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ABSTRACT 

This thesis describes a comprehensive cohort study of cutaneous leishmaniasis 

(CL) in a population of 2,704 followed over a period of 19 months, in the Opon focus, 

Landazury, Santander, Colombia. Chapter 1 reviews the public health importance of 

CL at international, national (Colombia), and local (Santander) levels. Particular 

attention is given to the distribution of Leishmania parasites, sandfly vectors and 

reservoirs in Central and South America, according to the ecological regions defined 

by the Andes mountain range. Chapter 2 describes the materials and methods of the 

whole project, emphasising its clinical, epidemiological and entomological aspects, 

respectively. Each one of the following three chapters contains an introduction, 

results and discussion. Chapter 3 addresses the diagnosis, aetiology and clinical 

symptoms of leishmaniasis patients. The principal findings were as follows: (i) from 

three methods tested, PCR and the direct examination of slides are recommended as 

diagnostic tools in distant leishmaniasis foci; (ii) the main parasite circulating in Opon 

is L. panamensis; (iii) cutaneous lesions were larger if patients were infected at a 

younger age, and tended to be located on the face of children, on the legs of women, 

and on the torso of man; and (iv) about 10.2% of CL patients had mucosal lesions of 

low severity. Chapter 4 presents the results of the cross-sectional survey carried out 

between May-July 1995, and the results of the 19 months prospective survey. 



Results are divided into sections on the population structure; the population 

transmission rate for infection and disease; the personal, household and village risk 

factors for infection; seasonal variation in the incidence of leishmaniasis; the risk 

factors for developing clinical symptoms with infection; acquired immunity; and 

finally an analysis of the potential bias in the study. The main findings were as 

follows: (i) the cumulative prevalence of infection amongst the whole study 

population was 0.75; (ii) the average transmission rate in this focus is currently ca. 

0.19/year; (iii) the risk of infection is equal for both genders and for all ages; and (iv) 

transmission was less likely in houses surrounded by secondary forest 
. In Chapter 5 

the sandfly fauna in the focus are described, focusing on their seasonal and nocturnal 

activity patterns; the relationship between habitat type and indoor sandfly abundance; 

the spatial relationship between abundance and transmission rate; and the natural 

infection rate with Leishmania. The main findings were as follows : (i) the principal 

vectors in the Opon focus are Lit. trapidoi and Lu. gomezi; (ii) a significant proportion 

of transmission to humans takes place indoors and at night; and (iii) the widespread 

deforestation that characterises the Opon focus has not caused any reduction in the 

incidence of leishmaniasis, presumably because the sandfly vectors continue to breed 

successfully in the cacao plantations that have replaced much of the primary forest. 

Chapter 6 provides a discussion of the complete project, focusing on the significance 

for public health in Santander. 
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Chapter 1 Introduction 

1. INTRODUCTION 

1.1 THE NATURAL HISTORY OF LEISHMANIASIS 

American cutaneous leishmaniasis is a human disease, which 

describes a wide spectrum of clinical and immunological manifestations, 

including localised cutaneous leishmaniasis (LCL), mucocutaneous 

leishmaniasis (MCL) and diffuse cutaneous leishmaniasis (DCL) (Tapia et al., 

1994). The evolution of disease in this spectrum is dependent upon a complex 

set of interactions between signalling properties of the epidermis (Tapia et al., 

1994) and events associated with cell-mediated immunity (Curry et al., 1994). 

Leishmaniasis is caused by intracellular protozoan parasites of the genus 

Leishmania and is transmitted to humans by the bite of a small percentage of 

the 400 species of phiebotomine sandflies described to date in America (CIPA 

group, 1993). The sandflies become infected when taking blood from a 

reservoir host, which can include rodents, sloths, marsupials, dogs (Ashford, 

1996) and probably humans (Montoya et al., 1990). 

LCL is restricted to well-defined skin lesions because a Thl-like immune 

response is mounted by activated CD4+ helper T (TH) cells, including delayed- 
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Chapter 1 Introduction 

type hypersensitivity (reflected by the response to a Montenegro Skin Test, 

MST) and macrophage activation. All Leishmania spp. listed in Table 1.1, as 

well as L. chagasi (Oliveira et al, 1986), have been associated with LCL. L. 

braziliensis infection is typically associated with more severe LCL pathology 

than L. panamensis, as it generally leads to a more protracted duration of 

disease and to larger cutaneous lesions. The mean MST induration size also 

tends to be greater following L. braziliensis infection (even after controlling for 

lesion duration, type and size) (Saravia et al, 1989). However, recurrences are 

thought to be more frequent following L. panamensis infection (Weigle et al, 

1993). 

MCL is a hyperergic form of LCL with an exaggerated antigen-specific, 

cell-mediated immune response (CMI), but a low density of parasites (Tapia et 

al,, 1994). MCL is also associated with increased antibody titers as well as a 

heightened cutaneous MST response (Saravia et al, 1989). Lesions are often 

chronic and progressive, relapsing after treatment. The most severe cases 

may be associated with mutilation, deterioration of the general state of health 

and even death, when there is profound compromise of the respiratory system. 

In a five-year prospective study in Brazil, MCL occurred in 2.7% of LCL patients 

(Jones et al. 1987). MCL with a positive CMI response is associated most 

commonly with L. braziliensis. 
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Chapter 1 Introduction 

DCL is a progressive, anergic, non-ulcerative form of leishmaniasis, 

which reflects severe antigen-specific T cell deficiency of the infected host. In 

the epidermis, the principal problem is related to cytokine-mediated accessory 

signals that affect the function of antigen-presenting cells (Convit et al, 1993; 

Tapia et al , 1994). DCL is generally associated with species in the L. 

mexicana complex, although some isolates from DCL patients have recently 

been characterised as L. panamensis (Velez et al, 1994). 

The natural history of LCL caused by L. panamensis in one focus has 

been described in detail based on the results of a follow-up study conducted in 

Tumaco, Colombia (Saravia & Weigle, 1996). The study reported that L. 

panamensis infections had low pathogenicity (as only 12% of infections caused 

clinical symptoms) but relatively high virulence (i. e. large lesions and frequent 

reactivations amongst patients). However, in a small cohort followed in 

Santander during a pilot study in 1991, L. panamensis infections appeared to 

be considerably more pathogenic than those reported in Tumaco. This result 

indicated the need for additional studies on this parasite species in order to 

classify its clinical impact on human infection throughout its geographic range. 

Thus, one aim of this project was to compare the natural history of L. 

panamensis infections in the Pacific coastal lowlands of Tumaco with those 

occurring in the inter-Andean Valleys (where Opon is located). 
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Chapter 1 Introduction 

1.2 LEISHMANIASIS AS A PUBLIC HEALTH PROBLEM IN SOUTH 

AMERICA 

The world population at risk of leishmaniasis has been estimated by the 

World Health Organisation (WHO, 1995) as 350 million persons belonging to 

88 countries, with a world prevalence of ca. 12 million. The world-wide 

annual incidence of the different clinical forms of leishmaniasis is estimated as 

ca. 1.5-2 million new cases/year (1-1.5 million cutaneous leishmaniasis; 

500,000 cases of visceral leishmaniasis) (Desjeux, 1996) excluding "(1) cases 

who have no access to medical facilities, (2) misdiagnosed cases, and (3) 

cases that are seen clinically but not reported" (Ashford et al, 1992). Hence, 

this figure is likely to be a gross underestimate. 

In the New World the estimated incidence of LCL is ca 60,000 

person/year. LCL is endemic in 20 of the 22 continental countries, and in two 

Caribbean islands. The mean number of annual cases reported during the 

period 1986-1990 gives an idea of the distribution of leishmaniasis in American 

countries: Brazil had the highest annual incidence (67,500 cases reported) 

followed by the Andean and Central American countries (total of 57,200 cases). 

Only 1,500 cases were reported in Argentina, Paraguay, USA and Mexico 

during the same period (Desjeux, 1991 and 1992). 
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A significant increase in the number of reported cases of leishmaniasis 

has become apparent in recent years in the New World. For example, 2,000 

cases were reported in the northern states of Brazil in 1980; nine years later the 

annual number of cases reported had risen to 9,000 (Desjeux, 1991). 

Similarly, in Peru, the average incidence ranged between 6.8 and 8.8/ 100,000 

person/year in the period 1951 -1979, while in the 1980s the annual incidence 

averaged ca. 14.5/100,000 person/year (Rodriguez, 1992). The increase in 

reported cases could in part be due to the recent status of leishmaniasis as a 

notifiable disease, as there is undoubtedly now greater medical knowledge, 

drug availability and active search of cases (Scorza, 1985; Desjeux, 1992). 

Several factors related to the ecological, economic and political changes 

in Latin-American countries could also have caused an increase in the public 

health importance of leishmaniasis. In Venezuela, the major leishmaniasis foci 

have been displaced from agricultural fields to sub-urban areas, where the 

population has concentrated since the boom which resulted from oil exploitation 

(Scorza, 1985). There is also circumstantial evidence that Leishmania 

parasites may have adapted to a peri-domestic reservoir, Didelphis marsupialis 

(Scorza et al, 1984) or even to a domestic reservoir (dogs or equines) (Ashford, 

1996). In addition, the shortage of arable land, and the problem of 

overpopulation in the high plateaux of some Andean Countries, has led to 

increasing settlements in the tropical plains where the risk of transmission is 

frequently higher (WHO, 1995). In Colombia, as in Peru (Davies et al, 
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1995a), the political decision to terminate the insecticide spraying regime of 

the Malaria Control Campaign has also been associated with the resurgence 

of leishmaniasis (WHO, 1995; Cepeda, 1997). 

In general, the main site of leishmaniasis transmission in Central and 

South America has changed from the sylvatic to the domestic environment 

(including indoors). Transmission is often highest in new settlements in 

endemic areas, where new agro-industrial projects have recently been 

developed. However, in the last national report available from the Colombian 

Ministry of Health, leishmaniasis is still a predominant disease of males within 

an age range of 15 to 44 years, and infection is still frequently associated with 

forest activities. This reported epidemiological pattern could be biased 

because the great majority of cases are identified by passive search. 

Therefore, the data could be biased in favour of those with a greater probability 

of attending distant hospitals in order to receive treatment. Large number of 

cases will be never be registered, and children are especially likely to be 

excluded, as they are often treated with "traditional medicines" or commercially 

bought Glucantime® (typically given in doses too low to be effective), and are 

therefore not reported to the central authorities. Thus, the risk factors for 

leishmaniasis in Colombia cannot be estimated satisfactory from the Ministry of 

Health data, and there is a requirement to carry out a series of large scale 
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cohort studies, in order to provide a rational basis for deciding appropriate 

policies for treatment and prevention. 

1.2.1 Leishmania species distribution in America 

The distribution of the most Leishmania species in Central and South 

America is closely related to specific ecological conditions. The isolation and 

classification of parasites from humans, vectors and reservoir hosts, throughout 

the New World, has also identified strict geographical ranges for most 

Leishmania species. In general, L. panamensis, L. guyanensis, L. mexicana, 

L. amazonensis and L. peruviana are restricted to more defined environments, 

whereas L. braziliensis is more widespread (Table 1.1). 

L. panamensis is distributed in some Central America countries, in 

Colombia and in Ecuador. It is absent in Belize, rare in Guatemala and EI 

Salvador, but relatively frequent in Honduras, Costa Rica and Panama. The 

situation is not clear in Nicaragua. In South America, L. panamensis extends 

its influence through the inter-Andean valleys in Colombia (Cauca river and 

Magdalena river valleys: see below) and the tropical lowland forests of 

Colombia and Ecuador (on the Pacific coast) (Belli et al, 1993; Grimaldi et al, 

1989; Corredor et al, 1990; WHO, 1990; Nichols, personal communication). 

The Pacific coastal lowlands of Ecuador and Colombia have a similar fauna 
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and flora as Central America (Corredor et al., 1990). In this area is located 

Tumaco Municipality (Colombia), where the only previous reported cohort study 

of L. panamensis transmission was carried out (Figure 1.1) (Weigle et al, 

1993). 

The reservoir host of L. panamensis is thought to be the two-toed 

sloth, Choloepus hoffmanni (Ashford, 1996), on the basis of frequent parasite 

isolation and its geographical distribution. The geographical distribution of L. 

panamensis coincides clearly with the distribution of C. hoffmanni (Herrer and 

Telford, 1969), except that the sloth is found in Guyana and Brazil (Emmons, 

1994), where L. panamensis is absent. In Venezuela, the sloth is present 

and L. panamensis has only rarely been reported. Hence, the geographical 

distribution of L. panamensis coincides better with the regions defined by the 

overlapping ranges of C. hoffmanni and Lu. trapidoi, the presumed principal 

vector of this parasite (see Chapter 5). In Opon, where this project was 

carried out, C. hoffmanni is found in large numbers, and is hunted on a large 

scale. This is apparent from the huge collections of sloth nails and skulls 

kept by the farmers as trophies of their hunting practices (Figure 1.2) 

L. braziliensis is the most widespread Leishmania species in Latin- 

America. It is the predominant aetiological agent of LCL in the northern 

countries of Belize and Guatemala, but is relatively rare in Panama and Costa 

Rica (Belli et al., 1993). In Colombia, Venezuela, Ecuador, and Peru L. 

8 



Chapter 1 Introduction 

braziliensis becomes an important public health problem. The main foci are 

limited to the western Andean region in Venezuela (Trujillo, Merida and 

Tachira) and to the Catatumbo River Valley in north-western Colombia (Nichols, 

personal communication; Maingon et al., 1994). L. braziliensis is the principal 

causative agent of cutaneous leishmaniasis in Brazil and Bolivia and is the only 

Leishmania species isolated from humans in Argentina and Paraguay. 

Table 1.1 Recognised Leishmania species causing human diseases in 
the New World 

Parasite Known geographic distribution 

L. braziliensis Argentina, Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, 
Guatemala, Honduras, Nicaragua, Panama, Paraguay, Peru, 
Venezuela. 

L. peruviana Peru 

L. guyanensis Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Surinam, 
Venezuela 

L. panamensis Colombia, Costa Rica, Ecuador, Honduras, Nicaragua, Panama, 
Venezuela 

L. lainsoni Brazil, Peru 

L. naiff Brazil 

L. colombiensis Colombia, Panama, Venezuela 

L. shawi Brazil 

L. mexicana Belize, Colombia, Costa Rica, Dominican Republic, Ecuador, 
Guatemala, Honduras, Mexico, Panama, United States, Venezuela 

L. amazonensis Bolivia, Brazil, Colombia, Costa Rica, Ecuador, French Guiana, 
Panama, Peru Venezuela 

L. venezuelensis Venezuela 

* Taken from Grimaldi and Tesh, 1993 
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L. mexicana has been isolated in the United States, Central America, 

Colombia and Venezuela. In Central America, it is relatively common in 

Guatemala (Desjeux et al., 1991), Belize and El Salvador (Belli et al., 1993), 

and has some public health importance in Venezuela (Maingon et al., 1994) 

and Colombia (Corredor et al 1990). In the northern countries of South 

America, L. mexicana is distributed through the Pacific coastal lowlands (like L. 

panamensis), extending its influence through the Venezuelan-Colombian 

border at the North West of Venezuela (Tachira state) and the North East of 

Colombia (Norte de Santander Department) (Maingon et al, 1994; Grimaldi et 

al., 1989). 

L. guyanensis has been isolated in Brazil, Colombia, Peru, French 

Guiana, Guyana and Surinam, and appears to be restricted to the Amazon 

basin. L. amazonensis is also found in the Amazon basin, and has been 

isolated in Venezuela, Peru, Ecuador and Bolivia. (Grimaldi et al, 1989). L. 

peruviana is restricted to the inter-Andean Valleys (800-3000 m a. s. l. ) and 

western slopes of the Andes in Peru (Llanos Cuentas, 1993); whereas L. 

colombiensis has been isolated only in Venezuela, Colombia and Panama from 

a few human cases and from the sandfly Lu. hartmanni in tropical rain forest 

habitats (Kreutzer et al., 1991) 
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Figure 1.1 Some well researched LCL foci in Central and South America 
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Figure 1.2 Sloth nails and skulls collected by farmers in Opon area 
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1.3 LEISHMANIASIS AS A PUBLIC HEALTH PROBLEM IN 

COLOMBIA 

1.3.1 Introduction 

The National Health System of Colombia (South America), was 

restructured in 1993 on the basis of a new law (Law number 100), within which 

the "Basic Attention Plan" (BAP) was created to curb tropical diseases. BAP is 

currently funded by the Ministry of Health and is operated throughout Colombia 

by each Departmental Health Offices. Santander Department (the focus of this 

thesis) is located in north-eastern Colombia on the eastern side of the Andean 

mountains (see below). This region is characterised by a rich fauna and flora 

and little climatic variation throughout the year. Tropical diseases prevalent in 

Santander include leishmaniasis, Chagas disease, dengue and malaria; and 

are all managed by the "Vector Borne Disease Control Unit" (BAP-Santander), 

which is located in the Santander Health Office. This Unit inherited all the 

equipment and staff, belonging to the former National Malaria Control Program, 

which was ended in 1995. 

The BAP policies are generated by the Colombian Ministry of Health 

which has created a series of recommendations in the past four years for the 

control of the major endemic vector-borne diseases in Colombia. The aims of 
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the National Leishmaniasis Control Program (NLCP), which was set up by BAP 

are: (1) to study the parasites, vectors, and reservoir host(s) involved in 

leishmaniasis transmission, and (2) to study the risk factors for transmission 

which are associated with human behaviour. This theoretical frame work 

covers all the topics needed for the establishment of national control programs, 

but in practice research programmes are limited by inaccessibility of many 

isolated foci and by the small departmental budgets. One aim of this thesis is 

to evaluate the feasibility of carrying out the objectives of the NLCP in a typical 

isolated focus of leishmaniasis, and to make recommendations on the 

methodology most suitable for data collection and analysis. 

In the following sections, the importance of leishmaniasis in Colombia is 

presented with respect to other Latin-American countries. Particular attention is 

paid to Santander Department in relation to the other Colombian departments. 

1.3.2 The distribution of Leishmania species in Colombia 

Colombia has unusual mountain formations that produce a variety of 

rainfall patterns, forming 23 distinct vegetative zones: These include desert 

bush, tropical moist forest (2000-4000 mm of rain per year), tropical wet forest 

(4000-8000 mm of rain per year), and tropical rain forest (over 8000 mm of rain 

per year) (Espinal et al., 1963). The geographical distribution of Leishmania 
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species in Colombia is related to the distribution of these ecological patterns, 

which can be classified into seven large regions: (1) the Atlantic and Pacific 

coast; (2) Amazonia and the eastern plains; (3) the Magdalena River Valley; 

(4) the Catatumbo River Basin; (5) the Cauca River Valley; and (6) Central 

Andean Massif (Figure 1.3). 

When examining 670 isolates (including 340 isolates previously reported 

by Corredor et al, 1990) from patients, sandflies and reservoirs by isoenzyme 

electrophoresis, Nichols (personal communication) concluded that L. 

panamensis was the most frequently isolated parasite in Colombia (309/670, 

46%), followed by L. braziliensis. However, L. braziliensis is the most widely 

distributed species, while L. panamensis appears to be confined mainly to the 

western half of the country in both the inter-Andean valleys and in the Pacific 

coast (Figure 1.3). L. guyanensis has been isolated from patients and 

sandflies (Lu. umbratilis) in the Amazon basin, in south-eastern Colombia. L. 

amazonesis is also present in the Amazon basin and on the west slope of the 

eastern Andes, having been isolated from patients with LCL and Diffuse 

Cutaneous Leishmaniasis (DCL) (1% of the 670 strains). A small number of 

isolates of L. mexicana were also detected, being restricted to the lowlands 

Pacific Coast (Figure 1.3) 
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Figure 1.3 Distribution of LCL in Colombia 
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1.3.3 Regional variation in the annual Incidence of LCL in Colombia. 

LCL has long been prevalent in Colombia, as indicated by Pizarro's 

reference to indigenous people with nasal mutilations. Later on, Gomez 

reported a case in 1872, calling it "puercas" or "marranas". In 1893, Mateus 

and Francisco made the first clinical description of a patient, who came from the 

Department of Santander, naming the disease "bubon de Velez", and the 

Leishmania parasite was first observed and described in Colombia by 

Rodriguez in 1929 (Werner & Barreto, 1981). 

Ward (1975) concluded that 2,000 cases were probably seen in 

Colombia between 1948 - 1955. However, Werner and Barreto (1981) only 

reported 283 cases in their review of the distribution of confirmed leishmaniasis 

cases in Colombia on the bases of reports published between 1929 and 1979. 

The Colombian Ministry of Health (MOH) reported 930 cases in 1976; and in 

1980 the MOH instituted an obligatory register for leishmaniasis cases. The 

reported LCL incidence has since then increased year by year, with a peak of 

64 cases/100,000 person-years in 1993 (Figure 1.6). From the total 

leishmaniasis cases reported between 1990-1995,95.7% were cutaneous, 3% 

mucocutaneous and only 1.3% visceral (Cepeda, 1997). 
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From six of the seven ecologically defined regions (i. e. excluding the 

Central Andean Massif), autochthonous LCL cases have been reported in all 

Colombian departments, with the exception of the Department of Atlantico and 

the islands of San Andres and Providencia (Werner & Barreto, 1981; Colombia 

Ministry of Health, 1986; Cepeda, 1993,1997). The highest regional incidence 

in 1995 occurred in the Catatumbo River basin, followed by the two inter- 

Andean valleys (Magdalena and Cauca Valleys) (Figure 1.3). The Department 

of Santander, where this project was carried out, had the fourth highest number 

of reported LCL cases in Colombia (Table 1.2). 

1.3.4 Variation in the annual incidence of LCL in Santander Department, 

according to Municipalities 

Santander comprises 86 "Municipalities", organised into six regions, 

called "Provincias" ( Figure 1.4). Four of the "Provincias" are principally 

located in an inter-Andean valley (Magdalena valley) at 100 m a. s. l., and on the 

western slope of the East range of the Andean mountains (up to ca. 1,200 m 

a. s. I. ). The four Provincias are: Soto, Mares, Socorro and Velez. The other 

two Provincias (San Gil and Garcia Rovira) are located exclusively in 

mountainous areas at high altitudes (maximum: 4,000 m a. s. l. ) ( Figure 1.4). 

The reported incidence rates in Santander have been increasing since 1991, 

when the active search of cases started in Landazury Municipality during a pilot 
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study carried out prior to this thesis (Figure 1.7). All reported cases in 

Santander are confined to 30 of the 86 municipalities, and 93% of the cases 

are located in three Provincias: Soto, Mares and Velez (S. S. S., 1996). In 

1996, incidence rates over 500/100,000 person-years were found in four 

Municipalities: Landazury, El Carmen, Sucre and San Vicente, which are all 

located in the South-West of Santander Department ( Figure 1.4). These four 

municipalities are situated in the foothills of the mountains, between the 

Magdalena valley and the East Mountain Range, at an average altitude of 750 

m a. s. I. (range: 300-1200 m a. s. l. ) ( Figure 1.4). 

Landazury has the highest reported leishmaniasis incidence of any 

municipality in Santander (1,368/100,000 persons-years reported in 1996). 

The capital is located 286 Km from Bucaramanga (the departmental capital), 

lies at an altitude of 1,100 m a. s. l., with an average temperature of 23 °C (see 

Materials and Methods). The municipality is divided into nine "districts" with a 

total population of 13,000 inhabitants. Between 1991 and 1993,367 cases 

were detected by passive search and diagnosed by parasite detection in thin 

smears made from superficial scrapings of leishmaniasis ulcers. During this 

period, the annual incidence rate of LCL in the nine districts ranged from 

0/1000 person-year (La India) to 21.7/1000 person-year (Chorolo) (Figure 1.5). 

Between 1995-1997 Chorolo District presented an average incidence rate of 
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28/1000 person-year (by passive search of cases) whilst in the same period the 

incidence rate in the Opon area (was twice as high) (see section 4.2.3). 

Table 1.2 Distribution of cutaneous leishmaniasis in Colombia by 
regions 

POPULATION AVERAGE AVERAGE NUMBER INCIDENCE 

REGIONS / DEPARTMENTS AT RISK CASES/YEAR INCIDENCE CASES 1995 

(rural pop. ) 1990 - 1994 1990-1994 1995 X 100.000 

X 100.000 

ATLANTIC COAST 
Guajira 37,237 40.8 109.6 10 26.9 
Cesar 89,566 94.8 105.8 68 75.9 
Magdalena (Santa Marta) 118,694 65.6 55.3 27 22.8 

tlantico (Barranquilla) 1,026,352 3 0.3 24 2.3 
Bolivar 180,806 201.8 111.6 223 123.3 
Sucre 122,310 330.6 270.3 337 275.5 
Cordoba 268,331 128.4 47.9 197 734 

TOTAL 1,843,296 866.0 46.9 886 48.7 

Choco 190,735 369.8 193.9 341 178.8 
Cauca 334,171 46.2 13.8 76 22 7 

Naririo 251,506 281 111 7 217 86 3 

TOTAL 776,412 697.0 89.8 634 81.7 

MAGDALENA RIVER VALLEY 
Santander 236,164 3382 143.2 435 184.2 

Cundinamarca 276,420 122.4 44.3 73 26.4 
Tolima 192,694 192 99.6 119 61 8 
Boyaca 68,553 31.4 45.8 68 992 
Huila 81,646 161.8 1982 590 7226, 

TOTAL 855,477 845.8 
- ----- 

98.9 
----- - 

1285 150.21 

RIO CAUCA VALLEY 
ntioquia 786,887 1081.8 137.5 1,042 1324 

Caldas 187,913 460.8 245.2 363 193.2 
Risaralda 8,677 230.8 2,659.9 120 1383.0 
Quindio 5,635 7.4 131.3 12 2130 

alle del cauca 158,847 128 80.6 84 52.9 
TOTAL 1,147,959 1908.8 166.3 1621 141.2 

CATATUMBO RIVER VALLEY 
Norte de Santander 286,791 938.4 327.2 998 348.0 

AMAZONIA AND THE EASTERN PLAINS 
rauca 52,085 17.8 34.2 42 80.6 

Casanare 31,139 5.6 18.0 10 32.1 
ichada 10,272 9.4 91.5 13 126.6 

Meta 189,757 88 46.4 77 40.6 
Guainia 7,912 5.2 65.7 8 101.1 
Caqueta 129,090 160.6 124.4 261 202.2 
Vaupes 9,701 7.6 78.3 4 41.2 

Guaviare 54,080 63 116.5 56 103 6 
Putumayo 70,759 466 65 9 95 134 3 

mazonas 14,302 206 144.0 34 237.7 

TOTAL 669,097 424.4 74.6 600 106.4 
GRAND TOTAL 5,479,032 5679.4 103.7 6024 110.0 

Not specified 66 418 
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Figure 1.4 Distribution of LCL in Santander Department 
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1.4 RATIONALE AND OBJECTIVES OF THE OPON FOCUS STUDY 

The current strategy for leishmaniasis control in Colombia (NLCP, 1994) is 

(1) the early detection, diagnosis and treatment of active lesions; (2) the chemical 

and mechanical control of sandfly vectors which bite indoors; and (3) reservoir 

control where appropriate. It is hoped that future strategies will include 

vaccination of susceptible populations, but vaccine development is still at a very 

preliminary, experimental stage. The early detection of lesions can only be 

possible by active search of patients in remote foci of leishmaniasis. However, in 

these sites, the National Health System has failed to operate a number of essential 

programmes, such as primary health care, due to: (1) a great shortage of hospital 

staff for field work, as local political leaders (with the responsibility for these 

decisions under law 100) rarely include primary health care as a priority; (2) the 

decentralisation and departmental politicisation of the former Malaria Control 

Program, which was previously the only office in Colombia working in remote 

areas; and (3) the limited community participation in the establishment of those 

local net-works which are recognised by the BAP. 

The recommended drug in Colombia for leishmaniasis treatment is 

Glucantime©: intramuscular doses of 20 mg/kg/day, with a duration of 20 days for 

cutaneous lesions and 28 days for mucocutaneous disease. The choice of 

treatment is unaffected by the Leishmania parasite species, not least because 

species identification is not routinely carried out. The principal criteria for 
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treatment is that a case must be parasitologically positive, but clinically suspect 

cases may be treated even after a negative diagnostic test. The currently 

recommended diagnostic test is microscopic examination of lesion smears and 

histopathology. Microscopic examination of smears is carried out locally, i. e. at 

the nearest hospital to the patient, whereas histopathology is carried out at a 

regional health centre. If the first direct examination of a smear is negative, a 

second smear is made and examined. If a negative result persists, a biopsy has 

to be made in the local hospital, and sent to the central laboratory in the 

departmental capital. There may be a considerable delay before histopathology 

results are reported back to the local hospital. Normally, 15 days are required 

before a decision to treat a patient can be made exclusively on the basis of clinical 

diagnosis (i. e. in the absence of a positive parasitological diagnosis). During 

these 15 days, patients often return to their homes, and may purchase a sub- 

therapeutical dose of Glucantime®, which can be found on the black market. 

Hence, only a small proportion of patients are probably diagnosed and treated on 

the basis of histopathology or clinical diagnosis. In order to avoid problems 

associated with the black market, hospital staff provide patients with the required 

Glucantime in several batches. The patients take each batch home, where they 

administer it themselves (or with the help of a local health promoter), and then 

return to the hospital with their empty vials in order to pick up the next batch. 

Because the distance to a local hospital may be considerable, patients are often 

tempted to desert their course of treatment. Also the financial benefits of selling 
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their batches of Glucantime on the black market are a further incentive to stop 

treatment. Little is known yet about the extent to which drug resistance may be 

induced by the indiscriminate use of Glucantime®, which is a feature of these 

remote leishmaniasis foci. 

Recommended vector control strategies include insecticide spraying 

indoors and in the peridomicile, where sandfly vectors are found in these 

environments. However, the efficacy of sandfly vector control in Colombia has 

only been evaluated following small scale trials of deltamethrin-impregnated 

bednets or curtains (Alexander et al, 1995b; CIDEIM, unpublished). With respect 

to MOH operational activity, insecticide spraying for LCL vectors is sporadic, and 

its effectiveness has never been evaluated either entomologically or 

epidemiologically. Insecticide spraying against LCL vectors has, for example, 

been carried out occasionally in Santander and Huila Departments. The 

insecticides used by the Ministry of Health include: Malathion, Fenitrothion, 

Propoxur, Deltamethrin, Lambdacyhalothrin and Permethrin. The insecticide 

application is carried out by trained staff with the appropriate equipment. At 

present, the staff of the former Malaria Control Program, who are trained for this 

purpose, are also responsible for insecticide spraying against Aedes and 

Anopheles mosquitoes and triatomine bugs. These latter activities may 

inadvertently reduce the incidence of leishmaniasis, where the different domestic 

vectors have overlapping distributions. There is little reliable information currently 
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available on the seasonal changes in abundance of sandfly vectors (except in a 

few well researched foci), so there is no clear strategy for selecting the appropriate 

time of the year (or the specific place) where insecticide should be applied. 

Indeed, the effectiveness of operational vector control programmes has never 

been measured satisfactorily. Mechanical control recommendations include the 

cutting down of small trees around houses and the removal of vegetal detritus from 

around houses. This control strategy is inappropriate where crops are grown up 

to the edge of houses, as in coffee and cacao plantations. There are no current 

recommendations on the control of putative domestic reservoirs for cutaneous 

leishmaniasis, and new research into LCL reservoirs is called for. 

This thesis describes a field study of the dynamics of parasite transmission 

in humans at the Opon focus, combined with a study of the behaviour and ecology 

of the sandfly vector population. The transmission rate for human infections in the 

focus was measured using both cross-sectional and follow-up data, in order to 

estimate the real magnitude of the public health problem caused by leishmaniasis. 

The variable clinical response to infection was measured in relation to personal 

risk factors, in order to allow the targeting of the most susceptible groups in future 

control strategies, based on the early detection and treatment of cases. Evidence 

for sub-clinical infections, and for acquired -protective immunity following either 

subclinical or clinical infections, was sought in the human population at risk in 

Opon, in order to provide information which might be pertinent to the development 

and testing of leishmaniasis vaccines in the future. Finally, the thesis focuses on 
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the risk factors for human infection, including the seasonal and temporal activity 

patterns of sandflies as well as changes in land use as a result of deforestation, in 

order to (1) determine the feasibility of interventions aimed at the prevention of 

leishmaniasis by reducing human-sandfly contact rates, and (2) to predict the long 

term epidemiological consequences of deforestation in the Colombian Andes. 

The general objectives of the thesis were therefore as follows: 

1. To provide an accurate estimate of the incidence of cutaneous leishmaniasis in 

the Opon focus, and to identify the parasites responsible. 

2. To determine the demographic, seasonal, environmental and entomological 

risk factors for Leishmania transmission in the Opon focus, paying special 

attention to the effects of the widespread deforestation in this region. 

3. To measure the variable human response to Leishmania infection in the 

endemic zone, and to identify factors that influence both the probability and 

severity of clinical symptoms 

4. To formulate a practical approach for the study of leishmaniasis foci within the 

framework of the National Leishmaniasis Control Program. 
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2. MATERIALS AND METHODS 

2.1 STUDY AREA 

The study was carried out in 12 villages in the Opon area, Landazury 

Municipality, Santander Department, Colombia, South America. The villages 

are located ca. 290 km South-West of the departmental capital, 

Bucaramanga. It is a mountainous region (Figure 2.1), covering 

approximately 250 km2, which is limited by the Quirata River (400 m a. s. l. ) to 

the East, the "Cerro de Armas" mountain to the West, and two large cattle 

growing areas to the North and South (6°, 20' N; 73°, 43' W) (Figure 2.2). 

Most dwellings are built with wooden planks over wooden platforms, 

supported by stilts. The roofs are made of sliding corrugated iron, which can 

be moved during the day to expose the flat topped roof to the sun, where the 

farmers dry the cacao fruit (Figure 2.3). There are a total of 527 houses in 

the 12 villages, 331 of which are owned by people who constituted the study 

population (see Chapter 4) 

The only access for transport is an unpaved road which passes through 

Miralindo, Santa Sofia, San Pedro and Tagual villages. Miralindo is the 
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larger village, the business centre for the community, from which a secondary 

road leads to the western villages of Plan de Armas, Las Delicias, La Dorada, 

Buenos Aires and Cucuchonal (Figure 2.2). Plan de Armas is the business 

centre for the last four villages. The principal economic activities are 

silviculture of tropical hard woods (in the rain forest), cattle ranching, and the 

cultivation of cacao (where the forest has been partially cut-down). A 

representative sample of 114/331 houses (see Chapter 4) were chosen to 

describe the characteristic surrounding vegetation coverage. Pasture land 

(and to a lesser extent cacao plantations) are typically found close to houses, 

so that the majority of land within 50m of each house is either pasture or 

cacao (Figure 2.3 and Figure 2.5a, b). In contrast, secondary forest is found 

within 50m of only 26% of the houses in this area ( Figure 2.5c) and only a 

tiny percentage of houses are close to primary forest ( Figure 2.5d). 

However, at greater distances from houses, the pattern of land use changes, 

with an increase in the coverage of cacao, secondary forest and primary 

forest and a decrease in pasture land (Figure 2.4 and Figure 2.6a-d). The 

relationship between land use and the percentage coverage with primary 

forest gives an indication of the ecological impact of a particular land use on 

the destruction of primary forest. For example, the impact of cacao 

plantations on the destruction of primary forest was less severe (Figure 2.7a) 

than the loss of primary forest associated with changing to pasture or non- 

permanent crops (which tend to be followed by secondary forest growth) 
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(Figure 2.7b, c). A negative impact was also observed for the relationship 

between cacao and pasture or secondary forest (Figure 2.7d, e). 

In 1996, meteorological data (minimum and maximum temperature, 

relative humidity and rainfall) were recorded daily at the field station in San 

Pedro village. The annual rainfall was 2,099 mm , with two peaks between 

March to June and October to November (Table 2.1 and Figure 2.8). 

However, rainfall frequency (i. e. the proportion of days with some rainfall) only 

peaked once during the year. in April-May (Figure 2.9). The average 

minimum and maximum temperature was 19.8°C (Figure 2.10) and 33.3°C 

(Figure 2.11), respectively. The average relative humidity was 91.7% (Figure 

2.12). A more detailed description of climatic patterns during the year is 

presented in Chapter 5. 

Figure 2.1 Ecological characteristics of the Opon area 
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Figure 2.2 Localisation of the study villages in the Opon area, 
Landazury Municipality, Santander Department, Colombia 
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Figure 2.3 Household in Opon 

Figure 2.4 Household surrounded by forest 
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Figure 2.5 Vegetation features up to 50 m around households 
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Figure 2.6 Vegetation features up to 800 m around households 
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Figure 2.7 Relationship between vegetation features: land use 

a) Relationship between cacao and primary forest b) Relationship between primary forest and pasture 
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Figure 2.8 Rainfall patterns in the Opon focus, 1996 
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Figure 2.9 Frequency of rainfall in the Opon focus, 1996 
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Figure 2.10 Minimum temperature pattern in the Opon focus, 1996 
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Figure 2.12 Relative humidity pattern in Opon focus, 1996 
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Table 2.1 Climatic conditions in the Opon focus, 1996 

MONTHS RAINFALL TEMPERATURE RELATIVE # DAYS 

MINIMUM MAXIMUM HUMIDITY WITH RAIN 

FEBRUARY 50.8 19.6 31.9 90.3 15 

MARCH 207.2 19.9 31.6 89.6 16 

APRIL 263.2 20.9 35 88.9 24 

MAY 368.5 20.8 33.4 88.5 19 

JUNE 231 20 33.3 91.7 18 

JULY 102.8 18.9 35.2 97.9 15 

AUGUST 82.9 19.6 32.2 89.5 14 

SEPTEMBER 150.3 19.8 34 92.5 16 

OCTOBER 275.3 19.3 34.6 93 13 

NOVEMBER 273.7 19.8 34.2 93.6 10 

DECEMBER 931 19.5 31.9 92.9 8 

JANUARY 54.8 19.4 32.8 92.4 10 
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2.2 STUDY DESIGN 

2.2.1 Human population study 

2.2.1.1 Cross-sectional Survey 

During the first visit in January 1995, a scaled map for each village was 

completed by modifying a map provided by the Agustin Codazzi Geographic 

Institute in Bogota, Colombia (Figure 2.2). The previous map did not contain 

information of features important to this study (i. e. houses, health post, 

churches, and markets). This was mainly due to restrictions imposed by the 

government in war areas: in Opon, a war between left wing guerrillas and the 

government army has been taking place for, 30 years. Every house in the 12 

villages was recorded and a code was assigned, consisting of the first two 

letters of each village name and a number (e. g. LS14 for house 14 located in 

La Soledad). The corresponding code was painted on the front wall of each 

house. 

The map was used for planning and conducting the census, for MST 

application during the cross-sectional study, and for the follow-up of the 

cohort. During the census, a unique identification number was allocated to 

each person in every household. The number consisted of the house 
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number, followed by a continuous sequence starting with the household head 

as number one. Thus, BA1405 corresponds to the fifth eldest member of a 

family living in house 14 located in Buenos Aires village. The census used is 

shown in Appendix 1. The Colombian national identity card was requested at 

the time of the census in order to obtain the accurate date of birth. If 

possible, the whole family attended the interviews in order to avoid recall bias, 

when answering questions such as "age when infected". 

The census was carried out for each house, recording information 

related to population structure (age, sex, and date of immigration, when 

appropriate) and clinical status (including age when infected). Past cases of 

leishmaniasis were identified by characteristic scars, which were detected by 

the author using the following criteria: no history of trauma, duration for >2 

weeks, central depressed surface and contours with no sharp angles. 

Suspected leishmaniasis lesions were also defined by the absence of 

prior history of trauma and more than two weeks of evolution. A clinical 

history was made for each patient, including the time of disease onset, 

location on the patient's body, size, number, dermatological description and 

associated lymphatic involvement (if any) (Appendix 2). For mucous lesions, 

clinical diagnosis was taken into account: signs ranging from hyperaemia 

and infiltration associated with nasal problems, to ulcerations, perforations 

with much destruction of tissue and facial disfigurations. After clinical 
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inspection, the study population was classified into two groups: L+ (number of 

people with scar or lesions) and L- (number of people with no history of 

leishmaniasis). Lower case letters, I+ or I-, are used when referred to 

proportions of a particular sub-population belonging to L+ or L- respectively 

(Figure 2.14). 

The cross-sectional study generated precise measurements of the 

prevalence of active lesions, scars and MST. In addition, the data provided 

retrospective estimates of incidence rates, both by fitting a simple model to 

the age prevalence data (see statistical analysis below), and by utilising the 

historical information on the dates of past infections. 

2.2.1.2 Montenegro Skin Test (MST) 

The Montenegro Skin Test (MST) followed the technique 

recommended by the World Health Organisation (WHO, 1990), i. e. using a 

mixture of L. panamensis and L. braziliensis at a concentration of 5x 106 ml'' 

heat-killed promastigotes for each species. 0.1 ml of leishmanin was injected 

intradermally on the external surface of the arm (Figure 2.13) using a 

pressurised intradermal injector (Dermo-jet model G, Robbins Instruments, 

USA). The injector produced results comparable to those obtained by 

intradermal test using syringes (Souza et al, 1992). The study population 

with MST was classified into two groups according to MST response, after the 
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diameter of induration was measured 48 hours later: MST negative (M-) when 

MST was less than 3 mm and MST positive (M+) when MST was equal or 

bigger than 3 mm. Lower case letters, m+ or m-, are used when referred to 

proportions of a particular sub-population belonging to M+ or M- respectively 

(Figure 2.14). 

Figure 0.1 Site on the arm where MST was applied 

-NýI, 

1 

1.1.1.1 Prospective longitudinal study 

All households were visited five times at three months intervals 

following the initial cross-sectional survey, checking for changes in the study 
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population (e. g. due to immigration, emigration, birth and death) and looking 

for new LCL cases. During the final visit (February 1997) the study 

population was given a second MST using the same batch of antigen as 

before. The results provided precise estimates of incidence of infection 

according to age, sex, and clinical/immunological status at the start of the 

survey (Figure 2.14). 

2.2.1.4 Measurement of transmission rates 

The transmission rates were measured using the results of both the 

cross-sectional and longitudinal studies. The data analysis of the cross- 

sectional data focused on the comparison of prevalence rates (active or 

cumulative; MST responsiveness or clinical) according to sex and age. In 

addition, a simple infection-recovery model (Davies et al., 1995a) was fitted to 

the age prevalence curves (i. e. the proportion that were infected at age "a") 

by maximum likelihood (Williams and Dye, 1994). The model assumes that 

susceptibles have become infected at a constant rate "a, " (the force of 

infection), and infecteds have recovered and returned to the susceptible class 

at a constant rate "p" (the recovery rate). It follows that the proportion 

infected at age "a" can be predicted from the equation: 

p(a) =A (1-e-ýA. +p)') 
2+p 
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Incidence rates were also calculated from MST and/or clinical status 

conversion rates obtained from the prospective study (Figure 2.14). For 

comparative purposes, cohorts were defined by their initial MST and clinical 

status (as well as by age and gender), i. e. during the first cross-sectional 

survey. 

Figure 2.14 Diagram of the epidemiological study 
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2.2.2 Sandfly Vectors 

Sandflies were collected in Opon in order to provide complementary 

information for direct comparison with the temporal and spatial patterns of 

transmission. The sandfly study was divided into four parts: (1) endophagic 

activity in relation to the surrounding vegetation, (2) hourly (nocturnal) biting 

activity, (3) seasonal variation in the abundance of sandfly species during a 

year, and (4) natural Leishmania infections. Details of the number of person 

or trap/hours employed, sites and number of replicates for each part are given 

in Chapter 5. All results are expressed as the geometric mean number of 

sandflies (+1) collected. 

2.2.2.1 Collecting Methods 

CDC light traps were used to examine endophagy. These were 

battery-operated and they had previously been shown to provide useful and 

reliable collecting method under meteorological conditions similar to that in 

the Opon focus (Chaniotis et al, 1971b). Human landing catches were also 

used to examine nocturnal activity and seasonal variation. Four persons 

collected sandflies with aspirators simultaneously at the forest, cacao, 

peridomicile and intradomicile. People rotated between sites in order to 

minimise the effects of differences among workers (both in their 

attractiveness to the sandflies and in their collecting abilities). Collectors 
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were protected against sandfly bites by long sleeve shirts and long trousers; 

however they did not wear shoes. Human landing catches were also used to 

collect sandfiies for the detection of natural infections. 

2.2.2.2 Species Identification 

Sandflies collected for endophagic activity, nocturnal activity, and 

seasonal variation studies were preserved in 70% ethanol and cleared in hot 

10% KOH, followed by 100% phenol, whilst individuals for the natural 

infection study were cryopreserved in liquid nitrogen (Young et al, 1987b). 

Flies were identified to species according to Young and Duncan (1994), i. e. 

examining differences in the spermathecae, heads, cibaria, and hindlegs in 

females; and terminalia, genital pumps & filaments, and flagellomeres in 

males. Within the Verrucarum group, some females are similar in structure, 

and it is impossible to identify individuals in the absence of conspecific males 

(Kreutzer et al, 1990). Thus, the identification of Lu. quasitowsendi in Opon, 

which belongs to the Verrucarum group, required examination of the first 

generation males bred in the laboratory, from eggs laid from single 

Verrucarum group females. 
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2.3 DIAGNOSTIC METHODS 

In general, diagnostic procedures for cutaneous lesions included (I) 

microscopic examination of slides made from dermal scrapings, and (ii) the in 

vitro culture of parasites from aspirates (taken from the active edge of the 

lesion inoculated into biphasic media, Figure 2.15 ). In some patients, with 

persistent lesions, a biopsy was taken and fixed in 10% formalin. Most of 

the diagnostic procedures were made according to Weigle et al (1987) but 

with some modifications: (1) primary cultures were made using NNN biphasic 

medium: because past evaluations carried out in Santander Department 

demonstrated that NNN is more cost-efficient than Senekjie's medium 

(Ocazionez and Munoz, unpublished); (2) the dermal tissue was scraped 

using surgical blade number 15 with the sharp side facing out from the slit 

made in the outer border of skin lesion; and (3) the biopsy was only 

performed on patients with a clinical suspicion of another aetiology, rather 

than leishmaniasis: because, from past experience, bacterial contamination 

of the skin is a common problem amongst farmers in scattered dwellings. 

Diagnosis of cutaneous lesions was also made by the Polymerase 

Chain Reaction (PCR) using dermal scrapings, air dried onto microscope 

slides, fixed in methanol, and kept at room temperature (Barker, personal 

communication, Figure 2.15). PCR procedure for mucous lesions used nasal 

scrapings which were kept onto NET10 SDS 1% buffer before DNA 
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extraction. All patients identified were provided with free treatment 

(Glucantime®) and followed-up on a monthly basis. Clinical histories and 

historical data were collected using "protocol 2" (see Appendix 2).. 

Figure 2.15 Diagnostic methods used in Opon 

SUSPECTED LESION 

SCRAPING ASPIRATE 

PCR II GIEMSA II CULTURE 

TRADITIONAL 
METHODS 

COMPARISON OF 
SENSITIVITY 

For PCR, once in the lab. 50 µl of water was placed onto the slides for 

ca. 2 minutes and, following water lysis, the water lysate was transferred to 

an epindorf tube. This procedure requires no DNA extraction stage. The 

primers used were B1-extended universal([5'] GGG GTT GGT GTA ATA TAG 

TGG [3']) and B2-braziliensis specific([5']CTA GTG CAC GGG GAG G [3']) 

(deBrujin et al, 1992). 2µl of sample lysate were amplified in 50 mM KCI, 10 
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mM Tris-HCI (pH 8.3), 1.5 mM MgCl2, and 0.01% gelatin. 0.2 mM of each 

deoxyribonucleotide, 100 pmol of each primer and 2.5 units of Taq DNA 

polymerase (Perkin Elmer, UK) were used. Finally, the sample (50ul of 

reaction mixture and 2ul of water lysate) was overlaid with 100 µl of mineral 

oil (Sigma, UK), and denaturated at 96°C prior to a series of 35 cycles 

consisting of annealing (67.5 °C/1 min. ), extension (72 °C/1 min) and 

denaturation (93 °C/0.5 min) and a final extension step of 10 minutes at 70 °C 

in order to ensure that all the PCR products were full length. Programmes 

were run on a 24-well Cambio Intelligent Heating Block (Genesys 

Instruments, Cambridge, UK). 

2.4 PARASITE CHARACTERISATION : ISOENZYME 

ELECTROPHORESIS (IEA) 

Eight enzyme systems were used for classification and discrimination 

of isolates from patients: Dipeptidase D (PEPD, E. C. 3.4.13.9); nucleoside 

hydrolase (NH, E. C. 3.2.2.1); mannose phosphate isomerase (MPI, 

E. C. 5.3.1.8); malic enzyme (ME, E. C. 1.1.1.40); glucose phosphate isomerase 

(GPI, E. C. 5.3.1.9); phosphoglucomutase (PGM, E. C. 2.7.5.1); 6- 

phosphogluconate dehydrogenase (6PGD, E. C. 1.1.1.49); and esterase 

(ES, E. C. 3.1.1.1). The enzyme extraction from cultured parasites was 

carried out according to Evans et al. (1989). 60 ml of logarithmic phase 

culture of parasites was collected and washed with PBS. The pellet was 
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treated with 2 mM stabiliser solution (2mM EDTA, 2 mM E-aminocaproic acid, 

2 mM dithiotreitol). The suspension was freeze-thawed three times in liquid 

nitrogen and then microfuged at high speed (12-15 Krpm) for 30 min at 4°C. 

The supernatant was collected and stored in liquid nitrogen until needed. 

Characterisation of Leishmania isolates was carried out by lEA in thin-layer 

starch-gel electrophoresis as described by Godfrey & Kilgour (1976) and 

Harris & Hopkinson (1976) 

2.5 NATURAL INFECTION OF SANDFLIES 

Sandflies were collected (for logistic reasons) at only two time-points, 

one in the dry and one in the wet season. Cryopreserved females were 

individually dissected in PBS under a compound microscope. First the head 

was cut off and then a small lateral incision was done in the last segments of 

the abdomen without tearing it. The end of the abdomen was pulled slowly 

away for extraction of the gut and transferred to other PBS drop and 

examined under light microscope in search of flagellates. Infected flies were 

placed onto a container with 50 µl of PBS and macerated with dissection 

needles. 25 µl of the macerate were placed in NET10 SDS1 % buffer for 

DNA extraction and complementary PCR. The remaining 25 µI was 

inoculated into a hamster nose. All dissections were carried out with fresh 

needles in order to avoid DNA contamination on PCR. 
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2.6 STATISTICAL ANALYSIS 

Univariate or multivariate analysis were performed using general 

linearised modelling techniques in GLIM (v. 4.07) (Crawley, 1993). The 

estimates generated by these analyses are the coefficients of a linear model 

which is defined by the error structure, the linear predictor and the link 

function. In some cases, when non-normal errors were detected, the 

response variable was log transformed or a non parametric method was 

adopted. However, in general, when the outcome data were counts (e. g. the 

number of scars), Poisson errors were specified: and when the outcome data 

were proportions (e. g. prevalence), these were treated as binomial variables 

in logistic regression. For analyses of outcome data which were binary (e. g. 

healthy versus with disease) the data were put in as 0's or 1's, and the 

models assumed that the 0's and 1's came from a binomial trial with sample 

size 1 (i. e. specific binomial errors). The model chosen for each analysis is 

described in the result section. 

2.6.1 Model simplification 

Model simplification to the MAM was achieved by backward stepwise 

elimination. Each explanatory term was tested by its removal from the 

maximum model. The absolute or relative change in residual deviance 

51 



Chapter 2 Materials and Methods 

caused by its removal was examined for significance (see significance testing 

below); once all explanatory terms were tested, the insignificant parameters 

were then removed. Interaction terms were assessed and removed in order 

of diminishing complexity, i. e. before the main effect terms. This general 

procedure was repeated until the minimum adequate model, by definition, 

retained only explanatory variables which caused a significant increase in 

residual deviance when removed. When an interaction term was significant, 

its' main effects parameters were not removed from the model, except when 

of biological interest and appropriate, in which case, it was tested in the 

absence of its interaction with other variables. 

2.6.2 Factor level simplification 

The most parsimonious combination of factor levels was achieved by 

examining the change in residual deviance when replacing the original term 

with the test set of combined factor levels. An insignificant change in 

deviance indicated that the new grouping was appropriate. 

2.6.3 Significance testing 

For MAMs with binomial or poisson error structures, changes in residual 

deviance were compared to x2 distribution. In the event of overdispersion of 
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the MAM residuals (i. e. residual deviance » residual degrees of freedom), 

the scale parameter was transformed using. the Pearson x2, and the residual 

changes compared to the F, and not the x2, distribution. The F-ratio 

statistic was also employed to test models with a normal error distribution. 

Significant deviation was defined as having a _> 
95% probability of not 

occurring by chance (i. e. P 
_< 

0.05). Finally, the fit of each model was checked 

by inspecting a plot of the residuals against the fitted values. 

2.7 ETHICAL CONSIDERATIONS 

In the Opon, the decision to participate in the cross-sectional and follow up 

studies was taken both at the community and household level. A verbal 

consent was received from each community leader (from each village) during 

a meeting held by the Landazury hospital which aimed to explain the whole 

project. Once in the area, each head of household was consulted by both 

the community leader and by the author. When the head of the household 

agreed to participate with the project, a delegation of the village leader and 

the author received the verbal consent. Written informed consent was 

obtained from all patients or, in the case of minors, from their parents or 

guardians. Everyone in the area surveyed received free medical care, 

regardless of whether they participated or not in the project. The study was 

approved by the Ethics Committee of the Industrial University of Santander. 
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3. DIAGNOSTIC AND CLINICAL FEATURES OF LEISHMANIASIS IN THE 
OPON FOCUS 

3.1 INTRODUCTION 

The National Leishmaniasis Control Program (NLCP) in Colombia 

currently recommends the active search of leishmaniasis cases, as this 

strategy should enhance the likelihood of detecting early lesions, so 

improving the success of both diagnosis and treatment. Community 

involvement is essential for active search, diagnosis and treatment of 

leishmaniasis cases in distant foci. Thus,. diagnostic tools suitable for this 

strategy requires the following criteria: (1) high sensitivity, (2) technical 

simplicity for sample collection, so that this can be carried out by a trained 

community member, (3) low lability of the samples (once collected) under field 

conditions, (4) and easily transportable. The NLCP also recommended that 

local hospitals should be the main source of Glucantime®, but there is not yet 

a clear policy for targeting high risk groups when drugs are in limited supply. 

In particular, a specific policy with respect to the treatment of persistently 

negative diagnostic results is required. This chapter describes the diagnostic 

and clinical features of the Opon focus. It is hoped that the results will be 

54 



Chapter 3 Clinical features 

informative for NLCP, and will help the development of future policy 

recommendations. The specific objectives were as follows: 

1. To evaluate the sensitivity and feasibility of diagnostic methods for 

tegumentary leishmaniasis under field conditions 

2. To identify the Leishmania species responsible for leishmaniasis in Opon 

3. To measure the variation in clinical response and to identify the risk 

factors for this variation 
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3.2 RESULTS 

3.2.1 Diagnostic methods 

Three diagnostic methods were carried out on a total of 168 patients: 

(1) 38 and 43 of whom were enrolled in the cross-sectional and follow-up 

studies respectively, plus (2) 87 patients who came from the excluded 

population or from neighbouring villages. The latter group (n=87) had a 

geometric mean age of 7 years (95% C. I. 5.7-8.3 years), and 52% (45/87) 

were male. The most common method used for diagnosis was the 

microscopic examination of Giemsa-stained slides made from dermal 

scrapings (n = 168), followed by in vitro isolation (i. e. culture) from aspirates 

(n = 141) and PCR (n = 49). Sixteen cultures (C) were bacterially 

contaminated before any Leishmania were seen: 15 were in a group tested by 

Giemsa (G) (with negative results) but not by PCR (P), and one was tested by 

Giemsa and PCR (with positive results by both methods). All contaminated 

cultures were treated as "not done" (ND) (Table 3.1). 

The reliability of the results obtained from each method was tested by 

a series of comparisons where the result of a particular test was confronted 

with the results of the other test: (1) the percentage of positive PCR (%P+) 

was 87% in people with positive culture (Figure 3.1) (C+), which was 

significantly higher than %P+ for people with negative culture (C-) : 19% (x2 = 
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16.22; 1 D. F.; P<0.001); (2) the percentage of people with positive Giemsa 

(%G+) was 60% amongst C+, which was significantly higher than %G+ 

amongst C- : 31 % (x2 = 10.12; 1 D. F.; P<0.001); and (3) amongst the C- 

group, %P+ was significantly higher amongst those who were G+ (60%) than 

amongst those that were G- (12%) (x2 = 3.59; 1 D. F.; P=0.03) (Table 3.2). 

The true sensitivity of all three methods was not measurable because 

there is no "gold standard" for diagnosis. The following analyses therefore 

assume that all the clinically diagnosed patients were true leishmaniasis 

patients. Amongst the total population tested, there was no statistical 

difference between the percentage with a positive result by any of the three 

diagnostic tests (40%, 43%, and 44% by G, P and C respectively) (Table 3.3) 

(x2 = 0.38; 2 D. F..; P=0.83). When more than one diagnostic test was 

carried out on the same patient, the percentage of patients with at least one 

positive result increased (not surprisingly), with maximum sensitivity when 

both Giemsa and culture tests were combined (62%). Curiously, when all 

three methods were combined, the percentage with at least one positive 

result decreased to 50%. This decrease is due to selection bias in the use of 

a particular method. If one focuses only on those people who were tested by 

all three diagnostic methods (n= 46), then the sensitivity does increase as the 

results of more tests are incorporated, reaching a maximum sensitivity of 50% 

when all three methods are taken into consideration. Amongst this group of 
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46 patients, PCR was the most sensitive of the three diagnostic methods but 

not significantly different from the other two methods (Table 3.3). 

Two sources of selection bias were identified for the application of the 

diagnostic tools in a particular patient: (1) culture attempts were more 

frequently made from patients with "typical" lesions: hence the %G+ was 

higher amongst this group than amongst those patients with no culture 

attempts; and (2) PCR was used for patients who were more likely to have 

negative results by either Giemsa or culture (Table 3.4). The strongest 

evidence for bias was detected amongst those patients with a negative 

culture: the %G+ was significantly higher amongst those who were not PCR 

tested (44%) than amongst those who were PCR tested (11 %) (x2 = 11.64; 2 

D. F..; P<0.001) (Table 3.4). 

The best estimate of sensitivity for the results of combining more than 

one diagnostic method came from taking into account these biases in the 

selection of the sub-samples (Table 3.3). The expected sensitivity for each 

method, either individually or in combination, was calculated by using the best 

estimates of bias to predict how many of the untested group would be 

expected to have a positive result. For example, the expected sensitivity of 

combining PCR and Giemsa amongst the 168 patients is: GP= [(P*B*N) + (R) 

+ (G)] / 168; where P is the proportion of people with negative Giemsa result 

who are PCR positive (8/32 = 0.25); B is the estimate of bias amongst the 
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Table 3.1 Distribution of leishmaniasis diagnostic test results by method 

GIEMSA (+) GIEMSA (-) TOTAL 

PCR (+ PCR (-) PCR ND PCR (+) PCR (-) PCR ND. subtotal 
CULTURE (+) 9 1 23 4 1 17 55 

CULTURE (-) 3 2 17 3 23 22 70 

CULTURE ND 1 1 11 1 0 29 43 

subtotal 13 F 4 51 8 24 68 

total 

__ 
68 100 168 

Table 3.2 Concordance of diagnostic methods 

all suspected patients 
% PCR (+) % GIEMSA (+) 

Giemsa + 
% PCR (+) 

Giemsa - 
% PCR (+) 

CULTURE (+) 13/15 87% 33/55 60% 9/10 90% 4/5 80% 

CULTURE (-) 6/31 19% 22/70 31% 3/5 60% 3/26 12% 
CULTURE ND 2/3 67% 13/43 30% 1/2 50% 1/1 100% 

Table 3.3 Sensitivity of diagnostic methods 

methods all 3 methods tested all suspected pat. expected sensitivity 

GIEMSA (G) 15/46 33% 68/168 40% 68/168 40% 

PCR (P) 19/46 41% 21/49 43% 84/168 50% 

CULTURE (C) 15/46 33% 55/125 44% 68/168 40% 

G-P 22/46 48% 25/49 51% 96/168 57.10% 

G-C 20/46 43% 77/125 62% 96/168 57.10% 

P-C 21/46 46% 21/46 46% 86/168 51.20% 

G-P-C 23/46 50% 23/46 50% 104/168 61.90% 

Table 3.4 Measurement of selection bias in the application of diagnostic 
test 

population dis Host. percentage relat. risk C. I. X2 P 

PCR done: all " %G ý+) 
1 

17/49 35% 
1 

1.24 0.67- 0.65 0.41 
ll PCR ND: all %G(+) 51/119 43% 3.02 

cult done: all %G (+º 55/125 44% 0.69 0.24 - 1.98 0.15 

cult ND: all %G(+) 13/43 30% 1.22 

PCR done: all "ic+l 15/46 33% 1.55 0.93- 3.14 0.07 

PCR ND: all %C(+) 40/79 51% 4.9 

PCR done: C- °i c(+) 5146 11% 4.01 1.87 - 11.64 < 0.001 

PCR ND: C- %G(+) 17/39 44% 24.5 
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were not tested by PCR (100); R is the number of people who are Giemsa 

negative and PCR positive (8); and G is the total number of people with a 

positive Giemsa result (68). Thus, the expected sensitivity for a group of 

samples tested by both Giemsa and PCR is 57.1% (96/168) (Table 3.3). 

Using an analogous calculation, the best estimate of sensitivity when all three 

methods are combined is 61.9%. 

3.2.2 Parasite classification 

In total, 55 strains were isolated from 141 patients. Twenty five were 

typed by isoenzyme electrophoresis (8 isoenzymes) at the LSHTM, 15 were 

classified by monoclonal antibodies at the National Health Institute in Bogota, 

Colombia (all L. panamensis) and 10 were not classified due to heavy fungal 

contamination. All isolates tested by isoenzyme electrophoresis were 

identified as L. panamensis and 23/25 presented the same zymodeme 

pattern as the control strain used (reference code: MHOM/PA/71/LS94). The 

two exceptions were both isolates from geographic region 1 (Plan de Armas 

and Buenos Aires), where a single variant of PEPD was detected (samples 3 

and 5 in Figure 3.2 ). 
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Figure 3.1 Positive results of PCR in samples from LCL patients 

Figure 3.2 PEPD patterns in parasites from Opon (IEA) 
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3.2.3 Factors determining the size, number and site on the body of 

lesions or scars 

Risk factors that determined the area, number and site of active or past 

leishmaniasis infections were sought both amongst LCL patients (n = 168) 

and amongst the scarred population (n = 1187). Both univariate and 

multivariate analyses were carried out in order to test for associations with the 

following factors: (1) the people's provenance (region), (2) personal factors 

(i. e. age at the time of infection, gender), and (3) area, number and 

localisation of lesions/scars. For the LCL patients, additional factors tested 

included: evolution time of the lesion, clinical appearance of the lesion (i. e. 

type, description, and presence of secondary infection or adenopathy) and 

presence of scars from previous infections. For the scarred population, a 

single additional factor was tested: "age now" (i. e. at the time when the scar 

was measured). 

3.2.3.1 Risk factors associated with the size of lesions or scars 

At the time when the census data and clinical histories were collected, 

the area of the largest lesion or scar on each patient was recorded. For all 

LCL patients, and for 454/1187 of the scarred population, this area was 

accurately measured by drawing the lesion (or scar) shape onto transparent 
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plastic paper. However due to logistic constraints, for 723 of the scarred 

population, the area of the largest scar was estimated from its length and 

width and assuming an oval shape. In order to standardise the two methods 

of measuring size, an equation was constructed by logistic regression in order 

to predict actual size from transformed "oval area" estimated for the 723 

patients: actual size= e «0.732) + ((0.6122 XIog (oval-area))] Hence, all the following 

analyses are carried out on actual lesion/scar size (whether observed or 

estimated), following log transformation to generate a normal distribution. 

a) Size of lesion 

The overall geometric mean area of the largest active lesion on each 

patient was 1.52 cm2, ranging from 0.13 to 95.4 cm2 (n = 168). The 

univariate analyses demonstrated that lesion size differed significantly with 

respect to geographic region, localisation on the body, description and 

presence/absence of secondary infection or adenopathy (Table 3.5): (1) 

Lesions were significantly bigger in patients from region 1 (i. e. Buenos Aires, 

Cucuchonal and Plan de Armas) than in patients from region 3 (La Soledad), 

(2) lesions located on the head were significantly smaller than lesions on the 

legs, (3) verrucose lesions were significantly bigger than flat lesions, and (4) 

lesions with secondary bacterial infection were bigger than those without. 

The mean lesion area for male patients was 1.3 times bigger than for 

females, but the difference had only borderline significance. 
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In contrast, a minimal adequate model with only one explanatory 

variable (the lesion's description) was obtained from the multivariate analysis 

by backward elimination from a maximal model with 11 clinical and personal 

variables. Lesions with raised borders had a mean area 4.5 times (95% C. I. 

2.08-9.94) the mean area of lesions with flat borders; and the mean area of 

verrucose lesions was 5.7 times (95% C. I. 0.6 - 54.6) the mean area of lesion 

with raised borders (F = 9.7; P<0.01; D. F. 2,165). This model explains only 

10.5% of the variance in lesion area (Table 3.8). 

b) Size of scars 

The overall geometric mean area of the largest scar on each healed 

patient was 2 cm2, ranging from 0.3 cm2 to 16.8 cm2 (n = 1187). As for 

active lesions, the univariate analyses demonstrated that scar size differed 

significantly with respect to gender and localisation on the body; in addition, 

scar size differed significantly according to the age of the patient at the 

moment of the census ("age now"), and according to the number of scars 

(Table 3.6): (1) Scars were significantly bigger in people over 15 years of age 

(at the time when the scar was measured) than in younger people; (2) in 

contrast to the results for active lesions, scars were bigger in females than in 

males; (3) scars on people with at least four scars tended to be bigger than 

those on people with fewer; and (4) as for active lesions, scars located on the 

legs were significantly bigger than scars on other parts of the body. 
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In the MAM generated by multivariate analysis scar size was 

associated with number of scars, "age now", age when infected, and 

localisation on the body. The following examples illustrate the predicted 

change in scar size associated with changes in each of these parameters. 

Using the population mean values for "age now" and age when infected, for 

people with single scars, the predicted mean scar size on the legs is 15 cm2 

compared to only 9 cm2 on the rest of the body. For people with five scars, 

the size of the largest scar tends to be bigger (not surprisingly): 17 cm2 on the 

leg and 11 cm2 on other body parts. 

We can illustrate the effect of age by focusing on people with single 

scars on the legs. A change in age when infected from 2 years to 13.8 years 

(the population mean) is associated with a decrease in scar size from 15 to 

13 cm2. In contrast, a change in "age now" from 14 to 50 years is associated 

with an increase in scar size from 15 to 20 cm2. In summary, maximum scar 

size is predicted to increase with the number of scars and with "age now" but 

decreases with age when infected. The largest scars tend to be on the legs. 

This model explains 18% of the variance in scar size (Table 3.8). 

3.2.3.2 Risk factors associated with the number of lesions or scars 

Two factors used in the previous analyses have a direct and trivial 

positive relationship with the number of lesions or scar: multiple lesion types 
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and multiple sites are both obviously only possible for people with multiple 

lesions or scars. Therefore, patients with lesions (n = 29) or scars (n = 390) 

on multiple sites and patients with multiple lesion types (n = 46) were 

excluded, respectively, from the univariate analyses of the effects of 

localisation or lesion type on the number of lesions/scars. Then, in the 

multivariate analysis, both these factors were excluded from the maximal 

model, so that the whole study population could be included in the analysis 

involving the remaining factors. 

a) Number of LCL 

The overall geometric mean number of lesions was 1.8, ranging from 1 

to 13 (n = 168). None of the variables tested were significant either in the 

univariate or multivariate analyses (Table 3.5). 

b) Number of scars 

The overall geometric mean number of scars was 2.1, ranging from 1 

to 30 scars (n = 1187). The univariate analyses demonstrated that the 

number of scars differed significantly with respect to gender, localisation on 

the body, "age now", age when infected and scar area (Table 3.6): (1) scarred 

females had more scars than scarred males; (2) people with scars on the 

trunk or legs (combined geometric mean 1.7 scars, range 1-20) had 

significantly more scars than people with scars on the head or arms 
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(combined geometric mean: 1.5 scars, range: 1-14) (t test = 3.65; D. F. 1,795; 

P<0.001); (3) people over 15 years of age both when infected and "now" had 

less scars; and (4) people with larger scars (> 3 cm2) had more scars. 

In the MAM generated by multivariate analysis scar number was 

associated with scar area, "age now" and' gender. We can illustrate the 

change in the predicted scar number associated with changes in "age now" 

by concentrating on males with a scar area of 2 cm2 (the population mean). 

A change in "age now" from I to 50 years is associated with a decrease in 

scar number from 2.4 to 1.6 scars. In contrast, a change in the maximum 

scar area from 2 to 10 cm2, on males with "age now" of 24 years (the 

population mean), is associated with a remarkable increase in scar number 

from 2 to 12 scars. For people with average age and average scar area, the 

model predicts 2.4 scars for females and 2 for males. In summary, scar 

number is predicted to increase with the area of scar but decreases with "age 

now". Females are likely to have more scars than males. This model 

explains 10.5% of the variance in scar number (Figure 3.3) 
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Figure 3.3 The relationship between the observed and fitted number of 
scars according to the MAM 
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3.2.3.3 Risk factors associated with the localisation on the body of 

lesions or scars 

Both univariate and multivariate analyses were carried out on persons 

with lesions (LCL group) or scars (scarred group) located only on one part of 

the body (i. e. head, trunk, arms or legs), having region, gender, age now 

(current age for scarred group) and age when infected (LCL and scarred) as 

explanatory variables. Localisation was treated as a binary response 
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variable in the multivariate analyses. 122 LCL patients and 1,187 scarred 

people comprised the two datasets for these analyses. 

a) Localisation on the head 

In total, 11 people from the LCL group presented lesions only on the 

head. In the univariate analyses, lesion localisation was associated with age 

when infected: the proportion of people with lesions on the head was 12 times 

higher in children below 6 years old than in those between 6 and 15 years, 

and 21 times higher than in adults over 16 years (Table 3.7). In the 

multivariate analysis, age was again the only variable retained in the MAM: 

the predicted probability of lesions on the head decreased dramatically from 

0.16 at 1 year of age to 0.03 at the age of 10 years (Table 3.8 and Figure 

3.4). 

In the univariate analyses of the scarred group (n = 115), localisation 

was associated with geographic region, "age now" and age when infected: 

(1) there was a higher proportion of people with scars on the head amongst 

the scarred population in the south east part of the study area (regions 3,4,5 

and 6; i. e. La Soledad, Miralindo, Valparaiso, San Pedro, Tagual and 

Yolandas) than in region 1 (i. e. Buenos Aires, Cucuchonal and Plan de 

Armas); (2) as for LCL patients, younger scarred people were more likely to 

71 



Chapter 3 Clinical features 

have scars on the head than were scarred adults, in relation both to "age 

now" and age when infected (Table 3.7). 

In the multivariate analyses, geographic region and age when infected 

were retained in the MAM (Table 3.8): In region 1 and 2 (Figure 3.5) the 

expected probability of scars on the head decreased significantly with age 

from 0.26 at one year of age to 0.047 at 50 years old . In regions 3 to 6, the 

probability of scars on the head decreased form 0.12 to 0.02 in the same age 

range. However, this model explains only 5.5% of the variance in the 

probability of lesion localisation on the head. 

b) Localisation on the arms 

Amongst the LCL group, 55 people presented lesions on the arms. In 

the univariate analyses, region and gender were associated with localisation 

(Table 3.7): (1) a greater proportion of patients from region 3 (La Soledad) 

presented lesions on their arms than did patients from other regions; and (2) 

scarred males presented more lesions on the arms (52%) than scarred 

females (46%). However, in the multivariate analysis, gender and 

geographic region drop out from the maximal model and only age was 

retained in the MAM: the predicted probability of lesions on arms increased 

significantly with age, from 0.38 for 1 year old to 0.78 for 50 year olds (Table 
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3.8; Figure 3.6). This model explains only 8.8% of the variance in the 

probability of lesion localisation on the arms. 

Both in the univariate and multivariate analyses of the scarred group, 

no risk factor was detected which predicted the probability of scars on the 

arms. 

c) Localisation on the legs 

Both in the univariate and multivariate analyses of LCL patients, no risk 

factor was detected which predicted the probability of lesions on the legs. 

In the univariate analyses of the scarred population the probability of 

scar localisation on legs was associated with region, gender, "age now" and 

age when infected: (1) people in region 5 (San Pedro and Tagual) were more 

likely to have scars on the legs than people from other regions; (2) a greater 

proportion of scarred females had scars on the legs than did males (3) the 

proportion of scarred population with scars on the legs increased both with 

age when infected and with "age now". 

In the multivariate analysis "age now", gender and geographic region 

were retained in the MAM: Scarred females had 1.8 times more scars on the 

legs than scarred males and this tendency increases with age. However, 
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there was significant differences between regions 1 and 5 with the other 

regions: The probability of scars located on the legs for females living in 

regions I and 5 increases from 0.49 at one year of age to 0.60 at 50 years, 

whilst for females in regions 2,3,4 and 6 the increase is from 0.37 to 0.48 for 

the same age range (Figure 3.7 and Figure 3.7). This model explains only 

3.8% of the variance in the probability of lesion localisation on the legs. 

d) Localisation on the trunk 

In both univariate and multivariate analyses of the LCL group, no 

significant risk factors were detected for predicting the probability of lesions 

located on the trunk. 

Amongst the scarred group, 56 people presented scars on the trunk. 

In the univariate analyses, only gender was associated with localisation: 

scarred males were more likely to have scars on the trunk (30%) than were 

scarred females (9%) (Table 3.7). However, in the multivariate analysis 

gender, "age now" and age when infected were retained in the MAM: For a5 

year old scarred child infected within the previous year, the probability of a 

scar located on the trunk is 0.10 whilst for a female in similar conditions the 

probability is only 0.048. These probabilities increases with age when 

infected but decreases with "age now" (Table 3.8). The MAM explains only 8 

of the variance in the probability of lesion localisation on the trunk 
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Table 3.8 Minimal Adequate Model for risk factors associated with area, 
number and localisation of scars and lesions 

MODEL PARAMETER estimate 9.0 statistics 
intercept (flat border) 0 1787 0 09285 =97 r2 = 10 

LCL raised border 0.6586 0 1729 DF2,165 

errucosa 1 42 0 4568 < 001 
AREA intercept (mutt. les. ) 1.064 0.02192 r2 = 18 

number of scars 0 0165 0 002739 =36 27. D F 1,1182. P<0 001 

go now 0003208 0.000673 -22,68, D. F. 1.1182, P<0.001 

SCARS go when infected -0 00351 0.0009 =14 68, D F 1.1182. P<0 001 [ 
Its head+arms+trunk -0 1451 0.01978 =130 3. D F 2,1183, P<0 001 

its logo 0 06908 0.02112 =130 3. D F 2.1183. P=0 001 

LCL - - - - 
NUMBER Intercept 0 6226 0.09943 = 10 

SCARS go now -0 00871 0.001732 2=26.56, D F1. P<0 001 

ender (male) -0 1673 0.05652 l=8 8. D F1. P<0 01 

rsa 0 2253 0.02564 2.71 5,0 F1, P<0 001 

intercept -0 9871 04627 '= 11 19 r2 = 15 
LCL go -0 2132 009495 1DF 

HEAD P<oo1 
LOCALIS. intercept (reg., 3,4,5,6) -1.875 0 226 

SCARS go when infected -0 04012 001034 2=17 87, D F1, P<0 001 

region 1+2 08825 0 2356 2=15 52.0 F1, P<0 001 
ARMS intercept -0 5061 0.2667 =88 

OCALIS. LCL e now 003641 001662 7=5 31, D F1, P<0 05 

SCARS - - - 
LCL - - - - 

LEGS Intercept (villages 1+6) -0 03761 0 1745 r=38 

LOCALIS. SCARS ender (male) -0 6377 0 1484 '-18 73: D F1 P<0.001 

ge now 000941 0.00415 2=4.895. D. F1. P<005 

villages 2+3+4+6 -0 4832 01503 '=10 35, D F1, P<0 01 

LCL - - - 
ntercept -2 756 0.311 r2 =8 

TRUNK SCARS ge now -0 04458 0.01727 '-8 4; 0 F1; P<0 01 
LOCALIS. go when infected 0 04864 0 02005 2-6 359. D F1. P<0 05 

ender (male) 08492 0 297 2=8 712, D F1, P<0 01 
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Figure 3.4 Probability of lesions on the head by age 
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Figure 3.5 Probability of scars on the head by age when infected (in 
regions I and 2) 
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Figure 3.6 Probability of lesions on the arms by age 
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Figure 3.7 Probability of scars on the legs by gender (in regions I and 5) 
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Figure 3.8 Probability of scars on the legs by gender (in regions I and 5) 
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3.2.4 Comparison of patients in relation to the results of parasitological 

diagnosis and spontaneous healing rate 

Clinical histories were recorded and parasitological and molecular 

diagnostic tests carried out on 168 patients in the study site. These were 

divided into three groups according to the results of their diagnostic tests (P+ 

positive, or P- negative), and whether or not they healed within 3 months from 

enrolment (H+, or H-). The first group comprised 44 P-H+ clinically 

suspected patients who had consistently negative results for all diagnostic 

tests and who spontaneously healed within 3 months of their first 

examination. The second group comprised 94 P+H- patients with a positive 

parasitological or molecular diagnosis, and who required treatment with 
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Glucantime®. The third group comprised 30 P-H- clinically suspected 

patients with persistent negative results, but who also had persistent lesions, 

i. e. they failed to heal spontaneously within 3 months from enrolment. 

Risk factors that determined the results of the diagnostic tests were 

sought by comparing the parasitologically positive patients (P+) with P-, both 

in univariate and multivariate analyses. The following factors were tested: 

(1) clinical appearance of the lesions (i. e. type, localisation, description, and 

presence of secondary infection or linfadenitis), (2) patients' provenance 

(village), (3) personal factors (i. e. age, gender) and (4) presence of previous 

infections. The same risk factors were then tested (both by univariate and 

multivariate analyses) for their ability to predict whether or not a patient 

healed spontaneously. 

3.2.4.1 Risk factors for a positive parasitological diagnosis 

The overall rate of positive diagnosis for patients was 55.9% (94/168). 

In the univariate analyses P+ and P- differed significantly with respect to the 

type and localisation of the lesion, the presence of previous scars and patient 

age (Table 3.9). A positive parasitological diagnosis was significantly more 

likely for patients with ulcers (64%) or multiple types of lesions (69%), and for 

patients with lesions located on the trunk (83%) or on more than one part of 
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the body (72%). A positive diagnosis was also significantly more likely in 

younger patients, and in patients with no previous scar. 

However, when those patients who healed spontaneously (H+), are 

excluded from the analyses, i. e. univariate comparisons are made between 

P+H- and P-H-, the only significant risk factor for a positive diagnosis is lesion 

type: a patient with multiple lesions was significantly more likely to have a 

positive diagnosis (x2 = 15.21; D. F. 4; P =0.004). In contrast, comparisons 

between P-H+ and P+H- identified several risk factors: (1) the geometric 

mean age was significantly higher in P-H+ (11.6 years) than in P+H- (6 years) 

(t test: 3.17, P=0.0018); (2) lesions on multiple body sites were significantly 

more common amongst P+H- (33/46,72%) than amongst P-H+ (4/46,9%) (x2 

= 11.93; D. F.. 4; P =0.017); and (3) P-H+ were significantly more likely than 

P+H- to have previous scars (50% vs 33%) (x2 = 8.45; D. F. 1; P =0.003). A 

multivariate analysis of potential risk factors for a positive diagnosis resulted 

in a MAM containing the following explanatory variables: (1) lesion type (x2 = 

5.87; D. F.. 1; P<0.05) and (2) presence of scars (x2 = 9.88; D. F. 1; P< 

0.01). The presence of previous scars decreases the odds of a positive 

diagnosis by 25% (95% C. I. 11 - 45%), whilst the odds of a positive diagnosis 

for a patients with ulcer, papule, bubonic or multiple lesion is 66% (95% C. I. 

57 - 74%) and for a patient with nodule is 22% (95% C. I. 11 - 39%). (Table 

3.10) 
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Table 3.9 Risk factors associated with spontaneous healing and 
parasitological positive diagnostic tests 

QUALITATIVE SPONTANEOUS HEALING PARASITOLOGICAL POSITIVE 

VARIABLES TOTAL n (H+) % H+ statist. n (P+) % P+ statist. 
1 43 10 23.3 26 60.5 
2 37 6 16.2 21 56.8 

REGION 3 36 11 31 X2=4.29 21 58 X2=2.12 
4 8 2 25 D. F. =5 4 50 D. F. =5 
5 29 9 31 P=0.50 16 55 P=0.83 
6 15 6 40 6 40 

GENDER MALE 76 21 28 X2 0.69 39 51 X2=1.2 
FEMALE 

PAPULE 

92 

28 

23 

8 

25 

29 

DF. 1, P=0.7 55 

16 

60 

57 

DF. 1, P=0.2 

NODULE 32 10 31 X2 = 1.58 10 31 X2 = 12.16 

TYPE OF ULCER 64 14 22 D. F. =4 41 64 D. F. =4 
BUBONIC 15 5 33 P=0.81 7 47 P=0.016 

THE LESION MULTIP. TYPE 

HEAD 

29 1 
11 

17 
3 

24 

27.2 

20 

5 

69 

45 
UPPER EXTR. 57 19 33.3 X2 = 11.19 27 47 X2 = 9.36 

LOCALIZATION LOWER EXTR. 48 17 35.4 D. F. =4 24 50 D. F. =4 
TRUNK 6 1 16.6 P=0.024 5 83 P=0.05 

MULTIPLE LES. 46 4 9 
1 

33 1 72 

PREVIOUS NO 144 32 22 X=8.16 86 60 X=5.78 

SCARS YES 24 12 50 D. F =1 8 33 D. F. =1 
P=0.004 P=0.016 

DESCRIPTION FLAT 116 34 29 X2 = 1.89 61 53 X2 = 2.96 

OF THE ULCER RAISE 47 9 19 D. F. =2 31 66 D. F. =2 
VERRUCOSA 5 1 20 P=0.38 2 40 P=0.22 

NONE 111 31 28 X2 =1 59 53 X2 = 1.62 

OTHERS SECOND. INF. 27 5 19 D. F. =2 18 67 D. F. =2 
LINFADENITIS 30 8 27 P=0.6 17 57 P=0.44 

QUANTITATIVE SPONTANEOUS HEALING PARASITOLOGICAL POSITIVE 

VARIABLES n= 44 n= 124 n= 94 n=74 

geo. mean(+ C. I. ) H+ H- t test P P+ P- t test P 

AGE 
(95% C. I) 

11.6 
9.9-15.1 

6 
4.8-7.5 

3.22 0.0015 6 
4.5-7.7 

9 
7.0-12.6 

2.22 0.027 

AREA 
(95% C. I) 

1.5 
1.0-3.0 

2 
1.6-2.5 

1.66 0.097 2.1 
1.7-2.5 

1.6 
1.1-2.2 

1.46 0.14 

EVOLUTION 
(95% C. I) 

NUMBER 
(95% C. I) 

3.8 
2.7-5.2 

1.7 
1.3-2.0 

3 
2.5-3.7 

2 
1.8-2.2 

1.16 

1.56 

0.24 

0.11 

2.5 
2.0-3.0 

2 
1.8-2.2 

3.4 
2.7-4.4 

1.8 
1.5-2.1 

1.85 

0.92 

0.06 

0.35 
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Table 3.10 Minimal adequate models for predicting spontaneous 
healing and a positive parasitological diagnosis 

MODEL PARAMETER estimate s. e 

PARASITOLOGICAL 

Intercept (ulcer, nodule, 

papule, and bubonic) 0.6445 0.1921 

POSITIVE previous scars -1.122 0.4755 

PATIENTS nodule -1.293 0.4254 

SPONTANEOUS 

Intercept (head, lower, 

upper, trunk) -0.9365 0.2143 

HEALING multiple places -1.684 0.5685 

previous scars 1.322 0.4806 

3.2.4.2 Risk factors for a chronic lesion 

Forty four patients (26.1%) healed spontaneously in a period ranging 

between one and three months after the patient diagnostic procedures began. 

In the univariate analyses, H+ and H- patients differed significantly with 

respect to localisation of the lesion, the presence of previous scars and 

patient age (Table 3.9). Spontaneous healing was significantly more likely to 

occur for patients whose lesions were located on only one part of the body 

(32%) (upper or lower extremities, head or trunk) than for patients with lesions 

on multiple body sites (9%) (odds ratio, 5.12; 95% C. I. 1.67 - 20.87; x2 = 

83 



Chapter 3 Clinical features 

9.97; P< 0.001). Spontaneous healing occurred significantly more 

frequently in older patients, and in patients with previous scars. When 

univariate comparisons are made between P-H+ and P-H- the only risk factor 

for chronic lesions was age: the geometric mean age was significantly higher 

in P-H+ (11.6 years) than in P-H- (7 years) (95% C. I. 3.8 - 9.6 years) (t test: 

2.52, P=0.013). A multivariate analysis of potential risk factors for a chronic 

lesion resulted in a MAM containing the following explanatory variables: (1) 

localisation of the lesion (x2 = 11.80; D. F.. 1; P<0.001) and (2) presence of 

scars (x2 = 7.53; D. F. 1; P<0.01). The presence of previous scars 

increases the odds of a spontaneous healing by 79% (95% C. I. 59 - 90%), 

whilst the odds of spontaneous healing for a patient with lesions located on 

more than one place is 16% (95% C. I. 6- 36%) and for a patient with a 

unique lesion is 28% (95% C. I. 20 - 37%). (Table 3.10) 

3.2.5 Mucosal leishmaniasis (MCL) 

Clinical inspections for mucocutaneous leishmaniasis were carried out 

in the study population in 1,100/1,380 people, from which 92 presented 

lesions in the nasal septum: 27 patients presented perforations and the other 

65 patients presented ulcers. PCR was carried out on all 92 samples taken 

from patients, but the method chosen for DNA preservation (NET 10 SDS) did 

not prevent the denaturation of the DNA in the majority of the samples. Only 
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two samples from the group highly suspected by clinical grounds (perforated 

nasal septum) were positive by PCR. In total, 2.9% (27/938) of all LCL 

patients (past or present) developed perforated septa; whilst an additional 

7.3% (69/938) developed nasal ulcers. Hence there was evidence that a 

total of 10.2% of all LCL patients had developed a low severity mucosal 

lesion. A significant association between the time since the cutaneous lesion 

and the appearance of MCL was detected by a logistic regression of the 

results for the group of patients with perforated septum. The curve depicts a 

smooth increase in MCL with time (x2 = 28.6; 1 D. F.; P<0.001) (Figure 3.9). 

However, no significant association was detected between the time since the 

cutaneous lesion and the presence of a nasal ulcer (indicating that ulcers 

might self-heal) 

Figure 3.9 The rate of suspected metastasis 
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3.3 DISCUSSION 

3.3.1 DIAGNOSTIC METHODS 

In the following sections, the relative sensitivity of the different 

diagnostic tools used in the Opon study, are compared with the results of 

previously reported comparative studies. However, it is important to stress 

that comparison of the sensitivity of different diagnostic tests may generate 

inconsistent results in different field studies, in part because of parasite 

heterogeneity, and also because of variation in the average evolution time of 

the lesions prior to diagnosis. For example, in Tumaco (Weigle et al, 1987), 

the sensitivity of all diagnostic methods used (including dermal scraping, 

histopathology, and cultures) decreased approximately by 50% in lesions with 

an evolution time longer than 6 months. 

Parasitological methods are the routine tools commonly employed in 

the diagnosis of cutaneous leishmaniasis in Central and South America. 

They included the microscopic examination of slides, the isolation of parasites 

in artificial media or in hamsters, and histopathology. In previously reported 

studies the measurement of sensitivity of these methods has taken clinical 

criteria as the "gold standard" . For example, the sensitivity of seven 

parasitological methods in Colombia were evaluated on 165 patients, 

clinically suspected on the basis of a skin lesion of two or more weeks of 
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evolution and no history of trauma (Weigle et al, 1987). However, the 

sensitivity and specificity of the more novel molecular biology techniques (e. g. 

PCR) have generally been evaluated using parasitological diagnosis as the 

"gold standard" (de Brujin et al, 1993). 

3.3.1.1 Microscope examination (ME) 

In studies involving the passive search of patients, more severe and 

chronic lesions are expected than in studies where patients are located by 

active search (as in follow-up studies) (Saravia & Weigle, 1996), and 

therefore the expected results of ME are low. The negative relationship 

between ME and the evolution time of the lesions was demonstrated by 

Herwaldt (1992) in Guatemala, where the amastigote concentration in smears 

from older lesions [median =1 amastigote/100 oil immersion fields] was 

significantly lower than that in recent lesions [median = 17 amastigotes/100 oil 

immersion fields]. However, in the only two follow-up studies with active 

search that have now been carried out in Colombia, the ME sensitivity was 

considerably lower than the ME sensitivity in two Colombian studies involving 

the passive search of patients: i. e. in Opon and Tumaco (active search) ME 

sensitivity was 33% and 22% (Weigle et al, 1987), respectively; whilst in 

Antioquia and Norte de Santander (passive search) ME was 60% (Velez et al, 

1987) and 55% (Corredor et al, 1987) respectively. Although there is no 
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previously reported difference in the ME sensitivity of samples taken from 

patients infected with L. panamensis or L. braziliensis, interpretation of the 

results of these Colombian studies should be made with caution: L. 

panamensis was the main parasite found -in Opon and Tumaco, whilst L. 

braziliensis was found in the other two foci. 

Two factors which may effect the measurement of ME sensitivity are 

the type of instrument used, and the site in the ulcer where the sample was 

taken. In the Opon focus, samples were taken from the edge of the ulcer after 

an incision in the skin with a scalpel, because this method reduces the 

probability of secondary bacterial infection in the patient. An investigation of 

ME sensitivity was carried out in Guatemala (Navin et al, 1990), comparing 

the use of capillary tubes, scalpels or dental broaches to collect samples, and 

the border or centre of the ulcer as the site for taking samples. No 

significant differences in sensitivity were observed, and so it is reasonable to 

assume that the relatively low sensitivity in the Opon study was not due to the 

use of scalpel, nor to the selection of the site in the body were the sample 

was taken. 

There are a considerable number of unreported works describing high 

sensitivity for ME in patients attending private and public hospitals (passive 

search) in Colombia; and these reports have significantly influenced the policy 

making decisions of the Colombian Ministry of Health. At present, ME is the 
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recommended "first line" technique in Colombia, because it is easy, cheap 

and sensitive. If the ME result is negative, histopathology is recommended. 

However, considering both the Opon and Tumaco results, ME cannot be 

recommended for diagnosing L. panamensis, and histopathology 

demonstrated even lower sensitivity than ME in Tumaco. Thus, this thesis 

should stimulate the revision of Colombian health policy with respect to 

leishmaniasis diagnosis. 

3.3.1.2 Culture of parasites 

L. panamensis is considered "the most easily cultivated member of the 

L. braziliensis complex" (Walton et al, 1977). The culture of aspirates taken 

from the border of the lesion is one of the diagnostic methods with the highest 

reported sensitivity. Hendricks and Wright (1979) reported 67% recovery of 

L. panamensis using in vitro cultivation of saline aspirates in Schneider's 

Drosophila medium; and in Tumaco the parasite isolation rate was 58%. In 

Opon, using the same procedures as in Tumaco (see Materials and 

Methods), the sensitivity was consistently lower (33%), even though 

contamination of samples was relatively infrequent and the parasites in both 

foci were L. panamensis. The most probable explanation for the low rate of 
j 

parasite isolation in Opon is the exposure of cultures to changes in 

temperature during field visits (even though tubes were maintained in the best 
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conditions available), because samples were taken at people's homes, rather 

than at a central health post. So parasite isolation should only be 

recommended in combination with other first line tools, when patients are 

willing to visit the health posts. If diagnostic attempts can only be made 

during the house-to-house visit by a community "active search team", the ME 

and / or PCR (see below), but not isolation, should be carried out. 

3.3.1.3 Polymerase Chain Reaction (PCR) 

In the Opon focus, PCR was tested as an alternative method for the 

detection of parasites in human and sandfly samples (see Chapter 5). In 

previous studies, PCR has demonstrated low specificity, i. e. a relatively high 

percentage of patients with non leishmanial aetiologies were PCR positive 

(e. g. 50% in Colombia and 69% in Peru: deBrujin et al, 1993, and Lopez et al, 

1993, respectively), But PCR has been shown to have a reasonably high 

sensitivity (80% in Colombia and Peru), when compared with the results of 

standard parasitological methods. In Opon, PCR specificity was not 

measured because this technique was only used in samples from clinical 

suspected patients, but the sensitivity when compared with the other 

parasitological methods was high (87%, Table 3.2). 

Apart from manipulation errors when samples are taken from patients, 

the processing of samples by long procedures (i. e. DNA extraction) could be 

90 



Chapter 3 Clinical features 

one of the major causes of cross-contamination of DNA between positive and 

negative samples, so reducing the specificity of PCR as a diagnostic tool. In 

the Opon focus, all samples were taken from patients with disposable 

instruments, stored in dry conditions and processed by water lysis, which 

reduces DNA contamination. However, in future studies, PCR specificity 

should be measured in a large number of negative skin samples from people 

living in an area free of leishmaniasis (Berman, 1997) and with no history of 

visits to endemic areas. For example, skin samples could be tested from the 

fresh corpses of recently deceased people in San Andres Island, Colombia, 

where no leishmaniasis cases have ever been reported. 

Assuming that PCR is a favourable option in the future, the Opon 

results can be extrapolated to indicate the likely success of different 

diagnostic strategies involving the active search of patients. The best 

estimate of sensitivity was 61.9%, when all three methods were used, 

followed by either combination : (1) PCR - Giemsa or (2) Giemsa - culture 

(both 57%) (Table 3.3). Following the Opon example, it is recommended that 

future community based networks for leishmaniasis diagnosis should be 

composed of one person per village (a local trained farmer), the local health 

post, and a central laboratory. Samples taken in each village should be sent 

to the local health post for ME, and negatives samples should be sent to the 

central laboratory for PCR. This routine should not to be applied to cultures, 

as the manipulation, storage and transport will undoubtedly decrease the 
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probability of isolation to even lower levels than those detected in Opon. 

Thus, the most effective combination of diagnostic tools for parasite detection 

should be Giemsa - PCR. As seen in Materials and Methods, the simplicity 

of PCR procedures should make it an affordable health policy for the 

detection of leishmaniasis cases by the active search of patients. 

Microscopically examined negative samples from villages can be sent to the 

central lab by normal post with no special equipment required. But, as for 

the current procedures as histopathology, there will be an urgent requirement 

for the result to be reported back to the local hospital within a minimum 

number of days. 

3.3.2 PARASITE CLASSIFICATION 

Isoenzyme electrophoresis was used for the classification of human 

isolates rather than for the detection of genetic polymorphism in the parasite 

population in Opon. All the 25 parasites isolated and characterised during 

this project were typed as L. panamensis. However, previous isolates made 

in the focus have been characterised as other species: L. braziliensis and L. 

colombiensis, which was isolated for the first time from an infected sandfly 

(Lu. hartmanni) in the municipality of EI Carmen, only 80 Km from the Opon 

area (Kreutzer et al, 1991). Given the low isolation rate achieved, I cannot 

discount the likelihood that L braziliensis and/or L. colombiensis also circulate 
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in Opon. In addition to enzymes commonly used for the identification of New 

World parasites, (e. g. GPI, MPI, 6PGDH), peptidase D (PEPD) was used for 

typing. Variation in the electrophoresis patterns of this enzyme was detected 

for 2 isolates. Polymorphism in this enzyme has rarely been detected 

amongst previously studied isolates (Kreutzer, 1987,1996). The two isolates 

for which this enzyme varied came from patients in Plan de Armas, possibly 

suggesting some geographic heterogeneity amongst parasite populations in 

Opon. No variations were observed in the other enzymes, and there was no 

evidence of any hybrids between L. panamensis and other species, as those 

described previously between this parasite and L. braziliensis (Cupolillo, 

1997). However, polymorphism of Opon parasites may be associated with 

distinct clinical manifestations, which in the future should be tested with more 

isolations. 

3.3.3 CLINICAL FEATURES 

In Opon, the mean size of the active lesions was slightly smaller than 

the mean size of previous scars. This is an indication of the potential 

benefits that would arise from the speedy diagnosis and treatment of 

suspected cases (as took place during this project). A reduction in the scar 

size would be especially important for people whose lesions are located on 

the face. The maximum scar size apparently decreased with "age when 
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infected" suggesting that adults are less susceptible than children and are 

therefore less prone to severe symptoms. Acquired immunity with age could 

also explain the observations that (1) parasitological diagnosis was more 

likely to be positive in children less than 10 years old, and (2) parasitological 

diagnosis was more likely to be negative in people with scars from a previous 

clinical infection. Hence, in general, children have a great risk of chronic 

lesions, which required an extensive course of treatment. In contrast, "age 

now" was positively correlated with scar size, which probably reflects the fact 

that as "age now" increases so does the time since infection, and scar size 

will increase with time as children grow (Davies et al, 1997a). 

In Opon, the scar number tended to increase with scar area, which is 

contrary to the Peruvian results, where it was suggested that the 

immunological response in coincident lesions may act synergistically in 

reducing mean lesion size (Davies, 1997a). Probably the malnutrition in the 

Opon children is more acute than in Peru, and this factor could weaken their 

immune response (Dye & Williams, 1993). Parasitological diagnosis was 

more likely to be positive in patients with multiple types of lesions located in 

more than one part of the body. 

Peoples' behaviour and the place of transmission both change with 

age. Intradomiciliary transmission is the main risk for children below 10 

years, who typically receive infected bites on the face when asleep; but adults 
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are more likely to be bitten during some outdoor occupation. This is why the 

probability of lesions on the head decreased dramatically with age. In adults, 

the relative frequency of lesions located on the arms, legs and trunk differed 

according to gender. A relatively high frequency of lesions were located on 

the trunk of adult males, presumably associated with their working behaviour: 

e. g. harvesting cacao fruits without wearing a shirt. In contrast, adult females 

had a relatively high frequency of lesions on their legs presumably related to 

their age-related change in their type of clothing: older females tend to wear 

skirts. 

Mucocutaneous leishmaniasis was confirmed parasitologically in only 

two patients, possibly due to the difficulties in the diagnostic procedures. 

However, there was many patients (27/92,29% of MCL patients) with 

perforations of the nasal septum; and the fact that this condition was only 

detected in patients with scars suggest that this symptom was a direct result 

of Leishmania infection. Nevertheless, the clinical picture of MCL in Opon 

was never as severe as in other leishmaniasis foci where L. braziliensis is 

circulating (e. g. in Bolivia or Peru), where MCL can involve the total 

destruction of the nasal septum ("tapir nose"), and the involvement of other 

organs including larynx and vocal cords, and is in some cases fatal (Desjeux 

et al, 1987). 
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4. EPIDEMIOLOGY 

4.1 INTRODUCTION 

Spatial, seasonal and temporal changes in the transmission patterns of 

leishmaniasis caused by L. panamensis have been evaluated previously in 

only in one follow up study carried out in Colombia in the Pacific coastal 

lowlands of Tumaco municipality (Figure 1.1) (Weigle et al, 1993). The 

ecology in Tumaco is not representative of the ecology of the inter-Andean 

valleys, where leishmaniasis caused by the same parasite has been 

increasing in recent years as a result of the establishment of new settlements, 

given the fertile conditions of the soil and the increase of the human 

population size. However, the epidemiology of leishmaniasis in Opon 

should be representative of these new types of foci , which are becoming 

increasingly common in Colombia and other Andean countries. 

The increase in the incidence of leishmaniasis cases in Colombia 

stimulated the formation, in 1994, of the National Leishmaniasis Control 

Program (NLCP) by the Colombian Ministry of Health, with general objectives: 

(1) to detect cutaneous leishmaniasis cases soon after the first symptoms in 

order to offer opportune diagnosis and treatment, (2) to establish a network 
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of cutaneous leishmaniasis diagnostic centres at the first level of patient 

attendance, and (3) to stop the increasing morbidity and mortality of visceral 

leishmaniasis. 

The NLCP recommends that epidemiological studies of cutaneous 

leishmaniasis should be carried out in each Colombian Department, and that 

these studies should address the identification of personal and household risk 

factors of transmission including: age, gender, occupation, localisation of the 

house with respect to the surrounding vegetation and type of construction. 

The NLCP further suggest that these objectives should be met by the 

application of MST and clinical inspection of all suspected active cases, as 

well as a random sample (ca. 10%) of the population within a defined focus. 

Finally, the NPLC recommend that epidemiological studies should be carried 

out to identify risk factors, which may be amenable to prevention and control 

strategies in the studied foci. 

The design, methodology and analysis of the epidemiological study 

carried out for this thesis, as detailed in this Chapter, were chosen in order to 

address the objectives of NPLC. This thesis is the second prospective study 

of leishmaniasis to be carried out in Colombia, and it provides valuable 

information on the temporal and spatial patterns of leishmaniasis transmission 

in Colombia. It is hoped that the thesis will be a resource for the NPLC in 

providing advice on data collection and statistical analysis. Thus, the 
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specific objectives of the epidemiological study of leishmaniasis in Opon 

were: 

1. To measure the transmission rate in the focus, and determine whether the 

risk of human infection is related to age and / or gender. 

2. To determine the risk factors for infection associated with household 

location, according to the surrounding vegetation, with special attention 

paid to the effect of deforestation. 

3. To determine the seasonal patterns of transmission. 

4. To describe the characteristic course of clinical infection in the focus with 

respect to MST conversion and recovery, the frequency of recurrent 

clinical leishmaniasis or mucosal involvement, and the development of 

acquired immunity. 
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4.2 RESULTS 

4.2.1 Population structure 

In 1995 the inhabitants of 12 villages within the Opon focus comprised 

2,704 people with an age structure characteristic of developing countries 

(Figure 4.1 and Table 4.1). Amongst the inhabitants of the 12 villages, 

participation in the study ranged from 36% in the village of Miralindo to 70% in 

the village of Buenos Aires (Table 4.2). Overall, the MST was applied to 

51 % of the Opon population; hence, the analyses described below were 

generally performed on a "study population" of 1,380. However analyses 

incorporating age were carried out on a reduced data set of only 1,333 

persons, because of missing data from 47 people (Table 4.1). 

During the prospective study (ca. 19 months), 163 emigrants, and 10 

deaths were recorded in the study population; the whole population also 

received 126 immigrants and 37 births (Figure 4.2). Amongst the remaining 

study population, 441 persons refused to participate in the second MST 

application. Thus, 55,5 % (766) of the study population received a second 

MST (Figure 4.2). 
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Figure 4.1 Population Structure 
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Figure 4.2 Distribution of excluded and study populations in Opon 

WHOLE POPULATION 
2704 

STUDY POPULATION REFUSAL POPULATION 
1380 (first MST) 

1324 

STUDY STUDY STUDY REFUSAL REFUSAL 
POPULATION POPULATION POPULATION POPULATION POPULATION 

with second MST refused second MST emigrants/deaths emigrants still in the area 
766 441 173 172 1152 

4.2.2 Population infection rate 

In the cross-sectional study (1995), MST was applied to 1,380 persons 

(Table 4.1). The distribution of induration sizes shows a bi-modal shape 

(Figure 4.3 and Figure 4.4) indicating a clear differential response between 

uninfected and infected people. In order to define a cut-off point for M+, the 

distribution of MST induration sizes was compared between L+ (scarred) and 

L- people (Table 4.3). It is clear from these data that there is no empirical 

reason for choosing the "text book" cut-off point of 5 mm, as the majority of 

people with induration sizes between 1-4 mm also had scars. In contrast, 

clinical cases were a small minority amongst those with a zero MST 

response. However, given the few data, the choice of cut-off point between 

1-4 mm must be somewhat arbitrary. In the analysis described in this 
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thesis, I use a relatively conservative cut-off point of 3 mm, i. e., induration 

sizes of 3 mm or greater are treated as a positive MST response or "M+" 

This gives a "sensitivity" of 95.5% (927/970) and "specificity" of 71.4% 

(293/410) with respect to the diagnostic value of MST for the identification of 

clinical symptoms. The cumulative prevalence of infection amongst the 

whole study population (M+) was 0.75 (1,044/1,380) (Table 4.4). The 

induration sizes of the MST response according to clinical status was as 

follows: (1) people with active lesions: n= 88; range 0- 26 mm; geometric 

mean 8.07 mm (95% C. I. 7.87-8.26 mm); (2) scarred population: n= 882; 

range 0- 49 mm; geometric mean 12.19 mm (95% C. I. 12.14 - 12.23 mm); (3) 

"healthy" people: n= 410; range 0- 26 mm; geometric mean 1.02 mm (95% 

C. I. 0.91 - 1.13). 

Table 4.3 The relationship between clinical status and MST size 

MST FREQUENCY ACCORDING T O CLINICAL STATUS 
SIZE (mm) HEALTHY SCARS TOTAL % SCAR* 

0 292 29 321 9.1 
1 0 1 1 100 
2 0 0 0 0 
3 1 1 2 50 
4 1 4 5 80 
5 8 16 24 66.7 
6 8 28 36 77.7 
7 9 25 34 73.5 
8 11 54 65 83 
9 12 65 77 84.4 
10 10 59 69 84.8 

> 11 58 600 656 91.1 

* percentage of people with scar for each MST size 

104 



a 
0 
0 
E 
a) 
23 
a 
w 

I- aý 

ca 
0 

a 

O 
0 
a) 
C 

C 
N 

C 
O 

75 
Q.. 
O 
C. 

O 
O 

Iý (v) ~ 
C) LO M M O 

Z N '- CD co CD 

U) 
Z 
0 
W 3 O N ß) 00 N- 't N 

W 

Z 
°' O 

Z le C» (0 rl_ 
, = LC) M C 4 

LC) 

H 
U) 

N F r M 

C) O O M 

CV M U) 
Z 

V O ý- 
'- 

LU c0 
O O O O N M 

Z U) .ý 
W co rn 

U J 

W 'ý rn 
Z T- N + Ö r, - O (0 C, 4 Ce) 

`- O (O O 
M LO 

W 
Lü I- O M to LO (0 

cfl O 
Lii H 

00 ^ Cfl 
e N f, - M O 

C (0 L O TI- O Co 
ce) Co M 

- N M Ir- 

1 
H 
U) 0 J 

QQ 
N 

y 
Co W Z N 

> 
O 

V E 
" W 
v Co) J c/) 

-I 
2 L I L-ii 

11 
U 

Z 
0 

L 

f0 
U_ 
C_ 

C-) 

C 
N 

N 
U) 
0 
C 
O) 
Co 

L 
r-. 

3 
U) 
U) cU U 

9- O 

E 
C 

L, 
0 

U_ 
C_ 
U 

L 
r-+ 

U) 
(3) 
Cl) 
N 
U 

9- 0 

N 
n 
E 
C 

fU 
0 

Co 
U) 
a aý Z 
U) 
C_ 

a) 
U Q) 
N 

to 
4) 
U, 
N 
U 

a) Ü 

Q) 
to 

U) 

0 

N 

E 
7 
C 

N 
0 

U 

m 

105 



Chapter 4 Epidemiology 

Figure 4.3 Frequency distribution of MST induration sizes amongst L- 

Figure 4.4 Frequency distribution of MST induration sizes amongst L+ 
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Between June 1995 and March 1997,766 people were MST tested in 

two sample rounds. For the calculation of incidence rates, the mean number 

person-months at risk between the first and second MST date was 16 

months. Amongst the 226 M- people who were re-tested, 62 converted to M+, 

resulting in an incidence of 0.21 (95% C. I. 0.17-0.24) conversions/person- 

year. Evidence of past infections were detected in 10 people (6 scars, 4 

lesions) who converted from M-1995 to M+1997 (Table 4.4), suggesting that 

these conversions reflect infections already prevalent in 1995 but with an 

extended incubation period prior to MST conversion, rather than incident 

infections during the prospective study. Thus, our most reliable assessment 

of incidence rate is 0.19 (95% C. I. 0.15 - 0.23) conversions/person-year which 

is calculated from the 52 M-L-1995 who converted during the prospective study. 

This measure of incidence represents transmission during the period of the 

prospective survey. In order to determine if this incidence rate is 

characteristic of recent years in the Opon focus, the force of infection (? ) was 

calculated by fitting a simple infection-recovery model to the cross-sectional 

age prevalence data for M+ (Williams and Dye, 1994). The model makes the 

assumption of constant transmission rate with time and age. The latter 

assumption is validated below. The estimate of ?, from the model was 0.13 

(95% C. I. 0.12-0.14) cases/person-years, which is significantly smaller than 

the incidence rate detected between 1995 -1997 (Table 4.5). 
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4.2.3 Population clinical infection rate 

In 1995, the cumulative prevalence of clinical detected leishmaniasis 

(i. e. the proportion of the population with scars or lesions), L+1995, was 0.72 

(95% C. I. 0.69 - 0.74) cases/person [970/1,380] with a scar prevalence of 

0.64 (95% C. I. 0.61 - 0.66) cases/person [882/1,380] and an active 

prevalence (lesions) of 0.063 (95% C. I. 0.047-0.075) cases/person [88/1,380] 

(Table 4.4). During the follow up, 61 patients with new lesions were enrolled 

in the study, giving an overall clinical incidence rate of 0.030 (95% C. I. 0.019 - 

0.041) cases/person-years. However, 19 of these patients had previous 

scars (n = 18) or lesions (n = 1), suggesting that their new lesions could 

represent either a reactivation of previous infections or an extension of 

chronic infections, respectively (Table 4.4). 

Hence, the most reliable estimate of the clinical incidence rate in the 

study population is 0.1 (95% C. I. 0.085 - 0.11) cases/person-years, calculated 

from the 410 people who had no history of clinical leishmaniasis prior to 1995. 

As before, ? was calculated by fitting an infection recovery model to the age 

prevalence curves for L+ (Table 4.6). In this case, clinical incidence 

calculated from the follow up, was not significantly different than the fitted by 

force of infection the model to the cross-sectional data: 2, = 0.14 (95% C. I. 

0.11-0.16) cases/person-years. 
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TABLE 4.5 . Force of infection and Recovery rate calculated from 
MST age prevalence data 

TOTAL POPULAT. FEMAU s MALIS 
AGE NUMBER NUMBER NUMBER NUMBER ER NUMBER 

(years) TESTED POSITIVE TESTED POSITIVE ED 

r 

POSITIVE 
1-3 113 30 50 12 18 
4-6 156 87 79 43 7 44 
7-8 116 68 58 31 58 37 

9-10 123 83 72 48 51 35 
11-12 104 83 55 44 49 39 
13-15 129 100 62 48 67 52 
16-20 114 96 56 41 58 55 
21-28 120 116 58 56 62 60 
29-36 127 121 68 65 59 56 
37-48 121 114 57 55 64 59 

49more 110 106 52 49 58 57 
Total 1333 1004 667 492 666 512 

P AP AP 
Estimate 0.135 0.006 0.123 0.005 0.148 0.006 

SD 7.00E-03 0.002 1 1 0.009 0.002 0.011 0.003 

Table 4.6 . Force of infection and Recovery rate calculated from 
clinical status age prevalence data 

TOTAL POPULAT. FEMALES MALES 
AGE NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER 

(years) TESTED POSITIVE TESTED POSITIVE TESTED POSITIVE 
1-3 113 30 50 12 63 18 
4-6 156 82 79 44 77 38 
7-8 116 66 58 32 58 34 

9-10 123 84 72 49 51 35 
11-12 104 76 55 38 49 38 
13-15 129 103 62 50 67 53 
16-20 114 88 56 42 58 46 
21-28 120 101 58 47 62 54 
29-36 127 108 68 58 59 50 
37-48 121 103 57 49 64 54 

49more 110 96 52 49 58 47 
Total 1333 937 667 470 666 467 

AP Ap p 
Estimate 0.147 0.025 0.139 0.022 0.154 0.028 
SD 0.011 0.005 0.015 0.006 0.016 0.007 

The proportion of people infected in a determined age "a" was calculated by 

maximum likelihood (Williarns and Dye, 1994) with the following equation: 

p (a) = (I -e Force of infection 
p P= Recovery rate 

(sec Materials and Methods) 
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4.2.4 Personal risk factors for infection 

4.2.4.1 Gender 

The cumulative prevalence of infection by gender was slightly higher for 

males, 0.77 (95% C. I. 0.73 - 0.80) cases/person [535/692], than for females, 

0.73 (95% C. I. 0.69-0.76) cases/person [509/688]; but there was no 

significant gender difference (x2 = 2.08,1 D. F.., P=0.149). 

In the follow up study, incidence of infection in males, 0.10 (95% C. I. 

0.05 - 0.14) cases/person-years, was also not significantly different from the 

incidence of infection in females, 0.13 (95% C. I. 0.07- 0.18) cases/person- 

years. Similarly, ? calculated for males from the age prevalence curves for 

M+ (Table 4.5) was 0.14 (95% C. I. 0.11 - 0.16) cases/person-years (Figure 

4.5a), which was not significantly different from ?, calculated for females: 0.12 

(95% C. I. 0.10 - 0.13) cases/person-years (Figure 4.5b). Thus there is no 

evidence of any difference in the risk of infection between males and females. 

4.2.4.2 Age 

Because of the relatively high transmission rate in the Opon focus, the 

majority of M-1995 (224/336,0.66) are concentrated amongst children less 

110 



Chapter 4 Epidemiology 

Figure 4.5 Age prevalence curves of infection by gender 

a) Age prevalence curves of infection for males 
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proportion m+ within a particular age group. Lines were drawn by maximum likelihood fit to the 

infection-recovery model (Williams, 1994, see Table 4.5) 
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than 10 years old (Table 4.5 and Table 4.6). This explains the relatively low 

mean age of 8.58 (95% C. 1.6.68 - 10.47) years amongst the 62 people who 

converted during the study. However, there was no significant difference 

between the mean age of the people who remained M- in 1997,10.15 (95% 

C. I. 8.40-11.89) years, compared to the mean age of "converters" (x2 = 1.73, 

P >0.05,1 D. F.. ). The absence of any relationship between age and 

infection rate (i. e. exposure to sandfly vector) is illustrated in Figure 4.6, which 

demonstrates that there is no trend between the incidence rates calculated for 

eight age-groups (with equal denominators) (ANOVA, r2=0.008; F=0.05; P> 

0.05) (Figure 4.6, and Table 4.7). Thus, new infections occurred irrespective 

of age, validating the key assumption made in the infection-recovery model to 

calculate X from age prevalence data (see Section 4.2.2) 

Table 4.7 The MST conversion rate by age 

AGE 
Number of 

M- /95 
Number re- 
tested /97 

Number 
converted proportion 

standard 
errors 

1-3 83 45 18 0.4 0.12 

4-6 69 44 10 0.23 0.13 

7-8 48 42 8 0.19 0.14 

9-10 40 32 9 0.28 0.15 

11-12 21 20 5 0.25 0.19 

13-15 29 17 5 0.29 0.2 

16-20 18 11 5 0.46 0.22 

21-more 21 15 2 0.13 0.24 

TOTAL 329 226 62 0.274 
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Figure 4.6 MST conversion rate by age 
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Conversion rate by age. Squares are the proportions converting in each age class over the 19 months period, and dotted 
line are the standard errors. The solid line is the average conversion rate. 

4.2.4.3 Clinical status. 

Conversions were detected in 47% of people with previous lesions (10/21; 

95% C. I. 31.7 - 62.2%) and in 25% of the healthy people (52/205; 95% C. I. 19 

- 30%) re-tested in 1997. The difference between the two groups was 

statistically significant (x2 = 4.72, P<0.05; Odds Ratio = 2.67,95% C. I. 0.95 - 

7.36). Thus, in the univariate analyses, clinical status was the only 

significant explanatory factor identified for predicting the individual risk of MST 

conversion: there was no relationship between individual risk of conversion 

and age, gender or village. This result was confirmed by a multivariate 
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analysis in which clinical status was the only variable retained in the minimal 

adequate model (x2 = 6.826,2 D. F.., P<0.05, r2 = 0.025). The relatively 

high conversion rate in people with prior clinical infections is, presumably, 

because of their persistent but intermittent infection status, rather than due to 

reinfections during the prospective survey. 

4.2.5 Household risk factors for infection 

A total of 114 houses in the study area were randomly selected (Table 

4.8) and the surrounding vegetation was classified (see Chapter 5). Five 

types of vegetation were defined as potential risk factors for domiciliary 

transmission: primary forest, secondary forest, cacao, pasture and other 

crops (fruit crops and sugar cane). The relative abundance (in percentage) 

of this vegetation was calculated within concentric circles with radiuses from 

the house of 50 m, 100 m, 200 m, 300 m, and 800 m, respectively. These 

values were then tested in a multivariate analysis for their explanatory power 

to predict either the prevalence or incidence of infection within each 

household. Given the large number of variables and models tested, a 

relatively stringent requirement of P<0.01 was chosen as the indicator of 

significance. 
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In total, 10 different models were analysed but only one produced a 

minimal adequate model with a significant explanatory variable. In this 

model, the outcome variable was the proportion of MST positives in a house, 

and the explanatory variable was the percentage of pasture surrounding a 

house up to radius of 800 m. There was a significant negative relationship 

(x2 = 10.36, P<0.005) between these two variables as shown in Figure 4.7, 

but the strength of the association was very low: r2 = 0.05 (Table 4.9). i. e., 

only 5% of the variance in house prevalence was explained by variation in the 

relative cover of pasture around house. 

Table 4.8 The number of houses in each village with MST survey and 
vegetation coverage data 

VILLAGE 

HOUSES WITH MST 

POP. DATA 

HOUSES WITH 

VEGETATION DATA 

Buenos Aires 30 10 (1*) 
Cucuchonal 19 10 
Delicias 19 10 
La Dorada 18 9 
La Soledad 49 21 
Miralindo 40 9 
Plan de Armas 27 9 
Santa Sofia 14 9 (2*) 
San Pedro 45 10 
Tagual 35 10 
Valparaiso 19 0 
Yolandas 16 10 

TOTAL 331 117 
* t# of houses without MST data 
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Table 4.9 Household and village risk factors for infection: Vegetation 
type. 

CONVERSIONS intercept 1.197* 1.85** 0.78** 
(s. e. ) (1.03) (0.69) 

BY VILLAGE secondary -0.08 -0.10 -0.06 
forest - - (0.04) (0.03) (0.02) 

- - 0.205 0.382 0.37 
PREVALENCE intercept 0.71*** 0.65*** 2.46*** 0.57*** 0.33*** 

(s. e. ) (0.13) (0.13) (0.57) (0.12) (0.15) 
BY VILLAGE cacao 0.02 0.028 0.022 0.035 0.056 

(0.005) (0.006) (0.006) (0.006) (0.009) 
secondary -006 

forest (0.02) 

PREVALENCE intercept 1.82** 
(s. e. ) ---- (0.22) 

BY HOUSE pasture -0.016 
(0.005) 

- 0.05 
*P<0.05 / ** P<0.0I /***P<0.001. Estimates (standard errors) and significance of explanatory 
variables for village/houses incidence and cumulative prevalence, by multiple logistic regression 
(degrees of freedom = 10 for incidence and prevalence per village, 113 for prevalence per house). 

Figure 4.7 Household risk factors for infection: the relationship between 
the extent of pasture land surrounding a house and the proportion of m+ 
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4.2.6 Village risk factors for infection 

The proportion of M+ varied from 0.63 in the village of Tagual to 0.87 in 

the village of Buenos Aires (Table 4.2). In this section, whether any of the 

inter-village variation in transmission rate can be explained by inter-village 

variation in vegetation coverage (i. e. land use) is tested. A measure of 

vegetation coverage for each village was calculated by averaging the data 

from a maximum of 10 houses/village in each of the 11 villages tested (Table 

4.8). A multivariate analysis were carried out using five different village 

measurements, according to the vegetation dataset chosen (50 m, 100 m, 

200 m, 300 m, and 800 m). Given the large number of models and variables, 

factors were only retained in the minimal adequate model when P<0.01. 

Prevalence of infection by village correlated positively with cacao crops 

around houses at 50 m, 100 m, 200 m, 300 m, and 800 m (Table 4.9, Figure 

4.8). For example, villages where houses typically had no cacao crops within 

the nearest 800 m. had a predicted prevalence of 0.58. Whereas, villages 

where houses typically have 33 % coverage with cacao up to 800 m. would 

have an expected prevalence of 0.89. There was also some evidence of a 

role for secondary forest. Secondary forest up to 200 m had a negative 

association with village prevalence rates. Hence, village prevalence is 

predicted to increase when the ratio of cacao : secondary forest increases 

(Figure 4.8 c). Variation in the coverage of cacao and secondary forest 
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within 200 m. of houses explains a massive 87.2% of the variance in village 

prevalence (Table 4.9). 

A further five multivariate analysis were carried out to test the 

explanatory power of the same vegetation indices to predict inter-village 

variation in incidence rate. Village incidence rate varies from 0.31 (95% C. I. 

0.06 - 0.55) cases/person-years in the village of Santa Sofia to 0 

cases/person-years in the village of Yolandas. For three out of the five 

models (using the mean data for 200,300 and 800m. radiuses) a significant 

negative regression was detected between the coverage of secondary forest 

and village incidence rate (Table 4.9). The best fitting model (up to 300 m. ) 

explained 38.2% of the variance in incidence rate. 

The relationship between secondary forest and village incidence rate is 

illustrated in Figure 4.9. For example, Figure 4.9 c shows that in villages 

where houses have no secondary forest up to 800 m., the model predicts an 

incidence rate of 0.68/person/year compared to 0.10/person/year in villages 

where houses typically have 50% coverage with secondary forest within a 

radius of 800 m. 
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Figure 4.8 Village risk factors for infection: the relationship between 
vegetation coverage and cumulative prevalence in 11 villages 
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Figure 4.9 Village risk factors for infection: the relationship between 
vegetation coverage and incidence of infection in 11 villages 
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4.2.7 Risk factors for clinical symptoms with infection. 

In this section, I focus on the relative risk of putative subclinical 

infections (MST conversion with no lesion) versus the risk of clinical 

infections. The "relative pathogenicity" (R) of a parasite population has been 

defined (Weigle et al., 1993) as the proportion of the m+ population with 

either scars or lesions (M+L+/M+). Using this definition, R in the Opon focus 

was 0.88 (927/1044) (Table 4.4). This proportion will depend not only on the 

relative frequency of cryptic infections, but also on the relative frequency of 

(1) cross reactions and (2) failure to detect past clinical infections (i. e. scars). 
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It is not clear which of these factors explains why the geometric mean 

induration size for M+L- people, 10.61 mm (95% C. I. 10.53 - 10.68 mm), was 

significantly smaller than the mean response in M+L+ people: 13.38 mm 

(95% C. I. 13.37 - 13.40 mm; t-test on log-transformed data: t=5.53; 964 

D. F..; P<0.0001). 

A more reliable estimate of the proportion of infections leading to 

clinical disease comes from the prospective data. The clinical infection rate 

amongst the M- population re-tested in 1997 was 0.13 (95% C. I. 0.083 - 0.17) 

cases/person-years; the subclinical infection rate was 0.09 (95% C. I. 0.05 - 

0.12) cases/person-years. Thus, the proportion of MST conversions which 

lead to disease (a) was 0.69 (95% C. I. 0.56 - 0.82) [36/52]. Again, the 

possibility that some of the "subclinical" MST conversions were cross- 

reactions cannot be discounted. However, no significant difference was 

detected in the induration sizes of the MST response following "subclinical" 

infections (6.72 mm; 95% C. I. 5.26 - 8.59 mm) compared to the response 

following clinical incident infections (6.49 mm; 95% C. I. 5.84 - 7.20 mm) (t-test 

on log transformed data: t=0.29; 51 D. F..; P= 0.76). 

The personal risk factors which determine whether an infection leads 

to subclinical infections could include: (1) variability in susceptibility (e. g. 

genetic, nutritional or acquired immunity), (2) age, and (3) gender. The 

significance of these variables can be tested by comparing the two sub- 
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populations of people with incident subclinical (SC) or clinical (C) infections. 

The geometric mean age for C (3.77 years; 95% C. I. 2.77 - 5.13 years) was 

significantly smaller than for SC (8.7 years; 95% C. I. 6.68 - 11.3 years) (t-test 

on log transformed data: t=3.3; 51 D. F..; P= 0.0021). There was no 

significant difference between the sex ratio of conversions in SC, 43.7% male 

(7/16), compared to the sex ratio in C, 47.2% male (17/36) (x2 = 0.05, P 

>0.05). The absence of any gender effect was confirmed by a comparison of 

the Force of Infection fitted by the infection-recovery model to the age 

prevalence data: X in males was 0.15 (95% C. I. 0.11 - 0.18) cases/person- 

years (Figure 4.10a); a, in females was 0.13 (95% C. I. 0.12 - 0.14) 

cases/person-years (Figure 4.10b). We are unable to make any direct test of 

the effect of susceptibility on the risk of clinical symptoms with infection. 

However, as described above, there was no difference in the induration size 

of the MST response in people following clinical or subclinical infection. 

A multivariate analysis having clinical/subclinical infections as a binary 

response variable, and age, gender and final MST size as potential 

explanatory factor, resulted in a minimal adequate model containing only age 

(r2 = 0.14). The model predicts a significant increase in the subclinical 

infection rate with age; for example, a is predicted to decrease from 89% at 

age 0 to 14% at age 30 (Figure 4.11). 
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Figure 4.10 Age prevalence curves of clinical infection by gender 

a) Age prevalence curves of infection for males 
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Age prevalence curves for 1+ detected during the cross-sectional study. Each point represents 
the proportion of I+ within a particular age group. Lines were drawn by maximum likelihood fit 

to the infection-recovery model (Williams, 1994, see Table 4.5) 
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Figure 4.11 The relationship between age and the proportion of infection 
which are subclinical 
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Each point represents the observed proportion of subclinical infections. The line is the expected 
proportion predicted by multiple logistic regression: log (odds) _ (-2.066) + (0.156*age) (s. e. 

intercept: 0.6191, s. e. slope: 0.06314) 

4.2.8 Acquired immunity against disease 

During the follow up, 82 patients were detected but only 61 were 

enrolled, as 21 persons refused diagnostic procedures and no clinical 

histories were taken (Table 4.4). In order to determine the role of acquired 

immunity for protecting against new episodes of clinical leishmaniasis, a 

comparison was made between patients (n = 61) and non-patients (n = 1272). 
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The explanatory variables tested first in univariate analysis were village, age, 

gender, MST induration size in 1995 and previous lesions. 

The geometric mean age in patients (5.5 years; 95% C. I. 5.25 - 5.74 

years) was significantly lower than in the non-patients group (14.3 years; 95% 

C. I. 14.75 - 14.84 years) (t-test on log-transformed data: t=8.83; 1,332 D. F..; 

P<0.0001), indicating that the rate of clinical infection decreases with age. 

The geometric mean MST induration size in patients (1.43 mm; 95% C. I. 1.08 

- 1.77 mm) was also significantly lower than in the non-patients group (7.6 

mm; 95% C. I. 6.63 - 6.76 mm; t-test on log-transformed data: t=7.55,1,332 

D. F..; P<0.0001), indicating that MST size is associated with protection 

against disease. Irrespective of MST response, there was a significantly 

higher proportion of new patients in the group of healthy people1995 (42/410, 

0.10) than in the scarred group1995 (19/882,0.02) (x2= 40.7, P<0.001, RR = 

5.0,95% C. I. 2.9 - 8.3), indicating that previous clinical disease is associated 

with protection against new lesions. In addition, when the analysis focused 

exclusively on the healthy group, there was a significant higher proportion of 

patients in M-L- (39/293,0.13) than in M+L- (3/117,0.025) (x2 = 9.37, P= 

0.002, OR = 5.83,95% C. I. 1.79 - 30.03), indicating that subclinical infected 

people are protected against the risk of subsequent clinical infection. 

However, focusing on the scarred group, there was no significant difference in 

the clinical infection rate between M-L+ (2/30,0.06) and M+L+ (16/852,0.02) 
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(x2 = 1.36, P=0.12). On the basis of univariate analyses, patients and non- 

patients did not differ significantly either according to gender or according to 

village. 

A multivariate analysis was then carried out, taking incident clinical 

infections as the binary response variable, and village, age, gender, MST size 

and previous lesions as explanatory variables in the maximal model. Village 

and gender dropped out from the full model, as expected, producing a 

minimal adequate model with age, MST size, presence of previous lesions, 

and also an interaction effect between MST size and clinical status (Table 

4.10). 

The main conclusions are as follows. (1) Irrespective of MST and 

clinical status, the odds of a new lesion decreases significantly with age by 

5.4% per year (1-(e'o. O56)*100). (2) Amongst both the healthy and scarred 

population, the risk of a new lesion decreases with MST size. This effect is 

significantly greater amongst the healthy population, for which the odds of a 

new lesion decreases by 22% (1-(eß'245)*100) per 1 mm increase in MST 

size. This compares to an equivalent reduction of 9% (1-(e'0'101)*100) for 

the scarred population. (3) Irrespective of age and MST status, the odds of a 

new lesion is significantly less for the scarred than for the healthy population; 

but this effect is less marked for people with a greater MST size. For 

example, for a person with no MST response (0 mm), the odds of a new 
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lesion decrease by 87.7% (1-(e-2 02)*100), whereas for people with an MST 

response of 10 mm the odds decrease by only 43.4% (1-(e-0 57)*100). The 

effects of MST size and clinical status on the risk of a new lesion are 

illustrated in Figure 4.12a, which focuses on children aged 1 year, and Figure 

4.12b, which focuses on adults aged 30 years. 

Table 4.10 Minimal adequate model for risk factors of clinical infection, 
recovery rate and MCL 

outcome parameter estimate se X2 P r2 

intercept -1.439 0.2104 

CLINICAL age -0.05635 0.01841 14.5 < 0.001 

INFECTION MST -0.2456 0.1257 4.18 < 0.05 0.136 

previous les. -2.019 0.546 10.71 < 0.01 

RECOVERY 

interaction 

intercept 

0.1444 

0.9779 

0.06886 

1.012 

4.2 < 0.05 

RATE previous les. -1.365 0.5315 5.95 < 0.05 0.16 

MUCOSAL 

MST 1 

intercept 

1 -0.2396 

-3.193 

0.07557 

0.3157 

14.54 < 0.001 

DISEASE males 0.9892 0.2395 18.36 < 0.001 0.44 

MST 0.03943 0.01649 5.58 < 0.05 
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Figure 4.12 The relationship between incidence of new lesions and MST 
size, clinical status and age 
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4.2.9 Recovery rate 

The loss of positive MST responsiveness was detected in 16 persons 

from both the L+(scarred)M+ and L-M+ groups (n = 490) at a rate, p, of 0.024 

(95% C. I. 0.018 - 0.029) cases/person-years. In the univariate analyses, the 

geometric mean MST induration size (at the first survey) amongst those who 

later recover (8.17 mm; 95% C. I. 7.99 - 8.34 mm) was significantly smaller 

than amongst those who remained M+ (13.13 mm; 95% C. I. 3.10 - 13.15 mm, 

t test on log-transformed data; t=4.312; P<0.0001). The rate of loss of 

MST responsiveness was significantly greater in people without previous 

lesions (7/51; 0.13; 95% C. I. 0.08 - 0.17) than amongst L+ people (9/439; 

0.021; 95% C. I. 0.014 - 0.027; x2 = 16.2; P<0.0001). The mean age of 

those who recovered (13.6 years ; 95% C. I. 13.1 - 14.0 years) was not 

significantly different from those who remained M+ (16.6 years; 95% C. I. 

15.58 - 17.62 years; t test on log-transformed data; t=1.54; P=0.3). The 

proportion of males amongst those who recover (7/16; 0.43; 95% C. I. 0.18 - 

0.67) was not significantly different from those who remained M+ (244/490; 

0.5; 95% C. I. 0.46 - 0.53; x2 = 0.05; P=0.82). 

These results were confirmed by multivariate analysis, in which MST 

induration size and previous lesions were retained in the minimal adequate 

model (x2 = 25.0; 2 D. F..; P<0.001; r2 = 0.15) (Table 4.10). Figure 4.13 

illustrates the negative relationship between the recovery rate and 
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MST induration size for clinical (Figure 4.13a) and subclinical (Figure 4.13b) 

infected people. It shows that M+L- people are more likely to recover to M- 

than are M+L+ people. 

Figure 4.13 The relationship between the loss of MST responsiveness 
and both MST size and clinical status 
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4.2.10 Recurrent leishmaniasis 

Previous leishmaniasis scars were detected in 80/119 (67.2%) patients 

enrolled during the study. Figure 4.14 illustrates the mean incidence rate of 

secondary lesions with respect to time since primary lesions in the scarred 

population. Incidence decreased from 0.12 to 0.016 cases/person-years in 

the first 10 years after the primary lesion, indicating that these early 

secondary infections were relapses rather than re-infections. However, 15 

years after the primary infection, incidence rates increase to a peak of 0.091 

cases/person-years, which is not significantly different from the incidence in 

L-1995 (0.1 cases/person-years) (Figure 4.14). 

Figure 4.14 The annual incidence rates of secondary lesions according 
to time since the primary lesion 
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calculated. Incidence rates are presented on the Y axis with 95% confidence intervals 
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The precise localisation of lesions and the time since primary lesions 

occurred were recorded on the clinical history forms. For 34% (21/61) of the 

patients, the secondary lesions appeared in the same site in the body as the 

previous scars. For this population, the mean time between the primary and 

secondary lesions was 4.89 years (median 2 years). In contrast, the mean 

time between episodes when secondary lesions were on a distant site was 

9.25 years (median 3 years) which was significantly higher than for the former 

(H (Kruskal-Wallis) = 4.83, P=0.027,1 D. F. ) 

4.2.11 Seasonal transmission 

There is some evidence of seasonal variation in the incidence of 

clinical leishmaniasis (Figure 4.15 and Figure 4.16). From November 1994 

(considering the evolution time of chronic lesions detected during the cross- 

sectional study) to January 1997, the peak number of primary leishmaniasis 

cases (parasitologically diagnosed) (Figure 4.15a) were 8 in December 1995, 

7 in March 1996, and 4 in each of December 1994, February 1995 and 

February 1996 (suggesting a peak between December-March). Zero cases 

were detected in July and August 1995, and again in June and July 1996, 

suggesting a trough between June - August which, according to the rainfall 

patterns, is the second driest period in the year (see Materials and Methods). 

In contrast, no seasonal pattern was observed for the incidence of recurrent 
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cases (Figure 4.16a, b), which is consistent with the hypothesis that most 

secondary infections are re-activations rather than re-infections. Similarly, 

suspected but unconfirmed primary cases were distributed randomly 

throughout the year, indicating some misdiagnosis (Figure 4.15b). 

Figure 4.15 Monthly incidence of primary leishmaniasis cases 

a 

IV 

9 

8 

N7 

6 

5 

4 

3 

2 

1 

0 

Diagnostic positive 

Z U) Z (D 22 Cl) Z f- 
-ý -) -ý 

months 

b 
Diagnostic negative 

10 
9 

8 

7 

6 

5 

4 

3 

2 

1 

0 
Z22 (n z co 22 fn Z 

CF) 

months 

136 



Chapter 4 Epidemiology 

a 

b 

Figure 4.16 Monthly incidence of recurrent leishmaniasis cases 
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4.2.12 Mucocutaneous leishmaniasis (MCL) 

The majority of the study population (1100/1380) was clinically 

inspected for MCL, of which 8.4% (92/1100) presented large lesions in the 

nasal septum. No severe mucosal symptoms were detected in the study 

population. All MCL patients presented scars and were MST positive. The 

mean evolution time between LCL and MCL was 9 years, but the information 

collected from patients was unreliable due to faulty recall. 

The MCL patients group was compared with the remaining scarred 

population by age, gender, and MST size, using univariate and multivariate 

analysis, taking MCL as a binary response variable. According to univariate 

analyses, in the MCL group there was a significantly higher proportion of 

males: 0.69 (64/92,95% C. I. 0.59 - 0.78) than in the LCL group 0.47 

(384/802,95% C. I. 0.41 - 0.52) (x2 = 15.51; P<0.001; Odds Ratio 2.49,95% 

C. I. 1.53 - 4.12). The mean MST induration size was also significantly larger 

in the MCL group: 15.6 mm (95% C. I. 14.2 - 17.0 mm) than in the LCL group: 

13.6 mm (95% C. I. 13.2 - 14.1 mm) ()? = 7.168,1 D. F.., P<0.01). However, 

there was no statistical difference in the mean age of the MCL (23.32 years, 

95% C. I. 19.48 - 27.15 years) and the mean age of the LCL group (25.04 

years, 95% C. I. 23.79 - 26.28 years) (x2 = 0.8032,1 D. F.., P>0.05). Gender 

and MST size were retained in the minimal adequate model fitted by 

multivariate analysis (Table 4.10), the results of which are illustrated in Figure 
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4.17: The model predicts a positive relationship between MST size and the 

proportion with MCL for both genders, and a higher MCL rate in males than in 

females (irrespective of MST size). The strength of the association was 

relatively high: r2 = 0.44 (Table 4.10), i. e. 44% of the variance in the MCL rate 

was explained by gender variation and by MST size. 

Figure 4.17 Personal risk factors for MCL 
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In Figure a and b squares represents the observed prevalence of MCL in males and 
females. The solid line represents the predicted prevalence of MCL. Figure c contains 

the same values of predicted prevalence in both gender without observed values 

4.2.13 Identification of likely sources of bias 

4.2.13.1 Potential bias through the selection of the "study population" 

The majority of the "excluded population" belonged to a Christian 

fundamentalist group who typically refuse to participate in health programs 

although they do accept medical treatment when required. The census was 

applied to this population during the cross sectional study but the clinical 

exploration was restricted only to legs, arms and head of males and latter two 

in females. As a result of this lack of information, there was a significantly 

small proportion of persons with scar or lesions in the "excluded population" 
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than in the "study population" (Table 4.11). 22 patients from the "excluded 

population" were registered during the follow up by passive search, producing 

an incidence rate of 0.01 cases/person-years at risk, which was (as expected) 

significantly lower than the incidence in the study population (x2= 33.46, P< 

0.0001). 

The low leishmaniasis prevalence and incidence in the "excluded 

group" reflect only the variation in the acceptance of this population to the 

leishmaniasis project, rather than different level of exposure. Both groups 

had similar type of houses which were located randomly in the 12 villages 

under study, and both groups did the same type of work (i. e. harvesting of 

tropical forest, cacao plantations, etc. ). During the follow up survey, the 

active search of cases in the "study population" of each village received 

permanent help from the local trained person (see Material and Methods), 

whereas the passive search "survey" only operated during the periodical visits 

of the medical team. 

Apart from the group of religious people, some heads of families of the 

"study population" accepted the importance of the leishmaniasis project only 

for females and children but not for males. This generated a distinct 

population structure (age and gender) in the "excluded population", i. e. the 

excluded group was significantly older and more male biased (Table 4.12). 

This bias probably had little effect in the measurement of incidence, as all 
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excluded persons "heads of families" presented scars at the time of the first 

cross-sectional study and no reactivations were detected during the follow up. 

4.2.13.2 Potential bias through incomplete follow-up of the study 

population 

Two sub-groups were lost during the follow-up: emigrants and people 

who refused the second MST (Figure 4.2). The bias introduced by 

emigration could affect the measurement of both clinical and subclinical 

infection rates, whilst those who refused to accept a second MST could only 

affect the measurement of subclinical rates because the "refusal" group was 

followed-up by clinical inspection throughout the survey. 

a) Emigrants 

There was no significant difference by gender between emigrants (E) 

and the population with second MST (SM), but emigrants were significantly 

older than the remaining population (Table 4.13). There was no significant 

difference between the proportion of scars in E, 0.68 (119/173; 95% C. I. 0.61 

- 0.74) and SM, 0.63 (879/1380; 95% C. I. 0.60 - 0.65; x2 = 1.59, P=0.20). 

Also, the proportion of lesions were not significantly different between E, 0.05 

(10/173,95% C. I. 0.017 - 0.082) and SM, 0.065 (90/1380; 95% C. I. 0.051 - 

0.078; x2 = 0.01, P=0.91). Emigration is an unlikely source of bias because 
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it is motivated by economic reasons, rather than health problems (i. e., 

leishmaniasis). 

b) Refusal group 

At the end of the follow up, 36.5% (441/1207) of the study population 

(still in the area) refused the application of the second MST. This group was 

significantly older than SM but there was no difference by gender (Table 

4.14). The great majority of refusals were adults with a positive result in the 

first MST. Thus, the main possibility of bias due to the refusal would apply to 

the measurement of recovery rate, p, rather than the measurement of 

transmission rate. 

Table 4.11 Comparison of the study and excluded populations by 
clinical status 

CLINICAL 

STATUS 

STUDY 

POP. 

EXCLUDED 

POPUL. 

odds 

ratio 95% C. I. x2 P 

HEALTHY 411 482 

SCARS 879 800 1.29 1.09-1.52 9.33 <0.0002 

LESIONS 90 42 2.51 1.68-3.80 22.57 <0.0001 

TOTAL 1380 1324 
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Table 4.12. Comparison of the study and excluded populations in the 
first MST application by age and gender 

OBSERVATIONS 
MEAN 

AGE VARIANCE 
SIGNIFICANCE TEST 
P 

GENDER MALES 
SIGNIFICANCE 
P 

1333* 1106* 
19.974 22.82 
273.87 320.7 

Kruskal-Wallis H (equivalent to x) : 17.76 
< 0.0001 

688 576 
692 748 

X (Yates corrected) = 10.69 
= 0.001 

Table 4.13. Comparison of the study population and emigrants by age 
and gender 

STUDY POPULATION EMIGRANTS 

OBSERVATIONS 759 155 
MEAN 18.2 20.8 

AGE VARIANCE 259.55 263.94 
SIGNIFICANCE TEST Kruskal-Wallis H (equivalent to x) : 7.303 
P 0.006 
FEMALES 386 87 

GENDER MALES 381 81 
SIGNIFICANCE TEST X" (Yates corrected) = 0.07 
P = 0.79 

Table 4.14. Comparison of the study and the refusal group at the 
second MST survey 

STUDY POPULATION 
REFUSAL 

OBSERVATIONS 759 415 
MEAN 18.2 22.89 

AGE VARIANCE 259.55 290.49 
SIGNIFICANCE TEST Kruskal-Wallis H (equivalent to x) : 31.799 
P < 0.0001 
FEMALES 386 213 

GENDER MALES 381 228 
SIGNIFICANCE TEST y, ' (Yates corrected) = 0.38 
P 0.53 
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4.3 DISCUSSION 

The main rationale for epidemiological studies of leishmaniasis is to 

improve the effectiveness of treatment and to enable the establishment of 

control strategies. An overview of the natural history of LCL caused by each 

parasite in different foci in Central and South America will only be possible 

once a series of long-term follow up studies (FW) is carried out in different 

countries (i. e. in foci with different ecological characteristics). However, 

these studies often require following a highly dispersed population in remote 

areas several times per year. Such as approach is expensive, time 

consuming, and, in some Latin American countries in which there is 

paramilitary and guerrilas activities, dangerous. To date, the large majority of 

studies reported in the literature are cross-sectional studies (CX), conducted 

in areas where some action was required after an outbreak of leishmaniasis 

had been notified. A number of studies have also focused on new 

settlements where transmission to humans was a new phenomenon, using as 

denominators only the number of people at high risk of transmission during 

the epidemic. Table 4.15 summarises the most relevant studies using this 

approach, and many of these studies will be referred throughout this section. 

Only three long-term follow up studies of LCL have been conducted 

(and reported) in South America: in Peru, Colombia and Brazil. (1) The 

Peruvian study was conducted by Davies et al (1995a) from 1991 - 1993 in 38 

145 



Chapter 4 Epidemiology 

villages located in the naturally unforested Andes mountains (Departments of 

Lima, Ancash and Piura), between 1,500 and 3,000 m above sea-level (m 

a. s. l. ). The study population comprised 4,716 people, data concerning 

demographic and clinical aspects were collected, and a MST was carried out, 

on 72% of the population at the first survey; 480/877 (55%) of the MST 

negative people were re-tested in the second survey. (2) The Colombian 

study was carried out from September 1986 to December 1989; by Weigle et 

al (1993) in a study population of 2,858 persons living in 15 contiguous 

villages (in an area of 27 km2) in the municipality of Tumaco, Narino (Pacific 

lowland coast). This region is 10 - 30 m a. s. l. and covered with tropical rain 

forest (now partially deforested). In this study, as in the Peruvian study, MST 

was applied sequentially. (3) The Brazilian study was conducted by Jones et 

al (1987) from 1980 to 1984 in 15 farms and villages in Tres Bracos, Bahia. 

This region is located between 600 - 800 m a. s. l. and covered with remanent 

patches of tropical rain forest, with large cleared areas planted with cacao, 

banana and manioc. This study was carried out using only clinical and 

demographic data, MST was only used as a diagnostic tool in suspected 

patients. In the Colombian study, the most common parasite was L. 

panamensis, which was also the only parasite isolated in Opon (see Chapter 

3). In Brazil, the parasite was L. braziliensis and in Peru L. peruviana. 
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Chapter 4 Epidemiology 

In the Opon focus, the study of risk factors for infection are intended to 

be the starting point for future control programs ; and the study of risk factors 

for disease should contribute to future programs aiming to detect and supply 

treatment to all cases in groups at high risk of severe forms of leishmaniasis. 

The risk factors for infection included gender, age, previous clinical status, 

localisation of the household, village and season. The risk factors for 

disease included age, gender, and immune status. The outcome parameters 

include the risk of developing mucocutaneous leishmaniasis, the risk of 

reactivation, subclinical infections, and efficacy of treatment. 

4.3.1 Transmission rates 

The Opon region is one of the most highly endemic foci of LCL in the 

Santander Department, Colombia. The cumulative prevalence of clinical 

leishmaniasis (1+) was 0.72 cases/person, which was not significantly different 

from the cumulative prevalence of infection amongst the whole study 

population (m+), 0.75 cases/person (Table 4.4). This prevalence should be 

representative of the Landazury municipality, since the villages under study 

were not selected on the basis of their suspected prevalence, but were 

chosen to reflect the different habitats created by deforestation. These cover 

the whole range of activities carried out by Landazury farmers: from cattle 

farming to cacao cultivation, and including land use for temporary crops like 
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maize and yuca (manioc), plus secondary forest. The transmission rate in 

Landazury was similar to that recorded in some valleys in Peru (1+ = 0.737 ; 

m+ = 0.78), but higher than in both Tres Bracos, Brazil (I+ = 0.15) and in 

Tumaco, Colombia (m+ = 0.093). In the previously reported CX study of 

LCL, the reported cumulative prevalence (m+) ranged from 0.023 to 

0.59/person (Table 4.15). In general, the smaller studies recorded higher 

prevalence as they focused on small (unrepresentative) populations who 

were expected to have a high risk transmission rate. 

The incidence of infection in the M-L- group in the Opon focus, 0.19 

conversions/person/years, was similar to the incidence of infection recorded 

in Peru, 0.11 conversions/person/years, but almost three times higher than in 

Tumaco, where the incidence of infection was 0.066 

conversions/person/years. In Tumaco, the pattern of exploiting tropical wood 

is different from that in the Opon focus, where deforestation has been gradual 

with the preservation of some trees from the primary forest. In Tumaco, in 

contrast, deforestation tends to be quick and total, followed by the cultivation 

of temporary crops like plantain and isolated fields of cacao crops far away 

from houses. Thus, one explanation for different incidence rates between 

Tumaco and Opon is related to the level of adaptation of vectors and 

reservoirs to the environmental changes characteristic of the two foci. 
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4.3.2 Risk factors for infection 

4.3.2.1 Personal risk factors 

Personal risk factors for infection are most accurately estimated from 

FW studies with two assessments of MST status in the population. 

Correlates with infection rate can then be identified either by cohort studies 

(as in the Opon, Tumaco and Peruvian studies) or by case-control studies 

(e. g. Llanos-Cuentas, 1993). In contrast, retrospective studies of infection, 

whether by case-control studies (e. g. Yadon, 1996) or cohort studies, are 

plagued by potential bias and other inaccuracies associated with faulty recall 

or changes in circumstance. Thus, the Opon focus results are here 

compared with the Tumaco and Peruvian results. New infections occurred 

irrespective of age and gender in Opon and in Peru, whereas in Tumaco 

incidence of infection increased with age, and infection was three times 

greater in males than in females. These differences are thought to be mainly 

the result of differences in exposure rather than differences in susceptibility 

(see p. 143-144). The average age of infection in Opon, 7.7 years (1 / X), 

calculated from the MST data (CX), and the absence of gender or age as a 

risk factor (FW) is highly indicative of intradomiciliary or peridomiciliary 

transmission, as is the case in the Peruvian Andes. Whereas, in Tumaco, 

infection is mainly an occupational hazard (farming), and this occupation in 

Colombia is carried out principally by males. The contrast with Tumaco is 

150 



Chapter 4 Epidemiology 

striking, given the similarities between Opon and Tumaco both in the agent of 

disease (L. panamensis) and in the presumed principal vectors (Lu. trapidoi, 

and Lu. gomezi), see Chapter 5. 

In previously reported case-control studies in Central and South 

America, households with characteristics similar to the Opon houses have 

been identified as risk factors for leishmaniasis: for example, houses on stilts 

(OR= 3.2; 95% C. I. 0.64 - 18.9) (Rojas et al., 1988) and houses with hole(s) in 

the walls (OR= 8.0; C. I. 2.5 - 25.5) (Yadon, 1996). Thus, in future, control 

programs in the Opon area should perhaps be orientated towards house 

improvement and the encouragement of barriers (e. g. bed-nets) between 

sandflies and humans, in order to avoid infections in children, who are the 

high risk group for severe lesions, especially in the head (see Chapter 3). 

4.3.2.2 Risk factors associated with land use 

Much of the inter-village variation in prevalence or incidence of 

infection in Opon was explained by the variation in the percentage of land 

around houses which is covered with cacao or secondary forest. These 

results are consistent with the results of the study of the effect of surrounding 

vegetation on the indoor activity of sandflies (see Chapter 5), where cacao 

crops appear to provide, an appropriate environment for the survival and 

reproduction of the principal sandfly vectors(s) in Opon. 
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The variance in the village transmission rates explained by the relative 

proportion of land covered with cacao or secondary forest indicates that land 

use after deforestation is one of the most important factors for leishmaniasis 

transmission between villages. On a larger scale, this could be one of the 

factors explaining the differences in transmission rates between regions (for 

example, the difference in transmission rates between Tumaco and Opon). 

in the Opon focus, the majority of households are scattered and act as centre 

points for farms (see Materials and Methods). A similar pattern was 

observed in two settlements in Tumaco (Campamento and La Quince) where 

most households were surrounded by tropical forest, and these two 

settlements presented the highest prevalence of leishmaniasis. But in 

general, Tumaco settlements were characteristically located one to five km 

distant from cultivated fields. 

The effect of vegetation as a risk of leishmaniasis has been 

demonstrated in a number of previous studies. For example, in one of the 

CX studies (Alto Beni, Bolivia) houses located 100 m from the nearest forest 

presented a smaller relative risk for cutaneous leishmaniasis than houses 

located 10 m away (Alcais et al, 1997a). In previous risk factor studies, 

houses located within 200 m of agricultural land had a significantly high risk of 

LCL: for example, maize and alfalfa (Yadon, 1996). Indirect evidence for the 

association between vegetation types and the risk of leishmaniasis has also 

come from entomological studies, which have indicated a relationship 
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between sandfly vectors and specific crops (See Chapter 5), e. g. coffee 

(Scorza, 1985; Alexander et al, 1992) and cacao (Franca et al, 1991; Jones 

et al, 1987). Hence, future control programs in Opon should include 

community education programs in order to discourage people from entering 

high risk areas after dusk. In Opon, adults often enter agriculture areas after 

dusk for bathing, whilst children use these areas for play. 

4.3.2.3 Seasonality 

There is some evidence of seasonality in the incidence of primary 

cases in Opon with a peak between December to March during the second 

dry period of the year, which follows a rainy season which is characterised by 

a low frequency of rainy days unlike the first rainy season. A trough was 

observed between June to August during the first dry period of the year (i. e. 

following a rainy season characterised by abundant frequency of rainy days). 

In Venezuela (Feliciangelli, 1987c), as in Opon, the incidence of cutaneous 

leishmaniasis peaks between December to January with a trough between 

June - July, but the rainfall patterns are opposite to Opon, i. e. the wettest 

months are June, July and December. The seasonal patterns could be 

associated with changes in the population of the sandfly vector (see Chapter 

5) or changes in human activity (e. g. fruits harvesting). 
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The detection of seasonal patterns in leishmaniasis trasnmission has a 

great impact on health policy programs. For example, in Landazury 

Municipality, Glucantime® is received from the Colombian Ministry of Health 

towards the middle of the year, and such supplies are promptly used 

(probably on recurrent lesions), leaving -the majority of incident cases 

(especially children) at the end of the year without treatment. Thus, in 

Municipalities like Landazury where Glucantime® is scarce, it may be 

necessary to limit the use of drug for treatment for adults with recurrent 

lesions, in order to keep enough drugs for the incident cases in children 

expected between December and March. Drugs could be saved by applying 

short courses of intralesional treatment to adults with recurrent lesions. 

4.3.3 Risk factors for clinical/subclinical infection 

Clinical infection is determined by the host-parasite interaction which 

includes host genetic factors, acquired resistence to infections and variation 

in parasite pathogenicity. The host-parasite interaction can be partially 

assessed in cohort studies by measuring the proportion of infection which 

lead to disease (a), and by directly measuring acquired immunity against 

disease, and the recurrence rate (Davies et al, 1995a, Saravia & Weigle, 

1996). The "relative pathogenicity (R)" of the parasite population can be 

estimated from the ratio M+L+ / M+ in the human population (Weigle et al, 
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1993), but interpretation should be made with caution (Davies et al, 1995a). 

The most reliable estimate of the proportion of infections causing clinical 

symptoms comes from follow-up studies. 

In Opon, the best estimate for the proportion of subclinical infections in 

the Opon focus was 30.8% (FW). This is higher than the rate reported in 

Peru (17%) but lower than that reported in Tumaco (88.1 %). This result is 

consistent with the hypothesis that L. panamensis in Opon is more 

pathogenic than in Tumaco, but L. peruviana is more pathogenic in turn than 

both populations of L. panamensis studied in Colombia. However, 

alternative explanations for these apparent geographic patterns are possible, 

as the differences may represent methodological inconsistencies between the 

three research groups, i. e. different sensitivities either of the clinical or MST 

diagnosis (due to different field workers or different leishmanin). In addition, 

geographical differences could be explained by different levels of cross- 

reacting parasitic infections in the three regions such as lizard Leishmania 

(Manson-Bahr, 1987). However, the proportion of subclinical infections may 

well be influenced by factors related to parasites (e. g. virulence) and/or with 

human susceptibility. In Tumaco the majority of the community are Negros 

who are infected when adults, whilst in Opon the people are whites (Figure 

2.13) and "mulatos" (i. e. a mixture of Indigenous, Spaniards and Negros) 

infected in childhood. Evidence that people who became clinically infected in 

Tumaco were innately more susceptible than those who were subclinically 
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infected came from an experimental study, where the in vitro infection rate of 

peripheral blood monocytes with L. panamensis was higher in LCL patients 

(from Tumaco) than in asymptomatically infected persons (Robledo et al, 

1994). Further evidence for genetic variation in susceptibility comes from 

comparison of leishmaniasis symptoms in Amerindians and mixed race 

people in Bolivia (Alcais et al, 1997b) 

In the Opon focus, the geometric mean age for clinical infections (3.8 

years) was significantly smaller than that for subclinical infections (8.7 years); 

but there was no significant difference between the sex ratio of conversions in 

both groups; and there was no differences in the induration sizes of the MST 

response in people following clinical or subclinical infection. A positive 

relationship between age and the proportion of subclinical infections was also 

observed in Peru where the geometric mean age for clinical infection was 

significantly lower than those with subclinical infections (7.7 and 15.01 years, 

respectively); as well as in Tumaco. This pattern was also observed in a 

cross-sectional study in Ecuador (Armijos et al, 1997) where the age group at 

greater risk of clinical leishmaniasis were apparently children under five years. 

The decreasing incidence of clinical infection with age could be related 

to undetected acquired immunity following infection (Saravia & Weigle, 1996) 

For example, there was a three-fold higher risk of clinical disease for migrants 

compared to native inhabitants in Alto Beni, Bolivia (Alcais et al, 1997a). 
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Alternatively, adults may be innately less susceptible to LCL (Alcais et al, 

1997b) as they are to VL (Dye & Williams, 1993), even in the absence of prior 

exposure to leishmaniasis. Evidence for innate development of protection 

during childhood come from a segregation analysis of 77 migrant families in 

Bolivia, in which the penetrance estimators showed that younger subjects are 

genetically more susceptible than older subjects to LCL (Alcais et al, 1997b). 

In the Opon focus, the leishmaniasis transmission patterns appear to 

be changing in recent years, according to the disparity between the incidence 

rate calculated from the CX and prospective survey analyses. The incidence 

rate of infection during the follow up study was greater than the force of 

infection calculated from age prevalence data, indicating that the infection 

rate during the study was greater than in previous years. However, the 

clinical infection rate between 1995-1997 was relatively low, perhaps due to a 

change in the pathogenycity of the parasite population. One other factor 

that could explain the disparity between the FW and CX studies is the 

significant difference in the recovery rate of MST responsiveness following 

subclinical or clinical infections. Subclinically infected people apparently 

revert to M- relatively quickly, so that despite a relatively high transmission 

rate, only a small proportion of people sampled in the cross-sectional survey 

retain their M+L- status. 
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4.3.3.1 Recurrent leishmaniasis 

Recurrence of LCL is defined as the onset of active lesions in patients 

with a history of previous episodes of leishmaniasis. It is important because 

of the risk of mucosal involvement (especially with L. braziliensis complex 

parasites), and also because of the extra cost incurred in the treatment of 

recurrent cutaneous lesions. In the Opon focus, two important 

considerations were taken into account in the measures of recurrent 

leishmaniasis: (1) the level of recurrence amongst the treated group of 

patients following the WHO protocol (see Material and Methods), and (2) the 

characteristics of recurrences amongst patients with previous scars. 

The recurrence rate is thought to be determined by (1) the species of 

parasites, (2) the treatment received in the first episode of leishmaniasis and 

(3) the immunological competence of the host (Saravia & Weigle, 1996). 

During the prospective study in the Opon focus, all cases detected were 

treated with 20 mg/kg/d of antimonium for 10 days at least in the form of 

Glucantime® administrated intramuscularly; and all infections diagnosed were 

caused by L. panamensis. The recurrence rate of Ieishmaniasis in Opon 

(3%/year) in the prospective study, was similar to the recurrence rate 

detected in 59 patients (1.7%/year) in Colombia infected with parasites of the 

subgenus L. (Viannia) treated with the same doses of antimonium, 

158 



Chapter 4 Epidemiology 

administrated intravenously during 20 days in the form of sodium 

stibogluconate (Pentostam ®) (Saravia & Weigle, 1996). 

In previous works, recurrences have been reported from Colombia, 

Peru and Brazil at rates of 2.0%/year (Weigle et al, 1993), 2.9%/year (Davies 

et al, 1995a), and 2.7%/year (Jones et al, 1987). The consistency of these 

data is remarkable given the differences in the treatment, regimes, parasite 

species, and even in the definition of recurrence used by the different 

research teams. In the Pacific coast of Colombia (Tumaco), where L. 

panamensis was the most common parasite isolated (Saravia et al, 1990), the 

group of recurrent patients (80/498) required higher doses of Glucantime and 

showed a lower MST response compared with non-recurrent patients, 

suggesting that the risk of reactivation is associated with a low-cell mediated 

immune response. 

In Opon, as in the Peruvian study, the incidence rate of recurrence 

decreased dramatically during the first 10 years following the primary lesion, 

indicating that the majority of recurrent leishmaniasis in this period is due 

mainly to relapses rather than reinfections. Also, in Tumaco the cumulative 

frequency of recurrences in the group of 498 patients increased rapidly in the 

first year after the first lesion, but few recurrences were detected during the 

following 42 months of the follow up (Saravia et al, 1990,1996). From this 

group of recurrent cases, 50% were suggested to be caused by relapses 
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based on the apparent genetic identity of parasites isolated from the same 

patient in both leishmaniasis episodes (primary and secondary infections) 

(Saravia et al, 1990). In all patients with identical parasites in consecutive 

episodes, the secondary lesions were located on the same part of the body 

on the primary lesions. In the Opon focus, 35% of recurrent lesions were 

located on the same part of the body as the previous scars, and this 

percentage decreased significantly with time since primary lesion, indicating 

that the early recurrences are more likely to be relapses and the later 

recurrences are more likely to be reinfections (presumably due to the loss of 

acquired immunity) 

4.3.3.2 Acquired immunity 

Age was associated with protection against clinical infection in the 

Opon focus, as it had been in the Tumaco and Peruvian studies. On 

average, the proportion of infections, carrying clinical symptoms decreased in 

Opon by 5.4%/year. It is possible that the protective effect of ageing is 

related to the development of undetected acquired immunity; but it is also 

possible that the immune system in older people is innately better at coping 

with leishmaniasis infection. Direct evidence for acquired immunity came 

from a comparison of clinical infection rates in cohorts defined by their prior 

clinical status and their MST responsiveness. 
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In Opon, people with previous clinical episodes (i. e. scars) on average 

had 80% protection against subsequent clinical infections, although this effect 

was more marked amongst people who had a negative MST response. MST 

responsiveness was also a significant indicator of acquired protection, even 

amongst those with no clinical symptoms. Amongst the healthy population, 

the odds of a subsequent clinical infection decreased by 22% for each 1 mm 

increase in MST size in Opon. This corresponds with an equivalent 

measurement of 18% in a Peruvian study of acquired immunity following 

subclinical infections. Hence, the Opon results confirm the conclusions from 

Peruvian study that protective immunity can be acquired following a 

Leishmania infection even in the absence of clinical symptoms. This result 

provides hope for the future development of vaccines. In addition, it provides 

a rationale for using the MST response as an indirect indicator of the 

protection which may follow a putative vaccine within the context of an 

intervention trial. 
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5. SANDFLY VECTORS 

5.1 INTRODUCTION 

The diversity of sandfly fauna in the American Continent is remarkably 

high compared with the sandfly fauna in the Old World: about 400 species are 

known in the New World (Cl PA group, 1993) but only 10% of them are proven 

or suspected vectors of leishmaniasis (Killick-Kendrick, 1990). The evidence 

used for vector incrimination has traditionally been limited to a number of 

biological criteria (Lewis & Ward, 1987; Killick-Kendrick 1990), but statistical 

associations can assist in vector incrimination in the absence of other 

biological evidence (Davies et al 1997b). The biological evidence required 

for vector incrimination considers the following criteria: (1) presence of the 

sandfly species in the focus of leishmaniasis transmission; (2) demonstration 

that the sandfly is anthropophilic and, if the disease is a zoonosis, also feeds 

on the animal reservoir; (3) isolation of the same Leishmania strain from 

patients and sandflies; and (4) vector competence, i. e. the parasite can 

develop within the sandfly gut and can be transmitted by bite to a susceptible 

mammal host. In many endemic leishmaniasis sites in the New World, a 

large number of sandflies species may fit criteria (1) and (2), and it is difficult 
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to distinguish which play significant vectorial roles. Field infection rates tend 

to be low, and so statistical comparisons of infection rates in different species 

are unlikely to be fruitful. Vector competence studies are also of limited 

value, as the experimental infection rates with colonised sandflies do not 

necessarily reflect the natural situation. In contrast, statistical correlations of 

spatial variability in sandfly abundance and transmission rate (i. e. "the 

comparative method", sensu Dye, 1992) provide a powerful tool for 

quantifying the relative vectorial roles of different suspected vectors. Of 

course, one must always be aware that correlations do not necessarily imply 

causality, and evidence of natural infections are still required in order to 

confirm vectorial roles. 

Because the significance of risk factors associated with leishmaniasis 

transmission depends largely on the temporal and spatial patterns of vector 

abundance, the behaviour and ecology of the suspected sandfly species have 

been extensively studied in Central America and the Andean countries. 

However, there is little consistency in the conclusions drawn from the field 

studies carried out to investigate, for example, sandfly seasonal variation or 

nocturnal activity in different endemic sites. Because the methodology used 

in the various sandfly studies has not been standardised, it is also extremely 

difficult to determine the ecological causes of the different behaviour patterns 

observed. This task is made more difficult by the incomplete and 

inconsistent means of reporting entomological data in published papers; e. g. 
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some report geometric means, others use arithmetic means, and so on. 

Hence, it is not possible to extrapolate the results from one focus to another, 

and it is remains necessary to conduct entomological studies in each focus 

under investigation. 

The first part of this study focused on the biological evidence for vector 

incrimination in the Opon focus, i. e. by identifying the anthropophilic sandfly 

species in this region, and by the detection of Leishmania infections in field 

caught sandflies. Further evidence for vector incrimination, and a 

quantitative comparison of the vectorial role of the suspected vector species, 

was provided by a series of regression analyses comparing human 

transmission rates (incidence and prevalence) with sandfly abundance inside 

houses. The second part of this study focused on the risk factors for 

leishmaniasis transmission associated with sandfly abundance and 

behaviour: i. e. seasonal variation, nocturnal activity, habitat preference and 

endophagic activity. Thus, the entomological study in Opon focus has as its 

general objectives: 

1. To evaluate the relative vectorial roles of the antropophilic sandfly species 

present in the Opon focus 
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2. To identify the risk factors (spatial and temporal) which influence the 

abundance and distribution of these putative vector species in the Opon 

focus 

The specific objectives were as follows: 

1. To identify the anthropophilic sandfly species in the Opon focus 

2. To measure the infection rate in the most common anthropophilic species 

3. To evaluate the relative vectorial roles of the most common anthropophilic 
species by searching for spatial associations between sandfly abundance 
and transmission rate 

4. To describe the daily biting cycle, and the seasonal variation of the 
potential vectors 

5. To quantify the effect of habitat (i. e. land use) on the abundance and 
distribution of the potential vectors, paying particular attention to the 
effects of deforestation 

In addition, this thesis will highlight the necessity of future 

collaborations between the various sandfly research groups in the Andean 

Countries which would permit quantitative "meta-analyses" of the sandfly data 

already collected, in order to provide a clearer idea of the variables 

determining the distribution and behaviour of all the suspected sandfly vectors 

in the region. 
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5.2 RESULTS 

5.2.1 Description of the sandfly fauna in the Opon focus 

A total of 4,650 adults (4,281 females, 369 males) belonging to 27 

sandflies species were caught in the Opon focus between January 1994 - 

January 1997. Thirty eight sandflies were unidentified due to damage. 96% 

of the sandflies collected comprised nine species: Lu. trapidoi (29.8%), Lu. 

hartmanni (25%), Lu. quasitowsendi (22.6%), Lu. gomezi (8.2%), Lu. 

shannoni (3.6%), Lu. camposi (2.8%), Lu. ovallesi (1.5%), Lu. serrana (1.4%), 

and Lu. yuilli (1%) (Table 5.1). The species composition of sandfly 

collections varied by method and by site. 

The aim of the entomological studies was not to make direct 

comparisons of sandfly fauna according to habitat type or trapping method, 

but to address specific questions about seasonality, nocturnal activity, risk 

factors for indoor sandfly abundance, and natural infection rate (see below). 

However, the data do provide some hints about the differences in habitat 

preference between the sandfly species in this region, and these are 

presented in sections 5.2.1.1 - 5.2.1.5 
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5.2.1.1 Man-landing collections 

a) Seasonal variation study 

Sandflies were collected from 18: 00 to 20: 00 hours at intervals throughout the 

year at eight sites in San Pedro, representing four habitat types: (1) indoors, 

(2) in the peri-domicile, (3) in cacao, and (4) in the forest (four sites located 

in/or around House 1, and four sites in/or around House 2). The species 

composition was consistent between pairs of sites representing similar 

habitats, but differed between habitat types. (Table 5.2) 

Table 5.2 Sandfly abundance measured by man-landing collections in 
four habitat types, two sites/habitat and 18 collections/site (18: 00-20: 00 

hours): Seasonal variation study in San Pedro 

inside house ridomestic cacao crops forest TOTAL 

n mean' n mean' n mean' n mean' 

Lu. tra idol 17 17.2 40 64.1 47 65.5 69 55.3 173 

Lu. omezi 1 1.90 5 9.2 4 7.1 1 1.9 11 

Lu. hartmannl 7 11.3 102 128.4 110 169.9 162 156.9 381 

Lu. uilli 0 0 10 17 14 15.4 6 8.6 30 

Lu. uasitowsendl 20 22.3 15 24.4 17 27.1 29 34.7 81 

Lu. panamOnsis 0 0 1 1.9 0 0 0 0 1 

Lu. erwindonaldol 0 0 0 0 3 5.1 0 0 3 

= geometric mean of 36 replicates (number/100 man-hours) 
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Lu. hartmanni predominated in all habitat types with the exception of 

inside the house, where it was under-represented: the mean landing rate 

indoors was only 9% that in the peridomestic area, indicating very low 

endophagic activity. Lu. trapidoi was the second most common species in all 

habitats, but again was relative rare indoors: the mean indoor landing rate 

was 27% that in the peridomicile. In contrast Lu. quasitowsendi showed a 

relatively high level of endophagy, with no significant difference between the 

landing rate indoors and outdoors (significantly greater than both Lu. trapidoi, 

x2 = 8.64 ; P< 0.01 and Lu. hartmanni, x2 = 59.32; P< 0.001). The numbers 

collected for the remaining species were too low to draw firm conclusions. 

Comparing the three outdoor habitats, there is a slight suggestion that Lu. 

quasitowsendi is relatively common in the forest, and that Lu. hartmanni is 

relatively rare in the peridomicile. The abundance of Lu. trapidoi was 

relatively constant in all three outdoor habitat types sampled. Additionally, 

there was some suggestion that Lu. gomezi was underrepresented in the 

forest since 10% (1/10) individuals sampled outdoors were collected there, 

whilst the proportion of the other anthropophilic species in the forest was 

significantly higher: 44% (69/156) for Lu. trapidoi (Yates corrected x2 = 3.22 

P= 0.03) ; 43% (162/374) for Lu. hartmanni (Yates corrected x2 = 3.17 ; P= 

0.03); and 47% (29/61) for Lu. quasitowsendi (Yates corrected x2 = 3.54 ; P= 

0.02) (Table 5.2). 
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b) Nocturnal activity study 

Sandflies were collected from 18: 00 to 06: 00 hours at four sites 

representing four habitats (1site/habitat) during three days in June 1996, in/or 

around House 3 located at Santa Sofia: (1) indoors, (2) in the peridomicile, (3) 

in the cacao and (4) in the forest. The forest around House 3 was less 

disturbed by human activity than the forest collection sites around Houses 1 

and 2 in San Pedro, and the cacao crops were younger than those in San 

Pedro. The total number of sandflies collected in the nocturnal activity study 

was almost double that in the seasonal variation study, even though the total 

number of man-landing collection hours man was exactly half that of the 

seasonal variation study (Table 5.3). The species compositions of the 

collections from the two studies were similar except that Lu. ovallesi and Lu. 

shannoni were collected only in the nocturnal study, and Lu. erwindonaldoi 

was collected only in the seasonal study (Table 5.3). 

Lu. hartmanni was the predominant species in all habitats with the 

exception of the forest; its endophagic activity in House 3 was considerably 

higher than that detected in Houses 1 and 2 in the seasonal variation study, 

with a mean man-landing rate equivalent to 40% that in the peri-domicile. 

Lu. trapidoi was the most common species in the forest and the second most 

commonly collected in the other three habitats sampled. The Lu. trapidoi 

collections in the domestic habitat were too small to draw any firm conclusion 
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concerning endophagic activity, although there was some evidence 

suggesting that, as for Lu. hartmanni, the endophagic activity of Lu. trapidoi 

was higher here than in Houses 1 and 2 in San Pedro. 

Table 5.3 Sandfly abundance measured by man-landing collections in 
four habitat types, one site/habitat and three collections/site (18: 00- 

06: 00 hours): Nocturnal activity study in Santa Sofia 

inside house peridomestic cacao crops forest' TOTAL 
species n mean' n mean' n miaan' n mean' 

Lu. tra Ido! 6 6.5 2 3.6 170 210.8 287 455.8 469 

Lu. omez! 2 3.6 1 1.7 54 78.2 35 53.8 92 

Cu. hartmann! 6 9.6 13 24.1 304 441.4 305 343.2 628 

Lu. yullil 2 3.6 0 0 5 7.3 4 7.3 11 

Lu. uasltowsendi 1 1.7 0 0 1 1.7 16 28.6 18 

Lu. anamensis 0 0 0 0 3 5.4 0 0 3 

Lu. ovalles! 0 0 0 0 0 0 2 3.6 2 

Lu. shannoni 0 0 0 0 00 4 5.4 4 

= geometric mean of 3 replicas (number/100 man-hours) 

Unlike in the seasonal study, Lu. gomezi was well represented in the 

nocturnal study, being the third most important species in all four habitat 

types sampled. Another contrast with the seasonal variation study was 

demonstrated by Lu. quasitowsendi, which was abundant in the forest but 

rarely encountered in the other habitat types. As before, the numbers 

collected for the remaining species were too low to draw firm conclusions. 

Comparing the three outdoor habitats, there is some suggestion that Lu. 
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hartmanni and Lu. gomezi were relatively common in the cacao, whereas 

Lu. trapidoi and Lu. quasitowsendi were relatively common in the forest. All 

four species were relatively rare in the peri-domicile. As in the seasonal 

variation study, Lu. gomezi was underrepresented in the forest collections : 

39% (35/90) Lu. gomezi compared with 62% (287/459) Lu. trapidoi (Yates 

corrected x2 = 16.3; P< 0.001) ; and 94% (16/17) Lu. quasitowsendi (Yates 

corrected x2 = 15.34 ; P< 0.001). However, differences with Lu. hartmanni 

were not significant 49% (305/622) (Yates corrected x2 = 2.85 ; P= 0.09) 

(Table 5.3). 

c) Natural infection study 

Natural infections were sought in 1,803 sandflies from man-landing 

collections (on three nights) in Forest 4 in the village of San Pedro, 15 Km 

north-west of Houses 1 and 2. The collection was dominated by Lu. 

quasitowsendi (50.2%) followed by Lu. trapidoi (31 %), Lu. gomezi (9.1 %) and 

Lu. harfmanni (5.8%). A few individuals of Lu. panamensis, Lu. ovallesi, Lu. 

yuilli, Lu. shannoni and Lu. venezuelensis comprised the remainder of the 

collections (Table 5.1). Thirty eight sandflies were not identified to species 

due to damage. 

The main contrasts between the sandfly catch at Forest 4 compared to 

the forest catches around Houses 1,2 and 3 were the relatively high 
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abundance of Lu. quasitowsendi and Lu. panamensis, and the relatively low 

abundance of Lu. hartmanni. Forest 4 was also the only site in the whole 

project where Lu. venezuelensis was collected. 

5.2.1.2 Shannon trap 

In the pilot study in February 1994 (1 night), six anthropophilic species 

were identified amongst the 34 sandflies collected in the peri-domicile around 

House 5 located in the village of La Soledad. In contrast to the catches in 

the peri-domicile of Houses 1,2 and 3, Lu. hartmanni was relatively rare and 

Lu. quasitowsendi was relatively abundant (50% of the total catch). This was 

also the only peridomestic site in the project where Lu. erwindonaldoi and Lu. 

ovallesi were found. 

5.2.1.3 CDC light traps 

A total of 585 sandflies, comprising 19 Lutzomyia species, were 

collected from 18: 00 to 06: 00 hours inside 114 houses in 11 villages (one 

trap-night/house) in February 1996 (during the study of risk factors for indoor 

sandfly abundance). These included eight anthropophilic species (i. e. 

species also collected at least once in the man-landing catches). Lu. trapidoi 

was the most abundant species (geometric mean: 0.48 /trap-night) followed 

by Lu. gomezi (0.38 /trap-night), Lu. ovallesi (0.19 /trap-night) and Lu. 
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hartmanni (0.14 /trap-night). The sex ratio for all 19 species was highly 

female biased, with the percentage of females within the total catch ranging 

from 74% for Lu. gomezi to 100% for seven of the rarer species. However, 

the sex ratio of each species never varied significantly from 81 %, the overall 

mean (x2 = 6.70; P> 0.05; D. F. = 11). 

A direct comparison of the sandfly fauna in CDC and man-landing 

catches can be made by focusing on the results from the villages of San 

Pedro and Santa Sofia (Table 5.4). The species diversity in the CDC light 

trap collections was clearly higher: 10 species were identified amongst the 42 

sandflies collected compared to five species amongst the 62 sandflies in the 

man-landing collections. Amongst the anthropophilic species, the main 

differences between the two trapping methods were a relatively low 

representation of Lu. hartmanni and Lu. quasitowsendi in the CDC light traps 

collections (Yates corrected x2 = 11.8; p<0.001) and a relatively low 

representation of Lu. gomezi in the man-landing catches collections (Yates 

corrected x2 = 12.8; p<0.001). The anthropophilic and phototropic behaviour 

of the main two species in the Opon focus (Lu. gomezi and Lu. trapido, ) can 

be compared by measuring the ratio of the abundance of these two species in 

each trap method: the proportion, of Lu. gomezi (80/128,38%) caught in light 

traps was significantly greater than the proportion caught in man-landing 
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catches (268/1,196,22%) (x2 = 45.16; p<0.001; RR = 2.1; 95% C. I., 1.74 - 

2.61). 

Table 5.4 Indoor collections of sandflies using CDC light traps in 13 
villages (114 night - traps) 

TO TAL SP + SS 
SPECIES n mean* n mean+ 

Lu. trapidoi " 126 47.7 13 41.4 

Lu. gomezi " 78 38 14 46.1 

Lu. ovallesi " 40 19.1 1 4.4 

Lu. hartmanni " 29 14.1 2 9 

Lu. camposi 96 8.9 1 4.4 

Lu. serrana 18 8.7 2 9 

Lu. panamensis " 16 8.5 1 4.4 

Lu. uasitowsendi " 21 8.1 6 21.9 

Lu. walkeri 12 5.4 

Lu. saulensis 9 4.9 1 4.4 

Lu. dubitans 9 4.4 

Lu. yuilli " 7 3.6 1 4.4 

Lu. trinidadensis 5 2.7 

Lu. shannoni " 4 2.4 

Lu. tuberculata 2 0.9 

Subgenus tricopigomyia 1 0.6 

Lu. bifoliata 1 0.6 

Lu. dasymera 1 0.6 

E-- Total 475 42 

* geometric mean of 114 /100 trap-nights 

+ geometric mean/100 man-hour (see Tables 5.2 and 5.3) 

a= collections in San Pedro and Santa Sofia 

" anthropophilic species 
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5.2.1.4 Resting places: tree trunks 

In the pilot study, 219 sandflies representing 17 species were caught 

during the day by aspiration from trees located in the forest, cacao and peri- 

domicile in the village of La Soledad. Six species in this catch were absent in 

both the man-landing and CDC light trap collections: Lu. vespertilionis, Lu. 

caprina, Lu. abonnenci, Lu. olmeca bicolor, Lu. yencanensis and Br. galindoi. 

Seven out of the ten anthropophilic species in the Opon focus were found 

resting on tree trunks; the exceptions were Lu. yuilli, Lu. panamensis and Lu. 

venezuelensis. The main contrasts between the sandfly collections from the 

resting places compared to the outdoor man-landing catches were the 

relatively low abundance of the four main anthropophilic species (Lu. trapidoi, 

Lu. hartmanni, Lu. quasitowsendi, and Lu. gomezi), and the relatively high 

abundance of Lu. shannoni (54% of the total resting site collection). Males 

were more abundant than females: the mean percentage of females within 

the total catch of the 17 species did not differ significantly from 20.1%, the 

overall mean (x2 = 6.70; P> 0.05; D. F. = 14). 

5.2.1.5 Additional collections in the region 

During the pilot study in February 1994, CDC light traps collection 

were also made during one night in the peri-domicile of House 5 in La 

Soledad. Seven species were identified amongst the 22 sandflies collected 
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(Table 5.1). The main contrast with the indoor CDC catches (in house 5 in 

La Soledad) were the predominance of Lu. shannoni (50% of the total catch), 

and the detection of Lu. christonseni, which was never found in any of the 

114 houses sampled. 

5.2.2 Natural infoction of sandflies 

A total of 1,803 sandflies were dissected in the search for Leishmania 

promastigotes in the digestive tract. Of those dissected, 11 Lu. trapido! (2%), 

7 Lu. quasitowsondi (0.8%), and 3 Lu. gomezi (1.8%) were found with 

flagellates (Table 5.5). Both hamster inoculation (for attempted in vivo 

isolation) and direct PCR were carried out on each flagellate positive sandfly. 

All hamsters were negative after 4 months of observation, and only 2 Lu. 

trapldol were positive by PCR using a Leishmania braziliensis complex 

specific primer. The parasites could not be identified to species because the 

DNA probe used for hybridisation of PCR products could not distinguish 

between species in the L. braziliensis complex (i. e. the probe reacted with 

both L. brazilionsis and L. panamensis reference strains, acting as controls on 

the gel). However, based on the characterisation of parasites isolated from 

patients in Opon (see Chapter 3), and on previous studies of natural 

infections in Lu. trapldol, it is most likely that the parasites detected in Lu. 

trap/doi were L. panamensis. 
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Table 5.5 Natural infection of sandflies in the Opon focus 

sandfly spp. No. 

dissected 

(+j promast. % PCR + % 

Lu. trapidol 558 11 2 2 0.35 

Lu. quasitowsondi 905 7 0.8 0 0 

Lu. gom©zi 165 3 1.8 0 0 

Lu. hartmanni 106 0 0 0 0 

Lu. panamonsis 20 0 0 0 0 

Lu. ovallosl 7 0 0 0 0 

Lu. yuilll 2 0 0 0 0 

Lu. v©n©zuolonsis 1 0 0 0 0 

Lu. shannonl 1 0 0 0 0 

Lutzomyia spp. 38 0 0 0 0 

TOTAL 1,803 21 1.2 2 0.11 

5.2.3 Nocturnal activity 

A total of 1223 female sandflies belonging to 8 species, were captured 

by man-landing between 18: 00 - 06: 00 hours at 4 sites (3 nights/site): indoors 

(n = 17), in the peri-domicile (n= 16), in cacao (n = 538), and in forest (n = 

654). Lu. hadmanni ( in = 628) and Lu. trapidoi (n= 465) accounted for 89% 

of the sandfly collection; and the only other species caught in significant 

numbers was Lu. gomozi (n = 92). The remaining species were Lu. 
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quasitowsendi, Lu. yuilli, Lu. shannoni, Lu. panamensis and Lu. ovallesi 

(Table 5.1). 

Of the five most common species collected in the nocturnal study, Lu. 

yuilli was relatively active soon after dark with peak biting activity between 

20: 00-21: 00 hours, and no biting activity detected after 23: 00 hours (Figure 

5.1 and Figure 5.6). Biting activity of Lu. hartmanni also peaked between 

20: 00-21: 00 hours (Figure 5.2), and the median time-point (i. e. the time at 

which the cumulative biting activity reached 50% of the total during the night) 

was between 21: 00-22: 00 hours (Figure 5.6). Peak biting activity for Lu. 

gomezi was especially early, from 19: 00-20: 00 hours (Figure 5.3) but this 

species remained active throughout the night at a relatively high rate, with a 

median time-point between 22: 00-23: 00 hours (Figure 5.6). Lu. 

quasitowsendi had a similar activity pattern to Lu. gomezi with a slight peak 

between 22: 00-23: 00 (Figure 5.4 and Figure 5.6). Finally, the activity pattern 

of Lu. trapidoi was quite distinct from the other species, in that it peaked 

during the second half of the night, between 02: 00-03: 00 hours (Figure 5.5), 

and the median time-point was between 01: 00-02: 00 hours (Figure 5.6). 
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Figure 5.1 Nocturnal activity of Lu. yuilli 
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Figure 5.2 Nocturnal activity of Lu. hartmanni 
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Figure 5.3 Nocturnal activity of Lu. gomezi 

1.2 

1 

lllýl d 
0.8 

N 
C 

r: 0.6 

0.4 

rn 

0.2 

0 

- ------------- --------- - 

18 19 20 21 22 23 24 123456 

hours 

Figure 5.4 Nocturnal activity of Lu. quasitowsendi 
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Figure 5.5 Nocturnal activity of Lu. trapidoi 
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Legend Figure 5.1-5,5. Dots represent geometric mean (n = 3) and bars represent the standard errors. 

Figure 5.6 Cumulative biting of sandflies during the night (as a 
proportion of the total night's activity) 
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A statistical comparison of the activity pattern of the five species was 

made by dividing the night into two sections: (1) early night (18: 00-22: 00), i. e. 

before bed time; and (2) mid and late night (22: 00-07: 00). Chi square test (or 

Fisher exact test, when appropriated) were carried out on the total catch for 

each of the five most common species during these two periods, in order to 

compare the proportion of the biting activity of each sandfly species before 

bedtime. The proportion of Lu. trapidoi biting after 22 : 00 hours was 

significantly greater than that for all three 'early peak' species (Lu. gomezi, 

Lu. hartmanni and Lu. yuilli) at p<0.001. There was also some suggestion 

that Lu. yuilli bites earlier than all the other species (p< 0.01 for all species), 

and some evidence that Lu. quasitowsendi bites later than Lu. hartmanni ; but 

there was no difference between the biting activity of Lu. gomezi compared 

with either Lu. hartmanni and Lu. quasitowsendi. There was also no 

significant difference between the biting activity of Lu. quasitowsendi and Lu. 

trapidoi (P> 0.05) (Table 5.6). 

Table 5.6 Comparisons between total nocturnal biting activity of 
sandflies: before and after "bed-time" (22: 00 hours) 

Time (hrs) Lu. gome. Lu. hartman. Lu. trapidoi Lu. yuilli Lu. quasit. 

18 - 22 43 334 92 10 5 

22 - 07 49 294 373 1 13 

total 92 628 465 11 18 

P<0.05 ac* a be d ce 
P< 0.01 a a be d ac 
P< 0.0001 ac ac bd a cd 

*A significant difference at the P value shown was demonstrated between those 
species which do not share the same letter 
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5.2.4 The effect of vegetation on variability in indoor sandfly abundance 

5.2.4.1 A description of the sandfly database 

A total of 585 sandflies comprising 19 species, were collected 

(February 1996) indoors in 114 random selected houses in 11 villages (one 

trap-night/house) (see Section 5.2.1.3). In this analysis, La Soledad was 

counted as two villages, as the houses are dispersed over a large area and 

they divide naturally into two groups of houses separated by a mountain 

(Figure 2.2). The number of sampled houses per village varied from 7 to 10: 

10 houses/village in six villages (including the two parts of La Soledad), nine 

houses/village in four villages, and seven houses/village in one village (Table 

5.7). Valparaiso village was excluded from this study. 

Sandflies were collected from 73/114 houses distributed in all 11 

sampled villages, with clear differences between villages in the proportion of 

houses containing sandflies: in La Soledad and Yolandas, for example, where 

cacao plantations are abundant, sandflies were collected from almost all 

houses; whereas in Tagual and La Dorada, where there is a high density of 

pasture land and cattle farms, sandflies were collected from less than half of 

the houses (see Material and Methods) (Table 5.7). The most abundant 

species were Lu. trapidoi and Lu. gomezi (Table 5.1). 
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Table 5.7 The proportion of houses containing sandflies according to 
villages 

- ----- VIL AGES # of houses of # of houses with ssndfly data # of }opuses with sandffies collected ------ 
the study pop. n % n % 

BA 30 9 30 5 56 

CU 19 10 53 4 40 

DL 19 10 53 5 50 

LD 18 9 50 3 33 

LS NORTH 11 11 100 11 100 

LS SOUTH 38 10 26 10 100 

MR 40 9 23 7 78 

PA 27 9 33 6 67 

SF 14 7 50 5 71 

SP 45 10 22 4 40 

G, 35 10 29 4 40 

VP 19 0 0 0 0 

YO 16 10 63 9 90 
TOTAL 331 114 34 73 64 

Table 5.8 Distribution of sandfly species by village 

Yol k Aßt s almues maa1 tur i a>: m. i u. AYiu. 0 sots. # WA, 4tüýyG Total 

BA 600 - 1000 23 5 1 0 0 1 4 34 

CU 600 - 1200 2 4 0 0 0 0 4 10 

DL 400-800 3 4 0 0 1 0 1 9 

LD 400 - 600 4 3 2 0 0 0 1 10 

LS-east 400 - 800 42 9 15 2 5 9 27 109 

LS-west 600 - 800 17 9 10 4 1 5 97 143 

MR 800 - 1000 12 3 2 6 1 8 8 40 

PA 400 - 600 1 12 2 0 1 0 9 25 

SF 400 - 1200 6 15 4 6 1 2 4 38 

SP 400 - 1000 9 2 0 0 0 0 11 

G 400 - 1000 1 3 0 0 1 0 1 6 

O 500 - 800 6 4 2 2 5 4 12 35 

rand Total 126 73 38 20 16 29 150 470 
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The analyses described below were carried out only on those sandfly 

species which have been shown to be anthropophilic in the Opon focus (i. e. 

they were collected at least once in a man-landing catch or in a Shannon 

trap), as these species have potential vectorial roles: Lu. trapidoi, Lu. gomezi, 

Lu. ovallesi, Lu. hartmanni, Lu. panamensis, and Lu. quasitowsendi (Table 

5.8) 

Although in the Opon focus, altitude varies from 400 to 1200 m a. s. l. 

(Figure 2.2), the majority of houses are located within an altitude of 600 to 

800 m. Because the 114 houses sampled were all located within a narrow 

altitude range, it was not possible to test altitude as an explanatory variable 

for sandfly distribution. 

Section 5.2.4.2 describes the results of a multiple regression analysis 

which examines the relationship between the vegetation surrounding a house 

and the abundance of each sandflies species within that house. Section 

5.2.5.1 describes the results of a multiple regression analysis which examines 

the relationship between the number of each sandfly species collected inside 

a house and either the incidence rate or prevalence of leishmaniasis within 

that household. Finally, in section 5.2.5.2, a further multiple regression 

analysis is carried out to determine the relationship between the geometric 

mean abundance of each sandfly species in a village and either the village 

incidence rate or prevalence of leishmaniasis. 
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5.2.4.2 The relationship between the sandfly fauna in a house and its 

surrounding vegetation 

A multiple regression analysis was carried out for each of the seven 

anthropophilic species, having as explanatory variables the relative coverage 

of different vegetation types at distances of 50 m, 100 m, 200 m, 300 m, and 

800 m from each of the 114 houses examined. From 35 possible sandfly- 

vegetation associations, 11 significant predictors were detected (Table 5.9). 

Cacao crops were the most consistent predictor of intradomiciliary sandfly 

activity. As cacao coverage around houses increased, there was a 

significant increase in the indoor abundance of Lu. trapidoi, Lu. gomezi and 

Lu. ovallesi. For Lu. trapidoi this effect increased with distance from the 

house, reaching a peak association with vegetation coverage up to 300 m. 

The "300 m model", which explains 25% of the variance in Lu. trapidoi indoor 

abundance, predicts that an increase in 1% in the coverage with cacao up to 

300 m from a house, should be associated with an increase of 4% in Lu. 

trapidoi indoor abundance (el x 0'04). Similarly, the effect of cacao coverage on 

Lu. ovallesi abundance becomes more marked with distances up to 800 m 

from the house. The "800 m model", which explains 24% of the variance in 

indoor Lu. ovallesi abundance, predicts that an increase in 1% in the 

coverage with cacao up to 800 m, is associated with an increase of 6% in the 

Lu. ovallesi indoor abundance. In contrast, the relatively weak positive 

relationship between cacao coverage and Lu. gomezi indoor abundance was 
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only detected for vegetation indices up to 100 m from a house. Weak 

negative relationships were also detected between the indoor abundance of 

Lu. trapidoi and Lu. ovallesi and the amount of surrounding pasture and 

secondary forest respectively. 

Negative relationships between pasture land and the abundance of all 

three sandflies species were exposed by a series of univariate analysis 

(Table 5.10), but these effects dropped out of multivariate model due to a 

significant negative correlation between the relative amounts of pasture and 

cacao surrounding the 114 houses. 

Table 5.9 Sandfly activity inside houses according to surrounding 
vegetation type: Parameter estimates, standard errors and r2 for the 

minimal adequate models generated by multiple regression analyses 

50 M. 100 M. 200 m. 300 m. 800 M. 
Lu. trapldol 

__ INTERCEPT 0.846 -0.562 -0.775 -1.027 - 
(S. E) (0.332) (0.329 0.346 (0.363) - 

SLOPE -0.017 0.025 0.032 0.041 - 
(S. E) (0.007) (0.007) (0.008) (0.008) 

r2 0.096 0.130 0.170 0.250 - 
parameter pasture cacao cacao cacao 

Lu. gomazl 
INTERCEPT -0.897 -0.918 - - 

(S. E) (0.307) (0.316) - - 
SLOPE 0.014 0.019 - - - 

(S. E) (0.006) (0.008) - - - 
r2 0.074 0.070 - - - 

parameter cacao cacao - 
Lu. ovallesi 

INTERCEPT -1.965 -0.385 -2.037 -2.190 -2.365 
(S. E) (0.408) (0.371) (0.437) (0.458) (0.517) 

SLOPE 0.023 -0.043 0.034 0.040 0.054 
(S. E) (0.007) (0.021) 0.010) (0.010) (0.015) 

r2 0.160 0.080 0.160 0.200 0.240 

arameter , cacao sec. forest cacao cacao cacao 
(S. E. ) = Stanaara trror 
"" P<0.001, " P<0.01, * P<0.05 
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Table 5.10 Sandfly activity inside houses according to the extent of 
surrounding pasture land: Parameter estimates, standard errors and r2 

for the minimal adequate models generated by univariate regression 
analyses 

50 M. 100 M. 200 m. 300 m. 800 M. 
Lu. trapidoi 

INTERCEPT 0.846 0.958 1.029 1.174 

S. E) (0.332) (0.370) (0.377) (0.346) - 
SLOPE -0.017 -0.020 -0.024 -0.031 

(S. E) (0.007) (0.008) (0.010) (0.010) 

r2 0.096 0.086 0.091 0.140 

Lu. omezl 
INTERCEPT 0.134 - - - 

(S. E) (0.313) 

SLOPE -0.012 - - - - (S. E) (0.006) 

r2 0.059 - - - - 
Lu. ovales/ 

INTERCEPT -0.280 -0.208 0.024 0.100 -0.228 
(S. E) (0.327) (0.395) (0.396) (0.381) (0.381) 

SLOPE 0.019 -0.021 0.031 -0.036 0.030 

S. E 0.007 (0.009) (0.011) (0.012) 0.013 

r2 0.099 0.077 0.120 0.090 0.054 

(S. E. ) = Standard Error 
**P<0.01, "P<0.05 

5.2.5 The relationship between indoor sandfly abundance and 

transmission rate. 

5.2.5.1 Variation at the household level 

a) Incidence 

In the analysis of incidence rate, a minimal adequate model with only 

one explanatory variable was obtained by backward elimination from a 
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maximal model with seven entomological variables. The indoor abundance 

of Lu. gomezi was positively correlated with the household incidence rates of 

infection (x2 = 6.26; P< 0.01; 1 D. F. ). The model predicts that an increase in 

1 Lu. gomezi female / 10 house-nights causes an increase of 4% (eo. 1 X° 43) in 

the odds of getting infected (Table 5.11). However, the strength of the 

association was relatively low: rz = 0.08 i. e. only 8% of the variance in 

household incidence rate was explained by variation in Lu. gomezi indoor 

abundance (Figure 5.7). 

Table 5.11 Sandfly activity inside houses vs incidence and prevalence 
Parameter estimates, standard errors and r2 for the minimal adequate 

models generated by multiple regression analyses 

variable estimate (S. E) 

SANDFLY vs INCIDENCE (HOUSE) 

INTERCEPT -1.438 (0.284) 

SLOPE gomezi 0.435 (0.205) 

rý 0.080 

SANDFLY vs PREVALENCE (HOUSE) 

INTERCEPT 

SLOPE trapidoi 

0.936 

0.184 

(0.153) 

(0.078) 

0.050 

SANDFLY vs INCIDENCE (VILLAGE) 

INTERCEPT -1.601 (0.285) 

SLOPE 
-1 

gomezi 1.069 (0.560) 

SLOPE 2 trapidoi 0.531 (0.389) 

r2 0.380 

DFLY vs PREVALENCE (VILLAGE) 

INTERCEPT 0.736 (0.098) 

SLOPE trapidoi 0.828 (0.157) 

r2 0.690 
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Figure 5.7 The relationship between indoor abundance of Lu. gomezi 
and household incidence rate 
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The squares are observed data; the line was fitted by regression analysis (assuming binomial 
errors) 

b) Prevalence 

In the analysis of prevalence, a minimal adequate model with only one 

explanatory variable was obtained as in the analysis of incidence rate. 

However, in this case, the abundance of Lu. trapidoi was positively correlated 

with the household prevalence of infection (x2 = 9; P< 0.005; 1 D. F. ). The 

model predicts that an increase in 1 Lu. trapidoi female / 10 house-nights is 

associated with an increase of 1.8% (eo. IXo. 184) in the odds of being infected 

(Table 5.11). The strength of the association, as for the household incidence 

rate model, was relatively low: r2 = 0.05 i. e. only 5% of the variance in 
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household prevalence was explained by variation in the geometric mean of 

Lu. trapidoi indoor abundance (Figure 5.8). 

Figure 5.8 The relationship between indoor abundance of Lu. trapidoi 
and household prevalence (m+) 

The squares are observed data; the line was fitted by regression analysis (assuming binomial errors) 

5.2.5.2 Variation at the village level 

a) Incidence 

In the analyses of village incidence rate, the geometric mean 

abundance of each sandfly species collected in each village were the 

explanatory variables, and the outcome variable was the proportion of people 
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in each village who converted to M+ during the 19 months cohort study. In 

the MAM the abundance of both Lu. gomezi (x2 = 4.23; P<0.05; D. F 1) and 

Lu. trapidoi (x2 = 3.96; P <0.05; D. F 1) were positively correlated with the 

incidence rate of infection per village. The'model predicts that an increase in 

one female Lu. gomezi or one female Lu. trapidoi /10 house-nights, causes 

an increase of 11 % and 5%, respectively, in the odds of getting infected 

(Table 5.11). The strength of the association was considerably higher than 

those calculated for household incidence rate: r2 = 0.38 i. e. 38% of the 

variance in the village incidence rate was explained by variation in the 

geometric mean of the indoor abundance of both Lu. gomezi and Lu. trapidoi 

(Figure 5.9). 

Figure 5.9 The relationship between an entomological index, 
incorporating the mean village abundance of both Lu. trapidoi and Lu. 

gomezi and the village incidence rate 
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b) Prevalence 

As for the village incidence rates, the analysis of village prevalence 

used the geometric means of sandfly abundances as the explanatory 

variables, but in this case the outcome variable was the proportion of each 

village population with a positive MST response at the first sectional survey. 

In the MAM, the abundance of Lu. trapidoi was positively correlated with the 

prevalence of infection per village (x2 = 30.83; P< 0.0001; 1 D. F. ); the model 

predicts that an increase in 1 of female Lu. trapidoi /10 house/nights causes 

an increase of 8.6% in the odds of being infected (Table 5.11). The 

association between Lu. trapidoi abundance and village prevalence rate was 

remarkably high: r2 = 0.69, i. e. 69% of the variance in the village prevalence 

was explained by the variation in the geometric mean of Lu. trapidoi indoor 

abundance (Figure 5.10 ). 

Figure 5.10 The relationship between the mean village abundance of Lu. 
trapidoi and village prevalence (m+) 
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5.2.6 Seasonal variation 

In the seasonal variation study, seven sandfly species were caught 

between February 1996 and January 1997 at eight sites (18 man-landing 

collections/site [19: 00 to 22: 00 hours]), representing four habitat types (two 

replicates/habitat type), in and around Houses 1 and 2 in San Pedro: (1) 

indoors, (2) in the peri-domicile, (3) in cacao and (4) in primary forest (Table 

5.2). The number of individuals collected of Lu. gomezi, Lu. yuilli, Lu. 

panamensis and Lu. erwindonaldoi were too low to draw any conclusions 

about their seasonal patterns. This section describe the analysis of seasonal 

variation for the other three species collected: Lu. hartmanni, Lu. trapidoi and 

Lu. quasitowsendi. The results should be viewed with caution because: (1) 

the total number of sandflies collected for each species was relatively low, (2) 

there was no temporal correlations between the sandflies collections made at 

the paired replicates (i. e. sites with similar habitats type), and (3) there was 

no temporal correlation between the collections made in different habitat 

types within the same locality. 

Nevertheless, there was some evidence for species-specific seasonal 

patterns in abundance. The abundance of Lu. hartmanni decreased 

significantly from a geometric mean (GM) of 22.1 (95% C. I. 14.6 - 33.4) 

sandflies/month from February to July to a GM of 11.1 (95% C. I. 6- 20.3) 
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sandflies/month from September to January (ANOVA: F= 4.9, p<0.05) 

(Figure 5.11). Lu. quasitowsendi populations also decreased significantly 

from a GM of 4.6 (95% C. I. 2.2 - 8.6) sandflies/month from February to July to 

a GM of 1.3 (95% C. I. 0.7 - 3) sandflies/month from September to January 

(ANOVA: F= 5.5, P <0.05) (Figure 5.12). In contrast, the Lu. trapidoi 

population was relatively stable throughout the year with no significant 

seasonal trend (Figure 5.13). 

No meteorological correlates of the seasonal patterns of sandfly 

abundance were identified, in part because most climatic variables in Opon 

are remarkably constant throughout the year. For example, minimum daily 

temperature was very stable throughout the year, with a minor peak in April 

and May, when the monthly mean ranged from 20.8°C to 20.9 °C, compared 

to a range of 18.9°C - 20°C during the rest of the year (Figure 2.10 and Table 

2.1). The monthly mean maximum temperature ranged from 31.6°C to 

35.2°C during the year, with slight peaks in April and June (Figure 2.11 and 

Table 2.1). Relative humidity (RH) showed only minor variation through the 

year, with monthly means ranging from 88.5% to 93.6% in all months, except 

July which peaked at 97.9% (Figure 2.10 and Table 2.1). 

In the Opon focus there is no dry season, i. e. there is no month with no 

rain, but the total monthly rainfall clearly peaks twice during the year from 

March to June (ranging from 207 - 369 mm. ) and from October to November 
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(from 274 - 275 mm) ( Figure 2.8 and Table 2.1 ). During the rest of the year, 

the monthly mean total rainfall ranged from 51 to 150 mm. However, when 

the frequency of rainfall (i. e. the proportion of days with some rainfall) was 

plotted, the bimodal pattern disappeared. Rainfall frequency had a single 

peak in April and dropped gradually to a minimum in December (Figure 2.9 

and Table 2.1). 

For all three species analysed, no relationship was detected between 

sandfly abundance and any of the five meteorological measurements tested 

(minimum and maximum temperature, relative humidity, total rainfall, and 

frequency of rainfall) either during the same month as the sandfly collection or 

in any of the three previous months. However, the gradual reduction in 

abundance of Lu. quasitowsendi from May to December was most closely 

mirrored by the seasonal pattern in the frequency of rainy days. In a linear 

regression model, rainfall frequency during the previous 30 days explained 

20% of the variance in Lu. quasitowsendi abundance (Figure 5.14), but the F 

value was just outside the borderline (F= 4.4) for significance :F=4.0 ; D. F = 

1,16; P> 0.05. Of course, given the large number of regression analyses 

carried out, one must be very wary of drawing firm conclusions from a single 

marginally significant result. 

Seasonal changes in the population size of adults sandflies may be 

influenced by ecological effects acting on any part of the sandfly life cycle. In 
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contrast, the behavioural decision made by sandflies whether or not to enter 

houses for a blood meal (i. e. endophagy) will be determined by conditions, 

such as the weather, on the same night. Hence, explanations for the 

seasonal patterns in endophagic behaviour were sought by investigating 

possible correlations with the weather conditions on each collection night. 

Endophagy was measured for each species as the proportion of the total 

night's catch which was from the indoor man-landing collection. This 

proportion apparently peaked twice during the season for all three species: for 

Lu. hartmanni and Lu. trapidoi in July and October, and for Lu. quasitowsendi 

in June and from November to December (Figure 5.15). However, no 

significant correlations were detected between endophagic activity for any of 

the three species tested and the weather conditions on the sampling night. 

Figure 5.11 Seasonal variation of Lu. hartmanni 
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Figure 5.12 Seasonal variation. of Lu. quasitowsendi 

Figure 5.13 Seasonal variation of Lu. trapidoi 

Legend for Figures 5.11 to 5.13: The Lines shows the geometric mean of the number of sandflies 
collected in eight sites, representing four habitat types (in and around Houses I and 2). The squares 
are the geometric means for sandflies in and around House 1, and the asterisks are the geometric means 
for sandflies in and around House 2 (day 0=1 January 1996) 
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Figure 5.14 Relationship between rainfall frequency and the subsequent 
abundance of Lu. quasitowsendi 

Asterisks represent the observed values. The line was fitted by linear regression. 

Figure 5.15 Seasonal variation in endophagic activity of sandflies in the 
Opon focus 
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5.3 DISCUSSION 

In Colombia, the most comprehensively reported previous studies of 

the behaviour and ecology of putative sandfly vectors of L. panamensis were 

carried out in Tumaco (Travi et al, 1988), Antioquia (Velez et at, 1992; Porter 

& DeFoliart, 1981) and Valle de Cauca (Alexander et al, 1995a, b). However, 

in the Department of Santander, in general, and in the Opon focus in 

particular, there are no previously published quantitative data on either 

sandfly behaviour or ecology. Indeed, the only previously published sandfly 

study in this region appears to be a single day sandfly collection, where the 

sole aim was to provide information on the geographic distribution of sandfly 

species (Osorno-Mesa et al, 1972). Thus, it is hoped that the results and 

discussion presented in this chapter should contribute significantly to the 

general comprehension of the biology of the sandfly vectors of L. panamensis 

in Colombia. 

5.3.1 Vectors of Leishmania panamensis 

In the Opon focus, the diversity of sandfly fauna (27 species were 

identified) is relatively high compared with the results in other L. panamensis 

foci: for example, 13 spp in Guatemala (Rowton et al, 1991); 11,17 and 26 in 

Colombia spp (Travi et al 1988, Lopez et al, 1996 ; Barreto et al, 1989 
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respectively); 25 spp in Ecuador (Le Pont et al, 1994a) and 26 spp in Panama 

(Chaniotis 1971a, b). However, the reported species diversity and relative 

abundance varies according to the collection methods employed. 

In the Opon focus, five anthropophilic species comprised 87% of the 

total sandfly collection (independent of the trap method): Lu. trapidoi, Lu. 

hartmanni, Lu. quasitowsendi, Lu. gomezi and Lu. ovallesi. Amongst these 

species, only Lu. trapidoi and Lu. gomezi are currently proven vectors of L. 

panamensis (Table 5.12). Lu. hartmanni and Lu. ovallesi are currently 

suspected vectors because they have been found with unidentified flagellates 

in L. panamensis foci (Hashiguchi et al, 1985a). At least five other species 

have also been described as suspected vectors of L. panamensis: Lu. 

panamensis, Lu. shannoni, Lu. edentula, Lu. ylephiletor and Lu. sanguinaria 

(Killick-Kendrick, 1990). The last three species are important only in Central 

America (Young, 1987a; Killick-Kendrick, 1990). Lu. panamensis and Lu. 

shannoni were collected in the Opon focus, but are unlikely to have a 

significant vectorial role there because: (1) Lu. panamensis is rare - its 

relative abundance was 0.8% of the whole sandfly collection (Table 5.1); and 

(2) the anthropophilic activity of Lu. shannoni was very low - 3% of the Lu. 

shannoni collected were caught on human bait (Table 5.1). 
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5.3.2 Natural infection of sandflies 

Natural infections with flagellates were found in 1.2% of the dissected 

sandflies, but a relatively low proportion of the flagellates were typed as 

Leishmania parasites belonging to the L. braziliensis complex (2/21. i. e. 

10%). In previously published studies of suspected vectors of L. 

panamensis, the proportion of females naturally infected with flagellates 

ranged from 0- 13.5% (Table 5.12). As in the Opon study, these 

percentages are significantly higher than those recorded for females found 

with typed Leishmania parasites (range: 0- 2%). The usual explanation for 

this discrepancy is the logistic difficulties in the in vitro isolation of parasites 

from sandflies: the culture medium is frequently contaminated with bacteria, 

and isolation is often unsuccessful for slow growing parasites. However, the 

present studies in the Opon focus, in vitro isolation attempts were avoided, 

being replaced with PCR and inoculation in hamsters. Thus, the most likely 

explanation for the relatively high frequency of flagellates detected in wild 

caught sandflies is the presence of other trypanosomatids, morphologically 

indistinguishable from the Leishmania spp. responsible for human disease. 

Indeed, Christensen et al (1983) in Panama found that the intra-erythrocytic 

flagellate Endottypanun schaudinni establishes heavy infections in both Lu. 

gomezi and Lu. trapidoi. The reliability of PCR for the detection of natural 

infections has been proven in L. braziliensis foci; for example in a Venezuelan 

study (Feliciangeli et al, 1994), a total of 4,863 sandflies were dissected, and 
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53 (1.09%) harboured promastigotes in the gut. Microscopic examination 

was used as the "gold standard", and PCR was carried out on all positive 

guts. All parasites detected in microscopic examination were also detected 

and identified (L. braziliensis) by PCR. In spite of the perfect correlation 

between observed vs. classified parasites, the infection rate was still very low. 

Although the natural infection of Lu. quasitowsendi with flagellates in 

the Opon area is the first registered record for this species, the significance of 

this finding will only be clarified when the flagellates are characterised. Lu. 

quasitownsendi belongs to the verrucarum series of the Lu. ver ucarum 

group, in which at least three species are already suspected or confirmed 

vectors of leishmaniasis: Lu. spinicrassa, Lu. youngi and Lu. townsendi 

(Young et al, 1987c; Warburg et al, 1991; Rowton et al, 1991). Hence, Lu. 

quasitownsendi should be considered a target for future work on vector 

incrimination. 

The accumulated incriminatory evidence from natural infections is 

clearly more convincing for Lu. trapidoi than for Lu. gomezi (Table 5.12). At 

least 11 characterised infections have reportedly been detected in field 

caught Lu. trapidoi (from 5 studies) compared to only one in Lu. gomezi. The 

other biological evidence available also generally supports the contention that 

Lu. trapidoi is a more efficient vector than L. gomezi: (1) Lu. trapidoi feeds on 

a broad range of mammals, indicating that host selection is influenced by 
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availability, but bloodmeals taken from sloths (Choloepus hoffmanni), the 

proven reservoir of Leishmania panamensis, have been found in wild Lu. 

trapidoi individuals (Tesh et al, 1971,1972; Zeledon et al, 1985; Christensen 

et al, 1983), and this species has also been observed biting sloths (Thatcher 

& Herting, 1966); whereas, Lu. gomezi feed mainly on primates (Zeledon et 

al, 1985). (2) Experimental infections conducted by Jaramillo et al (1994) on 

both sandfly species, using hamsters infected with L. panamensis, showed 

that Lu. trapidoi developed promastigote infective forms by day 5 post 

infection, whereas Lu. gomezi at the same day harboured only 

paramistogotes adhering to the pylorus. 

Another criteria useful for vector incrimination is the identification of a 

significant overlap between the geographic distribution of sandflies and the 

distribution of parasites. However, as mentioned above, the records of 

sandfly fauna and the relative abundance of sandfly species in each foci 

could be biased by the trapping methodology used. In the following section, 

the relative efficiency of the two main methods used in the Opon focus for 

sandfly collections are discussed. 
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Table 5.12 Natural infection rates in Colombian sandflies which are 
proven or suspected vectors of L. panamensis 

sandfly 

species 

# 

dissected 

# with 

flagellate 

% # typed 
as L. 
pan. 

% Reference 

2,869 42 1.50 3 0.10 Morales et al, 1981 

2,789 375 13.5 3 0.11 Christensen et al, 
1983 

491 38 8.1 ns ns Hashiguchi et al, 
1985a 

Lu. trapidoi 51 6 11.8 1 2 Zeledon et al, 1985 

2,734 10 0.36 2 0.10 Travi et al, 1988 

926 0 0 0 0 Loyola, et al, 1988 

6,965 454 6.5 ns ns Le Pont et al, 1994b 

558 11 2 2 0.35 Opon focus, 1996 

383 1 0.26 0 0 Morales et al, 1981 

Lu. gomezi 940 40 4.30 1 0.11 Christensen et al, 
1983 

1,410 3 0.21 0 0 Travi et al, 1988 

165 3 1.8 0 0 Opon focus, 1996 

1,274 18 1.40 1 0.08 Christensen et al, 
1983 

Lu. 
panamens. 

434 1 0.23 0 0 Travi et al, 1988 

20 0 0 0 0 Opon focus, 1996 

409 0 0 0 0 Morales et al, 1981 

563 22 3.90 ns ns Hashiguchi et al, 
1985a 

Lu. 
hartmanni 

665 0 0 0 0 Travi et al , 
1988 

106 0 0 0 0 Opon focus, 1996 
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5.3.3 Collection methods 

Man-landing collections were used in Opon for identifying sandfly 

temporal characteristics and for the assessment of natural infection rates, on 

the basis that this method is the most direct entomological measure of 

transmission rate to humans. However, for logistic reasons, CDC light traps 

were chosen for the comparative study of endophagic activity. Interpretation 

of the light trap data needs to take into account the potential bias that this 

method could generate in providing an estimate of sandfly abundance and 

species composition inside houses. Sandfly species will differ both in their 

relative attractiveness to light and in their relative attractiveness to human 

hosts (Travi et al, 1988); and, of course, human bait catches will be heavily 

female-biased, whereas both genders are likely to be attracted to light 

(Davies et al, 1995b), though not necessarily to an equal degree (Gibb et al, 

1988). 

In Opon, the light trap data clearly overestimates the relative risk of 

being bitten by Lu., gomezi in comparison with the risk of being bitten by Lu. 

trapidoi. This is because Lu. gomezi is more phototropic and/or because Lu. 

trapidoi is more anthropophilic. The light trap bias for indoor Lu. gomezi is 

unlikely to be due to an influx of Lu. gomezi attracted indoors by the light 

source, because the distance from which phlebotomine sandflies are 
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attracted to light is not thought to exceed 6m (Odetoyinbo, 1969; Valenta et 

al, 1995). 

With some exceptions (Davies et al, 1995b), previous studies of the 

relationship between light trap and human bait catches of Neotropical 

sandflies are largely anecdotical. However, for L. panamensis vectors, there 

are at least three published studies which report the results of sandfly 

captures by both human bait and light trap: Morales et al (1981) and Travi et 

al (1988) in Colombia and Le Pont et al (1994a) in Paraiso Escondido, 

Ecuador (Table 5.13). In all cases, the ratio of Lu. gomezi : Lu. trapidoi was 

higher in the light trap collection than in the human bait catch. A stratified chi 

square analysis of all three results shows that this ratio is on average 53% 

greater in the light trap than in the human bait catches (x2 = 73.23; P< 0.001; 

RR = 1.53; Greenland / Robins Confidence Limits, 1.39 - 1.68). When the 

Opon focus results are added to the stratified analysis, the Relative Risk 

increases to 1.56 (x2 = 81.45; P< 0.001; Greenland / Robins Confidence 

Limits, 1.51 - 1.79). 
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5.3.4 Vector incrimination by regression analysis 

In the Opon focus there is strong epidemiological evidence that 

transmission of leishmaniasis to humans is largely domestic because: (1) the 

risk of infection was unrelated to gender or age, and (2) children are more 

likely than adults to have lesions or scars on their head (presumably as their 

head is exposed when bitten in bed) (see Chapter 3). The entomological 

data provide further support for the potential for domestic transmission. In 

particular, (1) suspected vectors were collected both indoors and in the 

peridomestic environment, (2) the sex ratio of the anthropophilic species 

caught indoors (by light trap) was highly female biased (Table 5.1), indicating 

that the principal activity in the domestic habitat is blood-feeding activity, (3) 

the risk of infection for a member of a particular household was shown to be 

statistically correlated with the abundance of the suspected vectors inside 

their house. The majority of houses in Opon do not represent a physical 

barrier for sandflies because they are made of wood, with wide spaces 

between planks and with an open space between roof and walls, i. e. the 

houses have similar characteristics to those in a Costa Rica study, where a 

1: 1 relationship was obtained between Lu. gomezi collected inside and 

outside houses (Herrero et al, 1992) . 

Amongst the several anthropophilic species collected inside houses in 

the Opon focus, only Lu. trapidoi and Lu. gomezi abundance were 
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significantly associated with transmission rate (incidence or prevalence). 

Hence, the conclusions drawn from the regression analyses are consistent 

with the conclusions drawn from previous studies of L. panamensis 

transmission, as both Lu. gomezi and Lu. trapidoi have been incriminated as 

vectors previously (see above). This appears to be only the second reported 

use of multiple regression analysis to evaluate the vectorial roles of New 

World sandflies. Previously, Davies et al (1997b) found that the transmission 

rate of L. peruviana was significantly associated with the abundance of those 

sandflies species for which there was some independent biological 

incriminatory evidence. 

The parameter values which measure the relationship (i. e. the 

regression slope) between indoor sandfly abundance and leishmaniasis 

transmission rates (in the minimal adequate models) describe the relative 

roles of the two most likely vectors in the Opon focus. Indoor activity of Lu. 

trapidoi was related both with the village incidence rate of leishmaniasis at the 

time when this study was conducted, and also with the average transmission 

rate in previous years (which is crudely summarised by the cumulative 

prevalence of infection). By contrast, Lu. gomezi indoor activity was related 

only with incidence rate. This may be because Lu. gomezi has only recently 

developed a significant vectorial role in the Opon focus, possibly as a result of 

the change in habitat caused by the rapid deforestation in that area. Not 

surprisingly, sandfly abundance was a better predictor of village transmission 
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rate (r2 = 69 % for prevalence and 38% for incidence) than of household 

transmission rates (rz =5% for prevalence and 8% for incidence). The 

reasons for this differential include, (1) the village regressions involved mean 

sandfly abundance measurements, whereas the household regression 

involved a single sandfly capture per house, and (2) the transmission rate 

measurements for villages are based on much larger population sizes than 

the transmission rate measurements for households. The association 

between sandfly abundance and household cumulative prevalence rates is 

also likely to be especially weak, as the cumulative prevalence rate will be 

highly dependent on the age structure of a household (which is very variable, 

unlike the age structure of a village). Although the strongest association was 

between Lu. trapidoi abundance and village prevalence, both Lu. trapidoi and 

Lu. gomezi were retained in the MAM with incidence as the outcome variable; 

and in this MAM the slope for Lu. gomezi (1.069) was greater than that for Lu. 

trapidoi (0.531), suggesting that Lu. gomezi is at least as effective a vector as 

is Lu. trapidoi (Table 5.11). 

5.3.5 Geographic distribution 

Given the epidemiological patterns which are strongly suggestive of 

domestic transmission (see Chapter 4), the results of the entomological 

studies indicate that the most important vectors in the Opon focus are Lu. 
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trapidoi and Lu. gomezi. The evidence can be summarised as follows: (1) 

natural infections with flagellates were found for both species, and Lu. trapidoi 

was found with L. braziliensis complex parasites (see section 5.2.2); (2) both 

are distributed in all villages (Table 5.8), (3) Lu. trapidoi and Lu. gomezi were 

the two most abundant anthropophilic species collected indoors (Table 5.1); 

and (4) these were the only two species to demonstrate any significant spatial 

correlation with transmission rate. However, we cannot discount a minor 

vectorial role for a third anthropophilic species, Lu. quasitowsendi, which was 

also found with flagellates and was common indoors. Thus, the following 

discussion of the Opon results and the results from other studies of L. 

panamensis transmission in Central America and Andean Countries focuses 

on these three species. 

The distribution of L. panamensis in Central America and Andean 

Countries overlaps closely with the distribution of Lu. trapidoi: (1) L. 

panamensis is not endemic in Guatemala or El Salvador (Grimaldi et al, 1989; 

Carreira et al, 1995), in which countries Lu. trapidoi is rare or absent, 

respectively (2) Lu. trapidoi is abundant in both Costa Rica and Panama, 

where L. panamensis is highly endemic; (3) in areas of Colombia and 

Ecuador where L. panamensis is the most common agent of cutaneous 

leishmaniasis, Lu. trapidoi is the most abundant anthropophilic sandfly 

species (Belli et al, 1993; Grimaldi et al, 1989; Corredor et al, 1990; WHO, 

1990), and (4) neither L. panamensis or Lu. trapidoi are present in Peru 
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(Young & Duncan, 1994; Grimaldi et al, 1989). Lu. gomezi also overlaps 

spatially with L. panamensis, but this sandfly species is more widely 

distributed than Lu. trapidoi, reaching El Salvador (in the northern part of 

Central America) and Venezuela, French Guiana, Peru and Trinidad (in South 

America). Hence, these broad patterns imply a closer association between L. 

panamensis with L. trapidoi than with L. gomezi. 

Lu. quasitowsendi belongs to the towsendi series of the Lu. 

verrucarum group. Species in this series are remarkable in their extremely 

narrow geographic distributions which are usually allopatric. All species in 

this series are found only in restricted regions of either Colombia or 

Venezuela. Lu. quasitownsendi has only been collected in the Colombian 

Department of Santander (Young & Duncan, 1994). 

5.3.6 Vegetation in relation to sandfly abundance 

As described in Chapter II, there are two patterns of deforestation in 

the Opon focus: (1) partial deforestation, where the majority of trees are cut 

down but the biggest trees remain in order to provide shade for the cultivation 

of cacao, and (2) total deforestation, followed by fire and interchange 

between short-lived crops, like maize or "yuca", and either pasture or 

secondary forest. These distinct environmental changes in the tropical rain 
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forest may have different impacts on sandfly ecology. Hence the effects of 

these two forms of deforestation in Opon are treated separately below. 

a) Cacao crops. 

The extent of cacao cultivation around houses was the most consistent 

positive correlate of intradomiciliary activity for both Lu. gomezi and Lu. 

trapidoi (Table 5.9). So there is no evidence that the replacement of primary 

forest by cacao crops has any major detrimental effect on these sandfly 

species. Cacao crops can provide sandflies with shade, humidity, breeding 

places and a sugar source - either directly (e. g. from rotten fruit) or indirectly, 

by providing an appropriate environment for aphid species, whose honeydew 

can be a significant nutrient source for New World sandflies (Cameron et al, 

1994, and 1995). In addition, sandflies should have access to abundant 

bloodmeal sources in the cacao crops, due to the rich mammal fauna which 

can persist, living on the fruits produced by the remaining primary forest trees 

or by fruit trees (like Zapote tree) planted by farmers. A number of other 

sandfly vectors have previously been shown to be adapted to cacao 

plantations; for example, Lu. whitmani thrives amongst the cacao of Tres 

Bracos and Corte de Pedra in Bahia, Brazil, where it is the principal vector of 

L. braziliensis (Franca et al, 1991). 
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In Opon, there is some evidence that forest replacement by cacao has 

a more positive effect on the abundance of Lu. gomezi than on Lu. trapidoi. 

In particular, both in the seasonal variation and in the nocturnal activity 

studies, the ratio of Lu. trapidoi : Lu. gomezi was significantly higher in the 

forest than in either the cacao or peridomicile. Such comparisons should be 

made with caution, as sandfly abundance in this study was only measured at 

ground level, and relative activity patterns at different heights above ground 

level will vary both with sandfly species and habitat. For example, in 

Panama the activities of Lu. gomezi and Lu. trapidoi were 17 and 14 times 

greater (respectively) in the canopy (28 m above ground) than at the ground 

level (Chaniotis et al, 1971b). Despite this caveat, the comparison of biting 

activity at ground level remains the most relevant for transmission as this is 

the parameter which directly determines the human infection rate (i. e. 

because humans are bitten at ground level). 

The effect of deforestation on the abundance of both Lu. gomezi and 

Lu. trapidoi was previously investigated by Porter & DeFoliart (1981) in a 14 

months study carried out in the east central region of the Antioquia 

Department, Colombia (approximately 150 Km. apart from the Opon focus; 

Figure 1.1). In the forest the geometric mean number (GM) of Lu. trapidoi 

was 0.91 compared with a GM of 0.05 for Lu. gomezi (ratio, 18: 1) whilst in the 

cleared areas (areas without forest) a GM of Lu. trapidoi was 0.10 compared 

with a GM of 0.43 for Lu. gomezi (ratio, 4: 1). Thatcher & Hertig (1966) in 
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Panama also reported an increase in the Lu. gomezi population in areas 

being rapidly cleared. 

No direct comparisons have been previously reported of the relative 

preference for cacao and forest shown by Lu. trapidoi and Lu. gomezi. 

However, in La Tablada, Ecuador, the ratio of Lu. gomezi: Lu. trapidoi was 

greater in the forest than in the mixed coffee and. cacao plantations (Mouchet 

et al, 1994); and Lu. gomezi was completely absent in a nearby coffee and 

cacao plantation in Paraiso Escondido, where Lu. trapidoi was relatively 

abundant. Without more data, it is fruitless to speculate why the pattern of 

habitat preference by these sandfly species in Opon is in direct contrast to the 

pattern observed on the Pacific foothills of Ecuador. However, recent 

publications have suggested that differences in the abundance of Lu. gomezi 

and Lu. trapidoi according to vegetation type may be related to speciation of 

these two sandfly species (Dujardin et al, 1996; Feliciangeli, 1997). Hence, 

investigation of the genetic heterogeneity of populations of these two species 

collected in cacao, primary forest and indoors in the Opon focus could be 

instructive. 

b) Pasture and secondary forest 

The effect of pasture on sandfly in the Opon focus was not directly 

measured because all collections were concentrated in the four 

216 



Chapter 5 Sandfly vectors 

environments: forest, cacao, peridomicile and inside houses. However, the 

effect of the replacement of primary forest with either pasture and secondary 

forest can be inferred from the comparative study of endophagic activity. 

Surprisingly, both pasture and secondary forest had a negative impact on 

endophagic sandfly activity (Table 5.9). It is likely that pasture acts as a 

barrier to dispersal, as sandflies will have 'difficulty covering any significant 

distance from the edge of the forest or crops over grassland to reach a house. 

The negative impact of secondary forest could be associated with the total 

destruction of habitats following the burning of primary forest, which precedes 

the growth of secondary forest. The WHO in 1990 pointed out the benefits of 

the practice of clearing vegetation around houses as a valuable action in 

order to avoid vector/human contact; but in countries where deforestation is 

the main ecological problem this recommendation is not desirable. 

Secondary forest in other regions has previously been seen as a positive risk 

factor for indoor sandfly activity (e. g. Lu. whitmani in Sao Paulo: Forratini, 

1954), probably due to different patterns of land use after deforestation or due 

to the different ecological requirements of sandfly species. 

c) Effects of habitat change on sandfly fauna: conclusions 

The differential effects of deforestation in the Opon focus on different 

sandfly species may explain the results of the regression analyses designed 

to detect associations between sandfly abundance and transmission rate. Lu. 
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gomezi abundance was correlated with the incidence rate during the follow-up 

study (both at the household and village level), indicating that this species 

currently plays an important vectorial role in Opon. In contrast, Lu. trapidol 

abundance was related both with incidence and with cumulative prevalence, 

indicating that it has been an important vector for a number of years and that, 

unlike Lu. gomezi, the spatial pattern of its abundance has remained stable 

over time. 

5.3.7 Sandfly activity in the domestic environment 

a) Peridomestic activity 

An accurate overview of the most active peridomestic sandflies in the 

Opon focus is not possible for the few collections made. But the evidence 

that is available from this study suggests that Lu. hartmanni and Lu. trapidoi 

predominate. Indeed, the proportion of Lu. trapidoi collected in the seasonal 

study was probably an underestimate of the relative abundance, as the time 

of collection (18 - 20 hours) is a period of relatively low activity for Lu. trapidoi 

compared to Lu. gomezi and Lu. hartmanni especially, and to Lu. 

quasitowsendi to some extent. Hence, Lu. trapidoi is certainly a potential 

vector in the peridomestic environment. 
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b) Endophagic behaviour 

According to the results of the seasonal and nocturnal studies, it is 

clear that Lu. quasitownsendi is characterised by a relatively high 

predisposition to enter houses, whereas Lu. hartmanni is characterised by 

relatively low endophagy. Lu. gomezi and Lu. trapidoi are characterised by 

similar, and intermediate, levels of endophagy. However, these behavioural 

attributes are not reflected in the relative activity of the different sandflies 

inside houses, as determined by the indoor CDC light trap survey, 

presumably because of a significant difference in the population sizes of the 

four species. From the indoor CDC light trap survey, Lu. trapidoi 

predominates, followed by Lu. gomezi and Lu. hartmanni, and Lu. 

quasitowsendi is relatively rare. The relative risk of being bitten indoors by 

Lu. trapidoi, in comparison to Lu. gomezi, is also probably underestimated 

by this survey, as the CDC light traps, tend to over-represent Lu. gomezi (in 

comparison with Lu. trapidoi). Hence, there is evidence that Lu. trapidoi is 

the most common indoor species in the Opon focus, followed by Lu. gomezi; 

and these two species are clearly capable of transmitting cutaneous 

leishmaniasis to families sleeping inside their houses at night. 

Seasonal changes in endophagic activity were also monitored, on the 

basis that the behavioural decision to enter houses for a blood meal may 

depend on outdoor conditions which varied with season. For example, Le 

219 



Chapter 5 Sandfly vectors 

Pont et at (1 994a) reported that Lu. trapidoi and Lu. gomezi increased their 

indoor abundance during the wet season in two different villages in Ecuador. 

In the Opon focus, endophagic activity of three species (Lu. trapidoi, Lu. 

quasitowsendi and Lu. hartmann, ) all appeared to peak twice: in June-July 

and between October - December. The latter peak coincided with the peak 

period of human leishmaniasis cases (see Chapter 4). However, no 

significant correlations were detected between endophagic activity and 

climatic conditions. 

c) Dispersal to the domestic environment from the surrounding habitat 

For Lu. gomezi in Opon, there is circumstantial evidence that breeding 

places occur in the peri-domestic habitats, with adult females taking 

advantages of the high density of blood sources inside and around houses 

(humans and domestic animals). In contrast, the breeding places of Lu. 

trapidoi appear to be further from houses, inside the cacao crops fields and, 

probably close to the remaining natural trees. Lu. trapidoi has previously 

been reported to use a broad breeding niche, on the basis of an emergence 

cage survey on the open forest floor in Panama (Rutledge & Ellenwood, 

1975), and immature stages of Lu. trapidoi have been found in the soil 

between buttresses, in the soil from animal burrows and amongst dead 

leaves on the forest floor (Hanson, 1961). 
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In Opon, there is also circumstantial evidence that the dispersal activity 

of Lu. trapidoi tends to be over greater distances than that of Lu. gomezi. No 

previous studies appear to have analysed dispersal of these sandflies 

towards houses. Instead, most previous dispersal studies (using mark - 

recapture) were carried out within the forest. In a rain forest in Panama, 

circa 20,000 sandflies were marked and released at ground level and on a 

canopy platform (Chaniotis et al, 1974): 90% of the recaptured flies were 

recovered within 57 m of their release site. Consistent with this result, 74% 

of recaptured sandflies were found within a distance of 76 m from the release 

point in a Colombian coffee plantation (Alexander, 1987). 

The distance of sandfly attraction to humans has rarely been 

measured. However, in Peru (Davies et al, 1995c) a single human bait was 

apparently unable to attract Lu. verrucarum (a known anthropophilic species) 

even from very short distances (5 m). In Opon, however, it appears that 

sandflies may be attracted from greater distances towards houses (i. e. up to 

300 m for Lu. trapidoi), probably because there are more abundant sources of 

blood, and a strong odour plume from both domestic animals and humans. 
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5.3.8 Nocturnal activity of sandflies 

Although the temporal patterns of nocturnal activity were only studied on 

three nights, the results for the five most abundant species collected in this 

study (Lu gomezi, Lu yuilli, L hartmanni, L trapidoi, L quasitownsendi) provide 

convincing evidence for interspecific differences. This is perhaps surprising 

given the results of previous long-term studies on nocturnal sandfly activity 

which have demonstrated considerable variability in nocturnal activity patterns 

between nights (e. g. Porter & Defoliart (1981) in Antioquia, Colombia; 

Feliciangeli (1997) in Miranda, Venezuela; Villaseca et al (1993) in Ancash, 

Peru). For example, the peak periods of activity for both Lu. trapidoi and Lu. 

hartmanni were shown to be very variable throughout the year in Antioquia, 

Colombia (Porter & DeFoliart, 1981); and similar night-to-night variability was 

detected in Venezuela for a number of species, including L. gomezi, during a 

three year study in Venezuela (Feliciangeli, 1997). But in both studies, there 

was no clear seasonal pattern to explain the night-to-night variability in 

nocturnal activity, and there were some consistent trends which distinguished 

the species. In contrast, in the Peruvian Andes (Villaseca et al, 1993), 

seasonal changes in the peak of activity of both Lu. verrucarum and Lu. 

peruensis were identified and these coincided with seasonal changes in 

ambient temperature (during some season the outdoor night temperature was 

8°C and 16-22°C indoor). Hence, the -absence of any clear seasonal 

changes in the nocturnal activity patterns of sandflies in either Antioquia or 
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Miranda may be explained by the relatively constant temperature throughout 

the year. Opon, too, has a relatively constant temperature throughout the 

year (Figure 2.10 and Figure 2.11), and major seasonal changes in the 

nocturnal activity patterns are probably not to be expected. 

Lu. trapidoi was the only one of the five species studied in Opon which 

demonstrated peak activity after midnight (Figure 5.5), when the inhabitants 

are sleeping. Given the evidence of endophagic activity (see Section 5.3.7), 

this late peak of activity is consistent with the putative role of Lu. trapidoi as 

the major vector in this focus. In contrast, Lu. yuilli, in particular, and Lu. 

hartmanni, to a lesser extent, demonstrated peak activity at the time when the 

inhabitants tend to concentrate in the dwellings before bed time. The activity 

of Lu. gomezi also peaked early in the evening, but significant activity 

continued throughout the night, as it did for Lu. quasitownsendi. The 

nocturnal pattern of Lu. quasitowsendi in Opon is the first published 

description of this species. But for the other four species, studies of 

nocturnal activity have been reported previously, and their results are 

compared below with the patterns observed in Opon. 

a) Lutzomyia trapidoi 

The nocturnal biting activity of Lu. trapidoi in the Opon focus differed 

significantly from that of the other anthropophilic species, with a clearly 
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defined peak in the second half of the night (02: 00-03: 00 hours) (Figure 5.5). 

A similar pattern was described by Lu. trapidoi both at ground level and in the 

canopy in a forest site in Panama (Figure 5.16a) (Chaniotis et al, 1971b), as 

well as at ground level in a forest site in Antioquia, Colombia (Figure 5.16b) 

(Porter & DeFoliart 1981), which is ca. 150 km from the Opon focus in the 

same interandean valley (Figure 1.1). However, in the Antioquia site, biting 

activity of Lu. trapidoi in clearances (i. e. sites of deforestation) showed a 

distinct peak early in the evening between 19.00 and 20.00 hours (Figure 

5.16b). This difference in behaviour could either be due to environmental 

pressures or genetic differences in sandfly populations which are adapted to 

the different habitats. In Peru, for example, the nocturnal biting activity of 

Andean sandflies showed quite distinct patterns inside and outside houses, 

possibly due to the temperature differential (Villaseca et al, 1993). However, 

a genetic basis to behavioural differences between and within Lu. trapidoi 

populations is a real possibility, following the finding in La Tablada and 

Paraiso Escondido, Ecuador, of two genetically distinct sympatric populations 

of Lu. trapidoi, as defined by multilocus enzyme electrophoresis (Dujardin et 

at, 1996). These cryptic species are thought to demonstrate differences in 

their intradomiciliary activity, and it is conceivable that they could also vary in 

their nocturnal activity patterns (although no data are yet available to test this 

hypothesis). 

224 



Chapter 5 Sandfly vectors 

Again, it is unclear whether genetics or the environment is responsible 

for the distinct nocturnal activity patterns detected in the Lu. trapidoi 

populations of the Pacific coast lowlands of Colombia and Ecuador. Both in 

Inguapi del Guadual, Colombia (Figure 5.16c) (Travi et al, 1988); and in 

Ocana, Ecuador (Figure 5.16d) (Hashiguchi et al, 1985b), Lu. trapidoi activity 

peaks twice: in the evening and then again in the early morning. Clearly, 

further work is needed to disentangle the various factors which could 

determine inter -or intra- population differences in nocturnal activity. In 

particular, it would be beneficial to carry out a genetic characterisation of the 

Lu. trapidoi populations whose behaviour has already been studied. 

Figure 5.16 Nocturnal activity patterns of Lu. trapidoi previously 
reported in Central and South America 

a) Limbo, Panama (Chaniotis at al, 1971b) 
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b) Lutzomyia gomezi 

In the Opon focus, Lu. gomezi biting activity peaks early (19: 00-20: 00 

hours) but continues at a significant rate throughout the night (Figure 5.3). An 

early evening activity peak between 18: 00 and 22: 00 hours was also detected 

I in Lu. gomezi populations in forest sites in Antioquia, Colombia (Porter & 

DeFoliart, 1981, Figure 5.17a) and in Miranda, Venezuela (Feliciangeli, 1997, 

Figure 5.17b). But the Opon population differed from these two in the 

extension of the biting activity throughout the night. Also, a smaller second 

activity peak (from 05: 00 to 06: 00 hours) was uniquely observed in the 

Antioquian population. 

However, the nocturnal activity patterns of Lu. gomezi in the Opon 

focus contrast most strongly with the patterns observed in the populations 

studied in three other foci, where no early evening peak was detected: in 

Panama (Chaniotis et al, 1971b, Figure 5.17c) and in both Inguapi del 

Guadual (Travi et al, 1988, Figure 5.17d) and 'in Montebello, Antioquia, 

Colombia (Velez et al, 1992, Figure 5.17e). In Panama (Chaniotis et al, 

1971 b), that Lu. gomezi biting activity in the forest canopy peaked around 

midnight (numbers were too low at ground level to draw conclusions); in 

Inguapi del Guadual (Travi et al, 1988), activity peaked at 22: 00-23: 00 and at 

01: 00-02: 00 hours; and in Montebello, Antioquia (at a focus only 100 km from 

the focus studied by Porter & Defoliart), Velez et al (1992) reported activity 
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peaks at 22.00-23.00 and at 03-04.00 hours. As for Lu. trapidoi, the cause of 

these different patterns of biting activity could be related either to variable 

environmental conditions or genetic variation (Feliciangeli, 1997). 

Figure 5.17 Nocturnal activity patterns of Lu. gomezi previously 
reported in Central and South America 

a) Antioquia, Colombia (Porter & DeFoliart, 1981) C) Limbo, Panama (Chaniotis at at, 1971 b) 
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c) Lu. hartmanni, Lu. yuilli and Lu. quasitowsendi 

The early evening activity peaks detected for both Lu. hartmanni and 

Lu. yuilli in the Opon focus (Figure 5.1 and Figure 5.2) are not dissimilar to 

the patterns shown by populations of these species studied in clearances in 

Antioquia, Colombia (Porter & DeFoliart, 1981, Figure 5.18. a, b). However, 

in Antioquia, both these species demonstrated very different activity patterns 

in forest sites, where there was no early evening peak and biting continued 

throughout the night. In a forest site in Ecuador (Hashiguchi et al, 1985b, 

Figure 5.18c), Lu. hartmanni also demonstrated considerable biting activity 

throughout the night, peaking just before midnight . 
As for Lu. trapidoi and Lu. 

gomezi, the explanation for these differences is not yet clear. There are no 

previous reports of the nocturnal activity patterns of Lu. quasitowsendi. In 

Opon, this species bites throughout the night at a reasonably constant rate 

with no distinct peaks of activity. 

Figure 5.18 Nocturnal activity patterns of Lu. hartmanni and Lu. yuilli 
previously reported in Central and South America 

a) Lu yuilli, Montebello, Antioquia, Colombia 
(Porter & DeFoliart, 1981) 
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b) Lu hartmanni Montebello, Antioquia, Colombia c) Lu hartmanni, Ocaha, Ecuador (Hashiguchi et 
(Porter & DeFoliart, 1981) al, 1985) 
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5.3.9 Seasonal variation study 

The seasonal patterns of sandfly species in Opon (such as they were) 

were not clearly associated with changes in the climatic conditions, either 

during the same month as the sandfly collection or in any of the three 

previous months. This lag period was chosen on the basis of lab studies 

which show that sandfly species complete their life cycle within this period-, 

for example: Lu. trapidoi take 33 to 47 days to reach the adult stage 

(Johnson & Hertig, 1961; Chaniotis, 1975); and the total time between 

oviposition and adult emergence averages about 34 days for Lu. gomezi 

(Johnson & Hertig, 1961). 

However, there was some evidence that changes in the abundance of 

Lu. quasitowsendi during the study period were related to the frequency of 

rainy days (but not the total rainfall). A similar observation was previously 
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made by Loyola et al (1988) in a study carried out in a botanic garden in Bajo 

Calima, Valle del Cauca Department, Colombia where climatic conditions are 

similar to the Opon focus. In Valle del Cauca, the biting rate of Lu. trapidoi 

decreased from 152 bites/man/hour in April, to 13.5 bites/man/hour in August, 

a inverse relationship to the number of rainy days in the month. 

In the majority of previous studies carried out in tropical countries, the 

seasonal variation in the abundance of sandfly species had been related with 

the total rainfall pattern, rather than to humidity or temperature which are fairly 

constant throughout the year. Hence, in previous studies it is common to find 

the description of "wet" or "dry" species (Christensen et al, 1983; Feliciangeli, 

1997). The Opon focus seasonal data are discussed below in relation to 

previous seasonal variation studies by rainfall pattern, type of vegetation, and 

collection methods: Colombia: Porter and DeFoliart (1981), Travi et al (1988), 

Alexander et al (1992), and Velez et al (1992); Venezuela: Feliciangeli 

(1987b); Ecuador: Le Pont et al (1994a); and Panama: Chaniotis et al 

(1971b) (Table 5.14). As for nocturnal activity, in the following sections, 

results of seasonal patterns are discussed by species. 
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a) Lu. trapidoi 

In the Opon focus study, this species presented random peaks of 

abundance during the whole year with no significant seasonal trend (Figure 

5.13), similar to the pattern presented for this species in the nearest study site 

in Antioquia (Porter & DeFoliart, 1981, Figure 5.19) where seasonal changes 

were described as erratic, but in another Colombian study (Travi et al, 1987, 

Figure 5.19) Lu. trapidoi decreased in proportion from January to October, 

independently of the bimodal cycle of rain presented in that region. 

Figure 5.19 Seasonal variation studies of Lu. trapidoi previously 
reported in Cental and South America 

b) Inguapi del guadual, Colombia (Travi at at, 1988) 
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Chapter 5 Sandfly vectors 

By contrast in both, in Panama (Figure 5.19c) and Ecuador (Figure 

5.19d), Lu. trapidoi presented a wet season pattern, with Population peaks in 

the late and in the early wet periods respectively (Chaniotis et al, 1971b; 

LePont et al, 1994) (Table 5.14 and Figure 5.19), 

b) Lu. gomezi. 

In the Opon focus, the number of individuals collected of Lu. gomezi 

were too low to draw conclusions about their seasonal pattern. The seasonal 

variation of Lu. gomezi in the canal zone in Panama presented a typical dry 

paftern, whilst in Colombia, Ecuador and Venezuela Lu. gomezi behaved as a 

wet species (Figure 5.21). However, previous studies of seasonality have 

shown inconsistent results; i. e. both in Antioquia, Colombia (Figure 5.20a) 

(Velez et al, 1992) and Paraiso Escondido, Ecuador (Figure 5-20b) (LePont et 

al, 1994), Lu. gomezi presented a typical wet pattern, whilst in Panama, this 

species behaved as a dry species (Figure 5.20c) (Chaniotis et al, 1971b). In 

Venezuela, Lu. gomezi presented random peaks (Figure 5.20d), and in 

Inguapi del Guadual, Colombia (Figure 5.20e) (Travi et al, 1988) the 

population density increased through the year independently of the rainfall 

pattern. 
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c) Lu. hartmanni 

The abundance of this species decreased significantly during the 11 

months of the Opon study (see Section 5.2.6). The reduction during the year 

reflects presumably a real event, and is not due to bias, because different 

patterns were observed for the other species, notably Lu. trapidoi which 

remained equally active throughout the whole year. In previous studies 

(Table 5.14), Lu. hartmanni did not present any particular seasonal pattern: in 

Antioquia (Porter & DeFoliart, 1981, Figure 5.21a) the population changes 

were mild during the study ; and in Tumaco (Travi et al, 1988) there was a 

peak at the begining of the study in the dry season, but this species was 

rarely collected in all of the later samples surveys (Figure 5.21 b) 

d) Lu. quasitowsendi 

Due to the restricted distribution of this species, this report is the first 

analysis performed of the seasonality of this species, which appeared to be 

similar to that of Lu. hartmanni. The abundance of Lu. quasitowsendi 

decreased throughout the study period, and there was a slight suggestion 

that abundance correlates presumably with the frequency of rainy days. 
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Figure 5.20 Seasonal variation studies of Lu. gomezi previously reported 
in Cental and South America 

a) Montebello Antioquia, Colombia (Velez at al. 1992) 
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Figure 5.21 Seasonal variation studies of Lu. hartmanni previously 
reported in Cental and South America 

a) Antloquia, Colombia (Porter & DeFollart, 1981) b) Inguapi del guadual, Colombia (Travi et al, 1988) 
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Chapter 6 Conclusion and Recommendations 

6. CONCLUSIONS AND RECOMMENDATIONS 

According to the data collected in this project, the epidemiological 

paftern of leishmaniasis in Opon can be characterised as follows: (1) The 

average transmission rate in this focus is currently ca. 0.1 9/year and this rate 

has remained relatively stable for many years. (2) The risk of infection is 

equal for both genders and for all ages. (3) The main vectors are Lu. trapidoi 

and Lu. gomezi, although a minor vectorial role for Lu. quasitownsendi 

remains possible; and a significant proportion of transmission to humans 

takes place indoors at night. (4) There is relatively weak seasonal variation in 

transmission, but there is some suggestion of a peak associated with the 

annual period of less frequent rainfall (i. e. the last three months of the year). 

(5) The widespread deforestation that characterises the Opon focus has not 

caused any reduction in the incidence of leishmaniasis, presumably because 

the sandfly vectors continue to breed successfully in the cacao plantations 

that have replaced much of the primary forest. However, the risk of infection 

appears to be less where primary forest has been replaced by pasture or 

secondary forest. There is some evidence to suggest that the changing 
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patterns of land use in Opon have favoured Lu. gomezi more than Lu. 

trapidoi. 

According to the data collected in this. project, the biological and clinical 

nature of leishmaniasis in Opon can be characterised as follows: (1) The 

principal agent is L. panamensis, although a minor role for L. brazifiensis or L. 

colombiensis cannot be discounted. (2) The most typical clinical symptoms 

are cutaneous lesions. The average number of lesions in patients was two, 

and the maximum number was 13. The average lesion size was ca. 1.5 CM2, 

again with a maximum size of 95 CM2; and lesions tended to be larger if 

patients were infected at a younger age. The site of lesions on the body also 

varied with age and gender: children were relatively more likely to have 

lesions on the face, women on the legs, and men on the torso. (3) Patients 

with cutaneous lesions also had a significant risk (ca. 10%) of developing 

mucosal leishmaniasis, which was characterised in Opon by low severity 

(small nasal ulcers or perforated septa only). (4) About 31% of all infections 

were subclinical, and this rate increased with age. (5) Infections, whether 

subclinical or clinical, led to considerable acquired protective immunity (ca. 

82%), although the rate of secondary infections (presumably reactivations) 

was relatively high (ca. 10%/year) during the first two years following a 

primary clinical infection. 
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Potential interventions for reducing the burden of leishmaniasis in the 

Opon focus are suggested by these results, and their impact should be tested 

in future trials. These include: (1) the use of insecticide impregnated bed- 

nets to reduce the observed late night indoor biting rate of Lu. trapiddi (the 

principal vector) in particular; (2) the improvement of house conditions and 

the use of house barriers (such as insecticide impregnated netting in doors 

and windows, and the sealing of gaps between the planks which form the 

walls) so as to reduce the evening indoor biting rate of Lu. gomezi, especially; 

(3) health education, targeted at high risk groups, to encourage personal 

protection and avoidance of visits to high risk areas at the time when 

sandflies are more active, i. e. the peridomestic cacao plantations at dusk; and 

(4) the targeting of drugs for children when drug availability is insufficient for 

all cases. 

The natural history of leishmaniasis caused by L. panamensis in Opon, 

as described in this study, can be extrapolated to other foci in the inter- 

Andean valleys where the patterns of land use after deforestation are similar 

to that in the Opon and where the racial characteristics of the people at risk 

are similar. In particular, a similar pattern of human-sandfly contact will be 

expected in areas of the Colombian Andes where cacao plantations are the 

main crop. However, it would be fruitful to carry our further entomological 

studies over a wider geographic range to determine the generality of the 

ecological association between cacao and both Lu. trapidoi and Lu. gomezi. 
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Clearly, one of the main unanswered questions about leishmaniasis in Opon 

concerns the animal reservoirs. A putative reservoir role for domestic dogs 

has previously been suggested for L. panamensis; and if this hypothesis is 

proven, it implies the possibility that L. panamensis could persist even in 

areas where deforestation (and hunting) has led to the local extermination of 

the sloth population. Hence, a full understanding of the distribution of L. 

panamensis in Colombia, and an ability to predict the likely effects of the 

continuing deforestation of the Andes, will only be possible when further 

studies are carried out on the putative reservoirs. 

Other important findings from the project relate to the choice of appropriate 

strategies for primary health care. The simultaneous follow-up of treated 

patients from different villages is not usually possible because of the highly 

dispersed nature of rural communities typified by Opon. In Opon, this 

problem was solved by involving the community in the search, diagnosis, and 

treatment of cases. The establishment of such community networks should 

result in multiple benefits, both for the community and for the NLCP: 

patients are treated by trained people; (2) the Glucantime@ is stored in safe 

conditions; (3) the doses and the frequency of treatment are given following 

medical recommendations; (4) the reporting of side effects is more effective, 

and *(5) when the course of treatment is interrupted by the patient, the drug 
I 
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would remain available for future patients, hence avoiding the development of 

a black market. 

Finally, it is hoped that the production of this thesis will provide the 

NLCP in Colombia with a "blueprint" methodology which should aid the cost 

reduction of future field studies designed to measure transmission rates and 

leishmaniasis risk factors. For example, incidence rates (force of infection) 

could be estimated from age prevalence curves calculated from cross 

sectional surveys (where transmission is stable and age-independent), 

instead of by following a cohort of susceptibles. Cohort studies are 

extremely expensive (i. e. ca. E20,000 in Opon), as large sample sizes are 

required when incidence rates are low. An estimate of incidence rate can 

then be used to indicate the approximate number of treatments needed in a 

particular focus for the following year. Similarly, risk factors for prevalence 

associated with vegetation type (for example) can be estimated from data 

collected in visits of short duration. 

The cost of the seasonal variation study described in this thesis was 

ca. E10,000. However, it is suggested that the key entomological features in 

each focus can be identified from a reduced number of collections made 

during a more reasonable number of visits. For example, in future studies of 

the sandfly vectors in the Colombian Andes, the measurement of sandfly 

abundance in different environments could be carried out in two collections in 
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each rainy season using an appropriated number of replicas. In Opon, 

vector incrimination by multiple regression analysis was shown to be a 

powerful tool for quantifying the relative roles of different species. For 

species, such as Lu. trapidoi, from which parasites have been isolated and 

characterised on frequent occasions and from widespread endemic zones, 

there seems little point in carrying out further searches for natural infections 

(even with novel technology), because this methodology is expensive, time 

consuming, and has a low probability of success. However, circumstantial 

incriminatory evidence from statistical associations will never be sufficient to 

prove a vectorial role for those species from whom parasites have never been 

isolated in the field. Hence, the statistical epidemiology approach will not 

replace the biological approach to vector incrimination for sandflies in 

Colombia, until all the suspected vectors have been sufficiently examined (i. e. 

field infections have been sought from large numbers and from many 

endemic sites). 

In most Central American and Andean countries the implementation of 

first line research laboratories in vector biology, ecology, immunology or 

microbiology has been postponed, because the priority for current research 

has been to solve basic questions concerning the natural history of the more 

common tropical diseases in each endemic zone. In the case of 

leishmaniasis, fundamental research is also limited by the necessary 

diversion of research funds for the acquisition of drugs, which are imported 
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by the endemic countries at very high prices. Future research projects on 

leishmaniasis in Colombia will need to be focused on priority topics, chosen 

for their relevance to public health policy; and the design of these projects 

should be determined by the need to maximise their cost-effectiveness. This 

can probably best be achieved by collaborations between the different groups 

active in leishmaniasis research in Colombia, so as (1) to gain the benefit of 

sharing resources and expertise and (2) to develop a rational strategy for a 

medium- or long-term research programme on leishmaniasis throughout the 

country. 
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