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Abstract
Meta-analysis is now commonly used in medical research. However there are statis-

tical issues relating to the subject that require investigation and some are considered

here, from both a methodological and a practical perspective.

Each of the fixed effect and the random effects models for meta-analysis are

based on certain assumptions and the validity of these is investigated. A formal test of

the homogeneity assumption made in the lixed effect model may be performed. Since

the test has low power, simulation was used to investigate the power under various

conditions. The random effects model incorporates a between-study component of

variance into the model. A likelihood based method was used to obtain a confidence

interval for this variance and also to provide an interval for the overall treatment

effect which takes into account the fact that the between-study variance is estimated,

rather than assuming it to be known.

In order to obtain confidence intervals for the treatment effect for both the

fixed effect and the random effects models, distributional assumptions of normality

are usually made. Such assumptions may be checked using q-q plots of the residu-

als obtained for each trial in the meta-analysis. In both meta-analysis models it is

assumed that the weight allocated to each study is known, when in fact it must be

estimated from the data. The effect of estimating the weights on the overall treat-

ment effect estimate, its confidence intervals, the between-study variance estimate

and the test statistic for homogeneity, is investigated by both analytic and simulation

methods.

It is shown how meta-analysis methods may be used to analyse multicentre

trials of a paired cluster randomised design. Meta-analysis techniques are found to

be preferable to previously published methods specifically developed for the analysis

of such designs, which produce biased and potentially misleading results when a large

treatment effect is present.
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1 Existing Statistical Methods in Meta-Analysis

Chapter 1 provides an introduction to standard meta-analysis techniques and sets the

scene for the subsequent research described in later chapters. Section 1.1 contains

a review of the current meta-analysis literature and provides general background

information. Section 1.2 outlines the structure and the aims of the thesis, while

Section 1.3 introduces two data sets which are used in the thesis as examples. The

standard meta-analysis methods are then introduced, with Section 1.4 considering the

issue of hypothesis testing and the next three sections that of estimation. Section 1.5

describes the different fixed effect methods of meta-analysis, Section 1.6 considers

the issue of heterogeneity and Section 1.7 outlines the random effects method of

meta-analysis. The question of how to display meta-analysis data is addressed in

Section 1.8 and finally, Section 1.9 contains a discussion and comparison of the two

different meta-analysis approaches, those of the fixed effect and the random effects

models.

1.1 Background

Meta-analysis can be defined as the statistical evaluation of a collection of analytic

results for the purpose of integrating the findings [1]. Researchers in psychology and

education were the first, in the 1970s, to define meta-analysis and begin to develop the

statistical methodology. Meta-analyses were, however, rare in the medical literature

until the early 1980s, but have proliferated in the last few years [2], although one of

the first medical meta-analyses was performed as far back as 1977 [3].

The aim of such an analysis is "to obtain information that cannot be ascer-

tamed from any of the studies alone" [4]. Peto discussed the importance of meta-

analysis, indicating that while moderate differences in mortality rates may be humanly
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worthwhile, in many circumstances it is very difficult to detect a 10% - or even 20%

- reduction in risk of death [5]. Studies involving at least 1000 deaths may often be

required to detect such effects reliably. Lack of money, resources and time may limit

the size of a single trial, and so while it is generally emphasized that meta-analysis

should never be a substitute for the single, large well-designed study [6, 7, 8], it is

clear that the combining of results from different trials is a desirable and necessary

technique in the field of medical research. However, there is considerable debate as

to when and how the data should be combined in a formal manner.

In the past, clinicians have relied heavily on narrative reviews of literature

to define the current state of knowledge on any particular therapy. However, it is

common for similar trials on the same treatment to produce apparently conflicting

results. The situation becomes even more confused when these trials differ in terms

of the treatment regimen, treatment duration and patient characteristics. Hence,

interpretation of all the information available is difficult and the conclusions reached

will be highly subjective and may depend greatly on the perspective of the individual

reviewer. Indeed, such reviews have been criticised as being haphazard and biased

[91 . Meta-analysis can simply be thought of as a more structured approach to this

traditional literature review which attempts to produce an objective measure of the

overall benefit of the therapy being considered [10]. Nevertheless, there is still scope

for differing conclusions to be reached.

Chalmers et al. [11] carried out a study looking at the reproducibility of meta-

analysis and found that there were cases where meta-analyses on the same therapy

arrived at different conclusions. However, encouragement may be gained from the

fact that these observed disagreements were usually in terms of degree rather than

direction. A recent example in the literature has been the disagreement regarding

meta-analyses of the trials of serum cholesterol reduction [12]. Such discrepancies

may arise owing to different investigators including a different collection of studies in
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their meta-analysis because of, for example, different literature search strategies or

different inclusion criteria. A great deal of attention has been focused on the problem

of which studies to include in a meta-analysis and Naylor [13] holds the opinion that

"methodology is less important than determining which results are to be aggregated".

It is generally agreed that there is a need for scientific rigour throughout the whole

meta-analysis process, including the initial literature search [6, 14]. The use of a meta-

analysis protocol specifying all procedures, especially those related to the selection

of trials, has been advocated [6]. The possibility of "publication bias" [15], whereby

published studies differ systematically from unpublished ones is a widely recognised

problem in meta-analysis [14]. Hence, it is advised that efforts should be made to

minimise this potential bias by tracking down relevant unpublished material [101.

Furthermore, guidelines have been proposed which were designed to help to minimise

bias in meta-analyses [2]. Meta-analyses usually combine only the information directly

available from the literature and so are reliant on the validity of the analysis in the

original trials. Hence, it has recently been advocated that meta-analyses should be

based on the reanalysis of individual patient data, as this provides the least biased

and most reliable results [16].

Considerable research has also been carried out on how the quality of each

study included in a meta-analysis may iafiuence the results [17, 18, 19] and, fur-

thermore, of ways to incorporate this quality assessment into the statistical analysis

[17]. This may involve the use of a specific quality score threshold meaning that poor

quality studies are excluded, or the incorporation of the quality scores as weights

[20]. Greenland [211 however, describes quality scoring as "the most insidious form of

subjectivity masquerading as objectivity" and states that it can obscure important

sources of heterogeneity.

Thacker [22) was concerned that using sophisticated meta-analysis techniques

could lead to "unwarranted comfort with one's conclusions" if the initial data used is
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of a poor standard. However, O'Rourke [14] views meta-analysis as an ideal means

for uncovering and correcting inadequacies in previous research. It has even been

suggested [8] that all clinical trials should be started with the notion of meta-analysis

in mind in order to help future reviewers. In this way, evidence in the form of a

meta-analysis would keep accumulating as the results of each new study became

available [23]. Specifically, it has been shown that continuously updated literature

reviews, as exemplified by the Oxford Database of Perinatal Trials, can shorten the

time between research discoveries and clinical implementation of treatment strategies

[24]. This database has been extended to include results of meta-analyses and will be

updated as each relevant new trial is published. As well as the formation of databases,

there is also a move to generate user-friendly meta-analysis computer packages [25],

such as that produced by the Cochrane Collaboration [26]. These developments will

allow more meta-analyses to be carried out, but it should be emphasised that care and

thought should still go into each analysis and data should never be fed blindly into

a program to obtain a result [25]. There is also the need for emphasis in computer

software on the issue of heterogeneity and how it should be investigated [27].

Issues relating to the identification, selection and quality of trials for a meta-

analysis have been widely discussed in the literature and will not be pursued in this

thesis. Concentration is, instead, focused on the methodological issues relating to the

statistical methods used in meta-analysis. The majority of the work on meta-analysis

in the medical field has been with regards to randomised clinical trials, and this is

where the emphasis will lie here. There has been some work relating to epidemiological

studies [28, 29], but the results of such studies are even more problematic to combine

than those of clinical trials owing to the additional variations in design and the greater

scope for the existence of biases in individual studies.

Many of the statistical techniques applied to meta-analysis have been long

established for the purpose of combining various forms of experimental data. It is
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only much more recently that these methods have been applied to the problem of

combining the results of completely separate studies. For example, methodology has

been extracted from the work of Cochran in the 1950s [301 relating to the combination

of estimates from different experiments. The statistical aspect of meta-analysis can

be split into two components; hypothesis testing and estimation. In the case of

hypothesis testing, the null hypothesis is that all individual studies in the meta-

analysis have in truth zero treatment effect. Estimation deals with the calculation of

an overall treatment effect together with a relevant confidence interval. The issue of

estimation is the more problematic of the two and is therefore considered in greater

detail in this thesis. Most meta-analyses in the medical field have concentrated on

estimating and testing the common treatment effect, which is assumed to be equal

for all trials [31]. This is the fixed effect approach, which makes the assumption that

the true treatment effect is the same in all of the individual studies included in the

meta-analysis, that is the treatment effects are homogeneous. Several estimates have

been proposed and these are described in Section 1.5.

It is nearly always unreasonable to assume homogeneity in medical contexts,

and the combining of heterogeneous material is a commonly cited threat to the validity

of meta-analysis [32]. There has been concern about the practice of merely publishing

the numerical results of a fixed effect analysis, where "little attention is paid to

possible heterogeneity in effect sizes between trials" [31]. Thompson and Pocock [33]

stress that a single weighted average of the separate treatment effects is difficult to

interpret, as it is not clear as to what treatment or what population of patients it

applies. This interpretational problem means that clinicians may find it difficult to

apply the results of a meta-analysis to a practical situation, since they must decide

whether the results are generalisable to their own specific case [34]. On the other hand,

it has been argued [13] that since a broader range of patients and practices has been

incorporated into the data, the generalisability of the results from the combination of

several small trials may be superior to that of a single large trial. Hence, it is possible
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to argue that the results of a meta-analysis of small trials are more applicable to the

practice of medicine, in which the patients encountered are rarely homogeneous [32].

Various formal tests of heterogeneity exist (Section 1.6), but they lack power

and so a negative result should not be interpreted as implying that the treatment

effects are homogeneous [35]. Therefore, L'Abb et. al. [10] suggest that in the case

of a non-significant result, the investigators should "resort to informed judgement

and examine a graphic display of heterogeneity...". It has generally been stressed in

the literature that the investigation of heterogeneity and its possible causes are of the

utmost importance when carrying out a meta-analysis. An investigation of subgroups

of the studies can be carried out whereby further important questions, such as for

whom and under what circumstances the treatment works best, may be considered

[10]. In fact the ability to explore such questions can be viewed as a great advantage

of meta-analysis [36]. However, care should be taken when such an investigation of

heterogeneity is undertaken, since such investigations will tend to be post-hoc and

hence the problems are similar to those which occur when undertaking subgroup

analyses in a single clinical trial [27, 37]. Furthermore, it is generally not a simple

matter to isolate a single source of heterogeneity, and it may be that a number of

possibilities exist or there may be no explanation apparent at all.

DerSimonian and Laird [38] proposed an alternative to the fixed effect ap-

proach which does take account of the between-study variation in the true treatment

effects. This is known as the random effects model (Section 1.7), since it incorporates

a between-study component of variance. The random effects model allows for the

extra uncertainty in a set of heterogeneous data and produces an overall estimate of

treatment effect with a suitably widened confidence interval. However, the model has

been criticised as unrealistic for making the assumption that the trials included in the

meta-analysis are a random sample taken from some hypothetical universe of trials.

It has also been criticised as being an easy option and an excuse for not investigating
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the causes of heterogeneity fully [211.

As well as these standard approaches to meta-analysis, further methods have

recently been developed. The use of empirical Bayes methods for meta-analysis has

been proposed [31, 39], whereby shrunken estimates of the treatment effect for each

trial are obtained. These empirical Bayes estimates incorporate the information from

the full set of data in order to provide a more precise estimate for each trial. A fully

Bayesian approach has been adopted by other researchers. Carlin [40] and Skene

and Wakefield [41] based methods on three-stage hierarchical models and then used

Monte-Carlo type methods in order to obtain the solutions. Malec and Sedransk [421

used a prior distribution which reflected the belief that there are subsets of trials

in the data such that within each subset each trial produces a similar result. The

composition of these subsets was, however, considered to be uncertain. In addition,

Eddy, Hasselblad and Shachter [43] proposed a Bayesian approach to meta-analysis

which they called the "conlidence profile method".

An alternative development in meta-analysis has been the use of likelihood

theory. Goodman [44] produced plots of the "support curves" in order to obtain

the parameter values which received the most "support" from the available data.

Within this likelihood framework he proposed both a fixed effect and a random effects

model. A further likelihood based approach, for binary outcomes, proposed by van

Houwelingen et al. [45] uses the exact conditional distribution of each 2x2 table. The

likelihood approach to meta-analysis will be considered further in Chapter 2.

1.2 Aims and Objectives of the Thesis

Meta-analysis, as an objective way of reviewing research, is now firmly established

in the area of medical research. However, there is still much debate as to the best

statistical approach to the analysis and, furthermore, there are unresolved statistical
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problems relating to both the standard fixed effect and random effects models which

require investigation. This thesis addresses a number of these statistical issues from

both a methodological and a practical perspective.

The standard fixed effect and random effects models are each considered criti-

cally and are compared with each other and with more novel methods, using illustra-

tive practical examples. It is accepted that neither model forms a realistic basis for

an overall estimate of treatment effect, as the assumptions underlying each cannot be

met. The validity of certain of these assumptions are investigated and the robustness

to deviations from them are discussed.

A further aim of the research is to extend the use of meta-analysis methods

to other types of data. It is shown how meta-analysis models may be useful in the

analysis of multicentre trials where there is heterogeneity between centres. It is also

shown how the random effects meta-analysis model can be used to analyse a single

trial which has a paired cluster randomised design.

Although the basis of much of the research is methodological, the practical

implications of the findings are always discussed and practical examples used where

possible to illustrate the points. The main data set used to illustrate the analysis of a

paired cluster randomised design is also used to exemplify the techniques in practice

and in order to pursue a practical data set in greater detail. Two other data sets

are used regularly as examples and these are introduced in Section 1.3 and will be

referred to at various stages throughout the thesis.

The rest of the current Chapter reviews the present state of statistical methods

for meta-analysis in medical research. The standard methods for both testing and

estimation are described and numerical examples are used to compare the results

obtained. Chapter 2 extends the estimation ideas presented in the introduction,

focusing on the random effects model and particularly on the issue of the estimation
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of the between-study component of variance. An approximate likelihood method is

proposed which produces both a confidence interval for the between-study variance

and also a confidence interval for the overall treatment effect which takes into account

the fact that the between-study variance is estimated. This approximate method,

based on the marginal likelihood, is found to be very comparable to a method based

on the full likelihood for binary data under most circumstances.

Both the standard fixed effect model and random effects model must make

distributional assumptions of normality if confidence intervals are to be obtained.

Chapter 3 proposes the use of q-q plots of the residuals, obtained for each trial in

the meta-analysis, in order to investigate these assumptions. The issue of testing for

normality is also considered.

Chapter 4 considers the power of the test for heterogeneity, which is known

to be low. The test is investigated using simulation in an attempt to quantify the

power and to identify situations where the power will be particularly poor. The

standard test is also compared with an alternative, supposedly more powerful test.

Chapter 5 extends the simulation work of Chapter 4 to investigate the effect that

estimating the individual within-study variances has on the power of the test, since

the null distribution of the test statistic is conditional on the assumption that they

are known. The work is then developed to look at the effect of this estimation on

the overall fixed effect and random effects estimates and their confidence intervals.

Analytic work is carried out to try to obtain improved estimates which allow, at least

to some extent, for the estimation of the weights.

Chapters 6 and 7 deal with the analysis of paired cluster randomised trials.

Chapter 6 describes a more detailed analysis of a single data set, namely the British

family heart study, thus illustrating how the ideas and methods previously described

are useful in practice. It also provides an opportunity for an investigation into and

a discussion of sources of heterogeneity as well as a chance to consider the analy-
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sis of multiple endpoints in meta-analysis. Chapter 7 compares the meta-analysis

techniques, for both testing and estimation, with previously published methods for

paired cluster randomised trials. Meta-analysis estimation techniques were found to

be preferable to those developed specifically for the analysis of paired cluster ran-

domised designs, which were shown to produce biased results. Finally, the findings

are summarised and the overall conclusions drawn in Chapter 8.

13 Introduction to Data Sets

1.3.1 A meta-analysis of nine clinical trials looking at the effect of taking

diuretics during pregnancy

A nieta-analysis of nine randomised controlled clinical trials which was published

by Coffins, Yusuf and Peto [46] is used throughout the thesis as an example. One

aim of this meta-analysis was to look at the effect of diuretics during pregnancy on

the incidence of pre-eclampsia. The term pre-eclanipsia is used to describe the de-

velopment of hypertension with proteinuria or oedema, or both, during pregnancy.

Pre-eclampsia is known to increase the risk of a perinatal death, which is the out-

come of ultimate importance. Perinatal mortality is, however, a difficult outcome

to study in a clinical trial as only a few pregnancies end in a death and only a few

of these are associated with pre-eclanipsia [46]. Since perinatal death is such a rare

occurrence, all the single clinical trials looking at this issue have been too small to

detect any differences in mortality and so have tended to concentrate on the effect of

the treatment on pre-eclampsia. Even using a meta-analysis, there were still too few

deaths to achieve adequate power to detect any treatment effect. Hence, the outcome

generally used in this thesis, when looking at the diuretics trials data, is the presence

or absence of pre-eclampsia, although the number of stillbirths is considered in one

instance.
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Reliable data wez available for nine out of the eleven trials published on di-

uretics during pregnancy since 1960, and the meta-analysis of these nine trials lead

to a total sample size of 7 000 women and over 600 cases of pre-eclampsia (Table 1).

It can be seen that the number of women and the number of cases vary considerably

across the trials. Furthermore, the individual study odds ratios vary with six of the

trials showing a positive effect of diuretics, but the other three showing an adverse

effect. The variation in estimates of treatment effect is not surprising, since the trials

differed from each other in many respects. The entry criteria for patients varied, as

did the treatment regimens and the definition of pre-eclampsia. Some trials also had

greater problems with withdrawals and non-compliance.

Table 1: Results and odds ratios for the nine trials included in the meta-analysis

looking at the effects of diuretics on the occurrence of pre-eclampsia during pregnancy

Trial First author Cases of pre-eclampsia/Total number of patients

number of paper	 Treated	 Control	 Odds Ratio

1	 Weseley	 14/131(10.7%)	 14/136(10.3%)	 1.04

2	 Flowers	 21/385(5.5%)	 17/134(12.7%)	 0.40

3	 Menzies	 14/57(24.6%)	 24/48(50.0%)	 0.33

4	 Falls	 6/38(15.8%)	 18/40(45.0%)	 0.23

5	 Cuadros	 12/1011(1.2%)	 35/760(4.6%)	 0.25

6	 Landesman 138/1370(10.1%)	 175/1336(13.1%)	 0.74

7	 Krans	 15/506(3.0%)	 20/524(3.8%)	 0.77

8	 Tervila	 6/108(5.6%)	 2/103(1.9%)	 2.97

9	 Campbell	 65/153(42.5%)	 40/102(39.2%)	 1.14
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1.3.2 A multicentre trial looking at the treatment of mild hypertension

Meta-analysis methods can also be used in the analysis of multicentre clinical trials,

as each centre can be considered as being equivalent to a separate trial. Although

the protocol followed should be the same in each centre, meaning therefore that there

is less scope for clinical heterogeneity to exist, there may still be differences due to

geographical location and demographic characteristics of the patients. There may

also be differences in the centres' interpretation of the protocol, the additional care

given and the skill with which the treatment is administered. Hence, the possibil-

ity of between-centre differences should at least be considered in the analysis of a

multicentre trial.

The main aim of the Medical Research Council (MRC) mild hypertension trial

was to determine whether drug treatment of mild hypertension (phase V diastolic

pressure 90-109 mmHg) reduces the rates of stroke, of death due to hypertension and

of coronary events in men and women aged 35-64 years [47]. A subsidiary aim was

to compare the blood pressure in two groups of patients on active treatment, those

taking bendrofluazide and those taking propranolol. The outcome considered most

often in this thesis is the blood pressure reduction (both diastolic and systolic) over

the first year of the trial in the combined treatment group compared to the control

group, as this provides the opportunity to analyse a continuous outcome measure.

The measurement of treatment effect used is a difference in two means, that is the

difference between the mean reduction in blood pressure in the treatment group and

the mean reduction in blood pressure in the control group.

In total, 17 354 patients were randomly allocated at entry to the trial to take

bendrofluazide or propranolol or placebo tablets. The patients were recruited from

190 centres (mostly general practices) distributed throughout England, Scotland and

Wales. The original analysis [47J made no allowance for possible differences across

these centres, analysing the whole set of data without stratification for centre. All
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analyses are by 'intention to treat', that is patients were analysed as belonging to the

group to which they were randomised, irrespective of what treatment they actually

received.

The number of patients in each centre varied greatly, with some centres re-

cntiting less than 10 patients and others recruiting over 100. Most analyses had to

be carried out using 189, rather than 190, centres, since centre number 1 recruited

only one patient to the placebo group, meaning that a variance for the reduction in

blood pressure could not be calculated for that centre. The total number of strokes

observed was 169 and the total number of coronary events was 456. The overall av-

erage reduction in diastolic blood pressure over the first year in the treatment group

was 11.7mmHg, while for systolic blood pressure it was 23.7mmHg. The average

blood pressure was also reduced over the trial period in the placebo group. Diastolic

blood pressure was reduced on average by 6.6mmllg and systolic blood pressure by

13.3mmHg. This may be as a result of the so called 'placebo effect'.

1.4 Hypothesis Tests in Meta-Analysis

In a meta-analysis of k trials, a hypothesis test may be carried out in order to see

whether the k differences from a zero treatment effect observed are greater than would

be expected by chance. The null hypothesis is, therefore, that the true treatment effect

O in each trial i, i = 1,...,k,is equal tozero, that is H0 :O = ... = O, =0. Hence,

if there is sufficient evidence that any one of the individual trial estimates deviates

from zero, then the null hypothesis will be rejected.

if it is assumed, at least asymptotically, that the estimate of O has a normal

distribution with mean O and variance v then under the null hypothesis, this estimate

(, has a normal distribution with zero mean and variance v. When the interest

lies in the absolute values of the departure of the O from no treatment effect, an
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appropriate test is based on the squares of the individual observed treatment effects,

thus not accounting for the direction of the effect. Standardising these squared effects

by dividing by the variance v, means that = w,ô, where w = 1/va, has a x

distribution if O=O [121. Hence, assuming that all trials are independent, summing

over all k trials gives a test statistic for H0

E=1 w0k	 2	

(1)

which has a distribution under H0 . However, the use of the squares of the treatment

effects means that this test is 'general' in that it has no specific alternative hypothesis

against which it is particularly powerful [121. The general alternative hypothesis is

H1 : 0, 0 for at least one i, i = 1, ..., k. This test therefore lacks power against

certain alternative hypotheses of particular interest, such as Hi : 0 < 0 (or 0, > 0)

for all i.

One appropriate test which is powerful against these directional alternatives is

again based on the asymptotic normality of each trial estimate, but does account for

the direction of each estimate. For each study, if 0=0, w,0 has a normal distribution

with zero mean and variance given by 1/va = w, [4]. Hence, for the null hypothesis,

H0 : 01 = ... = 0 = 0, the sum w,è, has a normal distribution with zero mean

and variance E w [4]. Therefore the test statistic

:1 Wô
	

(2)
Wi

has a standard normal distribution under the null hypothesis [48]. Equivalently, the

square of the statistic given in (2) follows a x distribution [4, 12]. The rejection of

the null hypothesis can still, however, only be interpreted as being evidence that at

least one treatment effect is different from zero.
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The Mantel-Haenszel test is a particular example of a test, although not di-

rectly equivalent to (2), which is powerful against the directional alternative hypothe-

ses [49]. It can only be used in situations where the outcome measure is binary, unlike

test statistics (1) and (2) which may be used for both binary and continuous data.

The null hypothesis is, once more, that the treatment effect in every study is zero.

Then, under H0, and using the notation given in Table 2, for each trial i, i = 1, ...,

the number of observed events in the treatment group a, conditional on the total

number of patients in the treatment group a + b1 = n11 , has a hypergeometric distri-

bution with a mean given by n i m i/N and a variance of - 1)

where N = n11 + n 2 , m11 = a, + cj and m12 = b, + d1 (Table 2). Furthermore, since

in a meta-analysis, the strata are k independent trials, the total observed number of

events	 I a1 , simply has a mean of 	 E(a) and a variance of	 var(a1). The

variance of the sum of the differences between the observed and the expected number

of events E.1 (a1 - E(a)) is therefore equal to the sum of the individual variances

of the (a 1 - E(a)) terms [50]. Hence, the test statistic is given by

I
- E(a1))]2

L.i=1 var(a,)

which, it may be shown, has an asymptotic x distribution.

A continuity correction for (3) may be necessary, particularly when the num-

bers involved are small and hence the test becomes

[I E(a - E(aj) _0.5]2
(4)

L.s;1 var(a1)

A test which is identical to the Mantel-Haenszel test, but which uses different

notation, is known as Peto's test [51]. Peto considers the differences between the

observed O and the expected E number of events in the treatment group. The

(3)

44



Table 2: Notation for the frequency table of the results of the i study from which

the odds ratio is calculated

Number of	 Event	 Total

patients	 Yes	 No

Treatment	 a,	 a, + b, =

Group

Control	 c	 d	 Cj + d, n2

Total	 a + Cj = rn, 1 b + d = rn,2 	N

sum of these differences is squared and divided by the total variance under the null

hypothesis V, and hence the statistic is written,

- E)]2
TI

L=i t

However, by noting that 0, = a, E = n i rn i /N and V =	 - 1)

it can be seen that this test is exactly the same as the Mantel-Haenszel test.

Examples which illustrate the use of the above tests are presented in Sec-

tion 1.5.5, after the standard methods of estimation in meta-analysis have been de-

scribed.

1.5 Fixed Effect Methods

The principle for estimating an overall treatment effect is that the observed treatment

effect within each trial should be averaged over all trials [36]. In order to carry

out such a procedure, however, assumptions are required. Initially the main issue

in the fixed effect approach, where homogeneity of treatment effects across studies,

01 = 02 = ... = 0k = 0, is assumed, is how to weight the individual trial estimates.

(5)
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The general idea is to give the greatest weight to those studies with the most precise

individual estimates Ô, = 1, .., k, and then the weighted average, given by Woolf

[52], takes the general form,

o
	

(6)
Wi

where w is the weight associated with trial i. If each O is an estimate of a common

0, then the expected value of the weighted average, assuming that the weights are

fixed constants (although the effects of relaxing this assumption will be considered in

Chapter 5) will be,

	

' °'E(O1 ) = 0'	 = 0	 (7)

This means that any choice of w, i = 1, ..., k, will lead to an unbiased estimate of the

true treatment effect. However, the most precise estimate of the overall treatment

effect 0, that is the one with the minimum variance, is obtained by calculating the

weighted average (6) and taking the weight for the study to be the inverse of the

variance v, that is w= 1/v1 [53].

The general estimate given in (6) may be applied to various outcome measures.

For example, the difference in means between a treatment and a control group could

be the measure used if a continuous outcome measure were to be analysed. However,

the odds ratio is used here as a convenient measure to consider, as a comparison

may then be made of several estimation methods. Four methods of estimating an

overall treatment effect are now described in Sections 1.5.1 to 1.5.4. These methods,

together with the hypothesis tests described in Section 1.4, are then illustrated with

an example in Section 1.5.5.
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1.5.1 Inverse-variance method

It follows, that by weighting according to the inverse of the variance, larger trials

which have estimates with smaller variances are given most weight, while small studies

with large variances are given less weight. It is actually the logarithm of the odds

ratio that is taken as 0 here, since such a transformation improves the normality

of the distribution of estimated treatment effects. Hence, taking the log odds ratio

ln(ad/bcj) (Table 2) as Ô1 , the variance v can then be estimated by (1/a1 ) + (1/b1 ) +

(1/ce) + (1/d) [50].

Furthermore, assuming that Ô 1 is approximately distributed as N(0, v) and

that the w,=l/v1 are known, then the variance of the overall log odds ratio is 1/E1 w1.

This allows a 95% confidence interval for the estimate to be obtained,

Oj ± l.96i/var(,)
	

(8)

The estimate of the overall odds ratio and its corresponding conildence interval may

then be found by exponentiating the relevant values calculated for the log odds ratio.

1.5.2 Mantel-Haenszel method

The Mantel-Haenszel estimate [49] is well established and much used for the purpose

of combining information across a set of 2x2 tables. The result can be used in the

context of a meta-analysis by considering each study as a separate stratwn producing

an individual estimate of the odds ratio a2 dj/b1 cj. A weighted average is again used,

but the weight w in stratum i is now taken to be bc/N, (Table 2). These weights

are approximately inversely proportional to the variance of the log odds ratio under

the condition that the stratum-specific odds ratios are near unity [53], thus implying

that a,d1 = b14. By substituting the relevant values, ö,=ad/bcj and w, = b1c/N1,
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into the general formula (6), the overall Mantel-Haenszel estimate of the odds ratio

is obtained:

dRMH - E= ad,/N

-	 b1c/N	
(9)

Robins, Breslow and Greenland [54] obtained an approximation to the variance of

the logarithm of the Mantel-Haenszel estimate. By letting P = (a1 + d)/N, Q =
(b + cj)/N, Rj = ad1 /N and S = bcj/N, the variance is given by the formula,

P1 R1	 >. 1 (P1S + QR) E1 Q1Svar(logdRMH ) = ________ ____________ _______
Pq)2 + 2
	 Ri E=1 S + 2 (E . 1 S1)2	

(10)

This variance may then be used to calculate the confidence interval for the overall

odds ratio in a similar way to that shown in (8).

1.5.3 Peto method

Peto's method [5, 51], which is the estimation procedure related to the Peto test

described in Section 1.4, produces an approximate estimate of the overall odds ratio

through a comparison of the number of events observed with the number expected

under the null hypothesis of no treatment effect in each particular trial. For each

trial the observed minus the expected number of events (O - E) is calculated, where

0, = a, and E, = n1i m1i/N (Table 2). Peto's argument [5] for using this measure is

that if there were no treatment effect, then (O —E1 ) for each trial would have an equal

chance of being either negative or positive, and hence the total of all the (O - E1)

would be close to zero. However, if a beneficial treatment effect were present then the

(O - E1 ) terms would tend to be negative (since 0, would tend to be less than E)

and, although this trend may not be noticeable in individual studies, it may stand
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out when the total is calculated. Furthermore, by dividing (O - E,) by its variance,

a good approximation to the log odds ratio results, providing the odds ratio is not

too far away from unity [55]. This stems from the fact that such an approximation is

the first Newton-Raphson step from zero towards the maximum likelihood estimate

[51, 56] and in general a parameter may be estimated by Z/V1 , where Z2 is the

efficient score and V is Fisher's information [4]. In this specific situation, (O - E,)

is the efficient score statistic for the log odds ratio and its variance V, given by

= - 1) (Table 2), is Fisher's information [4]. The overall log

odds ratio can then be estimated by simply adding up the differences (O - E1 ) and

dividing the resulting total by the sum of the individual variances , to give

	

logdRp -	
- E1)

	

-	
(11)

It can also be shown that by taking O1 equal to (O - Ej/V1 and w equal to

be V = 1/var(Ô) and substituting into the formula for the general weighted mean

(6), the same overall estimate as shown in equation (11) is obtained. The variance

of this estimator is, therefore, again given by 1/E w, which in this case is equal

to 1/E . A confidence interval may be calculated in the usual way using this

variance term.

1.5.4 Logistic regression

Logistic regression may be used to carry out a meta-analysis where the outcome

measure is an odds ratio [28, 57]. A variable representing 'trial' is treated as a factor

with k levels, so that each level of the factor corresponds to an individual trial in the

meta-analysis. After including such a factor in the model, together with a second

factored variable with two levels representing treatment group, the required log odds

ratio of treated patients compared to control patients is obtained. The log odds
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ratio of interest is then the regression coefficient relating to the variable representing

treatment group. In this model, it is again the case that results from larger trials are

given greater weight in estimating the overall treatment effect than those from smaller

trials, but the weighting is implicit in the model fitting procedure. In fact, logistic

regression is asymptotically equivalent to the 'inverse-variance' method for log odds

ratios. Logistic regression becomes advantageous, however, when it is necessary to

adjust for additional covariates while still looking at an overall treatment effect. The

confidence interval can easily be obtained using the variance of the estimate of the

overall log odds ratio. 	 .'

/	 ,

1.5.5 Example

The diuretics trials meta-analysis (Section 1.3.1) is used as an example data set to

compare the four methods of estimation described in the previous sections. Further-

more, the 'general' and 'directional' tests and the Mantel-Haenszel test described in

Section 1.4 are also used to analyse these data and the results of the tests compared.

Considering the issue of testing first, the odds ratio ad1/bc1 or the relative

risk (RR) a1 n 2 /cn 1 are both possible measurements of treatment effect. Both are

considered here and hence the null hypothesis is that the odds ratio (or relative risk) is

1 in each study. Equivalently, since O is taken as the log odds ratio in practice, this is

a test of the null hypothesis that the log odds ratio (or log relative risk) is zero in each

study. It also follows that the weights w = 1/var(ôj) are taken as the reciprocal of the

variance of the log odds ratio, var(logdR) = (1/a 1 ) + (1/b) + (1/ci ) + (1/d), or the

reciprocal of the variance of the log relative risk, var(logFiR) = (b1/a1n1i)+(d/cjn12).

Since no assumptions are made, in any test, regarding the distribution of the

different treatment effects under the alternative hypothesis H1 , the tests are always

valid for the null hypothesis H0 : = ... = 0, = 0. However, they do not test the null
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Table 3: Test results for the diuretics trials data for the null hypothesis that there is

no treatment effect in any of the trials

Test	 Outcome Test statistic	 Degrees of	 p-value

measure	 observed	 freedom for x2
	

'1

General	 logOR	 47.11	 9	 <0.001

General	 logR.R	 45.90	 9	 <0.001

Specific	 logOR	 19.85	 1	 <0.001

Specific	 logRR	 17.28	 1	 <0.001

Mantel-Haenszel	 21.63	 1	 <0.001

OR=odds ratio

RR=relative risk

hypothesis that the overall treatment effect is zero. In order to test H0 : 0 = 0, the

assumption of homogeneity of the treatment effects must hold, and only then may

the alternative hypothesis be defined as H1 : 0 0.

All tests carried out gave highly significant test statistics (Table 3), thus pro-

viding evidence against the null hypothesis. The tests using relative risk instead of

odds ratio produced the same conclusions with the test statistic in each case being

slightly smaller. The results indicate that there is strong evidence in the diuretics

trials that at least one trial has a log odds ratio which is different from zero. Hence,

the conclusions to be drawn regarding a meta-analysis from these tests are rather

limited and so it can be seen why it is usually desirable to produce an estimate of an

overall treatment effect.

The inverse-variance estimate, Mantel-Haenszel estimate and the Peto esti-

mate are easily calculated, but computer software is required to carry out logistic re-

gression. Hence, the statistical modelling package GLIM was used in order to obtain

the logistic regression results [58]. For each of the 18 (9 trials x 2 treatment groups)
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subgroups, the number of events of pre-eclampsia (r) was entered into the program,

together with the number of patients (n). The dependent variable was therefore r, the

error structure binomial with denominator n, and the link was logit. Factor variables

were created for trial (levels 1-9) and for treatment group (1=control, 2=treatment).

An additive model was then fitted induding both trial and treatment group variables

so that the estimate of overall treatment effect was obtained.

Table 4: Estimates of the overall odds ratio and its confidence interval for the diuretics

trials data from the four different fixed effect methods

Method	 Estimate of overall 95% C.I. for

odds ratio	 odds ratio

Inverse-variance	 0.67	 (0.56,0.80)

Mantel-Haenszel	 0.67	 (0.56,0.80)

Peto method	 0.66	 (0.56,0.79)

Logistic regression	 0.66	 (0.56,0.79)

The results from all four methods produce almost exactly the same estimate of

the overall odds ratio and almost the same 95% confidence interval (Table 4). This will

not be the case for every set of data, however, since some estimators perform better

than others under specific conditions. The inverse-variance method is generally to

be preferred as it is asymptotically unbiased and consistent for all values of 0 [591.

However, this method has a disadvantage in that it cannot be used if at least one of

the studies in the meta-analysis has an event rate of zero. Furthermore, if the sample

sizes are small, then the asymptotic normality assumptions will not hold [60, 61].

The same is true for small sample sizes with the Peto estimation method, where the

validity of the confidence interval relies on the approximate normality of the score

statistic under the null hypothesis of no overall treatment effect [40]. It has also been

observed that the Peto estimate can yield extremely biased results when applied to

sets of data where there is a large imbalance between the number of patients in the

52



treatment group and the number in the control group and also when the odds ratio is

far from unity [55]. The Mantel-Haenszel estimate, in contrast, is robust when there

are small frequencies and it can cope easily with zero cells [50, 62]. It does become

unreliable, however, like the Peto method, when the true odds ratio is a long way from

unity, but also when there is severe heterogeneity, although it is reasonably robust to

moderate heterogeneity [62]. The confidence limits proposed for the Mantel-Haenszel

estimator are also approximations, but have been found to perform well, even when

the counts in individual strata are very small, provided the method does not break

down with too many zeros [61, 63]. A better alternative, when frequencies are small,

may be to use exact methods (Section 2.5) which are based on exact distribution

theory [61]. It should also be noted that the choice of method will be limited when

the outcome of interest is other than the odds ratio.

Although the consistency of the results in Table 4 might appear to suggest that

the estimate obtained is a reliable indication of the true treatment effect, the choice

between the different fixed effect estimates is not the real issue here. The problem is

whether a fixed effect model is appropriate for this set of data at all, or whether the

assumption of homogeneity is unrealistic.

1.6 Heterogeneity Across Studies

For the assumption of homogeneity to be valid, the assumption that 0. is equal to 0

for every study i (i=1,...,k) must be satisfied. If this condition does not hold then

heterogeneity is present. Due to the fact that in the majority of meta-analyses there

will be differences in study protocol, type of patient, and treatment duration and

regimen between the trials, it would not be surprising if each study were to have a

different underlying treatment effect. Hence, in practice, this clinical heterogeneity is

likely to lead to statistical heterogeneity and therefore the breaking of the assumption

underlying the fixed effect model.
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A formal test of heterogeneity [38J may be performed using a statistic which

is derived by considering the squared deviation of each study estimate from the true

overall mean, (O - 0)2, and then standardising by dividing by the study variance

v=1/w. Then assuming that the in1 are fixed, w1 (O - 0) 2 has a x12 distribution and

hence summing over all k studies produces a statistic w(i - 9)2 which has a

x distribution under the null hypothesis of homogeneity. However, the true value 0

is, of course, unknown and must be replaced by the weighted mean estimate O (6).

This means that 1 degree of freedom is lost from the null distribution and the actual

test statistic used is given by

= k	

- 0)2	 (12)

where 0i=E.1 w1 Oj/E.1 w, which is then compared to a xL distribution. It is

assumed in the calculation of Q that the weights are known, when in practice they

are estimated, and this issue is addressed in Chapter 5.

A non-significant result for the test of heterogeneity does not prove homogene-

ity, particularly since the test is not very powerful [35]. (The issue of power of the

test will be investigated further in Chapter 4.) Therefore, even when a non-significant

result is obtained, interpretation should still bear in mind the possibility of hetero-

geneity across the studies. In the example of the diuretics trials, however, it is clear

that heterogeneity exists, since calculation of the test statistic given in (12) produces

the value Q=27.27, which is highly significant (p < 0.001) when compared to the x
distribution.

Peto presents a "natural approximate chi-square test" of the homogeneity

assumption. The test is based on the use of the efficient statistic Z and Fisher's

information V as defined in Section 1.5.3, substituted into the formula for Q (12)

[4]. The statistic becomes simply the overall x test minus the x specific test and is
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given by

(Oi - E)2 [E=1(O - EI)J2	
13)

i=1

which has an approximate x2 distribution with k - 1 degrees of freedom, where

k* is the number of non-zero variances (k* is usually equal to k). In the diuretics

trials example, the results for this test agree with Q, with Qp being equal to 29.3

(p <0.001).

The results of the logistic regression, obtained from the fit of the model in

GLIM, also yield a test of heterogeneity by way of the deviance. The deviance is a

measure of the fit of the model, and so if a significant 'trial by group' interaction (or

equivalently heterogeneity) exists, there will be a lack of fit of the model, indicated

by a large deviance in comparison to a x2 distribution. Again in the diuretics trials

example, heterogeneity was found to be present since the deviance (29.4) indicated a

significant lack of fit (p <0.001). However, when small frequencies are present in the

data, caution in the interpretation of the deviance is required, since the approximation

to a x2 distribution may then be poor [58].

Thus, the results obtained from the fixed effect methods must be interpreted

cautiously in the case of the diuretics trials data, since the homogeneity assumption

on which they are founded is obviously not valid. Hence, the fixed effect estimates

are of little value by themselves and in such circumstances should certainly not be

presented without any reference to the heterogeneity which is present.

If heterogeneity is found to be present in a meta-analysis, which is common

in medical research situations, then there are two options available. The first, which

is generally to be preferred, is to look at the reasons behind the heterogeneity. This

may involve consideration of the various characteristics of the original studies and an

investigation of trial and patient differences [55, 64, 65]. It may thus be possible to

55



explain and, therefore, effectively to eliminate heterogeneity from the meta-analysis

by identifying homogeneous subgroups of trials. However, it should be noted that

such procedures are always post-hoc and must therefore be carried out with care

[12]. If not all the variation can be explained in this way, or if an investigation is

impossible due to the required data being unavailable, then an alternative approach is

to incorporate the heterogeneity into the meta-analysis model by, for example, using

the so called random effects model presented in the next section.

1.7 The Random Effects Method of Meta-Analysis

A standard random effects method based on the calculation of a moment estimator

of the between-study variance is described in Section 1.7.1. An example is presented

in Section 1.7.2 where the random effects results are compared with the fixed effect

results, while Section 1.7.3 contains a discussion.

1.7.1 Standard random effects method

In situations where there is heterogeneity present, the random effects method for

meta-analysis provides a way of incorporating between-study variability into the

overall estimate. However, assumptions different from that of homogeneity must

be made instead, and these are that the true treatment effect of each individual trial

O, i = 1, ..., k, is distributed with mean 0 and a between-study variance o. This

implies that trials included in the meta-analysis are a random sample from an overall

population of all such trials. Then each separate trial estimate 0, i = 1, ..., k, is as-

sumed to have a distribution with mean 0 and variance v. By setting up this model,

an estimate of the between-study variance may be obtained, which can then be used

in the calculation of a random effects estimate of the overall treatment effect 0.

One formula used to calculate ô [38J, similar to that used in the random
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effects one-way analysis of variance, is based on the Q statistic of heterogeneity (Sec-

tion 1.6) and is derived by consideration of the expectation of Q (12). Rewriting Q

as E.1 w(Ô - 9)2 - 
(E_ w)(à - 0)2 in order that the expectation may be easily

obtained gives

E(Q) =	 wvar(ôj) - (E...1 w)var(Ô)	 (14)

= (k-1)+4 ( E=1w—	
\
)	 (15)

L4=1 W /

Then using the method of moments, equating Q with the expected value of Q (15),

and rearranging the resulting equation, an estimate of the between-study variance is

obtained:

2...	 Q—(k-1)
ç— k	 2	 ( )
L1=i i

L.=i s -
L=1 t

However, when Q is less than (k - 1), the estimate of 4 will be less than zero. Since

a variance cannot take a negative value, the actual estimate of 4 used in practice is

max{O, b}
	

(17)

where & is given in (16).

The unbiased random effects estimate of 0, â, say, can then be found by

calculating a weighted average of the individual estimates, as in formula (6), but with

new weights w7. These weights incorporate the additional component of variance and

are given by 1/(v +4). Hence, once more assuming that the weights, and therefore
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4, are known (the issue of allowing for the estimation of 4 is considered in Chapter

2), the random effects estimate of the overall treatment effect is given by

- E=1w:ô
-k	 *

L11=i i

To obtain confidence intervals it is necessary to make further assumptions

about the form of the distribution of the treatment effects and the random effects,

that is Ô1 N(O, v1 ) and O N(O, 4) . (Chapter 3 addresses the problem of checking

these distributional assumptions). The approximate variance of Or is then given by

1
var(Or) = ckLjs=Ii

and hence confidence intervals for the log odds ratio may be obtained.

1.7.2 Example

The random effects estimate was calculated for the meta-analysis of the nine diuret-

ics trials and the results were compared with those from the fixed effect methods

(Section 1.5.5).

The random effects estimate of the overall odds ratio is smaller than the estimates

obtained using any of the fixed effect methods (Table 4). Table 5 compares the results

from the random effects method with those from the fixed effect inverse-variance

method, which is in fact the random effects model where è is taken equal to zero.

It can also be seen from the comparison of results on the odds ratio scale that the

95% confidence interval for the random effects estimate is substantially wider than

that for the fixed effect estimate.

(18)

(19)

The estimate of 0.230 for the between-study variance indicates that the van-
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Table 5: Comparison of the estimates of the overall treatment effect and its confidence

interval from the inverse-variance fixed effect and random effects methods for the

diuretics trials data

Method	 Estimate of	 Estimate of 95% C.!.

between-study variance overall OR	 for e°

____________________ ___________________	 (e0)	 _________

Fixed (inverse-variance) 	 0	 0.67	 (0.56,0.80)

Random	 0.230	 0.60	 (0.40,0.89)

or

ability between studies is large in comparison to the variation within individual stud-

ies. There are only two of the nine trials (trials 4 and 8) which have an individual

variance v greater than this between-study variance.

1.7.3 Discussion

The wider confidence interval associated with the random effects estimate is due to the

extra variability introduced into the model by the between-study variance. In order

to see why the random effects estimate is lower than the fixed effect estimate for these

data, it is necessary to consider the allocation of weight. The simplest way to achieve

this is to look at the percentage weight, defined as (w/ E..1 w) x 100% for trial i,

given to each of the individual estimates under the two models (Table 6). Including

a between-study component of variance in the model has the effect of levelling out

the weights. In the fixed effect method, where oj=0, the trial with the smallest

variance, that is the most precise study, is given over half of the weight (54.6%).

The next largest allocation, which is to trial 9, is much less at only 11.8%. Trial 8, in

which only a very small number of events occurred, is given hardly any weight (1.2%).
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These weights clearly contrast with those obtained from the random effects method.

The additional variation means that, although trial 6 still receives the largest amount

of weight, its share has been considerably reduced from 54.6% to 17.0%. The next

largest weight is now not much less, being 13.9%, and all the other trials have been

given the extra weight which has been taken away from trial 6. This means that

the overall estimate from the random effects method is not so dominated by just one

single trial, as it is in the fixed effect case. The fact that trial 6 has a odds ratio higher

than the overall fixed effect estimate and that it loses weight in the random effects

method pulls the overall estimate down. Also, this weight is redistributed primarily

between trials 1, 2, 3, 5, and 7, three of which have odds ratios much lower than the

fixed effect estimate, and this further explains why the estimate is lowered.

Table 6: Comparison of the percentage weights allocated to each of the diuretics trials

in the fixed effect and the random effects methods

Trial	 Percentage of total weight

(w/ E w) x 100

Fixed effect J_Random effects

6	 54.6	 17.0

7	 6.6	 11.8

8	 1.2	 4.5

9	 11.8	 13.9

w2 =weight allocated to study i, i = 1, ..., k

60



The random effects estimate, like the fixed effect estimate, should not simply

be quoted without any questions regarding the validity of the model. The between-

study variance has been estimated and should, therefore, ideally have its own measure

of precision. The fact that in this example, as in many meta-analyses, 4 has only

been estimated from a small number of trials means that the estimate will not be

very precise. Furthermore, in calculating the confidence interval for 9, it has been

assumed that the value of the between-study variance is known rather than estimated.

This means that although the random effects confidence intervals, based on taking

the variance as 1/E w under the assumption of normality, are wider than the

fixed effect intervals, they are still likely to be too narrow, since they do not take into

account the variability in	 These points are pursued further in Chapter 2.

A further point which has already been briefly mentioned, which relates to both

the random effects and the fixed effect methods, is that they each assume that the

individual study variances v are known, whereas in reality they must be estimated

from the data. This problem was identified by DerSimonian and Laird [38] as an

aspect of their method which required further investigation and they suggested that

it may be preferable to use alternative estimators of the v to that proposed. The

problem of estimating weights is considered later in the thesis (Chapter 5).

1.8 Displays in Meta-Analysis

The presentation of a statistical analysis is generally enhanced by graphical displays

of the data. Meta-analysis is no exception in this respect, as a clear idea of all the

trial estimates in relation to each other is required. Displays can also be useful when

interpreting the amount of heterogeneity contained in a particular set of data. The

amount of heterogeneity in any given meta-analysis can be tested using the statistic Q

(Section 1.6). An estimate of the between-study variance can also be obtained which

is an indication of the amount of heterogeneity present (Section 1.7.1). However,
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what the value of the between-study variance means in terms of heterogeneity can be

difficult to comprehend. This section reviews ways in which graphical displays and

plots can be used when presenting a meta-analysis.

The standard way to represent a meta-analysis data set in a diagrammatic way

is to present each individual trial estimate of treatment effect ö,, together with its

95% confidence interval on a single plot [33]. The overall fixed effect estimate Ô 1 and

its 95% confidence interval are usually plotted as well (Figure 1). From such a plot it

can be seen whether there is much variation in the individual trial estimates , and,

by looking at the overlap of the confidence intervals, how compatible they are with

each other. Hence, some grasp of the amount of heterogeneity present in the data can

be gained from these simple displays. These diagrams also provide information as

to which trials produce a statistically significant treatment effect and which do not.

Furthermore, it may be seen that the confidence interval for the overall estimate of

treatment effect is much narrower than those of the individual trial estimates (Figure

1), indicating an increase in precision.

When odds ratios are the outcome measurement of interest, then it has been

suggested by Galbraith [66] that, for two reasons, a display on the log scale is to

be preferred to that on the linear scale. Firstly, the confidence intervals will be

symmetrical, rather than asymmetrical as on the linear scale, and secondly, a unit

change in the log odds ratio corresponds to a multiplication of the odds ratio by the

same factor at any point on the scale. This means that 0.5 and 2.0, for example,

are equidistant from 1. Also, the asymmetrical intervals on the linear scale may

not always fit onto a conveniently scaled diagram if the precision of the varies

considerably. Trials are often ordered chronologically [46] on these diagrams, but

may also be ordered by quality [361 or grouped such that trials with similar designs

or characteristics are displayed together [67, 68].

However, regardless of the outcome measure or scale used, a disadvantage of
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Figure 1: Standard meta-analysis diagram showing each md vidual trial estimate of

treatment effect together with its 95% C.I. for the diuretics trials data
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log odds ratio

this type of display has been identified. Trials which have more observations or events,

thus providing more reliable information to the meta-analysis, have the narrowest

confidence intervals. The visual impression of the plots can therefore be misleading

in that the trials which are least informative tend to dominate the diagram as they

have the widest confidence intervals. In order to get over this problem, a simple

improvement to the diagram may be to order the trials with the most informative

at the top and the least informative at the bottom, that is in increasing width of

confidence interval (Figure 2).

Alternatively, the idea of representing the percentage weight allocated to each

trial in the fixed effect model (or random effects model) by means of squares drawn

on the individual confidence interval has also been used [64, 69, 70, J41 (Figure 3).

The squares are such that their areas are proportional to the weight and so the

larger the square, the more informative the trial. It may clearly be seen that in the
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Figure 2: Standard meta-analysis diagram for the diuretics trials data with trials

ranked from the most to the least informative

trial
number
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diuretics trials meta-analysis, a single trial takes most of the weight in the fixed effect

model (Figure 3). The importance of looking at percentage weights has already been

discussed (Section 1.7). Ways of incorporating this information into the displays is

therefore to be encouraged.

A further adaption of the standard meta-analysis diagram suggested by Lau et

al. [23] is to display a 'cumulative' meta-analysis, whereby a new overall estimate and

new confidence interval is plotted as each new trial result is added in chronological

order. This may be done using a fixed effect (Figure 4) or a random effects method

(Figure 5). Typically the picture obtained will be of a series of increasingly narrow

confidence intervals centring around an increasingly stable point estimate [36]. These

plots, therefore, provide a continuous picture of the state of knowledge over the period

in which the full set of trials were being carried out. It can clearly be seen at which

stage the large trial (number 6) was incorporated into the analysis as there is a
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Figure 3: Standard meta analysis diagram where the squares have areas proportional

to the amount of information contributed to the fixed effect estimate
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substantial decrease in the confidence interval on the fixed effect plot (Figure 4)

at this point. The fact, however, that implicit multiple significance tests are being

carried out here, that is one for each study added, means that adjustment of the

p-values may be required, or alternatively that the display should not be interpreted

formally.

Although useful as an initial look at the data to be included in a meta-analysis,

these standard meta-analysis diagrams are not particularly informative for the pur-

pose of investigating heterogeneity [27]. A diagram proposed by Galbraith [66] is an

improvement in this respect and is discussed in Section 3.4.2.
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Figure 4: Cumulative fixed effect meta-analysis diagram for the diuretics trials data

year (tr al)

-2	 -1.5	 -1	 -0.5	 0	 0.5	 1	 1.5	 2

log odds ratio

Figure 5: Cumulative random effects meta-analysis diagram for the diuretics trials

data
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1.9 Comparison of the Fixed Effect and the Random Effects

Methods of Meta-Analysis

To complete Chapter 1, the interpretation of the fixed effect and random effects

methods are discussed and differing views compared.

In the case where a group of studies have very similar protocols and study

populations and in the absence of any statistical heterogeneity, it is generally agreed

that the fixed effect estimate of an overall treatment effect is a valid way of sum-

marising the data [36]. However, there is less consensus as to the best approach when

clinical and statistical heterogeneity is present in a meta-analysis. Furthermore, there

continues to be disagreement as to the interpretation of the fixed effect results and

the value and appropriateness of the random effects model. Many researchers have

advocated that the best approach to a meta-analysis, when heterogeneity exists, is to

carry a full investigation of the sources of heterogeneity [21, 27].

The issue of hypothesis testing (Section 1.4) is much less controversial than

that of the estimation of the overall treatment effect, since fewer assumptions are re-

quired. The approach to meta-analysis advocated by Peto [5] uses the idea of hypoth-

esis testing rather than estimation. He favours the (0— E) methods (Section 1.4 and

1.5.3) because "one can get all the asymptotic efficiency of logistic regression,...while

avoiding the assumption that the relative risk is the same in each trial" and therefore

prefers to term this approach "assumption free". The overall log odds ratio obtained

using Peto's method is described as the "typical" log odds ratio, suggesting that it

is an average value of the treatment effect derived from a selection of true fixed ef-

fect values. Peto then suggests the use of three standard deviations away from zero

as being the reference standard for evidence of a treatment difference [ 51 . Hence,

as long as it is remembered that the null hypothesis being tested is merely that of

each treatment effect being equal to zero, then the approach outlined above is valid.
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However, Peto's approach to estimation is far less clear and no specific exposition of

these methods has been provided in the literature.

Various researchers [35, 72] have compared the fixed effect and the random

effects approaches. Berlin et al. [35], when looking at the results of 22 meta-analyses,

claimed that both methods often yield similar results, certainly at a qualitative (sta-

tistically signfficant versus non-significant) level. However, the variance estimates of

the overall treatment effect did differ, with the random effects analysis being slightly

more conservative. Although in the examples considered few qualitative differences

existed, it should be noted that this generalisation will not hold for all sets of meta-

analysis data. If the random effects model is more conservative, there will be cases

when the two methods will produce different results at a qualitative level too; that

is the fixed effect approach will produce a significant result and the random effects

method a non-significant one. Berlin et al. [35] conclude from the study that the

choice of methods may, therefore, depend on other more philosophical, rather than

statistical, considerations. The random effects model has been criticised as being

"a wholly wrong approach" [731, because it is answering the wrong and irrelevant

question of "what would happen if we chose another treatment at random from the

universe of treatments that we could choose and another population at random from

the universe of populations?" The fixed effect model, on the other hand, it is claimed

is addressing the question of interest [73]. Others express more doubt in the fixed

effect model in the presence of heterogeneity [33, 72, 74].

When estimating the overall treatment effect, all fixed effect methods are mak-

ing the same assumption of underlying homogeneity of the treatment effects, since

the weights only take account of within-study variation and ignore any between-study

variation. Rather than the point estimate being incorrect, the main problem with the

fixed effect methods when heterogeneity is present, is that the standard error is too

small thus meaning that the confidence interval is artificially narrow [12, 35, 38, 45].
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The results of a simulation study [75] considering the issue of between-centre vari-

ance in a multicentre trial can be directly applied to meta-analysis since the data is

simulated in exactly the same way in both cases using the same model. These results

showed that the between-centre (or between-study) variation leads to the confidence

intervals being inappropriately narrow. Peto has suggested the use of 99% instead of

95% confidence intervals [731, implying that greater evidence is required against the

null hypothesis in a meta-analysis than a single clinical trial. However, 99% and 95%

confidence intervals have different meanings and both will be spuriously narrow if cal-

culated from a fixed effect model. A 99% confidence interval cannot simply replace a

95% confidence interval and reflect extra variation.

It is generally accepted that a thorough investigation of heterogeneity is re-

quired in order to attempt to explain the variation in the treatment effects. In the

opinion of Greenland and Salvan [55], the choice between the two approaches is en-

tirely secondary to the examination of inter-study heterogeneity. Indeed, Greenland

[21] is sceptical of the random effects model in that he holds the view that it can

conceal the fact that the overall estimate is a poor suimrnary of the data. Similarly,

Jenicek [65] believes that the analysis of heterogeneity should not be sacrificed in or-

der to obtain some 'average' value. Large meta-analyses by those who favour the fixed

effect approach [64, 69, 70] have also included an investigation of heterogeneity in the

form of separate subgroup analyses. However, residual heterogeneity may remain un-

explained, even after such an investigation, possibly because of some unmeasured or

unreported study characteristic [36]. In such situations the random effects model may

be useful, but should not be viewed as a panacea for any situation in which hetero-

geneity is large [36]. However, the random effects model does gives more appropriate

confidence intervals than the fixed effect model [35].

The random effects model is certainly far from ideal as a method for obtaining

an overall estimate of treatment effect. Firstly, because of the widely criticised and
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unrealistic assumption that the trials in a meta-analysis are a random sample from a

broader universe of trials, particularly when a specific form, usually normality, must

be attached to this distribution. Furthermore, since the random effects method gives

greater weight to smaller studies, the results may be emphasising poor evidence at

the expense of good [33]. The estimate of the between-study variance is usually

imprecise, being estimated from only a few trials, and is susceptible to bias [76] and

hence this bias could affect the overall estimates. The random effects analysis is,

therefore, probably best thought of as a check on the robustness of the conclusions

from the fixed effect method to the failure in the assumption of homogeneity [76].

This sensitivity analysis will be of particular value when the sources of heterogeneity

are intangible. Peto holds the view that the random effects approach can lead to

the over cautious interpretation of results leading to a treatment being withheld

from patients who would find it beneficial. However, if there is much between-study

variation, then there may be uncertainty as to whether the treatment is of benefit,

with different trials showing different results. If the random effects analysis indicates

that the conclusions of the fixed effect analysis are valid then there will be additional

cause for confidence in these results. If, however, the conclusions are different then

it is likely that further information is required and no firm clinical conclusions can

be drawn as to the benefit of the treatment. Dickerson and Berlin [36] state that the

choice of the research question is critical in meta-analysis and a fairly general clinical

question is often preferable to a very specific one, due to the heterogeneous nature of

studies.
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2 Extensions to the Standard Meta-Analysis

Methods

The estimation methods for meta-analyses described in Chapter 1 are all commonly

used standard techniques. However, none are completely satisfactory, especially in

the presence of significant clinical and statistical heterogeneity. Chapter 2 considers

extensions to these basic techniques and in particular addresses problems related to

the estimation of the between-study component of variance in a random effects model.

The fact, that in a random effects model, the between-study variance is as-

sumed to be known in the calculation of var() when in practice it must be estimated

from the data, means that the standard random effects confidence interval is still too

narrow. The initial sections of the chapter address this problem. Section 2.1 shows

how a graphical method can be used as a sensitivity analysis to check the robustness of

the estimate of the overall treatment effect to changes in the between-study variance.

Section 2.2 proposes a likelihood method which produces both a confidence interval

for the between-study variance and a confidence interval for the overall treatment

effect which takes account of the fact that the between-study variance is estimated.

Three practical examples are considered in Section 2.3 in order to illustrate this new

methodology and this section also includes a discussion of the use of the information

matrix to obtain approximate results from the likelihood model. Section 2.4 consid-

ers an alternative likelihood approach proposed by van Houwelingen, Zwindermann

and Stijnen [45], based on the full conditional likelihood for binary outcomes and

Section 2.5 shows how this method may be particularly useful when dealing with

meta-analyses which include trials which have small numbers of, or even zero, events.

Section 2.6 considers a Bayesian approach to meta-analysis, reviewing both empirical

Bayes and fully Bayesian methods. Section 2.7 compares a proposed alternative mo-

ment estimator of the between-study variance with the standard DerSimonian and
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Laird moment estimator (Section 1.7.1) and finally Section 2.8 contains a concluding

discussion for Chapter 2.

21 Sensitivity Analysis

In the standard random effects model (Section 1.7.1) it is assumed that the weights

are known and therefore, that the value of the between-study variance is known.

In practice must obviously be estimated from the data, but the method does not

take this imprecision into account when estimating 0. The fact that °1 is estimated

means that there is an interest, when carrying out a meta-analysis, in the robustness

of the estimate of the overall treatment effect to changes in the value of the between-

study variance. Such an investigation gives an idea of the effect that an imprecise

estimate of 4 may have on the estimate of treatment effect.

Section 2.1.1 explains the methods and uses an example to explain how a sensi-

tivity plot may be produced. Section 2.1.2 discusses the resulting plot and investigates

the reasons for the observed shape.

2.1.1 Methods

A plot of the estimate of 0 against the between-study variance 4 may be used as a

form of sensitivity analysis to assess how the estimate of the overall treatment effect

0 varies across values of 4. Thus, when 4=0, the estimate of the treatment effect

is simply that obtained from the fixed effect model using the inverse-variance method

(Section 1.5.1). As 4 increases, the distribution of the weight between the trials

in the meta-analysis becomes increasingly even. As 4 tends to infinity, the weights

tend to equality and the overall estimate, therefore, tends to a simple unweighted

average.
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Using simple plots of 0 against 4 it is not possible to show the complete range

of variation on a single graph. Hence, plots of the odds ratio against 4/(ô1 +4),
where & is the non-zero DerSimonian and Laird (D&L) moment estimate of the

between-study variance (Section 1.7.1) were used, In the context of the meta-analysis

of the diuretics trials (Section 1.3.1), the estimate of 4 is 0.23. The sensitivity

plot of the estimated odds ratio, which is actually e°, is therefore plotted against

x = 41(0.23 + 4) in Figure 6, so that x = 0 corresponds to 4=0, z = 0.5 to

4=0.23 (the D&L moment estimator) and x=1 to 4=oo, and the whole range of

4 is reduced to a finite scale. The choice of the moment estimate of 4 in the term

4/(ô + 4) is rather arbitrary, as any constant number, such as 1 for example,

could have been used and is, in fact, necessary in the situation where ô is zero. The

use of & does however mean that for â>0, the random effects estimate is always

situated in the centre of the plot, that is at 0.5 on a scale of 0 to 1. This ensures

that attention is always focused on the most important part of the plot, irrespective

of the numerical value of the random effects estimate.

The diuretics trials data have an overall odds ratio (Figure 6) which decreases

from the fixed effect estimate to a minimum (which happens to be close to the random

effects estimate) and then increases again until it reaches the 'equal weighting' value.

This type of pattern is not necessarily produced by these sensitivity plots, and the

shape of a plot for any particular set of data is not easily predicted. The behaviour,

particularly for large 4, tends to depend on the treatment effects in the smallest

trials.

2.1.2 Discussion

In order to explain the shape of the plot which emerged for the diuretics trials data,

the percentage weighting allocated to each trial was obtained for a range of values of

4. The main interest lies in the explanation of the minimum value and subsequent
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Figure 6: Sensitivity plot showing how the overall odds ratio varies with the between-

study variance (o) for the diuretics trials meta-analysis
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O.23=random effects estimate of between-study variance 4
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increase in overall odds ratio. Hence, weightings corresponding to values of ti be-

tween 0 and 1 were studied since this range includes the area of the plot where the

minimum occurs.

Trial number 8 (Table 7), which has a large individual odds ratio (OR=2.971)

but is the most imprecise trial, gets allocated increasing weight as 4 increases and

it is this that raises the overall estimate after the minimum value has been reached.

Trial 8 has the lowest initial weighting and is consequently the last whose weight

levels out. At a 4 value of approximately 0.5-0.6, the weightings for all the other

trials are approximately equal (Table 7), and hence the major effect on the change

in the overall odds ratio after this point must be that of trial 8 receiving increased

weight.

Before the minimum is reached, the main influence which leads to a decrease in

the estimate of the overall treatment effect is the rapid loss of weight of the largest trial

(trial 6), which has an individual estimate higher than the overall fixed effect estimate.

In the fixed effect estimate (4=0), trial 6 is allotted over half of the total weight,

while in the random effects estimate much of this weight has been redistributed to

the other trials. Four (numbers 2, 3, 4 and 5) out of the other seven trials which

receive this weight in the initial redistribution (i.e. all trials except trial 8) have low

individual odds ratios (Table 7) and this would appear to explain the reduction in

the overall estimate. Furthermore, it is interesting to note that the overall odds ratio

begins to increase again soon after the random effects estimate and at a value of 4
which is far from extreme. Hence, the most imprecise trial would appear to have

some influence on the random effects estimate of the overall treatment effect.

The sensitivity analysis was repeated with the small trial (trial 8) being ex-

cluded in order to see whether, indeed, the influence of this trial was important. This

second analysis did produce a quite substantially different estimate of the overall

odds ratio under the random effects model (Table 8). The estimate of the between-

75



Odds

ratio

0.8	 0.9
	

1.0

(0.78) (0.80)
	

(0.81)

11.2	 11.2
	

11.2
	

1.04

11.7	 11.7
	

11.6
	

0.40

11.0	 11.0
	

11.0
	

0.33

9.8	 9.9
	

10.0
	

0.23

11.8	 11.7
	

11.7
	

0.25

13.2	 13.0
	

12.8
	

0.74

11.8	 11.6
	

11.6
	

0.77

7.2	 7.5
	

7.1'
	

2.97

12.4	 12.3
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Table 7: Percentage weights allocated to each trial for different values of the between-

study variance

Trial

0.0
	

0.1	 0.2

(0.0) (0.30) (0.47)

1
	

5.0
	

9.7	 10.5

2
	

6.8
	

11.6	 11.9

3
	

4.5
	

9.1	 10.0

4
	

2.7
	

6.3	 7.6

5
	

7.0
	

11.8	 12.1

6
	

54.6 22.0	 17.6

7
	

6.6
	

11.4	 11.8

8
	

1.2
	

3.2	 4.3

9
	

11.8
	

15.0	 14.1

Weight allocated to trial (%)

Between-study variance (4)
(x = 4/(0.23 + 4))

0.3	 0.4	 0.5	 0.6	 0.7

(0.57) (0.64) (0.69) (0.72) (0.75)

10.9	 11 0	 11.1	 11.1	 11.2

12.0	 11.9	 11.7	 11.8	 11.8

10.4	 10.7	 10.8	 10.9	 11.0

8.3	 8.8	 9.2	 9.4	 9.6

12.1	 12.0	 11.9	 11.9	 11.8

15.9	 14.9	 14.2	 13.8	 13.5

11.9	 11.9	 11.8	 11.8	 11.7

5.1	 5.7	 6.2	 6.6	 6.9

13.6	 13.2	 12.9	 12.7	 12.5

study variance, however, remained almost the sä.me, being only slightly smaller at

0.21. Consequently, the associated confidence interval for the overall odds ratio was

marginally narrower and was shifted in position. The plot also differed in shape,

no longer increasing after reaching a minimum value, but decreasing monotonically

to the 'equal weighting' estimate (Figure 7). This was much lower than the 'equal

weighting' estimate obtained for the full set of data.

For the full data set, the range of possible values of is between 0.5956 and

0.6717 (Figure 6), and hence the variation in the point estimate is not particularly

large. However, as 4 increases, the certainty with which the value of 0 may be

estimated decreases and hence the 95% confidence interval for 0 gets wider as 4

increases. Confidence intervals may also be illustrated on the sensitivity plots. For

each value of 4, the variance from the random effects model may be calculated using
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Figure 7: Sensitivity plot showing how the overall odds ratio varies with the between-

study variance (4) comparing the full set of data with that excluding trial 8 for the

diuretics trials meta-analysis
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Table 8: A comparison of the results for the full data with those from the data

excluding trial 8

Case	 Type of	 Estimate of	 Estimate of	 95% Ci. Width of CI.

estimate between-study variance overall odds ratio 	 for

_____________ ________ 	 (&)	 ()	 _________ ___________

Full data	 Fixed	 0	 0.67	 (0.56,0.80)	 0.24

Random	 0.23	 0.60	 (0.40,0.89)	 0.49

Without trial 8 Fixed	 0	 0.66	 (0.55,0.79)	 0.24

Random	 0.21	 0.56	 (0.37,0.82)	 0.45

var(Ôr) = w and so the corresponding confidence interval can be obtained.

The plot (Figure 8) indicates how the initial increase in the width of the confidence

interval is gradual, but how for extreme values of 4, the interval increases in width

very rapidly, with the upper bound tending towards infinity.

The technique presented in this Section is useful for checking the robustness of

any conclusions drawn from a fixed effect or a random effects meta-analysis. Since 4
cannot be estimated very precisely, especially when there is only a small number of

trials in the analysis, the technique reveals whether this creates a problem in relation

to the conclusion being drawn. If the sensitivity plot shows very little change over a

range of different 4, then the greater the confidence in the conclusions. However,

if the plot shows that the estimate and confidence intervals change markedly, then

extra caution should be expressed in the results.

2.2 Maximum Likelihood Approach to Meta-Analysis Based

on Marginal Distributions

A likelihood approach to meta-analysis is proposed in this Section, which is shown to

offer certain improvements over the standard random effects method (Section 1.7.1).
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Figure 8: Sensitivity plot showing how the overall odds ratio and its 95% confi-

dence interval vary with the between-study variance (o) for the diuretics trials

meta-analysis
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The model is introduced in Section 2.2.1, while Section 2.2.2 describes how confidence

regions may be obtained and Section 2.2.3 derives confidence intervals for both 0 and

4 from the relevant profile likelihoods.

2.2.1 Introduction

The standard random effects confidence interval for 0 is too narrow as it makes no

allowance for the imprecision in the estimate of 4. Furthermore, there is no published

method for calculating a confidence interval for 4 itself. In meta-analyses, which

commonly include only a small number of trials, the estimate of 4 will not be very

precise and so any such confidence interval would be wide. Initially an analogy to

the one-way analysis of variance was pursued in order to obtain a confidence interval

for 4, but this approach could only be applied in certain situations and proved

problematic for the general case. Both the problems mentioned above can, however,

be solved by using a likelihood approach.

The random effects model was set up as described in Section 1.7.1 with the

distributional assumptions of normality. Under this model, the marginal distribution

of each individual estimated treatment effect Ô, j = 1, ..., k, is, therefore, normal with

mean 0 and variance (v+ 4) . Hence the contribution from study i to the likelihood

for 0 and 4 is,

1	

{ -(

Ô - 0)2 1	 (20)L(0, 
4) = /2ir(v +4)	 2(v +4) 5

For a meta-analysis involving k independent studies, the full likelihood is the

product of the individual study likelihoods. The log-likelihood is, however, simpler

to work with, and is given by,
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(22)

(23)

k	 k

1(0,4) = -	 ln2ir(v + 4) -	
-9)2

. 
2(vH-4)	

(21)

To obtain maximum likelihood estimates (MLEs) of 0 and 4 that is and

bk,, the partial derivatives of equation (21), 81/80 and 01/04, are set to zero and

the resulting expressions rearranged [77]. The equations thus obtained, (22) and (23),

are then solved in an iterative manner, beginning by substituting an initial value of

in equation (23),

oi
A	 L.jj=1 (V+41)

k	 1

(v+41)

A A

'i-'k (0_0,)2_V
A	

L.41 (v.+b2)2
k	 I

(V.+b2)2

The actual form given in (23) is not the simplest expression possible for ô and is

obtained by subtracting	 v/(v + ô,)2 from either side of the initial equation,

but it is the most convenient form for the implementation of the iteration process.

Alternatively, the MLEs may be obtained directly from the log-likelihood given in

(21) using, for example, Splus [78J. This implements a routine which produces a

range of points from the joint likelihood 1(0,4) using a grid of values of 0 and 4.

The program then finds the maximum value of 1(0,4) and hence , and ô, also.

2.2.2 Confidence regions

The joint log-likelihood of 0 and 4 in (21) can be calculated and three-dimensional

plots obtained using Splus [78]. This same likelihood can also be displayed on a con-

tour plot where the contours join all the points which have the same log-likelihood
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and hence represent likelihood-based confidence regions. To obtain a joint confidence

region for both parameters 0 and 4 the fact that —2{l(0, 4) - l(O, &)} has an

asymptotic x distribution [79] is used. The approximate 95% likelihood-based con-

fidence region is thus given by all pairs of 0 and 4 which satisfy,

1(0, 4) > l(Ô1, o11) - 5.991/2	 (24)

where 5.991 is the 95% point of the x distribution.

2.2.3 Profile likelihoods

The profile log-likelihood can be used in order to find confidence intervals for each of 0

and 4. The profile log-likelihood is the log-likelihood for one parameter, which takes

into account the fact that the other parameter is unknown and must be estimated.

Hence, the profile log-likelihood for 4 is obtained by replacing 0 in equation (21) by

the maximum likelihood estimate O,,

-k _______
L1=i 

(V+7)

k	 i
(V+7)

for each given value of 4, that is proffle out 0. The profile log-likelihood, 1(4) =
l(0(4), 4), where â(4) is the MLE of 0 for a given 4, may then be plotted

against 4. It requires more work to obtain the profile likelihood for 0, since the

maximum likelihood estimate of 4 cannot be written in terms of 0 alone. The

maximum likelihood estimate of 4 for any given 0 satisfies the equation

(25)
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(O_0)2_V
=1 (V1+ô'1)2	

(26)k	 1

(V+ô1)2

Hence, in this case, the profile log-likelihood has to be found numerically, whereby for

each given 0 equation (26) is solved to find ô. This maximum likelihood estimate is

then used to obtain the corresponding point of the log-likelihood, l*(9) = 1(0, ô,(0)),

using (21).

In order to obtain confidence intervals from the profile log-likelihoods, the fact

that —2{difference in profile log-likelihoods} has an asymptotic x2 distribution is

utilised. Hence, _2{l*(4) - l*(&)} and 2{l*(0) - l*(ô:)} each have approximately

a x distribution [79], the degrees of freedom being the difference between the number

of unknown parameters. It then follows that the 95% confidence intervals are given

by all values of the parameters which satisfy the equations

1*() > l*(b1) - 3.84/2	 (27)

and

l*(0) > 1(Ô,) - 3.84/2	 (28)

where 3.84 is the 95% point of the x distribution.

A test for heterogeneity may also be derived from these profile log-likelihoods,

since a null hypothesis of homogeneity is equivalent to H0 : = 0. The one-sided

alternative hypothesis is then H1 : 4 > 0, under the assumption of a normally

distributed random effects model. The relevant likelihood ratio statistic to test for

heterogeneity is therefore LRT = /2{l*(4) - 1(0)} which can be compared to the

standard normal distribution to obtain a one-sided p-value.
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2.3 Practical Considerations

Three contrasting examples will now be considered in Sections 2.3.1-2.3.3 to illustrate

how taking into account the imprecision in the estimate of 4 affects the confidence

interval for 0. Section 2.3.4 then considers use of the information matrix as a way of

approximating the confidence intervals for 0 and 4 and Section 2.3.5 is a discussion.

2.3.1 Example 1: Diuretics trials meta-analysis

For the diuretics trials meta-analysis (Section 1.3.1), it can be seen from the three-

dimensional likelihood plot (Figure 9), as well as from the profile log-likelihood (Figure

10), that the likelihood of the between-study variance is, as expected, very asym-

metric. The profile log-likelihood for the overall treatment effect indicates that the

likelihood of 0 is much more symmetric in shape (Figure 11). However, unlike the

standard methods (Sections 1.5 and 1.7), using the profile likelihood does not force

the confidence interval for either parameter to be symmetric.

The contour plot (Figure 12) is difficult to interpret and is best used to obtain

an idea of the shape of the joint log-likelihood surface. It does, however, indicate that

the possible ranges of 4 and 0 are very much wider than the individual confidence

intervals suggest. It can be seen that the 95% likelihood-based conildence region

includes values of 0 greater than 0 which indicates the possibility of no treatment

effect.

The estimates and their corresponding confidence intervals based on the like-

lihood model can be compared to those obtained from both the fixed effect method

and the standard random effects method using the D&L moment estimator of 4
(Table 9). The maximum likelihood estimates agree well with the standard random

effects estimates. The fixed effect estimate of the overall treatment effect is slightly
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Figure 9: Bivariate distribution of the overall log odds ratio and the between-study

variance for the diuretics trials meta-analysis
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larger than the two random effects estimates. However, the fact that a reasonably

large estimate of the between-study variance is obtained indicates a lack of homo-

geneity in this set of studies. The likelihood ratio test for heterogeneity produces

a highly significant result (LRT=2.53, N(O, 1) p=O.006). However, the Q statistics

for heterogeneity (Section 1.6) is even more significant (Q=27.27, x pO.00O7) and

therefore appears to be more powerful than the likelihood ratio test in this example.

The confidence interval for the between-study variance is wide, reflecting the

fact that only nine studies are included in this meta-analysis, meaning that the

between-study variance is imprecisely estimated. Allowing for the estimation of the

between-study variance means that the likelihood based confidence interval for the

overall treatment effect is wider than that obtained by the standard random effects

method. Nevertheless, bearing in mind the large imprecision in the estimate of 4,
the increase in the width of the confidence interval for 	 is relatively small.
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Figure 10: Profile likelihood for the between-study variance for the diuretics trials

meta-analysis
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Table 9: Comparison of the results from three meta-analysis methods for the diuretics

trials data

Method	 Estimate of	 95% C.!.	 Estimate of	 95% C.!.

between-study variance (4)	 for 4	 overall odds ratio (e9 )	 for e0

Fixed effect	 0.00	 -	 0.67	 (0.56,0.80)

Random effects

Standard	 0.23	 -	 0.60	 (0.40,0.89)

Likelihood	 0.24	 (0.03,1.13)	 0.60	 (0.37,0.95)
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Figure 12: Contour plot for the bivariate distribution of the overall log odds ratio

and the between-study variance for the diuretics trials meta-analysis
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The sensitivity plots described in Section 2.1 provide a guide to the effect that

the imprecision in the estimate of 4 will have on 9 (or ê as ö1 =ô for a given 4) and

hence how much the likelihood based confidence interval will differ from the standard

random effects interval. The important characteristic of the sensitivity plots in this

respect is what happens to the estimate of 0 in the region of ô?. If the estimate

of 0 remains constant across the values of 4 contained in the 95% likelihood-based

confidence interval, then the likelihood-based confidence interval for 0 will be no

different to that obtained from the standard random effects method. However, the

greater the variation in O over this region of interest, the greater the increase in width

of the interval for 0. The imprecision of the estimation of 4 does not have a direct

influence on the width of the confidence interval for 0. However, the more imprecise

the estimate of 4, the larger the range of influential values and hence the greater

the chance of a variation in Ô in the range of interest.

Figure 6 shows that the estimate of the overall odds ratio e0 changes by only

0.03, approximately, in the region covered by the likelihood-based confidence interval

for 4. This suggests that the estimate of the between-study variance does not have

much influence on the overall estimate in this example, and hence a large increase in

the width of the confidence interval for 0 when using the likelihood method compared

to the standard random effects method would not be expected. The same information

may also be gained by considering the plot of the change in the MLE of the 'nuisance'

parameter for different values of the parameter of interest on a contour plot (Figure

13). The value of (=6) changes very little when looking at the profile likelihood

of 4, and it is only for very small values of 4 where there is a marked difference.

Hence, the profile log-likelihood is almost the same as a cross-section cut through the

joint likelihood at the maximum likelihood value of 0. This again suggests that the

estimate of the overall mean does not depend greatly on the value of 4. In contrast,

the value of è does change quite considerably over different values of 0 (Figure 13).

As 0 increases the value of ô, decreases to the maximum likelihood estimate and
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then increases again. This pattern is to be expected since & will obviously be larger

as 0 moves away from the maximum likelihood estimate.

Figure 13: Contour plot showing how the estimates of the log odds ratio and the

between-study variance change

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

between-study variance

Key

£ maximum likelihood

likelihood estimate of between-study variance b

' likelihood estimate of overall log odds ratio O

Contours as in Figure 12

In moving from the simple fixed effect model to the likelihood model, which

allows both for the heterogeneity and the estimation of the between-study variance,

the certainty with which conclusions may be drawn from this meta-analysis changes.

Although the point estimate of the overall treatment effect alters little, the increased

width of the related confidence interval reduces the certainty of the conclusions (Ta-

ble 9). The fixed effect interval is narrow and corresponds to a highly significant

treatment benefit. However, in the likelihood analysis where the interval has in-
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creased substantially from the fixed effect analysis, the treatment benefit of diuretics

is substantially less significant, with the upper limit of the 95% confidence interval

being only slightly below unity.

2.3.2 Example 2: A multicentre trial

The second example uses data from the Medical Research Council's multicentre trial

of the treatment of mild hypertension (Section 1.3.2). This allows an example with a

large number of 'trials' (i.e. centres in this example) to be considered. Furthermore,

since the outcome considered here is the reduction in diastolic blood pressure in

mmHg between entry to the trial and one year after entry, the outcome measure is

continuous, which also contrasts with the first example. The likelihood methodology,

however, carries through in an exactly similar way as for the log odds ratio.

Table 10: Comparison of the results from three meta-analysis methods for the mild

hypertension trial data

Method	 Estimate of	 95% C.!.	 Estimate of	 95% C.!.

______________ between-study variance (oj) 	 for 4	 overall odds ratio (e 9 )	 for

Fixed effect	 0.00	 5.31	 (5.03,5.59)

Random effects

Standard	 1.81	 -	 5.29	 (4.94,5.63)

Likelihood	 1.78	 (0.83,3.05)	 5.29	 (4.94,5.63)

In this example, there is considerable evidence of heterogeneity between centres

(Q278.12, xi.ss p <0.0001), but there are no real differences between the standard

random effects results and the likelihood results (Table 10). In contrast to the pre-

vious example, the likelihood ratio test (LRT=19.8, N(0, 1) p <0.00005) produces

an even more extreme result than the Q statistic. The confidence interval for the

between-centre variance is fairly wide, especially when considering that & is based
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on a large number of centres. However, looking at the sensitivity plot of 9 against

4/(o1 1+4), changes in the value of 4 do not affect the estimate of 9 to any great

extent and certainly not in the region around b (Figure 14). As a consequence,

the likelihood-based confidence interval for 0 is apparently identical to the confidence

interval derived from the standard random effects method. The interval for 0 is ap-

proximately symmetric and that for 4 is also more symmetric than in the previous

example, resulting from the larger number of centres involved.

Figure 14: Sensitivity plot showing how the overall difference in mean diastolic blood

pressure reduction varies with the between-centre variance
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2.3.3 Example 3: An extreme case

The third example is an extreme, and perhaps rather artificial, meta-analysis where

there are only two studies to be combined. The two trials investigate the effect of

aspirin in the primary prevention of the incidence of stroke, myocardial infarction and
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other vascular diseases. Both trials were carried out in a population of male doctors,

with one taking place in the U.K. [71] and the other, which was a component of the

Physicians Health Survey, in the U.S.A. [80]. Both were randomised controlled trials

which compared aspirin (500mg/day in Britain and 325mg/day in U.S.A.) with a

placebo. The trial in the U.S.A. had 22,071 participants in the cardiovascular com-

ponent, whereas the British study was smaller with 5,139 participants. The endpoint

considered here is the incidence of non-fatal myocardial infarction (MI) (Table 11)

as this provides a situation where there is considerable heterogeneity between the

treatment effects (i.e. the log odds ratios) in the two trials. The results used here

are those published in the more recent overview of randomised trials of antiplatelet

therapy [64], rather than those in the original papers themselves. These two trials are

the only two low risk (primary prevention) trials for which the outcome of non-fatal

myocardial infarction was reported.

Table 11: Results for two trials of the effect of aspirin in the primary prevention of

non-fatal myocardial infarction (MI)

Trial	 Number of non-fatal MIs/Total number of patients Odds ratio 95% C.I.

Treated	 [	 Control	 (e°)	 for

[iii	 87/3429(2.5%)	 38/1710(2.2%)	 1.15	 (0.78,1.68)

________ 129/11037(1.2%) 	 211/11034(1.9%)	 0.61	 (0.49,0.76)

In a fixed effect analysis on these data, there is a significant treatment benefit

from taking aspirin (Table 12). However, when using either of the random effects

models, the effect observed is no longer significant at the 5% level as both intervals

are much wider and include unity. The confidence interval for the overall treatment

effect from the likelihood model is also considerably wider than that from the standard

random effects model. These results indicate that no conclusion can be reached from

these data alone concerning the benefit of aspirin in terms of the risk of non-fatal
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myocardial infarction.

As would be expected the confidence interval for 4, being based on only two

observations, is extremely wide. This is due to the gradual decrease of the profile

likelihood for values of 4 greater than the MLE (Figure 15). This uncertainty in

the estimate of 4, together with the fact that the range of values of 4 included in

the confidence interval lead to a large range of possible estimates of 0 (between 0.71

and 0.825 approximately) (Figure 16), results in the large increase in width in the

confidence interval for 9. This situation contrasts with that in the previous example

where, although the confidence interval for 4 is quite wide, the specific value that

4 takes does not influence the overall estimate of the treatment effect. This example

also contrasts with the diuretics trials example, since the value of O is rapidly changing

in the region around ôi (Figure 16).

The one-sided likelihood ratio test for the null hypothesis of homogeneity

H0 : 4 = 0, gives a p-value 0.034, while the test for heterogeneity using Q gives

p 0.005 (Q=7.86, xfl indicating strong evidence of heterogeneity. This, again, per-

haps surprisingly, suggests that Q has greater power than the likelihood ratio test.

Table 12: Comparison of the results from three meta-analysis methods for the aspirin

trials data

Method	 Estimate of	 95% C.L	 Estimate of	 95% Cl.

_____________ between-study variance (4)	 for 4	 overall odds ratio (e0 )	 for e9

Fixed effect	 0.00	 -	 0.71	 (0.59,0.86)

Random effects

Standard	 0.18	 -	 0.82	 (0.44,1.52)

Likelihood	 0.07	 (0.00,1.73)	 0.80	 (0.39,1.78)
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Figure 15: Profile likelihood for the between-study variance for the aspirin trials

meta-analysis
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Figure 16: Sensitivity plot showing how the overall odds ratio varies with the between-

study variance for the aspirin trials meta-analysis
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2.3.4 Use of the information matrix

Approximations to the profile likelihoods may be obtained using quadratic curves

derived from the asymptotic variance-covariance matrix for = (8, 4)T. Tests,

based on this approximation, of the null hypothesis of no treatment effect may also

be derived as shown for the case of continuous outcome measures by Rosner [811. In

order to take some account of the fact that 4 is estimated from a finite number of

trials, Rosner [811 suggested that for finite sampies the test statistic may be better

approximated by a t-distribution than by the N(O,1) distribution. However, as has

been shown, the widening of the confidence interval depends more on the strength

of the relationship between 4 and Ô1 than it does on simply the number of trials

involved and the precision of ô. The method using quadratic curves is investigated

here so that the resulting intervals can be compared with the likelihood based ones

in order to see if the approximation is reasonable in the meta-analysis case.

For a single parameter, the asymptotic distribution of —2{clifference in log-

likelihood) tends to that of (0 - ô1 ) 21(0) [79]. But asymptotically the distribution

of 0 tends to N(0, 11(0)), where f'(0) is the information matrix which is given by

so [(0 - ê1)//1/I(0)]2 = (0— ô1)21(o) tends towards a x distribu-

tion. If the expectation cannot be taken algebraically, then 1(0) may be replaced by

the observed information J*(0), which is given by (_82l(0)/802) evaluated at

In the case of two parameters, the multivariable Taylor expansion is used to obtain

the equivalent result for '. It can be shown that the distribution of —2{l() -

tends asymptotically to that of -( - )TI()(1F - ) and that the distribution of

( - )Ti()( - ) tends to a x distribution [79]. This means that the likelihood

surface is approximated by a quadratic for both parameters of the model. The values

of which satisfy the equation

( - )TJ*()(4. -
	 = 5.991	 (29)
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where 5.991 is the 95% point on the x distribution, give the 95% confidence region

for the two parameters jointly, which may again be displayed on a contour plot. The

quadratic approximation would not appear to be very sensible, however, since by

approximating the distribution to an ellipse, negative values of 4 can be obtained

and the possible asymmetric nature of the likelihood surface is not taken into account.

This happens in the case of the diuretics trials data, where the region contains negative

values of 4, which have no meaning, and hence must be set to zero (Figure 17).

Figure 17: 95% contour of the bivariate distribution of the overall log odds ratio and

the between-study variance using the quadratic approximation to the likelihood for

the diuretics trials meta-analysis
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A further disadvantage is that equation (29) is fairly complicated to solve. By mul-

tiplying the matrices, (29) becomes
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kk	 1	 k (Ô-9,)	 _______________

1=1 
(v + oj,)2 +(ol _,)2 E 2(9 - 9) - (v + 81)(9_Ü,)2	

(v + 2) +2(9 —9,)(4 —o11)
1=1	

2(v + o,)3

(30)

which is equal to 5.991. This expression is solved for 0 and 4 to obtain the 95%

confidence region for 0 and 4 . Hence it is actually more straightforward, as well as

more meaningful, to produce confidence intervals for each parameter individually.

If the surface of the log-likelihood is quadratic in both parameters, then the

interval for a single parameter may be obtained using the respective entry in the

observed formation matrix, J*.1() [821. Hence, for 0 for example, (0 -

where Ij.1(O1) is given by I - '12'22'21 and I,, is the entry (ij) in the 2x2

variance-covariance matrix, has a x distribution. Alternatively, but equivalently,

(0— 1)/Ij'(ô,) has a standard normal distribution and hence values of 0 satisfying

(0 -	 = 1.96	 (31)

provide an approximate 95% confidence interval. Similarly, a confidence interval for

4 can be obtained by using the relevant entry in the inverted information matrix,

that is 1j'1 . However, in the meta-anlysis case under consideration, the surface of

the log-likelihood is certainly not quadratic in both directions and so the result is not

strictly valid.

Comparing the two confidence intervals for the overall odds ratio estimate

for the diuretics trials data, it can be seen that the interval for e0 derived from

the profile likelihood is substantially wider than the approximate interval (Table 13,

Figure 18). The 95% confidence interval for 4 using the profile likelihood is much

wider than that obtained using the variance from the information matrix (Table 13).

That the approximation to the confidence interval for e° using the quadratic is no

different to the interval obtained when using the conventional random effects variance,
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Table 13: Confidence intervals for the two estimates comparing the profile likelihood

method and the quadratic approximation (diuretics trials data)

Method	 95% C.I. for the	 95% C.I. for the

between-study variance overall odds ratio

Profile likelihood	 (0.027,1.130)	 1 (0.374,0.953)

Information matrix	 (0.000,0.623)	
J	

(0.398,0.893)

1/ 2.1 (v + 4)', may be explained by the fact that the covariance term in the

matrix, Cov(O 1 , o 1), is very small, and therefore has little impact on the value of

Ij.1(è). This implies that the variance for Ô is equal to 1/ E.1 (v + 4)-' if it is
assumed that the two off-diagonal elements of J*(i), that is the covariance terms,

are zero. Similarly, an approximate variance for 4 can then be obtained and is given

by 1/	 (2(Ô1 - ô1)2 - (v + b i))/(2(v + o1,)).

It is possible to use a transformation of 4 in order to obtain a profile log-

likelihood which is a better approximation to a quadratic. In this example, the

transformation ln(4) does improve the quadratic nature of the profile log-likelihood,

but the problem with the log transformation is that it forces all values of 4 to be

greater than zero. The likelihood is certainly more quadratic in shape (Figure 19),

but the transformation skews it slightly in the other direction.

The information matrix must be recalculated for the parameters 0 and ln(4) to

obtain the results and hence the reparameterisation gives a log-likelihood of

1	 1	 (â._9)2

	

l('I') 
= -. ;;: 

ln2ir(v + e"°l) -	
(v2 + e''l)	

(32)

Then by making the simplifying substitution, e"4 Ca, l() in (32) can be rewritten

as
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Figure 18: Profile likelihood for the overall log odds ratio compared to the quadratic

approximation to the likelihood for the diuretics trials meta-analysis

0£

.!

-ii

-ii
-1.2	 -o.e	 -0.4	 0	 0.4

overall log odd. ratio

Key

- - maximum log-likelihood - 1.92

profile likelihood

—i— quadratic curve

101



U
UC
S

0

Figure 19: Profile likelihood for the log of the between-study variance compared to

the quadratic approximation to the likelihood for the diuretics trials meta-analysis
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I '1	 '% (_9)2
l()=	 ln21r(vj+ez) (33)

i=1 (v + Ca)

Since I() = _02l/&2,

En'
	 'ci

$ 1 (v,+o ) 	 Le=1 (Vj+O)2

= ( n _____ 1 n
)	

(34)
E=, (v+)

and it follows that the expression for ( - 4)I*(ii)( - ) = 5.991, similar to (30)

can be obtained. Furthermore, confidence intervals for 0 and ln(4) can be calculated

(Table 14) in the same way as illustrated in (31).

Table 14: Information matrix-based confidence intervals using 0 and ln(4)

Parameter	 95% C.I. of parameter

Overall log odds ratio (0)	 (0.389,0.893)

Log between-study variance (ln(ol))	 (-3.042,0.176)

Between-study variance (4)	 (0.048,1.193)

Comparing these results with those obtained without the transformation the

confidence interval for 0 remains unchanged, but the interval for 4 becomes wider

and does not include zero (which it cannot, because of the log transformation). This

approximation now happens to agree reasonably well with the interval obtained di-

rectly from the profile likelihood. This will not generally be true, but it may be that

in certain cases a transformation of the variable will improve the quadratic nature of

the log-likelihood. The transformation of one parameter will have no effect on the

interval of the other parameter. Hence, the interval for 0 remains the same after the

transformation of 4.
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For this particular set of data, and indeed in general, it is more sensible to use

the likelihood based intervals taken directly from the profile likelihood curve. The

quadratic approximations based on the use of the information matrix lead to confi-

dence intervals which are too narrow. Using the approximation was computationally

not much quicker than using the curve directly, especially since a data-dependent

transformation of 4 was required to obtain a reasonably sensible approximation.

The approximations would be rather better for the multicentre trial (Section 2.3.2),

since the joint log-likelihood of 0 and 4 is much more quadratic in shape because of

the large number of centres involved. However, it would be completely unrealistic for

the case of the aspirin trials meta-analysis (Section 2.3.3), as the likelihood for 4 is

far from quadratic.

2.3.5 Discussion

The fact that the likelihood based confidence intervals are based on the 95% confi-

dence level from the x distribution, which requires the quadratic approximation to

hold, means that they too are only approximate confidence intervals. They should

therefore not strictly be viewed as 95% confidence intervals in the usual sense, but

rather as likelihood support intervals. However, these likelihood support intervals

may be interpreted for practical purposes as being approximate confidence intervals,

as suggested by Clayton and Hills [83].

The likelihood method presented yields a confidence interval for 4, so that

the precision of can be directly judged. Obviously the fewer trials involved, the

less precise will be the estimate of 4. However, even in the second example with 189

'trials', the width of the confidence interval was large. Hence, in any meta-analysis in

practice there will be considerable imprecision in estimating 4. Whether the value

of 4 used substantially affects the overall estimated treatment effect is a separate

issue, and can easily be investigated using the sensitivity plot of (or Ô 1 ) against ol
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(Section 2.1). In practical terms, this issue is of importance when 4 is imprecisely

estimated and when the value of 4 affects the overall estimate of the treatment effect

in the region around the MLE.

It has been noted how in the first and third examples (Sections 2.3.1 and

2.3.3), the likelihood ratio test appears to have less power than the Q test to detect

heterogeneity. However in the second example, it has greater power. To understand

why this occurs, it is necessary to consider the hypotheses which are being tested. In

the case of the test for heterogeneity using Q the null hypothesis is that all individual

study estimates are equal H0 : = 0 for all 1. This is equivalent to the null hypothesis

in the likelihood ratio test which is that the between-study variance is zero H0 : 4 =
0. However, the alternative hypotheses differ between the two tests. The alternative

for the Q test is H1 : O 0 for at least one i, while that for the likelihood ratio

test is more specific, being not only that the between-study variance is greater than

zero, but also that the normal random effects model holds under this alternative.

Since it is the alternative hypothesis that determines the power of a test, it would not

necessarily be expected for these two tests to have the same power. Hence, differences

in the p-values obtained may not be that surprising.

It would be expected, that if a set of data does follow a normal random effects

model reasonably well, then the likelihood ratio test would be more powerful than

the general Q test. However, if the data was not of this form then the likelihood ratio

test would lose power due to the alternative hypothesis being inappropriate and the

Q test would perhaps be more powerful in such a situation. With only a few points

normality is difficult to check and is impossible with only two trials. Normal plots (see

Chapter 3) for the first example indicate that the normally distributed random effects

model may not be very suitable in this case. Hence, the alternative hypothesis of the

likelihood ratio test is inappropriate and so the test will lack power when compared

toQ.
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ln2ir((o.2/nj) +4) -
k	 (0._0)2

i=1 
(o.h/n.)+4)

(35)l(0,4,o 2) = -

Although the likelihood method proposed allows for the estimation of the

between-study variance, it still assumes that the individual study variances v are

known, when in practice they too must be estimated. For continuous outcome mea-

sures, a possible alternative approach would be to define each v as o 2/n, where o

is a common within-study standard deviation. This is a valid substitution if v is

approximately proportional to 1/n1 , that is if the variance of Ô is only dependent on

the number of observations on which it is based. The likelihood, based on the nor-

mally distributed random effects model, can then be obtained with o 2/n replacing

v. Hence, the log-likelihood for 0, 4 and o.2 is

which contains three unknown parameters, 8, 4 and o.2, and since n are known, this

eliminates the problem of having to assume that the v are known. The MLEs for 0,

4 and .2 may then be obtained by standard methodology.

The likelihood method using the marginal distributions of è, makes the as-

sumption that the data è, are normally distributed as well as the random effects.

Hence, for binary outcome measures it does not utilise the exact distribution of each

2x2 table. The approximation to the normal distribution may, therefore, be inade-

quate in some cases, particularly when the sample sizes are small. The full likelihood,

for binary data, includes the exact conditional distribution of each 2x2 frequency ta-

ble given its margins [45]. If a full likelihood method were pursued, the confidence

intervals for the overall treatment effect would be expected to be even wider. This

issue is explored in the next section.

The examples presented show that caution is required when interpreting results

from the standard meta-analysis methods. Even the confidence interval for the overall

treatment effect from the usual random effects model may be too narrow. Certainly,
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the confidence intervals from a fixed effect model will tend to be far too narrow when

heterogeneity exists. This issue is of practical importance since the increased width

of the confidence intervals can severely limit the conclusions that can be drawn from

a meta-analysis.

2.4 A Full Likelihood Approach For Binary Outcomes

In a paper considering a bivariate approach to meta-analysis, van Houwelingen, Zwin-

dermann and Stijnen used a likelihood based "Mantel-Haenszel-type" procedure for a

fixed effect model and extended this to a random effects model [45]. Section 2.4.1 de-

scribes the fixed effect model and Section 2.4.2 the random effects model. Section 2.4.3

then compares the results obtained using the full likelihood method with those ob-

tained using the inverse-variance fixed effect method (Section 1.5.1) and the random

effects likelihood method based on the marginal distributions of ôj (Section 2.2) for

two practical examples.

2.4.1 The fixed effect model

The likelihood used in [45], under the homogeneity assumption, was obtained by

considering the conditional distribution of the number of events in the control group

Cj, given the total number of events in that trial m11 (notation as in Table 2). However,

in order that the odds ratios obtained are in the same direction as those in the rest

of the thesis, the conditional distribution for the number of events in the treatment

group will actually be considered here. In each trial, the conditional distribution of the

number of events in the treatment group a given m 1 is a non-central hypergeometric

distribution of the 2x2 table given its marginals [45], and so the likelihood of 0, the

log odds ratio, is
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a+d—y
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)ei

where yj = max(O, rn,1 - n 2) ^ y ^ rnin(r&, i , rn,i) = Yu . The denominator of (36)

represents the sum over all possible tables where the total number of events is equal

to that observed.

The total log-likelihood is the sum of the individual trial likelihoods, so if

1(9) = lnL1 (0), then

1(0) 
= k 

l(0)
	

(37)

This total likelihood can therefore be plotted and the MLE of 0 obtained directly

from the curve, together with 1(ö) and the 95% confidence interval for 0. The 95%

confidence interval is obtained, as in Section 2.2, by taking as the confidence limits

the points at the intersection of the likelihood curve and the horizontal line drawn at

3.84/2 (3.84 is the 95% point on the distribution) units below the maximum.

2.4.2 The random effects model

This likelihood model was extended by van Houwelingen et al. [45] to incorporate

random effects. This was done by assuming 0 to be random with some distribution G

and so 0, i = 1, ..., k, is a random sample from C, the values of 0 being unobservable.

Then assuming that 0 is independent of the sample sizes, the likelihood for trial I is

given by
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L1(G(0)) 
= f L,(0)dG(0)	 (38)

and hence the parameters of the distribution G can be estimated by maximising the

total log-likelihood of G(0),

1(G(0)) =	 l(G(0))	 (39)

Either the nonparametric approach of Laird [84] or a parametric approach

may be used to estimate the distribution of C. The parametric approach leads to

a smoother estimate of C being obtained [45], and van Houwelingen et al. assume

a normal distribution as in the marginal likelihood model of Section 2.2. Hence

C N(jt, 4) where .t is now the overall treatment effect and 4 is the between-

study variance and so,

1	 f _(O_,․ )2

L(/L,4)=jLi(0),_exPl	 24	
}do	 (40)

where L1 (0) is given in (36). The MLEs of .t and 4 can then be obtained by

implementation of the EM algorithm [85]. The EM algorithm consists of two steps,

the estimation step (E-step) and the maximisation step (M-step), which are repeated

alternately until convergence is achieved. The E-step involves the computation of

the sufficient statistics of the O, which are E...1 9 and O f 0, ..., could be

observed. Hence, if f(O I p, 4) is the normal density function, then

f9L(0)f(O p,4)dO	
(41)= E(O I data,parameters) 

= fL,(o)f(o I i4)dO
and

f92L,(0)f(O ,4)dO	
(42)= E(O I data,parameters) 

= fL1 (o)f(o I

109



Numerical methods can be used in order to evaluate the integrals given in (41) and

(42).

The M-step then consists of calculating the mean and the variance of the

distribution as follows.

(43)

= 1 k -
	 (44)

A 95% confidence interval may be produced using the profile likelihood (defined

in Section 2.2.3) of . The EM algorithm can again be used in order to obtain the

maximum value of 4 for each value of . Hence, the procedure is exactly the same

as described above, except that the value of j is known in L(G). Once again the

horizontal line at 1.92 units below the maximum is used and so the 95% confidence

interval is defined as in equation (28).

Furthermore, a likelihood ratio test for heterogeneity may be formulated by

calculating the test statistic -2{l(Ô) - l(fA, ôt,)}, where 1(â) is the maximum likeli-

hood for the homogeneous model, that is where 4=0, and l(, ôi) is the maximum

likelihood for the random effects model. This is equivalent to the test described in

Section 2.2.3, except that the full likelihood as opposed to the marginal likelihood is

used.

2.4.3 Comparison of results

A Gauss program, provided by van Houwelingen et a!. [45], which carries out the

parametric likelihood analysis described above, was used in order to obtain results for
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both the diuretics trials data (Section 1.3.1) and the aspirin trials data (Section 2.3.3).

The results from the random effects methods were then compared with those obtained

from the marginal likelihood method (Section 2.2) and the results obtained under the

homogeneity assumption were compared with the inverse-variance fixed effect method

(Section 1.5.1).

The comparison of the results show that in the case of the diuretics trials

meta-analysis, the two fixed effect methods agree closely (Table 15). The differences

between the random effects Mantel-Haenszel-type likelihood results and the marginal

likelihood results are also very small (Table 16). The 95% confidence interval is

slightly wider and the estimate of o-? is slightly larger in the full likelihood method.

An increase in uncertainty is expected since the full likelihood does not make the

assumption that the variances of the individual studies are known. However, it is in

the smallest studies that the variances are most imprecisely estimated. Hence, such

studies take the least weight in a meta-analysis and also have their relative weight

determined more by the value of 4 than by v. This means that the additional

uncertainty would not be expected to have a great impact on the results, and so

pursuing the full likelihood approach may be unnecessarily sophisticated for most

purposes.

Table 15: Comparison of results from the fixed effect likelihood based Mantel-

Haenszel-type procedure with those from the inverse-variance fixed effect method

for the diuretics trials data

Method	 Estimate of overall 	 95 % C.I. for

odds ratio	 overall odds ratio

M-H likelihood 
f	

0.66	 (0.56,0.79)

Inverse-variance	 0.67	 (0.56,0.80)

The results for the meta-analysis of the two aspirin trials are also very corn-
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Table 16: Comparison of results from the random effects likelihood based Mantel-

Haenszel-type procedure with those from the marginal likelihood random effects

method for the diuretics trials data

Method	 Estimate of overall	 95 % C.I. for	 Estimate of between-

odds ratio	 overall odds ratio	 study variance

M-H likelihood	 0.60	 (0.37,0.97)	 0.26

Marginal likelihood	 0.60	 (0.37,0.95)	 0.24

parable (Tables 17 and 18). However, surprisingly, the confidence interval for the

overall odds ratio is narrower in the case where the full Likelihood is used. This may

be due to the fact that only two trials are being analysed leading to a peculiarly

shaped likelihood curve, particularly away from the maximum. Furthermore, the two

likelihood based confidence intervals are both much wider than that obtained using

the standard random effects model (Table 12). It is also noticeable that the two

likelihood estimates of 4 agree with each other (0.07 and 0.08), whereas the D&L

moment estimate is much larger at 0.18 (Table 12)

Table 17: Comparison of results from the fixed effect likelihood based Mantel-

Haenszel-type procedure with those from the inverse-variance fixed effect method

for the aspirin trials data

Method	 Estimate of overall	 95 % C.I. for

odds ratio	 overall odds ratio

M-H likelihood	 0.71	 (0.60,0.86)

Inverse-variance	 0.71	 (0.59,0.86)

The likelihood ratio tests based on the full likelihood give a p-value of 0.0025

for the diuretics trials data and one of 0.038 for the aspirin trials data. Both are

less powerful than the corresponding test using Q, as were the tests derived from the
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Table 18: Comparison of results from the random effects likelihood based Mantel-

Haenszel-type procedure with those from the marginal likelihood random effects

method for the aspirin trials data

Method	 Estimate of overall	 95 % C.I. for	 Estimate of between-

odds ratio	 overall odds ratio	 study varaince

M-H likelihood	 0.80	 (0.40,1.71)	 0.08

Marginal likelihood jj_0.80	 (0.39,1.78)	 0.07

marginal likelihood model. However, the p-value for the diuretics trials data using

the full likelihood is substantially smaller than that using the marginal likelihood.

This may be due to the fact that the alternative hypothesis takes a different form,

which may, in this example, better represent the actual data.

Hence, in the examples considered so far, there is no clear advantage to be

gained from using a Mantel-Haenszel-type procedure as opposed to the marginal

likelihood model. Certainly the likelihood method based on the marginal distributions

of öj provides a good approximation to the full likelihood in circumstances where the

number of events in each trial is fairly large. Furthermore, the marginal likelihood

approach may also be used to analyse continuous outcome measures as well as binary.

However, the great advantage of the full likelihood is when there are studies which

have small and, most particularly, zero event rates. This issue is pursued in the next

section.

2.5 Dealing with Small Event Rates in Meta-Analyses

The problem of dealing with small event rates and zero event rates in trials included

in meta-analyses using binary outcome measures is introduced in Section 2.5.1. Exact

methods which are not prone to such problems and are based on the exact conditional
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likelihood are described in Section 2.5.2, while a comparison of the methods, using

two practical examples, is carried out in Section 2.5.3.

2.5.1 Introduction

When dealing with binary outcomes, if there is a trial included in the meta-analysis

which has a zero cell in the 2x2 table, then certain of the standard methods fail,

since it becomes impossible to calculate an individual odds ratio öj and variance v1.

Individual trial odds ratios and variances must be calculated explicitly in the inverse-

variance fixed effect method (Section 1.5.1), the standard random effects method

(Section 1.7.1) and the marginal likelihood method (Section 2.2), and hence it is

these methods that break down. Even if there are no zero event rates, but the event

rates are small, then the asymptotic conditions underlying the standard meta-analysis

methods will not hold [60].

One way around the problem is to add 0.5 to each cell of each 2x2 table in the

meta-a.nalysis and thus obtain empirical logits [86]. The use of empirical logits ensures

that both odds ratio and variance estimates may be obtained in all trials, and will

also reduce the bias for small sample sizes [50, 86]. Alternatively, estimation can be

based on the exact conditional distribution of the number of events in the treatment

group (Section 2.4). It was shown in Section 2.4 how van Houwelingen et a!. [45]

used the exact distribution of ö, and likelihood methodology to obtain estimates of

the overall treatment effect under both a fixed effect and a random effects model.

2.5.2 Conditional likelihood model

Similarly, although only for homogeneous data, the computer package StatXact [87]

uses the conditional likelihood of the sucient statistic S = A 1 + A2 + ... + Ak, where

is the true number of events in the treatment group of study 1, to produce exact
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estimates and confidence limits [87]. The total log-likelihood for all k tables is given

by the sum of the k individual log-likelihoods and so the conditional distribution

of the total number of events S is considered. Hence, if the observed value of S is

3 = a, then the conditional distribution of S, that is the probability of observing

a total of S events given all possible combinations of the k tables with the observed

marginals, can be written as follows [881

c,tli'P(S=sIb)= (45)
EIP!VL 

c1b

where & =
I ni \ I flt2 \

C9 = ErEn(s) H= I4 a, ) 
¼	 )

fZ(s)={rEfl:yl+y2+...+yk=s}

YL = E=1 max(0, m 1 - n2)

Yu = E=1 min(n1 1, rn,i)

A test of 1' = e0=1 is based on this conditional distribution and an exact confI-

dence interval may be constructed by inverting this test [59]. Specifically, an exact

100 (1 -	 ) % confidence interval for 0 is given by	 where (s) is

such that

&(3)=0 if 3—YL	 (46)

P(S ^ S i&.(s)) = /2 if IlL <S <Yu	 (47)

P(S = s v5 (s)) =	 if 3 =	 (48)

and *() is such that

P(S = I i (s)) =	 if 3 = YL	 (49)

P(S^sI1/,*(s)) =/2 if IlL <3 <Yb	 (50)
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= oO if 3 =	 (51)

Hence, if the observed value of 3 is equal to the lower limit YL, then the data support

a lower confidence bound of zero, and so all of the error rate may be used computing

the upper bound. Similarly if Yu is observed the entire error rate can be used in

calculating the lower bound as the upper bound is oo. Mehta, Pate! and Gray [89]

developed a numerical algorithm for computing this exact confidence interval and

this is implemented by StatXact. The main problem is the time taken to compute

all the different possible values of c, and once this is done the confidence interval is

found easily using a binary search of all the probabilities calculated. However, due

to the discreteness of the distribution of 5, the above exact confidence interval is

conservative, with the probability usually being less than [87]. StatXact, therefore,

also produces mid-p adjusted intervals [87] which reduce the conservativeness. To

calculate these corrected intervals if YL <3 <Yu equation (47) is replaced by

P(S 3 1 (s)) + P(S>3 I .(s)) =	 (52)

and equation (50) is replaced by

P(S 3 1 f(s)) + P(S <3 I b(s)) = c/2	 (53)

2.5.3 Examples

The problem of analysing a meta-analysis when there are small numbers of events

was investigated in practical terms by means of two examples. In the diuretics trials

meta-analysis, the number of stillbirths was recorded in eight of the nine trials and

the total number of such events was small and was actually zero in some groups

(Table 19). There were no stillbirths in either group in trials 8 and 9 and as these
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trials contribute no information to the analysis the meta-analysis results are actually

based on six trials only.

Table 19: Number of stillbirths recorded for the six trials of diuretics taken during

pregnancy which contribute information to this outcome

Trial Stillbirths/Total number of patients Odds Ratio

Treated	 Control

1	 1/131(0.8%)	 2/136(1.4%)	 0.52

2	 3/335(0.9%)	 2/110(1.8%)	 0.49

3	 1/57(1.8%)	 1/48(2.1%)	 0.84

4	 0/34(0.0%)	 1/40(2.5%)	 0.00

5	 6/1011(0.6%)	 5/760(0.7%)	 0.90

7	 6/1370(1.2%)	 9/1336(0.7%)	 0.65

These data were analysed using the likelihood based Mantel-Haenszel-type

procedures, StatXact and also using the Peto and Mantel-Haenszel fixed effect meth-

ods. Results may be calculated by all these methods when there are zero event rates,

although the asymptotics of the Peto method may not be very good with small sam-

ple sizes. The Mantel-Haenszel estimator is known to be robust in cases where there

are small samples [50]. The results obtained from these methods were also compared

with those from the inverse-variance fixed effect method and the standard random

effects method based on empirical logits.

In this example è=0 and ô=0 and hence the fixed effect and random effects

methods produce the same results and so only the fixed effect results are presented

here (Table 20). The various confidence intervals do differ slightly (Table 20) and

it can be seen that the exact confidence interval from StatXact is wider than all

the others. This illustrates the conservative nature of the exact confidence interval,

while the corrected mid-p interval is in line with the other fixed effect intervals. The
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confidence interval for the inverse-variance method is slightly narrower than all the

others. However, in this example there is no evidence that the asymptotic methods

produce inappropriate or unreliable results.

Table 20: Results for the outcome of stillbirths in the diuretics trials meta-analysis

using several different fixed effect methods

Method	 Estimate of	 95% C.I. for

overall odds ratio overall odds ratio

Likelihood	 0.68	 (0.35,1.32)

StatXact (exact C.I.)	 0.68	 (0.33,1.38)

StatXact (mid-p C.I. *)	 (0.35,1.32)

Mantel-Haenszel	 0.68	 (0.35,1.31)

Peto	 0.68	 (0.35,1.31)

Inverse-variance (+0.5)	 0.69	 (0.38,1.28)

* the mid-p method is only an adjustment to the confidence interval

An example with small numbers of events and statistically significant hetero-

geneity was then considered. The data are taken from a published meta-analysis of

the efficacy of BCG vaccine in the prevention of tuberculosis (TB) [90]. The results

of the 7 clinical trials which provided information on the number of TB deaths in the

vaccinated and unvaccinated groups were used, as the number of deaths was small

and there were two groups where no TB deaths occurred.

The results from each trial vary considerably, as can be seen from Table 21,

and this is probably due to the fact that the populations and geographical locations

in which the trials were carried out vary enormously. Hence, it is not surprising to

find that heterogeneity exists and ô=0.26 by the D&L moment estimator based on

the use of empirical logits, and ô,,=0.33 by the full likelihood method. All results,

using both fixed effect and random effects methods, show a significant reduction in
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Table 21: Results for 7 clinical trials looking at the efficacy of the BCG vaccine in

relation to TB deaths

Trial	 TB deaths/Total number of patients Odds Ratio

Vaccinated 1_Unvaccinated

Aronson, 1948	 0/123(0.00%)	 4/139(2.88%)	 0.00

Ferguson, 1949	 2/136(1.47%)	 9/303(2.97%)	 0.50

Rosenthal, 1960	 0/231(0.00%)	 4/220(1.82%)	 0.00

Rosenthal, 1961	 1/1716(0.06%)	 6/1665(0.36%)	 0.16

Comstock, 1974 8/50634(0.02%) 12/27338(0.04%)	 0.36

Aronson, 1958	 13/1541(0.84%)	 68/1451(4.69%)	 0.18

Levine, 1948	 8/566(1.41%)	 8/528(1.52%)	 0.93

the number of TB deaths in the vaccinated groups (Table 22). The two random

effects methods of course provide confidence intervals which are wider than those for

the fixed effect methods. The conservativeness of the exact confidence interval from

StatXact is again evident.

It is noticeable that the three exact methods and the standard Mantel-Haenszel

estimate produce values for 0 which agree very well. However, the asymptotic meth-

ods, and particularly the methods based on empirical logits, produce larger estimates.

The use here of emirical logits does appear to slightly affect the results, as both the

inverse-variance fixed effect method and the standard random effects method pro-

duce the two largest estimates of treatment effect and are more similar to each other,

even though different models are being assumed, than they are to any of the other

estimates. However, use of empirical logits only produce a shift in the confidence

intervals, as a consequence of a different estimate, rather than a change in the width.

Overall, since there is some disagreement between estimates and heterogeneity is

present, the exact random effects likelihood estimate may be preferable in this case.
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However, the same conclusion of efficacy of the vaccine against TB would be drawn

from all methods.

Table 22: Results for the efficacy of BCG vaccine in the prevention of TB deaths

using different meta-analysis methods

Method	
H 

Estimate of overall	 95% C.L for	 Estimate of between-

odds ratio	 overall odds ratio	 study variance

Fixed effect methods

Likelihood	 0.24	 (0.16,0.35)

StatXact exact	 0.24	 (0.16,0.37)

StatXact mid-p	 (0.16,0.36)

Mantel-Haenszel	 0.24	 (0.16,0.36)

Peto	 0.27	 (0.20,0.38)

Inverse-variance (+0.5) 	 0.28	 (0.19,0.41)	 ____________________

Random effects methods

Likelihood	 0.23	 (0.07,0.46)	 0.33

Standard (+0.5)	 0.29	 (0.16,0.54)	 0.26

Neither of the practical examples considered here has shown the asymptotic

methods to be completely unreliable. Hence, in most practical situations, this suggests

that any of the above methods may be adequate. However, it may be the case that

the asymptotic methods become less reliable when the total numbers in each trial,

as well as the event rates, become small. Further examples would be necessary to

investigate this issue more fully.
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2.6 Bayesian Approach to Meta-Analysis

As an alternative to the classical statistics approach, meta-analysis may be viewed

from a Bayesian perspective. Although a more detailed consideration of the latter

approach is outside the scope of this thesis, a brief review of Bayesian and empirical

Bayes methods is included here. Such Bayesian methods use ideas related to those

used in the likelihood based random effects approaches described in previous sections

of this chapter. Empirical Bayes methods are considered first, the concept being intro-

duced in Section 2.6.1 and the methodology described in Section 2.6.2. An example,

using the diuretics trials data, is presented in Section 2.6.3. The literature relating

to a fully Bayesian approach to meta-analysis is then reviewed in Section 2.6.4.

2.6.1 Introduction to empirical Bayes

If heterogeneity is present in a meta-analysis, then presenting only the overall estimate

of treatment effect and its variance may not be sensible from a clinical point of view,

since it does not provide an idea of the actual range of estimates that the trials

produce. However, it is difficult to compare the initial observations Ô as the precision

related to each estimate can vary quite considerably, as it does in the diuretics trials

data for example. The calculation of empirical Bayes estimates for each trial means

that the individual trial estimates become more directly comparable [31], as they will

be of a more similar precision.

The general idea behind empirical Bayes estimation is that of shrinkage, whereby

each individual observation is pulled in towards the overall mean value. This concept

is intuitively appealing because it means that the outlying estimates, and particularly

those with large variances, which appear unlikely in the context of the full set of data,

can be brought into line with the other evidence. Hence, in a meta-analysis, a new

estimate of treatment effect is obtained for each trial which also takes into account the
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combined information from all of the other trials. By incorporating these extra data,

the empirical Bayes estimates are more precise than the original observed estimates of

treatment effect. The ranking of the empirical Bayes estimates will on average more

resemble the ranldng of the true estimates more than the original observed values [311.

Furthermore, when considered as a whole, the initial observed treatment effects & will

be biased, even though they are individually unbiased [31]. For example, the largest

observation is likely to be an overestimate and the smallest an underestimate of the

true treatment effect, where the greater the sampling variability, the more likely the

under- or over-estimation. Hence, empirical Bayes estimates have certain advantages

over the simple observations of treatment effect in a meta-analysis.

Hedges and 01km [39] and Stijnen and van Houwelingen [31] proposed em-

pirical Bayes estimation for random effects models. Hedges and 01km made the

distributional assumption of normality for the random effects and used the EM al-

gorithm [85] in order to obtain estimates of 0, o and 9 for i-1,...,k simultaneously.

Stijnen and van Houwelingen [31] proposed methods where the distribution of the

random effects were both parametric and nonparametric. Furthermore, Morris [91]

used empirical Bayes inference to investigate the general problem of interpreting mul-

tiple estimates of the same quantity, but the methodology is easily adapted to the

case of meta-anlaysis.

2.6.2 Empirical Bayes methods

The setting considered here is that of the normally distributed random effects model.

In a Bayesian context, O can be thought of as having a prior distribution which is

normal with mean 0 and variance 4 [31], while the observed data Ô is also normal

with mean 0 and variance v. The Bayes estimates can therefore be considered as

those obtained from the posterior distribution of 0. The posterior distribution is

obtained using standard Bayes theory, which is straightforward in this case due to
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the normality assumption being made, and is found to be normal with mean öj, and

variance j, given by [31, 77, 91]:

o.—o.______	 vi
1	 t(vj+4)+O(vj+4) 	 (54)

2.
-
vi =

(v+4)

In the empirical Bayes case 0 and 4 are then estimated from the data, rather than

their distributions being obtained through subjective judgement or prior knowledge

as they would be in the fully Bayesian case. The form of equation (54) may be

simplified by defining the 'shrinkage factor' B, where B = v/(v + 4) [91], that is

the proportion by which the estimate is shrunk towards the mean, and so

(56)

Obviously, estimates of 9 and 4 are required in order to obtain the empirical

Bayes estimates. Hence, the empirical Bayes estimate for the treatment effect in

each trial 0 consists of a linear combination of the individual observed estimate O

and the random effects estimate of the overall mean. The resulting empirical Bayes

estimate thus depends on the relative size of the within-study and the between-study

variance for each particular trial. Stijnen and van Houwelingen [31] suggest the use

of the weighted mean to estimate 0 and the D&L moment estimator of 4. The

estimates can also be obtained either using maximum likelihood methods, described in

Section 2.2.1, or by an alternative method of moments suggested by Maritz and Lwin

[77]. These alternative moment estimators are obtained by equating the estimates of

0 and var(0) with their expectations. Hence, the following expressions are produced:

(55)
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c— k	 Ôi
2.=i (V+O)

	

k	 1	
(57)

(V+O)

(58)L.e t ._O) 2vI

The moment estimator of the overall treatment effect 0 is the same as the MLE

and is again simply the weighted average taking 4 into account. By subtracting

E_ v/(v + b) from both sides of (58) and rearranging, a form is obtained which

is convenient for iteration,

(O1_O)2_V
=' (V+4)	 (59)4= k	 1

(v+4)

This expression for fr is very similar to that used for the maximum likelihood method,

given in (23), except that a squared term is missing in the denominator of each sum.

Equations (57) and (59) can now be solved iteratively in the same manner as the

maximum likelihood equations. Although equations (57) and (59) were derived using

the method given by Maritz and Lwin [77], the actual equations given in this text

were found to be incorrect and so the necessary corrections were made.

Both the maximum likelihood estimates and the alternative method of mo-

ments estimates of 0 and 4 were used in the analysis of the diuretics trials data as

an example. This then allowed the individual empirical Bayes estimates to be found

together with their variances and shrinkage factors. The two sets of results (using

different estimators of 4) were compared and the empirical Bayes estimates were

also compared with the original observed odds ratios.
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2.6.3 Results

The effect on the individual study estimates of using the empirical Bayes method can

clearly be seen, in that the individual log odds ratios are pulled towards the overall

weighted mean (Figures 20 and 21, Tables 23 and 24). The empirical Bayes estimates

based on the maximum likelihood estimates of 0 and 4 are all below zero (Figure

20), indicating that each trial produces an estimate which may be considered as being

consistent with a treatment benefit.

The moment estimate of 4 (Table 24) is larger than the corresponding MLE

(Table 23). This therefore has the effect of making the shrinkage factors smaller

which means that the estimates are not pulled towards the overall mean by such a

large amount (Figure 21). The two separate estimates of the 0 are, however, almost

equal.

Both sets of posterior variances are smaller than their corresponding v (Ta-

bles 23 and 24), which is an implicit characteristic of the empirical Bayes estimates.

This reduction is due to the extra data being incorporated into the estimates, thus

making them more precise. The variances of the estimates using the moment esti-

mators are larger than those obtained using maximum likelihood estimators. Again

this is because the moment estimate of the between-study variance is larger. A prob-

lem, however, with the empirical Bayes method is that the estimate of the variance

4 from the data will rarely be precise (Section 2.2) and hence there is a danger of

underestimating the uncertainty in the resulting inferences [40].

The amount by which the individual trial odds ratios move depends both on

the particular within-study variance v and the absolute distance, - ö,. , of the

individual estimate from the mean. The estimate from trial 8, which has a very

large variance in comparison to the MLE of the between-study variance (v = 3ô

approximately) is pulled in very considerably. This is because the large v causes B
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Figure 20: Comparison of the observed log odds ratios in each trial with the corre-

sponding empirical Bayes estimates for the diuretics trials meta-analysis using maxi-

mum likelihood methods to obtain 0 and c

ei	
estimator

Key

èj observed log odds ratio

U, empirical Bayes estimate of log odds ratio

- - Estimate of overall log odds ratio (0)=—O.5171

Estimate of between-study variance (&,) =0.2386
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Figure 21: Comparison of the observed log odds ratios in each trial with the corre-

sponding empirical Bayes estimates for the diuretics trials meta-analysis using mo-

ment estimators to obtain 0 and 4

&	
estimator	 oi

Key

0 observed log odds ratio

ã empirical Bayes estimate of log odds ratio

- - Estimate of overall log odds ratio ()=—O.5181

Estimate of between-study variance (4)=O.3170
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Table 23: Empirical Bayes estimates using maximum likelihood estimates of the

overall treatment effect 0 and the between-study variance o (diuretics trials meta-

analysis)

Estimate of overall treatment effect (Ô1)=-0.5171

Estimate of between-study variance (&i)=Q.2386

Trial Observed log Variance of Empirical Bayes Variance of Shrinkage

odds ratio (0) ___________ odds ratio (ö) ___________ factor (Be)

1	 0.04185	 0.159601	 -0.18218	 0.095632	 0.4008

2	 -0.92367	 0.117737	 -0.78934	 0.078836	 0.3304

3	 -1.12214	 0.178018	 -0.86361	 0.101952	 0.4273

4	 -1.47331	 0.298927	 -0.94155	 0.132689	 0.5561

5	 -1.39102	 0.114285	 -1.10800	 0.077273	 0.3239

6	 -0.29698	 0.014634	 -0.30961	 0.013788	 0.0579

7	 -0.26155	 0.120687	 -0.34739	 0.080148	 0.3359

8	 1.08876	 0.686372	 -0.10286	 0.177052	 0.7421

9	 0.13531	 0.067877	 -0.00919	 0.052844	 0.2215
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Table 24: Empirical Bayes estimates using moment estimates of the overall treatment

effect 0 and the between-study variance 4 (diuretics trials meta-analysis)

Estimate of overall treatment effect (è7)=-0.5181

Estimate of between-study variance (b)=0.3170

Trial Observed log Variance of Empirical Bayes Variance of Shrinkage

odds ratio (â) ___________ odds ratio (Os) ___________ factor (B1)

1	 0.04185	 0.159601	 -0.14566	 0.106163	 0.3349

2	 -0.82367	 0.117737	 -0.81382	 0.085844	 0.2708

3	 -1.12214	 0.178018	 -0.90491	 0.113993	 0.3596

4	 -1.47331	 0.298927	 -1.00972	 0.153840	 0.4853

5	 -1.39102	 0.114285	 -1.15970	 0.084005	 0.2650

6	 -0.29689	 0.014634	 -0.30665	 0.013980	 0.0441

7	 -0.26155	 0.120687	 -0.33229	 0.087409	 0.2757

8	 1.08876	 0.686372	 -0.01043	 0.216860	 0.6841

9	 0.13231	 0.067877	 0.02007	 0.055919	 0.1764
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(Table 23) to be large and hence Ô, to be dominant; in the case of trial 8, the random

effects weighted mean O is given 74% of the weight in the empirical Bayes estimate.

In contrast, trial 9 has a log odds ratio above 1, but a small variance which is well

below the between-study variance (Table 23) and ô only receives 22% of the weight

in the empirical Bayes estimate. Owing to this small shrinkage factor the estimate is

not pulled down as much as the estimate from trial 8 (Table 23). This results in the

empirical Bayes estimate for trial 9 being larger than that for trial 8 (Figure 20).

Empirical Bayes estimates are a useful way of summarising meta-analysis data

in the presence of heterogeneity. They allow the range of possible values of treatment

effect to be seen, and hence may aid decisions regarding for which sort of patients

the treatment is more (or less) effective. Furthermore, unlike the initial observed

estimates, they do take account of all the information available. The use of different

estimators of 4 may not have much impact on the empirical Bayes results. However,

it may be worth carrying out a sensitivity analysis on a variety of values of 4 as

none of the estimates of 4 are very precise and this imprecision is not taken into

account in the empirical Bayes methods.

2.6.4 A review of the Bayesian approach to meta-analysis

Most Bayesian methodology in meta-analysis has been based on the use of hierar-

chical models and is closely related to the likelihood based random effects models.

However, the approach is conceptually different and avoids the problem of having to

assume that there is some population of studies from which the studies included in

the meta-analysis are drawn at random. This is a great advantage of the Bayesian

approach as the notion of a universal population is a common criticism levelled at

the random effects meta-analysis models [33, 35]. DuMouch.l and Harris [92] and

Carlin [40] regard the studies in the meta-analysis as exchangeable. That is to say

that they are viewed as each bearing on the same general question, with some dif-
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ferences from study to study, but such that the differences cannot be anticipated a

priori [40]. Skene and Wakefield [41] also use the exchangeability assumption when

considering the analysis of multicentre trials with binary responses using Bayesian

hierarchical models. They point out that care is required over this assumption as

it is often the case that the investigators will have some prior idea of which centres

are likely to be most effective with regards to treatment. In such cases they sug-

gest the use of restricted exchangeability whereby the centres are split into groups by

some characteristic, such as country, and the centres within each group are considered

exchangeable. In general, the assumption of exchangeability means that an exchange-

able prior distribution for the effects in the different studies may be assumed, so that

the effects are independently and identically distributed conditional on the values of

certain hyperparameters [40].

The model proposed by Carlin [40] is typical of the Bayesian approach to

meta-analysis and is based on a normally distributed hierarchical model with three

stages. As with the standard normally distributed random effects model it is assumed

that the treatment effect in each trial has a normal distribution

I	 N(O,v)
	

(60)

and that the prior distribution [40, 421 is also normal and given by

0, 0,o	 N(0,4)
	

(61)

Then for a Bayesian analysis, a third stage is required in which prior distributions

are specified for 0 and o. Carlin [40] assumes a non-informative prior for both

these parameters. The results for the overall mean treatment effect 0 are obtained

by writing down the likelihood and collecting terms so that the familiar standard

random effects estimate and variance is obtained (equations (18) and (19)). The
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posterior distribution for 0 conditional on 0 and 4 has mean and variance given by

E(0 I	 = (1—B8 ) Ô1 +B4 O	 (62)

Var(01 I Ôi ,	 0,4) = (1 - Bjv	 (63)

where B8 = v8/(v + 4), the shrinkage factor defined in Section 2.6.2.

The posterior distribution of the 0 conditional only on 4 may then be ob-

tamed by integrating the k independent normal distributions described by (62) and

(63) over the posterior for 0 described by (18) and (19) [401. The resulting moments

of this distribution are then

(64)

and

Var(08IÔl,...,k,4)=(1—B8)v+B	 k	 - B8)
	 (65)

Formula (64) is the same as that used in the empirical Bayes situation. However, in

the empirical Bayes case, the point estimate of 4 calculated from the data would be

used to obtain B8 . However, Carlin [40] indicates that there is a danger of underesti-

mating the uncertainty in the resultant inferences since this prior variance can rarely

be precisely estimated from the data, as was seen by the wide confidence intervals

obtained for the estimate of between-study variance in Section 2.2.

A fully Bayesian solution, however, is computationally more complicated and

involves the integration of each of the conditional distributions described by (18),

(19), (62) and (63) over the posterior distribution of o. Carlin, therefore, adopts
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a Monte Carlo approach similar to that of Rubin [93] which provides approximate

solutions to these equations.

Malec and Sedransk [42] start from the same basic model, but then use a more

flexible prior for 0. This prior reflects the beliefs that there are subsets of 0 such

that the 0, within each subset are similar but that there is uncertainty about the

composition of such subsets. Gibbs sampling [94] may be used in order to obtain

the empirical posterior distributions of the ô which can then be used to obtain the

desired unconditional posterior moments. Similarly, DuMouchl and Harris [92] used

a series of hierarchical priors in a practical example to combine the results of cancer

studies.

Skene and Wakefield [41] also used a hierarchical model in the analysis of

multicentre trials, where they noted that the methodology is directly transferable to

meta-analysis. Again a three stage model is required, but in contrast to Carlin, was

based on the number of successes in each group given the underlying probabilities

of success Ps,, I = 1, ..., k and j = 1,2 (2 treatment groups), as the outcome with

which to work. The first stage assumes that the number of successes in each group

in each centre follow an independent binomial distribution. Hence, the first stage of

the model is a product of 2k binomial distributions. This is the model used by van

Houwelingen et al. [45] in their bivariate random effects model which is an extension

of the model described in Section 2.4.

At the second stage, a joint distribution for the Pj is specified and Skene and

Wakefield reparameterise the model so that

Pt2
i _log(1) (66)
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P'1
(67)

Hence,	 is the logistic transform of the rate in the placebo group and 9, is the

corresponding log odds ratio for centre i. It is often reasonable to assume that p(),, 9, I

j,E) is a bivariate normal distribution where = o) and E = (o, c, p).

Then assuming exchangeability, which thus allows inferences on mean values even

when the 0, are different, and a prior distribution p(t, E), the joint posterior density

p(\,0,,E I ) has the form

k	 k

,=i (1+ eAi+Oi)h1 (l + eAi)2 II I E 
j_1/2 exp{—([A . n.1T_)TE_1(r.	 E)I	 , sj

i=I
(68)

Evaluation of integrals involving the posterior density function (68) is required

in order to characterise the posterior distribution and make useful inferences. This

is computationally intensive, but may be done based on the repeated use of Gauss-

Hermite rules over a Cartesian grid [95]. For higher dimensional problems a method

based on the same iterative procedure in conjunction with importance sampling Monte

Carlo integration [96]. The marginal density of , given the data, then gives a

summary of the difference between the two treatments and that of reflects the

between-centre variability.

Eddy, Hasseiblad and Shachter [43, 97], proposed a Bayesian method for meta-

analysis which they named the confidence profile method. This method is very flexible

and may be used to adjust for different types of trials, different treatments and also

biases within the trials to be combined in a meta-analysis. The method requires prior

distributions, likelihood functions and functions describing biases to be specified.

Noninformative priors may be used, while a separate likelihood function is required

for each type of trial, each type of treatment and each type of outcome measure.
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The confidence profile method can also be extended to a hierarchical Bayes model

where there is no single overall treatment effect. Solutions to the problems basically

involve the combination of information according to Bayes formula, although the

mathematics gets increasingly complicated with increasingly complex models. Hence,

computer software has been developed along with this method [97].

Bayesian methods for meta-analysis avoid the conceptual problems of the stan-

dard random effects model and are very flexible in terms of the models which may be

set up. However, they are computationally intensive and, until fairly recently, there

have been technical difficulties arising in the calculation of the required marginal den-

sities. However, with new advances in methodology such as the development of Gibbs

sampling [98, 99], and the efficient implementations of the computer algorithms this

has ceased to be such a problem. In comparison to analytic approximation techniques

such as those proposed by Naylor and Smith [95] and Smith et a!. [96] which require

specialist software, the calculations for Gibbs sampling are much easier and hence

have become increasingly popular.

The advantage of the hierarchical Bayes model, which is equivalent to the

random effects model, is that by obtaining a distribution for o the variation in

this estimate is being taken into account. This is not the case in empirical Bayes

methods or the standard random effects methods, but it is the problem that the

likelihood models address by using profile likelihoods to obtain confidence intervals

for the parameters of interest (Sections 2.2 and 2.4).

Furthermore, Bayesian methods allow sensitivity studies to be undertaken to

assess the robustness of the inferences to the choice of model, prior and error distri-

butions [41]. For example, if one or two outlying studies are apparent, a heavy tailed

density, such as the bivariate t-distribution could be used in place of the bivariate nor-

mal density in the Skene and Wakefield model at the second stage. Carlin [40J uses a

weighted normal plot to assess the adequacy of the normal approximations, primarily
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the normality of the random effects distribution. He also uses plots which show the

dependence of the posterior mean on the value of 4 in a similar way to the sensitivity

plots described in Section 2.1. Hence, there has perhaps been a greater emphasis on

the checking of the assumptions underlying the models in a Bayesian context than

in the classical meta-analysis framework. Considerable work in this thesis, however,

is directed at applying model checking methods to standard meta-analysis methods

(Section 2.1, Chapter 3 and Chapter 5).

2.7 Comparison of alternative methods of estimating the

between-study variance

Four estimators of the between-study component of variance have been suggested

so far; the D&L moment estimator (Section 1.7.1), the Maritz and Lwin moment

estimator (Section 2.6.2) and the two maximum likelihood estimators (Sections 2.2

and 2.4). A further possible estimator of 4 is now considered, which has here been

adapted to the meta-analysis case from a related situation. This new estimate of

4 is introduced and described in Section 2.7.1. It is then compared with the D&L

estimate, to which it is closely related, in Section 2.7.2 using both simulated and

practical examples.

2.7.1 Introduction

Matthews [100] considered the problem of analysing repeated or serial measurements

of a continuous variable using summary measures. In this type of application, it is

important to consider both the within-subject variation over the repeated measures

as well as the between-subject variation. These two components of variance can be

considered as equivalent to the within-study and between-study variances in a meta-

analysis. The summary measure used for each subject is the regression coefficient
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and the precision attached to each of these slopes may vary considerably between

individuals. This leads to the consideration of a weighted analysis and hence the use

of the following model [100]:

Yij = +/31t, +6,
	 (69)

where j'j is the th measurement, j = 1, .., n, on the i individual, i = 1, .., ic, taken

at time tj, and e..j i.i.d.N(0, c.). Now assuming 13i, ..., /3k are normally distributed

with mean 8o and variance 4, and may be estimated by the regression coefficients

= /3j +

	

	 (70)
E,=1

where t is t,j measured from the mean of the times of measurements for subject I

and var(b) = o + 4. Hence a weighted analysis can now be based on the weights

1/var(b). Assuming that b1 , ..., b, are independent, they have a marginal distribution

of N(/30, a +4) and hence an estimate of the between-subject variance is required.

Matthews obtains such an estimate by equating the sample variance S with its

expectation. Rearranging the resulting expression produces an unbiased estimate of

the between-subject variance which has the form

4M =S3=S—S?	 (71)

where s is the usual estimate of the variance of the slope. This expression (71) is

directly applicable to the meta-analysis situation, where S =	 - j, the

variance of the ô, where j is the simple unweighted mean of the ö, and s =	 V1.

The Matthews estimate (71) is equivalent to the D&L estimate of 4, except that S

is used as the basis for the method of moments instead of Q. In fact, when all weights
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are equal, then both these estimates of 4 are the same. As with the D&L estimator,

the unbiased nature of 4M is lost as all negative values must be set to zero. The

difference between the two estimators is that the D&L estimate takes into account the

different precisions of the individual study estimates, whereas the Matthews estimator

does not. Hence, intuitively, it would seem more sensible to use the D&L estimate. A

comparison, therefore, of the Matthews and the D&L estimators of the between-study

variance in a meta-analysis was undertaken.

2.7.2 Simulation results

Simulations were carried out in order to compare the Matthews estimate with

the closely related D&L estimate ô1 of the between-study variance in a meta-analysis

context. The D&L estimate was used as a comparison, since it is constructed in a

similar way to the Matthews estimate. Furthermore, both are simple to calculate, but

may be inferior to maximum likelihood estimates. All calculations in the simulations

were carried out using the true known values of v and the O generated from the

model (see Section 3.3.1 for details of the computer simulation methods used) in

order that any potential bias caused by the estimation of the v be avoided. In these

examples the number of studies in the meta-analysis Ic was taken to be 10 and 1000

repetitions were executed each time. The three initial simulated examples were such

that they represented cases with increasing amounts of variability in the precision of

the individual study estimates of treatment effect. Hence, the vj were taken to be

equal, slightly different and severely different; the details of the actual values used are

shown in Table 25. The sample mean and standard deviation of the 1000 simulated

values of each estimator were obtained for both the distribution of the raw estimates

of 4, that is including negative values, and the biased estimates, that is taking

max{0,ô} (Table 25). The true between-study variance 4 was set to 0.25 in all

simulations.

138



Table 25: Simulation results comparing the performance of two moment estimators

of between-study variance under varying conditions

Example Estimator	 Raw results	 max{0,ô}

Mean	 Standard	 Mean	 Standard

of ô	 deviation of b	 of b	 deviation of &

1	 D&L	 0.2544	 0.6038	 0.3679	 0.4967

Matthews 0.2544	 0.6038	 0.3679	 0.4967

2	 D&L	 0.2518	 0.2686	 0.2647	 0.2528

Matthews 0.2481	 0.3018	 0.2679	 0.2794

3	 D&L	 0.22561	 1.9060	 0.8459	 1.3861

Matthews 0.29526	 3.1377	 1.3359	 2.3362

Key

The true values for all the simulations are:

Between-study variance 4=0.25

Overall treatment effect 0=5

Example 1: within-study variance vj=1 for all i

Example 2: v=0.6,0.55,0.50,...,0.15

Example 3: v=lO,9,8,...,l
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In the example where all the v are equal, both estimators produce exactly the

same results. This is due to the fact that in the equal weighting case, er M reduces

to & and, since the true values of v were used, equal weighting is assured for each

simulation. The result of equality can be shown algebraically, for if vj = v for all i

which implies that w = w for all i, then

2 __________________OB -

	 (kw -
	

(72)

Now since w = 1/v, then equation (72) becomes

(k_1)(9t0t)M	 (73)

As the v become increasingly more different, the performance of both the

estimators deteriorates, with the estimates becoming more biased and less precise,

but that of the Matthews estimator &M does so to a greater extent (Figure 22).

The two examples with unequal vj illustrate that when the v are different the D&L

estimator ô has a clear advantage over the Matthews estimator &M. In each of

these examples the standard deviation of the D&L estimator is less than that of

the Matthews estimator. Furthermore, when max{O,&} is taken, the fact that the

Matthews estimator is more variable than the D&L estimator means that more values

have to be set to zero. This leads to an increase in the sample mean of IM leading to

it becoming much larger than the true value of the between-study variance. Although

the same thing happens with the D&L estimator, the smaller variability means fewer

values being set to zero and hence a lesser effect on the mean (Figure 23). The

standard deviation for both estimators becomes smaller when max{O,o} is taken

due to the restriction in the possible values.

The diuretics trials data were used in order to provide a practical comparison
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Figure 22: Distributions of the DerSimonian and Laird estimator and the Matthews

estimator of between-study variance from 1000 simulated meta-analyses for example

3 of Table 25
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Figure 23: Distributions of the DerSimonian and Laird estimator and the Matthews

estimator of between-study variance using rnax{0, &} from 1000 simulated meta-

analyses for example 3 of Table 25
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of the two estimators. The Matthews estimate Ô?JM was calculated to be 0.51, which is

very different to the D&L estimate which is only 0.23. Although this large difference

in the estimate of the between-study variance did not have a great impact on the

overall point estimate of treatment effect, the associated standard error was obviously

much larger reflecting the extra uncertainty suggested by 0BM• In the light of the

the simulations performed and since the precisions of the estimates in the diuretics

trials do vary, the D&L estimate of the between-study variance is to be preferred,

particularly since this estimate also closely agrees with the MLE.

The concern about whether an estimator should be based on a quantity which

does not take into account the varying precision of the estimates has been found

to be justified. The Matthews estimator of the between-study variance, at least in

the examples simulated, has been found to be inferior to the D&L estimator in the

meta-analysis context, and should not be used when precision of individual estimates

vary considerably. The problem of estimating 4 imprecisely is not helped by the

new estimator, as the simulations have shown it to be less precise and more biased.

In addition, the D&L estimator is as simple to calculate as the Matthews estimator

and so is still to be preferred. However, the DL estimator, it should be noted, did

not perform well in all cases and was still biased. Hence, it may be that none of the

moment estimators of the variance are very reliable and a likelihood estimate may be

a better alternative.

28 Conclusion

The sensitivity plots presented in Section 2.1 are a useful way of investigating the

robustness of the estimate of the overall treatment effect to changes in the value of

4. They provide information regarding the influence that an imprecise estimate of

4 may have on the estimate of treatment effect. Since in practice neither a fixed

effect or a random effects model is ideal, such a plot is valuable in assessing the
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validity of the results obtained from the meta-analysis. Furthermore, the plots may

be used to help determine whether the use of a likelihood meta-analysis model is

required.

Likelihood models, such as that proposed in Section 2.2, produce confidence

intervals for 9 which are wider than those obtained from the standard random effects

methodology, although this increase may be very negligible in many cases. Thus using

a likelihood approach may lead to a more cautious interpretation of the results. The

increase in the width of the confidence interval obtained from the likelihood model

in Section 2.2 is due to the fact that such a model overcomes one of the problems

with the standard random effects analysis, that is it allows for the estimation of o1

in the calculation of the confidence interval for 0. Furthermore, unlike the standard

random effects method, a likelihood approach allows a confidence interval for 4 to be

obtained. The examples presented in Section 2.3 suggest that caution is required when

interpreting results from the standard random effects methods, particularly when the

meta-analysis is based on only a small number of trials. However, when the numbers

of trials in a meta-analysis is large, then the standard method is often adequate. The

quadratic approximation to the likelihood method outlined in Section 2.3.4 is of little

practical use since the confidence intervals tend to be too narrow, and furthermore,

computationally it is no simpler than the method based on the profile likelihood.

In fact, more work is required when a transformation of the parameter of interest

is necessary to obtain reasonable quadratic approximations, as was the case in the

example presented. Hence, if a likelihood approach is to be pursued the confidence

interval should be obtained directly from the relevant profile log-likelihoods rather

than by quadratic approximation.

The Mantel-Haenszel-type random effects likelihood procedure for binary data

described in Section 2.4 offers further theoretical improvements over the marginal

likelihood method of Section 2.2. This is because such a model is based on the exact

144



distribution of the 2x2 contingency table for each trial i, i = 1, ..., k, and thus the

estimation of the weights w is taken into account. This implies that the confidence

interval for 0 will, if anything, be even wider than that obtained from the marginal

likelihood model. In the examples considered (Section 2.4.3 and Section 2.5.3) both

likelihood models produced very comparable results and no clear practical advantage

was gained from the use of the Mantel-Ilaenszel-type procedure. The two methods

produced very similar confidence intervals for 0, even in cases where there were zero

event rates (Section 2.5.3), although, in general, the full likelihood approach should

probably be preferred when there are small numbers of observations in all or some

of the trials since it is based on the exact distribution as opposed to an asymptotic

approximation. Furthermore, the Mantel-Haenszel-type model may be adapted to

model the random effects using nonparametric methods in cases where the assumption

of normality is unreasonable. The marginal likelihood method does, however, have

certain advantages over the Mantel-Haenszel-type method. It is more flexible in that

it can be used to analyse continuous measures as well as binary. Such a model based on

continuous outcome measures is similar to an analysis based on a mixed model which

may be implemented in the computer software package SAS [1O1J. Furthermore,

for binary outcome measures the marginal likelihood method only requires öj and

v for each trial, whereas the Mantel-Haenszel-type procedure requires the full 2 <2

contingency table for each trial, which may not always be readily available in the

published literature. From the evidence provided by the examples in this chapter,

the choice between the two likelihood methods may depend more on the ease with

which the method can be implemented using a computer. A computer program is

available from van Houwelingen et a!. [45], written in Gauss, using the EM algorithm

to obtain the likelihood solutions for the Mantel-Haenszel-type model. The work

relating to the marginal likelihood model was carried out using GLIM where a macro

containing a simple cyclical iteration procedure was used to obtain the MLEs, and

also in Splus where standard Splus functions were used.
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A Bayesian approach to meta-analysis was briefly introduced in Section 2.6,

as the ideas are related to the likelihood approach previously considered. Empirical

Bayes estimates (Sections 2.6.1-2.6.3) were shown to be a useful alternative to a

single overall estimate of treatment effect for summarising the results from a meta-

analysis in the presence of heterogeneity. It was found that the use of alternative

estimators of 4 in the calculation of the empirical Bayes estimates öj is unlikely to

have a great deal of influence on the results. However, the robustness of each ö, to

different estimates of 4 may be worth checking, particularly if & is imprecise owing

to the meta-analysis being based on a small number of trials.

The hierarchical Bayes model (Section 2.6.4) is similar to the random effects

likelihood model, although by using the concept of exchangeability the controversial

assumption that the trials included in a meta-analysis are a random sample from

some global population of trials is avoided. Furthermore, the choice of the model,

prior and error distributions is flexible in the Bayesian framework. However, methods

tend to be computationally intensive and are perhaps conceptually more difficult for

the non-statistician than the standard meta-analysis methods. The existing Bayesian

meta-analysis literature also describes analyses to assess the robustness of the results

to various modelling assumptions. Plots similar to those of Section 2.1 have been

used in the Bayesian context, as have normal plots assessing the adequacy of the

distributional assumptions similar to those proposed in the next chapter of this thesis.

The emphasis on sensitivity analyses shown in the Bayesian context is valuable and

the ideas could be usefully translated to the classical framework. Hence, although it

is acknowledged that Bayesian methodology has much to offer meta-analysis it is not

pursued any further here. The focus of the thesis is to consider the more standard

and accessible approaches which are currently widely used in practice.

Various different estimators of the between-study variance 4 have been pro-

posed. However, none are very precise, particularly when k is small, and all become
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biased as negative values must be set to zero. Section 2.7 considered an alternative es-

timate of the between-study variance which was novelly applied to the meta-analysis

context. The estimate, based on that described by Matthews [100] when consider-

ing the problem of the analysis of repeated and serial measurements of a continuous

variable using summary measures, was adapted to the meta-analysis situation. The

estimator was found to be unsuitable for application to meta-analysis, and certainly

performed considerably worse than the D&L moment estimator of 4 in the sim-

ulation examples considered. It was less precise and more biased, particularly in

examples where the weight was unevenly distributed. However, these examples also

revealed that the D&L estimator was far from satisfactory in these unevenly weighted

situations too.

This chapter has shown that the estimation of the between-study variance in

a meta-analysis is problematic. Estimates tend to be imprecise, while allowing for

the estimation of 4 may affect the estimate of the overall treatment effect. However,

in many practical situations the use of the standard random effects method, which

incorrectly assumes that 4 is known, will produce reliable results in the presence of

heterogeneity as results can often be robust to changes in the value of 4. However,

the implications of varying 4 and allowing for its estimation by means of a likelihood

model should always be carefully considered. Furthermore, methods based on exact

distribution theory should be considered for use with sparse binary data.
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3 Checking Distributional Assumptions

To obtain confidence intervals for the fixed effect estimate of treatment effect the

assumption that the individual study estimates are normally distributed with mean

O and variance v, must be made. Additionally, in the random effects model for meta-

analysis, it is usual to make the assumption that as well as the individual study

estimates having a normal distribution the random effects have a normal distribution

too. Many of the results and methods in Chapters 1 and 2 are based on these

distributional assumptions. Section 3.1 describes the use of normal probability plots

to check the distributional assumptions of both the fixed effect and the random effects

model, while the issue of testing for normality is addressed in Section 3.2. Section 3.3

investigates the performances of the plots and tests using simulation techniques and

Section 3.4 provides some practical examples of the use of the methods. The chapter

is completed with a discussion in Section 35.

31 Normal Plots

The fixed effect version of the normal plot will firstly be described in Section 3.1.1,

followed by the corresponding random effects plot in Section 3.1.2.

3.1.1 Fixed effect plot

The contribution that study i makes to the test statistic for heterogeneity Q can be

written as q1 = (ô - öj)//, where q = Q. Tinder a normally distributed fixed

effect model, the (a, - O)/.Ji will have a standard normal distribution. Hence, the

distribution of qj, where 9 is replaced by , will be approximately standard normal,

provided that k is large. The q are ordered such that q(l) ^ q(2) ^ ... ^ q(k), and

then a normal plot, or 'q-q plot', is a display of q(i) against	 '(Fk (q)) where (q)
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and Fk (q) are the standard normal and empirical cumulative distributional functions

(cdf), that is

Fk(q) = >: I(q - q())/k	 (74)

where I(x)=1 for x	 0 and 0 otherwise. It should be noted that in practice ad-

.justments must be made at the endpoints, since	 (Fk(q)) cannot be calculated for

q ^ qi or q ^ q. Blom scores [102] which are written as = (1— 3/8)/(k + 1/4)

may be used for this purpose. A q-q plot of q will produce, approximately, a straight

line through the origin with unit gradient if the specified distributional assumptions

hold. Hence, the plot can be used to provide a visual inspection of the validity of the

normality assumption that Oj '- N(0, v) in a fixed effect model.

3.1.2 Random effects plot

A plot, corresponding to that described in the Section 3.1.1 for the fixed effect model,

may be produced to check the normality assumptions underlying the random effects

model, that is 0 N(O, v) and O N(O, oj). A similar statistic to qj can be used,

except that the fixed effect estimate Oj is replaced by the random effects estimate

Ô and the additional component of variance 4 is incorporated. The statistic used

is therefore q = (O - O)/J(v + 4). Under the normality assumptions, the q

follow an approximate standard normal distribution. Therefore, under a normally

distributed random effects model, a q-q plot of the ordered q will produce, approxi-

mately, a straight line through the origin with unit gradient.

Since 4 is always greater than or equal to zero, then /(v +4), the denom-

inator of q, is always greater than or equal to 	 the denominator of q 1 . Hence,

because Oj is usually very close in value to 0,., q will be less than or equal to IqI.
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This means that each point will be shrunk towards zero in transferring from the fixed

effect plot to the random effects plot.

In addition, if v = v for all i, then under the normally distributed random

effects model, q1 will have an approximate normal distribution with a mean of zero

and a variance given by (v + ô')/v. Hence, using q, when the data actually follow the

normally distributed random effects model will produce a plot which is a straight line

going through the origin and which has a gradient which is steeper than one. In this

situation, where all within-study variances are equal, each point is pulled in towards

zero by the same proportionate amount when comparing the random effects plot to

the fixed effect plot. In fact, q can be written as cqj, where c is a constant which takes

the value v/(v + ô). However, it becomes much more difficult to predict how the

points will be transformed on the random effects plot, in comparison to the fixed effect

plot, when the variances are different. The proportion by which a point moves then

depends on the ratio of each individual within-study variance to the between-study

variance. A point with a small within-study variance v in relation to between-study

variance & will change by a greater extent in proportionate terms than a point with

a larger within-study variance, since q is now equal to (Jv/(v + ôflq. However,

in absolute terms a trial which is in the tails of the distribution of q1 , and thus with

large (Ô - will tend to change more than one in the centre of the distribution.

The points may also have different normal score values in the two plots meaning,

therefore, that the ordering of the points changes.

Examples of both types of normal plots are presented later in this chapter.

3.2 Testing for Normality

Since it may be difficult to judge from an informal visual inspection of the q-q plots

whether the data is compatible with a standard normal distribution, a test of the
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(75)

(76)

normality would be of use. The following sections (Section 3.2.1 and 3.2.2) describe

two possible tests for this purpose.

3.2.1 The Shapiro-Francia W' test

The Shapiro-Francia W' test [103] is a powerful test of departure from normality

[104] which is straightforward to carry out. Using the ordered q1 , the test is of the

hypothesis that the sample of interest is from a normal distribution with an unknown

mean and an unknown variance 2• These unknown parameters may be estimated

as follows,

I='q(i)

and
mTq
mTm

where q is the vector of the q and m is the expectation vector of the order statistics

of a sample of standard normal random variables. The Shapiro-Francia W' test

statistic is then defined by,

k	 Ic

W1 = (> a()q(1)) 2/	 (q(i) - )2
	 (77)

i=1

where a = (mTm)h/2m. In practice, m may be approximated by the Blom scores

ñi, where

rn() =	 {(i - 3/8)/(k + 1/4))	 (78)

Royston [104J provides a method for transformation of the null distribution of W' to
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normality so that the p-value for the test may be obtained.

It should be noted that	 (q - )2=S2 is the usual unbiased estimate of

(k - 1)o.2 where c2 is the variance of the q(i). When the sample comes from a normal

distribution, then both the numerator of (77), (E a(j) q(j) )2 , and the denominator

S2 , are, apart from a constant, estimating the same quantity, namely a 2 [105]. Hence,

W' will be approximately equal to (k - 1)' If the sample comes from a non-normal

population then these two quantities are not, in general, estimating the same thing

and so W' will not be equal to (k - 1):'Since this test is only concerned with whether

the sample is from a normal distribution it actually tests only the linearity of the

plot. However, the hypothesis of interest here is that the observed sample is from a

standard normal distribution. Hence, the interest lies in the deviation of the points

from the line of identity, not simply in the deviation from linearity. This means that

a more useful test would be one which looked at the gradient of the plot as well as

the linearity.

An estimate of the slope of the plot may be obtained using the formula given

in (76) and hence this will give some indication of whether the slope is consistent with

unity. This implies that a calculation of the slope of the regression line of the ordered

values together with the test for linearity may indicate whether the assumption of

standard normality is reasonable. However, a single test of standard normality N(O, 1)

would be preferable.

3.2.2 The Anderson-Darling A2 test

Empirical distribution function (EDF) statistics for goodness-of-fit offer the possi-

bility of an improvement over the Shapiro-Francia W' test as they do allow for the

complete specification of the distribution of the null hypothesis. The most commonly

used EDF goodness-of-fit test is the Kolmogorov test, which looks at the maximum
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distance between the hypothesised distribution and the empirical distribution. How-

ever, due to the fact that it is only considering a maximum difference, this test is not

the most powerful EDF test. From a comparison study of 5 EDF tests, Stephens [106]

suggested that it was always worthwhile considering the Cramer-von Mises statistic

W2 , the Watson statistic U2 and the Anderson-Darling statistic A2. Sinclair and

Spurr [107] indicate that the Anderson-Darling test is designed to be more sensitive

to discrepancies between Fk(q) (74) and F(q) = (q), the standard normal function,

in the tails of the distribution, a feature which would be useful for the particular case

of meta-analysis under consideration. Hence, the Anderson-Darling statistic is the

EDF test considered here. Letting F(q()) = Z(), the Anderson-Darling statistic is

given by

_E=i(2i - 1)[ln(z()) + ln(l - Z(k+1_))] - k	 (79)A2=	
k

This statistic is based on the idea that the distribution of F(q()) is symmetric under

the null hypothesis, that is Z() = Z(k+1_i). Hence, under the null hypothesis

{E_i(2i - 1)ln(z))} - 
Ic	 (80)A2 =—

k

Furthermore, under the null hypothesis Z() will take the value of the midpoint of

Fk (q( _ l) ) and Fk (q() ) so that Z() = ( + ')/2 = 2! . Hence (80) can be written as

A2=_fl E =i (2i-1)ln( 1 ) }_i	 (81)

Then as Ic becomes reasonably large, it can be shown that - { E...i (2i - 1)ln(21) }

is approximately equal to k. This means that under the null hypothesis A2 k - k =

0. Therefore as Fk(q) becomes more different from F(q), A2 will get larger and it is

this characteristic that provides the basis for the test.
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Different versions of the Anderson-Darling test for normality are required for

different circumstances and the choice of test depends on what facts are specified

about the null distribution of the parameter of interest. There are four different

variants of the null hypothesis of normality:

(1)Mean (z) and variance (c 2) known

(2)Mean known and variance unknown

(3)Mean unknown and variance known

(4)Mean and variance unknown

Number (1) is the version of interest here, as in the present problem both the mean

and the variance of the null distribution of the q are assumed to be known, although

the estimation of Ô1 or (3,. means that the results are only approximate. Now each Z()

is calculated by standardisation where Z(i) = (q(j) - p)/o , but in the situation under

consideration, however, u=0 and o=1 and so Z() = q(i). In the other three cases where

there are unknown parameters, estimates of jz and o.2 may be obtained from the ob-

served q(i), and then Z() can be calculated using and b 2 as required. The parameters

u and o may be estimated by à =	 q,j/k and 2 =	 f4)2/(k - 1) or

- /.L) 2 /k depending on what has been specified about the null distribution.

The resulting Z() are then used to calculate the test statistic A2 . Stephens [106] pro-

vides a separate table of critical values for each of the four different cases described

above. For the case where both the mean and the variance are estimated a modifica-

tion is made to A2 before it is looked up in a table, namely A2* = A2(1+4/k-25/k2).

After the necessary transformation of q(j) to a standard normal distribution

Z(), the hypothesised cumulative distribution function F(q() ) is completely specified

and the Z() should be uniformly distributed between 0 and 1. If the mean of the

sample is different to that specified then the points will tend to move towards 0 or 1.
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If the variance is different to that specified then the points will tend to move towards

each end or towards 0.5 [1061.

The performance of both the Shapiro-Francia W' and the Anderson-Darling

A2 tests are compared in Section 3.3 under different null and alternative hypotheses.

3.3 Simulation Studies

In order to compare the two tests for normality under different conditions, a series

of simulations were carried out using the methods described in Section 3.3.1. The

shape of both fixed effect q-q plots and random effects q-q plots were considered for

examples of data generated under different models in Section 3.3.2. The simulations

also presented an opportunity to investigate whether the estimation of 0 in the cal-

culation of qj, i = 1, ..., k, has an effect on the results of either test being compared.

This question is considered in Sections 3.3.3 and 3.3.4 in order that a valid and ap-

propriate test be identified (Section 3.3.5). The main aspect of the investigation,

addressed in Sections 3.3.6 and 3.3.7, is to see how well the Shapiro-Francia test and

the Anderson-Darling test are able to distinguish between correctly and incorrectly

specified meta-analysis models. Hence, the power of the two tests are investigated

and compared under various conditions.

3.3.1 Description of simulation methods

The computer program used to carry out the simulations, written in FORTRAN,

was designed to produce data points sampled from either a normally distributed

fixed effect model or a normally distributed random effects model. The routines

for generating the data were used for the investigations in Section 2.7 and Chapters

4 and 5, as well as for the work in the current chapter. Two different situations

were considered which involved the simulation of different models. Firstly, the v1 , i =

155



1, ..., k were assumed known, that is the true values from which the data are generated

are used in any subsequent calculations. Such examples involve the generation of

values of such that

O P*dN(9,v,)
	

(82)

where each O is generated from the distribution

0, '-'N(0,o)
	

(83)

These values of 0,, together with the known v, are then used in the calculation

of Oj , b and O by standard meta-analysis methods. The data, both 0, and O,

were obtained using a random number generator, followed by a transformation to

normality. In the case where the known parameters are used, it is not necessary

to generate individual data points within each study. Hence, the results from such

simulations may apply to either a binary or a continuous outcome measure. However,

the conclusions drawn cannot be directly applied to a practicaJ situation, since the

estimation of the parameters may affect the results.

In order to investigate what happens in practice where v, as well as 0, must be

estimated from the data within each study, individual data points must be generated

in the simulations. The results presented in this Section are based on a continuous

outcome measure, as this data is less problematic to work with than simulated binary

data, and it also relates to the major practical example used to illustrate the ideas in

this chapter (Section 3.4.1). For treatment group j (j=l,2) in trial i, an individual

observation ye,,, l=1,...,n,, could be generated and the difference in means between

groups calculated. However, in order to simplify the simulations, each data point YiI,

l=l,...,n, and I = l,...,k, is generated using
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(84)

so that ö, N(O,v), where v = ô/n1 and b? =	 —L.)2/(n.i —1), and as

before 0 N(O, 4) . The öj and v, used in the subsequent calculation of , & and

are obtained from the data yjj within each study using the standard techniques.

For this, as well as the previous situation, data following a fixed effect model may also

be produced from the same generating procedure. If ô, is from a fixed effect model,

4 may be set to zero and each O is equal to 0 and so -s N(0,vj.

For the particular issue being investigated in this chapter, subroutines were

written for the purpose of calculating q(i), q(j) and the Shapiro-Francia and Anderson-

Darling test statistics, and 1000 data sets were generated for each example to obtain

the required results. The number of observations n1 in each trial was set to be 50 for

all the simulations in this section.

3.3.2 Examples of the plots

Before pursuing the main simulations, examples of the type of plots, both fixed effect

(Section 3.1.1) and random effects (Section 3.1.2), that may be obtained from different

types of data are presented. A single simulated example was taken from a selection

of models where k was set at 50 and where all parameters were assumed known.

This is simply as an introduction to provide a guide to the sort of plots that may be

expected from different types of data. The number of points available was deliberately

chosen to be large to enable the shape of the plots to be seen clearly. Furthermore,

at this stage the parameters were assumed to be known, and the models generated

using (82) and (83), as there is then no problem with the validity of the assumptions

regarding the distribution of the q 1 or the validity of the tests. Initially, data sets

which conform to the two standard meta-analysis models are considered, being
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Model (1) Fixed effect model with v = v-0.1 for i = 1,..., k, k=50

Model (2) Random effects model with 4=0.5 and v = v=0.1 for i = 1, ..., k, k=50

Model (3) Random effects model with 4=0.5 and different v,

v1 - v5=0.05, v6 - v10=O.10,...,v45 - v50 = 0.5

When the data is sampled from a homogeneous normal distribution with equal within-

study variances (Model (1)), both the fixed effect plot (Figure 24) and the random

effects plot (Figure 25) follow the line of identity with any deviations being compatible

with chance. The random effects plot is very similar, although actually not identical,

to the fixed effect plot. The plots would be identical if 4=0. However, in the

example 4 must be slightly greater than 0 meaning that = cq() for all i where

c = ,/'ifçv + 4) (Section 3.1.2) is marginally less than 1.

Figure 2s: fZandni effecb normal plot of qj from a normally distributed fixed effect

model (k=50) compared with the N(0, 1) line

-3	 -2	 -1	 0	 1	 2	 3

norma scores

correlationO.996
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Figure 24-: /	 effect normal plot of q from a normally distributed fixed effect

model (k=50) compared with the N(O, 1) line

-3	 -2	 -1	 0	 1	 2	 3

normal acorea

correlationO .996

The test results for both the Shapiro Francia W' test and the Anderson-Darling

A2 test in this example indicate that there is no evidence against normality in either

plot (Table 26). It is noticeable that the value of the statistic W' is the same for

both plots. This will in fact always be the case in examples where v=v for all i since

the within-study variances are all equal, and j is approximately equal to ô,., and q)

has been shown to be equal to cq() . Furthermore, since ñ is the same for both

q(i) and q) in the Shapiro-Francia test, then a() is the same for both the fixed effect

and the random effects version of the test. For the random effects test using the q),

therefore,

W' 
=	

a(t)cq(i))2/	 (cq(1) - c)2 = c2(	 a(1)q())2/c2 >(q(1) - )
2	 (85)

and hence it can be seen that the c's cancel out, thus giving the test for the q ,.

Hence, the test statistic W' is equivalent in the two &tuations, and only the linearity
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of the plot is being tested.

Table 26: Results of two tests for normality for the simulated examples from models

(1)—(5) shown in Figures 24-24

Model Type of plot 	 Shapiro-Francia p-value Anderson-Darling p-value

W' statistic	 for W'	 A2 statistic	 for A2

(1) Fixed effect	 0.992	 0.95	 0.331	 >0.10

Random effects	 0.992	 0.95	 0.179	 >0.10

(2) Fixed effect	 0.977	 0.36	 14.663	 <0.01

Random effects	 0.977	 0.36	 0.315	 >0.10

(3) Fixed effect	 0.733	 <0.001	 8.375	 <0.01

Random effects	 0.965	 0.13	 1.369	 <0.025

(4) Fixed effect	 0.942	 0.02	 1.199	 <0.05

Random effects	 0.942	 0.02	 1.250	 <0.05

(5) Fixed effect	 0.921	 0.004	 1.462	 <0.025

Random effects	 0.953	 0.045	 1.186	 <0.05

5eepI3
If the data follow a random effects model with each study estimate having

the same variance v (Model (2)), the fixed effect plot (Figure 26) produces a straight

line through the origin with a gradient steeper than 1. This gradient will actually

be approximately equal to (v + 4)/v ((v + 4)/v=6 here) and the gradient of the

regression line can be estimated using equation (76). The random effects plot (Figure

27) suggests that the model fits the data with only chance deviations from the line

of identity. In this instance, it can be seen from the random effects plot that the

distribution of the q) is approximately standard normal and from the fixed effect

plot that the distribution of the q(i) is not. The estimated gradient of the line, using

(76), on the fixed effect plot is 5.6 (compared to the theoretical value of 6), which is

clearly greater than one, while the estimated gradient of that on the random effects
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plot is approximately one.

Figure 26: Fixed effect normal plot of q, from a normally distributed random effects

model with equal within-study variances (k=50) compared with the N(O, 1) line

-8 -6 -4 -2	 0	 2	 4	 6	 8

normal scores

correlationO.988

The Shapiro-Francia test applied to both the fixed effect and random effects

plots find no evidence against normality (Table 26), and the test is again necessarily

the same in both cases. The same argument as above (85) shows that this will

always be the case when all the within-study variances are equal for random effects

models as well as fixed effect models. The Anderson-Darling statistic is, however,

able to detect that the q are not standard normal and consequently does produce a

significant result (Table 26). Furthermore, the result of A2 using the random effects

q(;) is non-significant as expected.

When the within-study variances are different under a random effects model

(Model (3)), the fixed effect plot (Figure 28) still tends to produce a line with a

gradient steeper than unity going through the origin. However, this line tends to

be curved as opposed to straight, with the gradient becoming steeper towards the

tails as v, becomes larger for outlying points. The random effects plot (Figure 29)
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Figure 27: Random effects normal plot of q from a normally distributed random

effects model with equal within-study variances (k=50) compared with the N(O, 1)

line

-3	 -2	 -1	 0	 1	 2	 3

normal scores

correlation=O.988

indicates that a normally distributed random effects model may reasonable. The

Shapiro-Francia test correctly rejects normality of the fixed effect qj, but finds the

data consistent with a random effects model using the random effects q", thus correctly

identifying the true model (Table 26). The Anderson-Darling test rejects the fixed

effect model correctly, but the result for the test of the random effects is a false

positive for this example.

As well as helping to decide between the two standard normally distributed

models, these plots can also be useful in identifying sets of data which do not conform

to either. For example, a data set which is a mixture of two distributions where most

of the studies are homogeneous but where a few follow a random effects model, may

be identified. Hence, two such examples were considered,
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Figure 28: Fixed effect normal plot of q, from a normally distributed random

effects model with unequal within-study variances (k=50) compared with the N(0, 1)

line

-15	 -10	 -5	 0	 5	 10	 15

normal scores

correlatjon=O.857

Model (4) Data a mixture of fixed effect and random effects models

Moderate between-study variance 4=0.5, v=v=O.1 for i = 1, ..., k k=50

Number of points from a random effects model is 10

Model (5) Data a mixture of fixed effect and random effects models

Moderate between-study variance 4=0.5, different v,

v varied from 0.05 to 0.5 as for Model (3), k=50

Number of points from a random effects model is 10

For a situation where 40 of the studies follow a normally distributed fixed effect

model and the remaining 10 follow a normally distributed random effects model and

where the v are all equal (Model (4)), the fixed effect plot (Figure 30) produce3 a

display where the majority of the points follow the line of identity, but where some

clear outliers, which fall well away from the line, can be observed in the tails of the

163



Figure 29: Random effects normal plot of q from a normally distributed random

effects model with unequal within-study variances (k=50) compared with the N(O, 1)

line

-3	 -2	 -1	 0	 1	 2	 3

normal scores

correlationO .982

distribution. The corresponding random effects plot (Figure 31) appears to be more

linear since the outlying points are pulled in towards the line of identity. However,

the majority of the points, although still forming a relatively straight line have a

gradient which is slightly less than 1. In this example, where the study variances are

all equal, the Shapiro-Francia test will again produce the same result for both plots,

as the two differ only in scale. Both A2 and W' correctly identify this data set as

being neither a fixed effect or a random effects model (Table 26). W' is specifically

a test of linearity and hence is able to detect the deviations in the tails, while A2 is

also sensitive to deviations in the tails.

This evidence suggests that if a random effects plot is obtained where the

gradient of most of the data is only slightly less than one on visual inspection, then

caution over the normality of the plot should be expressed. Hence, a test for normality

in this instance is helpful in detecting the non-normality because naive interpretation
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Figure 30: Fixed effect normal plot of q1 from a data set which is a mixture of two

distributions with equal within-study variances (k=50) compared with the N(0, 1)

line

-6 -4 -3 -2 -1 0	 1	 2 3 4 6

normal ecores

correlation=0.97O

of the plots may be misleading. The estimate of the gradient of the line can also be

misleading in situations where outliers are present as the estimate is highly dependent

on these few influential points. For example, on the random effects plot (Figure 31),

the estimated gradient is 0.95, although it can be seen quite clearly that the gradient

for the majority of the points is considerably less. Similarly the estimate of the slope

of the fixed effect plot (Figure 30) is 2.06, due to the influence of the outliers.

In the more realistic situation where the within-study variances are different

(Model (5)), although the fixed effect plot (Figure 32) and related tests still indicate

quite clearly a deviation of the plot from normality, the message from the random

effects plot (Figure 33) is far less clear. The plot shows only slight evidence of having

a gradient less than one in the middle of the distribution, and in fact the estimated

slope is approximately one. The p-values obtained from the Shapiro-Francia test and

the Anderson-Darling test, although still detecting evidence against normality using
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Figure 31: Random effects normal plot of q from a data set which is a mixture

of two distributions with equal within-study variances (k=50) compared with the

N(0,1) line
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normal scores

correlationO .970

the random effects q() are far larger than when using the fixed effect q(i) (Table 26).

3.3.3 Investigation of the null distribution of the test statistics for a fixed

effect plot

A potential problem exists with respect to the validity of the tests, since the theory

behind the distributional result, that is that under the correct models q() N 0, 1)

and q(,) N(0, 1), assume that 0 is known. Hence, in practice where 0 is estimated,

the results are only approximate. In order to investigate the validity of the tests when

parameters are estimated in the calculation of each q(,) and q), attention was focused

on the null distributions of the test statistics. For the fixed effect q firstly, under

the null hypothesis the data follow a normally distfbuted fixed effect model, so that

N(0,v,) as Yti	 N(0,crfl, where v1 =	 ( Section 3.3.1). The FORTRAN
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Figure 32: Fixed effect normal plot of q, from a data set which is a mixture of two

distributions with unequal within-study variances (k=50) compared with the N(0, 1)

line
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normal scores

correlation=0.96O

routine used here calculated four versions of the Anderson-Darling A2 test statistic,

together with the Shapiro-Francia W' test statistic. The number of times in 1000

normally distributed fixed effect model simulated data sets that each test statistic

was observed to be more extreme than the 5% significance level was then counted, in

order to obtain the Type-I error rate. If the null distribution of standard normality

of the q were to hold, then 5% (± twice the standard error) of the 1000 tests would

be significant. The number of trials in each data set was taken to be 20 in order to

create a realistic meta-analysis situation.

There are then four different ways in which q1 can be calculated in the simula-

tions, depending on whether 0 or v, or both, are estimated, and these are as follows:
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4 . -

Figure 33: Random effects normal plot of q from a data set which is a mixture of two

distributions with unequal within-study variances (k=50) compared with the N(O, 1)

line

-4 -3 -2 -1	 0	 1	 2	 3	 4

normal ecore,

correlation=O.976

(a) qi=(&—O)/'./

(b) qj= ('—O)/'/

(c) qj = ( Ô -

where v now refers to a known within-study variance o/n and j refers to an esti-

mated within-study variance. Although it is only case (d) that is of practical concern,

all four cases are considered in order to deduce whether the estimation of the param-

eters has any effect on the tests. Data from a correct model will strictly only produce

a straight line through the origin with unit slope if it is assumed that both 0 and v

are known, that is in case (a). For all other cases this result is approximate and henc'

case (a) is the standard to which the others, and particularly (d), will be compared.
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Furthermore, due to there being four different versions of the Anderson-Darling

test (Section 3.2.2), the z used to calculate the A2 statistic also take four different

forms:

(1) ;=(q,-0)/1

(2) z,=(q1—O)/ô

(3) z=(q1—)/1

(4) z=(q1—ji)/ô

Hence, there are actually sixteen different versions of the Anderson-Darling test to

be considered, together with four versions of the Shapiro-Francia test, that is one

for each of (a)—(d). The version of the Anderson-Darling test of real interest for

the situation under consideration is (1), since the interest lies in obtaining a test of

standard normality and so the mean and variance of the distribution under the null

hypothesis are both known.

Table 27: Results from the simulations under the null hypothesis that the data follow

a normally distributed fixed effect model (that is when q .- N(O, 1))

Version	 Parameter	 Type-I error (% significant from 1000 tests)

of qj	 Overall Within-study Version of A2 test	 Shapiro-Francia

effect (0) variance (vi )	 (1) (2) (3) (4)	 W'test

(a) known	 known	 5.0 5.8 5.2 5.6	 5.4

(b) known	 estimated	 4.8 4.9 4.3 4.5	 4.3

(c) estimated known	 0.1 0.0 4.9 6.4	 6.6

(d) estimated estimated	 0.1 0.0 4.8 4.7	 4.7

It can be seen from the results that not all versions of the Anderson-Darling

test produce the desired 5% error rate (Table 27). Focusing firstly on the practical
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case where q is calculated using estimates of both 0 and v, that is case (d), it can

be seen that versions (1) and (2) of the Anderson-Darling test produce error rates

which are far below 5% and are in fact approximately zero. This means that the

test will be extremely conservative and, in practice, will be very low in power. The

same results occur for case (c), but not for cases (a) and (b). The common factor

linking cases (c) and (d) is that they are the two situations where 9 is estimated in

the calculation of q(t). Furthermore, the two versions of the test, (1) and (2), which

produce low error rates are those where the mean of the distribution of the qi under

the null distribution is assumed to be known. Hence, the estimation of 0 affects the

performance of version (1) of the Anderson-Darling statistic and prevents it being

of any practical use. The results for version (3) of the Anderson-Darling test are

compatible with the 5% significance level in all cases.

The fact that the error rates for case (b) are around 5% for all versions of the

Anderson-Darling test (Table 27) suggests that the estimation of the v does not cause

any serious problems, at least for the example considered. Furthermore, version (3)

of the Anderson-Darling test appears reasonable under case (d). Hence, version (3),

that is where the null hypothesis tested is that of H0 : 9 .- N(, 1), may be used in

practice. Although not being ideal, this version at least provides an improvement over

the Shapiro-Francia test, in that the value of the variance of the q(i), or equivalently

the gradient of the line on the fixed effect plot may be tested as well as the normality of

the distribution. Hence, such a test is at least able to distinguish between a normally

distributed fixed effect model and a normally distributed random effects model by

detecting the increase in slope on the fixed effect plot with the latter.

Further investigation of version (1) of the Anderson-Darling test using q 1 where

0 and u are estimated, the case of practical interest, revealed that it is not the null

hypothesis of standard normality of the q which is being tested . For an example

where v- = v for all i, the null hypothesis actually being tested is Ho :	 N(0, v),
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where 0 and v are unknown. By treating this as the null hypothesis, and therefore

calculating the Anderson-Darling statistic using z = (O -	 (i.e. using the qj

as the zj, the correct 5% significance level is obtained. In a case where v=v for all

i, this test of Ôr- N(0, v) does check the distributional assumptions of a fixed effect

model adequately. However, when the v are different each öj has its own normal

distribution Ô N(0, v,) and hence, the null hypothesis relating to the distribution

of the 3j cannot be tested.

Finally, it is observed that the null distribution for case (c) for both the

Shapiro-Francia test and version (4) of the Anderson-Darling test produce Type-I

errors which are significantly larger than 5%. This may just be by chance, but it

may also mean that the power of these tests is artificially increased. However, since

case (c) is not of practical relevance and the increase is only slight, this issue was

not investigated further. Also, the fact that the results for (d) are compatible with a

value of 5% lends support to the view that they have occurred by chance.

3.3.4 Investigation of the null distribution of the test statistics for a ran-

dom effects plot

Simulations similar to those described in Section 3.3.3 were used to consider the

performance of the tests using the random effects q)• This time, however, the data

were generated under the normally distributed random effects model ((83) and (84) of

Section 3.3.1) with 4=0.5. Only versions (3) and (4) of the Anderson-Darling test

were considered here, since the previous investigations (Section 3.3.3) showed that

versions (1) and (2) are obviously very conservative and lacking in power when 0 is

estimated, and are therefore of no practical use.

Confirmation of the validity of all of the tests when all parameters in q are

known was obtained (Table 28). However, when the parameters 0, v, I = 1, ..., k and
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Table 28: Results from the simulations under the null hypothesis that the data follow

a normally distributed random effects model (that is when q) N(0, 1))

Parameter	 Type-I error (% significant from 1000 tests)

Overall Variance	 Version	 Shapiro-Francia

effect (0) (v + 4) of A2 test	 W' test

__________ __________ (3) (4) ______________________________

known	 known	 5.6 5.6	 5.3

	

estimated estimated 0.7 5.8	 5.9

4 are estimated in the calculation of q, even version (3) of the Anderson-Darling

statistic is affected. Results for the null distribution indicate a significance level of

under 1% rather than the required 5% (Table 28). This lowering of the type-I error

rate must be due to the estimation of the between-study variance 4 in q, since it

has been shown in Section 3.3.3 that the estimation of v alone does not apparently

affect the test. Hence for the random effects components q, the only valid test is one

of the null hypothesis H0 : q1 N(4u, oi) which is the same as that for the Shapiro-

Francia W' test. The Shapiro-Francia test is not affected noticeably, if at all, by the

estimation of the parameters in q (Table 28).

3.3.5 Conclusions from the simulations under the null hypothesis

The results obtained strictly only apply to normally distributed continuous outcome

measures, as this is the type of data that were generated in the simulations. However,

since 0 is estimated in exactly the same way, that is by a weighted average of the

individual estimates, for a binomial outcome, then it is likely that versions (1) and

(2) of the Anderson-Darling test will again loe- power. The simulations obviously

indicate that the test of the null hypothesis H0 :	 N(O, 1), that is where the null
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distribution is completely specified, using the tables proposed by Stephens [1061, is

of little use in the practical situation where 0 must be estimated in the calculation of

qj. An improvement over merely being able to test for normality is to test H0 q

N(, 1) and hence version (3) of the Anderson-Darling test is to be preferred when

considering the distribution of the q(,)• By testing this hypothesis, an advantage is

obtained over the Shapiro-Francia test in that it enables a distinction to be made

between a fixed effect model and a random effects model using the components q(i).

However, on a random effects plot using q(j), version (4) of the Anderson-Darling test

must be used, that is taking the null hypothesis to be H0 : q, N(c, o2), which is

exactly equivalent to the null hypothesis of the Shapiro-Francia test.

In the simulations considered, since n was set to 50 for each study v will have

been reasonably well estimated. Hence, further simulations for smaller values of n,

would be required to be able to make the generalisation that the estimation of v from

individual study data does not noticeably affect the performance of the test.

3.3.6 Power of the tests for normality for fixed effect and random effects

models

The power of the tests in relation to the fixed effect plots were investigated for mod-

els (1)—(3) (Section 3.3.2). Random effects plots were not considered since these

models are all compatible with random effects models. For each example, 1000 rep-

etitions were again simulated in order to investigate the performance of version (3)

of the Anderson-Darling test, as well as the Shapiro-Francia test. Version (3) of the

Anderson-Darling test was considered since it should be able to distinguish between

a fixed effect model and a random effects model based on calculations using the fixed

effect q(1). Thus, it should have a clear advantage over the Shapiro-Francia test for

the three examples to be looked at. Each simulation was repeated twice, firstly as a

standard for comparison against, taking the parameters 0 and v1 to be known in the
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calculation of qj, and secondly, taking them to be estimated.

Table 29: Results of simulations looking at the power of the tests of normality using

the fixed effect q for data which follow three standard models (Section 3.3.2) when

the overall treatment effect 0 and the within-study variances v1, i = 1, ..., 20, are

known

Model	 Power (% significant from 1000 tests)

Anderson-Darling A2 test Shapiro-Francia W' test

________	 (Version(3))	 _________________________

(1) 5.1	 5.5

(2) 99.9	 4.7

(3) 100.0	 12.4

Table 30: Results of simulations looking at the power of the tests of normality using

the fixed effect q(i) for data which follow the standard models (Section 3.3.2) when

the overall treatment effect 0 and the within-study variances v, i = 1, ..., 20, are

estimated

Power (% significant from 1000 tests)

Model Anderson-Darling A2 test Shapiro-Francia W1 test

_______	 (Version_(3))	 ________________________

(1) 5.3	 4.6

(2) 99.9	 5.5

(3) 100.0	 14.8

The results for the power of both tests under models (1), (2) and (3) are

very similar whether 0 and v, i = 1, ..., k are known or whether they are estimated

(Tables 29 and 30). Version (3) of the Anderson-Darling test exhibits good power

when it comes to detecting a data set which follows a random effects model (Models
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(2) and (3)) from the q of a fixed effect plot (Tables 29 and 30). This is because the

variance of the distribution of each set of simulated qj will be significantly greater

than 1 and H0 : N(1u, 1). The Shapiro-Francia test does find the random effects

model with equal variances, Model (2), consistent with the null hypothesis of general

normality. For Model (3), however, where the v are different, thus introducing some

non-linearity into the plot, the power of the Shapiro-Francia test increases from the

null level of 5%. However, the power is very low at only 12.4% for known parameters

(Table 29) and 14.8% for estimated parameters (Table 30), since the test only detects

deviations from linearity rather than the more obvious deviation of the variance from

unity.

The Shapiro-Francia test cannot therefore effectively distinguish between the

normally distributed fixed effect model and the normally distributed random effects

model, based on the q, from a fixed effect plot, whereas the Anderson-Darling test

can. The plots may be used together and a random effects plot can consolidate the

findings from a fixed effect plot. For example, a random effects plot which produces

an approximate straight line with a gradient equal to 1, and corresponds to a fixed

effect plot with a line with a gradient greater than 1, will support the conclusion that

the data is well represented by a normally distributed random effects model.

3.3.7 Power of the tests for normality for data which conform to neither

of the standard meta-analysis methods

As well as being able to distinguish between the two standard normally distributed

meta-analysis models, it is useful to be able to detect data for which neither of these

models is appropriate. However, there are many different alternative forms that such

data could take, and hence only a brief exploratory investigation is practical here. A

data set which consists of a mixture of observations obtained from both a fixed effect

model and a random effects model is considered.
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The mixed models (4) and (5) outlined in Section 3.3.2 were considered, but

further variations were introduced whereby the number of random effects points in

each set of data was varied. Hence for each model, (4) and (5), the number of points

from a random effects model was taken to be 10, 20 and then 40. Again, both

situations where 0 and v, i = 1, ..., k, are known and where they are estimated were

simulated. A further model (Model (6)) was also considered in order to investigate the

effect of increasing the size of the between-study variance 4 relative to the within-

study variances v1 . Model (6), therefore, uses the same value of v=v as model (4),

but 4 is increased from 0.5 to 1.0.

Model (6) Data a mixture of fixed effect and random effects models

Large between-study variance 4=1.0 and v=v=0.1 for i = 1, ..., k

Number of points from a random effects model is 10, 20 and 40

Although neither the Shapiro-Francia test or version (3) of the Anderson-

Darling test is affected by the estimation of 0 and v1 under the null distributions,

the power of both tests appears, in general, to increase slightly under the alternative

models simulated here (comparing Tables 31 and 32). This may be due to the fact

that additional variability is introduced into the qj by the estimation of the parame-

ters, thus meaning that there is an increase in the non-linearity of the normal plot.

However, the interpretation of the tests remains unchanged, since the 5% error rate is

maintained (Section 3.3.3). The Anderson .Darling test has consistently greater power

than the Shapiro-Francia test when the parameters are known, except in the case of

model 5) when the number of random effects points is 10. But even in this mdi-

vidual example, the powers are approximately the same (Table 31). In the realistic

situation when the parameters are estimated, the power of both tests increases and

so the Anderson-Darling test still remains more powerful than the Shapiro-Francia

test (Table 32).
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When there are only a few points from a random effects distribution, the power

of the two tests tends to be similar with neither test performing particularly impres-

sively (Tables 31 and 32). The power of the Anderson-Darling test does, however,

increase as the number of random effects points increases, and, when there are 40 out

of 50 points from a random effects model, the power is very high and approaches 100%

for the values of 4 and v considered here. In contrast, the power of the Shapiro-

Francia test generally decreases as the number of random effects points increases and

is low when there are 40 random effects points. This contrast in the results observed

may be easily explained by the fact that one test (W') is looking at only linearity

H0 : q 1	 N(1e, 0.2) while the other (A2 ) is concerned with the gradient of the slope

as well H0 : q(j) N(1i, 1). As the number of random effects points in the data

increases, the variance of the distribution of the q(i), and equivalently, therefore, the

gradient of the slope on the fixed effect normal plot, increases. Hence, version (3) of

the Anderson-Darling test gains power as the variance gets increasingly larger than

one. In contrast, particularly in the example where the within-study variances are

equal (Models (4) and (6)), the plots will be more linear when there are 40 random

effects points than when there are 10 such points. This is because 10 random effects

points are more clearly seen as outliers among 40 fixed effect points than are 10 fixed

effect points among 40 random effects points.

The power of both tests increases, in general, as the between-study variance of

the random effects distribution increases from 0.5 to 1.0. This is to be expected since

an increase in the between-study variance will lead to an increase in the variation

observed in the data. Also, the power of both tests, although particularly that of W',

tend to increase when the v are allowed to be different as opposed to being equal.

The increase in power of the Shapiro-Francia test is due to the fact that the differing

variances are an additional source of non-linearity on the fixed effect plot which may

be detected by the test.
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Table 31: Results of simulations looking at the power of the tests of normality using

the fixed effect q(i) for data which follow a mixed model when the overall treatment

effect 0 and the within-study variances v, i = 1, ..., 20, are known

Model Power (% significant from 1000 tests)

Number of random effects points

_____ A2_110_W' A2 

20	

A2 

40

(4) 29.9 22.9 77.1 20.2	 99.6	 7.8

(5) 34.8 34.9 80.8 41.0	 99.8 22.2

(6) 66.2 49.4 98.5 46.0 100.0 8.7

A2=Anderson-Darling test statistic

W'=Shapiro-Francia test statistic

When trying to detect in practice a set of data which is a mixture of the

two standard models, it is not completely clear as to what approach to take. The

Anderson-Darling test (version (3)) was shown to be a generally more powerful test

than the Shapiro-Francia test for the purpose of detecting such data. Furthermore, a

look at the plots may be helpful, although the random effects plots may sometimes

be misleading in that it may suggest that the random effects model is adequate when

in fact the test shows it not to be (Section 3.3.2).

3.4 Practical Examples

Data sets will now be considered to provide examples where the techniques described

in Sections 3.1 and 3.2 are used as an aid to the interpretation and investigation

of heterogeneity. Section 3.4.1 looks at the reduction in blood pressure in the mild

hypertension trial (Section 1.3.2), an example where the normal plots produce clear
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Table 32: Results of simulations looking at the power of the tests of normality using

the fixed effect q for data which follow a mixed model when the overall treatment

effect 0 and the within-study variances v, i = 1, ..., 20, are estimated

Model Power (% significant from 1000 tests)

Number of random effects points

10	 20	 40

A2 W' A2 W'	 A2 
1. 

W'

(4) 38.4 27.1 80.3 24.1	 99.8	 9.3

(5) 43.2 37.1 79.6 41.0	 99.8	 23.1

(6) 68.2 52.3 98.4 46.7 100.0 13.2

A2=Anderson-Darling test statistic

W'=Shapiro-Francia test statistic

pictures owing to the large number of observations available. Section 3.4.2 considers

an example, the diuretics trials meta-analysis (Section 1.3.1), where the plots are

of less use for checking distributional assumptions because of the small number of

trials. However, the example does show how the plots may be useful for investigating

sources of heterogeneity, and the Gaibraith plot [66] is also presented as a further way

of displaying meta-analysis data.

3.4.1 Mild Hypertension Trial

The assumption of homogeneity of treatment effect across all centres in the mild

hypertension trial was tested formally using the Q statistic (Section 1.6). The test

was carried out for the reduction in both systolic blood pressure (SBP) and diastolic

blood pressure (DBP) on the results for the treatment and placebo groups separately,

and also for the difference in blood pressure reduction between these two groups.
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Centre 1 was excluded in these analyses for reasons given in Section 1.3.2.

Table 33: Results of the test for heterogeneity for diastolic blood pressure reduction

between entry to the MRC mild hypertension trial and a year after entry

Outcome	 Statistic for	 Degrees of Q/df p-value

___________________ heterogeneity (Q) freedom (df) ______ ________

Placebo group	 1131.51	 188	 6.0187 <0.0001

Treatment group	 953.79	 188	 5.0734 <0.0001

Difference between	 278.12	 188	 1.4794 <0.0001

placebo and treatment

Table 34: Results of the test for heterogeneity for systolic blood pressure reduction

between entry to the MRC mild hypertension trial and a year after entry

Outcome	 Statistic for	 Degrees of	 Q/df p-value

___________________ heterogeneity (Q) freedom (df) ______ ________

Placebo group	 1052.06	 188	 5.5961 <0.0001

Treatment group	 760.78	 188	 4.0467 <0.0001

Difference between 	 246.28	 189	 1.3031 <0.005

placebo and treatment

The results show strong evidence of a lack of homogeneity across centres in

all cases (Tables 33 and 34). However, there is far greater heterogeneity within each

group individually than there is when the two groups are compared by taking the

difference in means. The extent of the heterogeneity, summarised by Q/degrees of

freedom, in the results for DBP (Table 33) is somewhat greater than the evidence of

heterogeneity in those for SBP (Table 34).

The results for the q-q plots will now be discussed for DBP only, as those for

SBP provide an almost identical picture. When looking at the difference in reduction
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of blood pressure between treatment and control groups using a fixed effect q-q plot,

the majority of the data falls along the line of identity and it is only in the tails

of the distribution where there is any deviation from this line (Figure 34). This

plot is similar to those obtained from simulations of data from a mixture of two

distributions (Figures 30 and 32). The Shapiro-Francia W' test (p 0.01) and

the Anderson-Darling test (p<O.Ol) indicate that there is strong evidence against

normality. The estimated slope of the regression line of 1.47 is not very informative

in this example as it can clearly be seen that the plot is made up of two different

groups of points and the estimate is influenced by the points in the tails of the

distribution of q(j). When the corresponding random effects plot is looked at, there

is no great visual evidence of a lack of fit of the random effects model, although it

should be noted that the middle section of the plot does have a gradient less than one

(Figure 35). This plot may suggest that the random effects model with the normality

assumptions is a reasonable representation of the data. The estimate of the slope is

only slightly less than one (0.99) and therefore strengthens the view that the random

effects model is a reasonable fit to the data. However, as was seen with the simulated

examples, the estimate of the slope may be highly dependent on extreme and outlying

values. Rather surprisingly, the Shapiro-Francia test provides stronger evidence of

non-normality from the q) than it did from the q and produces a p-value of 0.007.

The explanation may be that there are greater deviations from linearity in the centre

of the distribution which the test is sensitive enough to detect, and, furthermore,

the change of scale on the random effects plot may be rather deceptive. Hence the

random effects plot does not show the model violation as clearly as the fixed effect

plot, but according to the test based on the q it provides stronger evidence against

normality than the test based on q1)•

The fixed effect plot for each individual group (treatment and placebo), in

contrast, both produce straight lines through the origin with gradients steeper than

one (Figure 36). The estimate of this slope for the treatment group is 5.04 and
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Figure 34: Fixed effect normal plot of qi for the difference in the reduction in diastolic

blood pressure between the treatment and control group in the mild hypertension trial

compared with the N(0, 1) line
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normal scores
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this evidence suggests that there is great heterogeneity present which is distributed

throughout the centres. The results of the Shapiro-Francia test (pO.008) and version

(3) of the Anderson-Darling test (p<O.Ol) suggest that the plot is not in fact linear

and that there is significant evidence against normality. These results, together with

the shape of the plot, indicate that the sample may be from a random effects model

with different within-study variances. The random effects plot (Figure 37) reinforces

this view as the points fall along the line representing the N(0,1) distribution. The W'

test (pO.08) and the Anderson-Darling test (p<O.l) provide some evidence of non-

normality, but this is not overwhelming. Also, the estimate of the gradient is very close

to unity and hence the random effects model may be an acceptable approximation to

the data obtained from the treatment group.

In the case of the difference in blood pressure reduction between the two

groups, it is possible to remove the heterogeneity from the data by omitting a small
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Figure 35: Random effect normal plot of q' for the difference in the reduction in dias-

tolic blood pressure between the treatment and control group in the mild hypertension

trial compared with the N(O, 1) line
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Figure 36: Fixed effect normal plot of q for the reduction in diastolic blood pressure

in the treatment group in the mild hypertension trial compared with the N(O, 1) line
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Figure 37: Random effects normal plot of q for the reduction in diastolic blood

pressure in the treatment group in the mild hypertension trial compared with the

N(O,1) line
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number of the outlying centres, that is those in the tails of the q-q plot. In contrast,

for the individual groups (treatment and placebo), the heterogeneity is distributed

throughout all the centres. In order to deduce the centres which are the source of the

heterogeneity for the difference between groups in the reduction of blood pressure,

'outlying' centres were excluded one at a time, in order of decreasing size of q. As

each centre was removed Q was recalculated, using a new estimate of 0 each time,

and this procedure continued until enough centres had been removed to produce a

value of Q which corresponded to a p-value of 0.1 or above. The value of the degrees

of freedom of the x2 distribution to which Q is compared is obviously reduced by one

each time a centre is removed.
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Table 35: Centres are removed in turn, starting with the most heterogeneous, until

p> 0.1 for the test for heterogeneity Q for the difference in the reduction in diastolic

blood pressure between the treatment and placebo groups

Centre	 q, for	 Statistic for	 Degrees of	 Xk....1)
removed centre removed heterogeneity (Q) freedom (k - 1) (p=O.1)

	

278.12	 188	 214

118	 15.94	 262.18	 187	 213

65	 13.35	 248.83	 186	 212

162	 12.82	 236.02	 185	 211

186	 11.97	 224.05	 184	 210

36	 10.96	 213.09	 183	 209

176	 8.73	 204.36	 182	 208

k=189=number of centres in study

Heterogeneity, for the difference in the reduction of blood pressure between

groups, can be removed by omitting only 6 centres for each of systolic and diastolic

blood pressure (Tables 35 and 36). It is not the same set of centres that contribute to

the heterogeneity for both systolic and diastolic blood pressure outcomes, although

there is some overlap. The reasons for the large contributions being made to Q by

these particular centres were identified and are recorded in Tables 37 and 38. The

possibility of investigating clinical reasons behind such results in these centres then

exists, but is not pursued here.

Plots of q(i) for DBP against q for SBP show a positive correlation (Figure

38). Hence, larger than average reductions in DBP tend to be accompanied, as would

be expected, by correspondingly larger than average reductions in SBP. The plots of

qj for the placebo group against the treatment group for both DBP (Figure 39) and

SBP clearly show how there is great variation across centres within each treatment
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Table 36: Centres are removed in turn, starting from the most heterogeneous, until

p> 0.1 for the test for heterogeneity Q for the difference in the reduction in systolic

blood pressure between the treatment and placebo groups

Centre	 qj for	 Statistic for	 degrees of	 Xk_1)

removed centre removed heterogeneity (Q) freedom (k - 1) (p=O.l)

	

246.28	 188	 213

3	 7.84	 238.43	 187	 212

18	 7.45	 230.99	 186	 211

48	 7.10	 223.88	 185	 210

118	 6.92	 216.96	 184	 209

186	 6.47	 210.49	 183	 208

30	 6.46	 204.03	 182	 207

k=189=number of centres in study

group, that is in the x and y direction on the plot. They also indicate that a strong

relationship exists between the blood pressure reduction in the placebo group and

that in the treatment group. Hence, centres with larger than average reductions in

the treatment group also tend to have large reductions in the placebo group.

Hence, this information indicates that there is an important 'centre effect' in

this set of data. The effect is seen in the individual groups, but when the difference

is taken this 'centre effect' is largely cancelled out, leaving the heterogeneity confined

to only a handful of centres. it is, furthermore, interesting to note the presence of

a 'placebo effect' in this study, whereby a mean reduction in blood pressure occurs

in the group of patients who received only a placebo rather than an active drug.

There is a large variation in the 'placebo effect' across centres, with observed average

reductions in blood pressure in some centres being extremely large. The 'placebo

effect' may result from the psychological effect on the patients of participation in a
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Table 37: Reasons for the large contributions to heterogeneity of the centres removed

for the difference in the reduction of diastolic blood pressure (DBP) between the

treatment and placebo groups

Centre No. patients Difference Variance of Mean reduction Mean reduction

in centre	 difference	 (placebo)	 (treatment)

118	 61	 14.47	 5.26	 3.94	 18.41

65	 146	 10.40	 1.92	 -1.00	 9.40

162	 29	 -7.47	 12.79	 8.89	 1.41

186	 142	 0.34	 2.06	 7.75	 7.86

36	 79	 12.07	 4.15	 -1.60	 10.47

176	 35	 15.50	 11.88	 -0.16	 15.34

Difference=difference in mean DBP reduction between treatment and placebo

groups

(Overall average difference in mean DBP reduction between groups=5.lmmHg)

Mean reduction=mean reduction in DBP in single group

Centre Reason for large q

118
	

Large treatment effect

65
	

Placebo group has negative difference and small variance

162 Placebo effect much larger than treatment effect

186 No difference in effect between groups and small variance

36
	

Placebo group has negative difference

176 Large difference between groups
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Table 38: Reasons for the large contributions to heterogeneity of the centres removed

for the difference in the reduction of systolic blood pressure (SBP) between the treat-

ment and placebo groups

Centre No. patients Difference Variance of Mean reduction Mean reduction

in centre	 difference	 (placebo)	 (treatment)

3	 104	 20.77	 13.00	 1.16	 21.39

18	 19	 -8.27	 48.23	 13.67	 5.40

48	 107	 1.96	 10.72	 25.00	 26.96

118	 61	 21.22	 16.02	 12.41	 33.63

186	 142	 3.27	 8.51	 22.32	 25.59

30	 105	 1.95	 11.84	 20.11	 22.05

Difference=difference in mean SBP reduction between treatment and placebo groups

(Overall average difference in mean SBP between groups=10.4mmHg)

Mean reduction=mean reduction in SBP in single group

Centre Reason for large q

3
	

Small placebo effect and quite large treatment effect

18
	

Placebo effect much larger than treatment effect

48
	

Small difference in effect between groups

118 Large treatment effect

186 Small difference in effect between groups

30 Small difference in effect between groups
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Figure 38: Plot of qj for diastolic blood pressure against systolic blood pressure for

the difference between the treatment and the placebo group (correlation=O.539)
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Figure 39: Plot of qj for placebo group against treatment group in the mild hyper-

tension trial (correlation=O.712)
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trial and their being put on a course of tablets, as well as 'regression to the mean'

and some patients being changed to an active treatment. The heterogeneity in the

treatment and the placebo groups could be partially explained by, for example, a

'nurse effect', where some centres may have had a particularly reassuring research

nurse. Additionally, the standard of further care may have varied between centres

and this could have lead to heterogeneity, or the characteristics of the patients may

have varied between centres too, with certain groups possibly being more responsive

to treatment than others.

In this example, the plots have provided information regarding the possible dis-

tribution of the data and hence, the suitability of the standard meta-analysis models.

Information was also gained about the location and distribution of the heterogeneity

and possible outlying centres could be identified for further investigation.

3.4.2 Diuretics Trials Meta-Analysis

In contrast to the multicentre trial of the previous section, where there were 189

observations on the q-q plot, actual meta-analyses tend to contain only a limited

number of trials. In such situations the q-q plots are not so informative with regards

to the distribution of the data. The diuretics trials meta-analysis (Section 1.3.1)

illustrates the problem that is likely to be encountered since it produces q-q plots

with only nine points. The fixed effect plot (Figure 40) clearly indicates the presence

of heterogeneity within the data and that the q(j) are not standard normal as the

gradient of the plot is steeper than one, with the actual estimate of the regression

line being 3.55. Furthermore, the plot suggests the possibility of there being two

separate groups of trials. The first group of trials, which have individual treatment

effect estimates greater than the overall mean (trials 1, 6, 7, 8, 9), fall closer to the line

of identity than the group of trials with estimates smaller than the overall mean (trials

2, 3, 4, 5). The information thus gained may then be helpful when investigating the
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reasons underlying the heterogeneity. For example, trial 5, which makes the largest

contribution to the statistic for heterogeneity can be identified as a possible outlier

because it produces one of the largest treatment effects. Investigation reveals that

this is the only trial which uses the drug Bendroflumethiazide for the treated group

and, furthermore, that the entry criterion is 30 weeks or more into the pregnancy,

which is later than in nearly all the other trials. Hence, it may be that the result

observed in this trial was due to its having these different characteristics in design.

Figure 40: Fixed effect normal plot of q, for the diuretics trials meta-analysis corn-

pared with the N(0, 1) line
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If an explanation for the two groups of trials observed were found, then it

might be more reasonable to carry out a separate meta-analysis on each subgroup

or to use regression modelling with an indicator for each subgroup to account for

the variation. However, no characteristic about which information could be gained

from the published paper, such as type of drug, drug regimen, type of patient, entry

criteria, was found to explain the apparent bisection of the trials. Hence, it may be

that the reasons for the extra variation are too complicated to sort out. Alternatively,
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further investigation, using information from the original trials, may be required.

The evidence from the random effects q-q plot (Figure 41) may suggest that

the random effects model is a more reasonable fit to these data as all points have

been pulled in towards the line of identity. It is particularly noticeable that the point

representing trial number 5 has been pulled in very considerably and now falls on the

line of identity. This is due to its having a small within-study variance compared to

the between-study variance and so being shrunk by a large proportionate amount. On

the other hand, the q(i) for trial 7, for example, stays approximately the same on both

plots, because it has a relatively large within-study variance and has an individual

estimate close to the estimate of overall treatment effect. However, because there are

so few points, it is still not clear whether the points do in fact form a line through

the origin or whether there are still two separate lines indicating that there are still

two separate groups of trials. The estimate of the gradient is, however, still greater

than unity at 1.45.

Figure 41: Random effects normal plot of q for the diuretics trials meta-analysis
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The tests for normality, in this example with so few points, are less helpful,

since for neither q(;) or q(j) do either provide any evidence against normality. This is,

however, likely to be due to the lack of power of the test with only nine points.

With respect to identifying sources of heterogeneity and displaying them, the

q-q plot provides the same information as the 'radial plot' described by Caibraith

[66]. The Calbraith plot is a scatter plot of y O/Ji5 against x - l/ji where a

single point is plotted for each trial (Figure 42). A radial log odds ratio scale can

then be used to read off values represented by lines through the origin and the point

of interest, (xi , ye). The horizontal axis of the graph, therefore, corresponds to an

odds ratio of 1. Such a plot can be simplified and drawn without the radial scale,

although still providing the same useful information.

Figure 42: Gaibraith plot of the diuretics trials meta-analysis

0 1 2 3 4 5 5 7 $ 0 10

Trials having estimates of treatment effect with small standard errors, which

are therefore those which provide the most information, lie well away from the origin

due to their large x-coordinates. On the other hand, less informative studies produc-
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ing estimates with large standard errors cluster near to the origin. Hence, the points

falling away from the origin look naturally most informative [66], which indeed they

are. It can therefore easily be observed from where the largest amount of information

is derived.

Since the gradient x/y is equal to ôj/ .4JJ / 1/'W = ôj, a line going through

the origin with gradient O1 represents the fixed effect estimate of the overall log odds

ratio of the meta-analysis. If the studies are homogeneous, then the points will scatter

homoscedastically, with unit standard deviation, about this line. Furthermore, lines

representing two standardised units either side of the overall odds ratio line may also

be drawn on the diagram to aid interpretation. The further away the point is from

the line representing the overall odds ratio, the more heterogeneous it is. The vertical

distance from the point representing trial i to the line representing j is equal to qj

(Figure 42), the value plotted on the fixed effect normal plot for study i. The point,

for trial i, on the Gaibraith plot is öj/,/ and the corresponding point on the odds

ratio line is ôj// and so the distance between them is (Ô -	 = q1.

It can be seen from the Gaibraith plot for the diuretics trials data (Figure

42) that there is substantial heterogeneity present, since most of the points lie well

away from the line representing ör. As with the normal plot, trial 5 is seen to be an

outlying observation with a highly negative estimate of the log odds ratio, together

with a relatively small variance, meaning that the point falls well away from the line

representing O.

In the discussion of DeMets [7J, Peto suggested an alternative but similar plot

to that of Gaibraith, based on the Peto method of meta-analysis, namely a scatter

plot of (0 - E) against V (notation in Section 1.5.3), in which small trials cluster

near to the origin and the informative trials are far to the right of the plot. Gaibraith

[66] points out that a close approximation to the 'radial' plot is actually a scatter

plot of (0 - E)/./V against s/V.
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Both the Gaibraith plots and the q-q plots can help to identify outliers and

subgroups of homogeneous trials, which may then lead to further investigations. How-

ever, it should always be remembered that any explanations derived from such obser-

vations are post-hoc and should be interpreted cautiously. Furthermore, there may

sometimes be more than one feasible explanation or none. Hence, a sensible way of

using the findings from such investigations may be to generate hypotheses for future

trials.

3.5 Conclusion

There is clearly no single superior method for checking the distributional assumptions

of meta-analysis models. A combination of q-q plots and both the Shapiro-Francia

and versions (3) and (4) of the Anderson-Darling tests for normality should usually

be adequate to check the distributional assumptions when a reasonably large number

of trials is available. The plots are perhaps more useful in the case of multicentre

trials when more data points tend to be available (Section 3.4.1), so the shape of the

plot is clearer. In many meta-analyses there will not be enough studies to make full

use of these techniques. However, the plots can still provide useful information for

identifying outlying studies and groupings within the studies and therefore aiding in

the interpretation of heterogeneity (Section 3.4.2).

It must be remembered that the version of the Andersoi-Darling statistic to

be used in practical circumstances for the q() relating to a fixed effects plot is that

assuming a null hypothesis of normality with unknown mean and variance equal

to 1. For the random effects plot no advantage over the Shapiro-Francia test is

gained by using the Anderson-Darling statistic as both only test the null hypothesis

of general normality. If it is assumed that the null distribution is completely specified

as standard normal, the test is lacking in power, and, if used, the power to detect

non-normality will be greatly reduced.

195



Nevertheless, the random effects plots do provide a check of the normality

of the random effects as well as the data. Hence, if it is the distribution of the

random effects, that is O 	 N(O, o), which is of primary concern, then a random

effects plot will be useful. However, it has been noted [108] that the unweighted

random effects normal plot used here may be inefficient for such purposes. Dempster

and Ryan [108] suggest the use of weighted normal plots as an improvement to the

straightforward unweighted plots (Section 3.1.2) to check the normality assumptions

of the random effects in linear models. The method can easily be adapted to the case of

a random effects meta-analysis. It has been shown [108] that weighted plots are more

sensitive than unweighted plots to certain departures from the assumed distribution.

For example, it is more sensitive for detecting a misspecified variance, for detecting ,

outliers among the random effects and for detecting when the distribution has a long

tail. However, such plots do have greater pointwise variability than the unweighted

plots [108].

The standard unweighted plot gives equal weight to each trial, even though

some study estimates will contain more information about the random effects than

others [108]. Hence, the weighted method involves the assignment of greater weight

to those observations for which ol accounts for a larger portion of the overall variance

(v + 4) . A simple choice of weights is w = 1/(v + 4) and then

F(q) =	 I(q - q)w/.1 wj	 (86)

In order to make these plots equivalent to the unweighted plots, where Blom's modi-

fication [102] is used, adjustments to F(q) must be made [108]. As with the previous

unweighted plots, under the correct model the q-q plot should be a straight line

through the origin with unit gradient.

Exploratory investigations were carried out regarding the weighted normal
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plot using simulated data of the kind for which the weighted plot should be more

sensitive, for example, where there are outliers among the random effects. However,

no obvious advantages were seen and furthermore the weighted plots were found to

be very similar to the unweighted random effects plots. Also, given that the weighted

plots involve more complex calculations to produce, little advantage was seen in the

meta-analysis situation.

If investigations into the distributional assumptions show that either a fixed

effect or a normally distributed random effects model is reasonable, then the confi-

dence in the results obtained from the standard methods will be increased, However,

a problem which requires further research is that of what to do if neither model is

found to be satisfactory. Investigation is required into the robustness of the stan-

dard results to deviations from the assumed models, and also into alternative ways of

modelling such data. One possibility is to use a non-parametric distribution for the

random effects component such as in the method proposed by van Houwelingen et al.

[45].
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4 Power of the Test for Heterogeneity in Meta-

Analysis

The test for heterogeneity of treatment effects across studies in a meta-analysis is often

said to have 'low power' [76], but the actual power is rarely quantified. However, a

simulation study was carried out, considering heterogeneity in k 2 x 2 tables, which

showed the low power of heterogeneity tests in general, particularly when data are

sparse [109]. Hence, this chapter investigates the power of the test for heterogeneity in

meta-analyses. The assessment is based on the usual test statistic for heterogeneity,

using Q (Section 1.6) which is referenced to a xLi distribution.

The statistic Q is based on the assumption that each weight w1 is known rather

than estimated and is equal to the reciprocal of the variance v of the individual trial

estimate. However, in a practical situation, estimated weights must be used, which

are usually derived from the estimated variances. The work in this chapter is carried

out under the assumption that the w1 are known, but the issue of estimating w will

be pursued in Chapter 5.

Section 4.1 describes the methods and the strategy used for this investigation

of the power of the test for heterogeneity and Section 4.2 presents and discusses the

results. It is illustrated how the power of the test varies with the between-study

variance 4, the number of trials !c in the meta-analysis and the weight allocation.

An alternative statistic to Q for testing heterogeneity is then considered in Section 4.3

and conclusions are drawn in Section 4.4.
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4.1 Methods

The power of the test for heterogeneity is dependent on the distribution of the values

of Q. The expectation of the test statistic Q may easily be obtained for any given

random effects meta-analysis model, providing it is assumed that the weights are

known. The expectation of Q [38] is given by

E(Q) = (k - 1) +4 (	
-	

)	 (87)
2.=i Wi

Analytic results for the power of the test are, however, not simple to produce. In

general, however, the larger the expected value of Q, for a given number of degrees

of freedom, the greater the power. However, differences in the distribution of Q

will mean that if two examples have the same expected value of Q, the power may

still be different. Therefore, the power of the test was investigated using computer

simulation methods; these were again written in FORTRAN and were based on the

models defined by (82) and (83) of Section 3.3.1. Hence, the results obtained in this

chapter are all based on assuming the parameters are known rather than estimated.

This chapter, therefore, concentrates on quantifying the theoretical power of the test,

while Chapter 5 extends this work to look at the effect that estimating the weights

has on the power of the test for heterogeneity.

In this chapter it is always assumed, for simplicity, that the heterogeneity to

be detected takes the form of a normally distributed random effects model. Hence,

all the results obtained relate to the power of the test in detecting such heterogeneity.

An extension of the work would be to look at the power of the test for detecting

heterogeneity which takes alternative forms, for example, heterogeneity caused by a

few outlying points.

There are then three characteristics of a meta-analysis data set which will
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have an effect on the expectation of Q and therefore on the power of the test for

heterogeneity. They are (a) the extent of heterogeneity present, that is the value

of the between-study variance 4, (b) the number of studies included in the meta-

analysis k, and (c) the weights w allocated to the individual studies. Factor (c) is

the most complicated to investigate, since there are endless different combinations

of weights that could be considered. However, by making certain simpiffications, the

behaviour of the test statistic, with respect to weight allocation, could be investigated

reasonably fully.

The strategy employed to investigate the three factors (a)—(c) is now de-

scribed. For each meta-analysis example considered, simulations were carried out

for a variety of values of the between-study variance and 1000 repetitions were per-

formed for each value of 4 (4=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5). Hence, both

the mean value of the simulated Q and the power of the test could be plotted against

the between-study variance 4. Under the null distribution 5% (± twice the stan-

dard error) of the 1000 tests should produce a statistic larger than xL1 10.. Initially,

the weights allocated to each trial within each meta-analysis were kept equal, w=w

for all 1, in order that the effect of the number of trials k and the total amount of

information w be investigated. Simulations were carried out with w=10, and

the effect of varying the number of trials (k=5, 10 and 20 were used), and hence

also the total weight, was observed. Further simulations to investigate the effect of

changing k (k=5, 10 and 20) were carried out where the total information was kept

fixed, w1=100 here. Hence, changing k implies that w changes. Similarly, to

investigate the effect of changing the amount of total information for a given k, the

number of studies was fixed at Ic=10 and the total weight was varied (E w=50,

100 and 200 were used), implying that w varied too.

The behaviour of the test statistic, in relation to the changing allocation of

weight, was then considered, without any loss of generality, by fixing the value of
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w, while letting the individual w vary. This is illustrated by noting from

equation (87) that E(Q) plotted against 4 produces a straight line with intercept

(k - 1) and gradient W = (>	 w - (E.1	 wi)) and assuming that each w

is fixed, then if	 w is multiplied by any factor z, the sums 	 =	 xw

and (zw,)2 = z2 are obtained. This means that when the expectation

of Q is calculated, the gradient of the plot of E(Q) against 4 is simply multiplied

by x,

E(Q)=(k_1)+4z( Ew —	 (88)

Hence, the results for any sum of weights E zw differ only in the scale of the plot

of E(Q), although how this relates to the results for the power of the test is not clear.

For the purpose of this investigation, k=10 was used and the total information

w was fixed at 100. A further simplification was made, that of restricting the

investigation to consider examples where all trial weights, apart from to1, are equal

to each other. Three cases were chosen to represent a large range of possible values

of w1 . These cases were: w1 = 10 (i.e. the situation with all w equal), w1 = 50 and

= 90 (i.e. an extreme situation with a single study dominating the meta-analysis).

The fact that, for the equal weighting case, w,=10 for i = 1, ..., k means that v=0.1

for i = 1, ..., k. Hence, the range of values of 4 investigated covers cases where the

between-study variation is smaller, equal to and larger than the variation within each

individual study.

The mean values of Q, from 1000 repetitions, were obtained from the simula-

tions together with the power of the test for heterogeneity, that is the number of times

in the 1000 repetitions where a test statistic was produced which was significant at

the 5% level. The true expected value of Q was also calculated analytically for every

example using formula (87), and this value was compared to the simulated mean of
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Q in order to provide a check on the validity of the simulations.

4.2 Results

The results relating to the three factors identified as affecting the power of the test,

outlined in Section 4.1, are each described in Sections 4.2.1-4.2.3. Alternative ways

of viewing the results for the power of the test, in order that the practical implications

be highlighted, are then considered in Section 4.2.4.

4.2.1 Power and the between-study variance

The value of E(Q), for a given k, increases as the extent of the heterogeneity increases,

that is as the between-study variance gets larger (Table 39). As has already been

noted, E(Q), when plotted against 4, will form a straight line with intercept (k - 1)

and gradient W = (E.1 w -	 w/E.1 w) (Figure 43). Figure 43 provides

examples of the plots where the number of trials k varies, but where 	 w1 is fixed

and within each example the weights are equal.

The 95% confidence intervals, calculated for the simulated mean Q, may be

used to check the validity of the simulations. All such intervals contained the true

expected value of Q (Table 39), thus indicating that the simulated results obtained

for the power of the test should be reliable.

For the behaviour of the power of the test, it can be seen that, following

on from the pattern obtained from E(Q), the power also increases with increasing

heterogeneity. The plots of power against the between-study variance take the familiar

form of a power curve, starting from 5% when there is no heterogeneity and then

levelling out as 100% power is reached (Figure 44).
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Figure 43: Expectation of the Q statistic against the between-study variance for

different numbers of trials k when	 w=1OO and the weights are all equal
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Table 39: Mean observed values of the test statistic for heterogeneity Q from the

simulations compared to the true expected values where the total sum of weight is

equal to 100

Weight allocated to trial 1 w 1 (w2 = ... = w1o)

10	 50	 90

w21 ..,w10=lO, W90	 w2,..,wlo=&6, W72.2 	 w21..,w10=l.1, W=18.9

Analytic	 Observed	 Analytic	 Observed	 Analytic	 Observed

___	 E(Q)	 (95% C.I.)	 E(Q)	 (95% C.I.)	 E(Q)	 (95% C.L)

o	 9.00	 9.08 (8.82,9.35)	 9.00	 9.06 (8.78,9.33)	 9.00	 9.28 (9.01,9.56)

0.05	 13.50	 13.52 (13.12,13.93) 	 12.61	 12.58 (12.20,12.97) 	 9.94	 10.09 (9.80,10.37)

0.10	 18.00	 17.73 (17.23,18.22)	 16.22	 16.44 (15.94,16.95)	 10.89	 10.92 (10.59,11.24)

0.15	 22.50	 22.72 (22.11,23.44)	 19.83	 19.12 (18.52,19.72)	 11.83	 11.72 (11.37,12.07)

0.20	 27.00	 27.34 (26.54,28.14)	 23.44	 22.80 (22.01,23.58)	 12.78	 12.43 (12.05,12.81)

0.30	 36.00	 36.61 (35.55,37.69)	 30.67	 29.48 (28.45,30.52)	 14.67	 14.84 (14.34,15.35)

0.40	 45.00	 44.31 (42.96,45.65)	 37.89	 37.74 (36.49,39.04)	 16.56	 16.62 (16.05,17.18)

0.50	 54.00	 53.56 (51.99,55.13) 	 45.11	 44.99 (43.27,46.72)	 18.44	 18.46 (17.08,19.12)

W=Gradient of line of E(Q) against 4
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Figure 44: Power of the Q statistic against the between-study variance for different

numbers of trials k when	 w=1OO and the weights are all equal
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4.2.2 Power and the number of trials

It may further be deduced from equation (87) that the expectation of Q, under the

assumption of homogeneity (i.e. when o=0), increases as the number of trials in the

meta-analysis increases. This increase in test statistic is, however, accompanied by

an increase in the associated degrees of freedom. There are two ways of looking at

the effect of the number of trials on the power, since changing the number of trials

k in the meta-analysis necessarily implies that the weights change too. Firstly, if the

weight allocated to each trial remains constant, w=10, i=1,...,k, in this example, as

k increases (k=5, 10, and 20), so the total weight	 w will increase. On the other

hand, if the total sum of weight w is kept constant, at 100 in this example, and

the number of trials k is varied (k=5, 10, 20) then the individual weight for each trial

w1 will change.

When w is kept constant, implying that E w increases, the expectation of

Q is larger and increases at a greater rate for larger k. However, since the degrees

of freedom change as k changes, plots of E(Q) against o are difficult to interpret in

relation to the power of the test. From the simulations it can be seen that the power

of the test also increases with increasing k (Figure 45) and, therefore, with increasing

total information. Power of almost 100% is reached, for the example where k=20

(and w1=200) by the time o is equal to 0.3, while for the case where k=5 (and

E w=50), the power only just reaches 65% at this point.

When w remains constant and the individual w vary with k, the larger

the number of studies in the meta-analysis, the larger the value of E(Q) for a given

4 and the steeper the gradient of the plot of E(Q) against 4 (Figure 43). However,

the gradients of these plots, for the examples chosen, are only slightly different. The

corresponding power plots for each k (k=5, 10 and 20) are fairly similar to each

other (Figure 44) and there is no one example which consistently has the greatest

power over all values of 4. For small values of 4 the power is greatest in the case
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Figure 45: Power of the Q statistic against the between-study variance for different

numbers of trials k when each individual weight is equal to 10
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where k=5, while for larger values the power is greatest in the case where k=20. In

mid-range where a crossing over appears to take place the test statistic for the meta-

analysis with 10 trials has greatest power. The confidence intervals for the simulated

power values do, however, suggest that the power is not exactly the same for all three

examples. Hence, it is difficult to summarise the relationship between the power of

the test and the number of trials when the total information remains constant.

4.2.3 Power and weight

The most interesting, as well as most complex, aspect of this investigation is to assess

the effect that changing the allocation of the weight has on the value of E(Q) and

thus on power. On the simplest level, for a given k and when all weights are equal

to one another, the expectation of the test statistic increases as the amount of total

information increases (Figure 46). Hence, the larger the total information, the steeper

the gradient of the plot of E(Q) against 4 and the faster the rate of increase in E(Q).

It may then be deduced, from (87), that as w1 increases, E(Q) decreases (Fig-

ure 47). If	 w remains fixed, then for a given 4 and a given number of trials

lc, E(Q) is a maximum when	 w is a minimum. Hence, by minimising E= w

under the constraint that 	 w is constant, it is found that the maximum E(Q) is

obtained when the weight allocated to each study in the meta-analysis is the same.

The maximum of the expected value of Q for a given	 w, 4 and k, is therefore

obtained by substituting	 wjk for w in (87),

k

(89)
t=1

The minimum value of E(Q), which is (k - 1), is approached as the gradient

W tends to zero. That is as	 w—' (E w)2 , which occurs when one individual
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Figure 46: Expectation of the Q statistic against the between-study variance for

varying values of w. when the number of trials k is 10 and the weights are all

equal
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Figure 47: Expectation of the Q statistic against the between-study variance for

varying values of w1 when	 w=100 and the number of trials Ic is 10
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w tends to	 w,. Hence, between the two extremes, the expected value of Q for

a meta-analysis with given information decreases as the weights (or equivalently the

variances) become more different (Figure 47). The same behaviour of E(Q), that is

decreasing E(Q) with increasing differences in w, is observed for any value of

except that as the sum increases, the corresponding gradlients become steeper.

Considering the equivalent results for power, the meta-analyses with more

information have generally greater power to detect heterogeneity. For a fixed number

of trials, k=10 in these examples, the total amount of information included in a meta-

analysis has a great effect on the power curve of the test, with greater power being

achieved, for all values of ol, with increasing total information (Figure 48). When w1

is varied for a fixed total amount of information, the power decreases as the weight

given to this single trial increases (Figure 49). When w1 = 90, the power is below 40%

even when oj=0.5. This may not be surprising, since the within-study variances for

trials 2 to 10 at 0.9 are still larger than the between-study variance. In contrast the

power for the two other examples is over 90% when c=O.5, and for the case where

all weights are equal the between-study variance is 5 times that of the individual

within-study variances.

4.2.4 Alternative ways of looking at power

Although the findings outlined in the previous three sections characterise the be-

haviour of the power of Q in relation to the factors of interest, it is perhaps difficult

to form an idea of the practical implications. Hence, this section considers power

in two alternative and more practically applicable ways. It can then be deduced for

what practical situations the power of the test for heterogeneity is particularly low

and therefore where extra caution may be required.

It is of practical relevance to investigate the power that the test for heterogene-
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Figure 48: Power of the Q statistic against the between-study variance for varying

values of	 to, when the number of trials k is 10 and the weights are all equal
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Figure 49: Power of the Q statistic against the between-study variance for varying

values of w1 when	 w= 100 and the number of trials k is 10
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ity has to detect a between-study variance 4 at least as large as the within-study

variances v. If a meta-analysis is such that the v are much smaller than the 4 then

the between-study component is of great importance, as its iafluence on the overall

results (treatment effect estimate and conlidence interval) will be substantial. On the

other hand, the between-study variance is far less inlluential if it is small in compar-

ison to the v. Considering the behaviour of E(Q) for a between-study variance 4
equal in size to an 'average within-study variance' will provide an insight into the

related power.

Firstly, assuming that all within-study variances are equal (v = v, I = 1, ...k),

the between-study variance of interest is then simply equal to v. Hence, substituting

v in equation (87) in place of 4 gives

E(Q)=(k_1)+V(EiW_=1)
	

(90)

But since equal variances imply equal weights and w = 1/u, equation (90) becomes

E(Q)=(k_l)+!(kw_!)=2(k_l)
	

(91)

Hence, the expectation of Q when 4=v depends only on the number of trials included

in the meta-analysis and is independent of the total weight. E(Q) is, in fact, always

twice the degrees of freedom in such a situation. Obvioualy as w changes, the

value of v changes and so different values of 4 are being detected each time. As the

number of studies in the meta-analysis increases, then the expectation of Q for 4=v
also increases. Furthermore, the value E(Q) = 2(k - 1) is also the maximum value

of E(Q) that can be obtained when trying to detect the particular between-study

variance 4=v, since the maximum always occurs when all trials receive the same

weight (Section 4.2.3).
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Looking at the results of power from this point of view, for a given number of

trials k, is more complicated. The power depends not only on E(Q), but also on the

distribution of Q, and hence it cannot be stated that the power to detect a value of

c equal to v remains constant for all values of w1. However, the power is likely

to be similar for all values of E_ w and, indeed, the simulations back this up. For

k=l0, the power was found to be between 45% and 50% for each 	 w (Figure

48).

Alternatively, for a given	 w, it can be stated that the meta-analysis with

the largest number of trials has the greatest power because, although the power curves

follow similar paths, the meta-analysis with the most studies has the largest within-

study variance. In the example where E....1 w=100, when k=20 the power to detect

a between-study variance of v=0.2 is 70%, while the power to detect a between-study

variance of v=0.05 when k=5 is only 30% (Figure 44).

The approach outlined above may be extended, still assuming that one wishes

to detect the between-study variance equal to v of the previous example, by allowing

the individual variances to be different. Hence, for a given 	 w, a between-study

variance equal to the value of the within-study variance if all studies had the same

variance and therefore the same weight we/k (i.e °1 = 1 /(E ..1 wi/k) will be

detected. Substituting 1/(E.1 wi/k) into (87) gives the required expectation,

E(Q)=(k—i)-i-	
2_iWi \k	 (Eiw r'k 2'

Wi	 - E1	 )	
(92)

This can be simplified, and becomes

E(Q)=2k-1—k
(E_1 w)2	

(93)

Then, for a given k, where the total weight is allocated such that the percentage
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weights ((w/E..1 w)xl00%) are the same, each trial weight w can be written as

x	 w for any	 w3, where x is the fraction of the total weight taken by trial

i and so	 x=1. This implies that 	 w?/(E1 w)2 is equal to	 x and

so is a constant, say c, for any	 w, given a fixed percentagewise allocation of

weights to k studies. Hence (93) becomes,

E(Q)=k(2—c)-1	 (94)

It can be seen from (94) that, where the weights are not all equal, E(Q) depends not

only on the number of trials k, but also on the percentage weights allocated to those k

trials which determine the value of c. However, the expectation is still independent of

the total information	 w. and therefore provides a useful way of summarising the

expectation of the test statistic since it eliminates the variables of 4 and w.

The dependence of E(Q) on the total sum of weights is effectively removed by fixing

the value of the between-study variance which it is deemed necessary to detect since

4 is derived from E1

Looking at the corresponding results for the power of the test, it is found that

the power to detect the particular value of 4 = 1/(E1 wi/k) for each value of

ini (wi =10, 50 and 90) is approximately constant for every value of w1. The

power, at around 45-50%, being greatest when all weights are equal (Figure 48)

and dropping to about 12% when in1 =	 (Figure 50). Alternatively, for a given

w and a fixed percentage allocation of weights, there is an increase in power

as k increases (Figure 44). However, the decreasing power with increasing in1 is still

evident for any allocation (Figures 44 and 51).

Hence, the simulations back up the analytical findings that, for a given number

of trials in a meta-analysis, the power to detect a between-study variance as large

as the within-study variance if all weights were equal, that is 4=1/(E...1 wi/k),
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Figure 50: Power of the Q statistic against the between-study variance for varying

values of =i w when the number of trials k is 10 and w1 takes 90% of the weight
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Figure 51: Power of the Q statistic against the between-study variance for varying

numbers of trials Ic when Ek=i w=1OO and w1 takes 90% of the weight
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remains approximately constant for all values of	 w,.

The discussion here shows that for small k, and particularly when there is an

uneven distribution of weight, the power of the test, defined in terms of being able

to detect a between-study variance as large as the average within-study variance, is

rather low. Hence, a second way of looking at power from a practical perspective, is

to consider the 'effective sample size' necessary to maintain the same value of E(Q)

for a given 4, compared to the most powerful case, that of equal weighting. If k and

4 remain constant, then from (87) it may be seen that E(Q) depends solely on the

value of W =	 - (E...1 w,/Ei wj. Then, for general 	 w, let We and

T be the value of W and the value of w under the condition of equal weighting

(w=w, for all i). Furthermore, assume that F is the multiplicative factor by which

T must be increased in order that the same expectation as that achieved under equal

weighting be maintained, and let each individual weight be written in terms of the

percentage of the new total weight, that is w = ZiFTe where x is the fraction of

the total weight taken by trial i. In order to maintain the same expectation with

alternative weights, the new W must be equal to W. Hence, setting the expression

for W obtained under the alternative unequal weighting, that is where w=x1FT,

equal to We gives

Ic	 F2T	 2

We =FTe>J>1- (95)
FT 

=i X1

where F is the factor to be calculated. Hence, rearranging (95) allows F to be found,

F-
- T(1—E.1x)	

(96)

As an example, let k=lO, then for any value of 	 in, (i.e. total information

or 'effective sample size'), 	 w=T obtained under equal weighting must be mul-
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tiplied by the factors given in Table 40 in order to maintain the same value of E(Q).

Hence, when trial 1 takes 50% of the total weight, the effective sample size must be

increased by a factor of 1.25 and when it takes 70%, the effective sample size must

be doubled.

Table 40: Multiplicative factors for the 'effective sample sizes' required to maintain

value of E(Q) equal to that obtained under equal weighting for any total weight,

where k=10 and o is fixed

Percentage weight 'Sample size' required

to trial 1	 to maintain E(Q)

10	 1

30	 1.05

50	 1.25

70	 2.00

90	 4.76

The diuretics trials data may be used as a practical illustration of this idea, but

where the procedure works in reverse. The total weight under the observed unequal

weighting scheme, T0 say, is known and the total weight under equal weighting Te

required to maintain the observed value of E(Q) may be calculated. Obviously in

this case Te will be less than the observed total T0. Again, since Ic and o are fixed,

the interest lies in the value of W only. For an equal weighting situation, the value

of W given in (95) may be simplified to (Te(k - 1))/k since x = (1/k) 2 . Then, since

T6 can be written in terms of T0, that is as FT0, this becomes

FT0(k-1)
Ic

(97)

Setting (97) equal to the observed W, W0 say, which must be maintained, the factor
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F can be found using

F	
kW0

- T0(k-1)

The within-study variances v in the diuretics trials meta-analysis vary quite consid-

erably from 0.014 to 0.686, with ô equal to 0.23. The total observed information

T0 is 125. If the weights were equal, then using (98) to calculate F, the same value

of Q as that observed would be obtained with 73.6% of the information T0 actually

observed. This means that a total weight of 92 (w=10.22) rather than 125 is required

and hence, it can be seen that there is a considerable drop from the maximum power

due to the unequal weighting of the trials and the test is less powerful.

4.3 Alternative Statistic for the Test of Heterogeneity

Due to the recognised low power of the test for heterogeneity using Q, an alternative

statistic Q' has been proposed by Ewertz, Duffy et a!. [110]. It includes a 'correction'

which allows for the correlation between each individual study estimate 9, and the

overall estimate Ô. The idea behind the statistic Q' is that the 'correction' will cause

the power of the test for heterogeneity to be increased. The statistic is given by

ic

= ;; (v _(Ek1WJ_1)	
(99)

It was stated that, under homogeneity, Q 1 has a chi-squared distribution on

(k - 1) degrees of freedom [110], that is it has the same null distribution as the test

statistic Q . This claim was checked using the basic simulation programs used in the

previous applications. The distribution of the statistic Q' was obtained under the null

hypothesis of homogeneity, and this was compared with both the x and the xL
distributions and the results are given in Section 4.3.1. Furthermore, in Section 4.3.2

(98)

221



the results obtained for Q from the simulations are compared with those obtained for

Q' . Values of Q' and the associated power were obtained for a selection of examples

used in the previous investigation of Q.

4.3.1 Distribution of Q'

Initially, the null distribution, that is the distribution under the homogeneous fixed

effect model, of the test statistic was investigated. The type I error rates a (cr=0.0l,

0.05, 0.1, 0.2, 0.3, 0.4, 0.5) were obtained for Q' from the 1000 computer simulated

data sets, where w1=100 and k=10. The process of obtaining a was carried

out assuming a x2 distribution on both k=10 and (k - 1)=9 degrees of freedom.

The results (Table 41) show that for all three situations considered (w i =10, 50 and

90) the values of a obtained are substantially larger than the theoretical values for

a xL1 distribution. The values of a obtained assuming a x distribution are also

slightly larger then the theoretical values in all but one instance. Hence, these results

suggest that the statistic Q' does not have a xL1 distribution, as was suggested. The

distribution of the statistic would appear to be closer to a x distribution, although

this appears to be only approximate. As w1 increases, the discrepancy between the

theoretical value of a and that observed increases, indicating that the approximation

to a x distribution may be better when the weights are equal than when they are

very different.

The distribution of Q', for the case where w=w for all i, was investigated

further by means of chi-squared quantile plots of the simulated distribution of the

statistic Q' . The points plotted were (q,Q)), where Q1) is the ith smallest value of

Q' and

qj = F 1 ((i - 3/8)/(N + 1/4))

where F is the cumulative distribution function of the x2 distribution and N is the
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Table 41: Distribution of the Q' test statistic for heterogeneity under the null hy-

pothesis of a homogeneous fixed effect model with	 w=100 and k=10

True a	 Weight allocated to trial 1 w1

(w2=...=w10)

10	 50	 90
2	 2	 2	 2	 2	 2

________ Xg,	 Xi0,c	 X9,o,	 X1O,	 X9,ø,	 Xio,

	

0.01	 0.018 0.014 0.024 0.016 0.023 0.017

	

0.05	 0.085 0.059 0.097 0.061 0.102 0.074

	

0.10	 0.162 0.110 0.168 0.120 0.177 0.128

	

0.20	 0.280 0.216 0.280 0.225 0.293 0.236

	

0.30	 0.381 0.311 0.388 0.310 0.423 0.326

	

0.40	 0.512 0.401 0.491 0.401 0.524 0.434

	

0.50	 0.601 0.516 0.574 0.495 0.611 0.533

number of values of the statistic, which in this case is 1000. If the statistic has a

distribution with the correct degrees of freedom, such a plot will be a straight line

with a gradient of 1.

A xLi and a x quantile plot (Figures 52 and 53) were produced for the

distribution of Q', using the values obtained from the simulation of the situation with

equal weights (w,=lO). A xL1 plot for the usual test statistic Q was also produced

(Figure 54), in order to have a standard plot by which to compare the plots of Q'.

When the statistic Q is plotted against the quantiles of a xL distribution (Figure

54) the expected straight line is achieved. However, when Q' is plotted against the

quantiles of a xL1 distribution, the straight line has a gradient which is steeper than

1 (Figure 52). The plot of Q' against the quantiles from a x distribution (Figure

53), again produces a good straight line, and this time it is closer to a line with a

gradient of 1. However, the gradient still appears to be slightly steeper than 1, with
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a greater deviation being noticeable for larger values of q 1 . Hence, when comparing

this plot with that for Q, which does have a xLi distribution, it suggests that the

distribution of Q' is only approximately x even when the weights are equal.

Figure 52: xL quantile plot for the distribution of Q'

0 5 10 15	 25 30 35 40

4.3.2 Power of Q'

The power of the alternative test for heterogeneity using Q' would certainly be greater

than that of Q, if it were compared to the xL distribution. However, it would

appear that this is not the correct null distribution for the test statistic. Hence, for

the simulations involving Q', the power was obtained under the assumption that the

null distribution was approximately x•

From a comparison of the results, it can be seen that in every case, the power

of the test for heterogeneity using Q' is greater than that using Q (Table 42). This

increase in power is, however, not very large in any of the three examples considered,

being very slight when all weights are equal and getting larger as wj increases. It is
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Figure 53: x quantile plot for the distribution of Q'
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Figure 54: xL quantile plot for the distribution of Q
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Table 42: Comparison of the power of the two statistics for heterogeneity, Q and Q',

for three examples where k 10 and	 w,=100

4 Power (% significant from 1000 tests)

Weight allocated to trial 1 w1

(w2=...=w10)

10	 50	 90

___ Q Q' Q Q' Q Q'

0	 5.3	 5.9	 5.2	 6.1	 5.9	 7.4

0.05 26.5 28.5 20.7 25.0 9.0 11.8

0.10 47.5 50.1 39.9 43.2 12.8 19.2

0.15 67.5 68.9 53.0 57.1 16.5 22.4

0.20 79.4 80.6 60.9 65.1 21.9 28.0

0.30 90.2 91.2 77.6 80.0 31.5 40.0

0.40 92.7 93.6 88.7 90.2 39.2 46.1

0.50 95.7 96.2 92.4 93.2 46.8 52.8
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only when w1 =90 that there is any materially useful improvement in power. However,

in this case, the type I error rate (power when o-=0) is also increased above the 5%

level, indicating the uncertainty about the null distribution. The standard errors for

Q' are larger than those of Q, causing the 95% confidence intervals for Q' to be wider

than those for Q . This indicates that the statistic Q' has a greater variability than

Q.

It can be concluded from these simulations that the null distribution of the

alternative statistic for heterogeneity is not xL.1 and that the actual null distribution

is only approximately x• Furthermore, this approximation to the x distribution gets

less satisfactory as the weights become more uneven. Additional to this uncertainty

regarding the null distribution of Q', little gain in power is achieved over Q. Hence,

Q' cannot be recommended as a test of heterogeneity and so Q is still to be preferred.

4.4 Conclusions

The simulations in Section 4.2 have shown that the power of the test for heterogene-

ity using the test statistic Q will have low power in many practical situations. In

particular the power will be less when the total amount of information available is

small, either because k is small or because the individual trial estimates lack precision.

Furthermore, as the weighting becomes uneven, the power drops from the maximum

achievable for the total weight observed. Hence, in practice, care should be taken in

the interpretation of a non-significant result from Q, especially if the meta-analysis

has low observed total information or a highly uneven distribution of weight.

The simulated examples (Section 4.2) were chosen so that the behaviour of Q

was investigated reasonably fully. However, further examples, such as ones in which

all the weights are allowed to be different, may be required to obtain a complete

picture. Furthermore, the results obtained only apply to detecting heterogeneity of a
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specific form, that is heterogeneity that follows a normally distributed random effects

model. Hence, although the expectation of Q is the same for a given or irrespective of

the form of the heterogeneity, the results for power cannot necessarily be generalised

to all situations. The power is dependent on the distribution of Q, which will be

different under different alternative models. Hence, further work would be required

to look at the power of the test under alternative heterogeneous models, especially as

the random effects model may, in practice, be rather unrealistic.

It was shown in Section 4.3 that an alternative statistic Q', claimed to be more

powerful than Q, in fact offers no improvement, particularly due to the uncertainty

over the null distribution. However, it may be that other test statistics provide an

improvement over Q . Indeed, based on the results of a simulation study, Jones et

al. [109] recommend the use of the Breslow and Day statistic [111], which is similar

to Q, but based on the Mantel-Haenszel estimate of overall odds ratio and used by

StatXact [87], for situations with non-sparse data.

The results obtained in this chapter refer to the theoretical situation in which

v are known. Hence, they cannot strictly be applied to the practical case, although

they may be good approximations. The effect that estimating the v1 has on E(Q)

and the power of the test is addressed in the next chapter for the case of a continuous

outcome measure.
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5 The Effect of Estimated Weights on the Results

of a Meta-Analysis

In all standard meta-analysis methods, it is assumed throughout that the weights are

known. However, in practice the weights given by w=1/v, are, of course, estimated

from the data. This chapter investigates the effect that the estimation of the weights

has on the results obtained by the standard inverse-variance fixed effect (Section 1.5.1)

and the standard random effects (Section 1.7.1) meta-analysis methods. The influence

on the results of prime practical importance, that is the fixed effect and the random

effects estimates of the overall treatment effect and their variances, are considered.

In addition, the test for heterogeneity using Q and the estimate of the between-study

variance are investigated. This work involved the use of quantitative data, as progress

could be made analytically for this case. Computer simulations, similar to those used

to investigate the power of the test for heterogeneity (Chapter 4) but with weights

estimated from individually generated trial data, were programmed using FORTRAN

(Section 3.3.1). Novel analytic methods were also pursued to try to obtain improved

estimates allowing for the estimation of the weights. While exact analytic results

proved difficult, approximations were obtained.

Section 5.1 describes the simulation methods and the theory behind the ana-

lytic work. The results from the simulations comparing both the standard estimates

and the alternative estimates are then described in Section 5.2 and conclusions are

drawn in Section 5.3.

5.1 Methods

The simulation procedure used is described in Section 5.1.1 and then the analytic

theory is introduced in Section 5.1.2.
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5.1.1 Simulation methods

The model used for the simulations in this chapter is described by (83) and (84)

of Section 3.3.1 so that n observations are generated within each of the k trials.

Then Ô1 , which is the mean of Vu, l=l,...,n, in trial i in this case y, has a N(O, v,)

distribution, where v,=o/n=1/w1. The computer generated data 	 1 = 1, ...,

and i = 1, ..., k, is used to calculate the individual trial estimate of treatment effect

and its variance i),. This means that the estimated weight, denoted by tbj in

this chapter and equal to 1/, can be found. This reproduces the more realistic

situation, where the estimated weights tl are used to calculate the various statistics

required. However, in practice, the measure of treatment effect would often be a

difference in means between two treatment groups, that is Yi2. where g11=mean

in the treatment group and ,2 =mean in the control group. Hence, assuming that the
2	 '	 (n1i+n,)Ovariance o is the same in both groups then var(0) =	 l and so the n1 in the

simulations is equivalent to here. Therefore, the situation simulated is still a

simplification of what usually occurs in reality, since only one group of observations,

rather than two, is generated, but this resembles the situation where the reduction in

blood pressure in an individual treatment group in the mild hypertension trial was

considered (Section 3.4.1).

The number of observations n was taken to be the same in each trial, n say,

and two different values of n were investigated. Firstly, n was set equal to 50, thus

allowing each w to be estimated reasonably precisely. To provide a contrasting and

extreme example n was then set equal to 5. The values of 4 (4=0, 0.05, 0.1, 0.15,

0.2, 0.3, 0.4, 0.5) used when investigating the power of the test (Chapter 4) were

again used, and 1000 repetitions were carried out at each point. The number of trials

k in these simulations was fixed at 10 in order to keep things as simple as possible.

Furthermore, the total information in the meta-analysis, w, was fixed at 100.

The examples from Chapter 4 where w1 was allowed to vary (i.e. w1 =10, 50 and 90)
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were repeated. For each repetition Oj, var(ô j), Q, b, Ô,. and var(O*r) were calculated

using standard estimates. However, for this chapter only, the subscript th will be

used to denote that the weights are estimated from the data when calculating the

estimates as opposed to being known. The mean values from the 1000 simulated data

sets of the estimates of interest were then obtained and are, therefore, denoted by

var(Ô j),	 ,	 and var(Ôth).

It should be mentioned that negative values of ô,, which are meaningless,

may be obtained from the simulations. Hence, in practice the estimate of the between-

study variance is taken to be max{ô, 0}. However, even when known weights are

used, this leads to a bias in the estimate of 4, and so for the simulation of the mean

of & negative values are included in order that the only bias occurring is caused by

the estimation of the weights. However, when the random effect estimates and their

variances are calculated max{b, O} is used.

5.1.2 Analytic methods

Analytic methods for quantifying the effect of estimating the weights are now pursued.

An exact result is obtained for the expectation of a single estimated weight for a fixed

effect model E(ib), and this is then used as the basis for further approximations. The

fact that

(n-1)ô?
.2	

''x-1 i=1,...,k	 (100)

can be taken as a starting point, since by using the probability density transformation

	

f(y)=f(z)'	 (101)

	

I	 v I
(fl1-i)O.	 2	 .	 .	 .with x =	 and y =	 n1/c, the probability density function of w may be
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2
var(iu,) = E(ti) - {E(ti)} 2 = 2 (

	 ) ( - 5)
(104)

and

obtained:

1
f(t) = r(!!) [

-1)

2c	 ] 

(fl—i)/2 

exp {
—n,(n-1) j	 1

2oth	 J 
j,(fli1)/2 (102)

where r(a) is the gamma function for a, and for integral a, r(a)=(a - 1)!. Hence,

the expectation and the variance of th can be calculated by integration methods, and

in fact, it can be shown that,

E(tt) 
= J 

tbf(tui)dth =
	

(103)

The result for E(tb) can now be used to consider the effect that estimating the weights

has on the expected values of the estimates and variances of the overall treatment

effect. The variance of tb (104), however, did not prove to be useful in this regard

since the exact analytic results became too complicated. The result that E(tb) = f1w

where f	 is now utilised to provide approximate adjusted estimates for both

fixed effect and random effects meta-analyses.

The notation to be used in this chapter is firstly explained. As defined above,

a standard estimate using estimated weights is identified with the subscript ti,, for

example Oj . Furthermore, a subscript f, for example denotes an approximate

analytic result based on the approximation that the weight ti) is known and equal

to f1w, while a subscript a, for example Ôfa denotes an approximate estimate of

the parameter which may be obtained in practice containing th and f, but not the

unknown w.
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- E
k
= fw0

fj (107)

Fixed effect model: From the result in (103), one approach to obtaining improved

estimates is to assume that each estimated weight ti, is equal to lw. Hence, by

dividing each estimated weight tb calculated in practice from the data by ft a weight

is produced which is on average closer to the true value w,=1/v. Hence, an adjusted

estimate of the overall treatment effect from a fixed effect model is given by

1a
	 L_ailf1 I	

(105)
L..is1 /

with a variance, which if obtained by simple substitution of th/f for w, is

1
var(Ôja ) =	 ( 106)

L_a=1 f

However, in practice the fixed effect estimate of treatment effect is usually
._ 1 Wjj	 kestimated by 01 11, =	 and its variance by var(6j ) = 1/E, w. This

variance will not be the true variance of 0 , in practice since it does not allow for the

extra variation caused by the estimation of the weights; it is really the variance of

w not	 By making the assumption that tb is known and equal

to	 rather than tv, an approximation to ôj , may be obtained and is given by

The variance of Ô may then be derived and takes the form

var(j1) - 
2.=i f?w-	 (108)

(2_= f1w)2

Then an approximate 'adjusted' variance of 	 which may be calculated in practice,

allowing, to some extent at least, for the estimation of the weights can be obtained
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from (108) by replacing f1 w1 by iI

E=1 fti,
VGI'a(011) = (

E=1 uui)2	
(109)

where tl are the weights estimated from the data. The variance given in (109) can be

considered as an approximation to the variance of 0fd, too since Oj O. It might,

therefore, be anticipated that this expression will provide an improved estimate of

the variance of the standard fixed effect estimate of treatment effect Ô1 in a practical

situation.

If the number of observations in each study is equal, that is if f=f for all 1,

then ôj , becomes equal to O, the approximate adjusted variance vara(ôjj) ( 109)

simplifies to	 ul,j which is then equal to var(Oja ) (106). This variance appears

to be sensible in so far as it will give a variance greater than 1/E tb, since

f > 1, thus reflecting additional uncertainty included because of the estimation of

the w. However, in practice, using the standard methods, the variance of the overall

treatment effect is found using 1/E. th 1/f E...1 w. This is obviously incorrect

and the variance calculated in this way will in fact be too small since 1/f E...1 w is

even smaller than i/	 w.

Random effects model: The case of the random effects model is more complicated

than that of the fixed effect model since the between-study variance must be obtained

before the overall treatment effect can be estimated. The estimate of the between-

study variance is derived using the test statistic for heterogeneity Q. In practice, Q,

denoted by Q1b in this chapter, is given by Ek tt,,(ô - âj.)2. Hence, the expected

value of Q must first be obtained and

E(Q,1,) = E(E.1 tui( - 9)2) - 
E((E1 

XI,h - 0)2)	 (110)
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The covariance term of ti' and (Ô111, - 0) 2 will not be zero since the terms are not

independent owing to the fact that Ô1 involves tZ,. An evaluation of this covariance

term is difficult, and hence approximate results are again found by making the as-

sumption as before, that is that the true weights are known and can be obtained by

dividing each ti)j by f . Then calculating the test statistic, say Qa, gives

(111)
i=1 '

which has an expectation analogous to (12),

E(Qa)=(k1)+4" Ek	 _E'/f?
i=1	

)	
( 112)

Then assuming the weights are known, using the method of moments and equating

E(Q6 ) (112) with Q3 and rearranging, in the manner for deriving the D&L estimate

of the between-study variance with known weights (Section 1.7.1), one expression for

the approximate adjusted value of the between-study variance ô may be obtained:

-	 Qa(k1)

-	 - ______
=' I•	 E1II )	

(113)

Alternatively, the expectation of the approximate test statistic

Q,e =	 f1w,(Ô1 - ö11)2, which is Q,, with tbj replaced by f2 v.,1 may be written as

E(Qj) = E(E.1 f1w(1 - ô)2) = L fw1var(Ô1 ) -	 fwvar(Ôj1) (114)

Expressing the variances in terms of w, and 4 produces the following formula

235



(118)

(119)

E(Qj ) = (:= 
f. - E=1 fw ) 

+ ( 
E fw - =i f?w	 (115)

E_fsw1 1f,w, I

Using the method of moments produces an estimate of 4 expressed in terms of to,

and f,

- (	
í. -

E81 flw)
"2 -
0Bf -
	 k , - E=1 flw12

Z=1 J8to8	 '-k
j,t1)

This can be rewritten as follows, by substituting tlj for fw1, so that an adjusted

estimate of 4, ô	 say, is obtained,

k
(-k	 E=1 fiwiQ- L-ii=lf'	 -k

"2 -

- E
k "2
=1 w1

L..ji=l 8

However, using the standard D&L estimator, the between-study variance cal-

culated in practice is actually given by

"2 - E= tb(Ô1 - êj)2 - (k—i)
k	 2

._	 WI
LsI=1 1

L=iW,

which, assuming that ti) =	 is approximately equivalent to

Q1—(k-1)

f,w - E=1 flw12

(116)

(117)

This expression is a. biased estimate of 4.
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If n, = n for all 1, then from (111) Qa = Qiz'/f, where f = (n - 1)/(n - 3).

The estimate of the between-study variance ô 11 (113) becomes

(Qtblf) - (k - 1)	
(120)

(i
k______
=— E_11h )

which is equal to ô1 (117) when f = f for all 1. Hence, for equal n the adjusted

between-study variance estimator can be denoted by ô1.

Consideration of the random effects estimate and variance is problematic since

even the expectation of a single estimated weight ti, = l/( + b) is complicated to

obtain. The biased estimate of the between-study variance & usually obtained in

practice could be replaced by one of the adjusted estimates ôi, è or ôa• Then

the random effects estimate of the overall treatment effect would be given by

oi
=' (°+L)	 (121)k	 1

(O+ô2)

Furthermore, by simple substitution

1
var(Ôra) 

=	 Ic	 1	 (122)
(i+ôa)2

whereas in practice, the variance is calculated by 1/E tl = 1/	 l/( + bk),
which is incorrect. However, it is not clear in which direction the bias will be since

there is the effect of estimating both £' and ôj to consider.

The approximate 'adjusted' estimates, vara (Ôjj ) (109), Q (111) and ô (120)

for cases where n are all equal, since this is the simplest situation and in which

= Ôj , var(Ôjr) = var(Ôj a ) and	 =	 are compared with the equivalent
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standard estimates in the next section. The simulations also provide an idea of the

extent of the bias of the standard estimates.

5.2 Results

The results from the simulations for the fixed effect model are described and discussed

in Section 5.2.1. Similarly, Section 5.2.2 considers the results for Q and Section 5.2.3

those for orb. Finally the results for the random effects model are discussed in Sec-

tion 5.2.4. For ease of reference a table of the notation used in this chapter is provided

(Table 43).

Table 43: Table of notation for Chapter 5

Variable	 Usual estimate with Approximate analytic Adjusted estimate Mean from

estimated weights 	 result with w=f w	 with tb & f	 simulations

Fixed effect

estimate

Variance of fixed	 var(Oj)	 var(Off)	 vara(9jj)	 var(9j)

effect estimate	 vara (O )	 ____________

Test statistic	 Q	 Qj'	 Qa

forheterogeneity	 ___________________ ______________________ __________________ ____________

Between-study

vaziance

Random effects	 -

estimate

Variance of random	 var(r,)	 -	 -	 var(9)

effects estimate
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5.2.1 Fixed Effect Model

In this section Ojr. = 11 1 Ô/ tui1 , that is the estimate of the overall treatment

effect which is usually calculated in practice using weights calculated from the sim-

ulated data, is checked to make sure that it is unbiased. In the examples considered

= Ôj1 since f=f for all i and so	 = }	 ii)Ô/3r	 = Ô1 . Further-

more, two methods for calculating the variance of Ô1,, that is using the standard

1/ E-1 tuij and also the adjusted variance vara (Ôjj) = vara (Ôj ,1,) = 1/ tb (109)

proposed in Section 5.1.2. This latter variance is also equal to the variance of ôj

(106) in the case where n=n for all i.

Initially, however, it is useful to check the behaviour of an individual estimated

weight tZ,. When the number of observations in a study is large, f is very close to one

and therefore the expectation of tb is approximately equal to w. However, when the

number of observations in a study is small, f is greater than one and in the extreme

case when n=5, fi=2. This characteristic may be illustrated using the values of w1

obtained from the simulations. The mean value of obtained from 1000 simulations

when w1 =90 and n is 5 was 0.01151, which compares well with the true value of

0.01111. However, the mean value of th1 was 169.20, which is reasonably close to the

expected value of 180, that is 2w1 , and is certainly much larger than the value of

w1 =90. Hence the simulations back up the analytic findings that the weights are, on

average, inflated by the estimation of the variances v,.

The results from the simulations indicate that there is no systematic bias

(Figure 55) caused by the estimation of the weights in the overall fixed effect estimate

of treatment effect. The plot displays (Ô11 , - 0), where Ô1 ,1, (=à jr) is the mean value

of the estimates of 0 from the 1000 simulated sets of data, and it can be seen that

the points are randomly distributed either side of zero, with the variation becoming

greater as 4 increases. The fact that no bias is seen is not surprising, since the

estimate is still a weighted average of O2 , but with weights other than the true w.
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However, it is with regards to variance that the estimation of the weights is likely to

have an impact, since the standard variance does not account for the estimation of

the weights.

Figure 55: Plot showing the bias in the fixed effect estimate of the overall treatment

effect (Oj - 0) against the between-study variance

0.

0.0

0

-0.0

-0.
0
	

0.1	 0.2	 0.3	 0.4	 0.5

between-study variance

Key

- w1 =1O, n=50	 w=10, n=5

+ w1 =50, n=50	 w=50, n=5

* w1 =90, n=50	 • w1 =90, n5

1000 simulations at each point

The average simulated variance var( j ), obtained using 1/	 ti, is smaller

than the theoretical analytic variance obtained under the assumption that all weights

are known and equal to w, that is l/	 wO.Ol, in all three examples (wi=10,

50 and 90) (Table 44). This is as expected since l/_ ii calculated in practice is

approximately equal to 1/ 	 few,, or 1/f.1 w when f = f for all i, and f, is

always greater than 1 (Section 5.1.2). In other words the variance will be calculated
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using the estimated weights which are, on average, larger than the theoretical weights.

Hence, the reciprocal of the sum of the estimated weights will tend to be smaller than

the reciprocal of the sum of the true weights. The variance when n=5 is smaller

than that when n=50. Hence, the simulated results are consistent with the analytic

finding that the weights are inflated to a greater extent in the former situation due

to the larger value of f. When n=5 the bias is clearly dependent on the allocation of

the weight, with a greater discrepancy occurring for an uneven allocation of weight

(Table% 44). However, the bias is not dependent on the value of 4.

Table 44: Standard estimated variance of the fixed effect estimate when

i/E.1 w2 =0.01 for different allocations of weight

Between-study	 Mean from simulations (var(Oij,))

variance	 number of observations in each trial (n)

(4)	 n=50	 n=5

_____________ wi=10 w1=50 wj=90 w1=l0 w1 =50 
J_

w1=90

0.00	 0.00963 0.00969 0.00986 0.00596 0.00660 0.00885

0.05	 0.00963 0.00969 0.00993 0.00604 0.00641 0.00855

0.10	 0.00960 0.00967 0.00991 0.00607 0.00651 0.00884

0.15	 0.00958 0.00968 0.01008 0.00597 0.00654 0.00859

0.20	 0.00965 0.00967 0.00985 0.00595 0.00650 0.00878

0.30	 0.00962 0.00969 0.01000 0.00597 0.00653 0.00861

0.40	 0.00963 0.00972 0.00991 0.00590 0.00654 0.00855

0.50	 0.00966 0.00967 0.00994 0.00606 0.00661 0.00879

wi =Weight allocated to trial 1

The true variance of Oj will, however, be larger even than 1/E w in prac-

tice, since the estimation of the weights introduces some additional variation. Hence,

the actual variance of the simulated means, that is v2zr(,d3, as opposed to the mean
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Table 45: Comparison of the mean standard estimated variance and the observed

variance of the fixed effect estimate when 1 /E . 1 w=0.01, for different allocations of

weight under homogeneity (i.e. 4=0)

Weight	 Number of observations in each trial (n)

given to	 50	 5

trial 1 (w1 ) var(Ôj,) vàr( j,) var(Oj,1,) vàr(Ô1)

10	 0.00963	 0.01014	 0.00596	 0.01885

50	 0.00969	 0.01122	 0.00660	 0.01957

90	 0.00986	 0.00935	 0.00885	 0.01751

of the 1000 simulated variances var(O1113, was calculated in order to obtain an esti-

mate of var( j ) allowing for the estimation of the weights. The variances vàr(Ôj),

obtained under the assumption of homogeneity (4=0), were generally found to be

greater than 1/E w=0.01 (Table 45), and the increases were greater when n=5

than n=50. Since under the fixed effect model the variance of 9 j , is calculated as-

suming homogeneity, whatever the value of the true 4, the mean variance should be

equal to that when 4=0. Hence, the mean variances for all values of 4 given in

Table 44 can be compared with var(ôj ) in Table 45. For all three values of w1 it

can be seen that the standard estimate of the variance w(Ia1ways be too small.

The alternative approximate expression derived for the variance of Ô1,, that

is vara(èfd,) = 1/	 th, was also used to calculate the variance for each repeti-

tion in each simulation example, and the mean of these was obtained. The results

for the mean of the adjusted variance vara (Ôj,) (Table 46) can then be compared to

var( j ,) obtained using 1/E tb (Table 44) and also to the true variances obtained

from the 1000 simulated values of Ôj,, (Table 45). For n=5 a clear improvement in

the estimation of var(Ô1 ) is shown when using f/	 as opposed to 1/

particularly for large w1. Where w1 =90, vàr(Ôj )=0.01751 and all the mean adjusted
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variances vara (Ôj,,) agree with this to three decimal places (Table 46). However, for

the equal weighting case, the adjustment is less good, although the adjusted mean

variances have at least increased from the unadjusted ones (Table 44). For n=50, the

error in the unadjusted variances are small anyway (Table 44), but the adjusted vari-

ance still causes the mean variance to increase towards vàr(Oj ,13. However, when w1

was equal to 90 (Table 45), var(ô1 ,) was, surprisingly, smaller then 1/E w,=0.01,

although the difference was small enough to be due to sampling error.

Table 46: Alternative estimated variance of the fixed effect estimate when

1/E w=0.01 for different allocations of weight

Between-study	 Mean from simulations (vara(/,b))

variance	 number of observations in each trial (n)

(4)	 n=50	 n=5

_____________ w 1 =10 w=50 w1=90 w1=10 w1 =50 w1=90

0.00	 0.01004 0.01011 0.01028 0.01193 0.01320 0.01770

0.05	 0.01004 0.01010 0.01035 0.01208 0.01282 0.01710

0.10	 0.01001 0.01009 0.01034 0.01214 0.01301 0.01769

0.15	 0.00998 0.01009 0.01050 0.01194 0.01309 0.01718

0.20	 0.01006 0.01008 0.01027 0.01190 0.01299 0.01757

0.30	 0.01003 0.01010 0.01043 0.01194 0.01306 0.01723

0.40	 0.01004 0.01013 0.01033 0.01181 0.01308 0.01710

0.50	 0.01007 0.01008 0.01036 0.01213 0.01321 0.01757

wi =Weight allocated to trial 1

It is clear from the simulations that when calculating a variance for an overall

fixed effect estimate in a practical situation, using the standard estimate 1/E 11j

is likely to produce a value which is too small. Using fth/(E1 tl)2 (or

f/E= tbj in the case where the nj are all equal) appears generally to be a better
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alternative, producing a value which is larger than 1/E w2.

5.2.2 Test statistic for heterogeneity

In this section Q,,, the test statistic for heterogeneity obtained in practice, is compared

to the theoretical value of E(Q) obtained under the assumption that the weights

are known. Then since the simulations are of examples where n=n for all i, an

approximate adjusted estimate of the true Q may be obtained by simply dividing Q,,

by f to give Q (111). The mean values of Q are then compared with E(Q) as well

as with Q.

When the weights are estimated from the simulated data, the mean value from

the simulations is larger than the expected value for each of the three choices of w1

for both values of n (Figures 56-58). This difference is small when n=50, but is much

larger when n=5. The increase is only slight when n=50 since f is approximately 1,

but much larger when n=5 when f is equal to 2.

The results of the simulations show that 	 provide better approximations to

E(Q) than Q,. Table 47 indicates that the adjustment to Q is particularly good when

= 50, but less so when n=5 where it tends to overcompensate for the large inflation

in the statistic. These results, therefore, show thai on average the statistic calculated

in practice is closer to fE(Q) than it is to E(Q). Hence, the null distribution of Q

will not be xL and so the test will be incorrect

Following on from the increase in the value of the expectation of Q caused by

the estimation of w, the power of the test is also increased (Figures 59-61). Again

this increase is small when n=50, but large whem n=5. It can also be seen that for

any given value of n, the absolute increase in power is always greatest when w1=90,

and hence the greatest difference overall occurs when n=5 and wj=90 (Figure 61).

The power of the test decreases as the weights allocated to the studies in the meta-
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Figure 56: Mean value of the test statistic Q from the simulations where the weights

are estimated from different sample sizes when w 1 =1O and >I_ w=1OO
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+ estimated weights (n=50)

* estimated weights (n=5)

1000 simulations at each point
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Figure 57: Mean value of the test statistic Q from the simulations where the weights

are estimated from different sample sizes when w1 =50 and >Ii w1=100
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1000 simulations at each point
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Figure 58: Mean value of the test statistic Q from the simulations where the weights

are estimated from different sample sizes when w 1 =9O and	 w=1OO
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1000 simulations at each point
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Table 47: A comparison of the standard test statistic for heterogeneity Q calculated

in practice and the adjusted Qa with E(Q)

Weight 4	 Number of observations in each trial (ni)

givento	 50	 5

trial 1	 Values from simulations Analytic Values from simulations Analytic

wj = ____ ________ E(Q) ____ _________ E(Q)

10	 0	 9.213	 8.837	 9.000	 15.262	 7.631	 9.000

0.05	 14.085	 13.510	 13.500	 22.936	 11.468	 13.500

0.10	 18.648	 17.887	 18.000	 28.501	 14.251	 18.000

	

0.15 23.426	 22.470	 22.500	 39.249	 19.625	 22.500

	

0.20 28.267	 27.113	 27.000	 46.729	 23.365	 27.000

	

0.30 37.890	 36.343	 36.000	 62.162	 31.081	 36.000

	

0.40 46.913	 44.999	 45.000	 78.618	 39.309	 45.000

	

0.50 55.269	 53.013	 54.000	 91.153	 45.577	 54.000

50	 0	 9.160	 8.786	 9.000	 15.503	 7.751	 9.000

0.05	 13.191	 12.653	 12.611	 21.835	 10.917	 12.611

0.10	 16.856	 16.168	 16.222	 29.172	 14.586	 16.222

	

0.15 21.138	 20.275	 19.833	 32.564	 16.282	 19.833

	

0.20 24.634	 23.629	 23.444	 39.374	 19.687	 23.444

	

0.30 32.155	 30.843	 30.667	 52.414	 26.207	 30.667

	

0.40 39.378	 37.771	 37.889	 64.567	 32.283	 37.889

	

0.50 47.218	 45.291	 45.111	 75.153	 37.577	 45.111

90	 0	 9.244	 8.867	 9.000	 17.381	 8.691	 9.000

	

0.05 10.527	 10.097	 9.944	 19.550	 9.775	 9.944

	

0.10 11.370	 10.906	 10.889	 20.600	 10.300	 10.889

0.15	 12.748	 12.228	 11.833	 22.697	 11.349	 11.833

	

0.20 13.431	 12.883	 12.778	 24.354	 12.571	 12.778

	

0.30 15.299	 14.675	 14.667	 29.052	 14.526	 14.667

	

0.40 18.176	 17.434	 16.556	 29.797	 14.899	 16.556

	

0.50 18.923	 18.151	 18.444	 34.652	 17.326	 18.444

248



S

0
a.

analysis become more different as was observed when investigating the power with

known weights (Chapter 4).

Figure 59: Power of the test statistic Q where the weights are estimated from different

sample sizes when w 1 =10 and E=1 w1=100

0	 0.1	 0.2	 0.3	 0.4	 0.5

b.tw..n-study ysrisno.

Key

• true weights

^ estimated weights (n=50)

estimated weights (n-5)

1000 simulations at each point

When n=5, there is a large increase in the number of tests producing significant

results when there is in fact no heterogeneity present, that is an increase in the Type-I

error. This value rises from 5%, when the true weights are used, to between 30% and

40%, when the weights are estimated from 5 observations (Figures 59-61). These

results indicate that the test for heterogeneity is not valid when n is small. This is

supported by the calculation of confidence intervals for the difference in power between

the case where f he weights are known and the case where weights are estimated
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Figure 60: Power of the test statistic Q where the weights are estimated from different

sample sizes when w 1 =50 and	 w=100
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Figure 61: Power of the test statistic Q where the weights are estimated from different

sample sizes when w1 =90 and	 w=1OO
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(Table 48). The confidence intervals all indicate an increase in power when n=5.

In contrast, this difference in power is much smaller when n=50. Hence, it may

be sensible to use as the test statistic for heterogeneity as this has a null

distribution which is at least closer to the xL1 distribution. Although caution is

then necessary as the test is even lower in power due to the over correction for the

inflation, particularly when n is small.

5.2.3 Between-study variance

This section includes an investigation of the mean of the simulated between-study

variances calculated using the D&'L method of moments b and based on the as-

sumption that the weights are known with the true between-study variance. When

n=n for all i, as in the simulation examples, the adjusted estimate of the between-

study variance & which takes into account the estimation of the weights to some

extent at least is given in (120). For each example, the mean simulated value using

this alternative estimate ôj is then also compared with the true ol and with the

standard estimate ô in order to see whether it does in fact offer an improvement.

Since & is calculated using the value of Q obtained using estimated weights,

this causes è to be biased. In all six simulated examples and for all 4, the mean

of the simulated ô3 was larger than the true value (Figures 62-64). It may be

observed from these plots that the bias of the D&L estimator remains approximately

constant over all values of 4. This observed bias (i.e. (bk— 4)) was very large, at

around 0.2 for the case where w1 =90 and n=5, while in all the other five situations

the bias was below 0.05. The adjusted estimate ô does perform better than the

D&L estimator in that the average observed bias for each example is smaller (Figures

62-64). There is still some consistent deviation from the true value of 4 when n=5,

but the adjusted estimate consistently underestimates, rather than overestimates, the

between-study variance. This is due to the overcompensation for the inflation in Q

252



Table 48: Differences in power (%) between results from simulations where the true

weights were used and those where estimated weights were used

Weight	 4	 Number of observations in each trial (n)

givento	 50	 5

trial 1 (Wi)	 Difference (d) 95% C.I. of d Difference (d) 95% Ci. of d

10	 0	 0.2	 (-1.8,2.2)	 25.6	 (22.4,28.8)

0.05	 1.5	 (-2.4,5.4)	 27.7	 (23.6,31.8)

0.10	 2.5	 (-1.9,6.9)	 21.7	 (17.5,25.9)

0.15	 0.5	 (-3.6,4.6)	 15.2	 (11.5,18.9)

0.20	 1.5	 (-2.0,5.0)	 10.7	 (7.6,13 8)

0.30	 0.2	 (-2.4,2.8)	 4.6	 (2.3,6.9)

0.40	 2.8	 (0.8,4.9)	 4.1	 (2.2,6.0)

0.50	 1.5	 (-0.1,3.1)	 2.7	 (1.2,4.2)

50	 0	 0.5	 (-1.5,2.5)	 25.9	 (22.7,29.1)

0.05	 2.8	 (-0.8,6.4)	 29.9	 (25.9,33.9)

0.10	 1.1	 (-3.2,5.4)	 29.2	 (25.0,33.4)

0.15	 5.5	 (1.2,9.9)	 19.9	 (15.8,24.0)

0.20	 6.6	 (2.4,10.8)	 20.5	 (16.6,24.4)

0.30	 5.7	 (2.2,9.2)	 12.6	 (9.4,15 8)

0.40	 2.8	 (0.2,5.4)	 5.7	 (3.3,8.1)

0.50	 1.7	 (-0.5,3.9)	 4.5	 (2.6,65)

90	 0	 -0.5	 (-2.5,1.5)	 30.8	 (27.5,34.1)

0.05	 2.6	 (-0.1,5.3)	 30.5	 (27.0,34.0)

0.10	 3.1	 (0.0,6.2)	 34.9	 (31.2,38.6)

0.15	 5.8	 (2.3,9.3)	 32.8	 (29.0,36.7)

0.20	 3.4	 (-0.3,7.1)	 32.2	 (28.2,36.2)

0.30	 2.9	 (-1.2,7.0)	 29.7	 (25.5,33.9)

0.40	 5.7	 (1.4,10.0)	 27.2	 (23.3,31.7)

0.50	 1.6	 (-2.8,6.0)	 26.3	 (22.2,30.4)

253



aa
a

noted in the previous section (Section 5.2.2).

Figure 62: A comparison of the bias of the unadjusted estimates and adjusted esti-

mates of the between-study variance o when w1 =1O for n-50 and n=5
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• unadjusted estimate of the between-study variance & ( n=50)

* adjusted estimate of the between-study variance b (n-50)

+ unadjusted estimate of the between-study variance b (n5)

o adjusted estimate of the between-study variance 'a (r5)

1000 simulations at each point

Since it is noticeable from the results of the simulations that the bias in the

standard estimator is constant for all values of o and an analytical approximation

to this bias was found. The D&L estimate of the between-study variance ô, under

the assumption that t1 fw, is given by
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Figure 63: A comparison of the bias of the unadjusted estimates and adjusted esti-

mates of the between-study variance 4 when w1 =50 for n=50 and n=5
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• unadjusted estimate of the between-study variance 4 (n=50)

adjusted estimate of the between-study variance &a (n=50)

+ unadjusted estimate of the between-study variance 4 (n=5)

o adjusted estimate of the between-study variance ô (n=5)

1000 simulations at each point
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Figure 64: A comparison of the bias of the unadjusted estimates and adjusted esti-

mates of the between-study variance o when w 1 =90 for n=50 and n=5
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adjusted estimate of the between-study variance &a (n=50)

+ unadjusted estimate of the between-study variance ô	 (n=5)

o adjusted estimate of the between-study variance ba (n=5)

1000 simulations at each point
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fQ - (k —1)
o291=	 Vk	 2	

(123)
1dI1 i

f(E=1wi_Ec )

and the true between-study variance assuming that weights are known is 4 . Hence,

the approximate bias is

fQ—(k-1)	 Q—(k-1)	 -	 (f-1)(k-1)

	

f(E=w_r ) E = w_:i	i(rw_E=ib0? )

(124)

This analytical result shows that the bias is not dependent on the amount of hetero-

geneity and is therefore constant across all values of 4 (Table 49), as observed.

Table 49: Comparison of the observed bias of the standard D&L estimator and the

approximate analytic bias

Number in Weight given Observed Approximate

	

each group	 to trial	 1	 bias of &	 analytic bias

	

(n)	 (Wi)	 (o,-4) _________

	50	 10	 0.0038	 0.0041

	

50	 0.0067	 0.0051

	

90	 0.0190	 0.0195

	

5	 10	 0.0360	 0.0500

	

50	 0.0392	 0.0623

	90	 0.1989	 0.2382
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5.2.4 Random effects model

The random effects estimate of treatment effect Ô,.. obtained in practice is consid -

ered in order to check for unbiasedness. The standard variance 1/ E.I ti,* of this

estimate is then compared with the true sample variance obtained from the simu-

lations var(ô,). No satisfactory adjusted variance for the random effects estimate

was found to compare with these values. The calculation of the variance of a random

effects estimate is more complicated than that of the fixed effect estimate because the

expectation of a single weight l/tI proves difficult to obtain. The estimated weight

contains both the biased estimate w, and that of 4; these two different effects work-

ing on the variance cannot be separated.

As for the fixed effect method, the results from the simulations indicate that

estimating the weights causes no systematic bias in the estimate of the overall treat-

ment effect (Figure 65). This is again due to the fact that the random effects estimate

is still a weighted average of the O and the changes in the weights do not affect the

unbiasedness of the estimate.

The mean simulated variances var(O,j,) using the standard estimate of the vari-

ance are, in general, slightly larger than the theoretical variances 1/E w based

on the assumption of known weights in the examples where w1 =10 and w1 =50 (Ta-

bles 50 and 51). The cases where n=5 produce variances which are on the whole

larger than when n=50, with the increase when n=50 being very small indeed. In

the example where wj=90 (Table 52), the estimates are too erratic to enable any

firm conclusions to be drawn. The general increase in variance is due to the mean

between-study variance estimate being larger than the true value because there is a

constant positive bias over all values of 4. Since the variance is calculated using

1/ I 1/( + fr) and ( ,3 + ô) will be greater than (v + 4) due to the addi-

tional bias, then l/( + 4,b) will be less than 1/(v + 4). Hence, the reciprocal of

the sum of l/(t + ô1,,) will be greater than the reciprocal of the sum of 1/(v +4).
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Figure 65: Plot showing the bias in the random effects estimate of the overall treat-

ment effect (Ôr - 0) against the between-study variance
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1000 simulations at each point
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Table 50: Comparison of the standard estimated variance for the random effects

estimate of treatment effect with the mean from the simulations and the standard

analytic result when	 w=10O and w1=10

Number of observations in each trial (n)	 Standard

50	 5 _________	 analytic

_____ (var()) vàr(Ô) (var(0)) vr( j,) variance	 w?)

0	 0.01160	 0.01006	 0.01138	 0.01255	 0.010

0.05	 0.01572	 0.01638	 0.01647	 0.01541	 0.015

0.10	 0.02033	 0.02084	 0.02073	 0.02179	 0.020

0.15	 0.02525	 0.02464	 0.02739	 0.02801	 0.025

0.20	 0.03053	 0.03079	 0.03285	 0.03136	 0.030

0.30	 0.04075	 0.03707	 0.04281	 0.04005	 0.040

0.40	 0.05052	 0.05364	 0.05251	 0.05030	 0.050

0.50	 0.05967	 0.05758	 0.06314	 0.06201	 0.060
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Table 51: Comparison of the standard estimated variance for the random effects

estimate of treatment effect with the mean from the simulations and the standard

analytic result when E- w1 =100 and w1=50

Number of observations in each trial (n)	 Standard

50	 5	 analytic

____ (var(Ô 1,)) j vàr(,) (var(Ô,)) vàr(à,.,) variance (1/E...1 w)

0	 0.01350	 0.01251	 0.01485	 0.01704	 0.01000

	

0.05	 0.01905	 0.02130	 0.02039	 0.02300	 0.01872

	

0.10	 0.02431	 0.02755	 0.02729	 0.02757	 0.02471

	

0.15	 0.03047	 0.03381	 0.03057	 0.03467	 0.03016

	

0.20	 0.03539	 0.03612	 0.03640	 0.03940	 0.03542

	

0.30	 0.04583	 0.05468	 0.04770	 0.04850	 0.04571

	

0.40	 0.05594	 0.05928	 0.05887	 0.05590	 0.05587

	

0.50	 0.06641	 0.06685	 0.06790	 0.06659	 0.06597
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Table 52: Comparison of the standard estimated variance for the random effects

estimate of treatment effect with the mean from the simulations and the standard

analytic result and the when 	 w=100 and w1=90

Number of observations in each trial (n)	 Standard

50	 5	 analytic

____ (var(Ô)) var(ô) (var()) vàr(Ô) variance (1/	 wfl

0	 0.03599	 0.02872	 0.05665	 0.05601	 0.01000

0.05	 0.04722	 0.05414	 0.06079	 0.07336	 0.03870

0.10	 0.05343	 0.07288	 0.07022	 0.09356	 0.05556

0.15	 0.06422	 0.08625	 0.07676	 0.09092	 0.06767

0.20	 0.06931	 0.10170	 0.08340	 0.09623	 0.07741

0.30	 0.08301	 0.11530	 0.09858	 0.10805	 0.09333

0.40	 0.10204	 0.12545	 0.10600	 0.12383	 0.10689

0.50	 0.10778	 0.12227	 0.12243	 0.13701	 0.19926
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The estimates of the true variance obtained from the 1000 simulated

values of Ô are nearly all larger than 1/E w (Tables 50-52). There are tiree

individual exceptions, however, in the example where n=50 and w j =l0 (Table 50),

but these differences are small enough to be regarded as being due to sampling error.

Hence, assuming that 1/E.1 w underrepresents the variation in Ôr, then the results

show that the variance obtained in practice 1/ tl may often be closer to vàr(Ô,j,)

than to 1/E w. However, no more definite conclusions can be drawn since there

is no theory to support the findings and furthermore, the results are rather erratic.

5.3 Conclusions

The investigations outlined in this chapter have shown that for qualitative outcome

measures the fact that the weights are being estimated can affect the results of the

meta-analysis. This is due to some extent to the fact that the expectation of a single

estimated weight th1 does not equal w, but rather f1w1.

The fixed effect estimate of the overall treatment effect remains unbiased, but

the corresponding variance term used in practice, that is 1/ e1, is too small. This

is not a problem when the number of observations in each trial n, is large since in

such circumstances the decrease is negligible. However, it does become an issue when

n in each trial is very small and the decrease in the variance could cause too definite

conclusions to be drawn about the true treatment effect. The adjusted estimate

derived in this chapter, vara (Ôj ), is a better approximation of the true variance,

although it performs better in certain cases than in others. However, it does always

produce a value which is larger than l/E to,1 which is at least an improvement over

1/	 th,. Using the adjusted variance of the fixed effect treatment effect will lead

appropriately to a more cautious interpretation of the data.

The test statistic calculated in practice, that is Q,,, is inflated due to the
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estimation of the weights. As for the variance of the fixed effect estimate, the effect is

very small for large n, but is very large when n are small. For the case where n=n

for all i, an adjusted test statistic may be obtained by dividing Q, by f. This brings

the test statistic towards E(Q). Certainly Q, is closer to E(Q) than Q,j,, although for

small n the adjustment overcompensates for the inflation and the test statistic is too

small. In practice using Q, means that the power of the test is artificially increased;

the null distribution of the test statistic is not xL1 and the test is not valid. This is

again a particular concern when n is small. Furthermore, the inflation increases as

w1 increases. Qa offers some improvement since it brings the null distribution of the

test statistic closer to xL although the possibility of underestimating the extent of

the heterogeneity is then a danger when n2 is small.

The results observed for Q then follow through to influence the estimate of

the between-study variance. Using the standard D&L moment estimate leads to an

overestimation of the between-study variation. This bias is constant over all values of

the between-study variance for any given example. However, the extent of the bias is

dependent on the allocation of the weight, where the more uneven the allocation of the

weight the greater the bias. The adjusted estimate proposed in this chapter L for

the case where n=n for all i was again an improvement over the standard estimate,

although not ideal. The reduction in Q, when n is small leads to the underestimation

of 4.
The conclusions that can be drawn for the random effects model are rather

limited. The estimate of the treatment effect appears to remain unbiased, although

the variance clearly is larger than 1/E1 w due to the estimation of both v and 4.
The variance calculated in practice, that is 1/ 	 t2i is also larger than l/E w

due to the influence of the inflated estimate of 4. However, there is no theory to

state that 1/	 tb is a reasonable estimate of the true variance.

Hence, overall, in most practical situations where n, is large the standard es-
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timates perform adequately. However, in such cases, for example where n=50, the

adjusted estimates do perform even better, although the adjustments are so small

that they are most unlikely to make any real difference to the conclusions drawn.

The case where n1 is small is where problems occur and adjustments are more impor-

tant. Unfortunately, when n was equal to 5 the simulated results indicated that the

adjustments were less good. However, improvements were still seen with regards to

the var(Ô j), Q and â'.

As always with a simulation study, the results are not necessarily generalisable

to situations which were not investigated. Further simulation examples were carried

out in cases where n was allowed to vary within a meta-analysis. These showed that

where only some of the trials have small numbers of observations and others have

large numbers problems can still occur. Hence, if a meta-analysis includes just one

small study an impact on the results is possible. The results do not apply to binary

outcomes and hence, there is scope for this work to be extended, especially as it has

been shown that the estimation of the weights can affect the meta-analysis results.

However, this problem may, perhaps, be more usefully approached by consideration

of the full likelihood method of van Houwelingen et aL [451 (Section 2.4) which allows

for the estimation of the weights for binomial outcome measures. A comparison, using

simulated data, of the standard results with those obtained from the full likelihood

method when numbers of observations in each trial is small would be informative.
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6 Analysis of Data From the British Family Heart

Study

In this chapter the application of meta.-analysis techniques to the analysis of a paired

cluster randomised trial is described. Data from the British family heart study [112]

is then analysed using such methods. Section 6.1 describes the design and conduct

of the British family heart study, while Section 6.2 illustrates how the random ef-

fects meta-analysis methods can be applied to such studies. Section 6.3 then presents

the results for a selection of outcome measures and provides an in-depth considera-

tion and investigation of heterogeneity for one continuous outcome measure (level of

cholesterol) and one binary outcome measure (prevalence of smoking). Section 6.4

contains a discussion of the problems of analysing a multicentre trial and trying to

account for heterogeneity. Furthermore, due to the multiple endpoints recorded in

the British family heart study, Section 6.5 considers the problem of multiple testing

and briefly introduces the concept of a multivariate meta-analysis.

6.1 Introduction to the British Family Heart Study

The aim of the British family heart study was to measure the change in cardiovas-

cular risk factors achievable in families over one year by the implementation of a

cardiovascular screening and lifestyle intervention programme based in general prac-

tice [112]. The intervention programme was nurse led, with a different research nurse

being allocated to each intervention practice. Research nurses were recruited locally

and trained centrally before commencing the study.

Two general practices in each of 13 towns in Britain (10 in England, 1 in

Scotland and 2 in Wales) with a population of between 50 000 and 100 000 at the

1981 census were identified. The pair of practices within each town were matched so
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that they had similar sociodemographic characteristics. The two practices within each

town were then randomly allocated to be either the intervention practice or the control

practice (Figure 66). Families recruited to take part in the study were identified

through the male partner who, in order to be eligible, had to be aged between 40

and 59 years. In each intervention practice and each control practice, all men aged

40-59 years were randomly ordered within five year age bands. Furthermore, in the

intervention practices, each age band was randomly split into two equal sized groups,

one of which became the intervention group and the other the internal control group

(Figure 66). The families randomised to the intervention group were then contacted

by the practice research nurse in the order given by the five year age band lists.

Contacts were made at the same rate within each five year band. The families were

screened and subsequently offered lifestyle intervention and follow up.

All family members attending the initial visit were screened, but only men and

their partners were followed up. During the initial screening interview, demographic,

lifestyle, and medical information were collected. Measurements of height, weight,

body mass index (weight/height 2), carbon monoxide concentration in the breath,

blood pressure, and random blood concentration of total cholesterol and glucose in a

finger prick sample were also obtained.

A coronary risk score was then derived and participants were told in which

decile of the distribution of risk for coronary heart disease they were relative to other

men (or women) of the same age. The risk score was recorded and relevant lifestyle

changes were individually negotiated with the research nurse relating to smoking,

weight, healthy diet, alcohol consumption and exercise. The frequency of the follow-

up visits was determined by the overall coronary risk score and specific individual

factors. The greater the risk, then the more frequent the visits.

Rescreening of men and their partners in the intervention group then took

place one year after the initial screening. Identified families in both the external
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Figure 66: Design of the British family heart study showing the numbers of men and

women randomised and screened
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control practices and the internal control groups were unaware that they were par-

ticipating in a trial until they were called for screening at the end of the one year

intervention period. Hence their first screening coincided with the rescreening of the

intervention group. In total, 7 460 men and 5 012 women were included in the study

(Figure 66). The smaller numbers in the intervention and internal control groups are

due to the population in the intervention general practice being split between these

two groups.

6.2 Statistical Methods

The comparison of the intervention group with the internal control group in the

British family heart study is of a typical multicentre trial design, in which members

of a single population (patients at a single practice) are individually randomised to

one of two groups. Hence, meta-analysis methodology applies to this comparison in

the same way that it does to the MRC mild hypertension trial (Section 1.3.2). In such

situations there may be variability in the effect of the intervention between towns,

which may be due to the varying ability and effectiveness of each nurse, the differing

general practices and the differences in the patient populations and their attitudes

towards changing their lifestyle.

However, the comparison of the intervention group with the external control

group is of a paired cluster randomised design. The two general practices within each

town are randomised to be either the intervention or the control. Hence, within each

town (strata) there are two separate clusters of patients who are to be compared, one

being the intervention group and the other being the external control group. It is

now shown how this sort of design can also be analysed using meta-analysis methods.

The treatment effect in the i' town (i=1,...,k) is denoted by ö, which may be, for

example, a log odds ratio for a binary outcome measure or a difference in means for

a continuous outcome.
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For a continuous outcome, &= 1 - i2. where	 is the mean of the n, mdi-

vidual observations in strata i and treatment group j (j=1 for treatment and j=2 for

control). Then the variance of the mean is var() = (c/n) + 4, where o is the

within-cluster (within-practice in the case of the British family heart study) variance

and 4 is the between-cluster variance. Hence, the variance of this difference is given

by

2 \
var(Ô) = var(i i ) - var(y 2 ) = 2o1 + ( 2:1.. +	 (125)

h1	 ;2 I

and so 24 can be considered as the between-stratum variance in a random effects

model, or a between-town variance with respect to the British family heart study.

This between-stratum variance may then be estimated using either the D&L moment

estimator (Section 1.7.1) or by likelihood methods (Section 2.2), assuming the model

N(O, (o 1 /n i) + (o/n 2 ))	 (126)

Oi N(O,24)
	

(127)

Hence, by taking a weighted average of the individual within-stratum estimates of

treatment effect, where the weights are equal to 1/var(0) and var( j) is given by

(125), the equivalent of a random effects meta-analysis is obtained (Section 1.7.1).

For a binary outcome, the log odds ratio may be used as a measure of treatment

effect (3, and so the variance of â may easily be obtained where the within-stratum

component is given in Section 1.5.1. Alternatively, using the difference in prevalence

rates, that is o=A1 - P, 2 where F, i = a,/n, 1 and P,2 = cj /n,2 and a and Cj are the

number of positive responses (or events) in treatment groups 1 and 2 respectively

(Table 2), means that the within-stratum variance is given by (ab,/n) + (cjd,/n).
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For either outcome measure the meta-analysis methods again follow through with

the estimate of the between-stratum variation being obtained either using the DL

moment estimator or using likelihood methods.

In this cluster randomised design there are, in addition to the previously men-

tioned differences between towns, differences between the two general practice popula-

tions within each town. Hence, a greater amount of heterogeneity would be expected

in the results for the external control group comparison than for the internal control

group comparison and so the internal control group comparison would be expected

to produce the more precise results. However, due to the possibility of a transfer of

the effect of the lifestyle advice from the intervention to the control group within the

practice, the magnitude of the intervention effect may be diluted. Thus, the main

statistical comparison laid down in the protocol of the study was that of the interven-

tion group with the external control. Both control group comparisons are considered

here and the results compared.

6.3 Results

6.3.1 Overall results

Four separate analyses were carried out in order to see if any further insight into the

results or the heterogeneity between towns could be achieved from doing 'parallel'

analyses on the same study. The four analyses came about by considering men and

women separately and also by looking at comparisons of the intervention group with

both the internal and external control groups.

The differences between the intervention and control groups at the one year

screening for five cardiovascular risk factors are presented in Table 53. The crude

summary measure (prevalence or mean) for each group is given, together with the
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estimate of the overall difference (difference in prevalence or difference in means)

between the intervention and the control groups obtained using the standard random

effects meta-analysis methods (Section 1.7.1) and the standard error of this difference.

It may be seen that both control groups give similar results and these indicate that,

in relation to the five risk factors considered, the intervention group were at less risk

than either of the control groups. For both men and women smoking prevalence was

lower in the intervention group than in either control group. For men the prevalence

was about 4% lower in the intervention group than in either of the control groups and

these differences were significant at the 5% level. For women the difference was smaller

(3% and 3.6%) and less conclusive owing to the larger standard errors associated with

the differences.

The mean cholesterol level was approximately O.lmmol/l on average lower in

the intervention group than in either control group for both men and women. How-

ever, the standard error associated with this difference for women was large enough

for the possibility to exist of there being no intervention effect. For both systolic

and diastolic blood pressure the means were lower in the intervention group than for

either control group for both men and women. This difference was on average around

7mmHg for systolic and 3mmHg for diastolic. The mean weight in the intervention

group was also lower, by about 1kg on average for both sexes, than that in either

control group.

The fact that all outcomes for all comparisons are in. the same direction, tends

to add support to the existence of a real intervention effect, even though some differ-

ences may not be very large or conclusive. However, the possibility of biases having

occurred and influenced the findings should be considered and was in fact discussed

in the paper presenting the principal results of the study [112]. For example, the low

smoking prevalence observed in the intervention group at the end of the intervention

period could have been biased by non-returners or by the under-reporting of current
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cigarette smoking in those who did return for rescreening. It was found [112] that the

non-returners had a higher smoking rate at baseline than the returners and hence this

would have exaggerated the intervention effect with regards to smoking prevalence.

The meta-analysis diagrams for both cholesterol level and smoking prevalence

indicate that there is little variation in the estimates of intervention effect across

towns for the internal control group comparison for both men and women (Figures

67 and 68). Estimates with approximately equal precisions, as observed in this study,

are more likely to occur in a multicentre trial than in a meta-analysis, since as well as

the same protocol being followed in each centre, the numbers of patients recruited in

each centre will often be roughly comparable. In a meta-analysis, however, the trials

may vary greatly with respect to protocol and sample size and thus precision.

Figure 67: Differences in mean cholesterol level (mmol/l) between the intervention

group and the internal control group together with the 95% confidence intervals

-1.2	 -0.8	 -0.4	 0	 0.4	 0.8 -1.2	 -0.8	 -0.4	 0	 0.4	 0.8

differ'nce in means	 difference in means

As would be expected, there are greater differences in the estimate of the

intervention effect for both cholesterol level and smoking prevalence in both men and
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Table 53: Results for five cardiovascular risk factors for the British family heart study

Group	 Men	 Women

pooled	 pooled

crude value difference (SE) crude value difference (SE)

Smoking prevalence (% of subjects)

Intervention	 19.1	 17.7

External control	 22.8	 -4.1(1.8)	 21.2	 -3.60(2.1)

Internal control	 23.0	 -4.1(1.3)	 21.5	 -3.00(1.5)

Mean blood cholesterol (mmol/l)

Intervention	 5.58	 5.48

External control	 5.69	 -0.12(0.06)	 5.61	 -0.12(0.09)

Internal control 	 5.72	 -0.13(0.03)	 5.60	 -0.09(0.07)

Mean systolic blood pressure (mm Hg)

Intervention	 131.6	 123.2

External control	 138.8	 -7.5(1.2)	 130.8	 -7.7(1.4)

Internal control	 139.0	 -7.3(0.8)	 129.6	 -6.2(0.9)

Mean diastolic blood pressure (mm Hg)

Intervention	 83.3	 78.6

External control	 85.5	 -2.5(1.0)	 80.7	 -2.5(0.9)

Internal control	 86.6	 -3.5(0.4)	 81.3	 -3.0(0.4)

Mean weight (kg)

Intervention	 79.55	 66.06

External control	 80.70	 -1.17(0.36)	 66.83	 -1.09(0.42)

Internal control	 80.76	 -1.18(0.43)	 66.73	 -0.74(0.54)
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Figure 71: Pie charts showing the percentage weight allocated to each town in the

random effects estimate of overall treatment effect for the difference in cholesterol
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Internal control comparison	 External control comparison
Key

1 Portsmouth, 2 Darlington, 3 Gloucester, 4 Carlisle, 5 Burton-Upon-Trent, 6 Lincoln

7 Dunfermline, 8 Bridgend, 9 Bury, 10 Huddersfield, 11 Ipswich, 12 Newport, 13 Poole

NB. For both internal control group comparison b=0
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Figure 72: Pie charts showing the percentage weight allocated to each town in the

random effects estimate of overall treatment effect for the difference in smoking preva-

lence expressed as a log odds ratio
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Key	 Internal control comparison	 External control comparison

1 Portsmouth, 2 Darlington, 3 Gloucester, 4 Carlisle, 5 Burton-Upon-Trent, 6 Lincoln

7 Dunfermline, 8 Bridgend, 9 Bury, 10 Huddersfield, 11 Ipswich, 12 Newport, 13 Poole

NB. For both internal control group comparison 4=0
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The mean level of blood cholesterol concentration and the prevalence of cur-

rent cigarette smoking are now considered in greater detail in Sections 6.3.2 and 6.3.3

respectively. The two aims of these sections are to compare the results obtained using

three different meta-analyses, that is the standard inverse-variance fixed effect method

(Section 1.5.1), the DerSimonian and Laird random effecmethod (Section 1.7.1) and

the maximum likelihood approach with profile likelihoods used to obtain confidence

intervals (Section 2.2), and to investigate heterogeneity from a more practical per-

spective.

6.3.2 Analysis of cholesterol level

This section focuses on a continuous outcome measure from the family heart study,

that is blood cholesterol concentration measured in mmol/l. Differences at the end of

the intervention period in the cholesterol level between participants in the intervention

group and those in the control group, - UI (1=intervention, 2=control), were

considered as the measure of outcome for the analysis. A meta-analysis is carried out

followed by a discussion of heterogeneity.

Geographical variation in the level of cholesterol concentration may be ex-

pected across towns in this study, since rates of heart disease, and therefore cardlio-

vascular risk factors, are known to vary from region to region. It is also possible that

the effect of the lifestyle intervention programme in the British family heart study

may vary with baseline cholesterol level and hence with geographical location. Mean

cholesterol levels for each group as well as for the differences in mean cholesterol levels

were, therefore, plotted against latitude. The results obtained from this study do, at

least to some extent, provide evidence of a gradient of cholesterol levels from north

to south. For women in the internal control groups there is a particularly strong

relationship between mean cholesterol level and geographical location (Figure 73),

with a clear increase in mean cholesterol as towns become more northerly. However,
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there does not appear to be any relationship between treatment effect and latitude in

any of the four comparisons of interest (Figure 74). Hence, it is perhaps reasonable

to assume that any regional differences that do exist between centres have been can-

celled out when a difference between intervention and control groups is taken. This

implies that there is no clear variation according to latitude in the way that different

populations respond to intervention.

Figure 73: Mean cholesterol levels in each town for women in the internal control

groups plotted against the latitude of the town
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Although the concerns regarding the low power of the test for heterogeneity

(Chapter 4) and the bias in the estimates caused by the estimation of the weights

(Chapter 5) must be considered as potential problems, neither are likely to be impor-

tant in the analysis of the British family heart study. This is because the numbers of

observations in each town is large and the numbers are approximately equal. Hence,

the power of the test for heterogeneity will not be particularly low and the estimated

weights will only be slightly greater than the true weights on average. When compar-

ing the internal control group and the intervention group, there is no heterogeneity
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Figure 74: Differences in mean cholesterol levels in each town plotted against the

latitude of the town for all four comparisons
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present between towns for the men as measured by Q=1O.6 on 12 degrees of freedom.

Furthermore, the likelihood ratio test of 4 = 0 also indicates a lack of heterogene-

ity and hence, all three methods produce the same estimate of intervention effect of

—0.l33mmol/l, indicating a lower mean cholesterol level in the intervention group

(Table 54). The 95% confidence interval indicates that this difference is significant at

the 5% level. When comparing the intervention group with the external control group,

heterogeneity was found to be present (Table 54). Evidence of a significant differ-

ence in cholesterol levels (5% level) was detected by all three meta-analysis methods,

with the intervention group again having the lower levels. The estimates from the

two random effects models were slightly less negative (i.e. smaller difference between

groups) than the estimate from the fixed effect model. The confidence intervals were

also, of course, wider for the random effects estimates with the widest interval being

that calculated from the profile likelihood, whose upper bound was only marginally

less than zero (Table 54).
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Table 54: Comparison of the results from three different meta-analysis methods for

differences in mean blood cholesterol concentration between intervention and control

groups in men in the British family heart study

Comparison Method II Estimated between-	 95% CL 
J 

Estimated overall 	 95% C.I.

group	 _________ study variance (o-)	 for 4	 ]	 effect (U)	 for 0

Internal	 Fixed	 -	 -	 -0.133	 (-0.200,-0.066)

Random	 0.000	 -	 -0.133	 (-0.200,-0.066)

Likelihood	 0.000	 (0.000,0.0405)	 -0.133	 (-0.200,-0.066)

External	 Fixed	 -	 -	 -0.126	 (-0.190,-0.064)

Random	 0.029	 -	 -0.117	 (-0.229,-0.004)

Likelihood	 0.025	 (0.006,0.077)	 -0.117	 (-0.231,-0.001)

Table 55: Comparison of the results from three different meta-analysis methods for

differences in mean blood cholesterol concentration between intervention and control

groups in women in the British family heart study

Comparison Method	 Estimated between-	 95% C.I.	 Estimated overall	 95% C.I.

group	 study variance (&)	 for 4	 effect (U)	 for 0

Internal	 Fixed	 -	 -	 -0.105	 (-0.193,-0.017)

Random	 0.043	 -	 -0.087	 (-0.232,0.057)

Likelihood	 0.037	 (0.006,0.130)	 -0.087	 (-0.299,0.064)

External	 Fixed	 -	 -	 -0.111	 (-0.199,-0.023)

Random	 0.087	 -	 -0.113	 (-0.297,0.071)

Likelihood	 0.075	 (0.026,0.217)	 -0.113	 (-0.300,0.076)
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The results for women (Table 55) are less convincing in favour of the interven-

tion. Although the estimated overall intervention effects were similar for both men

and women, the associated confidence intervals were much wider for women than for

men. For both comparisons (internal and external control groups) for women the

fixed effect analysis provides evidence of a difference in cholesterol levels, but once

heterogeneity is taken into account and the confidence intervals are widened, the re-

suits are compatible with the possibility of there being no intervention effect. There

is greater heterogeneity in the results between towns for women than for men, as

well as smaller numbers leading to the wider confidence intervals and less conclusive

results.

The q-q plots, both fixed effect (Section 3.1.1) and random effects (Section 3.1.2),

were then obtained in order to investigate the form and cause of the heterogeneity

observed in three out of the four examples. They were also used to check the va-

lidity of the modelling assumptions of normality in conjunction with version (3) of

the Anderson-Darling test (Section 3.2.2). However, the test proved of limited use

in the examples presented here, since it did not appear to have the power to detect

deviations from the model, presumably due to the relatively small number of points.

It may be seen from the fixed effect q-q plot (Figure 75) and from the result of the

Anderson-Darling test (A2 —0.239, p >0.15) that the intervention effect estimates in

each town for the comparison of the intervention group with the internal control

group for men are consistent with a normal distribution, that is ö, .- N(O, vi). There

is clearly no significant heterogeneity in this example and the distributional assump-

tions of the normally distributed fixed effect model appear to be adequate. However,

the corresponding plot (Figure 76) for the external control comparison shows that

there is one clear outlying town in these data, rather than the heterogeneity following

a random effects model. However, the Anderson-Darling test does not pick this up

and produces a nonsignificant result (A2=1.56, p >0.15). Since the variances, and

hence the weights, of each town estimate of intervention effect are fairly equal, then
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data following a random effects model plotted using fixed effect q1 would produce an

approximate straight line with a gradient steeper than one. It would not produce the

type of plot seen in this example, although again the Anderson-Darling test produces

a nonsignificant result. Hence, in this particular case, more information is picked up

from the plot than by the results of the Anderson-Darling test. By considering the

component q of the heterogeneity test statistic Q contributed by Carlisle (town num-

ber 4), it may be seen that the heterogeneity is due entirely to this single observation.

The contribution of this town to Q is (_4.824)2=23.27 and Q calculated without the

observation for Carlisle produces a p-value greater than 0.1 when compared to the

Xi distribution.

Figure 75: Fixed effect normal plot of q2 for the internal control group comparison of

cholesterol levels for men compared with the N(0, 1) line
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The group mean cholesterol levels for Carlisle (Table 56) show why the results

for this particular town deviate from the rest and why it produces an outlying ob-

servation in the comparison with the external control group. Both the intervention

group and the internal control group have low average cholesterol levels in comparison
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Figure 76: Fixed effect normal plot of q2 for the external control group comparison of

cholesterol levels for men compared with the N(O, 1) line
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Table 56: Mean levels of blood cholesterol concentration among men for the three

study groups in Carlisle

Group	 Mean Standard Number of

deviation	 men

Intervention	 5.438	 0.965	 180

External control 6.067	 1.450	 345

Internal control	 5.468	 1.020	 222
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to the overall mean level (Table 53), while on the other hand, the external control

group has a very high mean cholesterol level (largest individual group mean).

There is heterogeneity present in both comparisons for the cholesterol levels

in women but, as would be expected, there is more for the external control group

comparison. For the internal control group comparison, there are apparently two

outlying points and the rest follow the fixed effect normal model reasonably well

(Figure 77). The plot, although not the test (A2=l.28, p >0.15), suggests that the

normally distributed random effects model is not a particularly good fit to the data

due to the heterogeneity present.

Figure 77: Fixed effect normal plot of q2 for the internal control group comparison of

cholesterol levels for women compared with the N(0, 1) line
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For the external control group comparison there is a greater amount of het-

erogeneity which is spread throughout the 13 towns (Figure 78). There is a group of

4 towns (Gloucester, Lincoln, Dunfermline and Newport) which are similar to each

other but noticeably different from the rest of the observed q2 (Figure 78). They all

have large positive q, thus indicating that 0, > 0. In fact, in all these towns the
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cholesterol level is lower in the external control group than in the intervention group.

There is also a clear outlying point with a large negative value of qj, and, as was the

case for the cholesterol level results for men for the external control group compari-

son, this outlier was Carlisle. Again this is due to a high mean cholesterol level in the

control group (largest individual group mean) and a relatively small mean cholesterol

level in the intervention group (Table 57). A normally distributed random effects

model would also appear to be inappropriate as the groupings observed on the fixed

effect plot are still apparent on the random effects plot (Figure 79) and the test for

normality is significant (A2=6.71, p <0.01).

Figure 78: Fixed effect normal plot of qj for the external control group comparison of

cholesterol levels for women compared with the N(0, 1) line
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The heterogeneity in two out of the three examples displaying a significant

amount of heterogeneity appears to be due to a few outlying observations rather

than being spread throughout the data. The external control group in Carlisle can

be singled out as a possibly 'odd' observation contributing to heterogeneity for the

results for both men and women. This finding was discussed with the research nurse
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Figure 79: Random effects normal plot of q for the external control group comparison

of cholesterol levels for women compared with the N(O, 1) line
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coordinator of the British family heart study, who was familiar with all the partici-

pating general practices. It transpired that both practices in Carlisle were situated

in the town centre, drawing on similar populations and hence a difference in popu-

lation characteristics would seem an unlikely explanation for the difference observed.

Furthermore, since there was little difference between the mean levels in the inter-

nal control group and those in the intervention group, it would not appear that the

finding was the result of a particularly effective intervention. A feasible explanation,

resulting from the discussion, was that there could be some consistent measurement

difference between the intervention and control practice. It is possible that the cali-

bration of the refiotron machines used to measure cholesterol could have been different

in each practice, despite a centrally coordinated quality control program [112], so that

consistently high readings were obtained in the control practice. It is also possible

that the nurse in the external control practice could have made systematically higher

readings than the nurse in the intervention group. These theories could be checked
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to some degree if the relevant data regarding the calibration of the instrument and

measurement of cholesterol were available.

Table 57: Mean levels of blood cholesterol concentration among women for the three

study groups in Carlisle

Group	 Mean Standard Number of

deviation	 women

Intervention	 5.249	 1.045	 109

External control 6.078	 1.465	 186

Internal control	 5.645	 1.300	 118

Discussion of the large amount of heterogeneity for the results for women in the

external control group comparison produced no conclusions. There is no obvious com-

mon factor linking the four towns of Gloucester, Lincoln, Newport and Dunfermline,

which produce similar residuals in this example. It was only possible to identify two

of these towns as possessing unusual characteristics which could explain the results

observed, that is the control groups having lower mean cholesterol levels than the

intervention groups in these particular town. In one of these towns the two practices

were serving populations with difference characteristics, and in the other there were

problems with the implementation of the intervention programme. However, these

are not convincing as explanations for the heterogeneity since each is related to only

one particular town. Furthermore, the two towns have not been identified consis-

tently across different risk factor outcomes (smoking, SBP, DBP and BMI) as having

a particularly poor intervention effect and, if there were a true population effect, it

would be expected to influence more than one outcome measure.
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6.3.3 Analysis of current cigarette smoking

The difference in the prevalence of current cigarette smoking between the intervention

group and the control group is now expressed in terms of the log odds ratio, rather

than the difference in prevalence rates as in Table 53, and an analysis of this outcome

measure is carried out. This is so that the analysis of a binary outcome remains

consistent with the measure used throughout the rest of the thesis.

For the internal control group comparisons for both men and women (Tables 58

and 59) all three methods produce the same results since the estimate of the between-

town variance for the two random effects methods is zero. For both sexes the results

indicate a significantly lower rate of smoking in the intervention group than in the

control group, again indicating a benefit from the intervention process.

For both men and women for the external control group comparison, the ran-

dom effects estimate, using the D&L moment estimator of the between-town variance,

of the log odds ratio for the overall intervention effect is smaller than the fixed effect

estimate, indicating a slightly greater effect due to intervention (Tables 58 and 59).

However, the corresponding widening of the confidence interval for 9 indicates the

reduced certainty in the intervention effect. For men there still remains a significant

difference in the smoking rates between the two groups when the heterogeneity is

taken into account, with the intervention group having a lower rate than the control

group (Table 58). However, for women the confidence interval for the random effects

model includes zero whereas for the fixed effect model it does not (Table 59). Hence,

the choice of model here affects the conclusions which may be drawn from the analysis

with regards to the benefit of intervention on reduction in smoking rates. The random

effects likelihood model produces a similar estimate to the standard method of 9 for

both men and women, but the estimate of the between-town variance is smaller in

both cases than the D&L moment estimator. Furthermore, the confidence intervals

for 9 are, as expected, slightly wider than those derived from the standard random
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effects method (Tables 58 and 59), thus further reinforcing the possibility of there

being no intervention effect on the prevalence of cigarette smoking among women in

the study.

Table 58: Comparison of the results from three different meta-analysis methods for

log odds ratios of the prevalence of cigarette smoking comparing intervention and

control groups in men in the British family heart study

Comparison Method	 Estimated between-	 95% C.I.	 Estimated overall	 95% C.I.

group	 __________ study variance (4)	 for 4	 effect (Ô)	 for 0

Internal	 Fixed	 -	 -	 -0.242	 (-0.399,-0.085)

Random	 0.000	 -	 -0.242	 (-0.399,-0.085)

Likelihood	 0.000	 (0.000,0.020)	 -0.242	 (-0.399,-0.085)

External	 Fixed	 -	 -	 -0.197	 (-0.342,-0.051)

Random	 0.079	 -	 -0.228	 (-0.442,-0.014)

Likelihood	 0.064	 (0.000,0.272)	 -0.225	 (-0.456,-0.013)

Table 59: Comparison of the results from three different meta-analysis methods for

log odds ratios of the prevalence of cigarette smoking comparing intervention and

control groups in women in the British family heart study

Comparison Method	 Estimated between-	 95% CI.	 Estimated overall	 95% CL

group	 _________ study variance (4)	 for 4	 effect (Ô)	 for 0

Internal	 Fixed	 -	 -	 -0.227	 (-0.427,-0.027)

Random	 0.000	 -	 -0.227	 (-0.427,-0.027)

Likelihood	 0.000	 (0.000,0.291)	 -0.227	 (-0.427,-0.027)

External	 Fixed	 -	 -	 -0.198	 (-0.382,-0.014)

Random	 0.098	 -	 -0.213	 (-0.469,0.043)

Likelihood	 0.082	 (0.000,0.386)	 -0.211	 (-0.485,0.050)

Fixed effect q-q plots (Section 3.1.1) for the internal control group comparison

for both men and women confirm that the results for smoking status are homogeneous

across towns as there are no large absolute values of q 1 (Figures 80 and 81). For men
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the line has a gradient which is less than one, suggesting that there is, in fact, less

variation in the estimates than would be expected, while for women the line is not

particularly straight. However, a normal fixed effect model would seem satisfactory,

although perhaps not ideal, for both these sets of data, as there is certainly no evidence

of heterogeneity. Furthermore, the results of the Anderson-Darling test produce test

statistics A2 corresponding to p >0.15 for both men and women.

Figure 80: Fixed effect normal plot of q for the internal control group comparison of

smoking prevalence for men compared with the N(0, 1) line
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The two fixed effect plots for the external control group comparisons (Figures

82 and 83) do indicate the presence of heterogeneity. The plots for men and women

are, however, different in that the heterogeneity takes different forms. For men the

plot is a straight line through the origin, but with a gradient slightly steeper than

unity (Figure 82). Hence, this is consistent with a normally distributed random effects

model with reasonably equal variances. Since it is known that the variances of the

individual town estimates are fairly similar for this outcome in men (Figure 72), such

an interpretation of the plot seems reasonable. The conclusion is further backed up
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Figure 81: Fixed effect normal plot of q, for the internal control group comparison of

smoking prevalence for women compared with the N(0, 1) line

-2	 -1	 0	 1	 2

flotm& sr..

correlation =0.954

by the corresponding random effects plot (Figure 84), which produces a reasonable

straight line with a gradient of one. The tests are again of little use here as they appear

to lack power in that they find the data consistent with both the fixed effect model

and the random effects model. In contrast, for women the fixed effect plot indicates

that there is a single very clear outlier which is the sole cause of heterogeneity (Figure

83). All the other points lie along the line of identity indicating that the majority

of the town estimates are consistent with each other. On the random effects plot

(Figure 85) the outlier has been pulled in, since it has a relatively small within-town

variance, but a normally distributed random effects model is less convincing in this

situation as backed up by the result of the Anderson-Darling test (A2=2.29, p <0.1).

Bury (town number 9) is the town which is identified as a clear outlier in the

external control group comparison for women. This town appears to be different with

respect to cigarette smoking to all th other towns, especially since it also produces

one of the large residuals on the plot for men (Figure 83). As Bury is not noticeably
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Figure 82: Fixed effect normal plot of qi for the external control group comparison of

smoking prevalence for men compared with the N(O, 1) line
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Figure 83: Fixed effect normal plot of q 2 for the external control group comparison of

smoking prevalence for women compared with the JV(O, 1) line
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Figure 84: Random effects normal plot of q1* for the external control group comparison

of smoking prevalence for men compared with the N(O, 1) line
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Figure 85: Random effects normal plot of q for the external control group comparison

of smoking prevalence for women compared with the N(O, 1) line

-4	 -3	 -2	 -1	 0	 1	 2	 3	 4
noimal scor..

correlation—O.930
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outlying for the internal control group comparisons (Figure 80 and 81), the suggestion

is that the external control group produces the unusual observation. In the external

control group in Bury, there were a high proportion of current cigarette smokers,

particularly among women (33%), but also among men (30%). Hence, the differences

between the smoking rate in the external control group and the intervention group

are large, being 17% for men and 23% for women. This is also partly due to the

smoking prevalence being rather on the low side in the intervention group, as it is

in the internal control group. It should be noted that 30% is actually closer to the

national average smoking rate, and hence, it may actually be the other groups where

the rates are unusually low and may be as a consequence of a general under reporting

of cigarette smoking in the study or of bias caused by the non-randomness of non-

respondents.

In relation to the apparently unusually large intervention effect observed in

Bury, there are several possible explanations that could be investigated and these were

also discussed in the meeting with the research nurse coordinator. Although prac-

tices within each town were matched for sociodemographic factors, in some towns the

practices were still situated in different areas with differing characteristics and thus

drawing on different populations. Bury was, in fact, one such town where there was a

substantial geographic difference between the intervention and the control practices,

with the intervention practice being in a more advantaged and affluent area than the

control practice. Hence, this could explain the difference seen in that a more advan-

taged population would be expected to have a lower smoking rate. However, greater

faith would be placed in this explanation if the same effect were seen in all other

towns where there was a population difference between the practices (i.e. that the

practice with the more advantaged population always had the lower smoking rate in

the control group). This theory could be checked if the relevant data regarding social

differences in the practices in each town were available, although such information

would be based on rather subjective judgement.
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The fact that the cigarette smoking prevalence was low in the internal control

group as well as the intervention group in Bury suggests that the large difference

in rates is not due to a particularly effective intervention with regards to smoking.

However, it is possible that it is due to a difference in reporting rates. Since it is highly

unlikely that smoking rates will be overestimated, it may be that in the intervention

practice the smoking rates reported were lower than the true rates.

It was also considered possible that the response rate in the control practice

could have caused the high prevalence observed. If the response rate was particularly

high for the control practice in Bury, then it could be that more smokers responded

to the screening than in other centres. However, the response rate was actually about

average in this practice and so this would seem an unlikely explanation. Hence, again

no convincing explanation for the heterogeneity was found.

6.4 Discussion

Sources of heterogeneity in a meta-analysis require investigation and, therefore, so do

the sources of heterogeneity in a paired cluster randomised trial such as the British

family heart study. However, because there is more scope for variation between trial

protocols in a meta-analysis than in a single multicentre trial where all centres are

actually following the same protocol, there may often be more heterogeneity in a meta-

analysis than in a multicentre trial. This greater clinical homogeneity may mean that

it is more problematic to deduce the causes of heterogeneity in a multicentre trial

since there will be fewer and less obvious reasons for the heterogeneity than there

would be in a meta-analysis.

In the British family heart study the fact that two control groups were avail-

able, in addition to the results for both men and women, meant that there appeared

to be a greater chance of sorting out causes of heterogeneity, as all four analyses could
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be compared for consistency for each outcome. Hypothetically, if all four comparisons

were to show the same unusual effect in any particular town then it would seem likely

that this effect would be due to characteristics of that town. If, however, the effect

were only seen in one of the control group comparisons, but consistent for both sexes,

then the suggestion would be that there is a practice effect present in that town. If,

however, the effect were only seen in a single comparison in the town, then the reason

would be difficult to deduce, and would probably remain unexplained. Furthermore,

if a town were to be identified as unusual for more than one outcome measure then

more confidence could be placed in the possibility of a population or town effect.

As has been shown with the analysis of the British family heart study, how-

ever, there may not be any obvious or convincing explanations for the heterogeneity

observed or for outlying values. For the outcomes considered, that is smoking rates

and cholesterol level (Section 6.3) (but also SBP and DBP which are not presented

in detail here), no town revealed itself as a consistent outlier across more than one

outcome. Hence, this appears to provide evidence against the possibility of differences

in patient populations within towns causing different results.

It was only in the case of blood cholesterol levels where the external control

group in Carlisle produced outlying results that there was any possibility of a con-

vincing explanation being found, in that it is likely that a consistent calibration or

measurement difference was present. In all other cases speculative suggestions are all

that appear possible and these are all post-hoc and lacking in any sort of consistency.

Hence, in such situations a random effects analysis may be the best or only

solution, if an estimate of an overall intervention effect is required. A fixed effect

estimate is inappropriate since the narrow confidence intervals would not reflect the

additional uncertainty caused by the between-town variation. So, although investi-

gating sources of heterogeneity rather than resorting to random effects meta-analysis

may be commendable in principle, it is not practical in all circumstances, as exempli-
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fled here. Furthermore, in general, any such investigation of heterogeneity is post-hoc

and so explanations of heterogeneity are based on what is observed in the data. In-

vestigations of heterogeneity may be more problematic in a single multicentre trial

than in an actual meta-analysis since there are less clinical differences between cen-

tres than there are between separate trials. Separate trials may vary in terms of, for

example, patient characteristics, duration of trial and treatment regimen, which may

all offer explanations for the variation in individual trial estimates. The problem in a

meta-analysis, however, may be that there are too many possible explanations of the

variation in the individual trial estimates because the trials vary in many different

ways. Hence, there may be a danger that the process of looking too hard for an

explanation produces one which is incorrect. Explanations which were put forward

as possible causes of heterogeneity before the data were looked at are probably the

most reliable, particularly where they are based on sound clinical reasoning. However,

a further issue to consider is whether a normally distributed random effects model,

such as those used in this analysis, is appropriate. Certainly the normal plots for

the examples from the British family heart study do not generally support normality.

Hence, there should be some concern over the validity of the results since it is not

known how robust the analysis is to deviations from the assumed model.

6.5 Multivariate Models For Meta-Analysis

In a meta-analysis or a paired cluster randomised trial there will often be more than

one outcome of interest to be considered, as there is in the British family heart study

(Section 6.3). Therefore, as with any single clinical trial with more than one endpoint,

the problem of multiple testing and estimation exists and this, therefore, implies that

there will be an increase in the overall Type-I error rate. Furthermore, endpoints

will usually be correlated with each other and therefore will not be independent. The

issue of multiple testing has been considered in the context of meta-analysis by Hedges
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and 01km [39] and Raudenbush et al. [113]. Several possible ways of dealing with

multiple endpoints have thus been proposed and discussed. Section 6.5.1 considers

simple solutions to the problem by looking at ways of maintaining the correct Type-I

error rate. Section 6.5.2 introduces a multivariate approach to meta-analysis and

Section 6.5.3 considers the construction of a global test statistic for a multivariate

model. The British family heart study is then used as an example in Section 6.5.4 to

illustrate the multivariate methods and Section 6.5.5 contains a discussion.

6.5.1 Simple solutions

Hedges and 01km [39] suggest as one possibility the analysis of only a single end-

point. However, they do acknowledge that this procedure is obviously wasteful of

information. This approach is also discussed by Pocock et al. [114] when considering

multiple endpoints in a single clinical trial. They suggest the specification of a single

primary endpoint in the study protocol which is to be tested formally, with all other

endpoints being considered as secondary with the interpretation being exploratory.

Such a statement of the primary endpoint of interest could also be made before a

meta-analysis is carried out, so that emphasis of the results is focused on the one

pre-specified outcome, as opposed to the one which provides the apparently most in-

teresting result. However, there may be situations in which there are several outcomes

of equal importance and the discarding or down-weighting of important information

is not reasonable.

An alternative suggested by Hedges and 01km [39] is that each outcome be

treated as independent and then the significance levels be adjusted. This is precisely

what is sometimes practised in the context of a single clinical trial with multiple

endpoints where the individual p-values are modified in order that the overall Type-I

error remains at the desired level of . For example, the Bonferroni inequality can

be used for significance tests on p endpoints [115, 116], although this adjustment is
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always conservative. The adjustment leads to a nominal significance level for each

test being taken as a where a' = a/p. However, when endpoints are correlated, as

they tend to be in practice, the Bonferroni correction becomes even more conservative

[114]. Furthermore, this solution only applies to hypothesis testing but does not help

with regards to estimation.

Raudenbush et al. [113] refer to another strategy for dealing with studies that

consider multiple continuous outcome measures in terms of effect sizes. The effect

size for study i is given by 6, = (jsi - j2)/O ip, where ajj (j = 1,2) is the mean in

treatment group j and c,, is the pooled standard deviation. The effect size 6, is used

extensively in psychological research and may be estimated using

gi = (Li. - Y,2.)/P	 (128)

where Lj is the mean of the individual observations in treatment group j in trial i

and

- 1)3 + (n 2 - 1)s?2	 (129)
V	 n,1+n,2-2

where njj is the number of observations and s is the standard deviation in treatment

group j in trial i. However, g, = (v1 Y2.)/ap has been found to be a biased estimate

of the true effect size [39] and

'5i
E(g) =

	

	 (130)
J(n,i + fl,2 - 2)

where J(n,i + n12 —2) may be tabulated [39]. J(n,i + n,2 —2) may be closely approx-

imated by 1 - ( 3/(4(n, i + n,2) - 9) and so
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Si	 36i

	

__________	 (131)=

	

1 - 4(n+n)9	 4(n11 + n22) - 9

Hence it can be seen from (131) that, as the sample size becomes large, the bias tends

towards zero and so for large trials g, will be approximately unbiased. The bias may

be removed by redefining the estimated effect size so that

= J(n1 + n2 - 2)g	 (132)

or approximately

d• '	 4(nil+n2)-12'\- I 4(ni+naa)-9) gj	
(133)

Therefore, as the sample size increases, the adjustment factor tends to unity.

Hedges and 01km [39] state that the asymptotic distribution of d is normal

with mean Sj and variance

nil + n2 ___________
var(d) =	 +	 (134)

i1i2	 2(n1i + fli2)

The variance may be estimated by replacing in equation (134) by the estimated

effect size d..

Effect sizes are therefore standardised measures with no dimensions, which

means that endpoints can be combined by taking, for example, a mean or median [117,

118]. This approach is not always possible in. medical situations if, for example, the

odds ratio is the measurement of treatment effect used, or where an effect size would

be difficult to interpret. In many medical trials some sort of combined treatment effect

measurement would be meaningless, although it could be used for some psychological

or quality of life outcomes.
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6.5.2 Multivariate meta-analysis using generalised least squares

An obvious solution to the problem of multiple endpoints is to use multivariate meth-

ods in which all outcomes are analysed simultaneously, taking into account the cor-

relations between each pair of outcome measures. Raudenbush et al. [113] propose

the use of a generalised least squares (GLS) approach which builds on earlier work

by Hedges and 01km [39] and Rosenthal and Rubin [1191. The model is specified in

terms of effect sizes.

Assuming that each trial i, i = 1, ..., k included in the meta-analysis produces

results for r = 1, ..., r, of the total number of p endpoints being considered, the model

is of the form

6=X$
	

(135)

where 5 is the vector of effect sizes 5' =	 £12, ..., Sifl,..., £kl, £k2, ..., £Icrii ) SO	 is

the effect size for the endpoint r for trial 1, X is the required design matrix and 3 is

the vector of parameters which are to be estimated. The matrix X has R =

rows, one corresponding to each outcome in each study, with the number of columns

being equal to the number of parameters fitted in any particular model. If a single

effect is being modelled for all the endpoints then X is a vector containing R l's. If

a different estimate is being obtained for each endpoint, then X has p columns of

indicator variables, one for each outcome.

The parameter estimates, together with their variances, may then be obtained

using standard GLS techniques. Writing equation (135) in terms of unbiased esti-

mated effect sizes given in (133), the model becomes

d=Xt3+e
	

(136)
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where e is assumed to be approximately normal with an RxR estimated variance-

covariance matrix S. The structure of S is such that it contains the individual trial

variance-covariance matrices S, i = 1, .., k, stacked along the diagonal with all other

elements being zero, that is

Si0 ... 0

o 52 •.. 0

5=
	

(137)

oo	 ...

Each S contains the variance of each effect size in trial i on the diagonal and the

covariances of each pair of outcomes elsewhere. The effect sizes for outcomes p and

p' have the same asymptotic correlation as the original observations yj, and yj [39].

Hence, the covariance between the effect sizes relating to the two correlated outcome

measures Yip and yip' is

cov(d,,,, d1) = p,,,iJvar(d p)var(d pi)
	

(138)

where p,1' is the population correlation between Yip and Yip'. In large samples Pipe,'

may be estimated from the sample data within each study.

If e is assumed to have a zero mean vector and a known variance-covariance

matrix E, then the best linear unbiased estimator of 3 [113] is

/ = (X'E'X)X'E1d
	

(139)

and the variance of /3 is
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var(f3) = (X'E 1 X) 1	(140)

However, since E is not known in practice, it must be replaced in equations (139) and

(140) by S.

The fit of the model may then be tested by considering the null hypothesis

that the predictors included in the model completely explain the variability in effect

sizes. The test statistic is given by

HE = (d - X/)'S'(d - Xj)	 (141)

assuming normality for d, and HE has a x2 distribution with R - q degrees of freedom,

where q is the number of parameters estimated in the model.

As is usual with regression analysis, the significance of each individual effect

can be tested by considering the null hypothesis H0 :	 = 0 and the familiar

z-statistic

= var()

	 (142)

is used. Raudenbush et al. [113] then suggest that since each parameter is being

considered separately, the p-values associated with each test should be adjusted to

avoid an inflated Type-I error probability.

In addition to these individual tests, an overall test of the significance of the

model may be carried out. This is a test of whether any of the parameters in the

model have a non-zero effect on the outcome and thus is a test of the null hypothesis

H0 /3 = 0. The test statistic is given by [391
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HR = d'Sd - HE	 (143)

which has a x distribution.

This test HR is similar to the Hotelling's T2 test for comparing two multivariate

samples and whose test statistic takes the form

T2 = z'A 1 z
	

(144)

where z is a vector of z statistics for each of the p endpoints and A is the covariance

matrix which allows for correlations between the standardised normal deviates. The

correlations between the are the same as the correlations between the raw obser-

vations. Like Hotelling's T2 (144) statistic HR (143) will lack power against certain

important alternative hypotheses, since it is a general test of significance looking at

whether one or more of the treatment effects are different [120]. The alternative of

particular interest is that one treatment performs consistently better than the other

for all, or nearly all, of the endpoints. Without the power to detect such an alter-

native, all the evidence must be weighed up subjectively to deduce which treatment

is better overall, rather than being able to give a single probability statement on

efficacy. This issue is addressed in Section 6.5.3.

The main problem, however, with this multivariate model is that it is of a

fixed effect type and, hence, if any extra variation exists, then the model may not be

adequate. In certain circumstances, heterogeneity may be explained by the addition

into the model of trial-specific covariates, represented by the addition of a further

column to the design matrix. This allows the effect size estimates for each outcome

to have a slope, which may be common to all endpoints or different for each endpoint.

However, it may sometimes be the case that no covariate can be found which offers

a plausible explanation for the heterogeneity. Also, since any such investigation of
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covariates is generally post-hoc, caution needs to be expressed. Hence, in some sit-

uations the model will be a poor representation of the data and so this approach is

limited in its usefulness.

6.5.3 Global test statistic

Addressing the question of a global test statistic which is powerful against specific

alternatives, in the context of a single clinical trial, Pocock et al. [114] state that

the prime interest is often in an alteraive hypothesis with all (or some) endpoints

showing treatment differences in the same direction. An alternative to Hotelling's

T2 statistic, which is more powerful for this alternative of interest, was proposed by

O'Brien [120]. Assuming J' = (1, ..., 1), A is again the covariance matrix for the

multiple endpoints r = 1, ..., p, and z is the vector of test statistics for each individual

outcome measure, then, for any p asymptotic normal statistics with known covariance

matrix, J'A 1 z is the optimal linear combination for the alternative hypothesis that

the p standardised treatment differences are all of equal magnitude and in the same

direction [114], that is H1 :z1 = ... = z 0. The test statistic is therefore of the form

J'A1z
N(O,1)	 (145)

(JA-1J)1/2

The weighting factors J'A' are column sums for each variable, indicating their total

correlation with all other endpoints. Hence, because A is inverted, the endpoints

which are less highly correlated with any of the other variables have greater weight.

Further work has been carried out which shows how the global test statistic (145)

may be extended to any set of asymptotically normal test statistics whose covariance

matrix it is possible to estimate [114].

If the same effect size were being assumed for each endpoint in the multivariate

meta-analysis model, then the test statistic HR is equivalent to Hotelling's T2 since
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X becomes 3, that is a vector of l's, and each dir is a standardised difference. The

difference with the meta-analysis case is that the null hypothesis being tested is

H0 : = 0 for all trials i = 1, ..., k and all outcomes r = 1, ..., r, rather than

H0 : z, = 0 for all outcomes r = 1, ...,p in a single trial.

The same null hypothesis as for the T2 test is being tested using the O'Brien

type test. The z test (142) in the case where a common treatment effect is being

fitted to all outcomes produces a global statistic equivalent to the O'Brien statistic,

using (139) and (140) to define and var(3). The statistic is given by

- X'Ed
(146)

a1/var(f3) - (X'E-'X)1/2

where X is equivalent to 3 and E is also a covariance matrix like A and d is a vector of

asymptotically normal test statistics. This test is more powerful than HR against the

alternative hypothesis of H1 :	 = S12	 = 5lri = = 8k1 = 5k2 = ... =	 0

and therefore for alternative hypotheses where the effect sizes tend to go in the same

direction.

6.5.4 Example of multivariate meta-analysis

The British family heart study is used as an example to illustrate the multivariate

methods described in Section 6.5.2. The outcomes considered are diastolic blood

pressure (DBP) and systolic blood pressure (SBP). These outcomes were chosen since

the value of SBP and DBP for each person will obviously be correlated, and it may also

be of interest to make an efficacy statement about the treatment of blood pressure in

general, rather than about the two components separately. The correlations could be

estimated from the data within each centre and here the correlations for this analysis

were actually calculated using both intervention and control observations combined.
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The methods have been carried out for the results for men, using both the internal and

external control group comparisons. By looking at both control group comparisons,

models representing data with differing amounts of heterogeneity may be considered.

Firstly, for each analysis a common difference was fitted for DBP and SBP.

Such a model is only reasonable when dealing with effect sizes since it would be

meaningless to try and fit the same effect to the mean differences for DBP and SB?,

as the differences in SBP are much larger than those in DBP. Secondly, a separate

effect was fitted for each blood pressure outcome separately. The fit of both these

models was assessed using HE as defined in (141). The results obtained from such a

model could then be compared with the standard individual fixed effect meta-analysis

results.

In the univariate analyses, there is less heterogeneity present in the SBP es-

timates for the internal control group comparison than for the external. However,

perhaps surprisingly, there is no evidence of heterogeneity in the DBP estimates for

the external control group comparison, but there is some for the internal control group

comparison. However, there is overall far less variation in DBP than in SB? and so

the multivariate model, being a fixed effect method, is therefore more reasonable for

the internal control group comparison. Results for the multivariate model (Table 60)

indicate that both blood pressure measurements cannot be adequately estimated by a

common effect size for either the internal control group or the external control group

comparison. Fitting a separate effect for each outcome does improve the fit of the

model significantly in both cases, although neither explains an adequate amount of

the variation.

The effect size estimates for both outcomes in both comparisons are very

comparable to those obtained from separate univariate fixed effect meta-analyses

using effect sizes (Table 61). The standard errors of the two sets of estimates are

almost exactly the same in the two cases for both outcomes as well. Hence, nothing
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has apparently been gained in this example by carrying out a multivariate meta-

analysis

Since in the external control group comparison there is unexplained variation

present, because the model is still not a good fit to the data as indicated by the large

deviance HE, one option is to add covariates to the model to try and improve the

fit. As an example, purely to illustrate the methodology, a covariate indicating the

location of each study centre in Britain was constructed. Since there was one inter-

vention and one control practice situated in 13 towns distributed throughout Britain,

a covariate was constructed having two categories indicating a location in either the

north (Scotland, north of England and Midlands) or south (south of England, Wales

and East Anglia) of the country. A model was then fitted with a common slope

for both outcomes and then extended to allow the slope to differ for each of SBP

and DBP. In neither of the examples did geographical location explain a significant

amount of the variation (Table 60). Hence, there was no geographical variation in the

difference in blood pressure between intervention and control groups. It may be the

case that any geographical variations have been cancelled by considering differences

within towns.

6.5.5 Discussion

In terms of estimation there is little to be gained from the multivariate analysis of

the blood pressure outcomes in the British family heart study. However, in other

situations where the multiple outcomes of interest may be of equal magnitude the

analysis may be worthwhile, as an estimate of a single overall effect size, representing

a general treatment effect, could be obtained. The fact that there is no improvement

in the precision of the estimates of treatment effect with the multivariate model in

the example considered, as opposed to the individual univariate analyses, is because

the data is complete, that is there is a measurement recorded for each of DBP and
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Table 60: Multivariate generalised least squares models for effect sizes for the differ-

ence in blood pressure (both DBP and SBP) between the intervention and control

groups in men in the British family heart study

Model	 Parameter	 Internal control	 External control

Estimate S.E._J Hg(df) Estimate S.E.	 HE(df)

Common	 3	 -0.369	 0.0297 42.66(25)	 -0.292	 0.0274 189.10(25)

effect size

Separate	 -0.336	 0.0322 36.05(24)	 -0.205	 0.0299 135.95(24)

effect sizes	 /32	 -0.403	 0.0326	 -0.380	 0.0298

Common	 /3	 -0.369	 0.0435 34.82(23)	 -0.195	 0.0398 135.81(23)

slope	 /32	 -0.435	 0.0438	 -0.369	 0.0397

__________	 7	 0.066	 0.0594	 -0.369	 0.0548

Different	 /9i	 -0.355	 0.0451 33.49(22)	 -0.249	 0.0415 125.46(22)

slopes	 /92	 -0.450	 0.0456	 -0.350	 0.0410

	

l'i	 0.037	 0.0646	 0.091	 0.0598

__________	 12	 0.096	 0.0650	 -0.063	 0.0597

/3=common effect size for both DBP and SBP

/9i=effect size for DBP

/32=effect size for SBP

-y=common slope for both DBP and SBP

71 =slope for DBP

'2 =slope for SBP

HE=Test of fit of the model given in (141) compared with X%_q distribution
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Table 61: Fixed effect meta-analysis results for the difference in blood pressure (both

DBP and SBP) between the intervention and control groups in men in the family

heart study

Measurement Control	 DBP	 SBP

____________ group 	 Estimate S.E. Estimate S.E.

Effect size	 Internal	 -0.336	 0.0323	 -0.404	 0.0324

External	 -0.386	 0.0297	 -0.207	 0.0296

Difference	 Internal	 -3.501	 0.514	 -7.255	 0.568

in means	 External	 -2.477	 0.568	 -7.285	 0.514

SBP in each individual and in each town. The multivariate model can cope with

different numbers of outcomes being measured in different trials in a meta-analysis.

Hence, multivariate methods would provide improvements in precision when different

trials measure different outcomes, since such methods make up for missing data in one

variable by using the information regarding the others and the correlations between

them. This may be useful in certain meta-analyses, where different trials on the same

treatment may consider different measures of outcome. It is likely to be less useful

for the analysis of multicentre trials because all centres should be measuring the same

outcomes as they are following the same protocol. In a meta-analysis these methods

would allow the results of more trials to be included, since in order to perform a

univariate meta-analysis, all outcome measures must be the same.

Furthermore, the model does, however, provide a global test of treatment ef-

fectiveness on all outcomes of interest, which is of some use in that it provides a

test of the general impact of the treatment. The test given in (146) may be partic-

ularly useful in testing for a consistent treatment effect across all outcomes. Hence,

a significant result from such a test provides strong evidence of an overall benefit of

treatment.
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The fact that the method pursued here is restricted to the use with effect

sizes means that interpretation in practice is difficult. With further work it may be

possible to adapt the model to cope with alternative measures of treatment effect.

Furthermore, although other covariates may explain the heterogeneity present in the

blood pressure data, a random effects model may be required to model the additional

variation which was evident after the fixed effect model was fitted. Further research

is again needed into the issue of fitting a multivariate model which allows for random

effects, with a possible way of proceeding being to follow a multilevel modelling ap-

proach [121]. This sort of approach is an improvement over the model used here as it

allows the covariance structure of the data to be estimated simultaneously with the

treatment effect. In the method applied to the blood pressure outcome, the covari-

ance matrix is obtained by estimating the relevant variances and correlations from the

data set and then substituting them in to the model as if they were known values. In

general, the work illustrated here provides an explanation of the problem of multiple

testing in meta-analyses and an introduction to methods which could be pursued and

the problems which need to be solved, but do not provide satisfactory solutions for

the analysis of the British family heart study.
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7 A Comparison of Meta-Analysis and Paired

Cluster Randomised Methods

The comparison of the intervention group with the external control group in the

British family heart study involves the analysis of a paired cluster randomised design

and Section 6.2 illustrated how these data could be analysed using meta-analysis

techniques. However, there is also some existing literature which proposes methods

specifically for the analysis of paired cluster randomised trials. Hence, in this chapter

a comparison of meta-analysis methods and these other paired cluster randomised

methods will be made. Both testing and estimation are considered.

Section 7.1 introduces the concept of the intracluster correlation, which is

central to paired cluster randomised trial methods. The issue of testing for an overall

treatment effect is then considered and existing methods for dichotomous outcomes

are described in Section 7.2 and for continuous outcomes in Section 7.3. A discussion

of findings in published papers in Section 7.4 is then followed by a comparison of the

tests using data from the British family heart study in Section 7.5. Estimation of an

overall treatment effect is the focus for the remainder of the chapter, with published

methods being described for dichotomous outcomes in Section 7.6 and continuous

outcomes in Section 7.7. Again the British family heart study provides an example

for the comparison of the different methods and Section 7.8 also compares these

methods with the standard meta-analysis methods of Chapter 1. The chapter is

rounded off with a discussion and comparison of the different methods (Section 7.9)

and a conclusion (Section 7.10).
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CBC

= cr, + c
(147)

7.1 Intracluster Correlation

Paired cluster randomised methods use the concept of intracluster correlation. If

clusters, rather than individuals, have been randomised, then individuals within a

cluster will tend to be more like each other than like individuals from other clusters.

This means that the measurements within a cluster are likely to be dependent. The

intracluster correlation is a measure of the association between the observations within

a cluster compared to between clusters. It may be expressed in terms of the proportion

of the total variance due to the between-cluster differences,

where is the between-cluster variance and o is some average within-cluster

variance (see Section 7.2). A suitable estimate of this intracluster correlation must be

obtained in order to proceed with the methods. The expression for the intracluster

correlation is such that if p=l, then all the observations in each cluster are exactly

the same, that is there is no within-cluster variation. On the other hand if p=O, there

is no clustering, that is there is no between-cluster variation, and so the observations

within a cluster are no more like each other than observations from different clusters.

The latter situation is simply a case of straightforward random sampling.

The intracluster correlation links up with the meta-analysis concept as both

are concerned with the appropriate use of the between-cluster and within-cluster

components of variance. However, the two methods actually estimate the variation

differently. In the meta-analysis case, oj is estimated after taking out a common

treatment effect, whereas in the cluster randomised method the estimate of between-

cluster variation ô is confounded with the treatment effect. This will be explained

further in following sections.
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7.2 Published Methods For Testing in Paired Cluster

Randomised Trials When the Outcome is

Dichotomous

In the case of testing for a treatment effect from a meta-analysis point of view, there is

no distinction made between the test used for both homogeneous and heterogeneous

data. The Mantel-Hacnszel test, and its equivalent tests, test the null hypothesis that

each individual treatment effect 0 is zero against the alternative that at least one

such effect is non-zero (Section 1.4). They do not test the hypothesis that the overall

treatment effect 0 is zero, unless homogeneity can be assumed. If homogeneity can

be assumed then the Mantel-Haenszel test is not only valid but is also optimal for

such a null hypothesis [38].

From the perspective of a paired cluster randomised design, however, the desire

to test the null hypothesis that the overall treatment effect is zero when heterogeneity

is present, that is H0 : 0 = 0 against the alternative H1 : 0 0, has led to the

development of a range of alternative tests. When positive intracluster correlation

is observed in a set of data, individuals within each cluster cannot be regarded as

independent and the statistical importance of any one response is decreased. This

means that the effective sample size is less than the total number of individuals in the

trial, but greater than the total number of clusters (unless there is total dependence

within clusters). Hence, due to this effective reduction in sample size, the variance

of the treatment effect in each pair of clusters is too small [122]. Consequently, the

Mantel-Haenszel test, even when there is no treatment difference, gives significance

levels much more extreme than 0.05 when there is a large amount of correlation

between the observations in the same cluster [123]. Thus the use of the Mantel-

Haenszel test can result in obtaining spurious statistical significance.

The design of a paired cluster randomised trial means that each strataoøi (i =
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1, ..., k) includes a pair of matched clusters, one randomly allocated to treatment

and the other to control or placebo. This section considers dichotomous outcome

measures, and the proportions of patients exhibiting a positive outcome are denoted

by Pi = a1/n i and P12 = cj/n12 where i = 1, ..., k (1=intervention, 2=control). Five

different tests of the hypothesis H0 : 9 = 0 for dichotomous outcome measures, which

have been published in the literature, will now be presented in Sections 7.2.1 to 7.2.5.

An example illustrating the use of and a comparison of the results of these tests is

presented in Section 7.5.

7.2.1 Unweighted t-test

The simple unweighted paired t-test, applied to dichotomous outcome measures, is

given by,

tt4 =	 ( 148)
- ô)2/(k - 1)

where Ô = E.1 Ô2 /k and ô, =P1 - P,3 is the estimate of the treatment effect in

strata i. Here each cluster mean is treated as if it were a single observation. Hence,

this test assumes that all the variation is between-clusters and no account is taken

of the variation within each cluster or of the different cluster sizes. Under the null

hypothesis and assuming normality of öj, this statistic has a t distribution with (k—i)

degrees of freedom.

7.2.2 Weighted t-test for proportions

Donner and Donald [123] present two alternative approaches for dichotomous data

based on a t-statistic which allow for both within-cluster and between-cluster varia-

tion. The first method is based on a weighting of the differences O=P 1 - P 2 . The
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weighted average is , = 	 wO/ E w1 , where an appropriate choice of weights

is found by considering the variance of under the null hypothesis H0 0 = 0. If ni

and n12 are reasonably large in all strata, then the variance is approximated by

var(Ô1 ) =	 - P) I 1+(,1),3 + 1+(n2-1) 1	 (149)
I 'hi	 tI3	 J

where P = (a + cj)/(n11 + n 2 ) is the estimated event rate in stratum i under the

null hypothesis and 3 is an estimate of the intracluster correlation (Section 7.1). As

each n tends to infinity, then var(Ô) reduces to 2,3P(1 - P,) approximately. Hence,

an estimate of p is required to proceed and the derivation of such an estimate is now

provided.

Analysis of variance methods are used to obtain ô. Unbiased estimates of the

average within-cluster correlation o, and the between-cluster variation 4 are given

by [124],

=MSE
	

(150)

= (MSC - MSE)/flA 	(151)

where MSE is the error mean square, MSC is the cluster mean square and A is

an adjusted average sample size and is given by [N - nj/n,)]/k. The

derivation of the required analysis of variance table for the example of particular

interest is provided later. Hence, for now, it is simply stated that the estimate of p

is given by

- 4	 (MSC - MSE)/nA	 MSC - MSE
- 

+4 = MSE + (MSC - MSE)/nA MSC + ( flA - 1)MSE (152)
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If MSC < MSE then 3 must be set to zero as the intracluster correlation cannot

sensibly take a negative value. Once an estimate of the intracluster correlation has

been obtained, the weights wi,,, which are the reciprocal of the variances (equation

(149)) which take account of the clustering, can be calculated. The estimate of the

overall treatment effect is therefore given by

=	 (153)

The test statistic for looking at the treatment effect over all strata, allowing for

clustering given by Donner and Donald [123] takes the form

= 3d%/El w2
	 (154)

where s = w,,(O - ô,,,,)2/ Under H0 , i has an approximate t-

distribution with (k —1) degrees of freedom. If the number of strata is small, Donner

and Donald [123] indicate that it is desirable to introduce a continuity correction.

This involves replacing Ô, by On,, - 0.5/ E_1 n1 - 0.5/ E n2.

No details regarding the derivation of the statistic are, however, provided by

Donner and Donald [123]. Hence, to understand the reasoning behind the method a

derivation is now provided which has been deduced through reference to other papers.

The estimate is derived from the analysis of variance table used in the analysis

of intraclass correlation in multiple samples for survey data [124]. In this multiple

sample situation there are Cj clusters within each stratum i, but there are no different

'treatments' within each stratum. The model can therefore be written as

YiJl = + cx, + /3jj + e1 i 	 (155)
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where /3jj	 N(O, oj) and e1 j 	 N(O, o-,) with i = 1, ..., k,j = 1, ..., cj and 1 =

1, ..., n 1,. The strats.n effects c, are considered to be fixed, while the cluster effect f3jj

and the individual effect e13 : are both random. The intracluster correlation is assumed

to be constant across all strata, which implies that the variation in the response y

from cluster to cluster is the same in each stratum [124].

In adapting this approach to a paired cluster randomised design, a treatment

effect is introduced within each stratum, which, however, the model does not account

for. When constructing the analysis of variance table required for the model given in

equation (155) a stratum mean square and a cluster (within stratum) mean square are

obtained, together with the error mean square. Hence, the variation between clusters

within each stratum will be due in part to a treatment effect, if one exists. Hence,

due to the fact that ,3 is based on the variation between clusters within a stratum

[125], an unbiased estimate of p may only be obtained under the null hypothesis of

no treatment effect.

To derive the relevant analysis of variance table for such binary outcomes it

must initially be assumed that each observation is on a continuous scale but can take

one of only two values, either 0 or 1. The value 1 is recorded if an individual exhibits

the outcome of interest and otherwise 0 is recorded. Then letting y,j be the observed

value (0 or 1) for individual 1 (l=l,...,n,) in cluster j (j=1,2) of strata i (i=1,...k),

the analysis of variance table (Table 62) may be constructed [124].

Then since y,, can only take the values 0 and 1, then	 yij: is equal to the

number of positive responses,	 say, in cluster j of stratum I (a1i = a, and a12 = ci).

Hence, the sums of squares in Table 62 may be simplified because,

fl,3

Yijl =
	 (156)
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-
Yi. =	

= Pu (159)

and

Table 62: Analysis of variance table for a paired cluster randomised design

Source of Degrees of	 Sums of squares	 Mean square

variation freedom

Strata	 k - 1	 SSS = E .I 	 -	 MSS = SSS/k —1

Cluster	 k	 SSC =	 n1(1 -	 MSC = SSC/k

Error	 N —2k SSE =	 I	
- 

v1) 2 MSE = SSE/N —2k

Total	 N - 1	 SST =	 E=i E' ( i -

=	 yijz/ni,=mean of all individuals belonging to the th cluster in strata i.

= E_i	 ytjz/n=mean of all individuals in strata i.

=	 y,11/N=mean of all individuals in the study.

and

Yji = a,,	 (157)

= fl i + i2	
a j =	 (158)

Hence,

SSC =	 n,,(P, - u) 2	(160)
t=1 2=1
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SSE = E1 E=1 IE'1 (i: - )
2]

= E	 -	 + L)]

= EiE=i[ai-2,+,]	 (161)

- çk ç-2 a(1_LL-s=1 Lij=1 '2'

-k	 — 2	 jl
- L..,j=1 L.s3=i a,,i - i

Hence, the values for the relevant mean squares calculated using the expressions

in (160) and (161) can be substituted into the expression for the estimate of the

intracluster correlation (152). The variance of each Ô (149) may then be estimated in

order to obtain the weights wv,. These weights are then used to obtain the estimate

of the overall treatment effect Ô u,,, (153), although they are assumed known rather

than estimated.

The test statistic is then given by this overall estimate divided by its standard

error, that is tu, = ô,/iJvar(&,,). Now equating this expression with that in (154)

implies that

22var(Ôu,3,) =	 wi,, sd/(E ..i w3,)2	
(162)

rk	 2
= _s=1 w 1, var(Ô)/(E. 1 w3,)2

Hence, Donner and Donald appear to be estimating var(Ô) by

=	 w3,(Ô - ôu,, )2/	 w3, for all i, rather than estimating each variance

separately using (149). Hence, a pooled between-stratum estimate of the variance is

used, which would appear incorrect since it is being assumed that all the individual

strat.c.estimates are equal when they are not under clustering.

Donner and Donald [123] do acknowledge a drawback with this method in that

the way the model is defined leads to the variation between clusters being combined

with the treatment effect. Hence, "as the treatment effect increases, ,ô will also
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increase and will provide an increasingly biased estimate of the true p" [1261. Thus

the intracluster correlation attributable purely to the design of the study cannot be

obtained. This issue is discussed and investigated further in following sections of this

chapter.

7.2.3 Empirical logistic weighted t-test

An analogous procedure to the test described in Section 7.2.2 was also presented by

Donner and Donald [123] based on the empirical logistic transform,

= log ( (a+O.5)(d+O.5) )
' (4+o.․)(b1+o.5)

The variance of O may be approximated by [123]

= (n i + 1)(n i + 2)[1 + (n i - 1)] + (2 + 1)(na + 2)[1 + (n 2 - 1),31
var(Oa)

ni(a + 1)(b + 1)	 n22(ci + 1)(d + 1)
(163)

Again, taking a weighted average with the weights wj being equal to the reciprocal

of the variance of each estimate (163), a test statistic is obtained in the same way as

for the weighted t-test.

The weighted average is therefore Oj =	 wj and in order to

test the null hypothesis that there is no overall treatment effect, the test statistic

wit
Lw1 = 	 _________	 (164)

sly'E=1 wi2

where s = - O:)2/ 1I w1 , can be compared to the t-distribution with

(k - 1) degrees of freedom. Hence, similar to the weighted t-test of Section 7.2.2,

this leads to the conclusion that var(O,) = E= w1s?/(E1 w,)2 which means that
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var(ö) = ?, that is a pooled estimate of the variance of &.

7.2.4 Wilcoxon signed rank test

The straightforward non-parametric Wilcoxon signed-rank test may also be used in

the analysis of a paired cluster randomised trial. Such a test considers the null

hypothesis that the overall median treatment difference is zero. It uses both the

direction of the difference between a pair of clusters as well as the ranks of these

differences, but not their magnitude or precisions. In the situation under discussion

this test may be applied to the difference in proportions t3 =	 - P 2 for i = 1, ..., k.

The Ô1 are ranked without regard to their signs. Rank 1 is therefore assigned to

the smallest absolute difference and rank k to the largest absolute difference. The test

is then based on the value T+, the sum of the ranks of the positive differences. For

small k, the exact distribution of T, which is symmetrical about k(k + 1)/4 can be

tabulated. However, for large k (k ^ 15) it can be assumed that T is approximately

normal. It may be shown [127] that

E(T) 
= k(k+ 1)	

(165)

var(T)	
+ 1)(2k + 1)

(166)
-	 24

Hence, the test statistic

- /var(T+)
	 (167)

can be compared to a standard normal distribution.
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'7.2.5 Permutation test

An alternative non-parametric approach is to use a permutation test which uses the

magnitudes, rather than simply the directions, of the differences ô=F 1 - as well

as their ranks, but not their precisions. The rationale behind such a test, is that

under the null hypothesis H0 : 0 = 0, the event rates would remain the same if the

labels 'treatment' and 'control' within a pair of clusters were interchanged. This is

equivalent to regarding the assignment of labels within a pair of clusters as random.

This means that, for each strata, the observed difference may be regarded as either

positive or negative with equal probability. There are thus 2" equally likely possible

combinations of these signs under the null hypothesis conditional on the magnitudes

of the differences actually observed. Hence, 2" separate differences D = can

be calculated from the observed data. Therefore a one-sided test rejects at the 5%

level if the observed total falls among the largest 0.05x2' values. If k is too small,

then 0.05x2" could be less than 1, hence this method would not be very sensible.

On the other hand, unless k is reasonably small, this process will be time consuming

and, since the distribution of D depends on the difference actually observed, it is

not practical to tabulate D. Hence, in practice, approximate forms of the test are

used. Donner and Donald [123] use an approximation based on the fact that under

H0 : 0 = 0, the mean difference L =	 Ôjk has a normal distribution with zero

mean and variance E...1(& - 0) 2 /k2 =	 Ô12/k. Hence the test is based on the

statistic

-k	
•

z = L,=i ' - =	 (168)

V5=i Ô2/k2	 /E=1 
2

which has an approximate standard normal distribution under the null hypothesis

H0 : 0 = 0.
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Gail et al. [128], use an equivalent test based on an approximation of the test

statistic to the t-distribution [129]. The test statistic is the same as that above (168)

apart from the fact that a different estimate of the variance is used. The variance of

â, suggested is given by E-1( — ö,j 2 /(k — 1)k = s2/k and so the test statistic is

'ç-k a/L	 A	 -k ,

T— L1 =l vsI I — u —	

169

7.3 Published Methods For Testing in Paired Cluster

Randomised Trials When the Outcome Variable is

Continuous

In the case of a continuous outcome measure Donner and Kiar [1301 propose the

use of either an unweighted paired t-test (Section 7.3.1) or a weighted paired t-

test (Section 7.3.2). Their paper refers to estimation and confidence intervals, but

obviously tests may also be derived and it is these that are presented here. In the case

of a continuous outcome variable the estimated treatment effect in strata I is given by

the difference in means, = - A generalisation of the paired t-test, proposed

by Rosner [81], which allows for heterogeneity between strata, is then described in

Section 7.3.3.

7.3.1 Unweighted paired t-test

The same straightforward unweighted paired t-test, not taking account of the within-

cluster variance, that was used for a dichotomous outcome (Section 7.2.1) may also be

used for a continuous outcome. Hence, the overall treatment effect may be estimated

as
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_ EÔ2
k

(170)

which has an estimated variance given by

2_ E1(ö _)2

(171)
-	 (k—i)

The test statistic therefore takes the form

d	
(172)

which has a t-distribution with (k - 1) degrees of freedom.

The unweighted paired t-test is only strictly valid if n,1 =	 = n for

i = 1, ..., k, because variance homogeneity must be assumed [1301. Hence, when

cluster sizes are moderately or severely imbalanced Donner and Kiar [130] state that

a weighted procedure would be preferable.

v.3.2 Weighted t-test

The weighted t-test uses a weighted average of the individual strata estimates of the

treatment effect,

- - E=1
t	 k

wiw

The estimated variance given by Donner and Klar [130] is

(173)

- ________
(174)var(4) -

[2_,=i Ww]2
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where s, =	 -	 wa,,, again implying that the variance of the

individual stratum effects have been obtained using a between-strata estimate, rather

than within-strata estimates. Hence a test statistic is given by

(175)tw= 	 =
E=1	 3 vf=i wL

A reasonable, but simple, choice of weights, according to Donner and KIar [130], is

given by w,, = n11 n12 /(n1i + n12 ). These weights are based solely on sample sizes and

therefore do not depend upon the individual cluster variances.

7.3.3 Rosner's generalisation of the paired t-test

Rosner [81] proposed a generalised paired t-test for continuous outcome measures.

It is an extension of the standard paired t-test to a situation where there are vari-

able numbers of cases and controls per pairing. This situation is therefore directly

applicable to meta-analysis and to the case where each pairing is made up of two

clusters.

It is assumed that the within-strata differences between the treatment group

and the control group means follow a one-way random effects analysis of variance

model,

—Y1i.	 = O+cx;+ e1 ,	 = 1,...,k	 (176)

where 0 is the overall within-strata difference in means, a, is the random effect rep-

resenting a stratum specific change in difference and a; 	 N(0, 4). Then e; is

the variation within group for strata i and e1 	 N(0, v1 ) where v; = r2(. +

This is exactly the model for the normally distributed random effects meta-analysis
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(Section 1.7.1).

Once again the aim is to test the null hypothesis H0 : 0 = 0 against the

alternative H1 : 0 0. As in Section 2.2.1, the marginal distribution of each stratum

estimate has a normal distribution with mean 0 and variance (4 + v1) and so the

full likelihood for all the strata may be obtained (Section 2.2.1)

k

L(0, 4) = II	 exp { _9_9)2 }
=i /2ir(4 + v)	 2(OB+V)	

(177)

The variances of the individual estimates are then estimated using the following un-

biased estimator for or2,

k	 2 flu

=	 - .)/(N - k)	 (178)

s=1 J=1 1=1

Then conditional on c 2 , the maximum likelihood estimates of 9 and 4 are calculated.

Two equations are obtained which must be solved iteratively to produce the estimates

(Section 2.2.1).

The variance-covariance matrix for the vector = (s,., è)", given by I*_1(),

can be found where J*() is the observed information matrix for 0 and & as defined

in Section 2.3.4 and w1 =1/var(ô) where 1/var(Ô) is estimated individually for each

2

- E=1 w	 w(Ô -

E_1 w(ê - a,. )	 w(Ô - ö,.)2 -	 w/2

This is exactly the matrix used in Section 2.3.4 to provide approximate confidence

intervals for the maximum likelihood estimates of 9 and 4.

Rosner [81] uses the variance-covariance matrix to obtain an asymptotic test

procedure for the null hypothesis of no overall treatment effect. The test statistic is

330



given by

A 
=

	 or	
(179)

where I 1 (0) is entry (1, 1) in the 2x2 variance-covariance matrix, and the test

compares this with the standard normal distribution.

7.4 Discussion of Existing Methods

Donner and Donald [123] carried out a Monte Carlo investigation to look at the

powers and significance levels of tests described in Sections 7.2.1 to 7.2.4 and to

compare them with the Mantel-Haenszel test. The quantities k, n j and P were

varied under a paired cluster randomised design. The number of strata Ic was taken

to be 6 and then 12. The odds ratio & = P11 (1 - P 2)/P,2 (1 - P 1 ) was fixed at 1

for the null procedure used to obtain significance levels and at 1.5 for the procedure

used to compare powers. By fixing and varying the value of P 2 , the value of

P 1 is automatically assigned. For k=6, P12 (i=1,...,6) were taken to be 0.3, 0.5,

0.7, 0.3, 0.5, 0.7 respectively, while for k=12, this pattern was repeated twice. The

simplification that n = n 2 = n was then made and three levels of imbalance in

numbers from stratum to stratum (balanced - n=120 (i=1,...,k), mildly imbalanced

- n 1 =60, 120, 180, 60, 120,..., severely imbalanced - n=20, 120, 220, 20, 120,...)

were considered. For each combination of k and balance of design, various values of

the intracluster correlation, ranging from 0 to 0.15, were investigated. This was done

both for significance level (=1) and for power (=l.5) simulations.

The Mantel-Haenszel procedure gave significance levels much more extreme

than 0.05 in situations where p was greater than zero, thus indicating the inappro-

priateness of this test for clustered data when testing H0 : 0 0. As the intracluster
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correlation increased, the significance level became more extreme.

The standard unweighted paired t-test assumes that there is no within-cluster

variability as it considers the rate from each cluster as a single observation. Hence, this

test is also strictly inappropriate in the situation where clustering is present. However,

the Monte Carlo study found that the paired t-test t, (148) provided satisfactory

significance levels in general for all factor combinations. Donner and Donald therefore

suggest that this illustrates "the robustness of this procedure to departures from

normality and homogeneity of variance". The homogeneity of variance being referred

to is that of the variances of t3,.

The paired t-test may also be applied to a continuous outcome measure for

a paired cluster randomised design (Section 7.3.1). However, Rosner [81] indicates

that the standard paired t-test is not valid unless there is no within-cluster variation

(or the numbers in each cluster are the same). He therefore advocates the use of the

generalised paired t-test (Section 7.3.3), but notes that, if o1/o is large, then the

result will be almost exactly that of the standard paired t-test. This is because when

the variation within each cluster is very small, compared to the differences between

clusters, then the within cluster variation can effectively be ignored and each cluster

can be treated as if it provides only a single observation.

Donner and Donald, in the 1987 paper [123], suggest that the standard paired

t-test is adequate for all situations where continuous outcomes are involved. This

assertion stems from investigations carried out by Korn [131] which indicate that the

standard paired t-test can be recommended for most practical situations. Korn shows

that the asymptotic relative efficiency of the paired t-test is very high (>0.89 for all

cases considered). By a simulation study he also shows that the rejection probabilities

of the standard test are around 0.05 even when there is clustering. However, this

investigation by Korn is limited and only considers the case where there are small

sized clusters, as the specific application under discussion is for a paired case-control
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design with differing numbers of cases and controls per strata. Hence, a generalisation

to all designs regarding the robustness of the paired t-test from this evidence alone

may not be valid. Moreover, Donner appears to have revised his view, as a later

paper [130] suggests that the use of a weighted paired t-test is preferable in situations

where the cluster sizes are moderately or severely imbalanced.

From the Monte Carlo study [123], Donner and Donald found that for cases

where the intracluster correlation was greater than 0.05, the weighted paired t-test

and the logistic weighted t-test were generally more powerful than the unweighted

test. This was particularly noticeable where the numbers of individuals between

strata were severely imbalanced. The weighted logistic t-test was also found to be

useful if there was considerable variation in the event rates from stratum to stratum.

The non-parametric test was found to be less powerful in every case than all the

parametric tests, although the difference was less when k=12 than when k=6.

In conclusion, Donner and Donald suggest the use of a weighted procedure

when a design involves a few strata each of a fairly large size and where the intracluster

correlation is likely to be small but significant. The weighted logistic test is slightly

favoured over the weighted t-test as it produced nominal significance levels closer to

0.05 in the simulation study, while both tests are approximately equal with regards to

power. For studies involving a large number of small strata, the standard paired t-test

or a non-parametric test is recommended. The advantage in power of the weighted

tests over the unweighted test becomes minimal for larger values of k, particularly

when the numbers per cluster are reasonably balanced. Donner and Donald state that

they do not expect weighted tests to perform well for designs with many small strata.

However, they give no argument as to why this should be so, and the results from the

simulation study do not back up this view. Presumably, problems may be caused by

the necessity of estimating many weights imprecisely (as exemplified in Chapter 5).

It is clear that the advantage in power of the weighted procedures is diminished in
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such a situation and so the paired t-test, being easier to compute, may be preferable.

Choosing an appropriate test may, therefore, depend on the amount of intra-

cluster correlation present. If the intracluster correlation is small, the weighted tests

are more powerful, since they take both the within-cluster and between-cluster varia-

tion into account. When the intracluster correlation is larger, the advantage in power

of the weighted procedures becomes less since the between-cluster variation becomes

more important and so an unweighted paired t-test is adequate.

The consequences of the effect of the variation between clusters and the treat-

ment effect being combined in the model used for the weighted t-test was explained in

a personal communication from Donner [126]. He explains that since 3 is spuriously

large when a treatment effect exists, the estimate of vcr(Ô,) using (149) will also be

spuriously large for each stratum. Hence, a potential decrease in the power of the

t-test would result. Donner states [126] that any choice of weights will lead to a valid

test, but the efficiency is increased by estimating var(0) between, rather than within,

strata when obtaining the variance of the estimate of the overall treatment effect. A

reduction in power would occur if a within-stratum estimate of var(ã,) were used,

due to the bias in the estimate of p in all the weighted procedures described where

an estimate of the intracluster correlation is required. The use of a between-stratum

estimate in these tests appears to be a means of correcting for this bias.

The generalisation of the paired t-test proposed by Rosner [81] is very similar

to the random effects likelihood method in Section 2.2. In both these methods a

consistent treatment effect is estimated separately from the between cluster variation,

whereas in Donner's weighted methods the between cluster variation is confounded

with the treatment effect. Since the estimate of p will be unbiased under the null

hypothesis of no treatment effect, but under the alternative hypothesis it will be

biased, the tests will still be valid although perhaps less powerful.
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7.5 Results of a Comparison of the Tests

hi order to compare the tests for binary outcomes described in Section 7.2 with each

other and with the standard meta-analysis type tests, data from the British family

heart study were used. A test derived from the quadratic approximation to the

likelihood in Section 2.3.4, which is equivalent to Rosner's test for continuous outcome

measures (Section 7.3.3), was also considered. This test is given by o1/I'(ê1)

where Ô1 is the MLE of 0, which is, in most cases, approximately equal to Ôj/s/var(0*l)

since the covariance of 1 and ô will usually be negligible. This test statistic is

then compared with a standard normal distribution, although it may be better to

compare it with a t(k_1) distribution as suggested by Rosner [81]. The purpose of

this practical example is to see whether the tests produce similar or different results

and conclusions, and to consider the effect of differing amounts of heterogeneity. The

unweighted procedures are expected to perform less well than the weighted procedures

or the random effects procedure under conditions of moderate heterogeneity, while

the standard Woolf and Mantel-Haenszel tests for H0 : 0 = 0 may be expected to

produce spuriously significant results.

The difference in prevalence of current cigarette smoking between the inter-

vention and control group at the one year screening was the outcome chosen. Test

results were obtained for both men and women using both the internal and external

control group comparisons (Tables 63-66). The comparisons with the internal con-

trol group are not of a paired cluster randomised design, since within each practice

individuals were randomised to one of two groups. However, there will still exist a

component of between-town variation which may be estimated, unless the treatment

effects in all towns are homogeneous.

For the comparison of the intervention group with the external control group,

heterogeneity is present in the estimates for both sexes (Tables 63 and 64). The results
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Table 63: Comparison of results of six different tests for the difference in the preva-

lence of cigarette smoking between the intervention and the external control group in

men in the British family heart study

Test	 Observed value Distribution p-value

of statistic	 under H0

Woolf	 2.654	 N(0, 1)	 0.008

Mantel-Haenszel	 2.950	 N(0, 1)	 0.003

Tinweighted t	 2.216	 tk.....1	 0.047

Weighted t	 2.054	 tk...1	 0.063

Weighted logistic	 2.027	 0.066

Permutation	 2.05 1	 N(0, 1)	 0.040

Rosner	 2.054	 N(0, 1)	 0.040

Test statistic for heterogeneity Q=25.224

Estimated between-study variance &=0.079

Estimated intracluster correlation 3=0.010
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Table 64: Comparison of results of six different tests for the difference in the preva-

lence of cigarette smoking between the intervention and the external control group in

women in the British family heart study

Test	 Observed value Distribution p-value

of statistic	 under H0 ________

Woolf	 2.105	 N(0, 1)	 0.035

Mantel-Haenszel	 2.529	 N(0, 1)	 0.011

Unweighted t	 1.696	 tk.....1	 0.116

Weighted t	 1.568	 ik_1	 0.143

Weighted logistic	 1.538	 tk_1	 0.150

Permutation	 1.585	 N(0, 1)	 0.113

Rosner	 1.618	 N(0,1)	 0.106

Test statistic for heterogeneity Q=22.114

Estimated between-study variance ô=0.098

Estimated intracluster correlation p=O .012
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of the tests for women (Table 64) provide a clear example of what can happen when a

positive intracluster correlation is present and a Mantel-Haenszel type procedure used

to test the inappropriate null hypothesis H0 : 0 = 0. Both the Woolf and the Mantel-

Haenszel test, that is the tests which assume homogeneity of treatment effects across

strata, give highly significant p-values, indicating evidence against the null hypothesis

of no overall intervention effect. However, since there is heterogeneity present, the null

hypothesis being investigated is H0 : 0 = 0 for all i rather than H0 : 0 = 0. The other

five tests produce p-values greater than 0.1, providing much less evidence against the

null hypothesis H0 : 0 = 0. A similar effect, although not so clear because all tests

produce apparent evidence against H0 : 0 = 0, can be seen in the results of the tests

for men (Table 63). All three t-tests, in this instance, produce similar results, with

the permutation test and the Rosner type test appearing to be slightly more powerful

in this example. Hence, it can be seen why the Mantel-Haenszel test and the Woolf

test cannot be interpreted as tests of H0 : 0 = 0 in cases where heterogeneity exists,

whereas all the other tests appear to be adequate for such purposes.

There is no significant statistical heterogeneity when comparing the interven-

tion group with the internal control group for either sex (Tables 65 and 66). Hence,

even the Woolf and the Mantel-Haenszel test should be valid for the null hypothesis

of H0 : 0 = 0 in these cases and, furthermore, the Rosner type test based on the

random effects model will be equivalent to the Woolf test. All tests provide evidence

of a difference in the prevalence of cigarette smoking between the two groups for

men and only the weighted t-test fails to detect a significant difference for women. 7
The results indicate that the reported prevalence of cigarette smoking is lower in the

intervention than in the control group. The result of the weighted t-test for women

is rather odd as it is markedly different from the other results, including the other

weighted procedure and no plausible explanation has been determined. There is only

a small intracluster correlation and so the weighted procedures would, in fact, be

expected to have greater power than the unweighted.
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Table 65: Comparison of results of six different tests for the difference in the preva-

lence of cigarette smoking between the intervention and the internal control group in

men in the British family heart study

Test	 Observed value Distribution p-value

of statistic	 under H0 ________

Woolf	 3.021	 N(0, 1)	 0.003

Mantel-Haenszel	 3.057	 N(0, 1)	 0.002

Unweighted t	 4.473	 0.001

Weighted t	 4.738	 t...1	 0.000

Weighted logistic	 4.418	 tk-1	 0.001

Permutation	 2.851	 N(0, 1)	 0.004

Rosner	 3.021	 N(0, 1)	 0.003

Test statistic for heterogeneity Q=5.414

Estimated between-study variance ô=0

Estimated intracluster correlation ?=0.001
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Table 66: Comparison of results of six different tests for the difference in the preva-

lence of cigarette smoking between the intervention and the internal control group in

women in the British family heart study

Test	 Observed value Distribution p-value

of statistic	 under H0

Woolf	 2.229	 N(O,1)	 0.026

Mantel-Haenszel	 2.299	 N(0, 1)	 0.026

Unweighted t 	 2.480	 0.029

Weighted t	 1.777	 tk.....1	 0.101

Weighted logistic 	 2.416	 tk_.1	 0.033

Permutation	 2.099	 N(0, 1)	 0.036

Rosner	 2.229	 N(0, 1)	 0.026

Test statistic for heterogeneity Q=l0.482

Estimated between-study variance ô=0

Estimated intracluster correlation 3=0.003
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From these results, the unweighted paired t-test does appear to be robust and

produces adequate results even when there is substantial intracluster correlation. It

performs comparably with the weighted logistic t-test in the examples considered.

The weighted t-test also gives similar results to the other two versions of the t-test

apart from in one case in Table 66. The permutation test and the Rosner type test

also produce results which are compatible with the t-tests. However, for this outcome,

the intervention effect was small (Table 53) and so the estimate of the intracluster

correlation will not be greatly inflated. In examples where there is a larger treatment

effect, a fall in power of the weighted procedures would be expected, and hence the

Rosner type test may be preferable in general.

7.6 Published Methods For Estimation in Paired Cluster

Randomised Trials When the Outcome Variable is

Dichotomous

When dealing with estimation of the overall treatment effect for dichotomous out-

come variables, Donner and Klar [130] distinguish between two types of pair-matched

cluster designs. Type (i) designs are those in which the cluster sizes may be relatively

small, such as families, but the number of strata is reasonably large. Type (ii) designs

are those in which the cluster sizes are fairly large, such as general practices, but the

number of strata may be small. The reason for distinguishing between these two

types of design is that they correspond to two different sets of asymptotic conditions.

For type (i) designs, the asymptotic conditions assume that the stratum sizes are

fixed but that the number of strata becomes large. In contrast, for type (ii) designs,

they assume that the number of strata is fixed but that the sample sizes within each

stratum become large. Since the type of design considered from a meta-analysis per-

spective will be of the type (ii) design, only the type (ii) designs will be considered

here. This is the design where there are more problems in the analysis and where
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modifications must be made to the standard methods.

Section 7.6.1 describes a modified Mantel-Haenszel estimator, while Section 7.6.2

describes a modification to the Woolf estimator.

7.6.1 Modified Mantel-Haenszel estimator

The standard Mantel-Haenszel estimator (Section 1.5.2) may be written in the fol-

lowing way

E
k
=1 wOi

t7MH =
L1=i i

where Ô, is the odds ratio in stratum i and w, = b1cj/N (notation in Table 2). The

weight can be rewritten in terms of the numbers of individuals in stratum i, n 1 and

n,2, and the estimated proportions P11 = a1 /n,,, P 2 = cj/n12 and tjj = 1 -

0=1,2),

nilni2
=	 ,1P12	 (181)

nil + n2

The standard Mantel-Haenszel estimator of the overall odds ratio is unbiased

in large samples, even when clustering is present, but not in small samples [122].

However, the unmodified confidence limits, such as those given by Robins et al. [132],

are not valid in type (ii) designs since the variance of the Mantel-Haenszel estimate

requires that the number of strata be large (Robins et a!. suggested as a practical

criterion that the number of strata be at least 20).

Donner and Hauck [125] propose alternatives to these weights by considering

the inflation in the variance of an individual cluster due to the clustering as a shrinking

of the effective sample size. The actual sample size n1; is replaced by the effective

(180)
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sample size n,c, = n 1 /[1 + (n 1 - l)p] when calculating the weights (181). The effective

sample size is such that when p=0, n, = n j and when p=l, n,=1. For values of

p between these two extremes, n, will take a value somewhere between one and

the true sample size where the larger the intracluster correlation, the smaller the

effective sample size. The intracluster correlation coefficient may be estimated as in

Section 7.2.2 and hence the modified Mantel-Haenszel estimate of the overall odds

ratio is given by

0cMH =
	 WjmOj	 (182)

Wm

where Wirn = nn j1 P12/(n + n). The weights w are most suitable when 0=1

and depart from optimality as 0 becomes large or small since 5 is only a consistent

estimator of p if there is no treatment effect (Section 7.4). Hence, as in the case of

hypothesis testing, when a treatment effect exists, ,3 will be spuriously increased and

so the effective sample sizes will be decreased and hence the weights w will be larger

than they should be. Hence, although the estimate will still be unbiased on average,

it may be far from the true value in each specific case. There is no published method

for obtaining the confidence interval of this modified Mantel-Haenszel estimate and

so it is of very limited use.

7.6.2 Modified Woolf estimator

Donner and Klar [130] suggest as an alternative using the 'studentised Woolf method'.

The estimate of the overall log odds ratio Ô is exactly that given in Section 1.5.1, where

var(ö,) = (1/as) +(1/b) + (1/cj)+ (1/d), which may be rewritten as [1/(n i Pii )] +

[1/(n2P12()12)]. However, when calculating the variance of this estimate , instead

of taking the variance of each individual study separately to be v=1/w, as in Sec-

tion 1.5.1, a pooled between-stratum estimate of the variance of ö, is obtained. Hence
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- 
2k

(183)var(0) - 
[E=1 wJ2

where 32 = E'- w1 (o_e) 2/E 1 w1 , thus taking the form common to all the weighted

techniques proposed by Donner (Sections 7.2.2, 7.2.3 and 7.3.2). In the usual Woolf

method (Section 1.5.1), when any clustering (or heterogeneity) is not taken in to

account, the individual within stratum variances v are used as opposed to a weighted

pooled estimate of the variance 	 In this way the variance of the overall treatment

effect reduces to 1/E..1 w1.

The confidence intervals constructed using this standard variance may, how-

ever, be spuriously narrow when clustering is present and thus exaggerate the preci-

sion with which treatment effects are estimated. This leads to the modification of the

estimator to produce the 'clustered Woolf estimator' which does allow for the effect

of clustering both in the point estimate and confidence interval. The intracluster

correlation coefficient p must again be estimated as shown in Section 7.2.2. Hence

the 'clustered Woolf estimator' is still a weighted average of the individual study

estimates, but with alternative weights,

- E
k
= wicO

CW	 k
tDic

(184)

where ô is the log odds ratio for stratum i and	 =

that is the reciprocal of the variance of Ô, with njj replaced by n,1 (Section 7.6.1).

The estimate of the variance of L can then be used to obtain the confidence limits

for this estimate and is given by

-	 (185)var(9) - 
[E=1 w•]2
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where s = E	 - L)2/ Ek 1 w,.. Again a between-stratum estimate of

var(Ô) is used rather than estimating it for each stratum separately. A simulation

study carried out by Donner and Hauck [125] with binary data suggests that the

Woolf method can be recommended for designs having six or more strata and at least

40 subjects per cluster. However, in general, the modified estimator has been found

to be more precise, that is to have a smaller mean square error, than the unmodified

estimator in the type (ii) paired cluster designs [1251.

7.7 Published Methods For Estimation in Paired Cluster

Randomised Trials When the Outcome Measure is

Continuous

Donner and Kiar [130] propose the use of either an approach based on an unweighted

paired t-test or one based on a weighted paired t-test. In the situation of a con-

tinuous outcome variable, the measure of treatment effect is the difference in means

between the two treatment groups. Using the notation and the ideas presented in

Section 7.7, estimates, variances and, therefore, confidence limits may be obtained.

For the unweighted paired t-test (Section 7.3.1), the overall estimate of treatment

effect is obviously given by =	 ;/k and then the variance of is given by

k
	 (186)

Furthermore, the weighted estimate of the overall difference is

= E w,A/	 (Section 7.3.2) and the corresponding variance is given

by (174)

As in the case of testing and estimation for dichotomous outcomes in methods where

the intracluster correlation is used, both methods outlined in this section are affected
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by the bias in the estimate of p when a treatment effect exists.

7.8 Results

The example outcome variable from the British family heart study of prevalence of

current cigarette smoking which was used when considering testing (Section 7.5) will

also be used to compare the different methods of estimation in order to see whether

the clustering must be taken into account. The three methods (modified Mantel-

Haenszel, unmodified and modified Woolf) described in Section 7.6 were considered

and compared with the Woolf method where var(Ô) = 1/wi , instead of 2, is used

to obtain var(Ô) (Section 1.5.1) and the random effects meta-analysis method using

the D&L moment estimator of o. A 'clustered Woolf method' was also considered

taking var(Ô) to be 1/wj, rather than .s, thus implying that the variance of the

estimate of the overall treatment effect would be 1/ Wj, since this would appear

to be the natural estimator for the variance of the clustered estimator.

The modified Mantel-Haenszel estimates are fairly similar to the unmodified

ones (Table 67), but the real difference would be in the precision of the two estimates.

However, since there is no apparent method of obtaining the confidence interval for

the modified estimate, then a real comparison is not possible. Furthermore, this lack

of a measure of precision on the modified estimate severely limits its usefulness.

Since there is very little intracluster correlation for the internal control group

comparison in men, all methods, both Mantel-Haenszel type and Woolf type, produce

very similar estimates as would be expected (Tables 67 and 68). However, the two

Donner and Klar Woolf methods, that is those where var(Ô1 ) is estimated by a pooled

between-stratum variance 2, produce much smaller variances of the overall estimate

than the methods using individually estimated variances (Table 68). This behaviour

is also evident in the internal control group comparison for the women, although
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Table 67: Comparison of two Mantel-Haenszel type estimates of the overall odds

ratio comparing the prevalence of cigarette smoking in the intervention group and

the control groups in the British family heart study

Mantel-Haenszel 	 Estimate of overall odds ratio

estimator	 (variance)

Men	 Women

Internal External Internal External

Unmodified	 0.784	 0.807	 0.793	 0.793

(0.0068) (0.0058) (0.0109) (0.0091)

Modified (*)	 0.784	 0.787	 0.784	 0.797

* No method for obtaining the variance

the difference in the variances between the two types of method are less noticeable

(Table 68). Hence, in the examples where there is no heterogeneity present, the

variances for the clustered estimate obtained using the between-stratum estimate of

var(Ô1) are too small, while those obtained using within-stratum estimates are too

large. Therefore, when there is no significant clustering, a standard Woolf method is

preferable to a clustered method, since the associated variance will be more reliable.

The clustered variance proposed in the literature will produce a variance which is too

small, thus providing stronger evidence of a treatment effect than actually exists.

It is in the case of the two external control group comparisons that the modified

estimates are really required since substantial clustering is present for both men and

women. For men, the clustered estimate agrees well with the random effects estimate,

with the meta-analysis estimator producing a slightly smaller overall log odds ratio

(Table 68). All variances are similar with the exception of the standard Woolf method

using individually estimated weights for each strata, which is too small. This is to be
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Table 68: Comparison of Woolf type estimates of the overall odds ratio comparing

the prevalence of cigarette smoking in the intervention group and the control groups,

together with variances, in the British family heart study

Estimator

	

	 Estimate of overall odds ratio

(variance)

Men	 Women

Internal External Internal [External

standard var(Ô) = 32	 -0.242	 -0.197	 -0.228	 -0.198

(0.0030) (0.0 119) (0.0 100) (0.0179)

standard var(Ô) = 1/wi	-0.242	 -0.197	 -0.228	 -0.198

(0.0064) (0.0055) (0.0104) (0.0088)

clustered var(à) =	 -0.242	 -0.226	 -0.240	 -0.203

(0.0030) (0.0120) (0.0099) (0.0164)

clustered var(ö) = 1/wj	 -0.242	 -0.226	 -0.240	 -0.203

(0.0072) (0.0 152) (0.0134) (0.0220)

random effects 	 -0.242	 -0.228	 -0.227	 -0.213

________________________ (0.0064) (0.0119) (0.0104) (0.0171)

348



expected, since this is a fixed effect model that does not take into account the extra

random variation. It is not clear, however, why the variance for the standard fixed

effect estimate derived using 2 is so much larger than that using 1/wi , as this method

does not take account of clustering either. This point is raised in the discussion section

(Section 7.9).

When using var(ô1 ) = 1/w, the variance of the estimate of overall treatment

effect is spuriously increased in cases where heterogeneity is present due to the pre-

viously discussed bias in the estimation of p (Table 68). Although estimating var(&)

using the between-stratum variance would not appear to be based on sound statisti-

cal theory since it assumes that the variance for each strata estimate is the same, it

does appear to produce more reliable estimates for the variance of L by causing a

decrease in var(L). The variances obtained in this way are close to those obtained

from the random effects meta-analysis when heterogeneity is present. Therefore, it

appears to correct approximately for the bias in the estimate of p, although it is not

obvious how or why. This is investigated further in Section 7.9. Hence, a random

effects meta-analysis method would appear preferable when heterogeneity is present.

7.9 Discussion

Due to the fact that when a large treatment effect exists, the estimate of p is biased,

then the estimate of each weight w will also be biased downwards. The examples in

Section 7.8 show how the results obtained from the paired cluster randomised meth-

ods could be misleading, as the estimates and variances from the cluster randomised

methods do not always agree with those from the random effects methods (Table 67).

When a treatment effect is present, but there is no evidence of heterogeneity, ,3 will

be biased thus introducing extra variation which does not exist. Hence, it causes

the variance associated with the estimate of overall treatment effect, as calculated

by Donner and Kiar [130], to be too small. This additional variance will also mean
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that although the estimator of the overall treatment effect is still unbiased, the es-

timate obtained in practice may be a long way from the true value. When there

is heterogeneity present, the variance of the estimate of the overall treatment effect

may still be incorrect as the extra variation will be overestimated when a treatment

effect exists. However, by using a between-stratum estimate of var(Ô) a reasonable

estimate of the variance of 	 appears to be obtained.

In the example from the British family heart study, the treatment effect is

fairly small and hence the estimate of p will not be greatly biased. A hypothetical

trial was therefore created in order to illustrate more clearly the failings of the paired

cluster randomised methods. In this example the treatment effects, in terms of a log

odds ratio, were large (varying between -0.8 and -0.4) in each of the 13 strata, but

were also homogeneous. The Q statistic for heterogeneity was only 3.858 and so the

between-stratum variance was set to 0.

However, due to the large treatment effect, the estimate of & was 0.0041 and

so the estimate of the intracluster correlation was greater than 0. The fixed effect (or

equivalently in this example the random effects) meta-analysis estimate of the overall

log odds ratio was larger than the clustered Woolf estimate (Table 70). The reduction

in the overall odds ratio is due to the different allocation of weight between the strata

in the standard fixed effect meta-analysis method and the clustered Woolf method

(Table 71). The clustered Woolf method, because of the extra spurious variation it

introduces, gives more weight to the smaller imprecise stratum estimates, all of which

happen to be smaller than —0.5, and so the overall estimate is decreased. This exam -

ple backs up the findings from the British family heart study example (Section 7.8)

regarding var(L) as defined by Donner and Kiar [130], since var(L) obtained using

a between-stratum estimate of var(Ô) produces a value which is smaller than that

obtained using the standard fixed effect meta-analysis method. Hence, when there

is homogeneous data, using the between-stratum estimate of var(â,) produces an es-
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Table 69: Data for a hypothetical example with 13 centres where the treatment effect

is large but where there is no heterogeneity

Centre	 Events/total number of patients Odds Ratio

number	 Treated	 Control

1	 25/100(25%)	 50/100(50%)	 0.500

2	 2/40(5%)	 5/50(10%)	 0.500

3	 60/250(24%)	 80/200(40%)	 0.600

4	 20/200(10%)	 45/200(22.5%)	 0.440

5	 6/50(12%)	 6/25(24%)	 0.500

6	 25/150(16.7%)	 40/150(26.7%)	 0.625

7	 55/500(11%)	 100/500(20%)	 0.550

8	 75/300(25%)	 150/400(37.5%)	 0.667

9	 2/50(4%)	 4/50(8%)	 0.500

10	 100/600(16.7%) 150/600(25%)	 0.667

11	 12/100(12%)	 25/100(25%)	 0.480

12	 14/200(7%)	 30/200(15%)	 0.467

13	 75/800(9.4%)	 75/500(15%)	 0.625
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timate of var(Ô,,) which is too small. However, it is a better estimate of var(L)

than that which would be obtained if the within-strata variance estimates were used

leading to var(L) being equal to 1/ w. This estimate would be too large, and

in this particular example would be far too large, taking the value 0.74 (Table 70).

Table 70: Comparison of Woolf type estimates of the overall odds ratio in the hypo-

thetical example and the diuretics trials example

Estimator	 Estimate of overall log odds ratio (Ô)

(variance)

_______________________ Hypothetical 	 Diuretics trials

standard var() =	 -0.52	 -0.40

(0.036)	 (0.072)

standard var(Ô) = 1/wi	-0.52	 -0.40

(0.004)	 (0.008)

clustered var() =	 -0.60	 -0.57

(0.002)	 (0.082)

clustered var() = 1/wj	 -0.60	 -0.57

(0.74)	 (1.308)

random effects	 -0.52	 -0.51

_________________________	 (0.004)	 (0.042)

standard estimate=...1 wã/E.1 w
clustered estimate=...1

The diuretics trial data (Section 1.3.1) (even though it is not of a paired cluster

randomised design) may be used as a second example, by considering each group to

be a cluster, to illustrate what occurs when there is both a large treatment effect and

a large amount of heterogeneity in the data. In this case, therefore, a trial represents

a stratum and a treatment group a cluster. Due to the large amount of heterogeneity
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Table 71: A comparison of the percentage weight allocated to each centre in the

random effects meta-analysis method and the paired cluster randomised method for

the hypothetical example and the diuretics trials example

Centre	 Percentage of total weight

number	 (w/.1 w) x 100

	

Hypothetical example	 Diuretics trials

Random effects Cluster Random effects Cluster

estimate (*)	 estimate	 estimate	 estimate

1	 5.3	 12.0	 10.7	 9.7

2	 0.6	 3.7	 11.9	 7.3

3	 11.0	 11.4	 10.2	 21.9

4	 5.1	 6.9	 7.9	 17.7

5	 1.1	 7.6	 12.1	 1.9

6	 5.4	 9.1	 17.0	 10.4

7	 13.1	 7.0	 11.8	 3.3

8	 16.3	 11.4	 4.5	 2.9

9	 0.5	 3.1	 13.9	 24.9

10	 21.0	 9.0

11	 2.9	 7.7

12	 3.7	 5.1

13	 14.0	 6.0

* Since the estimate of the between-study variance is 0 the random effects model

is the same as the fixed effect model in this example
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both the meta-analysis estimate of the between-stratum variance and the intracluster

correlation are greater than zero. The estimates of the overall log odds ratio and their

variances are different using the different methods. As for the previous example it may

be seen that the weights are allocated in different ways in the two different methods

(Table 71) with the clustered method appearing to allocate higher weights to the

trials with the largest event rates, that is the largest P,, rather than those with the

greatest precision. The clustered method produces a point estimate which is between

the fixed effect and the random effects estimates. The variance of Ô calculated as

proposed by Donner and Kiar [130] is considerably larger than the variance obtained

from the random effects model (Table 70). However, if 1/ w were to be used

instead, the variance would be far too large because of the large inflation in the value

of 3. This example shows that in the presence of a large amount of heterogeneity

and a large treatment effect the clustered Woolf method, even with the adjustment

to the var(L) of using s, may produce a variance for the overall estimate which is

too large (Table 70).

This effect of an underestimation of the variance when there is no hetero-

geneity but an overestimation when there is heterogeneity is due to the use of a

between-stratum estimate of var(Ôj. This appears to be an approximate way of

correcting for the bias in the estimate of p, since without this adjustment the vari-

ances using 1/ w would be far too large. This correction may be adequate

when there is a small treatment effect, as in the example from the British family

heart study (Section 6.3.3), but is obviously poor when a large treatment effect ex-

ists, irrespective of the amount of heterogeneity. The reason for the differences in the

variances of Ô using 2 compared to the individual v, is the difference in the values

that an average within-stratum variance and a between-stratum variance estimate

takes. When there is no heterogeneity a between-stratum estimate will be smaller

than the average within-stratum estimate. However, when there is heterogeneity, the

between-stratum estimate will tend to be large and will produce an estimate which is
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larger than the average within-stratum estimate (Table 72). It should be noted that

for the hypothetical example the mean variance is simply as oj=O.

Table 72: Comparison of the mean within-cluster estimate and the pooled estimate

of var(Ô)

Example	 Average within-study	 Pooled

variance (v + o)	 variance (s)

Hypothetical	 0.19793	 0.01912

Diuretics trials	 0.42505	 0.48354

7.10 Conclusion

For estimation of an overall treatment effect, meta-analysis methods applied to paired

cluster randomised designs have a clear advantage over the methods supposedly de-

signed specifically for such trials discussed in this chapter. It has been shown that the

estimation methods relying on the estimation of an intracluster correlation are biased

when a large treatment effect exists. The adjustment to the variance which is appar-

ently made to correct for the bias in is not founded on solid statistical theory and,

is in any case, unreliable when the treatment effect is large and there is considerable

heterogeneity. Hence, as was shown in the two examples of Section 7.9, conclusions

drawn from the analysis can be misleading. Under conditions of homogeneity, the

variances used by Donner and Kiar [130] will produce confidence intervals which are

too narrow and hence the possibility of obtaining a spurious significant result exists.

On the other hand, if heterogeneity is present, then the increased variance may lead

to a conservative interpretation of the findings. The random effects meta-analysis

method does not have the problem that the random variation is influenced by the

size of the treatment effect, because the treatment effect and the between-study vari-

ance are estimated separately. Hence, meta-analysis methods are an improvement on

355



the standard methods in the analysis of paired cluster randomised trials.

With respect to testing the null hypothesis H0 : 0 = 0, then depending on the

amount of heterogeneity present, different tests are more suitable than others under

different conditions. If homogeneity can be assumed, then the Mantel-Haenszel test

is optimal [38], while at the other extreme, if there is considerably larger between-

cluster than within-cluster variation, a simple unweighted t-test is adequate. Due to

the small amount of variation within each cluster such a case is effectively equivalent to

obtaining a single observation from each cluster. Between these two contrasting cases,

where there is some heterogeneity, a weighted procedure is perhaps most suitable,

since it takes account of both types of variation, which is what is required when

neither dominates. However, due to the bias in the estimate of p and the inadequacy

of the correction to the variance of the overall treatment effect using a between-cluster

estimate of uar(è), the tests will lack power when heterogeneity exists. Hence, a test

based on the random effects model of Section 2.2), and similar to that proposed by

Rosner, is probably more reliable for all situations and will reduce to the standard

fixed effect test under homogeneity.

Hence, overall for both testing and estimation, the use of meta-analysis tech-

niques in the analysis of paired cluster randomised trials provides a clear improvement

over the method currently proposed in the literature. There is a fundamental flaw

in the procedure for the estimation of the intracluster correlation. Although such

methods may be adequate in certain cases, they are in general unreliable and may

produce misleading results in many circumstances.
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8 Conclusions

The research outlined in this thesis has covered various different statistical issues

relating to meta-analysis in medical research, and has also shown how a meta-analysis

approach is useful in the analysis of multicentre trials and paired cluster randomised

trials. This final chapter contains a summary of the conclusions from each of the

previous chapters and brings some of the ideas together in a more general discussion

and also highlights the practical implications.

In Chapter 1 the two standard meta-analysis models were introduced, that is

the fixed effect and the random effects models, and the drawbacks of each of these ap-

proaches was highlighted. This served as a starting point for the development of much

of the research in the following four chapters. Chapter 2 focused on the random effects

model and introduced a likelihood approach to meta-analysis based on the marginal

likelihood of each trial. It is concluded that such an approach may be required in

practice, particularly in situations where the between-study variance is imprecisely

estimated and if changes in the between-study variance have an effect on the estimate

of the overall treatment effect. Sensitivity plots, described in Section 2.1, are useful

not only in their own right for the purpose of investigating the robustness of the con-

clusions drawn from the standard meta-analysis models to changes in 4 but also for

investigating whether a likelihood method may be required. It is necessary to carry

out such checks as the use of the likelihood model may lead to a more conservative

interpretation of the effectiveness of the treatment due to a wider confidence interval

for 9 being obtained. Unlike the standard random effects model, this likelihood model

also allows a confidence interval to be obtained for the between-study variance so that

the precision of this estimate may be summarised directly. In practice, ô was often

found to be imprecise, thus reinforcing the need for a sensitivity analysis.

This marginal likelihood approach was also compared with the Mantel-Haenszel-
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type likelihood approach of van Houwelingen et al. [45] which is based on the exact

distribution of each triafs 2x2 contingency table (Section 2.4). Although this full

likelihood model is a better representation of the data than the marginal likelihood,

and furthermore does not make the assumption about weights being known, the re.

suits from the two methods have, for the examples considered, been found to be

comparable. However, the Mantel-Haenszel-type method does have the advantage of

being able to deal with zero event rates and small frequencies (Section 2.5) unlike the

marginal likelihood method where empirical logits would be required in the presence

of small frequencies. On the other hand, the marginal likelihood method is more flex-

ible in that it can be used to analyse continuous as well as binary outcome measures.

Overall, in most situations where either method could be used, the two likelihood pro-

cedures will produce very similar results. Hence, in general the choice between the

methods may depend more on the practical concerns regarding the implementation

of the procedures (Section 2.8).

Empirical Bayes or fully Bayesian approaches offer alternative ways for con-

sidering the meta-analysis problem. Empirical Bayes estimates may be more useful

in practical terms than an estimate of the overall treatment effect when a range of

estimates that could be obtained is required to make clinical judgements about the

appropriateness of treatment. A fully Bayesian approach has the advantage that it

overcomes the need for having to make the controversial assumption that the trials

included in a meta-analysis are a random sample from a large population of trials. A

Bayesian approach, however, is considerably more computer intensive than either the

standard fixed effect or random effects approaches, or even the likelihood methods.

The Bayesian meta-analysis literature does provide discussion on ways of looking at

the robustness of the conclusions from the meta-analysis. Indeed, sensitivity analyses

and the checking of assumptions have been discussed more in the Bayesian than the

classical framework, but work in this thesis has shown ways in which the conclusions

may be checked for robustness and the modelling assumptions in a classical statistical
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approach.

Part of this work was described in Chapter 3 which set out to provide ways

in which to check the assumption of normality, an assumption necessary to produce

confidence intervals for both the fixed effect and random effects estimate of the overall

treatment effect. The use of q-q plots of the q1 and of the q components of Q were

proposed to check these assumptions. Furthermore, a test of the null hypothesis

qi N(1a, 1) using an Anderson-Darling statistic was found to be the best test of the

normality assumptions. It can test the gradient of the plot as well as the linearity, thus

enabling it to distinguish between a fixed effect and a random effects model on a fixed

effect plot as well as being able to detect non-normality. In general, consideration of

both plots and the results of the Anderson-Darling test for normality is adequate to

establish whether the data follow either of the standard normally distributed models.

However, if it has been established that a set of data does not follow either of the

standard normally distributed models, the question of how to proceed then arises.

Further research, which could build on that presented in Chapter 3, is required to

investigate whether the invalidity of the normal assumptions can affect the results of a

meta-analysis. This could take the form of an investigation into the robustness of the

results to deviations from the standard models using simulation methods such as those

used in Chapter 3. Alternatively, the results from a non-parametric approach, such as

that of van Houwelingen et al. [45J could be compared to those from standard methods

under various alternative models. Further investigation into the use of alternative

distributions for the random effects is also required.

Both plots and tests were found to be of limited use when the number of trials

in the meta-analysis was small, for example when k=9 in the diuretics trials data.

The q-q plots may still be useful, however, in identifying sources of heterogeneity

which can then be investigated, although the same information may also be derived

from a Gaibraith plot [661. In practice, a meta-analysis should always be accompanied
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by investigations of the modelling assumptions and sources of heterogeneity, as well

as by sensitivity analyses. Once heterogeneity has been identified work should be

undertaken to try to explain the reasons behind the observed variation in terms of, for

example, trial characteristics, population differences and geographic differences. By

identifying trial-specific characteristics which explain the variation in treatment effect

the analysis can be reduced to an analysis of homogeneous sets of data. Although

the explanation of heterogeneity may be a commendable aim in principle, however, it

can be difficult to accomplish satisfactorily in practice as exemplified by the analysis

of the British family heart study in Chapter 6. Furthermore, it should be borne

in mind that such investigations are always post-hoc and any resulting explanations

will usually have been motivated by the observation of the data themselves. Hence,

caution should be expressed in any conclusions drawn, particularly when there may

be several alternative but equally feasible explanations. The findings from these

investigations may be useful for motivating future research by identifying subgroups

of patients for whom the treatment may be more, or less, effective. Ideally factors

which are possible causes of heterogeneity should be identified prior to the actual

analysis and prior to observation of the data, although this is not always realistic

in practice. This is in line with the suggestion that a protocol should be drawn up

before a meta-analysis is carried out [61, in a similar way to a protocol for a clinical

trial, outlining how the meta-analysis is to proceed.

The choice between a fixed effect or a random effects approach, is often based

on the result of the test, using Q, of heterogeneity of the Ô 1 . However, it was shown

in Chapter 4 how the power of the test may be particularly low in certain conditions.

It was also shown that a test proposed as an improvement to Q [110] was found to

provide no substantial increase in power. Furthermore, the null distribution of this

alternative statistic remained unclear, and hence the test using Q was still regarded

as preferable. The power of the test for heterogeneity Q was found to be poor when

the total amount of information available in the meta-analysis 	 w was small, due
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to either k being small or the trial estimates being imprecise, that is having large v.

However, situations where extra care in the interpretation of the test result , required

arewhere there is an uneven distribution of the weight between trials. This is because

the power of the test was found to be particularly poor, for a given total amount of

information and a given amount of between-study variation, when one trial took most

of the weight and the other trials all produced very imprecise estimates of treatment

effect. Hence, investigation of heterogeneity should be considered, particularly in such

cases as that outlined above, even in the presence of a non-significant result for the

overall test of heterogeneity.

Chapter 5 served to illustrate, in the context of continuous outcome mea-

sures, that problems may be caused by the assumption made in both the standard

meta-analysis methods that the weights are known as opposed to estimated. It was

concluded that the variances of both fixed effect and random effects estimates of

overall treatment effect are incorrect when w are estimated. This may lead to a

false certainty in the conclusions drawn from the fixed effect method in that the

confidence interval obtained will be spuriously narrow. The confidence interval for

the random effects model tends to be spuriously large due to the overestimation of

the between-study variance. In practice, the effect will often be negligible, although

caution is required when all or some of the n are small. It may be better to use the

alternative methods for calculating the results which are based on the assumption

that ti)j is known and is equal to fw, that is the expectation of thj where f is a

correction factor for the estimation equal to (n - 1)/(n - 3), rather than equal to

simply w1 . In certain circumstances, that is when n1 are reasonably large the adjusted

approximate results presented in Chapter 5 offer improvements in the performance.

Further work is, however, required to refine the estimates to allow exactly rather than

approximately for the estimation of w, and also to investigate the effect of the esti-

mation of w on meta-analyses with binary outcome measures. However, this problem

may perhaps more usefully be investigated further by a comparison of the standard
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ineta-analysis results with those from the Mantel-Haenszel-type likelihood model of

van Houwelingen et a!. [45J.

It has been shown in this thesis how meta-analysis methods may be used to

analyse single clinical trials with multiple centres, thus allowing for the possibility

of variations in treatment effect across centres. Individually randomised trials may

obviously be analysed in such a way by considering each centre as a 'trial', but so

may paired cluster randomised trials as shown in Chapter 6 in relation to the British

family heart study. It has been shown how difficult it may be to understand the

reasons for any heterogeneity observed, particularly in multicentre trials where any

practical differences between centres are less obvious due to the fact that all centres

follow the same protocol. Hence, it may be concluded that in certain cases, such as

the British family heart study, the variation can reasonably be considered as random,

and a random effects model will provide the most satisfactory approach to analysis.

Analysing such trials as the British family heart study also raises the problem

of multiple outcome measures. This issue was briefly considered in relation to the

analysis of the British family heart study, in Section 6.5. A directional test of the null

hypothesis that each outcome in each trial is zero may be useful in certain circum-

stances (Section 6.5.3) as it produces a test of the overall impact of the treatment.

A generalised least squares model based on effect sizes (Section 6.5.2) may also be

of some use in homogeneous sets of data, particularly where different outcomes are

measured in different studies. However, further research is required on this topic to

provide satisfactory solutions by extending the procedure to cope with random effects

and different measures of treatment effect.

A random effects meta-analysis approach to the analysis of paired cluster ran-

domised trials is certainly to be recommended over other methods which have been

specifically designed for the analysis of such trials (Chapter 7). Approaches to both

testing (Sections 7.2 and 7.3) and estimation (Sections 7.6 and 7.7) using the concept
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of the intracluster correlation p (Section 7.1) were found to be biased in circum-

stances where a large treatment effect exists. This bias is due to the estimate of p

being confounded by the estimate of the treatment effect, and hence such procedures

may produce very misleading results. Although the corresponding tests are still valid

under the null hypothesis of no treatment effect, they will be of low power. In terms

of estimation, the confidence intervals for the estimate of the overall treatment effect

can be incorrect (Section 7.6). In homogeneous sets of data, heterogeneity may be

introduced due to the bias in and confidence intervals which are too wide may be ob-

tained, thus leading to the increased possibility of a misleading nonsignificant result.

The opposite effect occurs when heterogeneity is present in that the confidence inter-

val obtained is too narrow due to an overcorrection in the calculation of the variance

of the estimate of the overall treatment effect for the bias in . The random ef-

fects meta-analysis approach has no such problems as it estimates the between-centre

component of variation separately from the treatment effect. The generalisation of

the paired t-test proposed by Rosner (Section 7.3.3) is more reliable since it is not

based on the intracluster correlation. In fact, the model on which the test is based

is that of the marginal likelihood of Section 2.2, where the quadratic approximation

(Section 2.3.4) is made.

Meta-analysis methodology is useful for both combining information from dif-

ferent centres in a single trial as well as from different trials in a true meta-analysis. It

is likely that the need for meta-analyses will grow in the future, partly because smaller

treatment benefits will require detection, and also because carrying out single trials

which are large and powerful enough may not be practical. Development of computer

software for meta-analyses should not obscure the need for careful consideration in

every specific analysis as to which trials to include, and also whether the trials can

meaningfully be combined to produce an overall estimated treatment effect. Further-

more, an investigation of heterogeneity should always be included in any analysis. If

no feasible explanation of heterogeneity is possible then a random effects analysis may

363



be the best practical alternative when heterogeneity exists, certainly more appropri-

ate than a fixed effect estimate, since it does produce more appropriate confidence

intervals, providing the distributional assumptions are valid. However, standard re-

sults are best accompanied by a sensitivity analysis indicating how the conclusions

change as the between-study variance changes. Hence, meta-analyses cannot simply

be reduced to the following of a set formula, whereby an overall estimate is obtained

without cautionary investigations and discussion relevant to the individual case. Both

the fixed effect and the random effects models are not ideal, but they will, in gen-

eral, produce reliable results provided they are used in conjunction with appropriate

supporting investigations and interpreted with the required degree of caution.
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