of b. 

Partitioning the matrix B in a similar fashion gives 

bil b12 b13 

b21 b22 b23 

b3l b32 b33 

where bjk =E[ ýbj (0ý) V; T(00) ], for k=1,2,3. The dimensions of these sub- k 

matrices are also given by (A. 12). 

We have seen that n Vk [ ýs I= (A-'BA -T)11. Multiplying out A-1BA -T and taking 

the (1,1)1h component gives 

nVk[ý'91 = bil - bl2a T+ bl3a -T (al2a23 
- a13 )T 

12 33 

TT )T 
- al2(b2l - 

b22al2 + b23a- (al2a23 
- a13 33 

+ (al2a23 
- al3)a-'(b3l - 

b32a T 
33a 

T- a13 )T). 
33 12 +b- (al2a23 

33 

Remembering that the matrix B is symmetric, so for example b13 = bT3.1, we can write 

this as, 

TT 
nVk[i3'91 - bil - 2bl2al2+ al2b22al2 

-1 TT )TI. (al2a23 
- al3)a33 12b3l - 

2b32a, 
2 + b33a33 (al2a23 

- a13 (A 
- 13) 
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The sub-matrices contained in this formula are calculated in Sections A. 4.2 and A. 4-3, 

and are substituted into the variance equation (A 
- 13). The variance 11 7 ý. 

j6 j is then Vý 

calculated by direct matrix multiplication. 

A . 4.2 The matrix A 

We now calculate the sub-matrices of A of interest, that is a12, a13, a23 and a-' 33 

Since subjects are sampled independently from the population we drop the subject 
subscripts in the following calculations in order to simplify the presentation. 

The sub-matrix a12The function V), is differentiable with respect to d so we define, 
for j=1, .., 

(a12)j 
:= -E 

(9 { 01 1 1,9=, 9� 
[ 

Odj 
1 

-E 
0Kr, (YZS 

- 
i: 

Odj 
s=I 

ds 
Y(i - Z) ss 

r, - d, -) 
o=OO- 

Differentiating this with respect to dj and setting all parameters to their true values 

gives 

(al2)j rj YZ Sj,, 
, (d jo)2 

rj Y (I - Z) Sj,, 
(rj - 

dj")2 

I 

We now use the equality E[YZS,, ]=E[YIZ= 1, S, = 1]E[ZS, ]. Then, 

(a12)j= rj E[YIZ=1, Sj, =1]E[ZSj�] (d jo) 
2 

+ rj 
-E [YI Z= 0, Sj, >= l] E[(1-Z)Sj�]. 

(rj - dj�)2 

This can be simplified using the fact that E[ V) (0,, ) ]=0, and so E[ ZSj,, ]= djo. 

Then, for j=1,2,... ' K, we define a12 as 

r. 
=1]+r. E[YJZ = 0, S. = 11. (a12)j =-- 'E[Y1Z Sjo 30 djo rj - j� 

The sub-matrix a13 Since the function V), is not differentiable with respect to q we 
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swap the order of differentiation and expectation and define, for k=1,.., K-1, 

(al3)k a 
JE II1,9=, g" Oqk 

K 

rsE 
[YZSs Y(I-Z)ss 

S Oqk 

8=1 
ds rs - ds 

I 

0=01. 

This formula can be simplified further. We can write 

-a E[YZS, ]1,9=,. --- 
a 

JE[YIZ-1, S, =l]E[ZS, Jll, 
=, g.. i9qk (9qk 

Differentiating this with respect to qk using the product rule gives, 

-0 E[Y Z S, ]1,9=, 
9� = -E[YI Z= l, Sso = l] 

0 
{E [ ZS, 11 1,9=, 

9� Oqk aqk 

-E[ ZS,,, ]aI E[Y I Z= 1, S, =I Oqk 

Since E[ ýb (0,, ) ]=0, we have E[ZS,,, ]=d,,,. Then, 

aa 

(9qk 
E[YZS, ]1,9=0. = -E[Y I Z= 1, S,,, = 11 

aqk 
fE[ ZS, ]110=0,, 

- d,,, 
a 

JE [Y IZ 
aqk 
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Substituting this expression, and a similar one for E[Y (1 - Z) S, ], we define, for 

k= 11 2,..., K-1, 

r, 
=: l] 

0 
JE [ZS, ] 11 (a13)k == -Z dso 

E[YI Z= l, S., 
(9qk s=l 

K 

-1: r, - fE[YIZ=1, S�=1]-E[YIZ=0, S. 9=1]110=9� 
s=l 

Oqk 

K 

+Z r' E[YIZ=0, S�. 11 
0 

JE [ (1 - Z) S, 1ý JO=9�. 
r, - dso (9qk 

The sub-matrix a23Again, we switch the order of expectation and differentiation 

and define, for j=1, ..., K, and k=1, .., K-1, 

(a23)jk a 
i9qk 

i9qk 

I 02j II 19=9. 

fE(Z Sj jI 10=0,,. 
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The sub-matrix a33For j, k=1,2,..., K-1, 

(a33)jk 09 

aqk 

aqk 

I El lP3j II 

0=0ý 

fE[ Sj j} 10=0". 

1-11 

Remembering that Sj I[qj-j: ýp,, (X)<qjj 
, and fp( denotes the probability densIty 

function of the propensity score, 

19 1E[ Sj ]I1,9=, 
g" =-a aqk (9qk 

Therefore, the matrix a33 iS 

qj - fp (qko) 
i 

fp (p) dp fp (qko) 

qj -1 0=0,0 

0 

0 

- fp (q3o) 0 

fp(q(K-2)o) 

- fp (ql,, ) 0 

fp (ql, ) - fp (q2o) 

a33 0 fp (q2o) 

0 

which has inverse 

fp(ql,, )-l 

fp (q2o) - 

(a33) fp (q3o) - 

fp(q(K-l)o)-l 

0 
fp (q2o) 

fp (q3o) 

0 

0 

fp (q3o) 

if k= 

if k=I-I 

otherwise. 

0 

0 
0 
0 

-fp(q(K-l)o)) 

0 

0 

0 

fp(q(K-I)o)-l) 

Conditions under which A` exists 
The inverse of the matrix A will exist if all its components exist. Inspection of the 

sub-matrices calculated in this section shows that this will happen provided that: 

* the probabilities d, are not equal to 0 or r, for s=K; 

the probability density function of the propensity score is non-zero at each of 

the population strata boundaries; 
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* the following derivatives exist, for t=0,1, J=1, ... ' K-I and s=Iý..., K: 

a 
JE[Y IZ=t, Ss = 1]119=00) 19 JE IZ S, II le=, g., 

aIE[S, 
II1,9=, g,, aqk (9qk aqk 

By writing these derivatives as integrals over the propensity score, and appealing 
to the fundamental theorem of calculus, we see that these derivatives exist 

provided that both the probability density function of the propensity score and 
E[YIZ=t, p,, (X) =p] are continuous near the population strata boundaries, 

for t= 0) 1. 

A-4.3 The matrix B 

We now calculate the sub-matrices of B of interest, that is bil, b12, b13, b22, b23 and b33, 

using the formula bjk= E[ ýbj (0,, ) ýbT(Ot)) ], for j, k=1,2,3, where 01, ýb2 and '03 are k 

defined in Section A. 1. 

The sub-matrix bl, This is defined as 

[, Ol (0, bil =E 
)2 

Kr Sso 

=E YZ E "s 
dso 

K 
r. S., 

y (1 Z) Z 
r.. - dso 

K [y2ZS 
so + 

y2(I _ 
Z) SSO YZ SSO y (1 

- 
Z) S. 

So] + (os) 
= 

5ý r, E 
d3o r, - dso 

2,3jE 
dso r. - dso 0 

s=l 

Remembering that E[ ZS,,, ]=d,,,, and E[ (I - Z)S,,, I=r, - d,,,, this can be 

simplified to 

K2 E[y21Z= 1, S 
so = 1] E[y2 IZ 0, S 

so= 
11 

bil =Er. dS,, + 
rs dso 

S=j 

-2o, ', J: r, JE [YI Z= 1, So= l] -E[YI Z= 0, S= 11ý+(3s )2. 
so 

s=l 

And since the population stratified treatment effect is defined as 

Os= Er, JE [YI Z= 1, Sso= 1]-E[YI Z= 0, Sso= 11jý 
0 

s=I 
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we have 

K2E [y2 IZ == 1, Sso =1]E [y2 IZ0)S 
so )2. bil Er. 

dso + 
r, dso 

(3,, ' 
8=1 

The sub-matrix b12 For j=1,2,..., K, 

(b12)j == E[ ý)1 (0o) »T (oj ] 
2j 

K 
rss 

K 
rs SSO 

==E 
[(YZE 

dsö'9 -y (1 - Z) d -009 

) 

(Z Sj� - djo)1 
so 

Now E[ 01 (OJ dj� ]= dj� E[ 01 (0�) ]=0, since E [ýb (0�)] = 0. Therefore, 

K 
rs SSO 

Z SJ�] (b12)j=E 
(YZE 

-Y(1-Z) -- 00, 
) 

so r. - dso 
s=l s,, 

This is equal to 

(bl2)j 
=E[ 

rj YZ Sjo 
_ 008Z Sjo rj E[YIZ=1, Sjo = 1] -, 30' dj,,. 

djo 

The sub-matrix b13 For j= 1,2,..., K-1, 

T (bl3)j= E[ ol (0,, ) ýb3j(oo) 

EKr, 
S� K 

r, S., 

- 
Oj (Sj� 

- rj)1 
[(YZZ 

d�0-Y(l-Z)Y: r, -d.. 
, 9=1 s=l 

=rjfE[YIZ=1, Sj�=1]- E[YIZ=0, S i', =1]- 0�'1. 

The sub-matrix b22 For j, k = 1,..., K, 

(b22)jk= E [ýb2j (0,, ) OT (00) 1=E[ (Z Sjo - djo) (Z Sko- dko) I 
2k 

dj,, (l - dj,, ) if j= k) 

-dj,, dk,, if j j4 k. 
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The sub-matrix b33 For j, k=1,2,..., K-1, 

7pT (190) ] (b33)jk= E [03j (00) 
3k =E[ (Sj,, - rj) (Sko 

- rk) 

rj(l - rj) if k, 

-ri rk if 7ý k. 

The sub-matrix b23 For J= 1,2..., K and k=1,2,..., K- 1, 

0,9) ýbT (00) ]=E[ (ZSj� - dj�) (Sko 
- rk) 1 (b23)jk= EI ýb2j ( 

3k 

dj,, (1- rj if k, 

-djo rk if j --7ý k. 

A . 4.4 Variance of the stratified treatment effect estimator 

We have already seen that 

n Vk bi 1- 2bl2a T+ 
al2b22a 

T 
12 12 

(al2a23 
- al3)a-1 - 2b TT )TI. 

33 f2b3l 32a12 + b33a- (al2a23 
- a13 33 

IT I 

The sub-matrices involved in this formula have been calculated. Some rather lengthy 

direct matrix multiplication of the right-hand side of this equation shows that 

Vk V1 + V2) 

where, remembering that S,,, =1 [q(ý, 
- j),, -. 5p,, (X) <q, ] is an indicator for the SIh population 

stratum, 

V[YIZ=1, S�=1] 
vi =n dso 

s=l 
i ao* 

(n Cov[4]) d90-, V2 =-T 
n d9q o=O, Oq 

V[YI Z= 0, sso =1] 

r, - dso 

0=0, 
I 
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where (n Cov [41) is a (K - 1) x (K - 1) matrix representing the asymptotic covariance 
matrix of the estimated strata boundaries, defined for j, k=1, 

.... K-1, j>k, as 

(n COV [4 I)jk :: 
P(p,, (X) > qj,, ) P(p,, (X) < qko) 

fp (qj,, ) fp (qko) 7 

where fp( -) is the probability density function of the propensity score and a, 3' 
aq-F 

I 

0=0" 
is a1x (K - 1) vector with 

K 

=I: r, fE[Y I Z= I, S, = 1] -E[Y I Z=O, Ss 
S=l 

which is equal to the 'true' value of ýS, 0, ' , but seen as a function of the strata 
boundaries, q, rather than evaluated at the population strata boundaries. If we were 
to replace S, by S,,,, then 0* would be equal to 001) our parameter of interest. 

We have therefore now derived conditions under which 6 is consistent and asymptot- 
ically normal, and we have calculated its asymptotic variance. The implications of 
this variance formula and the variance components are discussed in the main text, 
(Section 3.4). 



Appendix B 

Proof of Theorem 3.2 

1 Introduction 

In this appendix we investigate the asymptotic properties of the stratified treatment 

effect estimator, ý', assuming that the propensity score is estimated from the data 

using a correctly specified logistic regression model. We begin, in Section B. 2, by 

using standard asymptotic theory to demonstrate that 3' is a consistent estimator 

of 05 when the propensity score is estimated '. We then, in Section B. 3, show that 0 

, 
3' is asymptotically normally distributed. We finish by determining its asymptotic 

variance using M-estimation theory, in Section BA. This turns out to be distinct from 

the asymptotic variance of the stratified treatment effect estimator obtained when the 

propensity score is a known function of the observed covariates. 

This appendix uses the notation given in Section 3.1.1. We now write the propensity 

score as p (X; a,, ) and p (X; 6L) when the propensity score parameters are known 

and estimated, respectively, rather than the notation that we used before, P (X) and 

po(X), in order to emphasize that the propensity score is now an estimator depending 

on the unknown parameters a. In order to ease our way into the proof, we give a 

brief review of the estimator, ý', and the estimating equations used to obtain it. 

B. 1.1 Estimating the stratified treatment effect 

In the notation of Section 3.1.1, where, for subject i, Yi and Zi denote the outcome 

and treatment, §si = 1[q(', 
_1)ý: p(x; 6, )<4. ] is an indicator for the Sth sample stratum, r. is 

the fraction of the sample in theSIh stratum, and d, is the fraction of the sample who 

'We show that ý' is consistent for the population parameter Since this is usually different 

from the population average causal treatment effect, J, this means that Y will usually not be 

consistent for f%. 
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are treated and in the SIh sample stratum, the stratified treatment effect estimator is 

IKn Yi Zi ýsi Yi (1 
- Zi) ýsi 

S=l i=l s r. - 
ds 

We assume that the propensity score is related to the observed covariates as follows, 

In p (X; a. ) CTX. 
1-p (X; a,, ) 0 (B. 1) 

As discussed in Chapter 3, we obtain 3' as a component of the vector solution to the 

set of estimating equations 

ýb (Yi, Zi, Xj; d, q) =0 (B. 2) 

The vector solution is 0 defined by 0T= (ýs, aT, 4T, &T), where the population values 

of these parameters are: ct, the population propensity score parameters, q,,, the 

population strata boundaries, d,,, the population probabilities of being both treated 

and in each stratum, and 00, the 'true' stratified treatment effect. 

, 0(2K+m)xl IpT =(1, ýbT, 7pT, ýbT), The estimating equations (B. 2) are defined by where ýb 234 

with 

Yizisý, i Yi('-z. )S., ý ell '1 (Yi, Zi, Xi; 0', d, q) = 
(ES=, ý 

d., r� -d., 
>1- 

09) 

oKxl (Zi, Xj; d, q) 2 

ýb(K-l)xl (Xi; q) 3 

Zi Sli - di 

ýZj SKi 
- 

dKI 

Sli ri 

ýS(K-l)i r(K-1)) 
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'ý 

( (Z 
i_ 

exp(ct7X, ) )XIi ) 

1+exp (CkTX, ) 

MX1 
4 

(Zi, Xi 

ý(Zi 
exp (CTX, ) 

1+exp(CITX, ))XMi/ 

where the stratum indicator, Sjj 1[ q(, :5 p(X; ct) < q. ]is a function of both the un- 
known propensity score parameters and the unknown strata boundaries. We also 
define qo =0 and qK = I. We now use this representation of the estimation process 
to ascertain the theoretical properties of the stratified treatment effect estimator, j. S. 

B. 2 Consistency 

We now show that each component of the estimator 0 is consistent, where bT 

('3S 
7dT, qT' a T). We begin by establishing the consistency of the estimated propen- 

sity score parameters, &. We then consider the consistency of the estimated strata 
boundaries, 4, treating the propensity score parameters as nuisance parameters. We 

then consider the consistency of the estimated probabilities of being treated and in 

each stratum, a, treating both the strata boundaries and the propensity score pa- 

rameters as nuisance parameters. Given the consistency of 6z, ý and a, we then 

demonstrate the consistency of the stratified treatment effect estimator, 

B. 2.1 Consistency of the estimated propensity score parameters 

The propensity score parameters, ci, are estimated using a maximum likelihood lo- 

gistic regression model. These parameters are known to be consistent and globally 

identifiable [17], provided that the model (B. 1) is correctly specified. 

B. 2.2 Consistency of the estimated strata boundaries 

We demonstrate the consistency of the estimate of the first strata boundary, 41. This 

is the r, h quantile of the sample distribution of the estimated propensity score. The 

population parameter we wish to estimate, ql,,, is the ri h quantile of the population 

distribution of the propensity score. In order to demonstrate consistency of this 

estimated strata boundary, when the propensity score parameters are consistently 

estimated, we refer to Theorem A. I. In order to apply this theorem we need to find 

a (criteria) function of q, and the data that is maximised by the sample quantile. 41. 
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The r, h quantile of the sample distribution of the estimated propensity score, 41. can 
be expressed as the value of q, that maximises the equation 

n 
Mn (ql; (1 

- rl) (q, 
- P(Xi; 61))l[p(Xi; &)<ql] + rl(P(Xi; l 

61) - ql)J[P(X,. dt)>ql] 

We now show that the conditions of Theorem A. 1 are satisfied. The funct ion . 11,, (ql; ct) 
is concave in q, and so condition (i) of the theorem is satisfied. ýVe now need to show 
that the value of q, that maximises the function Al,, (q,; ci. ) is globally identifiable 

and equal to the rl' h quantile of the population distribution of the propensity score, 

ql,,. By the law of large numbers, as n -* oc, for any q, and a, 

M,, (ql; a) --P+ M (ql; a) 

= fE[p(X; a) 1 [p (X; cx) <ql] 
]-q, P(p(X; ci) < ql) -r, E[p(X; ct)] +qlrll. 

Given a, since M(ql; ci) is a convex function of qj, this is maximised at a point where 
49M(ql; ct) 

- 0. Differentiating M,, (ql; ci) using the product rule and appealing to the aql 

fundamental theorem of calculus, 

i9M(ql; a) 
= q, fp(ql; P(p (X; a) < ql) - q, fl, (ql; a) + rl, Oqj 

provided that the probability density function of the propensity score, fp( - ), is con- 

tinuous. Setting 
aM(ql; cx, ) 

=0 shows that M(ql; a,, ) is maximised by the value of aql 

q, such that P(p (X; ct,, ) < qj) = rl. This value of q, is exactly the parameter we 

wish to estimate, the r, h quantile of the population distribution of the propensity 

score, qj, As before, provided that the cumulative density function of the propensity 

score is strictly monotone and continuous at the population strata boundary, qj, this 

point is unique and therefore globally identifiable. So condition (ii) of Theorem A. 1 

is satisfied. 

We now merely have to show that condition (iii*) of Theorem A. I is satisfied in order 

to prove that the estimated strata boundary, 41, is consistent when the propensitý' 

score parameters, ct, are estimated. To do this, we need to show that each of the 

parameters0k, for k=1, ..., m, satisfies the Lipschitz condition with respect to the 

criteria function M(ql; ce). We do this by showing that tile first derivative of . 11(ql; a) 

with respect to ak, is bounded, since this guarantees condition (tiiý) [6]. Inspection 
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of the above formula for M(ql; a) shows that its first derivative with respect to ak 
will be bounded provided that the following three functions are bounded, 

aE [p (X; a) 1 [p (X; ct) <ql ]I 

190k 

a P(p (X; a) < ql) 
0Ok and 

aE [p (X; ce) 
19ak 

We can write the first of these three functions in integral form as follows, 

ql 

fE[p(X; a)l[p(X; ct)<qll 

Ip 
fp (p; ct) dp 

19ak 19Cf k 
0 

Provided that the probability density function of the propensity score is continuous 
in a, in other words, continuous in the propensity score, we can exchange the order 

of integration and differentiation, giving 

ql 

fE[p(X; a) I [p (X; a)<ql] 
IIp ffp(p; a) dpl :ýq, SUPpE[O, 

ql) 
l9fp (P; CO 

09Cik 19Cek aak 

0 

So this derivative will be bounded provided that the derivative '9fP('; ': ') is bounded. aOrk 
The same argument shows that the same conditions guarantee that 

aNI(ql; ck) is bounded. ackic 
Then the first estimated strata boundary, 41, is a consistent estimator of the first pop- 

ulation boundary, ql,,. In the same way, we can show that all the estimated strata 
boundaries, 4, are consistent estimators of the population strata boundaries, q,,, un- 
der consistent estimation of the propensity score parameters. 

B. 2.3 Consistency of the estimated probabilities of being treated, and in each stratum 

We now show that the estimated probabilities of being treated and in each stratum, 
A 

d, are consistent estimators of the analogous population probabilities, d, when the 

strata boundaries and the propensity score parameters are consistently estimated. 
In particular, we consider the consistency of dl, the estimated probability of being 

treated and in the first stratum. We again appeal to Theorem A. 1 in order to prove 

this. We have seen that the parameters d, q, and ct,, are globally identifiable, so 

condition (ii) of Theorem A. 1 is satisfied. We saw in Appendix A. 2.2 that when 

the propensity score is known, the estimator j, can be obtained by finding the value 

of d, that maximises a particular criteria function. When the propensity score is 

estimated, we view the criteria function as a function also of the estimated propensitý 

score parameters, &, and then we can obtain ýj from the same criteria function, 
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M,,, (di; 41,6z). This function is concave in d, and M, (dl; ql, ct) Po 
-11(dl; ql, ct) as 

n --+ oo, where 

ql 

2 M(dj; ql, (I - 2dj) 
Ip 

fp(p; a) dp +d 

0 

In order to show that di is consistent when the propensity score parameters are 

estimated we merely need to show that the Lipschitz condition holds for each ak with 
respect to the function M(dj; qj, a). It is sufficient to show that 

9M(dj; qj, a) is bounded aak 
for each k m. We can see immediately that this will be true provided that 
the the probability density function of the propensity score is continuous and that 

the derivatives afP (P; Ct) exist and are bounded. Then the estimated probabilities of 490k 

being treated and in each stratum, d, are consistent estimators of d,, under consistent 

estimation of the strata boundaries and propensity score parameters. 

B-2.4 Consistency of the stratified treatment effect estimator 

We now show that the stratified treatment effect estimator, ý', is a consistent es- 
timator of 0,, ' when the propensity score parameters are estimated using a correctly 

specified logistic regression model. We saw in Appendix A. 2.3 that ý' can be obtained 
by finding the value of 0' that maximises a criteria function A/I,, (0-9; 4, a, &) that is 

concave in 0', where 
(, 3'; q, d, a) --Pý M (0'; q, d, a) 

with 

E[YZS�] E[Y(I-Z)S, ] 
(, ß'; q, d, a) =_ (os) 2+ 20' 1: r, d, 

1 

s=l 
K2 E[y2ZS 

s Er. 
d2 

S=l 8 

E[y2(1 -Z) Ss] 

(r, - 
d, )2 

1- 

We have already seen that each of the unknown parameters is globally identifiable. 

Therefore, conditions (i) and (ii) of Theorem A. 1 are satisfied. We now need to show 

that the Lipschitz condition is satisfied for each propensity score parameter ak, for 

k=1, ..., m. In order to do this we show that the first derivative of . 11 (, 3; q, d, a) 

with respect to ak, for k=1,.., m, is bounded. We can see immediately that this will 
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be true if the following functions are bounded, 

a E[YZS, ] 
aak 

a E[y2ZS 

0 E[Y(l - Z)S, ] 
Oak 

y2 (I _ Z) S, E 
5] 

OCfk I 
190k 

By writing each of these expectations as an integral over the propensity score values 
in a stratum, interchanging the order of integration and differentiation and appealing 
to the fundamental theorem of calculus, we see that the four functions above will be 
bounded provided that 

e the probability density function of the propensity score is continuous and bounded 

everywhere; 

the derivatives 'fP(') exist and are bounded everywhere, for k rn; Oak 

e the following expectations are continuous in p and bounded everywhere, for 

0,1, 

E[Y I Z= t' P(X) =p]7 E[y2 jZ = t' P(X) = P]; 

* the following derivatives exist and are bounded, for t = 0,1 and k=M, 

0 
fE[YI Z= t, p (X) =p]ll 

0 
{E [y21 Z= t' P (X) =p] 1. 

99Cek 1904 

Then all the conditions have been satisfied and so the stratified treatment effect 
estimator is a consistent estimator of 0, ' , The implications of the conditions attached 
to this consistency are discussed in the main text (Section 3.3). 

B. 3 Asymptotic normality 

We now consider the asymptotic sampling distribution of the estimator 6, where 
bT 

= (4s, aTj 4T, &T). We refer to Theorem A. 2 which states conditions under which 
n 

an estimator, b, obtained by solving the estimating equation -1 Ej=j ýb(Xj- 0) = 0, is n 11 

asymptotically normal. Our estimating equation is defined by ýb 
T=(, 011 IpT, ýb 

T, 
ýbT)' 234 

where0l '02,03and '04are defined in Section B. 1. We now ensure that all conditions 

of Theorem A. 2 are satisfied. We have already demonstrated consistency of 6, ancl 

that the maps W --+ iPj (W; 0) are Donsker, for j=1,2,3 (see Section A. 3). We 
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also need to show that the map W --+ lP4(W; 0) is Donsker., where W= (YI Z, X) 

represents the data. We then show that the maps 0 ---ý ýb (W; 0) are continuous 
in probability. The final condition of the theorem is that the derivative matrix, 

'9 804 
{E[, O(W; O)]}j0=0., exists and is non-singular. This will be demonstrated i T in 

Section BA. 

The map W 1P4 (W; 0) is defined as aZ- 
exp (CTX) 

1 +exp (CTXý 
)X. Example 19.7 

of van der Vaart [108, p. 271] states that a function of 0 satisfying the Lipschitz 

condition with respect to 0 is Donsker. The first derivative of the map W --ý ýb4 (W) 

with respect to ak is bounded for k=m, and so the Lipschitz condition is 

satisfied. Therefore, this map is Donsker. Note that the same condition guarantees 
that the map 0 --ý ýb4(W; 0) is continuous in probability. 

We now show that the map 0 03j(W; 0) is continuous in probability. If we define 
OT = (3', qT, dT, Cj ) and O"T ((, 3')', q IT 

,d 
IT, OerT ), then we need to show that 

E[ lýb3j(W; 0) - ýb3j (W; 01) 11 
---> 0 

as 0 --+ 0'. Using the definition of ý03 given in Section B. 1, 

ý73j (W 
ý 

0) - ý% (W; 01) 1]=E[ ll[q(j-1): 
5(X; cx)<qj] - I[q(j_1): 5p(X; ctl)<q ij 

]- 

Using the triangle inequality, 

ý)3j (W; 0) - ýb3j (W; 01) 11 
:5 ei + e2 + P-ý) 

where 

e, == E[ 11 [q(j 
- 1): 5p (X; ct) < qj ]- 

1 [q(j 
- 1): 5p (X; ce) < (Ij. 11 1 

e2= E[ ll[q(j-1): 
5p(X; ct)<qj] - 1[q(j_ 

1): 5p(X; cx)<qj]l 
1 

e3= E[ [qj ] 11 

_1)<p(X; 
cx)<qjl - 1[q'j 

q' (- 1) 
<p (X; cx') <, 

We saw in Appendix A. 3 that el and e2 tend to zero as q --- * q' , provided that the 

probability density function of the propensity score is bounded. ýVe can write e3 in 
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integral form as 

fp(p; a) + fp(p; ct') I dp 
[qf qý' U- 1) 1 

as ce --+ cil, provided that the probability density function of the propensity score, 
fp (-), is continuous in a. Then 0 ---ý lP3j (W; 0) is continuous in probability. 

In the same way we can see that the maps 0 --ý lP2k (W; 0) and 0 --ý V), (W; 0) are 

also continuous in probability, for k=K, provided that the probability density 

function of the propensity score, fp( - ), is continuous and bounded. 

The final requirement of Theorem A. 2 is that the derivative matrix Toor Jýb (W; 0) 11 0=0, 
should exist and be non-singular. This matrix is calculated in Section BA, and con- 
ditions under which it exists and is invertible are stated. Provided that this inverse 

exists and the conditions we have found are satisfied, then the conditions of Theorem 
A. 2 are satisfied and 0 is asymptotically normally distributed. 

BA Asymptotic variance 

AýT 

We have now established conditions under which the estimator 0, defined by 0 

d is consistent and asymptotically normally distributed. We now use its 

asymptotic distribution to calculate the asymptotic variance of the stratified treat- 

ment effect estimator, ýs, assuming that the propensity score is estimated using a 

correctly specified logistic regression model. We denote this variance by V, 
(D 

where the 'e' refers to the estimation of the propensity score. 

B-4.1 M-estimation theory 

The general M-estimation theory outlined in the main text (Section 3.1.2) shows that 

if we let 

A =E 
0 

flo(Y, Z, X., 0)} (B. 3) 1- 
aoT o=O, 

1 

E[ ýb(Y, Z, X; Oo) ýbT(y , Z, X; 00) 1 
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then the large-sample covariance matrix of 0 is given by 

1 
-T Cov(O) - A-lBA (B. 4) 

n 

We furthermore stated that when the function ýb(Y, Z, X; 0) is not differentiable with 
respect to 0, as in our example, the order of differentiation and expectation can be 

exchanged and so 

7fE[ýb(YZ, X; 0)]l 50 o=O, 
' 

(B. 5) 

However, this is only a valid approach under certain regularity conditions. Although 

we do not list these regularity conditions, the application of Theorem A. 2 shows that 
it is valid in our problem. Therefore, when a component of ýb (Y, Z, X; 0) is not 
differentiable with respect to 0 we use (B. 5). For components of O(Y, Z, X; 0) that 

are differentiable with respect to 0, however, since the two versions of A are then 
identical, we usually use (13.3), since this is often more convenient. 

Allowing for definition (B. 5) to be used if necessary, (B. 4) is then equal to the variance 
given at the end of Theorem A. 2, and the large-sample variance of the stratified 
treatment effect estimator, ýs is 

I 
-T)11. V, [O'] =V[ (0), ]=- (A-lBA 

n 

We have partitioned the parameter 0 into four components, OT = ()3s; dT, qT ) Ct T). 

The matrices A (2K+m)X(2K+m) 
and B (2K+m) x (2K+m) 

can be partitioned in the same 

way. Then 

all a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44) 

where for j=1,2,3,4, 

aj, =-a {E [ýbj]j 
a, 3s 0=0" 

aj3 -- 19 
T JE [ýbj ]I 

aq 0=0, 

aj 2 == -a JE [, Oj ]I 
adT 0=0" 

a 
aj4 aCtT 

V)j 
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These sub-matrices of A have the following dimensions: 

1xI 

Dim 
Kx1 

(K- 1) x1 

mxI 

IxK1x (K- 1) 
KxKKx (K - 1) 

(K-I)xK (K-I)x(K-1) 

xm 

IS6 

xm 

m (B-6) 
(K - 1) Xm 

mxm 

where rn is the number of covariates included in the logistic regression model used 
to estimate the propensity score. We have already defined the sub-matrices aij for 

i, j=1,2,3, in Appendix A. 4.2. Since the function '04 does not contain 3', d or q, 
differentiating with respect these parameters results in zero. Therefore, a4l , a42 and 

a43 are zero matrices. Then A is 

1 a12 a13 

which has inverse 
1 

01 a23 

00 a33 

ýo 00 

-a12 
(al2a23 

- al3)a-1 33 

-a23a-1 33 

0 a-' 33 

00 

a14 

a24 

a34 

a44 

a* 
(a23a-la34 - a24)a-1 33 44 

-a-la34a-1 33 44 

a-' 44 

where a* == (al2a24- al4)a-' - (al2a23- al3)a-la34a-1. The conditions under which 44 33 44 

the sub-matrices a12, a13, a23, and a-' exist have alreadY been investigated and are 33 

stated in Appendix A. 4.2. Conditions under which the sub-matrices a14, a24, a34 and 
a-' exist are investigated later in this section. When these sub-matrices exist, so 44 

does the inverse A-'. The existence of this inverse is one of the conditions for the 

asymptotic normality of 6. 

Partitioning the matrix B in a similar fashion gives 

bil b12 b13 b14 

b21 b22 b23 b24 

B 
b3l b32 b33 b34 

b4l b42 b43 b44) 

where 
bjk =E[ ýbj (0,, ) IpT(OO) j, for j, k=1,2,3,4. The dimensions of t liese sub- k 

matrices are also given by (B. 6). 
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We have seen that n V, ( ý-9 ]= (A -'B A -T )11. Multiplying out . 4-1BA -T and taking 
the (11 1)th component, remembering that B is symmetric, gives 

TT 
n V. [)38 bi 1- 2bl2al2+ al2b22al2 

+ (al2a23 
- al3)a-1 f 2b3l - 2b32a TT- 

a13 )Tj 
33 12 + b33a- (al2a23 

33 

+ 2(bl4a *T 
_ al2b24a *T + (al2a23 

- al3)a-lb34a *T) + a*b44a *T. (B. 33 

We can see that the first two lines of the equation above are exactly the formula for 

nV, [ý'] that we had previously when the propensity score was known (A. 13). The 

additional terms are as follows, 

2(bl4 - al2b24 + (al2a23 
- al3)a-lb34)a *T + a* b44 a *T 

33 

These terms represent the additional variance of the stratified treatment effect esti- 
mator due to the estimation of the propensity score. The sub-matrices contained in 

this formula that were not calculated in the previous appendix are calculated in Sec- 

tions B. 4.2 and B. 4-3. These sub-matrices are substituted into the variance equation 
(B. 7) and the variance nV, [ý'] is then calculated by direct matrix multiplication. 

B-4.2 The matrix A 

We now calculate the sub-matrices of A that have not been calculated previously, that 

is a14, a24, a34 and a-'. We assume that the subjects are sampled independently from 44 

the population and so we drop the subject subscript from the following calculations 
in order to simplify the presentation. In particular, note that then Xi refers to the 

ith covariate and not the value of covariate X taken by the i th subject. 

The sub-matrix a14 Since the function 01 is not differentiable with respect to 

the propensity score parameters, Cek, we interchange the order of differentiation and 

expectation and define, for k=1, ..., m, 

(al4)k == -a JE [ V), j }10=0,, 
aCf k 

-aE YZErSs -Y (I - Z) E rs Ss 
- 3s 

19Cfk 

I 

S=l 
ds 

s=l 
r, - ds 

- 0=01. 



B. 4 Asymptotic vaTiance 

Using the equality E[YZS., ] =E[Y I Z= 1, S, = 1]E[ZS, j 
, we get 

K 
(al4) 

k0 
E[Y I Z= 1, SS = 1]E[ZS, ] 

19Cek ds 
I 

0=0" 
K 

19 E [Y IZ=0, S, =I JE [(I - Z) S, ] 
+ET, 

19ak r, - ds 
S=l 0=01. 

ISS 

Differentiating this by the product rule and using the equality E ['0(0,, ) 0, so 
E[ZS,,, I= dso, we have, for k= M) 

Kra 
(al4)k 1: 'q E [Y IZ == 1, So == I] fE [ ZS, ]Jje=eý 

S=l 
dso OCek 

K 

r. a + 1: E[YIZ=O, S,,, =l]- fE[(l-Z)S, =l]ll, 9=, 9,, 
, =l 

r, - dso 19Cek 

I 
r, 

a 
JE [YIZ=1, S, =1]-E[YIZ=0, Ss =1 ]110=0". 

S=l 
&ek 

The sub-matrix a24 Again, we exchange the order of differentiation and expectation 

and define, for 3' = 1, ..., K and k=1, ... 1 M) 

(a24)jk 
a 

IE ýb2j W 
e=e,, =-a fE[ZSj - dj ]I le=e. 

19Cek 

EZI [q(j : 5p (X; cx) < qj 
e=e,. 19ak 

The sub-matrix a34For 1=K-I and k=M, 

(a34)jk (9 IE I ý03j III 9=e,, =-aIE[ Sj - rj II1,9=, 9,, 19Cek l9ak 
a fE[ 1 [qj 

- 1! 5 p (X; ct) <qjl 0=0.. 
19Cek 

The sub-matrix a44 For j=m and k= M) 

0 
(a44)jk 

d9Cek 
{E hb4j Ille=O. 

-- 
'9 E[ 

(Z 
_ 

exp (CTX) ) 
xj 

] 

OC(k 1+ exp (aTX) 
o=O, ' 

E[p (X; cej (1 -p (X; ct�» A-j Xk 1. 
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Conditions under which A-' exists The inverse of the matrix .4 will exist if all 
its components exist. Inspection of the sub-matrices calculated in this section shows 
that this will happen provided that: 

9 the probabilities d, are not equal to 0 or r. for s=1, ---, 
K; 

the probability density function of the propensity score is non-zero at each of 
the population strata boundaries; 

e the following derivatives exist, for t == 0,1, s == K and j=K-1: 

a E[Y I Z=t, S,, 
aqj 

aE [ZS, ] a E[Sj 

o9qj aqj 

By writing these derivatives as integrals over the propensity score, and appealing 
to the fundamental theorem of calculus, we see that these derivatives exist 

provided that both the probability density function of the propensity score and 
E[YIZ=t, p (X; cx) =p] are continuous everywhere in p; 

e the following derivatives exist, for t=0,1, s=K and k=1M: 

a E[Y I Z=t, S, = 1] 
19Cek 

0E[ ZS, (9 E[S, ] 

(9ak (9Cek 

By writing these derivatives as integrals over the propensity score, and appealing 
to the fundamental theorem of calculus, we see that these derivatives exist 

provided that E[YIZ=t, p (X; a) =p] is continuous in p and that the 

following derivatives exist: 

OE[YIZ=t, p(X; a)=p] afp(p; ct) 
190k 001k 

B. 4.3 The matrix B 

In this sub-section, the sub-matrices of B that have not already been calculated, that 

is b14, b24, b34 and b44, are calculated using the formula bjk= E[ ýbj (0o) ýb 
T(O for 
k 

j, k=1,2,3. The equations 011 ýP2) ýP3 and ýb4 are given in Section B. 1. 
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The sub-matrix b14 For 3' = 1,... 1 M, 

(b14)j= E[ V), ý)4j 1 

YZ SSO E 
dso 

s=1 

(1 - Z) 
Sso 

ßs 

r., - d, ý, 

exp (CtTX) 
Remembering that p (X; a,, ) -- (o - we can write I+exp ct-. "X) 

0 

KYZ Xj SSO (b14)j = Yý r, E 
dso 

s=l 

190 

exp (of TX) 

1+ exp (CtTX) 

)- 
yj 

YZSSO 
(X; Oto) Xi 

( 
dso 

Y (1 - Z) SSO 
r. - dso 

)1 

And using the equality E[YZS,,, ]=E[YIZ=1, Sso =I] dso I we have 

K 
(bl4)j= Yr, IE[YXj I Z= 1, S,,, = l]-E[Yp(X; a,, ) Xj I Z= 1, S,,, = 11 

-E[Yp (X; ci�)Xjl Z= 0, S�, = 1]1. 

Then for j= 17 , m, 

(b14)j=I: r, E[YXj (1-p (X; aj)1 Z== l, Sso=l] 
s=l 
K 

+Er, E[YXjp (X; a�)I Z= 0, Sso= 1]. 
s=l 

The sub-matrix 
b24 For j=K and k= M) 

(b24)jk= E [, OT 04k 
2j 

T 

E[ (Z Sj� - dj�) Z- exp (a. X) 
Xk 

+ exp (eiTX) 
01 

=E[p (X; cej (1 -p (X; Ci. » Xk Sio 1- 

The sub-matrix b34Forj = 1,..., K- 1 and k=1,.... IM, 

(b34)jk= E[ ýbT '04k 3j 

) 
(Z exp (et T X) 

E[ (Sjo - rj (eiTX) 

) 
Xk 

+ exp 0 

= 
E[ Z Xk Sio 1-E [P (X; Cio) Xk Sio 1=0, 

where the last line was reached since by conditioning oii the observed covariates, X. 
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The sub-matrix b44 For j=1, ..., M and k=1...... m, remembering that the 
propensity score is defined as p (X; a,, ) _ exp (ctTX) 

- 1+exp (CXTX) 7 

(b44)jk= E[iPT4j ýb4k I 

Ez exp (cf OTX) 
2 

1+ exp (Cf TX) 
Xi Xk 

0)I 

E[p (X; cio) (i -P (X; Clo)) Xj Xk Ii 

When a maximum likelihood regression model is used, the matrices A and B are 
identical. Since the propensity score parameters are estimated using a maximum 
likelihood logistic regression model, we therefore expect the matrices a44 and b44 to 
be equal. Comparing these two matrices shows that this is indeed the case. 

B. 4.4 Variance of the stratified treatment effect estimator 

We have already seen that 

n Ve [)3" bi 1- 2bl2a T+ 
al2b22a 

T 
12 12 

(al2a23 
- al3)a- 1 31 32a 

TT )Tj 
33 f 2b - 2b 12 + b33a- (al2a23 

- a13 33 

2(bl4a *T 
_ al2b24a *T + (al2a23 

- al3)a-lb34a *T) + a*b *T. 
33 44a 

The sub-matrices involved in this formula have been calculated. Some rather lengthy 
direct matrix multiplication of the right-hand side of this equation shows that 

2 T+ 
1 

T. Ve[0'51: 
-""': 

vl+v2+- C (nCov[&])D -D (n Cov[6i]) D (B. 8) 
nn 

V, and V2 are defined as in Appendix A . 4, and C= (Cl, ---, C,,, ) and D= (Dj, .. -, D,,, ) 

are defined, for k == 11 ... ) m, as 

K 
Ck = Er, Cov[ Y, Xk(1 -P(X; a, ») IZ = 1, Sso 

3=1 

K 

+Zr, Cov[Y, Xkp (X; ct�)I Z= 0, Sso= l], 
s=I 

Dk = 
ao* K-1 0* 

fp (qj,, ) -1aIE[1 (p (x; (, ) < q, I]II 0= 0. , 
E 

aqj 
9=, g 19ak 19Cek 0=00 j=l 0 

(B. 9) 
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and K 

, 
3* = I: rIE [Y IZ=1, S, = 1] -E [Y IZ=0, Ss = 111, (B-10) 

, 9=1 

which is equal to the 'true' value of ý3,3,,, but seen as a function of the strata 
boundaries, q, and the propensity score parameters, a, rather than evaluated at 
their population values. The covariance matrix Cov[6L] is defined in terms of its 
inverse, for J. )k=1, ..., m, as 

(n Cov ])3-kl =: E[p (X; ci) (I -p (X; ci)) Xi Xk 
ik 

B. 4.5 An alternative parameterization 

We now re-parameterize the two last terms in (B. 8) in order to simplify the estimation 

process. In order to do this we show that D =: -C + e, where e= (el,..., e, ) is some 

error term. Then substituting this into (B. 8) gives, 

Ve[/35 Vl + V2 C (n Cov[ 6z ]) C' +Ie (n Cov[6i]) e 
nn 

Then defining V3 =- -1 C (n Cov C' and V4 = -1 e (n Cov eT nn 

Ve[ý'51 ý V1 + V2 + V3 + V4- 

We begin by expressing the first term of D, the derivative 2- -, as -C plus some act 
I 
e=e,, 

'3- 

error term which we will denote by e,, = (e,,,, 
..., ec,,, ). Using the formula 

E[YZS, ] =E[YI Z= l, S, = l] E [Z S, ]j 

we see that 

19 JE [YIz=1, ss = I]IIO=O. 
i9ak 
1 (9 fE [Y Z S, J}10=0. 

E[YjZ=1, $, o=l] (9_ JE[ZS, ]11, 
=,.. 

(B. 11) 
dso 19ak dso i9ak 

A similar expression holds for the derivative of E(YIZ=0, S, =I]. We now 

calculate the two derivatives in the right-hand side of (13.11), and give the analogous 
derivatives for the untreated group. 
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The derivatives '9 JE [ZS. ]I and JE [ (1 - Z) Sý; 
0=0. 09ct act 

We show the calculation of only the first of these derivatives, since the second can be 
derived in exactly the same way. By conditioning on X and taking expectations over 
the 'true' distribution of the data, we can write, for k=1, ... 1 mI 

aa 
T- fE[ZSIll, 9=oo - fE[p(X; a,, )SJllo=o. 

19ak 
q, 

-9f E[p(X; ct,, )Ip(X; a)==r]fp(r; a)dr 
19Cek 

where the function fp( -; a) is the probability density function of p (X; a), i. e. the 

probability density function of the propensity score seen as a function of ct. Ex- 

changing the order of integration and differentiation, and then differentiating using 
the product rule gives 

19 JE [ ZS, ]I 10=0,, aak 

q., 

qs-l 

a 
JE[p(X; a,, ) I p(X; a)= rj I le=e,, fp(r; aý) dr 

Oak 

E[p(X; a,, ) I p(X; a,, )= r] aI fp (r; a) II 0=0. dr. 
19Cf k 

In order to simplify this, we first consider the derivative of the conditional expectation, 
E[p (X; ci,, ) Ip (X; ce) =r]. Differentiating model (B. 1) shows that the derivative of 

p (X; a) with respect to Cek is Xk P (X; a) (1 -P (X; Ci)) , for k= 1, ..., m. Then a 
Taylor series expansion of p (X; a,, ) gives, 

mm 
P (X; Cio) =P (X; a) +E (Ceko - Cek) Xk P (X; CX) (1 -PN CO) +0 ((Ckko - Ok 

k=1 k=1 

Taking expectations of this gives 

, rn 

E [p (X; ct�) 1p (X; ce) =r]=: r+ 
E(Ozko 

- Cek) E[XklP (X; C9) =rlr (1 -r) 
k=l 
rn 

+Z Op«Czko - Cik )2). 

k=l 

Differentiating this with respect to ak, for k= 17 ... , m, gives 

a 
JE[p(X; p(X; a)= r I) lo=e. = -r(1 - r)E[Xk I P(X: Oi) 

19CVk 
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Note that this is an exact result since for b> 21 

19 19(a)(Ctko 
- Cek )bj ý gl(Cio)(Ceko - Ceko )b + g(ao) b (ako - ako) (b-1) = aak 

Then 

0 
{E[ZS, ]11,9=, 9� = -E[XkP (X; aJ(I -P (X, ao»Ssol + Ifik 

0Cek 

where 

Similarly, 

q,,, 
If 

kf fp(r; ci)11,9=0. dr. 
190k 

0 
fE[(1 - Z)S, ]11,9=, 9. =: E[XkP (X; CO(I -P (X; Cto»ssol +Ifok 

19ak 

where If 
okf(1- r) fp (r; ce) dr. 

q(., - 1)� 

194 

Note that the expectation that appears in both the derivatives above is negative in 

the first and positive in the second. This is due to the fact that 

Op (X; a) 19 (1 -p (X; ce)) 
aCek 19Cek 

The derivatives -l- JE [YZ Sý and -ý2- JE [Y (1 - Z) Sý e=o. act act 

As before, we calculate only the first of these derivatives, since the second can be 

derived in exactly the same way. By conditioning on X and taking expectations over 
the 'true' distribution of the data, we can write, for k=1, ... 1 MI 

a- 
JE [YZS, ]110=0,, =afE[Y, p (X; a,, ) S, ]110=0,, 

aak aak 

q, 
a 

JE[Yip(X; ci,, ) I p(X; ce) = r]110=0. fp(r; a, ) dr 
49Cek 

q(., - 1) 

q. 

+f E[Yip(X; a,, )Ip(X; a,, )=rj (9 1 fp(t,; a) 110=0,, dr. 
(9Ctk 

q(. 

where, as before, fp( -; ct) is the probability density function of the propensity score, 
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seen as a function of ct, rather than evaluated at ct,,. Letting g(X) =E[Y, IX], a 
Taylor series expansion gives 

, rn 

9 (X) P (X; Ci. ) =9 (X) P (X; a) + 1: (ako - ak) 9 (X) Xk P (X; CK) (1 - (X Ct» 
k=l 

m 
E 0((ako 

- Cfk )2), 

k=l 

and so taking expectations gives 

E[Ylp(X; a, )lp(X; a)=r] = rE[Yllp(X; ci)=r] 
mm 

(Ceko 
- ak)E[YXkIP (X; a) == r]r(1 -r) +Z Op«ako -Cfk 

k=I k=l 

which, when differentiated with respect tO ak, gives 

a 
fE[Yip(X; a,, ) I p(X; a) =rj I lo=o,,, 

aak 

ak 
rT-fE[Yllp(X; ci)=r]11,9=0. -E[YXkIP(X; a)=r]r(l-r). 

This is again an exact result since the error terms in the Taylor series expansion all 

vanish when the derivative is evaluated at ci,,. Then, 

(9 äc, 
kfE[YZS, 

]11,9=, 9. = -E 
[ Yl Xk P (X; Cio) (1 -P (X; Cio» Sso 1 

q, 

JE[Yllp(X; a)=r]llo=o. fp(r; a,, )dr 
i Uuk 

q, -l 
q, 

rE[Yi lp(X; a,, ) 
19ak 

q, -l 

Therefore, combining two of the terms above, 

f fp (r; a) II 
0=0,, 

dr. 

a 
JE[YZS, I} - 

E[YXkP(X; O-o)(1-P(X; Cto))Sso]+IYlki 
19Cek O=o,, 

q, 

where IY, kfr 49CIk 
JE[Yj I p(X; ct) = r]fp(r; a) 11,9=0. dr. 

q(., - 1) 
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Similarly, 

196 

-0 tE[Y(l -Z) S, ]l --E[ YO Xk P (X; Cio) (1 -P (X; Cto» Sso 1 4- IYok, 
OCek 

o=O. 

q, 

where ly,, k= f (1-r)--ý--IE[Yolp(X; a)=r]fp(r; a)11,9=0. dr. 19ak 
q(,, - 1) 

The derivative 2-3-1 Substituting the two derivatives we have just calculated ii1to 19a 
(B. 11), we find that 

a 
fE[Y I Z= 1, Ss =I 

19ak 

(IYýk -E[yIZ == 1, Sso =: 11 Ifik) 
_ Elk, 

dso 

and 

a 
fE[Y IZ=: 0, Ss == 11110=0" 

19Cek 

where 

(IYok 
- E[YI Z= 0, Sso 

r, - dso 

E[ Yl Xk P (X; Cto) (1 -P (X; Cio)) Sso I 

11 Ifok) 

+ EOk7 

dso 
E [Y 1Z=1, S, 0 =1]E [XkP(X) * Cio) P (X Cio» Sgo 

dso 

and 

E[ YO Xk P (X; Oo) (1 -P (X; Clo)) Sso I 
-L-i k r, - dso 

E[YI Z= 0, Sý, o = IIE(XkP (X; Oo)(1 -P (X; ao»Sqol 
r, - dso 

Then substituting these derivatives into 3* (B. 10) we have 

K (IY 
k-E[Y IZ=I, Sso = 11 Ifik) 

i9ak 0=0. dso 
K (lYok-E[Y IZ=0, Sso =1 I Ifok) 

Er, 
r, - dso 

S=l 
K 

E r, jElk +EOkl- 

S=l 

(B. 12) 
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K We now show that E, 
=, r, 

lElk+ EOkj = Ck, for k m. We can write 

E[ Yj Xk P (X; ao) (I -P (X; ao)) S,,, 
dso 

and 

E[ Xk P (X; Cfcp) (1 -P (X; Cto)) Sso 
dso 
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=E[yXk (I -P(X; Cio)) I Z= 1, Sso= 11, 

=E[Xk (I -P(X; Cto)) I Z= 1, Sso = 11. 

Using the formula Cov[AB] == E [ABJ - E[A]E[B], we find that 

Elk COV [ Y) Xk (1 -P (X; Cgo)) IZ 17 Sso 11 
- 

Similarly, 
EOk =: COV[yi XkP (X; Cto)I Z== 01 Sso = l]. 

Comparing these equations with the definition of C (B. 9), we see that, as required, 
EK rsjElk +EOk I =: Ck, for k m. Therefore, if we define 

5=1 
K 

eak ýEr, 

S=l 

(lYl 
k-E[YIZ=I, 

So = 11 Ifik) (-IYok-E[Y I Z=O, So = 1]14 
I dso 

then from (B. 12) we have that 

r, - dso 

a, 3* 
= -Ck + eak) 

(%ek 0=0,, 

If we further define 

eqk 

K-1 go* 
fp (qj,, ) JE [ Sj ]110=0. E 

aqj 0=0.19Cek j=l 

then Dk 
--` - 

Ck+ eak + eqk. We then combine these two sources of error, and write 

ek= eak + eqkwhere e= (el,.., e,,, ), to show that D= -C + e, as desired. 

B-4.6 The re-parameterized variance of the stratified treatment effect estimator 

Using this new parameterization, the asymptotic variance of the stratified treatment 

effect estimator can be written as 

Ve [)3'9 VI + V2 + V3 + V4; 
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where V, and V2 are defined as in Appendix A-4, and 

V3 
IC 

(n Cov [ 61 CT 

n 
V4 

1e 
(n Cov[ eT 

n 

where C= (Cl, 
--., C .. ) is defined, for k=1, ..., m, as 

K 
Ck =: 

1: 
r, COV[ Yi Xk (1 - Po(X» 1 Z: = 1, Sso = 11 

s=l 
K 

Z 
r� COV[ Yi Xk Po(X) 1Z= 01 Sso =1 

s=l 

19 
lllý 

The covariance matrix (n Cov [ 61 ]) is defined in terms of its inverse, for J, k=1, .. -, m, 
as 

(n Cov [ä ]) -' =E[ p� (X) (1 - p� (X» X, Xk ]. 
jk 

Finally, e =- e, ) where ek is defined as ek = eak + eqk, for k=m, with 

k 

ecxk -' 
Z 

r, 
(IYi k-E[Y1Z == 1, Sso 11 Ifi k) (IYok 

-E[Y1Z z= 0, Sso = 11 Ifok) 

1 dso r, - dso 
1 

where 
q,,, 

Ifi k=rI fp (r; a) I 1,9=, 
g. 

dr 
f 

Oak 
q(, - 1), 

q,, 

Ifo k= r) fp (r; a) II 
0=0. 

dr 
Oak 

q(, - 1),, 
q,, 

IYI k=raIE[Y, Ip (X; ci) =rJ fp (r; ct)} I 
0=, g. 

dr 
I 

Oak 
q(, - 1), 

q,, 

IYo k r) JE [ Yo Ip (X; a) =r] fp (r; a)} I, 
=,. 

dr. 
Oak 

q(,, 

and 

eqk 

K-1 ao* 
fp (qj,, ) -1afE[1 [p (X; a)< qj 

1,9 
= 0. 

E 
aqj 0=19. 

aCek 
j=l 
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We have now written the variance of the stratified treatment effect estimator, j' as 

the sum of four variance components, where the first is the variance formula tVpically 

used in practice, and the remaining three terms are quadratic forms around positi,. -e 
definite matrices. The implications of this variance formula, and the four components 

of variance, are discussed in the main text (Section 3.4). 



Appendix C 

Application of the variance f6mulae to a 
hypothetical situation 

The asymptotic variance of the stratified treatment effect estimator, Y, has been cal- 

culated assuming that the propensity score is: (i) a known function of the observed 

covariates; and (ii) estimated using a correctly specified logistic regression model. The 

resulting two variance formulae, Vk [, Y] and V, where the 'k' and 'e' represent 
the propensity score being known and estimated respectively, are given in Theorems 

3.1 and 3.2. In Chapter 5 these variance formulae are applied to several simple hy- 

pothetical situations. This appendix describes the mathematical calculation of these 

two variances for a simple hypothetical situation ". The calculations described in 

this chapter are implemented in the mathematical software Mathemahca (112]. The 

programs that implement these calculations can be found in Appendix D. 

We begin, in Section C. 1, by giving the general form of the hypothetical situation 

considered. In Section C. 2 we calculate the quantities contained in Vk ['3'9 the 

variance of the stratified estimator of treatment effect when the propensity score is 

a known function of the covariates. We then calculate all the quantities contained 

in V, [ ý' ]- the variance of the stratified estimator of treatment effect when the 

propensity score is estimated - that have not previously been calculated in Section 

C-3. 

This appendix uses the notation given in Section 3.1.1. In order to ease our way into 

the calculations, we briefly review the general hypothetical situation. 

'In this appendix we calculate the 'true' values Of Vk [ ý1' I and V, - 
[ j-P 1. In Chapter 6 we describe 

how to estimate the two variances from a dataset, as would be necessary in practice. 
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The hypothetical situation 

C-1 The hypothetical situation 
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In the hypothetical examples considered in Chapter 5 there are two covariates - 
a binary covariate, X1, and a continuous covariate, X2, with a distribution that 
depends on Xj. The propensity score depends on both covariates. The outcome, Y, 
is continuous and depends on the covariateX2 and treatment status, Z, only. The 
individ ual- level treatment effect is the same for each subject and is therefore equal to 

, 
3,,, the population average causal treatment effect, 3, Details are as follows: 

Outcome: YN+ 72 X2 + Oo Z+67N (0, a 
2). 

Propensity score: In 
PON 

00o +01o X1 + 02o X2 
- I-PW 

Covariates: IP(Xi = 0) =: 7r, o, P(Xl == 1) =1- 7rxo = 7rxl, 

2 2). X2 I Xl 0- N(po, ao), X2 I XI : -: -: 
I- N(pi, or, 

Each of the hypothetical examples in Chapter 5 is a variation of this general situation. 
In this appendix we assume that K strata of equal size are used. The accompanying 

computer programs, in Appendix D, use the parameter values of hypothetical example 
(b), Section 5.2.2, where two strata of equal size are used. This greatly simplifies the 

presentation of the Mathemattca code and can be easily generalised to K strata. 

C-2 Calculating the variance when the propensity score is known 

In order to calculateVk [ 4s I, the asymptotic variance of the stratified treatment effect 

estimator when the propensity score is a known function of the observed covariates, 

given in Theorem 3.1, we need to calculate the following population quantities: 

(a) fl, ( -)- the probability density function of the propensity score-, 

(b) %, = (ql,,, 
..., 

q(K- I)o) - the population strata boundaries; 

d,, = (di, 
..., 

dKo) - the population probabilities of being treated and in each 

stratum; 

(d) V[YIZ=t, Sso = 11, for t=0,1 and s K, - the population variance 

of the outcome, given treatment status and strata-, 
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(e) -I- JE[Y IZ=t, Ss = 11110=0,,, aqk fort= 0,1, s= 1,..., K, and k= L... 'K-1, 
- the derivative of the expected outcome given treatment status and strata, 
with respect to the strata boundaries. 

These population quantities are calculated below in the order given. 

C. 2.1 The probability density function of the propensity score 

Each of the quantities needed to calculate the required variances involves the popula- 
tion probability density function of the propensity score. This distribution is therefore 

now calculated by the Jacobian change of variables method using the known distri- 

butions of the two covariates, X, and X2- We consider the one-one map, 

1 

X2 x pl) , 
where p is the propensity score, defined by 

p(X)= 
exp laoo + alo X, + a2o X21 

1+ exp Iceoo + alo X, + a2o X2} 

Since -9x-l =1 and '9XI = 0, the Jacobian matrix of this transformation is 
49xl aX2 

ap ap axi M Ce2o 
ax, -a& 

OX2 

axi aX2 

Then the usual change of variables formula gives 

fp, xl 
(P) Xi) 

fX 
1 tX2 

(Xl) X2) 

102ol P (I -A 

(C. 1) 

(C. 2) 

where (-) denotes the joint probability density function of the covariates X, and 

X2 and fp,,;, (-) denotes the joint density function of X, and the propensity score. 

We want to calculate the density function of the propensity score alone, fp( - ). Since 

X, is a binary covariate, 

fp (P) = fp, xl (P, 0) + fp', (P, 1). (C-3) 

If p and X, are known, the value Of X2 can be obtained using (C. 1). Given p, we 

denote the value taken byX2when X, =0 by wo(p) and we denote the value taken 

byX2 when X, =1 by wj(p). Then substituting the densities from (C. 2) into the 
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probability density function (C. 3) we get 

fp(P) = 
fX1 

iX2 
(01 WO (A + fX1 

X2 
(11 Wl 

1 a2o 1P (1 - P) 

Writing -) for the density function Of X2 given X, = t, for t=0,1, this 
becomes 

(p) == 
IP(XI =: 0) fX21xIýO(WO(P» + P(Xl = 1) fX21XI=1(W1(P» 

1 a2o 1P (1 - P) 

To simplify this density, we write vo(p) = f.,;, j.,;, =o(wo(p)) and vi(p) = f.,, 
2j_,, =j(wj(p)). 

Remembering that P(Xj = 0) = 7r., o and P(Xi = 1) = 7r_-,, the probability density 
function of the propensity score is then given by 

fp (P) = 
7rxo Vo (P) + 7rx 1V1 (C. 4) 

where 

02ol P (1 - P) 

(wo (p) 
- PO )2 -2 

In P ce.. 

vo (p) = exp 
ý7r- p 

20-2 
ý2 

o- wo (p) 
0 02o 

(wi (p) 
- mi) 22 In (lpp) 

- Ceoo - Ceio 
1 vl (p) == exp 

0-2 

ý2ý7ro-? 
wi (p) 

21 Ce2o 

C. 2.2 The population strata boundaries 

Having calculated the probability density function Of the propenoity ocore we are now 
in a position to calculate the population strata boundaries, q. = (ql,,,..., q(K-l)o)- 
Since K strata of equal size are being used, the jth population strata boundary, qjo, 

solves the equation xP(qj,, ) =0 where 

qj 

(qj) =I fp (p) dp - j1K, 

0 

for i=1, ... ' 
K-1. The root of this equation, qj, is found by numerical approx- 

imation methods using the function FindRoot in the software Alathematica. The 

program which calculates the population strata boundaries for hypothetical example 
(b) (Section 5.2.2) can be found in Appendix D. 2. 
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C-2.3 The probability of being treated and in each stratum 

We now calculate the population probabilities of being treated and in each stratum, 
do = (djo, 

--., dKo). The Sth component of this, d,,,, is defined as 

dso =P(Z= 1, S, o = 1) =E[ZSO] =E[p(X)S, oj, 

where the last equality is obtained by conditioning on the observed covariates, X. 

Remembering that S,,, =I [ q(, - 1),, :5p,, (X) < q,,, I is an indicator for the SIh population 
stratum, we can write this expectation in integral form as 

dso p fp (p) dp. 

Using the population strata boundaries, %, = (qI0, 
... ' q(K-l)o)7 calculated previously 

these integrals are calculated using the numerical integration function NIntegrate 

in the software Mathematica. 

C. 2.4 The conditional expectation of the outcome given treatment status and strata 

We now calculate the population conditional expectation of the outcome given treat- 

ment status and strata, E[YIZ=t, So =1], for t=0,1 and s=K. 
These conditional expectations will be used to calculate the conditional variances of 
the outcome given treatment status and strata, required to calculate the variances 
Vk [ Os ] and- V, [ 0' ]. These conditional expectations are also needed to calculate the 

population stratified treatment effect, 0, ',. We saw in Chapter 3 that the population 

average causal treatment effect, Oo, is not usually equal to the population stratified 

treatment effect, 0,,, where 

005 
= Z(E[YI Z= 1, Sso= 1]-E[YI Z= 0, S., = 

s=l 

Therefore, as well as calculating the two variances for each hypothetical situation we 

also calculate the value of 0, ', in order to see how much residual confounding there is 

in each situation. 
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We calculate only the conditional expectation E(YIZ=1, Sso =I The conditional 
expectation E[YIZ=0, Sso =I] can be calculated in the same way. By conditioning 
on the propensity score, we can write 

qý�, 

E[YI Z= 1, Sso= l] =1 E[YI Z=: 1, PO(X) =p] f(pl Z=1, sý', ' 
q(�-1). 

1) dp. 

(C. 5) 

The conditional density function can be written as 

(pl Z=i, Sso = 1) = 
P(Z = 1, SSO =, 1 P0(X) P) 

P(Z = 1, SSO = 

P fp (P) 
dso 

(C. 6) 

where fp( -) is the probability density function of the propensity score and d,,, is the 

population probability of being treated and in the s th population stratum. 

By conditioning on the covariates X, andX2, the conditional expectation given the 

propensity score can be written as 

E[YIZ=1, p,, (X) = p] =fE [Y IZ= 17 Xli X21 f (X17 X2 I p,, (X) = p) dX, dX2- 

Xl 
iX2 

In the notation introduced in Section C-2.1, the conditional density of X, and X2 

given the propensity score is 

7rx0 VO(P) 

7rxo Vo (P) +7rx 1 Vl (P) 

(Xl 
i 

X2 1 Po (X) :: = P) = Ir. i Vi (P) 
7rx0 VO(P)+7rxl VJ(p) 

0 

if X, =0 and X2 = WO(P) 

if X, =I and X2 

otherwise. 

(C. 7) 

Referring to the known distribution of the outcome, Y, given in Section C. 1, 

E[y1Z= 1) Xl = 01 X2 = WO(P) 1 = 1f0 +, 00 + ýY2 WO(P) 

E[Y1Z=: = li Xl = 1) X2 = Wl(P) 1 = 'YO + Oo + 7Y2 Wl(P)i 

and so 

E[Y IZ=1, P I= -YO +)%+ýN 
7rxo Vo (P) Wo (P) + 7rx 1 I'l (P) W1 (P) 

7rxo Vo (P) + 7r,, 1 Ul (P) 
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Then combining (C. 5) and (C. 6) and substituting in the expression for the probabilltv 
density function of the propensity score (C. 4), we obtain 

E[YI Z= 1, Sso == l] ==-y0+00+ 
_12 
dso 

1 

q(., - 1). 

I 7rxo Vo (P) Wo (P) + 7rx 1 L'I (P) W1 (P) I 

ja2ol (I 
- P) 

dp. 

Similarly, 

E[Y I Z=O, So= 1] =-yo+ IIK - dso- 
7rxo vo (P) wo (P) + 7rxl L" (P) wl (P) 1 

dp. la2ol P 

C. 2.5 The conditional variance of the outcome g2ven treatment status and strata 

The conditional variance given treatment status and strata is calculated using the 

equality 

V[YI Z= t, Sso= l] =E [y21 Z= t, SSO= 1]-(E[YI Z= t, SSO =1 ])2, (C. 8) 

for t=0,1 and s=K. We have already calculated E[YIZ=t, SSO =1J. The 

conditional expectations of Y' given treatment status and strata can be calculated 

in the same manner. Substituting these expectations into (C. 8) gives the required 

variance. Recollect that the error term in the outcome, E, has variance O'e. Then for 

s=1,..., K, 

=, ]=0,2 + A�, -B2 V[YIZ= 1, SSO 
e ls, 

== ,]=0,2 + Ao, -B2 Y1Z=0, SSO 
e Os, 

with 
q�, 

2 W2(p) + 7r 7,0 VO (P) Vl(p)W2(p)} 72 01 
A� = dso ja2ol (1 

- P) 

q(, - 1). 

Bi, = 
lf 2{7,0 Vo (p) Wo (p) + 7r.. 1 Vi (P) W1 (P) 1 

dp, 
dso 

1 
102ol P) 

q(3- 1)0 
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and 

2 17rxo Vo (p) Wo (p) + 7rx 1 Vl (p) W 
Ao, - 

-f 21 
(p) 1 

dp, 
IIK - dao ICe2ol P 

q�, 

Bo, - 
-Y2 f 7rxo Vo (p) Wo (p) + 7rx 1V1 

(p) 'tL'l (p) 1 

dp. 
IIK - dso 

1 
1a2ol P 

q(., j» 

207, 

C. 2.6 The denvative of the conditional expectahon of the outcome with respect to 
the strata boundaries 

We now calculate the derivative of the conditional expectation of the outcome given 

treatment and strata, with respect to the strata boundaries, 

a 
JE[Y I Z= 1, S, 

i9qk 

for k=K-1 and s=1,.., K, where S, = 1[q(, 
-, ), 5p,, (X)<q., ] is an indicator for 

the SIh stratum defined by strata boundaries q(, -, ) and q,. Following the method used 

in Section C. 2.4, but evaluating the integrals at strata boundaries q= (ql,..., qK-1), 

rather than at the population strata boundaries, %) = (ql,,, 
--., q(K- 1)o) I we see that 

E[Y IZ=1, Ss -yo+, 3o+ 'Y2 G1, 
Fis 

where 
q 

Fis = 

fq, 

-l 
q, 

and GIs = 
Jq, I 

I 7rxo Vo (P) + 7rx 1 Vj (P) I 
ri. T)- 

la2ol (I 
-A 

-1-7 

f7rx0vo(p) WOW + 7rxl Vi(p) Wi(p) I 

02o I (I - 
-1 -- ap. 

(C. 9) 

When these two integrals are evaluated at the population strata boundaries, q,,, we 

call them Fl,,, and Gl,,,. Then Fl,,, is equal to d,,,, the population probability of being 

treated and in the SIh population strata. Using the quotient rule to differentiate (C. 9) 

with respect to the strata boundaries gives 

0 'Y2 0 (G1, ) 'ý2G 1�, 0 (F�) 
- ýE [YI Z= 1, s -- d2 Oqk üqk 0=0� dso Oqk 

le=O. 

so 0=0,. 
(C. 10) 
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Differentiating the two integrals, Fl., and G1, with respect to the strata boundary qk 
for k=K-1, using the fundamental theorem of calculus, we obtain 

7rxo vo (qA,, )+7rx 1 vi (qko) 
if k= s7 IQ2ol (1-q,,, ) 

_ 
0.6 vo (qko) + 0.4 vi (qko) 

if k=s-1 Oqk 
0=0" 

la2ol (I-qk,, ) I 

0 
otherwise, 

7rxo vo(qko) wo(qk,, )+lrrl vI (qko) wl(qko) 

if k s, 
a (Gis) 

IC(2ol (1-qko) 

7rxO vo(qko) wo(qko)+7rxl vi(qko) wl(qko) 

if ks- 17 
(9qk 0=0,, 

IC(2ol (1-qko) 

0 otherwise. 

These two derivatives can then be substituted into (C. 10) to obtain the required 
derivative. 

Similarly, we can write the expectation of the outcome, given no treatment and strata 

as 

E[Y I Z=O, S. = 1] =-yo+ 
_NGos 

Fos 

where 

Fos 

q 

a( nd Gos 
fqo 

-S 1 

f 7rxo Vo (P) + 7rx 1V 
fin 

la2ol P -ýv 7 

17rxo Vo(p) WO(p) + 7rxj Vj(p) Wl(p)} 

1012o I 
dp. 

When these integrals are evaluated at the population strata boundaries, q, we call 

them Fo,,, and Go,,,,. Then Fo,,, is equal to 11K - d,,,, the population probability 

of being untreated and in the SIh population strata. Using the quotient rule to 

differentiate the conditional expectation with respect to the strata boundaries gives 

a 
{E [YIZ=O, Ss= I it IN 0 (Go, ) 

c9qk 9=0, IIK - dso aqk_ e=o,, 
'Y2Goso a (Fo, ) 

(11K -d so)2 9qk 19=00 
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Differentiating these two integrals with respect to the strata boundaries gives 

7r: co vo(qk, )+lr, IvI (qko) 
if k= sl 

(Fo, ) 
lCk2o I q,,, 

7rxO vo (qko) +7rx 1 vi (qko) 
if k=s aqk 0=0. 

IQ2o I qkO 

0 
otherwise, 

7rxO vo(qk,, ) wo(qk,, )+7rxl vi(qko) wl(qko) if ks 
IC12o I qko a (Cos) 

7rxO vo(qko) wo(qko)+7rxl vl(qko) wl(qko) if ks 
i9qk 0=0,, 

ja2o I qko 

0 

otherwise. 

2i) 

These two derivatives can then be substituted into (C. 11) to obtain the required 
derivative. 

C-3 Calculating the variance when the propensity score is estimated 

In order to calculate V, [, 3' ], the asymptotic variance of the stratified estimator of 
treatment effect when the propensity score is estimated using a correctly specified 
logistic regression model, given in Theorem 3.2, we also need to calculate the following 

quantities: 

(a) E[p,, (X) (1 - p,, (X)) XTX] - the (inverse of the) asymptotic covariance matrix 

of the estimated propensity score parameters; 

(b) COV [ Yj Xk (1 - Po (X» 1Z=: 1) S�, = 11, Cov [ Y, X p� (X) 1Z=0, S. 
90 =1], for 

8= 11 )K and k=0,1,2, - the covariance of the outcome and the covariates 

weighted by a function of the propensity score; 

(c) --2-- fE[1[p(X) < qj]]}10=0., for j=1,..., K-1, and k=0,1,2, -the deriva- 

tive of the cumulative distribution of the propensity score with respect to the 

propensity score parameters; 

(d) The integrals Ifiki If. k) IYjk and hok 
- integrals in the error term involving 

derivatives with respect to the propensity score parameters. 

These quantities are calculated below in the order given. 
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C-3.1 The covariance matnx for the propensZty score parameters 

210 

In order to calculate the asymptotic covariance matrix of the propensity score pa- 

rameters, (n Cov[ & ]), it is necessary to evaluate several integrals of the form 

E[ 9(Xl i 
X2) Po(X) (1 - Po(X» 1 

9(Xl)X2)P(I-P)f(Xl7X2lPo(X)=p)fp(p)dpdX, dX. 
-), 

0 Xl)X2 

where fp(p) is the probability density function of the propensity score and g(. ) is some 
function of the two covariates, X, and X2- If we write 

9 (Xl ' 0) X2 ý-- WO (P) ) ý-- 90 (P) 

9 (Xl 11 X2 :: --' Wl (P) ) : -'zz 91 (A 

then substituting in the conditional density of the covariates given the propensity 

score (C. 7) and the probability density function of the propensity score (C. 4) gives 

9 (Xl 
i 
X2) Po (X) (1 - Po (X» 1 -:::::: 

7rxo Vo (P) go (P) + 7rx 1V1 (P) g1 (P) I 
dp. 

I Ce2o 
0 

Each entry of the inverse of the asymptotic covariance matrix of the estimated propen- 

sity score parameters can be calculated using this formula. 

C. 3.2 The covariances of outcome, covariates and the propensZty score 

We wish to calculate the quantities 

COV[yi Xk(1-Po(X»I Z=" SsO= 11 

COV [ Y, Xk Po NIZ01 Sso : '-- 11 
7 

for s= K) and k=0,1,2, where the covariate X0 is defined as an intercept 

vector of 1's. We now calculate the first of these covariances. The second is obtained 

in the same way. 
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Since Cov[ A, Bj=E[AB-E[A]E[B1, and we ha,,,, e already calculated the 

expectation E[YIZ=1, S,,, 11, we only need to calculate the two expectations. 

E[Xk(1 - Po(X»I Z= 1, Sso= l] 

E[ YXk(1 - Po(X» 1Z = 1) Sso = = 11. 

Following the method used in Section C-2.4, we obtain 

q�, 

E[Xk(1 -Po(X»I Z= li Sso= 11 =1 dso 

E [XkPo(X) 1Z =-- 01 Sso = 11 = lIK 
1 

d� 
1 

q(� - 1)� 

where 

lrxo Vo (P) 10 (P) + 7rr 1V1 
(P) (P) 

dp, 
I Ce2o I 

7rxo Vo (P) 10 (P) + 7rx IV1 
(P) 11 (P) 

dp, 
I Cf2o I 

10(P) =E Xk Xl 01 X2 = U)O(P) 17 

11(p) =E Xk XI 17 X2 = Wl(P) I- 

And in the same way, 

E[yXk (I -Po(X)) I Z: --- 1) Sso ýý 11 
q, o 

-1f 
7r., Ovo(p)h(I, O, p)lo(p)+7r.,, lvl(p)h(1,1, p)ll(p) dp, 

dso OZ2o 

q(. 

E[Y Xk Po(X) 1Zý 01 SsO: 
-"": 11 

1 
qý�, 

7-�,; o vo (p) h (0,0, p) lo (p) +7r�, vl (p) h(0,1, p) 11 (p) 
dp. 

dso ja2ol 

where for r, t = 0,1, h(t, r, p) =E[YIZ=t, Xi = r7 X2 = Wr(P)I- 

C. 3.3 The derivative of the cumulative density function of the propensity score with 

respect to the propensity score parameters 

We now calculate the derivative of the cumulative distribution function of the propen- 

sity score, with respect to the propensity score parameters, 

a 

19(kk 
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for k= 0) 1,2, and j=1, ..., 
K-1- Writing Fp (p; ct) for the cumulative density 

function of the propensity score, seen as a function of a, we can write this as 

19 1 Fp (p; 
0=0. 190k 

Previously in this appendix, all quantities have been evaluated at the population 
strata boundaries, cto. In the remaining two sections, we wish to differentiate with 

respect to a and so we need to be clear about which functions depend on ci. Therefore, 

we will now state dependence on a explicitly. For example, we will write p (X; a) 
in order to remind ourselves that the propensity score is a function of the unknown 
parameter ct. 

Following the argument of Section C. 2.1, we see that whatever value ce takes, the 
function 

(X; a) = 

has probability density function 

fp; 
a 

(P) = 

where 

expf ao + a, X, + a2 X21 

1+ expýao + ce, X, + Ce2 X21' 

7rxo Vo (p ; Cf) + 7rx 1 Vj (p ; CC) 

I Ct2l P (I 
- P) 

(WO (P) - po), vo(p; ci) = exp 
2U2 

/ ý27r0.02 

0 

(wi (p) - /li) 2 
or2 vl (p- a) = exp 2 U2 

/ ý27r 

wo (P; a) = 

wi (P; a) = 

In (1pp) 
- ao 

a2 

in (1pp) 
- ao - al 

a2 

(C. 12) 

We wish to calculate the derivative 

aI 
Fp (p; ce) I 1,9=0,, =a 

qj 
17rxo Vo(p; Ct) + 7rxj Vj(p; Ct) I 

dp 
Oak 19Cek 

i 

ja2l P (1 -A 

(0 ) 
0=01. 
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The order of differentiation and integration can be interchanged to get 

qj 1 7xo 09vo (p ; ct) + 7rx, Ovl(p; ck) 
aI 

Fp (p; cr) I 1,9=0. = 
aak 

ý 

0=0" aak 
10=00 } 

dp 
190k 

f 
102ol P (1 - P) 

0 
qj 

l[k=2] 
7rxo Vo (p ; Cto) + 7rxj VI (p ; a. ) I 

dp. (C. 13) 2 
Ce2o P P) 

0 

Differentiating the functions vl( -) and vo( -) defined above (C. 12) with respect to ct 

and evaluating them at their population values, oL, gives 

, 9V0(P; ct) - vo(P; a. ) (WO(P; a. )-mo) 
aao CK2a Groj 1 

, 9V0(P; a) = 0, 
ace 1 

Ovo(p; a) 
- 

vo(P; a. ) wo(P; a. ) (WO(P; a. )-iuo) 

19C12 C(2o u02 

19VJ(P; Ci) VJ(P; Ck. ) (WJ(P; Q. )-IAI) 

acto Ct2o Orfl 
(9vl(p; ci) vl(p; cko) (wl(p; cg. )-/Al) 

aal C12o Or 2 

avl(p; c, ) vl(p; cko) wl(p; cko) (wl(p; a. )-/Al) 

aCt 2 
-02o -Or-71 

Substituting these derivatives into (C. 13) gives the required derivatives. 

C. 3.4 The Mtegrals If 1ki 
Ifo k) IYI k andho k 

We begin by calculating the integrals If, k and Ifok. The first of these is defined as 

Ifl kpa ffp(P; a)} le=e,, dp. 
1901k 

We have already calculated the probability density function of the propensity score, 

as a function of the unknown parameters, a, (C. 12). We merely substitute this into 

the definition above to get 

Ifi k 
a2o(l - P) 

7rxo Vo (P; a ()) 
+ 7rx IV 

(P; Ct c)) dr. 1[k=21 
2 02o(l P) 

7rxo 
9V0(P; ck) + 7rx 1 

avi (p; cx) 
19CK k1 e=eý 49Cik 

1 

e=e. A'n 

Substituting the derivatives of vo( -) and vl( -) above gives the required derivatives. 
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Similarly, 

7rxo 19vo (P; cf) + 7rx I 
av i (p ; ct) 

Ifo k 

aOk 
0=0ý 

aClk 
0=0" 

dp 
Cf 2oP 

q(,, 

l[k=21 
7rxo Vo (P; ao) + 7rxj Vj (p, a, )) dr. 2 a2oP 

q(, j)o 
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The conditional expectations E[Y, Ip (X; ci) =p] and E[ Yo Ip (X; a) =p 
The first of these conditional expectation can be written as 

E[Yi lp(X; a) =p] =I E[Yi I Xi, X21 f(Xl)X21P(X; a) =p) dXjdX2. 
XI 

iX2 

The conditional density of the covariates given the propensity score - evaluated at 

a rather than at the population values a,, - is 

7rxo VO (p; a) 

7rx0 VO(P; Ci)+7rxl VI(P; 
j) 

(X1) X2 1P (X; a) : --' 
A :: z 

7rx 1V1 
(p; cx) 

- 
7rxo Vo(P; CL)+7rxl VJ(P; 

j) 

0 

if X, =0 and X2 = ýWO(P; a) 

if X, =1 and X2 = WI(P7 a) 

otherwise. 

Recollect that we defined r, t=0,1, h (t, r, p) =E[YIZ=t, X, = r, X2 = Wr (P) ]- 

Then 

E[Yj I X, = 0, X2 = WO(P; a)]= h(1,0, p) 

E[Yo I X1 =: 1) X2 = Wl(P; a)]= h(1,1, p). 

Then 

E[Y, lp (X; ci) =pl = 

Similarly, 

7rxo vo(p; a) h(l, O, p) + 7rx, vI (p; a) h(l, I, 

7rxo vo (p; a) + 7rx 1v1 (p; a) 

E[Yolp (X; a) =p] = 
7�o vo (p; a) h (0,0, p) + 7r., ,v, (p; ce) h (0,1, p) 

7rxo Vo (p; Ck) + 7rx 1 VI (P; Ci) 
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The integrals IY1 k andho k 

These integrals are defined as 

q.,, 

lYl kp JE [ Y, Ip (X; ct) = p] fp(p; ct)110=0. dr 
19Cek 

q(, - 1), 
q., 

ho k=1 (1 - P) 
afE[ 

Yo Ip (X; a) =p] fp(p; a) I 10=0" dr. 
19Cek 

q(. 

21: 5 

We have calculated the conditional expectations and the probability density function 

in these two integrals. These can be differentiated with respect to ak separately using 

the product rule. We then merely differentiate IYk and IYOk using the product rule 

and integrate over the calculated derivatives in order to obtain the integrals lylk and 
IYok- 

We have now described the calculation of all quantities involved in the two variance 
formulae Vk ( ý' ] and V, [ ý' ]. The accompanying programs that implement these 

calculations using the software Mathematica can be found in Appendix D. 2 and Ap- 

pendix D. 3. 



Appendix D 

Appendix D: Computer programs 

This appendix contains a selection of the computer programs used during the course 
of this thesis. The asymptotic variance of the stratified estimator of treatment effect 
was calculated assuming that the propensity score is: (i) a known function of the 

observed covariates; and (ii) estimated using a correctly specified logistic regression 
model. The resulting variances are referred to as Vk and V, [, 35 ] respectively. 
Simulation studies were performed for a simple hypothetical situation in order to 

obtain empirical estimates of these two variances. The 'true' values of the variances 
were also calculated in order to compare the empirical and theoretical variances. This 

appendix contains the computer programs used to carry out these simulation studies. 
These were carried out using the software programs Stata [99] and Mathematica [1121. 

We begin by briefly reviewing the hypothetical situation that the programs use. Ap- 

pendix D. 1 contains the Stata program used to simulate datasets, Appendix D. 2 

contains the Mathematica program used to obtain the population strata boundaries, 

and Appendix D. 3 contains the Mathematica program used to calculate the variances 
Vk and V, [, 3' 

A star at the beginning of a line is used to indicate a comment and three forward 

slashes /// are used to indicate a single line broken into two in order to simplify the 

presentation. 

The hypothetical situation 

The hypothetical situation considered in this appendix is example (b) described in 

Chapter 5. There are two covariates -a binary covariate, Xi, and a continuous 

covariate, X2, with a distribution that depends on X, - The propensity score depends 

on both covariates. The outcome, Y, is continuous and depends on the covariateX2 

and treatment status, Z, only. The causal effect of treatment is the same for each 
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subject and is therefore equal to 0, the population causal effect of treatment. Two 

equal-sized strata were used for this example. This makes the computer programs 

more legible. Extending them to use K strata is straightforward. Details of the 
hypothetical situation are as follows: 

Outcome: Y= 35 + 0.3X2 +2Z+ El e r- N(O, 102). 

Propensity score: In 
(1P)-3-0.5 

X, + 0.05 X2- 

Covariates: P(Xi = 0) = 0.6) 

X2 1 Xl 0- N (70,102); X2 1 Xl 1- N(60,15 2). 

A simulation study was performed for this hypothetical situation, using the software 
Stata. 3,000 datasets were simulated, each containing n=2,000 subjects. Each 

simulated dataset was used to estimate the stratified estimator of treatment effect, 
A 

0-9, in two ways: (i) stratifying by the true propensity score; and (ii) stratifying 
by the estimated propensity score which was estimated using a correctly specified 

A 

logistic regression model. An empirical estimate of the variance of, 3s is then obtained, 

assuming that the propensity score is (i) known and (ii) estimated by taking the 

sample variance of the 3,000 estimates of treatment effect. The 'true' asymptotic 

variances, Vk(ýs ] and V, [ý5] 
, were then calculated using Mathematica. Details of 

the calculation are given in Appendix C. This simulation study was repeated for 

several hypothetical situations, each of which was a variation on the above situation. 
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D-1 Stata program used to obtain empirical estimates of the variances 

0. Parameters that define the problem 

* Individual-level treatment effect 
global bO =2 

* Outcome parameters 
global gO = 35 
global g2 = 0.3 
global sde = 10 

* Propensity score parameters 
global aO = -3 
global al = -0.5 
global a2 = 0.05 

* Distribution of 
global muO = 70 

global mul = 60 

global sdO = 10 

global sdl = 15 

global pxO = 0.6 

covariates xl and x2 

1) 1 ̀N 

1. Create sub-program that simulates data for a single subject 

capture program drop wholesim 
program define wholesim, rclass 

* Generate x1 - binary covariate 
local u uniformo 
local x1 Cul > $PxO) 

* Generate x2 - normally distributed conditional on value of x1 
local x2 = ($muO + invnorm(uniformo)*$sdO)*('xl' 0) 

+ ($mul + invnorm(uniformo)*$sdl)*('xl' 1) 

* Generate pscore - propensity score, a function of x1 and x2 
local lpt = $aO + $al*'xll + $a2*'x2l 
local pscore = exp('lptl)/(l + exp('lpt')) 



D. 1 Stata program used to obtain empirical c, stimatr-,, of thý-, curion(es 1 -119 

* Generate z- treatment indicator, with P(z pscore 
local u= uniformo 
local z= Cul <= 'Pscore') 

* Generate y (outcome variable) -a function of z and x2 
local y= $gO + $g2*'x2l + $bO*'z' + invnorm(uniformo)*$sde 

* Store parameters of interest 
return scalar y =(y) 
return scalar z = (Z) 

return scalar pscore = 'pscore, 

return scalar x1 = (x1' 

return scalar x2 = (x2l 

end 

2. Create sub-program that simulates a dataset of size 2,000 

capture program drop wholesim2 
program define wholesim2, rclass 

* Simulate a sample of size 2,000 

simulate "wholesim" y=r(y) z=r(z) pscore=r(pscore) 
xl=r(xl) x2=r(x2), reps(2000) 

* Estimate propensity score using a logistic regression model 
glm z x1 x2, fam(bin) 

predict estpscore 

* Define 2 strata by 'true' propensity score 
xtile strata=pscore, nquantiles(2) 

Define 2 strata by estimated propensity score 
xtile eststrata=estpscore, nquantiles(2) 

* Estimate beta-s from the simulated dataset 
forvalues s=1 (1) 2 
forvalues t=0 (1) 1 

summ. y if z=='t' & strata=='s' 
local Y't''s' = r(mean) 
summ y if z=='t' & eststrata=='s' 
local esty't''s, = r(mean) 
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local beta 0 
local estbeta 0 
forvalues s=1 (1) 2 
local beta = 'beta' 
local estbeta = 'estbeta' 
I 

tyl, s, ) (YO's'')/2 
('estyl's'' 'estyO's'')/2 

* Store parameters of interest 
return scalar beta = 'beta' 
return scalar estbeta = 'estbeta' 

end 

3. Simulate 3,000 datasets of size 2,000 

simulate "wholesim2" beta=r(beta) estbeta=r(estbeta), 
reps(3000) 

220 

This program creates a dataset containing two variables - beta and estbeta. The 

variable beta contains 3,000 stratified treatment effect estimates, that were ob- 

tained by stratifying on the true propensity score. The variable estbeta contains 
3,000 stratified treatment effect estimates, 3', that were obtained by stratifying on 

an estimated propensity score, obtained by fitting a correctly specified maximum 
likelihood logistic regression model. The variance of the 3,000 values of beta is an 

empirical estimate Of Vk and the variance of the 3,000 values of estbeta is an 

empirical estimate of V, [ 
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D. 2 Mathernatica program used to obtain the population strata boundaries 

0. Parameters of the problem 

* Propensity score parameters 
Clear[aO, al, a2l; 
aO = -3; 
al = -0.5; 
a2 = 0.05; 

* Distribution of covariates xl and x2 
Clear[muO, mul, sdO, sdl, pxO, pxll; 
muO = 70; mul = 60; 

sdO = 10; sdl = 15; 
pxO = 0.6; pxl = 0.4; 

1. The p. d. f of the propensity score 

* (See Section C. 2.1. ) 

Clear[vO, vl, wO, wl, fl; 

wO [p-l (Log Ep/ (1 - p) I- aO) /a2; 

wl [p-l (Log [p/ (1 - p) I- aO - al) /a2; 
vO[p-I Exp[-((wO[p] - muO)-2)/(2*sdO-2)]/Sqrt[2*Pi*sdO-21; 
vi[p-l Exp[-((wi[p] - mul)-2)/(2*sdl-2)]/Sqrt[2*Pi. *sdl-21; 

f [P-] := (pxo*vo[p] + pxl*vl[pl)/(a2*p*(l - p)); 

2. Obtaining the strata boundaries 

* (See Section C. 2.2. ) 

* The cumulative distribution function of the propensity score, F(p) 

Clear(F]; 
F[q-l :=0/; q<0 
F [q-1 := NIntegrate Ef [p] ,fp, 0, q1I q <= 1 && q >= 0 

F [q-1 := NIntegrate [f (p] ,fp, 0,111 q>1 
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Clear[psil; 
psi[q-l := F[q] - 1/2; 

* The population strata boundary solves psi[q] = 0. 
* We need to suggest starting values for the solution. 
FindRoot[psi[q] == 0, ýq, 0.55,0.55111; 
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D. 3 Mathernatica program used to obtain theoretical values of the variances 

0. Parameters of the problem 

* Population strata boundaries 
Clear [qO, q1, q21 
qO = 0; 
q1 = 0.5523935988696892; 

q2 = 1; 

* Propensity score parameters 
Clear [aO, al, a2l 
aO = -3; 
al = -0.5; 
a2 = 0.05; 

* Individual-level treatment effect 
Clear[b0l; 
bO = 2; 

* Outcome parameters 
Clear EgO, g2, sdel 
gO = 35; 
g2 = 0.3; 
sde = 10; 

* Distribution of covariates xl and x2 
Clear[muO, mul, sdO, sdl, pxO, pxll; 
muO = 70; sdO = 10; 

mul = 60; sdl = 15; 

pxO = 0.6; pxl = 0.4; 

1. The p. d. f of the propensity score 

* (See Section C. 2.1 -) 

Clear[vO, vl, wO, wl, fl; 

w0 [p-] := (Log [p/ (1 - p) 1- a0) /a2; 

wl[p-]: = (Log[p/(l - p)1 - a0 - al)/a2; 
v0[p-] Exp[-«w0[pl - mu0)-2)/(2*sdO-2)1/Sqrt[2*Pi*sdO-21 
vl[p-] Exp[-«wl[pl - mul)-2)/(2*sdl-2)1/Sqrt[2*Pi*sdl-21 

f Cp_] := (pxo*vo[p] + pxl*vl[pl)/(a2*p*(l - 
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2. The probability of being treated and in each stratum 

* (See Section C. 2.3. ) 

Clear[dl, dOl; 

dl[ql-, qu-]: = NIntegrate[p*f[p], ýp, ql, qull; 
dO[ql-, qu-]: = 0.5 - dl[ql, qu]; 

** *** ****** ***** ***** * ********** ** **** **** *** ** 

3. The population stratified treatment effect 

* (See Section C. 2.4. ) 

Clear[lEyl, IEyl, Eyl, iEyO, IEyO, EyO]; 

iEyl [p-l (pxO*vO[pl*wOEp] + pxl*vl[Pl*wl[pl)/(a2*(l - p)); 
IEyl[ql-, qu-]: = NIntegrate[lEyl[p], ýp, ql, qull; 
Eyl[ql-, qu-1 := gO + bO + (g2/dl[ql, qul)*IEyl[ql, qu]; 

iEyO [p-l := (pxo*vo[p]*wo[p] + pxl*vl[pl*wl[pl)/(a2*p); 
IEyO[ql-, qu-]: = NIntegrate[iEyO[p], ýp, ql, qull; 
EyO Eql-, qu-1 := gO + (g2/dO [ql, qu] )* IEyO Eql, qu] 

Clear [bs, betas] ; 
bs Eql-, qu-1 := Eyl [ql, qu] - EyO [ql, qu] 

betas = (bs[qO, qll + bs[ql, q2l)/2; 

4. The conditional variance given treatment and strata 

* (See SectZon C. 2-5. ) 

* The conditional variance given treatment and in each strata 

Clear[iAl, IA1, Al, iB1, IB1, B1, Vyll; 

iAl [p-l := (pxo*vo[p]*wo[pl-2 + pxl*vl[pl*wl[pl-2)/(a2*(l - p)); 

IA1[ql-, qu-1 NIntegrate[iAl[p], ýp, ql, qull; 

Al[ql-, qu-1 (g2-2/dl[ql, qul)*IA1[ql, qu]; 
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iBl [p-l := (pxO*vO[pl*wO[p] + pxl*vl[pl*wl[pl)/(a2*(l - p)); 
IB1[ql-, qu-]: = NIntegrate[iBlEpl, ýp, ql, qull; 
Bl[ql-, qu-1 := (g2/dl[ql, qul)*IB1[ql, qu]; 

Vyl[ql-, qu-]: = sde-2 + Al[ql, qu] - Bl[ql, qul-2; 

* The conditional variance given no treatment and in each strata 
Clear(iAO, IAO, AO, iBO, IBO, BO, VyO1; 

iAO [p-l := (pxO*vO[pl*wO[pl-2 + pxl*vl[pl*wl[pl-2)/(a2*p); 
IAO[ql-, qu-]: = NIntegrate[iAO[p], ýp, ql, qull; 
AO[ql-, qu-1 := (g2-2/dO[ql, qul)*IAO[ql, qu] ; 

iBO [p-l (pxo*vO[pl*wo[p] + pxl*vl[pl*wl[pl)/(a2*p); 
IBO [ql-, qu-1 NIntegrate [iBO [p] , ýp, ql, qull 
BO[ql-, qu-1 (g2/dO [ql, qu] )* IBO Iql, qu] ; 

VyO [ql-, qu-1 := sde-2 + AO [ql, qu] - BO [ql, qu] -2; 

5. The first variance component, n. Vl 

* (See Theorem 3.1 -) 

Clear[Vl, matrixVll; 

VI[ql-, qu-1 :=0.5-2(Vyl[ql, qul/dl[ql, qu] + VyO[ql, qul/dO[ql, qul); 

matrixVl = Vl[qO, qll + Vl[ql, q2l; 

6. The derivative of beta-* w. r. t. the strata boundaries 

* (See Section C. 2.6. ) 

Clear (iF1, iG1, GI, dqEyl, iFO, iGO, GO, dqEyO1 ; 

M [p-l (pxo*vo[p] + pxl*vl[pl)/(a2*(l - p)); 
iGl[p-l (Pxo*vo[pl*wolp] + pxl*vl[pl*wl[p] )/(a2*(l - p)); 

GI Cql-, qu-1 NIntegrate [iGl [p] 
, 

fp, ql, qull ; 

iFO [p-l (PxO*vO[Pl + Pxl*vl[pl)/(a2*p); 
iGO[p-l (pxo*vo[p]*wo[p] + pxl*vl[pl*wl[pl)/(a2*p); 
GO [ql-, qu-1 NIntegrate (iGO [p] 

,fp, ql, qull ; 
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dqEyl[qk-, ql-, qu-]: = (g2/dl[ql, qul)*iGl[qkl /// 

- (g2*Gl[ql, qul/dl[ql, qul-2)*iFl[qkl; 
dqEyO[qk-, ql-, qu-]: = (g2/dO[ql, qul)*iGO[qkl /// 

- (g2*FO [ql, qu] MO Eql, qu] -2) * iFO Eqkl 

Then dqEy[qs) q(, j), %, ] = -2- i9qs 
fE[YIZ=I, Ss= l]l 

and -dqEy[%, -j), q(s-j), q,, ]= a 
aqs-l fE[YIZ=1, Ss = III 

Clear Edqbetal ; 
dqbeta [11 0.5* (dqEyl [ql, qO, q1I - dqEyl [ql, q1, q21 

- dqEyO[ql, qO, qll + dqEyO[ql, ql, q2l); 

matrixdqbeta = dqbeta[l] ; 

** ** *** * ********** ** ****** ***** ** *** 

7. The second variance component - n. V2 

* (See Theorem 3.1. ) 

Clear[matrlxncovq, matrixV2]; 
matrixncovq = (0.5*0.5)/(f[qll-2); 

matrlxV2 = matrixdqbeta. matrixncovq. matrlxdqbeta; 

* 8. The covariance matrix of the estimated * 

propensity score parameters 

* (See Section CA I. ) 

Clear[lepxO, iepxl, lepx2, lepxlx2, iepx2x2l 
iepxo [p-l (pxo*vo[p] + pxl*vl[pl)/a2; 
iepxl[p-l pxl*vl[pl/a2; 
lepx2[p-] (pxO*vo[pl*wo[pl + pxl*vl[pl*wl[pl)/a2; 
lepxlx2[p-]: = pxl*vl[pl*wl[pl/a2; 
lepx2x2[p-] := (pxO*vO[pl*wO[pl-2 + pxl*vl[pl*wl[pl-2)/a2; 

Clear[epxO, epxl, epx2, epxlx2, epx2x2]; 
epxO NIntegrate[iepxO[pl, ýP, 0,111; 

epxl NIntegrate[iepxl[p], fp, 0,111; 

epx2 NIntegrate[lepx2[p], ýP, 0,111; 

epxlx2 NIntegrate[iepxlx2[p], ýP, 0,111; 

epx2x2 NIntegrate[iepx2x2[p], ýP, 0,111; 
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Clear[matrixinvalpha, matrixncovalphal; 
matrixinvalpha fýepxO, epxl, epx2j, 

fepxl, epxl, epxlx2j, 
fepx2, epxlx2, epx2x2ll; 

matrixncovalpha = Inverse[matrixinvalphal; 

9. The covariance of outcomes, covariates 
and the propensity score 

(See Section C. 3-2. ) 

*E[ X-k. (1 - p) 1Z=1, S-s = 11 and E[ X-k. p1Z=0, S-s = 11 

Clear[iExp, Expl, ExpOl; 
iExp[O, p-]: = (pxO*vO[p] + pxl*vl[pl)/a2; 
iExp[l, p-l := pxl*vl[pl/a2; 
iExp[2, p-]: = (pxO*vO[pl*wO[p] + pxl*vl[pl*wl[pl)/a2; 

Expl [k-, ql-, qu-1 NIntegrate [iExp Ek, p] , 
ýp, ql, qull /dl Eql, qu] 

ExpO [k-, ql-, qu-1 NIntegrate [iExp Ek, p] j 
ýp, ql, qull MO [ql, qu] 

*EEY. X-k. (1 - p) IZ=1, S-s = 11 and E[Y. X-k. pIZ=0, S-s = 11 

Clear[h, iEyxpl, iEyxpO, Eyxpl, EyxpOl; 
h [t-, r-, p-I := gO + g2*wl [p] *r + g2*wO [p] * (1 - r) + bO*t; 

iEyxpl [0, p-1 := (pxO*v0 [pl *h [l, 0, pl + pxl*vl [pl *h [l, 1, pl ) /a2; 

iEyxpl[l, p-]: = pxl*vl[pl*h[1,1, pl/a2; 
iEyxpl [2, p-1 := (pxO*v0 [pl *w0 [pl *h [l, 0, pl + pxl*vl [pj *wl [pl *h [l, 1, pl ) /a2; 

iEyxpO [0, p-1 := (pxO*v0 [pl *h [0,0, pl + pxl *vl [pl *h [0,1, pl ) /a2; 

iEyxp0[1, p-]: = pxl*vl[pl*h[0,1, pl/a2; 
iEyxpO [2, p-1 := (pxO*v0 Epl *w0 [pl *h [0,0, pl + pxl*vl [pl *wl [pl *h [0,1, pl ) /a2 

Eyxpl [k- , ql-, qu- 1 NIntegrate [iEyxpl [k, p] , ýp, ql, qull /dl [ql, qu] 
EyxpO Ek_ , ql-, qu- 1 NIntegrate [iEyxpO Ek, p] , ýp, ql, qull MO [ql, qu] 

* Cov [Y, X-k. (1 - p) IZ=1, S-s = 11 and Cov [Y, X-k. pIZ=0, S-s 

Clear[Cyxpl, Cyxpol; 
Cyxpl [k-, ql-, qu-1 Eyxpl [k, ql, qu] Expl [k, ql, qu] *Eyl [ql, qu] 
CyxpO [k-, ql-, qu-1 EyxpO [k, ql, qu] ExpO [k, ql, qu] *EyO [ql, qu] 
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Clear[matrixC, Covl, CovO, Cov]; 

Covl[k-]: = Cyxpl[k, qO, qll + Cyxpl[k, ql, q2l; 
CovO[k-]: = CyxpO[k, qO, qll + CyxpO[k, ql, q2l; 
Cov[k-l := (Covl[kl + CovO[kl)/2; 

matrixC = ýCov[01, Cov[ll, Cov[21j; 

10. The third variance component - n. V3 

* (See Theorem 3.2. ) 

Clear[matrixV3]; 

matrixV3 =- matrixC. matrixncovalpha. matrixC; 

11. Derivatives of functions v, w and t, w. r. t. alpha 

* Derivatives of wO, wl w. r. t. alpha 

ClearEdaw0, dawll; 
daw0[0, p-]: = - 1/a2; 
daw0E1, p-]: = 0; 
daw0[2, p-]: = - w0[pl/a2; 

dawl[o, p-]: = - 1/a2; 

dawl [1, p-I :=- 1/a2; 

dawl[2, p-]: = - wl[pl/a2; 

* Derivatives of vO and v1 w. r. t. alpha 

Clear[dav0, davll; 
davO[O, p-I: = v0[pl*(w0[pl - mu0)/(a2*sdO-2); 
dav0[1, p-]: = 0; 
dav0 [2, p-1 := v0 [pl *wo [pl * (wo [pl - mu0) / (a2*sdO-2) 

davl[O, p-]: = vl[pl*(wl[p] - mul)/(a2*sdl-2); 
davl[l, p-]: = vl[pl*(wl[p] - mul)/(a2*sdl-2); 
davl [2, p-I := vl Epl*wl [pl*(wl [p] - mul)/(a2*sdl-2) 
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* Derivatives of tO, tl w. r. t. alpha 

Clear[dat0, datll ; 
dat0 [0, p-1 :=- p* (1 - p) 
dat0[1, p_]: = 0; 
dat0 [2, p-1 :=- p* (1 - p) *w0 [pl 

dat 1 [0, p-1 : =- p* (1 - p) ; 
datl[l, p-]: =- p*(l - p); 
dat 1 [2, p-1 : =- p* (1 - p) *wl Epl 

12. The derivative of the c. d. f, F(p), of the 
propensity score, w. r. t. alpha. 

* (See Section C. 3.3. ) 

Clear Edaf 
, daF] ; 

daf Ek-, p-I (pxO*dawO[k, p] + pxl*dawl[k, pl)/(a2*p*(1 p)) 
daf [2, p-I (pxO*dawOE2, p] + pxl*dawl[2, pl)/(a2*p*(l p)) 

- (pxo*wo[pl + pxl*wl[pl)/(a2-2*p*(l - p)); 

daF[k-]: = NIntegrate[daf[k, pl, ýp, 0, qlll; 

13. The integrals I-f1k, I-fOk, I-Ylk and I-YOk 

(See Section C. 3.4. ) 

(* The integrals I- f1k and I-fOk 
Clear [Ipdaf 1, Ipdaf 01 ; 
Ifl[k-, ql-, qu-]: = NIntegrate[ p*daf[k, pl, ýp, ql, qull; 
If 0 Ek-, ql-, qu-1 := NIntegrate [ (1 - p) *daf Ek, p] , 

ýp, ql, qull 

(* The conditional expectations E[Y-1 I p] 
Clear[Eypa, Eypb, Eyp]; 
Eypa[t-, p-l (pxO*vO[pl*h[t, O, pl)/(pxO*vO[pl 
Eypb Et-, p-I (pxl*vl [p] *h Et, 1, p] )/ (pxO*vO [p] 

Eyp[t-, p-l Eypa[t, p] + Eypb[t, pl; 

and E [Y-0 I 

+ pxl*vl[pl); 
+ pxl*vl[pl); 
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(* The derivative of E[ Y-1 I p(x; alpha) =rIw. r. t. alpha 
Clear[daEypa, daEypb, daEypc, daEypd, daEype, daEypf, daEyp]; 
daEypa[t-, k-, p-l (pxO*davO[k, pl*h[t, O, pl)/(pxO*vO[pI + pxl*vl[pl); 
daEypb Et-, k-, p-I (pxO*vO [p] *g2*dawO [k, p] )/ (pxO*vO [p] + pxl *v 1 [p] 
daEypc[t-, k-, p-l -(pxO*vO[pl*h[t, O, pl)/(pxO*vO[pI + pxl*vl[pl)-2; 

daEypd[t-, k-, p-l (pxl*davl[k, pl*h[t, l, pl)/(pxO*vO[p] + pxl*vl[p]); 
daEype[t-, k-, p-l (pxl*vl[pl*g2*dawl[k, pl)/(pxO*vO[p] + pxl*vl[p]); 
daEypf [t-, k-, p-l -(pxl*vl[pl*h[t, l, pl)/(pxO*vO[pI + pxl*vl[pl)-2; 

daEyp [t-, k-, p-I daEypa Et, k, PI + daEypb Et, k, p] + daEypc Et, k, p] 
daEypd[t, k, p] + daEype[t, k, p] + daEypf[t, k, pl; 

(* The integral of p. f-p(r; alpha). d/d alpha fEEY1 p(x; alpha) = r1l 
ClearEIfY1, IfYO1; 
IfYlEk-, ql-, qu-]: = NIntegrate[ p*f [p] *daEyp [1, k, p] ,fp, ql, qull 
If YO [k-, ql-, qu-1 := NIntegrate [ (1 - p) *f [p] *daEyp [0, k, p] )fp, ql, qull ; 

(* The integral of p. E[Y I p(x; alpha) = r] AM alphaýf -p(r; alpha) 
Clear EIY1f 

, IYOf I; 
IYlf[k-, ql-, qu-]: = NIntegrate[ p*Eyp[l, pl*daf[k, pl, fp, ql, qull; 
IYOf [k-, ql-, qu-1 := NIntegrate [ (1 - p) *Eyp [0, p] *daf [k, p] 3fp, ql, quIl ; 

(* The integral of p. d/d alpha ýEEY 
Clear[IpdaEypfl, IpdaEypf0l; 
IY1[k-, ql-, qu-1 IY1f[k, ql, qu] 
IYO[k-, ql-, qu-1 IYOM, ql, qu] 

I p(x; alpha) = rl. f-p(r; alpha)l *) 

" IfYl[k, ql, qu]; 
" IfYO[k, ql, qu]; 

14. The fourth variance component - n. V4 

* (See Theorem 3.2. ) 

(* The vector e *) 
Clear [eals, ea0s, eal, eaO, ea, eq, e, matrixD] 
eals[k-, ql-, qu-]: = (IY1[k, ql, qu] - Eyl[ql, qu]*Ifl[k, ql, qul)/(2*dl[ql, qul); 

ea0s[k-, ql-, qu-]: = (IYO[k, ql, qu] - EyO[ql, qu]*IfO[k, ql, qul)/(2*dO[ql, qul); 

eal [k-l = eals [k, qO, qll + eals [k, ql, q2] + eals [k, q2, q3l 
+ eals[k, q3, q4l + eals[k, q4, qll; 

eao [k-I = eaOs [k, qO, qll + eaOs [k, ql, q2l + eaOs [k, q2, q3l 
+ eaOs [k, q3, q4l + eaOs [k, q4, ql 

ea [k-I eal (k] - eaO [k] ; 
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eq Ek-I dqbeta Ell *daF Ekl /f Eqll 

e [k-l ea Ekl - eq [k] ; 
matrixE =fe [01 

,e 
Ell 

,e 
[211; 

Clear[matrixV41; 

matrixV4 = matrixE. matrixncovalpha. matrixE; 

15. The theoretical variances, with the propensity score 
known and estimated 

Clear[Vkbeta, Vebetal; 
Vkbeta = matrixVl + matrixV2; 
Vebeta = matrixVl + matrixV2 + matrixV3 + matrixV4; 
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