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ABSTRACT

Rabies and canine distemper are fatal diseases of mammals and of concern in the
Serengeti, Tanzania both for public health and wildlife conservation. This study
investigates the epidemiology of these diseases through cross-sectional and longitudinal
studies of two domestic dog populations borderning the Serengett National Park.
Chapter 2 demonstrates differences in demographic and behavioural characteristics
between the two populations, leading to predictions of distinct patterns of rabies and
canine distemper infection, and the requirement for different strategies of disease
control. Chapter 3 compares the use of three rabies serological tests for
serocpidemiological studies of domestic dogs. Non-specificity precluded use of the
indirect ELISA, but a liquid-phase blocking ELISA (BE) and neutralization test
(REFIT) demonstrated rabies seropositivity among unvaccinated Serengeti dogs. The
poor agreement between BE and RFFIT in unvaccinated dogs led to an investigation of
specificity, which indicated that the BE was the more specific assay. In Chapter 4,

incidence data and virus typing suggested that dogs, not wildlife, are the reservoir of

rabies in the Serengeti. Case surveillance data indicated that rabies persists in higher-
density dog populations, but occurs only sporadically in lower-density dog and wild
carivore populations. Rabies seropositivity occurred in dogs remaining healthy,
demonstrating the existence of atypical infections. Mathematical models showed that
rabies persistence in Serengeti dogs was more likely if seropositives were infectious
carriers, rather than slow-incubators or immune animals. In Chapter 5, analysis of
case-morbidity, mortality and age-seroprevalence data indicated that canine distemper
was stably endemic in higher-density dog populations, but sporadically epidemic in
lower-density dog populations. In conclusion, higher-density dog populations to the
west of the Serengeti National Park are the most likely reservoir of both rabies and

canine distemper in the Serengeti and disease control strategies should therefore focus

on controlling infection in these populations.
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Chapter 1

GENERAL INTRODUCTION
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SUMMARY

The demography and behaviour of host populations are major determinants of the

dynamics of microparasite infections. The starting point of this study of rabies and
canine distemper virus (CDV) in the Serengeti is therefore an investigation of
demographic and ecological characteristics of two domestic dog populations
surrounding the Serengeti National Park (Chapter 2). The problems of disease
detection in the Serengeti prompt an exploration of epidemiological approaches that do
not rely on case incidence data. Since previous surveys have shown that rabies antibody
may be detected in healthy individuals, this study investigates the use of rabies serology
for epidemiological studies. First, Chapter 3 examines the validity of three serological
tests, by assessing their ability to measure specific rabies antibody in canine sera. In
Chapter 4, results from the most specific and reproducible of these tests are used, in
combination with reported clinical histories, to investigate the dynamics of rabies in
naturally-infected dogs and the possible role of atypical infections in disease
maintenance. Chapter 4 also examines the evidence for domestic dogs or wildlife
populations as reservoirs of rabies, and uses the results to draw conclusions about
suitable strategies for rabies control in the Serengeti. Chapter 5 deals exclusively with
CDYV and focuses on the specific question of reservoirs in the Serengeti. This chapter
draws principally on data from demographic and CDV serological studies in domestic
dogs and uses these, in combination with endemic theory, to identify reservoirs of

infection and to design appropriate CDV control measures for the Serenget.
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Rabies

Rabies is a fatal disease that has been recognized for many thousand of years and today
persists throughout the world in a variety of mammalian populations. Despite the long
history of the disease, and over a century of experimental research, there are aspects of
rabies epidemiology and pathogenesis that remain poorly understood. This applies
particularly to infections in nature, stimulating this investigation into the behaviour and

dynamics of rabies in a naturally-infected population.

Although human and domestic dog rabies occurs throughout the tropics, the Serengeti
region of Tanzania was selected for this study principally because of the threat of rabies
to its wild camivore populations. The Serengeti domestic dog population was also
particularly well suited to seroepidemiological studies, since very few dogs have been
vaccinated against rabies. For this investigation, we chose to focus on domestic dogs,
not wildlife, because (a) the domestic dog is thought to be a key species in the
epidemiology of rabies throughout Africa, (b) preliminary molecular epidemiological
studies pointed to a link between domestic dog rabies and the disease in African wild
dogs 1n the Serengeti (Gascoyne et al., 1993b), (c) domestic dog rabies is a greater

threat to public health, and (d) domestic dog populations are more tractable than
wildlife.

Rabies has been the subject of many extensive reviews and texts (recent examples
include Campbell & Charlton, 1988; Nicholson, 1990; Baer, 1991; King & Turner,

1993; Rupprecht et al., 1994; Swanepoel, 1994). This chapter does not therefore

intend to provide a further comprehensive overview, but focuses on specific aspects of

the disease relevant to this study.
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Rabies Virus

The rabies virus is a member of the genus Lyssavirus (Lyssa: Greek, meaning madness)
belonging to the family Rhabdoviridae (Rhabdo: Greek, meaning rod), which are
characterized by non-segmented negative-sense RNA. The genus comprises rabies and

five additional serotypes and genotypes (Lagos bat virus, Mokola, Duvenhage,
European bat Lyssavirus 1 and 2). Within the Rhabdoviridae is also the genus

Vesiculovirus (type species, vesicular stomatitis virus), as well as many other isolates
from vertebrates, insects and plants (Kemp et al., 1973; Buckley, 1975; Tesh, 1983).
The latter are included in the family because of their characteristic morphology, but
most have not been definitively characterized (Rupprecht et al., 1991).

The molecular, antigenic and genetic structure of the rabies virus has been extensively
studied, with recent reviews by Wunner (1991), Rupprecht et al. (1991), and Tordo
and Kouknetzoff (1993). The genomic RNA contains five genes, each of which codes
for a structural protein, the nucleoprotein (N), phosphoprotein (NS or M1), matrix
protein (M or M2), glycoprotein (G) and polymerase (L). Here our interest is primarily
in the N and G proteins, first, because of their role in immunoprotection, and second,
because virus isolates from different geographic areas and species can be distinguished
on the basis of N- and G- monoclonal (Mab) reactivity and nucleotide sequencing of the
N and G protein genes (Wiktor et al., 1980). In this study, reactivity to Mab-N panels

and sequencing of the N-protein gene are used to characterise virus isolates from the

Serengeti and to identify epidemiological relationships.

Pathogenesis and Immunology

The pathogenesis of rabies has been studied for over a century and has recently been
reviewed by Baer and Lentz (1991), Iwasaki (1991) and Charlton (1994). Here, we
focus on four aspects of the natural history of infection which are relevant to our
interpretation of rabies serology in unvaccinated domestic dogs: (a) transmission, (b)

the early stages of infection, (¢) the development of humoral immunity, and (d) atypical

rabies.
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Transmission

It is considered that most cases of naturally transmitted rabies result from the bite of an
infective animal. Rabies can also be transmitted across intact mucous membranes, for
example, following oral ingestion (Kantorovich et al., 1963; Fischmann and Ward,
1968; Correa-Giron et al., 1970, Bell and Moore, 1971), by aerosol inhalation
(Constantine, 1962; Winkler et al., 1972) and has been reported from infected corneal
transplants (Houff et al., 1979). To achieve infection by the oral route, higher doses are
usually required than for intramuscular infection (Baer ef al., 1971, Ramsden and
Johnston, 1975), although species vary considerably in their susceptibility to oral
infection (Wandeler, 1993a). Of particular interest to this study is the finding that foxes
and skunks fed mice infected with street virus can develop serum neutralizing antibody

and survive challenge infection (Ramsden and Johnston, 1975), suggesting a possible

route for immunizing, rather than fatal, infections in nature.

The frequency with which non-bite transmission occurs in nature and its importance in
rabies epidemiology are still unknown. A rabies epidemic in kudu (7ragelaphus
strepsiceros) in Namibia from 1977 to 1985 was thought to have spread orally through
shared browse or mutual grooming (Barnard ef al., 1982). The rapid spread of
infection within social carivore groups, without widespread evidence of bite wounds,
also suggests that non-bite transmission may occur in canids, for example, through

mouth-licking (Gascoyne ez al., 1993a, Maas, 1993, Kat et al., 1995).

The Early Stages of Infection

Although the neurotropism of the virus has long been recognized, the early stages of
infection are still poorly understood and are relevant to this study because of their
importance in the development of immune responses. There is still no unequivocal
explanation for the variable and prolonged incubation periods that are charactenstic of
rabies in all species. However virus has been detected in myocytes up to 28 days after

infection in skunks (Charlton and Casey, 1981) with evidence that replication may also
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occur (Murphy et al., 1973; Charlton and Casey, 1979; Charlton, 1994). Virus retention
in myocytes also provides the opportunity for using immunoglobulin therapy and
vaccine in post-exposure treatment to eliminate infectious particles before they enter the
central nervous system (Charlton, 1994). Presumably, at this early stage, rabies virus is
also exposed to the immune system. However, in clinical disease, antibody is usually
only detected in the terminal stages of the illness (Hemachudha, 1994; Foggin, 1988,
Chaparro and Esterhuysen, 1993).

The Development of Humoral Immunity

Our 1interest in the roles of N and G protein in immunoprotection is stimulated in this
study because we aim to interpret results of two rabies serological tests that may differ
in their detection of anti-N and anti-G antibody. Virus neutralizing antibody, stimulated
by the G protein of the rabies virus, undoubtedly plays a critical role 1in the immune
response, and can protect against challenge infection as effectively as inactivated
vaccine (Wunner et al., 1983). However, the importance of the N protein in
immunoprotection is becoming increasingly apparent (Fu et al., 1994). N protein can
protect mice (Lodmell et al., 1991) and dogs (Fekadu er al., 1992) against peripheral
infection in the absence of neutralization antibody, and also has a role in recovery from
rabies in dogs (Fekadu et al.,1992). N protein can further augment immunity, through

induction of specific T helper cells and non-specific lymphokine (interleukin-2 and
interferon) responses (Dietzschold et al., 1989).

The general explanation for the late appearance of antibody in clinical disease is that the
intrinsic neurotropism of the rabies virus protects it from immune surveillance and virus
must multply in the CNS before sufficient antigen is released to induce serum
neutralizing antibody (King and Tumer, 1993). However, this assumption is challenged
by the detection of rabies antibody in a proportion of healthy animals and people in
rabies-endemic areas (Tables 1.1a-c). These findings raise a number of questions about
immune responses in natural infections and suggest they may have little in common with

experimental infections, on which most of our knowledge is based.
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Atypical Rabies

Our interest in atypical rabies concemns first, the interpretation of rabies seropositivity in
healthy animals and second, the role of atypical infections in the persistence of rabies in
the Serengeti. The first issue is addressed in this section, the second in relation to the

dynamics of microparasite infections

Not all rabies infections result in clinical disease and death. As early as 1882, Pasteur
wrote that “dogs can sicken and survive rabies” and “it is probable that many silent
cases of rabies escape detection” (Pasteur, 1882). In reviewing the evidence for atypical
infections, Fekadu (1991) identfied four courses of atypical infections in dogs: (i)
recovery from illness, (ii) inapparent (‘aborted’) infection, (iii) a prolonged latent period

(somefimes equated with incubation period), and (iv) an infectious carrier state.

Andral and Serié (1957) were the first to demonstrate an association between serum
rabies antibody and atypical rabies infection, in dogs recovering from neurological signs
and in a proportion of dogs remaining healthy. Recovery from clinical disease was later
confirmed in dogs following experimental infection (Fekadu and Baer, 1980), with one
dog excreting virus in saliva for several months after recovery and developing high
levels of neutralizing antibody in serum and cerebro-spinal fluid (CSF) (Fekadu er al.,
1981). Fekadu (1991) and Carey (1985) consider the finding of rabies neutralizing
antibody in healthy individuals evidence for non-fatal infection (Tables 1.1a-c).
However, in the majority of these serosurveys the fate of the individual is unknown, so
we cannot rule out early expression of antibody in animals incubating the discase.
Nonetheless, studies of seropositive raccoons, monitored over three years (Bigler et al.,

1983), indicate that seropositive animals do not invariably succumb to rabies infection.
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