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Abstract 

Abstract 

The assessment of quality of life as a primary outcome in cancer clinical trials is now almost 

universal. Such data are necessarily longitudinal and multidimensional, and are often severely 

unbalanced by missing values or early patient death. However, to date, their reporting in the 

applied literature has generally used simple descriptive summaries that ignore many of these 

complexities. Not only can these be misleading, but they generally do not allow firm 

conclusions to be drawn about a major endpoint. The aim of this thesis is to assess the practical 

application of recent developments in statistical methodology for the analysis of quality of life 

data collected using self assessment questionnaires within cancer clinical trials. Its emphasis 

is on the use of relatively simple and flexible tools that will allow more reliable and powerful 

inferences to be drawn from the data than is done at present. 

The principal statistical tools considered are random coefficient and marginal models. It 

is shown that these can be successfully used for the analysis of continuous, binary and ordinal 

responses. In particular, they offer a simple approach to the analysis of repeated multivariate 

outcomes and can be very easily extended to model the complex patterns of response that are 

often seen in following cancer treatment. 

In relation to the problem of censored quality of life as a result of patient death, analyses 

that attempt to combine the survival and quality of life endpoints in a single variable are 

contrasted with those that consider the two endpoints as a multivariate problem. It is shown 

how this latter model can provide a summary of the quality of life response conditional on 
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Abstract 

patient survival that with further work should have great application to such quality of life data. 

Finally, the problem of intermittent missing data is reviewed. The implications of missing 

data for some of the analyses presented in the thesis are assessed, and two models that attempt 

to determine the nature of intermittent missing data are developed. It is concluded that the 

problem of non-ignorable intermittent missing data presents a very challenging area of further 

research. 
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Abbreviations 

The following abbreviations are used throughout the text of the thesis. 

Abbreviation 

ALR 

ARx 

CI 

cov 

CRC 

CRC NSCLC study 

CRC HAP trial 

E-M algorithm 

FM 

FUDR 

F2 

GEE 

Gy 

HAD scale 
HAI 

K-M 

log lh 

MAR 

MCAR 

ML 

MRC 

MRC LU07 study 

MQL 

NMAR 

Definition 

alternating logistic regression 

auto-regressive of order x 

confidence interval 

covariance 

Cancer Research Campaign 

CRC non small cell lung cancer study 

CRC Hepatic artery pump trial 

estimation-maximisation algorithm 

multiple fraction radiotherapy (MRC LU07 study) 

fluro-deoxyuridine 

two fraction radiotherapy (MRC LU07 study) 

generalised estimating equation 
Gray (unit of radiation) 
Hospital Anxiety and Depression scale 

hepatic artery implant (CRC HAP trial) 

Kaplan-Meier 

log likelihood 

missing at random 

missing completely at random 

maximum likelihood 

Medical Research Council 

MRC non small cell lung cancer study 

marginal quasi-likelihood 

not missing at random 
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The following general notation is used consistently throughout the thesis. Any additional 

notation required, this is explained in more detail in the relevant section of work. 

Definition Symbol Dimension 

Indices 

Subject 

Measurement occasion (fixed for all subjects) 

Measurement occasion (different across subjects) t 1,..., mi 
Quality of life dimension I 1,..., L 

Ordinal response categories k 1,..., K 

Variables 

Response variable subject i at fixed occasion j 

Response variable subject i at time t 

Response vector for subject i over fixed occasions j=1,..., m 

Response vector for subject i over variable occasions t= 1,..., m, 

Response vector for all subjects over fixed occasions 

Yp 

Yu 

yr 
yj 

Y 

real 

real 

lxm 

lxmr 

1 xnm 

1 xM 
n 

(M=ý mr) 
r=i 

mxp 

Response vector for all subjects over variable occasions y 

Matrix of p explanatory variables for subject i xi 
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Introduction 

1 Introduction 

The use of quality of life assessment in clinical trials has become increasingly common and 

'quality of life' is now included as a primary endpoint in the protocol of many clinical trials. 

Based on a search of the literature and previous work by Fayers and Jones (1983), Schumacher 

et al. (1991) reported on the steadily increasing number of articles which use the term 'quality 

of life' in the title, or as a keyword, from 1982 through to 1989. Since 1989, this trend has 

continued and is highlighted by the number of special conferences and symposia that have 

recently taken place, as well as the introduction of the quarterly journal 'Quality of Life 

Research' in 1992. 

This increase in use illustrates a realisation that the quality, as well as the quantity, of 

survival is important in the evaluation of treatment efficacy, and is particularly relevant in 

cancer clinical trials because of the often very aggressive and invasive treatment regimens that 

patients face. Moreover, there remain many cancers - for example, non small cell bronchial and 

gastrointestinal - for which no decisive chemotherapeutic treatment has been found. Therefore, 

palliation is the primary concern of treatment in these areas, and alongside symptomatic relief, 

patient quality of life is the main outcome of interest. 

The definition of the term `quality of life' was up until recently vague and was applied in 

many different contexts including the level of patient side-effects or toxicity, the degree of their 

symptoms, as well as their overall well-being. A consensus has now been reached that the 

outcome of interest is health related quality of life, which should be considered as 
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1. multidimensional. comprising important elements of a patient's emotional, social 

and physical well-being; 

2. subjective. relying primarily on the patient's own judgements; and 

3. non-static and subject to changes over a patient's lifetime. " 

(Olschewski et al., 1992). It is also suggested that, dependant on the nature of disease and 

treatment regimens under research, it may be appropriate to include symptoms and side effects 

of treatments - such as vomiting and pain - as well as patient satisfaction with the treatment 

received within a quality of life assessment (Hayfield et al., 1992, Girling et al., 1994). 

If quality of life is best assessed by the patient, ideally this will be done by interview or 

present state examination (PSE) (Fallowfield, 1990). However, time constraints on both 

clinician and patients, as well as cost, mean that in clinical trials this is rarely feasible. The 

solution has been self assessment questionnaires which can be easily completed by the patient 

with or without supervision. 

There exist a large number of such quality of life measuring instruments. Some of these are 

classed as generic and question general aspects of quality of life, whereas others are more 

disease specific and relate to particular symptoms or problems posed by the disease in question. 

For example, the Hospital Anxiety and Depression (HAD) scale (Zigmond and Snaith, 1983) 

is a generic instrument, whereas the Rotterdam Symptom Checklist (RSCL) (de Haes et al., 

1990) is disease specific and deals primarily with items relating to issues concerned with the 

treatment of cancer. 

The questionnaires are comprised of a number of questions or items which address different 

aspects or dimensions of patient quality of life. Responses to these items are either binary 

(yes/no) or on a given ordinal scale. As an example, a typical item relating to patient anxiety 
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Box 1.1 
Typical item from the HAD scale 

"I get sudden feelings of panic 

(3) Very often (2) Quite often (1) Not very often (0) Not at all" 

from the HAD scale is given in box 1.1. 

Using factor analysis or subjective reasoning by the questionnaire designers, many of these 

instruments then allow weighted or simple summations of these individual items to give 

summary scores for overall, or dimension specific, quality of life. For example, the HAD scale 

consists of fourteen items all measured on a four point ordinal. scale. By summing the ratings 

of seven of these items, a summary depression score is obtained. The remaining seven items 

can be similarly aggregated to give an anxiety score. In contrast, the Sickness Impact Profile 

(SIP) (Bergner et al., 1981) involves weighted summaries of binary responses for 136 items 

relating to 12 dimensions of patient quality of life. For some instruments, recommended 

boundaries for a `normal score' in each dimension are also available. For example, with the 

anxiety and depression scores on the HAD scale, a score s7 is deemed to be normal, a score 

between 8 and 10 suggests a possible case of clinical anxiety or depression, whereas a score 

z 11 is considered to identify definite cases. 

All of the instruments used in medical research have undergone assessment of validity, 

reliability and responsiveness. For a particular instrument, this means that: (i) it measures what 

it was designed to measure (validity); (ii) on repeated use on the same subject under identical 

conditions it produces the same result (reliability); and (iii) it will be able to exhibit changes 

in underlying response that do occur (responsiveness). Rather than developing new 
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instruments, it has been advocated that in study design, use should be made of existing 

instruments where possible. This not only the saves time and resources involved in reinventing 

(and validating) tools which already exist, but it should make it easier to compare quality of life 

across studies (Aaronsen, 1989). As the focus of this work is on the analysis of quality of life 

data, the evaluation and validation of the quality of life measurement instruments which have 

been used for data collection are not considered further. Details of validation techniques have 

been given by Bowling (1983), Bergner et al. (1981), Chinn and Burney (1987) and Guyatt et 

al. (1991). Reviews of the practical use of available instruments have been done by Fallowfield 

(1990), Bowling (1983) and, on behalf of the MRC cancer therapy committee working party 

on quality of life, by Maguire and Selby (1989). 

A comprehensive review of the analysis of quality of life data and associated problems was 

given by Cox et al. (1992). This review and subsequent discussion, examined the important 

issues which need to be addressed for analysis of quality of life data. With the focus on the 

practical application of recent developments in statistical methodology, the work of this thesis 

will address four particular areas of concern raised by these authors. Namely, the analysis of 

repeated measurement data, multiple dimensionality, patient dropout due to death, and missing 

data. Each successive chapter will tackle a distinct problem and hence the relevant literature 

is reviewed therein. The objective of the thesis is to provide a detailed account of the practical 

use and extension of new statistical methods for the analysis of self assessed quality of life data, 

for cancer clinical trials in particular. For this aim, the work is presented in terms of examples 

using quality of life data collected in three recent cancer clinical trials. Although concise 

details of each trial are given in Appendix 1, a brief outline of each is included here. 

Descriptions of the quality of life measuring instruments which were used in each study are 

given in Appendix 2. 
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The first study is the Cancer Research Campaign, Clinical Trials Centre, non-small cell lung 

cancer trial (CRC NSCLC). This is a randomised trial designed to compare the results of 

palliative radiotherapy in patients with previously untreated non-small cell lung cancer. In the 

first randomised group (denoted split course) patients were given an initial intensive dose of 

radiotherapy. They were then re-assessed at 4 weeks. If they were considered well enough, 

they underwent a second randomisation which determined whether a second intensive dose was 

administered. Patients in the second randomised group (denoted continuous course) received 

the standard 4 week continuous radiotherapy course. Quality of life was measured using the 

HAD scale and the RSCL. This was done before the start of treatment and then weekly for an 

eight week period. 82 patients were entered into the study, 42 to receive the continuous 4 week 

course and 40 the split course. Within the examples used in this thesis, the added complication 

introduced by the second randomisation in the split course group will be ignored, and the data 

analysed according to the two main randomisation groups. No difference in patient survival 

between these two groups was seen. 

The second study (CRC HAP) also comes from the Cancer Research Campaign, Clinical 

Trials Centre, in collaboration with the Charing Cross and Westminster Medical School. The 

objectives of the study were to assess the survival, quality of life and tumour response in 

patients with colorectal hepatic metastases who were treated by intra-hepatic arterial fluro- 

deoxyuridine (FUDR) infusion (denoted HAI) compared with that in patients receiving the 

conventional symptomatic treatment (denoted control). Quality of life in the study was 

measured prior to randomisation, and monthly at the same time as clinical follow-up. Three 

measurement instruments were used in the study: the SIP, the RSCL, and the HAD scale. Only 

the data from the RSCL and the HAD scale are used in this work. 100 patients were entered and 

randomised into the study, 51 to the HAI group and 49 to the control group. A survival 

advantage for the HAI group with no apparent difference in quality of life was reported by the 
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study investigators (Allen-Mersh et al., 1994). 

The final data set comes from the MRC lung cancer working party (MRC LU07). Once 

again it is concerned with the palliative care of patients with non-small cell lung cancer. The 

aim of this study was to assess whether radiotherapy given in two fractions one week apart 

(denoted F2) gave equally good palliation as a conventional multiple fraction course (denoted 

FM). Self assessed quality of life in the study was measured daily using a diary card (Fayers 

and Jones, 1983) from the start of treatment and for six months thereafter. 369 patients were 

entered and randomised into the study, 184 to receive the shorter course (F2) and 185 to receive 

the conventional treatment (FM). The results of the study (Bleehan et al., 1991) showed no 

evidence of a survival difference between the two treatment arms. Descriptive analyses of 

quality of life data highlighted transient dysphagia following treatment in both groups, but no 

evidence of a palliative gain of the conventional longer dose to the shorter dose was reported. 

Further details of the quality of life in each of these studies is given in Chapter 2 using 

descriptive analyses that are typical of those which have generally been used in the reporting 

of quality of life in the literature. The use of such descriptive techniques is reviewed in the 

chapter, along with a discussion of their relative merits in addressing the four issues of concern 

outlined by Cox et al. (1992). 

Chapters 3,4 and 5 concentrate on the analysis of continuous, binary and ordinal repeated 

measurement data respectively. In Chapter 3, the use of random coefficient (hierarchical) 

models (Goldstein, 1986, Goldstein, 1995, Longford, 1995) for the analysis of unbalanced 

univariate repeated continuous outcomes is demonstrated. This is then extended for the 

analysis of multidimensional outcomes. These analyses use the overall summary scores from 

the HAD scale and RSCL in the CRC NSCLC study. In Chapter 4 random coefficient and 

32 



Introduction 

marginal models, in the form of generalised estimating equations (Liang and Zeger, 1986), are 

used for the analysis of binary repeated measurement data for the univariate case. Once again, 

this work is then extended to the multivariate case. Also covered in this chapter, is the analysis 

of complex patterns of response which are often seen in quality of life data in cancer trials as 

a result of the invasive nature of the treatment (Girling et al., 1994). The data used in the 

chapter come from a dichotomisation of the ordinal responses obtained from individual items 

of the RSCL in the CRC NSCLC study, and the daily diary card in the MRC LU07 study. In 

Chapter 5, this work is extended further for the analysis of repeated ordinal data (Ware et al., 

1988, Zeger, 1988). Once again this work uses the responses obtained from individual items 

of the RSCL in the CRC NSCLC study. 

In Chapter 6, the problem of patient dropout due to death is addressed. As a result of the 

severity of patient disease in cancer clinical trials, patient death during the study is often 

inevitable. This makes interpretation of the available quality of life data difficult, as well as 

being a possible source of bias. In this chapter, statistical methods for the analysis of 

longitudinal data subject to dropout (Diggle and Kenward, 1994, Little, 1995, Wu and Carroll, 

1988, Schlucter, 1992) are reviewed, and their relevance in solving the problems faced in the 

analysis of quality of life data are assessed. As an alternative approach to the same problem, 

analyses which combine quality of life and survival to a single endpoint are also reviewed. The 

appropriateness of such quality adjusted survival analyses have been a source of conflict in the 

literature but have been rarely used in practice for the analysis of self assessed quality of life 

data (Cox et at., 1992, Schumacher et al., 1991). The data used for this work are that of the 

CRC HAP trial. As full survival and quality of life data are now available for this study, the 

problems faced as a result of patient death during follow-up are easier to combat. In order to 

recreate the more realistic scenario often faced in the light of patient death - that is, individuals 

for whom survival is censored - this full data set has been restricted to contain only information 
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on patient survival and quality of life available on June 1st 1993. Patients still alive at this time 

were considered censored and any quality of life data they provided beyond this date was 

ignored. When used, this data set is referred to as the 'restricted' data, whereas the complete 

data set is referred to as the `full' data. 

The repeated assessment of quality of life data over a long period of time, in a group of 

patients who often become too ill to complete questionnaires, means that quality of life data is 

often subject to large amounts of missing responses. For example, Hurny eta!. (1992) reported 

compliance rates varying between 37% and 58% at each measurement occasion, and reports on 

behalf of the MRC lung cancer working party of studies gave daily compliance rates of about 

70% (MRC lung cancer working party, 1989,1991 a, 1991b, 1992). In the work presented in 

Chapters 3 to 6, it is assumed that the problem of missing data can be ignored, and the 

occurrence of missing data considered only as an issue which generates unbalanced data. It has 

been well documented in the literature however, that the bias implications of missing data may 

not be ignorable and will depend on the underlying reasons for data being missing (Rubin, 

1976, Laird, 1988). In Chapter 7, the issues raised by the assumption of ignorable missing data 

made in Chapters 3 to 6 are formally addressed using data from the CRC NSCLC study. 

Each chapter is concluded with a summary of its main results and a discussion of the issues 

raised. Finally, in Chapter 8, the implications of the work as a whole are considered in the 

context of issues that may be useful for further research. 

It should be noted that the emphasis throughout the thesis is on the practical application and 

interpretation of statistical methodology for the analysis of quality of life data, rather than the 

future treatment implications of the quality of life results presented in each example. These 

examples should therefore be seen as a demonstration tool, as opposed to a means of drawing 
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conclusions for the purpose of directing the treatment of patients. This is particularly important 

in the case of the CRC NSCLC study for which the precise treatment schedules have not been 

considered, and also for the CRC HAP trial which is presented in an incomplete state. It is also 

recognised that the small sample size and extent of missing data in the CRC NSCLC study, 

mean that these data do not justify the depth of analysis which are presented here. 

All data analyses presented use MLn (Rasbash and Woodhouse, 1995) and S-Plus statistical 

software (Becker et al., 1988). OSWALD (Smith and Diggle, 1994), an additional library of 

S-Plus functions for the analysis of longitudinal data is also used. Any further statistical 

programming that is required for data analysis is presented in Appendix 3. 
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2 The Exploratory Data Analysis of Quality of Life Data 

2.1 Introduction 

Although most of the work in this thesis concentrates on more formal model based analyses 

of quality of life data, the multidimensional, as well as longitudinal, nature of quality of life 

data means exploratory data analysis is an important stage of the analysis process. In fact, a 

large proportion of reported studies in quality of life research have relied solely on such 

analyses. Anderson et al. (1993) plotted median quality of life scores over time. Reports on 

behalf of the MRC lung cancer working party (1992,1993b) gave summaries of the number of 

patient days spent with improved quality of life compared with baseline and plotted the 

proportion of patients over time recording symptoms of a particular grade or above. 

Fallowfield (1986) and MRC lung cancer working party (1991b) reported quality of life data 

results similarly. The primary aim of the chapter is to review these and other approaches which 

have advocated for the exploratory data analysis of continuous, binary and ordinal quality of 

life data. This is done with practical examples using data from the three studies outlined in 

Chapter 1. The chapter's secondary aim is to give a clear description of many aspects of these 

data which are presented in the more formal statistical analyses developed in subsequent 

chapters. 

The chapter is structured to discuss exploratory data analysis for repeated continuous 

outcomes in Section 2.2 and repeated categorical outcomes in Section 2.3. The presence of 

missing data and patient death during follow-up are major issues for the analysis of quality of 

life data. In Section 2.4, a number of approaches for the informal examination of each are 
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reviewed as means to determine their implications for inference. The advantages and 

disadvantages of the different types of display are discussed within the relevant sections with 

a general discussion highlighting areas of particular concern given in the final section of the 

chapter. 

2.2 Repeated continuous data 

This section of work examines different approaches for exploratory data analysis for quality 

of life responses that can be considered as continuous - that is the validated summary scores 

which are generally obtained by summing individual item responses on standard quality of life 

measuring instruments. Although these scores may only take some integer value within a 

limited range - for example, the summary HAD scores take integer values within the range 0 

to 21 - assuming the scores to be continuous is the approach generally taken in the literature and 

is probably the most accessible solution for practical analysis. The work is divided into four 

areas of exploratory data analysis: individual patient profiles, summary statistics, population 

average profiles over time and associations across dimensions. 

2.2.1 Individual patient profiles 

Although rarely reported, an important first step in exploratory data analysis is the 

examination of individual patient profiles (Diggle et al., 1994). These not only allow an 

informal examination of the consistency of the response across patients, but can help highlight 

errata and outlying individuals in the data, as well as patterns of missing responses during the 

follow-up period. Further, if it is feasible to display more than one dimension, an informal 

examination of the relationship between dimensions is then also possible. 

The obvious problem with individual profiles is that the large number of patients in a study 
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Figure 2.1: Random sample of individual patient profiles of HAD anxiety and depression scores for the 
CRC NSCLC trial. The scores are plotted over time from baseline (0) through the eight week follow-up: 
(a) split course radiotherapy; (b) continuous course radiotherapy. Discontinuities in the connecting line 
indicate missing responses. The timing of radiotherapy for each patient is shown at the top of the figure. 
Anxiety responses: ; depression responses: --------. 

will often make it impractical to display concisely the behaviour of all patients in a single study 

and random noise within individuals makes overall patterns difficult to determine. A simple 

solution is to focus on a simple random sample of the individuals with these again plotted 

separately or overlayed over a scatter plot of all the data. Alternatively, with moderately sized 
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studies, if the scores can be sensibly categorised - for example, with the use of `normal' scores - 

a lexis diagram can be a useful way of displaying large amounts of data in a very concise way. 

Such ideas are demonstrated in figures 2.1,2.2 and 2.3. Figure 2.1 shows the anxiety and 

depression scores over time for a random sample of subjects in the CRC NSCLC study. For 

clarity, subjects who provided at least four quality of life responses over the eight week follow- 

up were selected. The timing of radiotherapy treatment is marked on the figure to make it 

possible to identify any obvious trends in patient responses as an immediate result of treatment 

as advocated by the MRC lung cancer working party (1991 a). 

These profiles give a good overview of the data and the typical behaviour of patient scores 

during the follow-up period. They clearly highlight the differences in patient experience both 

in terms of the behaviour over time and in the underlying level. In the sample shown, they also 

show some possible relationship between the anxiety and depression responses over time. 

(a) 

012345678 
Weeks since randomfselbn 

(b) 

01 234567 
Weeks since randoetbn 

8 

Figure 2.2: HAD anxiety scores over time from baseline (0) through the eight week follow-up for 

patients in the CRC NSCLC study with random profiles of a selection of patients overlaid: (a) split 

course radiotherapy; (b) continuous course radiotherapy. 
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However, only viewing a small sample of the subjects in the data set it is unclear whether the 

patterns are consistent throughout. In particular, the sample displayed here is very selective 

as it relied on patients having at least four responses. 

In figure 2.2, the anxiety scores for all individuals are plotted against time with the profiles 

highlighted for the same individuals shown in figure 2.1. Since the scores are not strictly 

continuous and can take a limited number of values overall, there will naturally be some 

repetition of the same score by different individuals. To avoid scores being superimposed when 

this occurs, the responses in figure 2.2 have been `jittered' - that is, a small degree of random 

noise has been added to observed measurement occasion and score. 

The problem with the figure is that with the exception of the patients whose observations 

have been connected, it is impossible to see patterns of individual profiles, and even then, if 

the connected profiles are subject to missing data, the overall profile is not clear. It does, 

however, allow the extent of the variation in the data to be assessed, although it is not clear 

whether this derives from variation between or within subjects. 

In figure 2.3, the RSCL physical responses for all subjects in the CRC NSCLC study are 

plotted in a lexis diagram. The data are reclassified into 'normal' and 'abnormal' scores 

according to the RSCL guidelines (de Haes et al., 1990). Normal responses are shown as solid 

lines, abnormal scores (20 units or more) by a dashed line. Discontinuities in the lines 

represent missing responses. An asterix at the end of the patient response line denotes the time 

of death for that patient to the nearest week of follow-up. Patients are ordered from top to 

bottom by date of entry into the study and again the timing of radiotherapy is shown at the top 

of the figure. 
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(a) 
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Figure 2.3: Lexis diagrams of patient physical quality of life profiles over time (from baseline 0) in 

terms of the RSCL normal score classifications: (a) split course radiotherapy; (b) continuous course 
radiotherapy. Normal scores: ; abnormal scores: --------; patient death: *. 

In this example, the figure highlights the degree of missing baseline responses for patients 

on the continuous course radiotherapy who were recruited in the middle of the study (figure 

2.3(b)). It also highlights missing data prior to death for each of three patients who died during 

the course of quality of life follow-up. The prevalence of abnormal physical score seems 

similar between the two treatment groups, and no particular patterns over time are revealed. 

On the whole, although it is impossible to obtain clear inferences from any plots of 

individual profiles over time, they can highlight consistencies (and inconsistencies) in patterns 

over time in terms of the underlying level of response, the occurrence of missing data, and how 

this relates to previous quality of life responses or patient death. In addition, they allow 

examination of the total variability of the data and, with treatment schedules clearly shown in 
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the figures, the immediate effects of treatment on patient quality of life can also be highlighted. 

2.2.2 Individual patient summaries 

Since longitudinal data has repeated assessments on the same subject, the total variability 

of the data can be partitioned into that which is derived between subjects and that which derives 

within, that is, differences in the underlying responses between subjects and the variability of 

individual responses around this underlying response for a particular subject. Although 

individual patient profiles allow some examination of the overall variation in the data, it is 

generally difficult to determine how this variation partitions into that between and within 

subjects. Such information is important however as it indicates whether subjects tend to be 

consistent in their underlying responses or not, which then has substantial implications for the 

generalisation of conclusions to be later drawn from an analysis. The examination of individual 

patient summaries during exploratory data analysis is therefore important. 

Such analyses have been advocated by Matthews et al. (1990) not only for exploratory data 

analysis, but for formal statistical analysis of longitudinal data. Here they are presented only 

for descriptive purposes. This is because the unbalanced nature of quality of life data 

somewhat complicates their use for formal analysis (Matthews, 1993). 

For continuous data, an often reasonable summary of a patients response is an overall mean, 

or a fitted regression line over time. In figure 2.4, separate regression lines fitted for each 

subject over time are shown for the HAD anxiety responses in weeks 1-8 from the CRC NSCLC 

study. These are plotted for each treatment group separately. Also shown on the figure are the 

distributions of the fitted intercepts and slopes for the two patient groups. 

The figure shows an underlying fall in the level of anxiety over the period which appears 
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Figure 2.4: Subject specific regression analyses for HAD anxiety scores from the CRC NSCLC study: 
(a) split course radiotherapy; (b) continuous course radiotherapy. Distribution of subject specific 
intercept (c) split course; (d) continuous course. Distribution of subjects specific slopes (e) split 
course; (f) continuous course. 

more consistent across patient in the split course than for those on the continuous course. In 

contrast, fitted responses for the underlying level of response at one week seem more consistent 

between subjects in the continuous course group. A number of obvious outliers are seen in the 

figures. In particular, one subject in the split course showed a marked increase in their 

response over time, and one on the continuous course showed a marked decrease. Examination 
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Figure 2.5: Kaplan-Meier representation of the time to abnormal physical quality of life or death in 
the CRC HAP trial. HAI: ; control: --------; censored observations: +. 

of the data for these individuals showed that they had only three and two responses 

respectively. 

Matthews et al. (1990) discuss alternative summary statistics for continuous data. One 

which may be of scientific interest for quality of life data analysis, is the time to an event of 

interest. An example which is shown in figure 2.5 is the time to the first occurrence of 

`abnormal' quality of life. Here, the RSCL `normal' score classification has been used to 

determine the time to the first occurrence of abnormal quality of life or death for the CRC HAP 

trial. Because some patients may be censored, this is presented using a Kaplan-Meier survival 

curve. In this example, no difference between the two groups is observed. Unfortunately, this 

event definition makes it is impossible to separate the quality of life and survival experience 

of patients and may therefore be best restricted to situations where patient quality of life is 

expected to deteriorate progressively, and in cases with a short follow-up period, so that patient 
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death occurs rarely during the period of quality of life assessment. 

2.2.3 Summaries over time 

Having examined the variation of responses across subjects, the most obvious method of 

summarizing a continuous response over time is to plot patient group mean scores at each 

measurement occasion against time. For an indication of the precision of the mean, confidence 

intervals can be displayed, calculated with either a specified confidence level at each time point 

or a more conservative overall confidence level for the period as a whole using a Bonferroni 

correction (Armitage and Berry, 1987). Using both of these intervals will give limits for the 

range of confidence, with the pointwise intervals being too narrow and the Bonferroni intervals 

being too wide as they assume that all time points are independent and therefore over adjust. 

An example is shown in figure 2.6 where the mean HAD anxiety score at each weekly 

measurement occasion in the CRC NSCLC study is plotted against time by treatment group. 

Both pointwise and Bonferroni 95% confidence intervals are shown on the figure given by the 

inner and outer horizontal bars respectively. Also shown is the number of patients contributing 

to the estimated mean at each time point. 

In this case the figure highlights a slight fall in the mean anxiety score over the period in 

both treatment groups. The mean response for the patients on the continuous course of 

radiotherapy is also shown to be consistently lower than that for those treated on the split 

course although all confidence intervals throughout the period overlap. 

A problem with displaying data in this way is the tendency for over interpretation of 

confidence intervals which fail to recognise that the data derive from repeated assessments of 

the same individuals. Further, in studies where quality of life follow-up is long relative to the 
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Figure 2.6: Mean anxiety scores over time from baseline (0) through the eight week follow-up for 

the CRC NSCLC trial with pointwise and overall 95% confidence intervals given by the inner and 
outer horizontal bars respectively. Split course radiotherapy: ; continuous course 
radiotherapy: --------. 

expected patient survival, patient attrition due to death makes the figure difficult to interpret, 

particularly in terms of the overall trend. This problem has been addressed by several authors 

(Stephens et al., 1992, Hopwood et al., 1994) and is discussed in more detail in Section 2.4. 

A further problem with the presentation of group mean quality of life scores is the lack of 

an intuitive interpretation of the scores which makes it difficult to convey the meaning of 

results to people with no knowledge of the measurement instrument used, and difficulties in 

comparing results across studies (Fayers and Jones, 1983, Cox et al., 1992). Cox et al. (1992) 

suggest that a solution is to present results on a transformed scale representing the "percentage 

out of the maximum" for the instrument. Although such transformations may have more 

intuitive appeal than the raw scores, comparisons across studies may still not be possible across 

studies using different measurement instruments as the sensitivity of different instruments to 

quality of life changes might vary greatly. 
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A representation which may improve an analysis for easier comparison across studies is to 

present results in terms of the instrument defined `normal' scores which, it is hoped, would be 

more consistent in their classification of responses. The use of summaries of `normal' scores 

over time is exemplified in figure 2.7 for the CRC NSCLC RSCL physical data previously 

shown in figure 2.3. In the figure, the proportion of patients recording `abnormal' scores at 

each follow-up is plotted over time. Again the numbers of patients contributing data at each 

time point are given. In the example presented a slight decrease in the quality of life response 

over time is seen. There is however an indication of a discrepancy between the proportion of 

patients with `abnormal' scores in the two groups at baseline. This may be related to the excess 

of missing data at baseline in the continuous course which was shown in figure 2.3, and 

highlights the importance of profiles of individual patient data. 

For the examples in figures 2.6 and 2.7, quality of life was measured at very short intervals 
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Figure 2.7: Proportion of patients in the CRC NSCLC trial giving 'normal' scores for the RSCL 

physical dimension plotted over time from baseline (0) and throughout the eight week follow-up 

where normal scores are classified as responses greater than 20. Split course radiotherapy: --; 
continuous course radiotherapy: --------. 
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which meant that the exact timing of measurement was as planned in the study protocol. When 

assessments are less frequent - for example, monthly - time constraints on a clinician or patients 

being unable to attend follow-up appointments, typically the actual timing of follow-up will not 

always be as planned. Summaries of mean response over time then become more difficult as 

there are no longer distinct time points at which the required means can be calculated. The 

most obvious solution is to group follow-up times, for example, to the nearest month. This has 

been done in figure 2.8 which shows the mean RSCL physical quality of life scores over time 

for the restricted data set for HAP trial. It shows very little difference between the pump and 

the control groups over the first year of follow-up. Beyond the first year, although some 

difference seems apparent, examination of the number of patients contributing data stresses the 

problem of falling patient numbers which make these apparent differences difficult to interpret. 

Missing data and patient death during follow-up can have serious implications for the 

interpretation of these mean summaries. It is again therefore very important that patient 
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Figure 2.8: Mean RSCL physical scores over time from baseline (0) for two years follow-up for the 
restricted HAP trial data. Follow-up is grouped to the nearest month. HAI: ; control: --------. 
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numbers are given on a figure. 

An alternative to grouping data together in fixed time points, is a kernel smoother (Hastie 

and Tibsharani, 1990). The basic principle of kernel smoothing is to obtain a smooth 

representation of the data with time by grouping data within a `moving window' of a given 

width. For each successive window, some summary of all the data points within the window 

is calculated. These summaries are then joined over time. The wider the width of the window, 

the smoother the resulting summary over time will be. For example, a lowess kernel smoother 

(Cleveland, 1979) is used in figure 2.9 again for the restricted data from the CRC HAP data. 

A lowess smoother is a particular kernal smoother which is insensitive to outliers. Within each 

moving window, a weighted least squares regression line is fitted with weights determined by 

the distance of each point from the centre of the window. The residual of each observation 

from this fitted line is then calculated, outlying observations are down weighted and the line 

re-fitted and the process repeated a number of times. The value of the lowess curve for each 

window is then simply the predicted value for the line at the centre of the window. Figure 2.9 

shows little difference between the HAI and control groups, although the response of the 

control group is shown to lie consistently below that of the HAI group for most of the follow-up 

period. Although for the control group, the line does begin an upward turn towards the end of 

the follow-up period it is much less sensitive to the outlying values observed for this group at 

the end of follow-up than the profile given by simply grouping data together as in figure 2.8. 

As it is now impossible to give the precise number of subjects contributing data at each time 

point, the raw data is shown on this figure as an indication of the amount of available data. This 

clearly shows the depletion of data towards the end of follow-up. Full details of lowess and 

other kernal smoothers are given in Hastie and Tibsharani (1990). 

Using mean profiles over time is perhaps the most important part of exploratory analysis for 
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Figure 2.9: RSCL physical scores for the restricted data taken from the CRC HAP trial: HAI: "; 
control: +. The underlying response is highlighted using a lowess kernel smoother: HAI: 

control: --------. 

longitudinal quality of life data as it generally addresses the primary questions of interest in the 

data - the difference between patient groups and the behaviour of response over time. Because 

of problems of missing data, irregularly spaced follow-up assessments and patient attrition due 

to death, it is important that either patient numbers are given within a figure, or the overall 

profiles are overlayed on the raw data. In addition, as measures of confidence and the profiles 

themselves ignore the dependency of observations within the data, such profiles should not be 

over interpreted for formal analysis. 

2.2.4 Associations between dimensions 

Although many different dimensions are measured as part of a quality of life assessment, 

an aspect of the data which has generally not been reported in the literature is the correlation 

(or association) between responses in the different dimensions. Since the data are longitudinal 
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and the total variation can be partitioned into that between and that within subjects, the 

associations across dimensions need also to be partitioned in the same way. That is, the 

correlation between dimensions between subjects, and the correlation between dimensions 

within subjects need to be evaluated separately. 

When data are balanced, the most simple estimate of the association between subjects is 

obtained by calculating the subject specific mean scores for each dimension in turn over the 

follow-up period and then to examine the associations across dimensions between these subject 

specific means. This investigates whether subjects who tend to have high scores on average in 

one dimension tend also to have high scores in other dimensions. This is shown in a scatter plot 

matrix in figure 2.10 for all four quality of life dimensions of quality of life measured in the 

CRC NSCLC study. It shows a high positive association between subject specific means in the 
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Figure 2.10: Scatter plot matrix of the subject specific means over time for each of the four quality 

of life dimensions measured in the CRC NSCLC study for a representation of between subject, 
between dimension correlations. The HAD anxiety and depression scores have values in the range 
0-21, those for the RSCL physical and psychological scores are in the range 0-40. 
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Figure 2.11: Scatter plot matrix for the within subject between dimension correlations for the quality 
of life data for the CRC NSCLC study. 

physical and psychological dimensions of the RSCL. Although positive, the associations seen 

between other dimensions are generally weaker. 

The within subject across dimension associations address the question whether, on a 

particular occasion, subjects who have higher than expected observed responses in one 

dimension also have higher than expected responses in a second dimension. For reasonable 

estimation of such correlation, Bland and Altman (1995b) suggest the residuals from subject 

specific regression analyses be used. For descriptive purposes, it is perhaps sufficient to simply 

subtract the subject specific mean responses from their respective observed responses and 

examining the pattern of association of these `residuals' across all subjects. This is shown in 

figure 2.11 for the NSCLC quality of life data. This clearly shows that although there was a 

high degree of association between the two dimensions of the RSCL within subject, those 

between the two dimensions of the HAD scale were very much weaker. Some positive 
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association between depression and physical well being is also shown. 

Each of these methods, however, depend on the data being balanced. When data are 

unbalanced, although visual displays of association for descriptive purposes may still be used 

with caution, estimation of correlation coefficients is not recommended without the varying 

degrees of precision on each subject specific mean taken into account (Bland and Altman, 

1995a, 1995b). 

2.3 Repeated categorical data 

Although many of the most commonly used quality of life instruments have a validated way 

of summarizing individual items on the questionnaire to give a simple summary score, which 

may then be treated as continuous responses, there remain some instruments - for instance, the 

daily diary card - for which such a summation is not feasible or relevant. This section focuses 

on exploratory data analysis for the binary and ordinal data which are obtained from such 

instruments. It also considers the analysis of individual items within questionnaires in general. 

This enables individual aspects of a patient's life to be examined and effects investigated which 

may be masked by the calculation of an overall summary measure. The binary responses 

presented are generally dichotomies of the ordinal responses of the individual items on the 

measurement instruments such as the example item given in box 1.1 for the HAD anxiety scale. 

As for the previous section, this work is separated into four subsections addressing the use of 

individual summaries, summary statistics, profiles over time and across dimensional 

associations. 
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2.3.1 Individual summaries 

As with a continuous response, examination of the individual patient behaviour in order to 

examine the consistency of responses across subjects is as important as the more commonly 

reported population summaries for patient groups. For ordinal, and in particular, binary data, 

this is best done using a lexis diagram. Such diagrams allow large proportions of the data to 

be displayed, and the small number of possible response categories can generally be quite 

easily distinguished on a single figure. This is shown in figure 2.12 in which the prevalence 

of dysphagia in the MRC LU07 study is plotted over time for a random sample of patients in 

each treatment group. A solid line indicates that no symptoms of dysphagia were reported, the 

dashed line indicates some symptoms - that is, a response in category 2 or above. Again, 
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Figure 2.12: Random sample of subjects and their reported symptoms of dysphagia measured daily 
from the start of treatment (0) through the following eight week period in the MRC LU07 study for 
(a) multiple fraction radiotherapy (FM); (b) two fraction radiotherapy (F2). No symptoms (category 
1): ; some symptoms (category 2 or above): --------. Discontinuities in the lines indicate 
missing responses. 

55 



The exploratory data analysis of quality of life data 

periods of radiotherapy are shown on the figure. The figure reveals a large proportion of 

patients in both treatment groups reporting some symptoms of dysphagia towards the end of the 

radiotherapy for a few days in both treatment groups, although the exact timing of the onset and 

relief of symptoms varies greatly across the patients shown. 

2.3.2 Summary statistics 

The use of summary statistics for the analysis of binary and ordinal responses is less 

common than for continuous data. It is however just as useful in highlighting whether variation 

derives primarily from differences between or within subjects. The natural summary statistic 

for such data is the proportion of patient time with a response in each category, where this is 

calculated for each subject as the number of responses given in each category taken as a 

proportion of the total number of responses given by that subject. Two possible summaries of 

the proportions are shown in figures 2.13 and 2.14 for summary statistics calculated for the 

MRC LU07 activity quality of life scores from the daily diary card. These scores were 

measured on a five points scale ranging from 1 (normal work/housework) to 5 (confined to 

bed). Further details of the item are given in box A2.3 in Appendix 2. Figure 2.13 shows the 

distributions of the proportions in terms of box plots. The middle 50% of the data is shown by 

the shaded block with the median give by the white bar. The tails of the box go out to the 10th 

and 90th percentiles with other outlying points shown as individual lines. The figure here 

shows the distributions in all but the middle category to be positively skewed with a large 

proportion of patients spending none of their time in some of the categories. This is 

particularly marked for categories I and 5 for which the 90th centile is zero. It also highlights 

the large degree of variability across subjects with a large spread for the middle 50% of the data 

in the middle categories. No obvious differences between the treatment groups are seen. 

These data are also summarised in figure 2.14. Mean and median proportions of responses 
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Figure 2.13: Distribution of the proportion of responses each patient gives in each category (1 to 5) 
for the activity rating of quality of life on the daily diary card in the MRC lung cancer study during 
the four week treatment period. The middle 50% of the data is shown by the shaded block with the 
median given by the white bar. The tails of the box go out to the 10th and 90th percentiles with other 
outlying points shown with individual lines. Multiple fraction radiotherapy (FM) and two fraction 
radiotherapy (F2). 

in each category are plotted with their respective 95% confidence intervals. Given the skewed 

nature of the distributions, the summaries based around the median will be preferable to those 

around the mean. No apparent differences between the two treatment groups are highlighted. 

Although showing a clear summary of patient experience over the period as a whole, and 

allowing a simple treatment comparison between the treatment groups, the problem with figures 

2.13 and 2.14 is that they do not allow examination of patterns of change over time. Thus 

patterns of change over time, such as that highlighted in figure 2.12 for the dysphagia data 

would be missed. Assuming a linear trend in log odds, for binary data, overall trends could be 

identified in a similar way to that for continuous data, with subject specific rates of change in 

the in log odds of symptoms obtained from a logistic regression analysis and plotted in the same 

way as in figure 2.4. In such a case, the underlying subject specific model is then perhaps too 

sophisticated for simple exploratory data analysis. 
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Figure 2.14: (a) Mean and (b) median proportion of responses given in each category (1 to 5) with 
95% confidence intervals for the activity scores on the daily diary card. Confidence intervals for the 

mean are truncated at 0 and 1. Intervals given for the median are based on critical values of the sign 
test. Multiple fraction radiotherapy (FM): ; two fraction radiotherapy (F2): --------. 

2.3.3 Summaries over time 

The most commonly used way to summarize patient quality of life measured on a binary or 

ordinal scale is to consider the proportion of patients falling into each category over time. 

These proportions can be plotted separately for each category, cumulatively over categories by 

considering the proportions in category k or below (or above) for all k, or for a simple 

dichotomy of the response. Such figures summarize the data to give an impression of the level 

of quality of life at each specific time in the study and can be useful in highlighting changes in 

the distribution of patient responses at particular times during the study follow-up. They have 

been used by many authors (MRC lung cancer working party, 1991a, 1991b, 1992,1993b, 

Fallowfield et at. 1986). Two such examples are presented here. 

Figure 2.15 shows the proportion of responses in category k or below (k=0,1,2) recorded on 
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Figure 2.15: Proportion of patients recording responses in category k or below over time from 
baseline (0) through the eight week follow-up for the `shortness of breath' item on the RSCL 

questionnaire used in the CRC NSCLC trial for patients on the (a) split course radiotherapy; (b) 

continuous course radiotherapy. 

the RSCL shortness of breath item in the CRC NSCLC study, where a score of 0 reflects no 

symptoms to a score of 3 that implies very restrictive symptoms. It shows an increase in the 

proportion of patients reporting symptoms of grade one or below (and therefore grade two or 

below) over time. This increase is perhaps more apparent in the continuous course 

radiotherapy group. 

Figure 2.16 plots the proportion of patients over time reporting some symptoms of 

dysphagia (difficulty in swallowing) -a response in category 2 or above - in the MRC LU07 

study. It clearly highlights that patients in both treatment arms experienced a transient period 

of dysphagia during the immediate period following radiotherapy treatment as was suggested 

from the random selection of individual profiles in figure 2.12. There was some difference in 

the pattern of response between the two groups with a lower proportion of patients affected in 

the F2 radiotherapy course. A similar picture was observed by the MRC lung cancer working 
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Figure 2.16: Proportion of patients reporting some symptoms of dysphagia (category 2 or above) over 
time from the start of treatment (0) through a subsequent eight week daily follow-up. Multiple fraction 
radiotherapy (FM): ; two fraction radiotherapy (F2): ----------. 

party (1991b) with the same data set although in their analysis they concentrated of symptoms 

of category 3 or above. A formal statistical comparison of each these examples is presented 

in Sections 4.4 for the MRC LU07 dysphagia data and 5.3 for the CRC NSCLC shortness of 

breath data. 

2.3.4 Associations between dimensions 

The examination of associations between dimensions for binary and ordinal repeated 

measurement data is just as important as for the continuous case and it is again important to 

distinguish between correlations between and within subjects. Methods for the analysis are, 

however, more difficult and have not been discussed in the literature. As with the continuous 

case, it is clear that to estimate associations across dimension between subjects, a subject level 

summary of the data is needed, with associations between these summaries then examined. For 

ordinal data with sufficient ordered categories, the simplest approach for a crude representation 
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is to treat the responses as continuous and continue as in Section 2.2.4. For binary data, a 

solution is less clear. An attempt is made in figure 2.17 using the dichotomised responses - no 

symptoms (0/1) versus some symptoms (2/3) - for six items on the RSCL in the CRC NSCLC 

study. For each subject, for each dimension, the proportion of positive responses was 

calculated and these subject specific proportions are then plotted in a scatter plot matrix. 

For the within subject correlation (figure 2.18) the subject specific proportions are treated 

as an average for that subject, and the deviations from this average for subject's individual 

responses were calculated and displayed in the same way as figure 2.11. Neither of these 

figures show a clear indication of any association between scores in the different dimensions 

either between or within subjects. In chapter 4, a formal statistical model is used to investigate 

this further and determine whether there really was little association between the different 
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Figure 2.17: Scatter plot matrix of the proportion of days recorded with symptoms in six items of the 
RSCL for subjects on the CRC NSCLC study showing the between subject between dimension 
associations. 
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Figure 2.18: Scatter plot matrix showing the within subject between dimension associations for a 
binary response for individual item response from the CRC NSCLC study. 

dimensions, or whether such simple representations are particularly unclear. 

2.4 Missing data and patient death 

A major problem for any analysis of quality of life data is incomplete data. This may be due 

simply to patients failing to return a questionnaire at a specific time, or as a result of patient 

death during follow-up. Whatever the source, incomplete data causes concern as to whether 

the available data are representative of the study population as a whole. For example, if 

subjects miss assessments because they are generally unwell and have a poor quality of life, any 

analysis based solely on the available data will be subject to some bias. An examination of the 

patterns of missing data in the study is therefore needed to assess the possibility of such a bias. 

A similar problem is patient death during follow-up and it is important to determine whether 

the quality of life experience of those who die early in follow-up is the same as those who have 
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a longer survival. Although alike in nature, the two issues raise different problems for analysis 

and need to be examined separately. In this section informal examination of the patterns of 

non-response is addressed. More formal analyses are discussed in Chapter 6 for patient death 

and in Chapter 7 for missing data. 

2.4.1 Missing data 

Missing data have been reported as a particular problem in quality of life studies. If the data 

available are to be assumed representative of the study population there should be no evidence 

that a group of non-responders are systematically different from those who do respond. In 

particular, if comparisons of different groups of patients in the study are to be made - such as, 

treatment comparisons - the extent of missing data should be reasonably equal within these 

groups over time, as well as in its relationship to patient quality of life. 

The obvious starting point for examining missing data is to tabulate compliance rates over 

time and by patient, that is, the proportion of responses available at each time point, and the 

proportion of total responses given by each patient (Fayers and Jones, 1983). Such summaries 

are presented for the CRC NSCLC study in tables 2.1 and 2.2. Table 2.1 shows the proportion 

of available responses at baseline and for the eight weeks following treatment, whereas in table 

2.2, a summary of the number of questionnaires completed by each patient is given. Both tables 

Table 2.1: Proportion of available data at each weekly assessment for the CRC NSCLC study. 

Week 

Continuous 
course 

Split 
course 

baseline 12345678 

0.48 0.55 0.57 0.57 0.50 0.52 0.57 0.57 0.50 

0.60 0.45 0.53 0.55 0.55 0.50 0.53 0.55 0.53 
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Table 2.2: Proportion of the total possible responses (maximum=9) given by each patient in CRC 
NSCLC study. 

Proportion of questionnaires returned 

Split course 

Continuous course 

0 0.11-0.44 0.56-0.89 1 

10 

8 

6 

9 

18 

20 

6 

5 

show the compliance rates overall and as stratified by treatment group and show no difference 

between the two. Since the focus of investigation in this section is missing data due to non- 

compliance and not due to death, all proportions are given out of the possible total given 

patients' survival. 

To determine whether compliance is related to quality of life or underlying patient 

condition, the MRC lung cancer working party (1993b) considered compliance rates (in terms 

of the proportion of completed responses per subject) and their relationship with baseline 

patient characteristics. They gave their results in tabular form. Here similar results are shown 

in figure 2.19 as scatter plots of baseline physical and psychological scores as well as baseline 

Karnofsky and FEV I against the number of available questionnaires for each subject. The data 

used here are from the RSCL in the CRC NSCLC study. To avoid points being superimposed, 

a small amount of random noise has been added to the data points. For this example, no 

striking relationships between the number of responses given by individual patients and their 

baseline response are shown. 

A further suggestion from Hopwood et al. (1994), that is not shown here, is a comparison 

of mean quality of life profiles over time for groups of patients giving different numbers of 

quality of life responses. To be effective, this relies on quality of life being measured over a 

fairly long period and more importantly a reasonably sized patient sample. It would therefore 
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Figure 2.19: Scatter plots of baseline patient data against the number of available quality of life 

responses to the RSCL questionnaire in the CRC NSCLC study: (a) RSCL physical score; (b) RSCL 

psychological score; (c) Karnofsky score; (d) FEV I. 

be more suitably applied to the MRC LU07 data than to the CRC NSCLC study data. 

An added complication with the examination of patterns of missing data is the irregular 

timing of patient follow-up since this makes it difficult to determine whether data are missing 

or simply measured at an earlier or later occasion. 

2.4.2 Patient death during quality of life assessment 

Although both missing data and patient death during follow-up can both be classed very 

generally as issues of non-compliance, they are very different. The problem of missing data 

is. whether the data available are representative of the quality of life experience of the sample as 

a whole. On the other hand, patient death raises the question of whether there is agreement in 
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the overall quality of life behaviour of patients with different lengths of survival. As full 

examination of this is not possible unless all patients have been followed until death, in the next 

section quality of life differences in patients for whom survival is known is investigated. More 

formal methods of analysis for which the full data set, including censored individuals, can be 

used are considered in Chapter 6. 

Two different approaches are described here. The first is based on the idea of Hopwood et 

al. (1994) for examining patterns of missing data. Mean quality of life profiles for patients 

grouped by their observed survival time are estimated and plotted over time. An example is 

given in figure 2.20 for the HAP trial RSCL physical scores. In this example, the mean profiles 

were estimated by data grouped to the closest month. Kernel smoothers could also have been 
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Figure 2.20: Mean RSCL physical scores over time from baseline (0) for a period of two years for 
the CRC HAP trial grouped by survival time: (a) <1 year; (b) between I and two years; (c) >2 years. 
Follow-up in each case in grouped to the nearest month. HAI: ; control: ----------. 

e. ..., 
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used. Very similar patterns of response over time for patients treated with a HAI in all three 

survival groups are seen. This is similarly so for patients in the control group. Unfortunately, 

unless samples sizes and numbers of observed deaths are large, these figures are of limited use. 

This is shown figure 2.20(c) in which the mean profile shown is estimated using a maximum 

of four subjects. 

As an alternative, Morris et al. (1986) plotted mean quality of life over time measured 

backward from death to examine whether the behaviour of quality of life differed across 

different survival times and in particular if there was a noticeable change in quality of life 

towards the time of death. Such an analysis is shown in figure 2.21, with quality of life 

responses now grouped to the nearest month prior to death overall. Figure 2.21(a) shows this 
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Figure 2.21: Mean RSCL quality of life over time from death going backwards for a maximum of two 
years for the restricted data of the CRC HAP trial: (a) Overall; and grouped by survival (b) s1 year; 
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for the whole sample, whereas figures 2.21(b) and 2.21(c) show the data grouped by observed 

survival. Again, subjects for whom time of death is not known are not included. For the CRC 

HAP study, this figure shows an increase in the average level of quality of life towards death 

which was not apparent when the data were plotted from the time of entry into the study. Given 

this evident change in the quality of life experience, for reliable inferences from these data, it 

is clear that patient survival should be incorporated into the formal data analysis in some way. 

It is important to note however, that grouping the data in this way (from time of death) means 

that it is not possible to make unbiased treatment comparisons as we are no longer guaranteed 

to have patient groups which can be considered the same at the start of time (in this example 

24 months prior to death). 

2.5 Summary and discussion 

This chapter has reviewed some methods of descriptive analysis that have been used for the 

analysis of quality of life data in the literature, and other relevant exploratory data analyses that 

may be used for future analyses. The different methods can be classified into four main areas: 

individual profiles; summary statistics; population averages over time; and associations 

between dimensions. In turn these areas allow the examination of typical patient responses 

over time; underlying behaviour of patients and how this varies across patients; an overall 

population summary of response; and how responses in the different dimensions are related to 

each other. To fully understand the behaviour of repeated measurement quality of life data 

collected in many dimensions, an exploratory data analysis should include at least the first three 

of these. Further, to determine their implications to be assessed not only in terms of the 

interpretation of descriptive displays, but also for more formal analyses which may be 

performed at a later stage, it is vital that a comprehensive analysis of the missing data in a study 

is also carried out. 
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For analyses based on individual profiles, a selection of random profiles is perhaps the best 

way of indicating typical responses over time when quality of life is measured on a continuous 

scale. For binary and ordinal data, lexis diagrams with different response categories 

highlighted by different line styles were shown to be very informative and allowed much more 

data to be displayed. These may also be used for continuous responses categorised in terms of 

normal responses and can also serve as a useful tool for examining patterns of missing data or 

the nature of quality of life response prior to death. Diggle et al. (1994) have also suggested 

that, rather than showing random profiles, individuals are ordered in terms of some analysis 

factor of interest in the data. Profiles are then shown for selected quantiles of this ordering 

statistic. Again, such a presentation may be of particular use in studies where patient death 

during follow-up was an issue with profiles shown for different quantiles of survival. 

Summary statistics have been recommended in the literature for formal statistical analysis 

of longitudinal data in general (Matthews et al., 1990). Not only do these recognise the 

longitudinal data structure, but also are intuitively appealing and require only that a summary 

measure of individual patient data of scientific interest can be defined. Unfortunately, their use 

for formal statistical analysis is somewhat complicated if data are unbalanced. However, for 

descriptive purposes, they are such a flexible and simple tool that they should form an integral 

part of exploratory data analysis for quality of life data. 

The most commonly used method of exploratory analysis of quality of life data in the 

literature is a plot of means over time. The examples in the literature have tended to have had 

observations spaced equally for all subjects, making calculation of means at each time trivial. 

If this is not the case, population summaries can still be presented either by explicitly grouping 

observations by time of measurement in an appropriate manner, or by the use of kernel 

smoothers. The main problem of displaying mean profiles over time, is that they are 
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susceptible to over interpretation of apparent differences. To avoid this, it is recommended that 

some attempt is made to show the degree of confidence on a figure. This may be by confidence 

limits, the number of patients contributing data at each time point, or by overlaying mean 

profiles on the raw data. 

A final part of the exploratory data analysis for quality of life data which was discussed in 

this work, is the examination of associations across dimensions. With many dimensions of 

quality of life invariably measured in a study, a sensible scientific question relates to how these 

dimensions relate to one another. As the data come from repeated assessments of subjects, 

simple scatter plots across dimensions are not appropriate. Instead, the variation in the data 

has to be partitioned into that between and that within subjects. Associations are then 

investigated within each partition. This is easily done for continuous data and was 

demonstrated in Section 2.4. Binary and ordinal data pose more of a problem however, and 

further work is needed in this area to determine simple descriptive tools to display cross 

dimension associations for such types of response. 

To summarise, there exist many different approaches to exploratory data analysis within the 

four general areas of exploratory data analysis discussed in this chapter, as well as for the 

examination of patterns of missing data. Although most of the work in this thesis concentrates 

on formal statistical models for data analysis, the quantity of data which is generated in a 

quality of life study requires that comprehensive exploratory data analysis is carried out before 

undergoing more formal analysis. In order to fully understand the data, at least, this should 

include examination of individual profiles, summary statistics as well as population averages 

over time. Finally, patterns of missing data and the relationship between underlying quality of 

life and patient survival also need to be thoroughly examined. 
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3 Hierarchical Models for Repeated Continuous Outcomes 

3.1 Introduction 

Many approaches exist for the formal statistical analysis of repeated continuous outcomes. 

These range form the very simple to the more complex. Concise reviews of these methods are 

given by Crowder and Hand (1993), Everitt (1995) and Diggle et al. (1994). Unfortunately, 

many of the simpler analyses require that all subjects are measured at the same times in follow- 

up, and each have full sets of responses. In the light of missing data or irregularly spaced 

follow-up times, this can lead to the analysable data set being very much reduced. The more 

complex models, which on the whole are due to recent advances in statistical methodology have 

provided a number of techniques which do not have such restrictions, and can easily handle the 

analysis of unbalanced longitudinal data, (Zeger and Liang, 1992, Goldstein and MacDonald, 

1988, Longford, 1995). This chapter demonstrates the use of hierarchical (or multilevel) 

models which is one approach for which software is available. 

Multilevel models are random coefficient models (Longford, 1995, Goldstein, 1995) 

suitable for the analysis of data with some underlying hierarchical structure where it may 

reasonably be assumed that units within each level of hierarchy are randomly drawn from some 

underlying population. They have been used extensively in educational and social research to 

model child attainment data for children nested within classes nested within schools (Goldstein 

et al., 1993). For example, a study which assesses the reading ability of children over many 

different schools in a particular district has two levels of hierarchy. The level one units are the 

students which are nested within the different schools. These schools form the level two units. 
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At level two it is assumed that the individual mean scores for each school are randomly 

distributed around the underlying mean score for the district as a whole. This gives level two, 

or between school, variation. Similarly, the scores of individual students are assumed to be 

randomly distributed around the underlying mean score for their school, constituting the level 

one, or within school variation. 

Repeated measurements fall naturally into this framework. At level one, observations taken 

over time are nested within subjects. These subjects are drawn from some population to give 

the level two units. The variation at level two derives from the differences in individual 

responses between subjects. At level one, it is simply the deviation of individual observations 

from the subject's individual response. A possible model for such a scenario is given in 

equation (3.1), where yj denotes the response for subjection occasion j made at time xU. 

y;; =a+ßxýi+(ul+vrxrý+eÜ) where 
(u;, v; )~ N(O, E,, ) 

2 eýý- N(O, o, ) 
(3.1) 

In this model, the underlying response over time for the population of interest is given by 

the parameters (a, P). The variation at level two derived from differences in individual 

response profiles are given by the subject level residuals on the population intercept and slope (u;, vi) 

for subject i. Combining these two components, gives a response profile for subject i, 

E(yU I x; ý, ui, v; )=((% +u, )+(ß +v, )x, (3.2) 

In Section 2.2.2, similar subject specific regression lines were used to model the HAD anxiety 

data of the CRC NSCLC study. The differences between that model and the multilevel model 

of equation (3.1), are the distributional constraints on the subject specific components and the 

focus of estimation. In Section 2.2.2, the subject specific components were assumed fixed and 

were estimated explicitly and separately for each subject. In the multilevel (or random 
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coefficient model) they are assumed to be random variables from an underlying multivariate 

Normal distribution with variance Eb and, rather than the residual pairs (ul, v1) (i=1,..., n), it is 

this variance that is of interest in estimation. As estimation of the residual variance, oe , 
is also 

required, the fixed analysis of Section 2.2.3 uses (2n + 1) parameters, whereas the random 

coefficient model uses only six. This makes the model much more flexible both in terms of 

modelling the fixed (or population) parameters, but also the components of variance. Their 

parameterisation and estimation procedures also make them very easy to extend to more than 

two levels of hierarchy. 

In Section 3.2 the model, its assumptions and estimation are described in more detail. The 

subsequent work in the chapter then demonstrates the application of the model to the quality 

of life data from the CRC NSCLC study. In Section 3.3, the most simple models are used to 

analyse the HAD anxiety data. Section 3.4 then extends the basic two level model used so far 

to a three level model, and shows how hierarchical models can be used to analyse the 

multidimensional endpoints of continuous quality of life outcome data. In Section 3.5, these 

analyses are extended to demonstrate the modelling of the variance components in the data. 

3.2 Hierarchical models for continuous outcomes 

The following section describes the most general hierarchical statistical model, its 

assumptions and the estimation of its parameters. The notation for the general model with 

h=1,..., H levels, is first described. Throughout, the description of the model is translated into 

the more familiar notation already introduced for the basic two level model for repeated 

measurements given in equation (3.1). 
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3.2.1 Notation 

Y is the (Nx 1) vector of responses which is ordered in its hierarchical structure such that, 

at the hth level, Y can be naturally partitioned into n chi subvectors each consisting of the n; ýý 

observations on the rth unit at the hth level where, 

N is the total number of observations (or level one units); 

n (h) is the number of units at the hth level; 

and n, '° is the number of observations in the rth h-level unit. 

For the two level repeated measurement structure, the highest level of hierarchy (H=2) is 

the subject level. Consequently, in the notation of equation (3.1), where the subjects (or level 

two units) are indexed by i, for i=r the rth level H (or level two) unit corresponds to the ith 

subject and n «, the number of units at this level, is equivalent to the total number of subjects 

n. Y=(y Tl 
,..., y T )T where y; =(yii,..., yim the vector of observations for subject i, at occasions 

j=l,..., mi. The total number observations measured for the rth H-level unit, n; H) =n; H)=mi 

3.2.2 The model 

In its most general form, the hierarchical (or multilevel) model is written 

Y=xOßO+E X(h)P(h) 

h 

where ßu is a (pox 1) vector of fixed parameters; 

(3.3) 

ß(h)°(ß I, )T, 
, 
ßR (,, )T is a (n «)p «)x 1) vector containing the n (ti) subvectors of the p (h) 

random parameters or coefficients at level h where each of these subvectors have 

dimension (p(h)x1); 

Xo is the (Nxpo) design matrix for the p0 fixed parameters; 
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and X (h) is the (Nxn (h)p (h)) design matrix for then(h)p(h) random parameters (or 

residuals) at the hth level. The matrix is block diagonal with the blocks 

corresponding to the hth level partition of Y. 

In terms of the two level repeated measurement model of equation (3.1), 

ß0=(a, ß)T is the population intercept and slope; 

ß(2)=((UI, vl),..., (u", v"))T is the (2nx 1) vector containing then, (2x 1) subvectors of 

the intercept and slope residuals for each subject; 

and p( =(e, T,..., e; 
)T, is the(Nx1) vector of level one residuals where e, =(e,,,..., eim, )T 

for subjects i=1.... , n. 

The design matrices X0, X(2) and X(l) are given by, 

Xo= 

1 xýý 

.., 

1 x... 

i 

i=l,..., n, X()= 'N X(2)=diai 

1 xýý 

\1 
Xjmi 

They have dimension (Nx2), (Nx2n), and (NxN) respectively. 

3.2.3 Model assumptions 

In the general notation, at the hth level, it is assumed that the ß; ̀ ) (r=1,..., n (h)) are 

independent, identically distributed, multivariate Normal random vectors with zero mean and 

variance 0(h). Var(ß(h)) is then an (NxN) block diagonal matrix with Q on the diagonal. 

This can be written, var(ß(`))=I, u)® At">, where ® denotes the Kronecker product, the matrix 

operation which multiples every element of the left hand matrix by the right hand matrix. I. 

is the (nxn) identity matrix. The elements of Q(") are referred to as the variance components. 

The random coefficients across levels are also assumed independent. That is, for 
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h#h 1. 

From equation (3.3) it follows that 

H 
V=Vßi(n=E X(h)yaz(R(h))X(h)T 

h=1 
(3.4) 

implying that for each level h partition, V is block diagonal. Specifically, at the level H, this 

reflects the fact that observations taken on different top level units are assumed independent. 

At this level, these diagonal blocks correspond to 

HT 

var(y) =E x, var('`ý ; "'ý for the r=l,..., n(H) H-level units (3.5) 
h=I 

Put in the context of the simple repeated measurement model of equation (3.1), n(')=a; and 

n(s)_E __ h 

Qu Quv 

2 
Quv 0 

v 

where aü=var(ui), a2=var(v, ) and a., =cov(u,, v, ). Also var(Y)=diag(var(yj)) 

where var(y, )= 

/ 
aü+2au, 'u+a +ae am+auv(xl1+x, 2) +ax, rxu 

2222 
°w+2a. � xj2+Qýi2+Q. 

o2+Q�Výxim; -1 
+ximý+Q(xim, 

-Ixim) 

22 
11 a+°u 

Jx 
i/ +xim? +O v(xi /xim ,) 

For a specific case with 2 subjects, measured on m1=2, m2=3 occasions, var(Y)= 

where 

2222 
Qr+2QwJxl1+ý�YII+ýe 

aZ aM+Oýýýxu+xºz)+Oýý ix1z 

aM+ Quv(xi i +xiz) +Q ýl 
IX12 

xz °x. +2a., xix+arti'ix+az, 

°w+Qwý(xu+x;, ")+Qv(XirXi, n) I 

aý+ZQw, xm +oý, m , 
+af 

(3.6) 

Vi 0 

0 VZ 
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I and 

au+2auJr21 +aWl +ae aM+awv(X21 +JC22)+aý21X22 

V2 - aý+o1,, (x21+x22)+o x2ºx22 a, 2, +2aZ22+ävx22+a. 

Clio+Cluv(x21+x23)+Cl�Z21X23 Clw+auv(x22+x23)+avX22x23 

°2+Qmv(x21+x2s)+° 
x21x23 

°ý+° v(x22+X23 23 
°. 2+20w+Q+Q, 2 

and the block diagonal nature of var(Y) reflects the fact that observations on different 

individuals are assumed independent. 

3.2.4 Estimation of the model parameters 

A number of estimation procedures exist for such models. That used here is based on 

generalised least squares (GLS). A review of the alternative algorithms is given by Goldstein 

(1995) and Longford (1995). 

If V=var(YIX0I) is known, the generalized least squares estimators for 0, and var(%) are 

0o =(Xo V -'Xo)-'Xo V -l Y var(Oo) =(Xö V -lXo)-, (3.7) 

Similarly, since V=E`(Y-Xoßa)(Y-Xoß, j, if ß', the parameters of V, are the focus of 

interest and P. is known, the generalised least squares estimate of Ie is 

V'=V®V (3.8) 

TT 

COT 
T 

where Y'=(y; ... y, for yr ,a vector of squares and products of residuals for the rth H- 

level partition, r=1,..., n«, which is given by the upper triangular elements of the rth diagonal 

block of (Y-Xep, )(Y-X, pe)T. V'=var(Y') and X' is the design matrix which links Y' to V. 

After some algebra, Goldstein (1995) shows var($*)=2(X'TV*TX`)-1. 
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In terms of the repeated measurement example of equation (3.1), ß'=((;. 2, o. Y, a2, a; )T. From 

equation (3.6), it follows that the design matrix X' which links Y' to V can be written 

(I 

X'=diag{x, } where x, *= 

2j,, 
1 xf l +xi1 

1 xi2+xi3 

1 Xil +Xim 

I 2x, i 

z xil 

xJfxi2 

xuxrs 

II 
0 
0 

xrlXim, 

2x1 

I Xim, 
-1 

+Xim, Ximr-1Ximi U 

ll xim 
2 

x;.. I 

and Y'=diag(y, ) where y, '= 

(y 
yilYi2 

yuy, 3 

YJIylm, 

2 
yi2 

yim, 
-Iyim; 

yim; 2 l 

Goldstein (1986) demonstrates that when neither V nor ßo are known, equations (3.7) and 

(3.8) can be solved iteratively with a starting value for V given by its ordinary least squares 

estimate. He shows that the iteratively generalised least squares (IGLS) estimates obtained 

from this routine are asymptotically efficient. Under the further assumption of multivariate 

Normality of response, they are equivalent to maximum likelihood (ML) estimates. It is known, 

however, that ML estimates of the random parameters are biased. This is because the sampling 

variability in the fixed parameters, that are used in their estimation, is ignored (Patterson and 

Thompson, 1971). Unbiased estimates can be obtained using restricted maximum likelihood 

(REML). In a further paper (Goldstein, 1989a) the IGLS procedure is modified to give 

restricted IGLS (RIGLS) estimates which are equivalent REML estimates under the 

assumptions of multivariate Normality of response. The distinction between the results of the 

two procedures is most important for smaller sample sizes. Full details of the both these 

estimation processes are given by Goldstein (1995); computational details are given by 

Goldstein and Rasbash (1992). 
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Finally, the log likelihood of the estimated model is obtained by evaluating the model log 

likelihood (log lh) for the parameter estimates of the fixed and variance components. Nested 

models can then be compared with a comparison of deviances given by -2 log lh. 

Although standard errors can be obtained for both the fixed and variance components, it is 

not recommended that those on the variance components be used for inference. This is because 

they are based on asymptotic Normal properties which are unlikely to hold except in 

particularly large samples. Instead it is recommended that inference about the variance 

components in a model is based on a comparison of model deviances. In the examples 

presented in subsequent work, although standard errors will be given for estimated variance 

components, they are presented only as a guide. 

3.2.5 Estimation of residuals 

Although the random components are not of primary interest in this analysis, it is still useful 

to be able to obtain estimates for them. This may be for diagnostic purposes, or to show 

estimated individual profiles as typical response profiles. Although they are not estimated 

explicitly in model estimation, using the parameter estimates of the multilevel model, it is 

possible to obtain conditional (or shrunken) estimates for them, where the conditioning is upon 

the estimated fixed and variance components (Goldstein, 1986,1995). The implication of this 

is that the residuals of extreme (or outlying observations) will tend to be lower than expected. 

In the context of the two level repeated measurement example, this will result in fitted values 

which are closer to the population mean than would be obtained from the subject specific 

analysis presented in Section 2.2.3. Estimation uses simple linear regression. 

Re-arranging equation (3.3) gives the overall residual component 
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H 

Ex(h)p(h) _Y-XoOo (3.10) 
h=1 

where the elements of P(), the residuals at level h, are the parameters of interest. Since the 

residuals at each level are independent, this is a linear combination of the total residuals at each 

level. For each level, h=1,..., H, predicted values for ß(h) can therefore be obtained from a 

linear regression of ßch" on the overall residual component (Y-XOOO), 

A(h)_W(h)TV-1(Y-X800) (3.11) 

where W(h)=cov(Y-X0 0, 
ß('))=XO)(I. ü)(&Q(')), and V=var(Y). It is because these estimated 

regression coefficients, given by W(h)TV-1, are based on the estimated variance components 

from the model, that the predicted B are conditional and have smaller variance than those that 

would be estimated unconditionally from a regression model based (hypothetically) on 

observed 
{h 

, (Y-Xocn)}. 

3.3 Application of the two level repeated measurement model 

Within this section, the basic two level model for the analysis of repeated continuous 

outcomes is demonstrated with an analysis of the CRC NSCLC study, HAD anxiety data. The 

basic objective of the analysis was to determine the strength of evidence for a change in the 

level of anxiety over time and also to determine whether this response was different in the two 

treatment arms. The models have been fitted using MLn software (Rasbash and Woodhouse, 

1995) and RIGLS. 

The analysis is presented in three parts. Section 3.3.1 focuses on modelling the change in 

response over time. This analysis uses responses on the 57 patients in the study who gave at 
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least one HAD anxiety score during the eight week period following radiotherapy. In Section 

3.3.2, this model is extended to consider differences between the two treatment groups. For 

this analysis, an adjustment for baseline anxiety is made. As baseline data was not available 

on some of the patients used in the initial analysis, this second analysis uses a smaller data set 

containing only 37 patients who were divided 15: 22 between the continuous and the split course 

radiotherapy groups. Section 3.3.3 examines the assumptions of the models. 

All parameter estimates from these models are presented with standard errors (SE). As these 

are based on asymptotic Normality assumptions, for the variance components of the models 

they are considered only as a guide and not used as the basis of significance testing of the 

individual estimates. 

3.3.1 Modelling a change over time 

With anxýij representing the jth anxiety response of the ith subject and occ, the timing of 

response measured in weeks following the start of treatment, a model for a change in the level 

of anxiety over time was formulated in three stages. The three models used are described 

below. 

Null model 
An overall mean response a was assumed constant over all occasions and treatment groups. 

anxö=a +u, +eü (3.12) 

Model one - occasion as a fixed effect 
A linear trend in response over time with the measurement occasion fit as a continuous 

covariate in the interval [0,7], where occasion 0 denotes 1 week following the start of 

treatment, 
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anxýý =a + ßoccýý+ui+e; ý (3.13) 

Here the parameter a gives an estimate of the intercept (or mean response at 1 week after the 

start of treatment) for the population. The intercept for patient i is then given by (a +u, ). The 

slope, ß, gives an estimate of the rate of change in response over the period which is assumed 

constant across subjects. 

Model two -occasion as a random effect 

In model two, the occasion effect was allowed to vary over individuals, such that the rate of 

change in score over the follow-up period is different for each patient. This corresponds to the 

basic model of equation (3.1). 

anxýý=a + ßoccj+u, +v, vccýý+e,, (3.14) 

Again the parameter a gives an estimate of the intercept (or mean response at one week) for 

the population. The intercept for patient i is then given by (a +u1). With the slope now allowed 

to vary over patients. The rate of change in response for subject i is (ß +v. ), with ß estimating 

the average rate for the population in general. 

As described in Section 3.2, it is the variance of the subject specific effects, ui and v,, in 

each of these models which are estimated, rather than the effects themselves. However, 

conditional estimates of these effects can be obtained as described in Section 3.2.5. A 

comparison of the goodness of fit of these models was made using a comparison of scaled 

deviances, where the scaled deviance was given as the difference in the -2 log lh of the two 

models. 

The results of sequentially fitting the above models are given in table 3.1. The fixed 

parameter estimates gave some evidence of a fall in the level of anxiety over the period with 

a reduction in the deviance from the null model to model one of 15.6 on 1 df. The estimated 

rate of the fall was 0.17 units per week (95% CI=[0.09,0.25]). By allowing a random slope 
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Table 3.1: Parameters estimates (SE) for modelling the rate of change over time for the CRC NSCLC 
HAD anxiety scores. 

Parameter estimates (SE) 

Model Null One Two 

Fixed parameters 

a (cons) 4.98 (0.57) 5.54 (0.59) 5.63 (0.59) 

0 (occ) -0.17 (0.04) -0.19 (0.06) 

Random parameters 

Level two a. ' 17.90 (3.47) 17.80 (3.44) 18.35 (3.72) 

a2 --0.11 (0.04) 

aW -- -0.28 (0.28) 

Level one a2 3.03 (0.25) 2.88 (0.24) 2.32 (0.21) 

-2 log Ih 1582.0 1566.4 1547.8 
These results correspond to a set of 57 patients who gave at least one HAD anxiety response 
following the start of treatment. the time of measurements is measured in weeks from I to 8 coded 
occ=0,..., 7. 

across subjects, a slight increase in the estimated average rate of the fall in anxiety was seen 

(-0.19,95% CI=[0.07,0.31]). The standard error of this estimate was slightly increased 

compared to that of the previous model. This was expected given the increased variability 

across subjects which has been allowed by the introduction of the random slope. In conjunction 

with the larger rate of fall in the response level over the period, was an increase in the intercept 

parameter. 

The estimates of the random components indicated a large degree of variation across 

subjects. Within all three models, the estimated variance of the intercept, a,,, was very high 

relative to the fixed estimate. Consistent with the reduction in precision of the fixed parameter 

estimates, it increased further on inclusion of a random slope. The negative covariance 

between intercept and slope, given by a.,, suggested that subjects who witness a more marked 

reduction in their level of response tended to have relatively higher initial responses than those 
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with a more modest fall in response. This could be an artefact of the bounded nature of the 

response - subjects with relatively low initial scores have less scope for change in their 

subsequent responses over time. There was strong evidence in favour of slope variation across 

subjects shown by a reduction in deviance of 18.6 on 2 df. On this basis, with model two as the 

preferred model, subject specific predicted response profiles were estimated using the 

conditional estimates of the subject specific residuals, (u,, v, ), i=1,..., n. These are shown in 

figure 3.1. Contrasted against those of figure 2.4, they show less variation in overall response. 

In particular, the outlying profiles highlighted in Section 2.2.2 did not stand out in figure 3.1. 

This was because, in the earlier section, the estimated profiles for these subjects were based on 

very few observations, whereas, in figure 3.1 their prediction was based also on the 

distribution of response for all subjects. In the multilevel model, fitted profiles for these 

subjects were shrunk towards the population average. 

Given the variance estimates of table 3.1, expected ranges for both the intercept (initial level 

of response after treatment) and the slope (rate of change in response) can be calculated. Under 

the assumption that the model is correct, these ranges will give boundaries in which about 95% 

of subject specific parameters for the population of interest are expected to lie. They will be 

similar to the reference ranges given on figure 2.4, but since they are based on the full variance 

structure they will be slightly narrower. Calculated as 0: 0.96o,, the expected range for 

subject specific slopes was [-0.84,0.46] around a mean of -0.19. That is, given that the model 

was true, the experience of individual subjects in terms of a rate of change in anxiety score in 

the immediate week following radiotherapy, may be expected to range between a fall of nearly 

one unit per week to an increase of just under half a unit. This is in contrast to an overall 

reference range for subject specific slopes of [-1.51,1.07] for the profiles of figure 2.4 around 

a mean of -0.22. 
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Figure 3.1: Plots of the predicted subject specific profiles from Model two (a) for the split course 
radiotherapy group; (b) for the continuous course radiotherapy group. The distributions of residuals 
for the split course and continuous course respectively are given in (c) and (d) for the intercept 

residuals; and (e) and (f) for the slope residuals. 

From each of these models, the estimated within subject residual variance at level one was 

much smaller than that between subjects. The particular aspect to notice about the estimates 

of the subsequent models is the fall in residual variance on inclusion of the random slope. This 

is to be expected in the light of allowing the estimated subject specific responses more freedom 

to adhere closer to the observed responses for each subject. 
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3.3.2 Modelling the effects of treatment 

The second objective of this analysis was to obtain a comparison of patient anxiety over 

time in the two treatment arms. This was done by extending the current model for a constant 

treatment group difference over time (parallel lines), a diverging difference over time (non- 

parallel lines with the same intercept), and a general difference over time (non-parallel lines 

with different intercepts). To adjust for any pre-treatment differences, patient baseline 

responses (subtracting the overall depression response mean of 7.89) denoted base;, were 

included into the model. Treatment was modelled with rt =0 for the split radiotherapy course, 

1 for the continuous course. 

Model three - adjusting for baseline 

anxýý =a + ßoccýý+Ybase, +ui+v, vccýý+er; (3.15) 

Model four - constant treatment difference 

Model four considered a constant treatment difference throughout the eight week follow-up. 

anxÜ = a+ ß occu+Y basei+ ý rt, +ui+v, occU+eU (3.16) 

Model five - unconstrained treatment difference 

Model five extended model four by allowing a difference between the rate of change in 

response over the period between the two treatment groups. This was done by introducing an 

"occasion by treatment interaction", denoted occ. rt. 

anx, =a+ 3occ, +ybasei+krt, +6occ. rtü+u, +vJOccu+eü (3.17) 

Model six - diverging treatment difference 

Within model six the intercepts within both treatment groups were forced to be equal thus 

giving a diverging treatment difference. 
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anxýý =a + ßoccU+ybasei+8occ. nU+ui+v pccýý+eii (3.18) 

A summary of the results of the analysis is given in table 3.2. Since the inclusion of baseline 

anxiety data caused a reduction in the size of the available data set from 57 to 37, the results 

of model two fitted to this smaller data set are also given in the table. 

The first thing noted from this analysis was the strong effect of the centred baseline giving 

a reduction in the model deviance of 27.3 on 1 df. Because the variable was centred relative 

Table 3.2: Parameter estimates (SE) for difference in HAD anxiety scores over time between continuous 
and split course radiotherapy in the CRC NSCLC study. 

Parameter estimates (SE) 

Model 
- 

Two Three Four Five Six 

Fixed parameters 

a (cons) 6.24 (0.73) 6.42 (0.49) 6.26 (0.62) 6.18 (0.63) 6.43 (0.49) 

P (occ) -0.24 (0.08) -0.25 (0.08) -0.25 (0.08) -0.18 (0.11) -0.19 (0.10) 

Y (base) - 0.72 (0.11) 0.72 (0.11) 0.72 (0.11) 0.72 (0.11) 

t (rt) --0.42 (0.97) 0.62 (0.99) - 

b (occ. rt) --- -0.17 (0.17) -0.15 (0.16) 

Random parameters 

Level two a. 2 18.07 (4.58) 7.07 (2.16) 7.87 (2.20) 7.82 (2.19) 7.68 (2.15) 

a? 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 0.17 (0.06) 

aW -0.30 (0.38) -0.01 (0.26) 0.01 (0.26) 0.02 (0.26) 0.02 (0.26) 

Level one a; 2.40 (0.27) 2.39 (0.27) 2.39 (0.27) 2.38 (0.27) 2.39 (0.27) 

-2 log Ih 1033.1 1005.8 1005.6 1004.6 1005.0 
These results correspond to a set of 37 patients who gave at least one HAD anxiety response following 
the start of treatment and a response at baseline. 
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to the overall mean, little change in the intercept parameter - interpretable as the estimated 

underlying week one response for a subject with mean depression response - was seen. The 

inclusion of the baseline responses in the model helped to explain a substantial amount of the 

variation between subjects. This was shown by the reduction in the standard error on a, the 

population intercept, and in particular the reduction in the estimated variance of subject 

specific random intercepts, 02 . 

Model four gave no evidence to suggest a constant difference in the underlying level of 

response between the two treatment groups throughout the period. Subjects in the split course 

radiotherapy arm had on average a slightly lower level of response than those in the continuous 

arm with an estimate of the difference of 0.42 and a 95% CI=[-1.48,2.32]. Similarly, there was 

no evidence that the rate of change over time may have differed across the groups. The 

estimated difference for this rate of change of -0.17 (95% CI=[-0.50,0.161) indicated that the 

level of anxiety of subjects in the continuous group tended on average to fall more than for 

subjects on the split course of radiotherapy although this was consistent with a difference which 

could have occurred by chance. 

Apart from the expected fall in the level two variance parameter ur on inclusion of the 

baseline level of response, there was very little change to the random parameters of the model 

throughout. 

3.3.3 Testing the model assumptions 

The assumptions of the hierarchical model were described in Section 3.2.3. These are 

independent identically multivariate Normality of the random effect at each level, with these 

effects independent across levels. 
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As a test for k-variate Normality, it is suggested (Johnson, 1988) that it is generally 

sufficient to check univariate Normality of the k variates, as well as bivariate Normality of the 
(k) 

2 

variate pairs, although a formal test for multivariate Normality does exist. 

For multivariate k-dimensional Normal random vectors xi, i=l,..., n, with mean z, and 

variance E, the squared (Mahalanobis) distances, 

di =(X1-X)TE-I(Xj-x) (3.19) 

will follow a Chi-squared distribution on k degrees of freedom. In terms of the random 

components of the hierarchical model, this implies that, under the assumed multivariate Normal 

distribution for the r-1,..., n(") units at level h, the squared distances 

ds= p *)TOW-1 ß(') (3.20) 
rrr 

should be approximately Chi-squared random variables with p ctiý degrees of freedom, although, 

the exact distribution of these quantities is unknown. Since the residuals have been estimated 

on the basis of the model and the covariance matrix, it is expected that in reality, it will be less 

dispersed than the X. For a particular model, this can be assessed by using a Chi-squared 

or Gamma plot, in which the squared distances, calculated using the shrunken residuals and 

estimated covariance structure of the model, are ordered from smallest to largest, and plotted 

against the appropriate centiles of the Chi-squared distribution with p(h) degrees of freedom, 

This is shown in figure 3.2 for the level two (subject) random effects of model- six. Also 

shown in the figure are the univariate Normal plots and a bivariate plot of the intercept and 

slope residuals. Although some skewness to the tails of the distributions are seen, each these 

plots show reasonable accordance to the Normality assumptions. 
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Figure 3.2: Residual diagnostics for the level two residuals for Model six using (a) Normal plot of 
intercept residuals; (b) Normal plot of slope residuals; (c) bivariate scatter plot of intercept and slope 
residuals; (d) Gamma plot of the Mahalanobis distances. 

A common feature of longitudinal data is serial correlation. Therefore, as well as the need 

to check the Normality assumptions of the level one residuals, some check for independence 

of the residuals is also needed. This can easily be done by plotting the level one residuals at 

occasion j against those at occasion j-1, or at lag one. This is shown in figure 3.3 along with 

a Normal plot. The same assumption can also be assessed by modelling an auto-correlated 

structure for the level one residuals (Goldstein et al., 1994), that is e, =pe,, _I+V0. 
The resultant 

change in -2 log lh was 0.1, and the estimated auto-correlation coefficient 0.08, giving no 

evidence of a violation of the model assumptions. 

3.3.4 Conclusions 

The overall conclusion from the modelling attempted so far was that although there was 
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Figure 3.3: Residual diagnostics for the level one residuals for Model six showing (a) Normal plot 
of residuals; (b) scatter plot of residuals against residuals at lag one. 

some evidence of a fall in the level of anxiety over the follow-up period, there was no evidence 

that the extent of this fall was related to the treatment received (model six). Similarly there was 

no evidence of a difference in the underlying level of response between treatment groups 

(model four). 

There was an apparent inconsistency in the results of the two models, with the average 

profile - given by (S, a) - for subjects on the split radiotherapy course lying above that of 

those on the continuous course in model six, and below in model four. In Normal linear 

regression modelling, this would not happen. However, in the hierarchical model, as the total 

residual is formed of a subjects component, (u,, v, ), as well as the residual component, eö, such 

results may occur. 

One of the advantages of multilevel modelling over alternative models for repeated 

measures data is the ability to explicitly model the variance structure both within and between 
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subjects. In this example the variance estimates obtained highlighted a large degree of 

variation particularly between subjects. This was seen both in terms of the underlying response 

level (intercept term) and the estimated trend over time. However, introduction of baseline 

response (centred around the overall mean) did greatly reduced the variance between subjects 

on the intercept term (model three). 

Despite the lack of evidence for a treatment difference it was decided for completeness that 

a treatment component should be retained in the model. On the basis of the model deviances, 

and an examination of the residuals from models four and six, the latter was taken as the 

preferred model to be used in further examples of model extensions. 

3.4 Multiple dimensions in response -a three level model 

One of the major issues in the analysis of quality of life data arises from its multi- 

dimensionality with responses often taken in many distinct areas of quality of life. Although 

the most commonly used measuring instruments have scoring systems which give overall 

summary scores in appropriate dimensions, to combine these dimensions further to give a single 

overall score is inappropriate. Therefore problems of multiple comparisons of scores in several 

dimensions can arise in the assessment of treatment comparisons. Cox et al. (1992) suggest 

Bonferroni type corrections be used as a simple solution. An alternative solution is presented 

by Tandon (1990) using global statistics (O'Brien, 1984). This approach, which has also been 

advocated by Pocock et al. (1987) combines the results of multiple analyses into a weighted 

global score with weights determined by the precision of the individual estimates. This gives 

an overall test statistic for the hypothesis of an overall treatment benefit in favour of one 

treatment which can be used to complement the results for each individual item. Unfortunately, 

the approach does not allow estimation of a combined covariate effect, simply a test statistic. 
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It is also directional, meaning it is only appropriate if the direction of effect is consistent over 

all variables. 

Although a global statistic could be formed from the results of a series of two level models, 

repeated measurement data with multivariate outcomes can be modelled within the framework 

of a three level model. Such a model will have advantages over both Bonferroni corrections 

and global statistics because it gives dimension specific estimates of covariates of interest, as 

well as enabling full estimation of the covariance structure between dimensions, between and 

within subjects. This not only enables estimation of the correlation between dimensions, but 

also makes it possible to make a direct comparison of the ways in which the covariate effects 

vary across dimensions. For example, it becomes possible to test directly whether the response 

to treatment is the same in all dimensions, whether a patient's physical morbidity is affected 

to a greater extent than their psychological morbidity, or whether the pattern of change in 

response over time the same in all dimensions. Given homogeneity of a parameter of interest 

across dimensions, a combined estimate over all dimensions can then be estimated directly from 

the model. Like the global statistic, this appropriately weights for the precision of the 

dimension specific effects. The analysis also has a technical advantage when complete 

responses for all dimensions are not available. Unlike the global statistic which requires 

observations available in all dimensions at a single time, the three level multivariate model can 

cope with unbalanced data across dimensions as it draws upon information about the covariance 

structure of the available data to give information about those which are missing. It will 

therefore have an increased power over the respective univariate analyses and global statistic. 

Within the three level model, the individual dimensions are regarded as level one units 

nested within measurement occasions at level two, nested within subjects at level three. The 

within and between variance components (at level two and level three) are considered in exactly 
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the same way as for the two level analysis. At level one, the differences between dimensions 

are assumed fixed, that is differences between dimensions are not regarded to derive from 

random variation. The assumptions of the model are the same as those of the univariate two 

level model. In this section, after giving details of the parameterisation of the model, it is used 

for the analysis of the responses from the HAD scale in the CRC NSCLC study which is 

measured in two dimensions. The results of the analysis are contrasted against those given by 

the corresponding univariate analyses. 

3.4.1 Parameterisation of the model 

To illustrate the parameterisation of the three level model for multivariate repeated 

measurement data, the two level model of equation (3.1) is extended to three levels to 

incorporate a multidimensional response. Letting yj, denote the lth dimensional response 

(1=1,..., L) for the jth measurement of the ith patient, the underlying model is written 

L 

}z cý 
y;;, - -E {a, + ßºoccr; +ur. f+vr. occg .. +ep.. f,, º f (3.21) 

where z1 =1 when yr, is a response in dimension 1,0 otherwise. It is assumed here that the 

covariates of the model for each dimension is the same. This is done for simplicity and is not 

a necessary restriction of the model. 

The (fixed) parameters a, and ß, represent the population average effects for response in 

the 1th dimension for a given mean response in the other dimensions. Subject specific 

responses are assumed distributed randomly around these population averages with the extent 

to which subject i deviates from (a,, (3) given by (u11, v11). Over all dimensions, as in the 

univariate case, these residuals, (u,, vT)={(u,, I..., u, L), (vII ,..., vi, )} , are assumed to be independent 

identically distributed multivariate Normal random vectors with mean 0 and, for a simple two 

dimensional case, variance, Q= 
IN 

where Zur F'V 
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2 
Qw/ Qr12 °rvi arlV2 °2VI °V12 

4Y = 
ýV= 

aMI2 01,2 
' Qr2Vl QMY2 QV(2 QV2 

(3.22) 

Here, the variance components aZ, a2, and au,, 1=1,2 are specific to the lth dimension and 

correspond to the variance components a,, a. and au,, estimated in the univariate model. The 

covariance terms 0u12 and 0�12 indicate how the intercept and slopes in the two dimensions co- 

vary across subjects. The terms auny2 and ou2i,, give information about the relationship between 

a subject specific intercept in one dimension and the slope in the second dimension. In the 

subsequent example, these latter terms are constrained to be zero, and E, is assumed diagonal. 

At level two, the within subject residuals, eý=(eLý,..., eüL), are assumed to have a multivariate 

Normal distribution with mean 0 and variance (for the two dimensional case) 
G"' 

U(2) = E, _ 
°. ' °. n 

where 0e! 2 
describes how, on individual occasions, the responses within 

z 0,12 °e2 

subjects deviate from the mean for that subject. For example, on a particular occasion, when 

a response in one dimension is a long way from its expected value, whether responses in other 

dimensions tend also to be a long way from their expectation. 

For the general case with L dimensions, E., Ev 
, 

E., and Ee will be of the same structure 

with dimension (LxL). By constraining the inter-dimensional covariances at levels three and 

two to be equal to zero, the responses at each level can be treated as independent. The results 

from this model will be the same as those obtained from the L corresponding univariate 

analyses. 

3.4.2 Extension of the current analysis 

The analyses so far for the anxiety data gave the following basic model, 
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"- 
Q2 Url2 

2 
arl2 Qr2 

For simplicity, the same underlying model for the depression scores was also used. This gave 

a multivariate model written, 

2 

qolýý, =E { a, +ß, occY+y, baser+öIocc. rtý+un+vitoccýý+eýp }z; jn (3.24) 
r=i 

At level three (between subjects), the variance components are given by j)(3) =E 
EN EEY NY 

, where 

At level two (within subjects) E. and E( are 
2 

are 
rt 

as given 
I0 

UNV0 
2) 

in equation (3.22) and ENV= 
oNY` NV 

n<z> =E= r 

The results from this model, alongside those of the corresponding univariate models are 

shown in table 3.3 for the fixed parameters and table 3.4 for the random parameters. Very 

slight differences were apparent. These are attributable to the additional covariance structure 

Table 3.3: Fixed parameter estimates (SE) for the multivariate and appropriate univariate models for the 
anxiety and depression outcomes of the HAD scale measured in the CRC NSCLC study. 

Parameter estimates (SE) 

Univariate Multivariate 

Anxiety a (cons) 6.43 (0.49) a, (cons) 6.42 (0.59) 

P (occ) -0.19 (0.10) 0, (occ) -0.20 (0.11) 

y (base) 0.72 (0.11) yi (base) 0.72 (0.09) 

8 (occ. rt) -0.15 (0.16) b, (occ. rt) -0.12 (0.17) 

Depression a (cons) 6.83 (0.52) a2 (cons) 6.79 (0.55) 

P (occ) -0.17 (0.11) ß2 (occ) -0.15 (0.10) 

Y (base) 0.72 (0.12) Y2 (base) 0.62 (0.10) 

8 (occ. rt) 0.19 (0.16) 82 (occ. rt) 0.10 (0.14) 

anxýý =a + (3 occýi +y basei+S occ. rlýý +uJ+V f occýý +eýý (3.23) 

2 
ar/2 Qr2 
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which has been introduced giving a slightly different interpretation to the parameters. They 

now reflect population average effects in one dimension for given population effects in the 

second dimension. Some difference was also due to two outlying depression responses given 

on separate occasions by two subjects. Examination of the anxiety scores of these subjects at 

these occasions did not reflect the same outlying behaviour. Given the full covariance structure 

estimated in the multivariate analysis, the outlying depression responses had less leverage. It 

is believed that the large differences between a., 2 and aü estimated from the univariate 

depression model (table 3.4) was also attributable of these outlying responses. 

Since the three level model estimates the full covariance structure of the data, a direct 

comparison of parameter estimates across dimensions is possible. Given no evidence of a 

difference between the dimensions, combination of the scores to give a simple overall summary 

Table 3.4: Dimension specific random parameter estimates (SE) for the multivariate and appropriate 
univariate models for the simultaneous analysis of the anxiety and depression responses of the HAD 

scale in the CRC NSCLC study. 

Parameter estimates (SE) 

Anxiety 

Univariate Multivariate 

Level two aM 7.67 (2.1 5) C121 7.51 (2.08) 

a', 0.17 (0.06) aVt 0.17 (0.06) 

a, 0.02 (0.26) aw, -0.01 (0.21) 

Level one 02 2.39 (0.27) Gel 2.39 (0.27) 

Depression 

Level two a;, 

a', 

Level one 

Oily 

a" 

7.76 (2.27) 

0.15 (0.06) 

-0.19 (0.28) 

3.08 (0.34) 

2 
Qv2 

Q 
W2 
2 aei 

9.11 (2.40) 

0.13 (0.06) 

-0.36 (0.25) 

3.10 (0.34) 
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may then be obtained. Naturally this estimate will have more precision than several dimension 

specific estimates. This is of particular interest for the estimated treatment effect. In this 

example, although the treatment effects in the two dimensions had different signs, there was no 

statistical evidence of a difference in the treatment by occasion interaction for each dimension 

(p=0.17). By fitting a single parameter in place of the two dimension specific parameters for 

the different slopes, a summary estimate of the difference in rate of change in anxiety and 

depression over the follow-up period of 0.01(SE 0.14) units per week was obtained, giving no 

evidence of a difference in the improvement of quality of life over time between the two 

treatment groups. 

The further gain of the three level model for the analysis of multidimensional repeated 

measurement data over other analyses suggested in the literature stems from the ability to 

estimate the inter-dimension covariance structure. Given this information, it is then possible 

to obtain an estimate of the correlation between dimensions which allows for its repeated 

measures aspect. Bland and Altman (1995a, 1995b) discuss estimation of such quantities when 

data are balanced, and in Section 2.2.4 this was presented as part of an exploratory data 

analysis. Since the data from the CRC NSCLC study are unbalanced, the calculation of 

correlation estimates is complicated and they were not presented. Given the covariance 

estimates from the multivariate model, appropriately adjusted estimates of association, both 

within and between subjects, can be estimated from this model despite the unbalanced nature 

of the data. These are presented in table 3.5. Within each 2x2 block of the table, the estimated 

covariance (SE) between dimensions are given below the diagonal, the estimated variances, as 

given in table 3.4, are given in bold type on the diagonal, and the estimated correlation between 

dimensions, as calculated from the appropriate covariance and variances, are given above the 

diagonal. 
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Table 3.5: Covariance / correlation estimates between dimensions as given from the multivariate model. 

Covariance (SE) / Correlation 

Intercept Slope 

Dimension Anxiety Depression Anxiety Depression 

Between subject 

Anxiety 7.51 0.65 0.17 0.47 

Depression 5.39 (1.72) 9.11 0.07 (0.04) 0.13 

Within subject 

Anxiety 2.39 0.15 

Depression 0.46 (0.22) 3.10 
Within each 2x2 block of the table, the estimated covariance (SE) between dimensions are given 
below the diagonal, the estimated variance of responses, as given in table 3.4, are given in bold on 
the diagonal, and the estimated correlation between dimensions, as calculated from the appropriate 
covariance and variance estimates, are given above the diagonal. 

The correlation estimates between subject give the level of association of average levels of 

responses across subjects. The estimate of 5.39/«7.51 x9.11)=0.65 for the intercept term 

suggested that subjects who on average had a high anxiety response also had relatively high 

depression scores. For the association of the subject specific slopes in the two dimensions, the 

positive correlation of 0.47 suggested that changes in the level of response over the follow-up 

period in one dimension tended to be accompanied by changes in the same direction in the 

second dimension. These relationships are reflected in the scatter plot matrix of residuals 

shown in figure 3.4. 

The within subject correlation estimates correspond to estimation of the association between 

dimensions within a subject on each occasion. That is, whether a higher than average response 

for a subject on a particular occasion (given their underlying profile) in one dimension is 

matched by a similarly higher than average response in a second dimension. The very low 
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Figure 3.4: Scatter plot matrix of the between subject residuals on the intercept and slope showing 
the associations between dimensions at a subject level. 
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estimate of 0.15 for these data indicates that at individual occasions there was little association 

between the responses in terms of differences from their expectation. This lack of relationship 

is shown in figure 3.5 in terms of a scatter plot of predicted level two residuals for the two 

dimensions. This figure also shows univariate Normal plots of the residuals and a Gamma plot 

for a test of bivariate Normality of the residuals. Similar plots for checking the assumptions 

of the level three residuals are given in figure 3.6. These show satisfactory univariate Normal 

distributions in all cases. 
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3.4.3 Conclusion 

This work has demonstrated the extension of the simple two level model for repeated 

measurements to three levels for the analysis of multidimensional repeated measurement data. 

The analysis has many advantages over univariate analyses, with Bonferroni corrections to 

adjust for multiple comparisons, and global statistic methods that have been suggested in the 

literature. These all stem from the ability to model the data from all dimensions simultaneously 

and thus obtain estimates for the inter and intra dimension covariance structure both within and 

between subjects, even with highly unbalanced data. Given these estimates, it is possible to test 

homogeneity of estimated covariate effects in each dimension, and then if appropriate, to 

combine these estimates to a single effect. This not only gives an global test statistic, it also 

gives a global estimate for the effect of interest. Such an estimate may be of particular interest 

in quality of life studies, when the bulk of available information to convey often causes 

problems. 

Although the example presented here was very simple - including only two dimensions with 

the same underlying model - this was only done for ease of presentation and is not a restriction 

of the models themselves. 

3.5 Modelling complex patterns of level one variation 

An assumption within the modelling framework which has not yet been discussed is that of 

constant residual variance across occasions within subjects. In the presence of variance 

heterogeneity, the conventional modelling approach would be to try and eliminate it using a 

variance stabilising transformation. A multilevel model however allows the heterogeneity to 

be modelled explicitly (Goldstein, 1995). As well as overcoming the problem by forcing an 

underlying structure on the residuals, this variance modelling also enables the specific sources 
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of heterogeneity to be investigated which itself could be of interest. For instance, subjects on 

one treatment regimen may tend to exhibit more variation in their responses than subjects on 

another regimen. Alternatively, residual variation may be related to the underlying level of 

response. Although variance modelling can be done at any level, modelling of the level one 

residual components is illustrated here. For simplicity, the univariate model for the HAD 

depression scores given in tables 3.3 and 3.4 is extended for complex residual variation. The 

residual variance is modelled in terms of two covariates, both as a function of treatment 

received and level of baseline response. The extensions to the model parameterisation are first 

laid out. 

3.5.1 Re-parameterisation of the model 

In the basic model of equation (3.1), the level one variance is assumed constant across 

subjects, that is var(eý)=Q2 for all i. Assuming we can partition the population into two 

subgroups (1 and 2) with the level one residual in each subgroup denoted e1 and e21J 

respectively, the level one residual can be written, 

e, =el, z, ü+eiuz2u (3.25) 

where z, ü and z2u are dummy variables defined so z,, =1 for subgroup 1,0 for subgroup 2, and 

z2U=0 for subgroup 1,1 for subgroup 2. Denoting the residual variance in each of these 

subgroups (1 2l and ae2 the level one residual variance then becomes 

var(e, )=oelz1U oiz2Y (3.26) 

In terms of the general model notation of Section 3.2, this is just a simple extension of the 

level one design matrix, I(» to the (Nx2) matrix (Z Z2), where Z, andZ2 contain the elements 
1az 0 

and z2,, corresponding to Y. The variance components, o., and a 2, form A(') e' 
0 az 

e2 
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An alternative and more flexible way of modelling the variation is to concentrate on the 

difference between the two variances directly. In this model a single dummy variable is used 

to define subjects in the second subgroup. The level one residuals eý,, can then be written, 

er; =e ,,, +e2; 1T 2;! (3.27) 

where e2. is the additional residual for subjects in the second subgroup with the level one 

variance then modelled as, 

2 
Väf(C, Ü+e2iJZ2iJ) =(, el +2 Qr/2 Z2ij (3.28) 

The interpretation of a., is unchanged with 20C, 2 giving the additional level one variation for 

subjects in the second subgroup and may be positive or negative. 

In terms of the more general notation, V is the (Nx2) matrix (1N Z2), where 1N is an 

(Nx 1) vector of ones and n("= 
n`l ar12 

°. Iz 0 

The conclusions from the two model specifications will be identical. The latter, however, 

gives more flexibility in terms of further modelling, and makes the model easy to generalise to 

more than two subgroups, or to the case in which the residuals are structured in terms of 

continuous explanatory variables. For example, for a continuous covariate, xü, for subject i at 

occasion j, 

eu=eou+e1Uxij and var(eü)=QA+2 °,, xü 

where 20, E 
is the additional level one variance due to a one unit change in x,, . 

3.5.2 Extension of the current model for the study data 

The basic model which is extended in this example using the CRC NSCLC HAD scale 

0a/2 U 
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depression data has the same parameterisation as model six (table 3.2). For dep,, the 

depression response for the ith subject at the jth measurement occasion, 

depU = a+ ß ocyY base, +8 occ. rtü+u, +vjoccu+eU (3.29) 

The residual components of this model were modelled in terms of two covariates already 

defined - treatment and baseline response. 

Model seven - residual variation modelled as a function of treatment 

Allowing the residual variation to be a function of treatment group tested the hypothesis that, 

within subjects, patient depression within one treatment group was more variable than in the 

second group. 

depýý=a+ P occü+Y basei+8 occ. rtU+ur+vioccu+eai+elurtr (3.30) 

where eW denotes the within subject residual for all subjects, el, is the additional within 

subject residual for the continuous group and rti is the treatment covariate which equals 0 for 

patients in the split course, 1 for the continuous group. The variance at level one was modelled 

as 

var(eou+eiUri) °Q, o+2aýoj ni (3.31) 

where C F2 the variance of the within subject residual components for patients in the split 

course group, and 2o, ß is the additional variation experienced by subjects in the continuous 

radiotherapy arm. 

Model eight - residual variation as a function of baseline depression 

Modelling the residual variation as a function of baseline depression, tested the hypothesis that 

subjects with low baseline scores tended to exhibit different amounts of residual variation than 

those with a higher baseline score. This difference was modelled as a linear trend in increasing 

baseline score 

dep,, =a+ßocc, +ybaser+8oec. r +ur+vrocc, +eW+e, baser (3.32) 
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where, as in the fixed part of the model, each subject's baseline depression score was modelled 

as a difference from the overall mean depression score. The variance at level one was 

parameterised as, 

var(eoi+e21jbase, )=a2 +20X02base; (3.33) 

where vO is the expected residual variation for subjects with a mean baseline depression score, 

and 2aeOJ is the expected increase in this variance for each unit increase in baseline score. 

The results of extending model six for the depression scores, to examine the level one 

variance components, are given in table 3.6. Inferences for these analyses were made on the 

basis of changes in the model deviances because of the difficulties in interpreting the 

asymptotic standard errors of the variance components, as discussed in Section 3.2.4. 

Table 3.6: Parameter estimates (SE) for modelling level one heterogeneity for depression scores. 

Parameter estimate (SE) 

Model six Model seven Model eight 

Fixed parameters 

a (cons) 6.83 (0.52) 6.88 (0.53) 6.91 (0.50) 

P (occ) -0.17 (0.11) -0.19 (0.11) -0.18 (0.11) 

8 (base) 0.72 (0.12) 0.72 (0.12) 0.70 (0.12) 

y (occ. rt) 0.19 (0.16) 0.19 (0.18) 0.15 (0.16) 

Random parameters 

Level two a'. 7.76 (2.27) 8.44 (2.39) 7.15 (2.03) 

a',, 0.15 (0.06) -0.36 (0.32) -0.17 (0.26) 

aMV -0.19 (0.28) 0.20 (0.07) 0.16 (0.06) 

Level one a; 4p 3.08 (0.34) 1.96 (0.29) 3.50 (0.42) 

°Au - 1.20 (0.40) 0.31 (0.04) 

-2 log lh 1044.3 1032.3 986.2 
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Evidence of variance heterogeneity related to treatment was seen with a change in deviance 

of 12.0 on I df. The estimated difference in variance suggested that subjects receiving the 

continuous treatment course tended to have a larger degree of within subject variation (1.96 

versus 4.36). The evidence of a linear relationship with the level of depression response at 

baseline was even more convincing with a reduction in the model deviance of 58.1 on 1 df. The 

estimated relationship showed an increasing within subject variance with an increasing level 

of baseline response. 

3.5.3 Conclusions of the model 

The model extensions demonstrated here were used in an attempt to explain the possible 

heterogeneity of the within subject level one variance. It was seen that there was some 

evidence that the extent of within subject residual variance was related to treatment received 

(model seven), and also to baseline response for which it was estimated that the within subject 

residual variation changed from 3.50 for mean baseline depression, at a rate 0.62 units change 

per 1 unit change on the mean baseline response. However, when these results were examined 

further using plots of the level one residuals in model six for the depression data by the two 

covariates of interest in this analysis (figure 3.7), it was seen that, particularly in terms of the 

relationship with adjusted baseline response, these observed relationships were attributable to 

two outlying observations. Both of these patients were on the continuous radiotherapy course, 

and had baseline depression scores above the overall mean. Omitting these patients and 

repeating the heterogeneity analyses yielded no evidence of variance heterogeneity. 

These observations, emphasised that, although modelling of the variance components is 

possible, the results may not be robust to non-Normality or outliers. This will be particularly 

important in small samples when the results are more likely to be influenced by a few subjects 

with rather extreme results. Careful inspection of these aspects is therefore important before 
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Figure 3.7: Within subject (non-standardised) residuals from model six for the CRC NSCLC HAD 
depression scores: (a) Normal plot for Normality; and plotted (b) by treatment group; and (c) by 
baseline depression from which the overall mean depression score has been subtracted. 

claiming evidence of variance heterogeneity, and it was concluded that heterogeneity of the 

level one residuals was not a problem in these data. 

3.6 Summary and discussion 

The work presented here has demonstrated the use of hierarchical (or multilevel) models for 

analysis of quality of life data given as repeated continuous outcomes. Their flexibility for the 

analysis of longitudinal data which is severely unbalanced (in this case due to missing data) as 

well as incorporating multiple dimensional outcomes was demonstrated. The models require 

a number of critical assumptions, but although not well developed within the multilevel 

literature, model checking was shown to be relatively straightforward using estimated shrunken 

residuals. Further work is needed in this area in order to determine the exact properties of these 
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shrunken residuals for the assessment of multivariate Normality. Although shown to be non- 

robust to outlying observations, modelling of residual variances is also feasible to look for 

evidence of variance heterogeneity. A further problem with longitudinal data, which has not 

been discussed here in detail, is serial correlation. In terms of the two level model, this would 

occur at level one and result in the non-independence of the level one residuals. It has been 

argued by Jones (1990) that, after incorporating random subject effects, further serial 

correlation of the within subject residuals may be unlikely. However, the flexibility of the 

hierarchical model structure makes inclusion of a component of serial correlation to test this 

assertion straightforward (Goldstein et at., 1994). 

Because of the flexibility of the models, it is important that an appropriate analysis strategy 

is pre-defined. This should involve exploratory data analysis as outlined in Chapter 2, and 

outlining questions of scientific interest pertaining to the population (or fixed) effects and 

perhaps more importantly, those to be addressed in terms of the random components 

representing the between and within subject variation. This importance was demonstrated in 

Section 3.5, where the results of the analysis modelling of the level one variance were seen to 

be heavily dependent on a few outlying observations. Further work is perhaps needed in this 

area to determine whether this is a problem relating to examples with small samples or a more 

general concern of the modelling strategy. 

Perhaps the most important use of hierarchical models for the analysis of quality of life data 

is the ability to incorporate data from many dimensions of quality of life measured into one 

analysis, thus obtaining overall covariate effects, as well as appropriately adjusted estimates 

of inter-dimension associations within and between subjects. The multivariate example given 

here was the most simple case with only two dimensions with an equal number of responses in 

each dimension. However, the model does not require such restrictions. For instance, as often 
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occurs in quality of life studies, a subject may have a response in one dimension where their 

response in another dimension is missing. In this situation the multivariate model in fact gives 

a technical advantage over univariate approaches in that, given the reasons underlying the data 

being missing can be ignored, the analysis draws upon information available about the 

correlation structure between dimensions, improving the precision of dimension specific 

estimates. 

Within this analysis, the substantial amount of missing data (detailed in tables 2.1 and 2.2) 

were treated simply as causing an unbalanced data problem. In terms of the introduction of bias 

due to missing data, they were ignored. The implications of this, along with a more detailed 

consideration of the missing data problem, are discussed in Chapter 7. 

In terms of the example presented, another concern was the small sample size on which the 

analysis was based. Of the 82 subjects in the study, 57 contributed at least one post 

randomisation response. With the inclusion of baseline responses only 37 cases out of these 

57 were included in the main analyses presented. For the use of these types of models in 

practice, larger samples than this would generally be recommended, not least from a scientific 

point of view - little can be inferred from 37 patients who exhibit a large degree of variability. 

Although a simulation study carried out to investigate the robustness of the analysis in such a 

small sample gave no evidence of bias in any of the fixed or random parameter estimates when 

a restricted iteratively generalised least squares procedure (RIGLS) was used, further work is 

still needed in this area to help determine methods for sample size calculations when such 

models are to be used for data analysis. 

Alternative analyses for repeated measurement data are possible. These are reviewed by 

Crowder and Hand (1993) and Everitt (1995). For balanced data these include modifications 
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to a split plot analysis of variance or, for more complex correlation structures, multivariate 

analysis of variance (MANOVA). With unbalanced data and missing values these approaches 

become infeasible. In addition, MANOVA has been shown to lack power when the number of 

measurement occasions is large as is often the case in quality of life studies in cancer research. 

Antedependence models (Kenward, 1987) achieve greater parsimony and hence precision than 

MANOVA by restricting the correlation structure to take various sensible forms. However, 

they do not cope well with unequally spaced data and their results may be difficult to present 

simply for clinical purposes. Simple methods based on constructing summary statistics for each 

subject (Matthews er al., 1990) which are intuitively simple become more difficult when 

subjects have different numbers of measurements, yielding varying precision, or if some 

subjects have very few measurements (Matthews, 1993). Moreover, such analyses ignore 

information available from other subjects in terms of the distribution of subject specific 

profiles. Marginal modelling approaches such as weighted least squares and generalised 

estimating equations (GEE) (Zeger and Liang, 1992) provide an alternative framework which 

can cope flexibly with unbalanced data and may allow more general correlation structures than 

the simple autoregressive model. Within such models, the focus of the analysis is solely on the 

underlying mean process. The parameters defining the variance structure are regarded as 

nuisance parameters necessarily included in the analysis to adjust the precision of the estimates 

of this mean process. Unlike the hierarchical model, they do not therefore allow any inferences 

to be drawn about the nature of this variance structure. They do perhaps have an advantage 

over the hierarchical model, in that, being based very closely to models for cross-sectional 

analyses, their results are perhaps easier to communicate to non statisticians. Such models are 

discussed in more detail in Chapter 4, where their use and interpretation are contrasted with the 

hierarchical model for the analysis of repeated binary outcomes. 
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4 The Analysis of Repeated Binary Outcomes 

4.1 Introduction 

With a few exceptions, quality of life measuring instruments consist of a series of questions 

to which patients respond with a binary outcome - "do you suffer from this symptom, yes/no? " 

- or on an ordered categorical scale - "rate the severity of symptom on a scale of 0-3". 

Generally, the number of positive responses or the ordinal ratings are then summed to give a 

`continuous' score which may then be analysed using the methods discussed in the previous 

chapter. In some instances, this summation of items may not be recommended (for example, 

with the daily diary card) and in all cases it will result in a loss of detail about the prevalence 

and severity of particular symptoms which may be of interest to a clinician or patient. Thus the 

ability to analyse the repeated data on the original categorical scale may be advantageous. The 

current and subsequent chapter are devoted to this topic. In this chapter, two different 

approaches to the analysis of binary outcomes are discussed. This work is then extended for 

repeated ordered categorical outcomes in Chapter 5. Although other analysis options do exist, 

the use of marginal and random effect models are discussed. For reviews of these and other 

models see Diggle et al. (1994), Agresti (1989), Landis et al. (1988). 

In Chapter 3 the general theory of random effect models for the specific case of variance 

components analysis was outlined. In Section 4.2, this model is extended for use with binary 

outcomes, and the theory behind marginal models given. The basic assumptions and 

formulation of each model is reviewed, and their estimation and interpretation discussed. The 

use of the models, and more importantly the differences between them, are demonstrated using 
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two examples with data from the MRC LU07 diary card and the RSCL in the CRC NSCLC 

study in Section 4.3. Sections 4.4 and 4.5 present two extensions of these basic models to 

tackle two very different problems faced in the analysis of quality of life data in practice, those 

of complex patterns of response over time and multidimensional outcomes. 

4.2 Marginal and random effect models for repeated binary data 

Cox (1972) outlined a number of possible approaches for analysing multivariate binary 

outcomes many of which needed further research to be of practical use. Since then, with much 

research and improved computing facilities, many of the ideas which Cox proposed have 

become practicable for data analysis. Two classes of model that have received much attention, 

and which are particularly useful for the analysis of longitudinal data, are those Cox referred 

to as the logistic and latent variable models, more generally now referred to as marginal and 

random effects models. It is these two classes of model that will be discussed here. Although 

the structure of each model is discussed in greater detail in subsequent sections, a simple 

illustration of the differences between them and their interpretations for binary data is outlined 

below. Similar discussions are given by Zeger and Liang (1992), Neuhaus et al. (1991), and 

Diggle et al. (1994). 

The fundamental difference between the marginal and random effect models is the way in 

which they incorporate the dependence between repeated observations on the same subject. For 

a binary response vector, y, =(y,,,..., y, ), measured for subject i, over measurement occasions 

j=1,..., m1, the marginal model has a generalised linear model for its expectation 

incorporating the dependence between observations as nuisance parameters in the residual error 

component of this model. In contrast, the random effect model assumes that the dependence 

between observations comes as a result of some subject specific random effect, conditional 
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upon which, the observations within subjects are assumed independent. This is demonstrated 

in equations (4.1) and (4.2) which give the most basic form of each model to investigate the 

effect of a treatment covariate, x, . As for a standard generalised linear model, g(. ) is a link 

function, with e, the binomial error with E(e, )=0. 

Marginal model 

yr=g ̀(ocMtß, ari)+e, M, var(elM)=Vi (4.1) 

Random effect model 

y, =g -1(aRE+ßRExl+ur)+e, RE, 
u, -N(O, a; ), Var(elRE)=diag(var(e; ý)) (4.2) 

This difference in incorporating the dependence between observations leads to a very 

different interpretation of the parameters of the two models. In the marginal model they are 

population average effects and where g(. ) is the logic link function, exp(PM) is the odds ratio 

of symptoms for subjects who undergo treatment versus those who do not. In the random effect 

model they are subject specific effects conditional upon a subject's underlying response 

determined by the random effect, u,. Exp((i") is then the odds ratio of a positive response for 

subject 1 if he has treatment versus if he does not. 

Although this difference in interpretation exists for the analysis of all types of outcome - 

continuous or discrete - by taking the expectation over the distribution of the random effects, 

it is possible to transform the parameters of the random effect model to give a marginal 

(population average) interpretation, 

-1(aRE+ßRExi+ui), f(ui)dur E(yilxi)= f., 

If g(. ) is the identity link, this integration is trivial, 

(4.3) 
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EViýxý)=ýaRE+flRExlý+r u purýdur YY Jul ý` (4.4) 

and since E(u, )=0, shows an equivalence between the marginal and random effect parameters 

for this case. It is for this reason that the distinction between the interpretation of the two 

models is often overlooked for continuous outcomes where the identity link tends to be used. 

However, for other link functions, the distinction can be crucial. In particular, with the logit 

link function commonly used for the analysis of binary outcomes, taking expectation over the 

random effects, equation (4.3) cannot easily be reduced further, 

E(7jlx; )=J 
exp(a RE+ßRExi 

+ul) 
. 
f(u, )du, 

u, 1 +exp(aRE+pREx, +uI. ) 
(4.5) 

However, Neuhaus et al. (1991) show that equation (4.5) implies that I(3REIz1pM1, with 

equality only in the trivial case when u, =0 for 'all i. More specifically, they show that if the 

covariate x, has no effect, ßM.. 3RE[1-p(0)] where p(O) is the intra subject correlation amongst 

y,, defined as 

var(9, ý) P(ý)= E(6U)E(1 -6y) 

where logit(O)=«RE 

(4.6) 

In practical application, as this 

relationship is based on the assumed distribution of u, as well as the assumption that the 

covariate has no effect, the ratio D 
66 

would be expected to approximate to [1-p(O)J. Further, 

Zeger and Liang, (1992), show that if the random effects, u1, i=1,..., n, are assumed to follow 

a Normal distribution with mean 0 and variance oü, 

pRE-(0.346Qý+1) 2 (4.7) 
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4.2.1 Marginal models for binary longitudinal outcomes 

The simplest form of the marginal model for binary longitudinal outcomes was proposed by 

Liang and Zeger (1986) and uses a standard generalized linear model for the expected response 

9U, for subject i at occasion j, conditional on a set of p covariates, which are given by the 

(mjxp) design matrix xi, 

E(yi) =9, =g -'(x, ß) (4.8) 

The var(y1) is an (m, xm, ) matrix made up of two components: an (m, xm, ) diagonal variance 

matrix which defines the Binomial variance of y,, as a known function of the mean parameters 

9, 
j, 

A, =diag{A;,,. (1-9, j)}, j=l,..., m,; and an(m, xm, ) `working' correlation matrix, denoted R,, 

which defines the correlation structure of the data. Given these two components, var(y, )=V, * 

is simply 

Vi =Ai'R, Aj' (4.9) 

Estimates for the marginal parameters ß can be obtained by solving the multivariate 

analogue of the score equations for generalised linear models, or generalised estimating 

equations (GEE1), 

s cR)=ý de, 
T 

v'' 80 a ,. ý d(3 
(4.10) 

If Rj, and therefore Vi , is correctly specified, these score equations will be the optimal 

estimating equations for ß as given by Godambe (1960) and 

dei TVt" de, 
(4.11) var(ß)=Io=ý 

i"ý dß dß 

However, Liang and Zeger (1986) showed that even if Ri is incorrectly specified, estimates for 

$ obtained from the score equations of equation (4.10), although not fully efficient, will still 
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be consistent. Further, they show that a robust estimate for their variance is given by 

var(O)=I1'I011I where 

n d6, T 
, -t T -t da, l ( i, =E dß 

vi (v, -A; )(y, -o; ) Vi. 
dal 

(4.12) 

Although the `working' correlation matrix R,, can take any form, good specification is 

required to maximise efficiency. Liang and Zeger (1986) suggested that this is best obtained 

by assuming a general form of the matrix with unknown parameters p. For example, for 

longitudinal data with fixed measurement occasions, j=1,..., m, exchangeable or auto-regressive 

general forms can be assumed for some underlying lag one correlation p. That is, 

IPP.. 

R, ex(P) PP... 
and R, AR (P)= 

PPý 

respectively. 

PpI 

I1Pp2p3IPý 
2 PP 

pm2 ... p1p 
M-1 ... p2 p1 

Estimates for p are obtained via some function of the Pearson residuals following estimation 

of P. The specific form of the function used depends on the general form of the correlation 

structure. Examples are given by Liang and Zeger (1986). GEE1 is then an iterative process 

where at the first iteration, starting values for p or an independence model are assumed. 

Although GEE1 performs well in estimation of ß, estimation of p relies on the basic 

assumption underlying the general form of R, which is generally arbitrary. If information about 

the correlation is of interest, it is therefore suggested GEE1 is not used (Liang et al., 1992). 

Prentice (1988) suggested that when such inferences about the correlation structure are 

required, a general model for the two-way cross products and their expectations is incorporated 
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into the analysis to give direct estimation of correlation parameters, p. This analysis (GEE2) 

uses an iterative procedure with a second set of estimating equations for p using the cross- 

products and their expectation and of the same form as those of equation (4.10). Fitzmaurice 

and Laird (1993) presented a similar model with the two-way associations modelled in terms 

of log odds ratios. Although giving more efficient estimates for the association parameters than 

GEE1, Carey et al. (1993) show that GEE2 relies on the correct specification of a model for the 

association parameters - whether in terms of correlation or odds ratios - and thus may only be 

an improvement over GEEI if there exists some a priori knowledge of the association structure. 

Further, the increased complexity with the additional set of estimating equations makes 

estimation computationally intensive and impractical even when the number of repeated 

measurements is relatively small (for example, m, =5). For these reasons GEE2 will not be 

practical for many quality of life problems when the number of measurement occasions is large, 

and is therefore not used here. 

Other specifications of the marginal model are also possible. For example, Carey et at.. 

(1993) have suggested a model which improves the estimation of association parameters and 

avoids the computational difficulties of GEE2. They call the approach alternating logistic 

regression (ALR) because both the marginal distribution and the association parameters are 

modelled using logistic regression. For ALR it is assumed that the association between pairs 

of observations, (y,, ya), j*k, may be represented by a log odds ratio, which in the most simple 

case is assumed to be some constant, p. In this case, the odds ratio of positive response 

'between yU and y,,, denoted 'F , is equal to exp(p). Estimation is an iterative two stage 

process. In stage one, GEEI is used along with a current estimate for a to give estimates for 

Given these estimates, the estimate for p is updated using a logistic regression of each y. 

on each ya (j<k), with an offset derived from the current estimates of ß and p. Formally, 

denoting E(y, ý)=9U, E(yy, k)=v,, and assuming a constant log odds ratio for all pairs (yi, ya), 
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j<k, the stage two logistic regression for p is 

logit Pr(yV=lly, k)=Py, k+ offset ýa. i3ý 

where offset=log 
8; ý-v; jk 

(, 
the log odds of y;,, =1 for y; k=0. This can be evaluated using 

1-0; ý-e; k+Vtik 

current estimates of the marginal expectations A. and 9, 
k from the stage one solution to GEE1 

and an estimate for VUk which itself can be evaluated from the current estimate of p and the 

stage one marginal parameters using the expression derived by Lipsitz et al. (1991): 

f'k-Vi 
-4P(P-1)0, jOik}2 for ps1 v'Jk. 2(p-1) 

p eriieik for p=1 

(4.14) 

where flik=(1-(l -P)(ei+ejk)} . 

To demonstrate the general use of these models, only GEEI is used. 

4.2.2 Random effect models for longitudinal binary outcomes 

The random effect model for repeated binary outcomes accounts for the correlation between 

observations on the same subject by assuming that each subject has their own underlying 

propensity of a positive response which is incorporated into the model as a random effect. 

Given each subject specific effect, observations within subject are then assumed to be 

independent binomial random variables. 

For subject i at occasion j the effect of a covariate xu on the outcome yU can be represented 

in the logistic regression model, 

y,, =9, j+eu (4.15) 

where y, j=1 for a positive outcome, 0 otherwise and 
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eU= 
exp(a +Px, +ut) 

1 +exp(a +ßxu +ur) 
(4.16) 

The subject specific random effect is denoted ui and is assumed Normally distributed with zero 

mean and variance o2.. Given u;, the residual eU, j=l,..., mr, for subject i are assumed to be 

independent binomial random variables with variance vU=ae9U(1-8U) where a. 2 is an over 

dispersion parameter. Although other appropriate link functions may be used for binary 

outcomes, the work here focuses on the commonly used logit link given in equation (4.16). 

Re-writing this simple model of equation (4.16) in terms of its linear predictor for logit(8U), 

8U 
tog 

1-6U =a+ ß"o+u1 (4.17) 

the interpretation of the parameters is clear: (a+ui) can be interpreted as the log odds of a 

positive response for subject i; and ß as the effect of a unit change in the value of the covariate, 

xü, on this subject specific log odds. For example, if y, =1 for subject i, reporting symptoms 

at occasion j, and xU is a treatment group indicator, the interpretation of exp(ji) is the odds 

ratio of symptoms for subject i if he undergoes treatment. 

As for continuous outcomes, the model can be considered as a hierarchical model with two 

levels. At level two is the variation between subjects given by the random effect u1, and at level 

one is the independent binomial errors for observations within subjects. Written in the general 

notation of the hierarchical model, equation (4.16) becomes 

9, =g -1(x, p"+x(')ß(2) =gu (4.18) 

where g(. ) is the logit link function, P. is a (pox 1) vector of fixed parameters acted on by a 

po) design matrix xj and ß1ý2) is the vector of random parameters acted on by the design 

matrix xj (2) 
. 
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A number of procedures are available for estimation of the fixed parameters ßo and the 

variance components var(ß(2)) (Stiratelli et at., 1984, Longford, 1988, Goldstein, 1991,1995, 

Zeger and Karim, 1991, Breslow and Clayton, 1993). As it is easily implemented within 

software for practical use, that attributable to Goldstein (1991,1995) involving marginal and 

penalised quasi-likelihood and (restricted) IGLS, is considered here. 

This is a two stage procedure involving the linearisation of the gýj in stage one followed by 

parameter estimation of this linear function in stage two. The linearisation of gýj uses a Taylor 

series expansion where it is assumed that parameter estimates from the previous iteration are 

known. For the (t+l )th iteration, a first order Taylor series expansion of gýj is written 

gU(H, "1j)=g, j(H, )+x, (ßor. i-ß0, )g' (H, )+(xi2)32)g'1(H, ) (4.19) 

where H, denotes the realised expectation of gi,, from the tth iteration. It is the definition of H, 

that forms the distinction between the marginal and penalised quasi-likelihood procedures. 

Under marginal quasi-likelihood (MQL), the Taylor expansion is carried out about the fixed 

part of the model and hence H, =xtat. The penalised (or predictive) quasi-likelihood (PQL) 

incorporates the estimated residuals from the previous iteration, 0, 
, into this expression, that 

is H, =x; ß,, +xi2, ßk ) such that the expansion is carried out around the predicted value for the ith 

subject. In this case the last term of equation (4.19) becomes r2)(ß(2)-O12))g'jý(H, ). 

Whatever the chosen expression for H,, by defining xj*=xrg'ýý(H, ) and xr (Z)=xi2)g'ü(HI), 

equation (4.15) can be written as a linear function of the parameters of interest: 

"f i(Z)(2) 

y; =x; ßo,. I+xr ßi *º', ej (4.20) 

where yy yj-(gjj(H, )-xr pS, }, zj= Oij(1-®, 
j) 

for vr=(vrj,..., vi,,, ) with o. constrained to equal 

one. The IGLS (or RIGLS for small samples) procedure can then be applied to this function 
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to obtain estimates for ßa«1 and var((3j2 )r, 1. 
Binomial variation at level one is assured by the 

definition of v1 and the constraint on o2=1. If this constraint is removed, (12 can be estimated 

as an over dispersion parameter. For an improved approximation, a second order Taylor series 

expansion may be used although this obviously adds to convergence time. For details of see 

Goldstein (1995). 

In simulation studies, Rodriguez and Goldman (1995) show that the MQL procedures can 

lead to a large degree of bias. PQL however has been shown to perform well (Goldstein, 1995, 

Goldstein and Rasbash, 1996). A potential problem with the models is that parameter 

estimation is non-robust to the failure of the assumed distribution of random effects, therefore 

diagnostic checking of residuals is particularly important. 

4.3 Marginal versus random effect models in practice 

Within this section, the use of marginal and random effect models for the analysis of binary 

quality of life data is compared to demonstrate both the practical application and the inferential 

differences of the two models. Thb first example is based on data from the activity item on the 

daily diary card within the MRC LU07 study. The second analysis uses the individual shortness 

of breath item on the RSCL within the CRC NSCLC study. In both cases, the binary response 

was created by dichotomising the score on the original ordinal scale. For the marginal models, 

GEEI with independence and exchangeable `working' correlation matrices were used. 

Corresponding random effect models were fitted using RIGLS first order MQL and first order 

PQL. The second order PQL model did not converge. An over dispersion parameter was also 

fitted within the random effect models. As this is not possible for the marginal model, the 

comparison between the two classes of model is made between the marginal model with 

exchangeable working correlation matrix and the PQL model with the binomial variance 

constrained at the lowest level. 
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4.3.1 MRC LU07 daily activity scores 

For the first example data from the activity item on the daily diary card for the first four 

weeks of follow-up within the LU07 study was analysed. This corresponds to the data 

presented in figure 2.13. Responses were dichotomised from the original five point scale as 

follows: 1/2= few or no symptoms (yýý=0); 3-5 = limitations (yj=1). Details of the scoring of 

the original scale are given in box A2.3 in Appendix 2. The focus of the analysis was to assess 

the prevalence of limitations in activity in the two treatment groups controlled for age was 

estimated. The results of these models are shown in table 4.1. The top half of the table gives 

the results for the marginal models, the lower half give those for the random effect models. The 

basic form of the two models are given below. 

Vial Random effects 

log =a"'+ "'a a +S"ýrt log 'i =axe+pREage +SRErt +u 
1-64 

p g' 1-6; j (4.21) 

Statistically, the example demonstrates the importance of the robust standard error for a 

poorly specified correlation structure for the marginal model. Based on the naive standard 

errors from the independence model, gross errors of interpretation would result. In contrast, 

it seemed that the exchangeable correlation structure was reasonable for these data, shown by 

the robust standard error being little changed from the naive estimate. Comparing the robust 

standard errors from the two models demonstrated that even when the correlation structure was 

poorly specified, reliable inferences could have been made using the robust standard error 

which in the independence model was very close to that of the exchangeable model. Similarly, 

the example demonstrates elements of the earlier discussion for the random effects model with 

the parameter estimates of the 1st order MQL model very close to those of the marginal model 

whereas those from the first order PQL were much greater. The exchangeable marginal model 

and the first order PQL model with constrained binomial variance (PQL (1)) are used for 
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inferential purposes. 

Concentrating first on the results from the exchangeable marginal model, it was estimated 

that the odds of reduced activity in the FM group was 1.25 times that in the F2 group (95% 

CI=[0.79,1.88]). There was no evidence to suggest that this difference was not due to chance. 

Table 4.1: Coefficients and SE for logistic regression model of daily diary card LU07 activity data. 

Marginal (GEE! ) 

Independence Exchangeable 

Estimate Naive SE Robust SE Estimate Naive SE Robust SE 

a (cons) 0.81 (0.04) (0.15) 0.87 (0.15) (0.15) 

P (age) -0.02 (0.003) (0.014) -0.019 (0.014) (0.014) 

b (rt) -0.18 (0.05) (0.22) -0.22 (0.22) (0.21) 

Estimates for the correlation structure 

p=0.68 

Random effect (MLn) 

Ist order MQL 1st order PQL (1) 1st order PQL (2) 

Estimate SE Estimate SE ß1N/ß" Estimate SE 

a (cons) 0.88 (0.15) 2.11 (1.90) 0.46 2.22 (0.36) 

P (age) -0.019 (0.014) -0.051 (0.03) 0.37 -0.06 (0.03) 

8 (rt) -0.20 (0.22) -0.42 (0.45) 0.52 -0.49 (0.52) 

Estimates for the variance structure 

a2=3.10 (0.28) a. 2=11.7 (1.16) 0.45 a2 =16.2 (1.55) 
o; =1 a; =1 aý=0.45 (0.008) 

age=patient age - 68.2, where 68.2 is the mean age of the sample in years 
rt=1 for F2 course, 0 for FM course 
For MQL and PQL (1), a, is constrained to equal I to give binomial variation at level one. 
The ratio ß"r/PR£is calculated using ß~ from the GEE1 exchangeable model, and 3RE from the PQL 
model. 
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The reporting of symptoms was also shown to fall with increasing age. This may be due to a 

lower expectation of activity levels in the older patients. The estimated difference in the odds 

of symptoms for a one year difference in age was -2%, 95% CI=[-4%, +1%]. Estimated from 

a marginal model, this represented the odds ratio for the population as a whole. So for the 

population as a whole, the odds of reporting adverse levels of activity in a group of patients 

aged 50, would be expected to be 25% higher than that in a group of patients aged 60. Again 

there was no evidence to suggest the observed age effect was not simply due to chance. 

The first order PQL estimates for the random effects model showed a large degree of 

variation between the reporting of symptoms across subjects. This was consistent with that 

seen in the summaries of subject specific responses shown in figure 2.13. All coefficients in 

this model were consistent in sign with those of the marginal model, although as expected they 

were much larger. In terms of the treatment covariate, the subjects specific treatment ratio was 

1.52 for the multiple fraction course of radiotherapy (FM) over the two fraction course (F2) 

(95%CI=[0.63,3.68]). Given a subject's underlying odds of reporting adverse symptoms of 

activity, this reflects a 52% increased odds if they were treated with the multiple fraction course 

rather than the two fraction course. For the age covariate, the estimated change in the subject 

specific odds of reporting adverse activity for a one year increase in age was -5% (95% 

Cl=[-10%, +I%]). Thus given a subject's underlying odds, and all other variables remaining 

constant, at the age of 50 their odds of reporting problems with activity would be expected to 

be 67% higher than that at age 60. As for the marginal model, there was no evidence to suggest 

that any of the observed effects were not due to chance. 

Table 4.1 also shows the ratio of the marginal and random effect parameters. The 

theoretical estimate according to the result of Zeger and Liang (1992) in equation (4.7) is given 

in the final row of the table amongst the estimates for the variance parameters. Some 
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Figure 4.1: Normal plots of the standardised level two residuals for the random effects model for 
MRC LU07 activity data with distributionally constrained variance of level one residuals. 

differences between those observed and the theoretical estimate were seen. This is because the 

theoretical estimate was based on not only on the assumption of Normality of the level two 

residuals, but also that the working correlation matrix was correctly specified. In terms of the 

residuals of the model with distributional constraint at level one, these showed a strong 

indication of a lack of Normality (figure 4.1(a)). The striking 'S' shape of the distribution 

occurs as a result of patients responding positively or negatively throughout the whole follow- 

up period. 

There was also some evidence of under dispersion with this model shown when the 

constraint on a. was removed (PQL (2) in table 4.1). This signifies that within this model, the 

level one residuals were less dispersed than expected given their expectation. This was because 

the subject specific effects, u1, allow the expectation for each observation to realise a value 

close to that observed, thus leaving the residuals, eU too small for the binomial variation. This 

was also signified by an increase in the estimated variance of subject specific effects, oY, in the 
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unconstrained model. This will once again be largely explained by those subjects reporting 

positively and negatively throughout. Given their random effect, the expected value at each 

occasion with be very close to that observed. 

4.3.2 CRC NSCLC shortness of breath 

The second example uses the individual item `shortness of breath' taken from the RSCL 

used in the NSCLC study. Again the response was dichotomised to give a binary score: 0/1=no 

symptoms (yj=0); 2/3=symptoms (yj=1). The analysis here focused on a constant treatment 

difference and a linear trend in log odds over time. The resulting models are given in equation 

(4.22). A marginal profile is shown is figure 4.2 and shows a clear downward trend in the odds 

of reporting shortness of breath over time and a consistently lower odds for patients in the 

continuous radiotherapy course. 

Marginal Random effects 

log 
! 

ii 
=OLM+ßMOCC;; +öMrl; log 

Iii 

=aRE+ßREOCCiI+BRErti+ui 

I -e 1-6 (4.22) 

The results of this analysis (table 4.2) show some evidence of a linear trend in log odds 

equating to a fall in the prevalence of symptoms over the period. Within the marginal model, 

this is given by an odds ratio of 0.86,95% CI=[0.79,0.94], for each additional week of 

follow-up, giving an estimated 14% reduction in the odds of symptoms each subsequent week, 

(95% CI=[6%, 21 %]). From the random effects model, the corresponding reduction in subject 

specific odds was 31%, 95% CI=[ 16,43%]. No evidence of a treatment difference was found, 

although, consistent with figure 4.2, the odds of shortness of breath were 27% lower (95% 

CI=[76% lower, 124% higher]) in the group of patients treated with the continuous course of 

radiotherapy. In terms of the effect on the subject specific odds, given a patient's underlying 

odds of reporting shortness of breath, given the continuous radiotherapy course they had a 48% 
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Figure 4.2: Marginal profile for the odds of reporting symptoms of shortness of breath on the RSCL 
in the CRC NSCLC study over the eight week follow-up for patients on the split course of 
radiotherapy: ; and the continuous course: --------. 

lower odds (95% CI=[93% lower, 278% higher]) of symptoms than if given the split course. 

There was a large degree of variability in the subject specific logs odds resulting in a 95% 

reference range for the probability of symptoms of [0.01,0.99], demonstrating that some 

subjects reported no symptoms at all whereas others reported them consistently throughout the 

follow-up. 

The ratio of the marginal and random effects coefficients again showed some difference 

from the expected ratio using the results of Liang and Zeger (1992). A normal plot of the level 

two residuals (figure 4.3) again showed a heavy tailed distribution which corresponds to some 

subjects reporting no symptoms throughout the follow-up thus having large negative residuals 

against the large positive residuals of subjects reporting symptoms at each occasion. There was 

also some evidence of under dispersion noted from removing the constraint on oe . 
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Within this study, quality of life was measured on patients pre-treatment. It was felt that 

including these data into the model as a covariate might help control for those subjects 

reporting positive or negative throughout and so improve the distributional assumptions of the 

random effects. The results are given in table 4.3 with baseline dichotomised in the same way 

as the response, base, =1 for subject i with symptoms graded 2/3 at baseline; 0 otherwise. 

Table 4.2: Coefficients and SE for RSCL shortness of breath item. 

Marginal (GEE1) 

Independence Exchangeable 

Estimate Naive Robust Estimate Naive SE Robust SE 
SE SE 

a (cons) 0.55 (0.26) (0.39) 0.49 (0.38) (0.37) 

3 (tune) -0.15 (0.06) (0.05) -0.15 (0.03) 10.05) 

8 (rt) -0.26 (0.26) (0.58) -0.31 (0.56) (0.57) 

Estimates for the correlation structure 

p=0.69 
----------------------------------------------------------------------------- 

Random effect (MLn) 

Ist order MQL 1st order PQL (1) 1st order PQL (2) 

Estimate SE Estimate SE p M/(1 RE Estimate SE 

a (cons) 0.51 (0.43) 1.27 (0.73) - 1.79 (0.89) 

(time) -0.15 (0.06) -0.36 (0.10) 0.41 -0.50 (0.08) 

6 (rt) -0.29 (0.58) -0.65 (1.01) 0.48 -0.96 (1.32) 

Estimates for the variance structure 

o; =2.53 (0.72) a2. =7.76 (2.18) 0.52 o2=14.5 (3.72) 
o; =1 a2=1 a, 

1=0.42 (0.04) 

occ=week of measurement coded 0-7 for weeks 1-8 
rt= I for the continuous, 0 for the split course radiotherapy 
For MQL and PQL (1), a2 was constrained to equal 1 to give Binomial variation at level one. 
The ratio aM/pRE was calculated using ßM from the GEEI exchangeable model, and 1RE from the PQL 
model. 
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The introduction of the baseline symptoms gave an obvious reduction in the variance 

between subjects, and gave strong evidence that patient symptoms at baseline had a great 

bearing on patient symptoms following treatment. From the marginal model, it was estimated 

that the group of patients who reported shortness of breath at baseline were 37.5 times more 

likely to report symptom following the start of radiotherapy (95% CI=[9.5,141.5]). In terms 

of the effect of baseline on the subject specific odds, the constrained PQL model estimated that 

given their underlying propensity to report shortness of breath, if a subject reported symptoms 

at baseline, they were 113 times more likely to report symptoms following the start of 

radiotherapy than if they did not report symptoms (95% CI=[17.9,758]). 

The residuals from this model are shown in figure 4.4 and show a much better distribution 

in terms of Normality than those of the model without baseline. This indicates that the 

adjustment for baseline has gone someway to adjusting for the effect of subjects who respond 

positively or negatively throughout. Unfortunately, in terms of the ratio of parameter estimates 
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Figure 4.3: Normal plot of the standardised level two residuals for the shortness of breath item on 
the RSCL in the CRC NSCLC study. 
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Table 4.3: Parameter estimates for shortness of breath in CRC NSCLC study with an adjustment for 

baseline. 

Estimate (SE) 

a (cons) 

ß (occ) 

8 (rt) 

y (base) 

Marginal 

-1.99 (0.62) 

-0.23 (0.07) 

-0.007 (0.64) 

3.60 (0.69) 

Estimates for the variance structure 

a=0.46 

Constrained PQL Unconstrained PQL 

-2.07 (0.94) 

-0.39 (0.10) 

-0.05 (0.90) 

4.73 (0.97) 

-2.46 (1.11) 

-0.51 (0.08) 

-0.07 (1.11) 

5.98 (1.81) 

aý =4.66 
a; =1 

oz =8.48 
or =0.42 

The marginal model presented used an exchangeable working correlation matrix. 

Ratio 
pMlpRE 

0.59 

0.14 

0.76 

0.62 

from the marginal and random effects models, these results were less convincing than those of 

the previous model. There was also some evidence of underdispersion of the level one 

residuals. This suggested that in the previous analysis, this may not have been due to the 

subjects responding positively and negatively throughout. Both this underdispersion and the 
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Figure 4.4: Normal plot of standardised level two residuals for analysis of reporting shortness of 
breath with an adjustment for baseline. 
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inconsistency of the ratio between the marginal and random effect parameter estimates, 

suggests that caution is needed with the use of random effect models for such analyses and more 

research is needed to determine what is causing the problems. 

4.3.3 Conclusion 

The work of this section detailed two classes of model for the analysis of binary response 

data: modelling of the marginal response with allowance for the data dependence via an 

appropriate working correlation matrix; or by assuming the dependence between observations 

on the same individual arises due to some latent process which is modelled as a random effect 

under some distributional assumptions. Each of the models have their advantages and 

disadvantages which have been discussed in the previous sections: the marginal model does not 

allow inferences to be made about the association parameters (the correlation structure of the 

data); perhaps more seriously, the random effect model is non-robust to failure of the 

assumptions about the distribution of its random effects which may be particularly problematic 

for repeated binary data. These factors aside, it should be recognised that the parameters 

estimated from the two models have very different interpretations and they should not be 

regarded as alternative ways of answering the same question. 

4.4 The analysis of complex patterns of binary response 

A problem that often occurs in the analysis of quality of life data relates to the potentially 

complex response functions over time which can occur when the prevalence of symptoms 

increases as a result of treatment. This was demonstrated by MRC Lung cancer working party 

(1989) reporting bouts of nausea and vomiting following chemotherapy. In such cases, plots 

of the marginal response over time give a very informative description but do not allow a 

formal treatment comparison or adjustment for covariates of interest. In this example a 
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marginal model is used in conjunction with a natural smoothing spline to give the same 

informative description of the data and in addition allows estimation and formal testing of a 

treatment difference. This is demonstrated by modelling the apparent treatment difference in 

the prevalence of dysphagia measured on the daily diary card following radiotherapy treatment 

in the MRC LU07 study, described in Chapter 2. 

A summary of the data has already been given in Chapter 2 and involved daily reporting of 

dysphagia symptoms by patients over a6 month period. For this example, the ordinal response 

of the diary card was dichotomised to give a binary response such that yýý, the response of the 

ith subject on the jth day, takes the value 0 if the patient reported no symptoms (a score of 1 on 

the diary card), or 1 otherwise. A positive response can then be interpreted as the reporting of 

any symptoms of dysphagia. The marginal response profile shown in figure 2.16 highlighted 

a dramatic increase in the prevalence of symptoms following the start of treatment which fell 

back to baseline levels once radiotherapy had finished. The extent of this increase appeared 

different across the two treatment groups although no formal comparison was made. The 

objective was to obtain a model for these data which gave both a reasonable representation for 

the marginal response and allowed unbiased estimation of the apparent treatment difference. 

A generalised estimating equation for a logistic regression model was used to give robust 

standard errors taking account of the dependence of observations taken on the same subject, 

with a natural cubic spline to represent the complex shape in the marginal response. Due to 

computing constraints, only the first eight weeks of the follow-up period could be analysed. 

This period captured the entire period of treatment related symptoms and the return to baseline 

shown in figure 2.16. Before presenting the results of the analysis, the definition and use of 

cubic splines is first discussed. 
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4.4.1 Natural cubic splines 

A cubic spline is a series of cubic functions which are joined together smoothly at a series 

of specified time points or knots in the follow-up period. The smoothness of the function is 

obtained by constraining the value of the 1st and 2nd derivatives of functions evaluated at their 

adjoining knots to be equal. A natural cubic spline has the additional restriction that it is linear 

outside the first and last knots. The advantage of splines is that a natural spline with p knots 

can be expressed with a design matrix with p parameters and can therefore be easily be 

incorporated into a multiple regression analysis. 

By definition the natural cubic spline for a data series y=(y,,..., ym) observed over a period 

x,, j=l,..., m, with p knots at times x=k1,1=1,..., p is linear up to k,, beyond which it is a series 

of cubic splines written, 

Y=«o+«, x+ý ß, ý, (x) 

ý. ý 
(4.23) 

where 4, (x)=(xx-kß)3 for xtk,, 0 otherwise. The additional constraints ßý= ß, kß=0 ensure 

that the spline is linear forxj2kp and mean that equation (4.23) can be re-written 

2 

Y=aO+aýx+ý ßýýý(x) 
ý-ý 

(4.24) 

where the functions »'(x) =4,, (x)- 
(k 

�-ka OP_I(x)+ Mk-' ') ýp(x), for 1=1,..., p-2, are straightforward 

to evaluate and give an (mxp) design matrix defining the spline which can be incorporated into 

a multiple regression analysis (Benjamin and Pollard, 1980). Alternative formulations of this 

design matrix are possible and are discussed in Hastie and Tibsharani (1990). 

4.4.2 The analysis of transient dysphagia following radiotherapy 

For this problem the natural cubic spline with knots at the limits of the data and at 7,14,21, 

28 days were chosen to represent the shape of the marginal log odds of reporting symptoms. 
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This was assumed to be the same for each treatment group. The treatment difference was 

modelled as a constant log odds ratio. Defining rt, =1 for the F2 treatment group, the marginal 

model for the 6, 
ij=E(yij) can then be written 

4 

logit(6; 
ý)=ao+aixy+E 

ß; 0; (xj)+Srt; (4.25) 
º=1 

As a naive analysis for comparison purposes, equation (4.25) was also fitted excluding the 

spline and assuming an independence working correlation matrix, giving a model for a constant 

log odds and log odds ratio through time. This model will be referred to as the constant model. 

For the analyses including the spline, three different structures for the working correlation were 

used: independence; exchangeable; and autoregressive of order 1. These models will be 

referred to as the independence, exchangeable and AR). Unfortunately, due to computing 

constraints, it was impossible to iteratively fit the AR! model using GEE! procedure described 

in Section 4.2.2. Instead, R, (p) was assumed fixed with lag one correlation, p=0.8. This value 

was determined from the lag one correlation of the Pearson residuals taken from the 

independence model. All results are given in table 4.4 with the fitted marginal response over 

time plotted in figure 4.5. 

Table 4.4: Estimated treatment difference in reporting symptoms of dysphagia using GEEI with a natural 
spline. 

Model 6 Naive SE Robust SE OR [95% CI] p 

Constant -0.25 0.04 0.18 0.78 [0.55,1.12] - 

Independence -0.25 0.04 0.20 0.77 [0.52,1.14] 

Exchangeable -0.77 0.17 0.34 0.46 [0.24,0.91] 0.50 

AR(1) -0.21 0.11 0.20 0.81 [0.55,1.19] 0.80 
The estimates for p given in the last row of the table refer to the assumed correlation between 
successive units for the exchangeable and the lag one correlation for the AR(l) working correlation 
matrices. Due to computing constraints, that for the AR(l) model was fixed and therefore not 
updated during estimation. 
The 95% Cl for the odds ratio is given with a based on the robust standard error. 
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The estimated log odds ratios given from the constant, independence and AR(1) models 

were all very similar translating to about a 20% lower odds of dysphagia for patient receiving 

the F2 course of treatment as opposed to FM. There was no evidence to suggest that this was 

not due to chance. The exchangeable model, however, gave a very different picture, estimating 

a 54% lower odds in the F2 group with a 95% CI which excluded an odds ratio of 1. From 

figure 4.5 it can be seen, however, that this model did not fit the data very well, consistently 

over estimating the response in the FM group and underestimating the response in the F2 group. 
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Figure 4.5: Fitted marginal profiles for the MRC LU07 dysphagia data using (a) independence; (b) 
exchangeable; (c) ARI working correlation matrices. The observed lagged correlation of the 
Pearson residuals from the independence model: ; and the correlation for the exchangeable: 
----; and AR 1: -------- working correlation matrices are shown in (d). Within (a), (b) and (c), the 

observed profiles for the multiple fraction radiotherapy (FM): ; two fraction radiotherapy: 
---------- The symbols * and + give the fitted profiles for the multiple fraction (FM) and two fraction 
(F2) radiotherapy groups respectively. 
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This was due to a misspecification of the correlation structure of the data, in particular between 

observations close together which formed the bulk of the data. This is shown in figure 4.5(d) 

which plots the observed correlation between Pearson residuals from the independence model 

for different lag times. In terms of the fit of the each model, determined by comparing the 

observed and fitted values shown in figure 4.5, the ARI model was the best as it tended to an 

asymptote of zero slope at the limits of the data whereas the independence model showed a 

slight upward turn of the spline at the lower limit. 

Having adjusted for the shape of the response function over time, this simple analysis gave 

no evidence of a constant difference in log odds over time in the reporting symptoms of 

dysphagia. However, examination of the data and knowledge about the nature of symptoms, 

would suggest that a constant treatment difference is unlikely. Two alternative extensions to 

model a non constant treatment difference were considered. The first was a quadratic 

treatment: time interaction. Like the constant treatment difference, it is addressing a very 

specific hypothesis about the nature of response. The second model used two different splines 

for each treatment group, and thus tested the more general hypothesis of some difference in 

response between the two groups. Significance in each case was assessed by constructing a Chi 

squared statistic for simultaneous contrasts on c df given by 

(QO)T(QVAQTyIQo (4.26) 

where Q is a (c xp) matrix of c contrasts for p parameters, and VO =var(3). For the quadratic 

treatment effect this had 2 df, for the more general hypothesis it had 5 df. Each model was fit 

using an ARI working correlation structure with p=0.8. The results are summarised in table 

4.5. Both naive and robust results are given based on the naive and robust estimated var(O). 

Based on the robust results, no evidence of a quadratic treatment difference was seen 
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Table 4.5: Chi-squared statistic (p value) for testing non constant treatment differences for the MRC 
LU07 dysphagia data. 

Naive Robust 

Chi-squared p value Chi-squared p value 
statistic statistic 

Quadratic 7.38 (0.025) 2.68 (0.262) 

Different splines 13.4 (0.020) 12.02 (0.035) 
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Figure 4.6: Estimated response profiles for MRC LU07 dysphagia for non constant treatment 
difference fitted using (a) quadratic; (b) different splines for each treatment group, (c) and (d) show 
the realised estimated treatment difference in proportions for each model respectively. 
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(p=0.262). However, there was some evidence of a difference in shape although this was not 

very convincing (p=0.035). The fitted profiles for each of these models are given in figure 4.6. 

Also shown on the figure is the shape of the estimated treatment difference. This is particularly 

important for the more general hypothesis because it is the only way to visualise the estimated 

effect. In terms of fitting the data, the quadratic treatment effect was the most satisfactory with 

some evidence of over fitting seen when different splines were used with the fitted profile for 

the multiple fraction group starting to upturn. The effect of this upturn is shown quite 

dramatically to affect the estimated treatment difference shown figure 4.6(d). As a result of this 

it was not felt that the results of the model with different splines could be relied upon in terms 

of assessing the difference between the two groups. 

4.4.3 Conclusion 

This analysis has demonstrated the use of cubic splines for accommodating complex patterns 

of response into a marginal model using a natural spline. It has been shown (Ford et al., 1995) 

that omitted covariates in a logistic regression analysis can result in biased and inefficient 

estimation of other covariates of interest. Therefore, the purpose of this analysis was to 

incorporate the obvious behaviour of the marginal response over time into the analysis in order 

to obtain an unbiased and efficient estimate of the treatment effect having adjusted for the 

behaviour in response over time. On the whole the analysis proved successful, in particular, 

a good representation of the response over time was obtained. However, when assumed 

constant over time, little difference was seen in the estimated treatment effect from a model 

which ignored the response over time and that from the model incorporating a natural spline. 

This was the case both in terms of the treatment estimate and its precision. 

The main drawback with the use of splines in an analysis such as this is that the knots have 

to be chosen. If the shape of response over time is simply a nuisance part of the analysis, as in 
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this case, then this is not of great concern. Otherwise, the sensitivity of the results to the choice 

of knots position should be assessed. In this example they were arbitrarily chosen at weekly 

intervals from the start of treatment. Further analyses with the knots chosen at more specific 

time points based on close examination of the data (k=0,9,16,23,30,53 days) did not impact 

greatly on the results presented in table 4.4 although as would be expected the better fitting 

spline did slightly increase the precision on the estimated treatment effect. For example, for 

the AR(1) model the estimated log odds ratio was -0.22 (robust SE=0.20), translating to an odds 

ratio of 0.80,95% C1=[0.55,1.181. The second analysis, when the treatment difference was 

modelled in terms of a difference in shape using two different splines, was not treating the 

splines as nuisance parameters however, and therefore inferences based on such analyses need 

careful examination. Generally it is perhaps better not to use such models and to concentrate 

on the more specific hypotheses about treatment differences. 

It should be noted that this model could just as easily have been fitted using a random effects 

model, but for the objectives here - to give a clear description of the marginal response over 

time and an estimated treatment comparison - the marginal model was more appropriate. In 

other situations - for instance when the timing of treatment is variable for different subjects - 

a random effect model with different splines for each subject may be a suitable model to 

choose. Such models have been used to some degree by Kenward and Welham (1996). Further 

work would be needed to determine whether they may be of use for the analysis of quality of 

life data. Similarly, alternative models could have been applied to model the shape of the data, 

in particular fractional polynomials (Royston and Altman, 1994). For this analysis, little 

success was achieved with such models. 
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4.5 Multivariate binary outcomes - extensions to the multilevel model 

As demonstrated in the continuous case, the simple two level model for repeated 

observations can be easily extended to a three level model to incorporate multivariate outcomes 

with the dimensions as level one, occasions at level two and subjects at level three. This 

extension may be particularly useful in the case of binary outcomes as it allows the analysis of 

individual item responses within a questionnaire instead of summarizing the questionnaire by 

a single summary score. This not only gives a greater insight into the individual aspects of 

quality of life, it may also give a more intuitive outcome measure - the odds of symptoms - 

rather than an arbitrary score. In addition, it allows the estimation of the degree of association 

between the different items thus aiding the understanding of the behaviour of quality of life 

throughout follow-up. This is particularly important in the binary data case when, as discussed 

in Section 2.3.4, it becomes much more difficult to display or summarize the data. 

To demonstrate the use of the multivariate model, an analysis of the individual item 

responses of the RSCL taken from the NSCLC study was used. Each individual item response 

was again dichotomised from the original four point scale to a two point scale as follows: slight 

(0,1), moderate (2,3). For simplicity, a model with a constant odds of symptoms over time was 

assumed and only six out of the possible thirty-six items, chosen to be of particular interest to 

patients with lung cancer were analysed. These items were: pain in the chest, heartburn, 

cough, shortness of breath, dry mouth as well as anxiety. Baseline responses were also 

incorporated into the analysis. Therefore the data used were restricted to the 40 subjects who 

gave a baseline (pre-treatment) and at least one post treatment response to the RSCL. These 

were divided between the two treatment groups in the ratio 17: 23. All analyses used first order 

PQL restricted IGLS estimation. 

The aim of the analysis was to investigate the level of reported symptoms over the follow-up 
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period and how this related to the treatment course received, as well as how the response for 

different symptoms were related to each other. 

4.5.1 Extension of the two level model for binary data 

The two level model for repeated binary outcomes is extended to three levels for 

multivariate repeated binary outcomes in the same way as shown for the continuous case in 

Section 3.4. The dimensions for the level one units are clustered within occasion at level two, 

within subjects at level three. Again the differences between dimensions are assumed fixed, 

and the full covariance between dimensions at level three is estimated. It is at level two that 

the difference lies because the residuals at that level have binomial distribution and their 

variances therefore are known given the marginal parameters. 

As for the continuous case, the model is constructed using a series of dummy variables for 

the response in each dimension. For example, to investigate the effect of covariate x, in each 

dimension, 1=1,..., L, a model for Eo,,,,, )=8, t is 

L 

Iogit(8Ul)=E {aI+ßr'rn+un}züi 
1"i 

(4.27) 

where zj, )=l for dimension 1,0 otherwise, At level three, var(uf) is an (LxL) matrix 

with diagonal elements, var(uj1)=o2,, and off diagonal elements, cov(u,,, ua)=QU,, i, at row 1, 

column k, for dimensions 1*k. At level two, var(e1) has on its diagonal, var(e,, )=oäe,, (1-ej, ), 

with ofk=cov(eIj,, eljj. ) as the off diagonal elements for 1. k. In the following example, the over 

dispersion parameter Qe, is constrained to equal one. As in the continuous case, by setting all 

the off diagonal elements to zero, the model is analogous to fitting L univariate models. 

4.5.2 Reporting of patient symptoms on the RSCL in the CRC NSCLC study 

The objectives of this analysis were to investigate the prevalence of reporting each of the 
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six chosen symptoms of the RSCL between the two treatment groups and over time. It will also 

yield an overall global estimate for difference in reporting of symptoms in the two treatment 

groups if appropriate, as well as information about the association across different symptoms. 

For example, if a patient is reporting chest pain at a particular time, what other symptoms are 

they likely to report (within subject across symptom correlation)? Similarly, if a patient has 

a higher than average odds of reporting symptoms of chest pain over the period, is their odds 

of reporting a second symptom similarly high (between subject across symptom correlation)? 

A sequence of four models were used. Marginal profiles giving the odds of reported symptoms 

at each time are shown in figure 4.7. They show a large degree of fluctuation over time with 

a slight downward trend across all dimensions and very little difference between the two 

treatment groups. 

Model one - constant odds 

The initial model assumed a constant dimension specific log odds over time which was allowed 

to vary across subjects, written 
6 

Iogit(9jýº)=E ( aº+uºº) zºji 
º=1 

(4.28) 

Model two - adjustment for baseline 

An adjustment for baseline symptoms at baseline was then added to the model in the form of 

six dummy variables, baserr=l if a patient had symptom l at baseline, 0 otherwise, for 1=1,..., 6. 

6 
logit(9, r)=E {ar+ybase, r+uýr}zjn (4.29) 

r. r 

Model three - constant treatment difference in odds 

A constant treatment difference in log odds was then added. Initially six separate treatment 

covariates for each symptom were fitted where rt,, =l for continuous, 0 for the split course. 
6 

logit(O, fl)=ý (a, +ybase,, +8, rt; 1+u, 1}z; 
(1 (4.30) 
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Figure 4.7: Marginal profiles for the odds of reporting symptoms of (a) chest pain; (b) heartburn; (c) 

anxiety; (d) cough; (e) shortness of breath; (f) dry mouth recorded on the RSCL in the CRC NSCLC 

study. 

A Chi-squared test for heterogeneity of dimension specific treatment difference was 

constructed. Given no evidence of heterogeneity, a single treatment effect was used in the 

model. 

Model four - linear trend over time 

Finally a linear trend over time was added to the model. Again six separate parameters were 

used, occ1, coded 0 to 7 for weeks 1 to 8, for the Ith symptom, 0 otherwise. Consistent with 

the heterogeneity test of the previous model, a single treatment covariate across dimensions was 
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used. 
6 

logit(6ýýl)=E {al+ybaseil+ßpccr; l+uii}Z; 
jý)+ön, (4.31) 

1=i 

Again a Chi-squared test for heterogeneity of dimension specific linear trends was constructed. 

In this case, there was strong evidence of a difference in the effects and hence a single covariate 

was not fitted. 

The results from the analysis are given in table 4.6. 

The overall odds of five of the six symptoms was low, signified by estimated odds less than 

one for all but shortness of breath. The estimated between subject variance for each symptom 

was, however, very high in all cases, illustrating large differences in the odds of symptoms 

between subjects. For example, the estimated variance of 2.03 for the log odds of -1.82 of 

grade 2/3 chest pain gave an estimated 95% reference range for the subject specific odds of 

reporting such symptoms of [0.01,2.63]. This translated to subject specific range for the 

probability of [0.01,0.72]. On addition of the symptoms at baseline, a reduction in the between 

subject variance was seen for four of the six symptoms: anxiety, cough, shortness of breath and 

dry mouth. Similarly for these symptoms, the fixed parameter estimates for this model showed 

strong relationships between reporting symptoms at baseline and subsequently. Although such 

strong relationships with baseline response were also seen for the remaining symptoms of chest 

pain and heart burn, their respective variances increased in model two. 

The addition of a separate treatment effect in each symptom dimension showed a marginally 

higher odds of anxiety in subjects on the split course therapy with the reverse in each of the 

remaining symptoms. With the exception of dry mouth, which was marginally significant, these 
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Table 4.6: Fixed parameter and between subject variance estimates (SE) for four sequential multivariate 
binary models for individual items on the RSCL in the CRC NSCLC study. 

1. Constant odds 
2. Baseline 3. Treatment 
adjustment difference 

4. Rate of 
change over 

time 

Log odds Odds Odds ratio Odds ratio Odds ratio 
(SE) [95% Cl] [95% Cl] [95% Cl] [95% CI] 

Fixed parameter estimates 

Chest pain -1.82 0.16 0.11 1.08 0.74 
(0.30) [0.09,0.30] [0.05,0.24] [0.292,3.97] [0.63,0.88] 

Heart burn -1.45 0.24 0.18 1.02 0.86 
(0.30) [0.13,0.43] [0.09,0.35] [0.27,3.81] [0.74,1.00] 

-1.78 0.17 0.06 0.60 0.92 
Anxiety (0.34) [0.09,0.33] [0.02,0.15] [0.14,2.50] [0.79,1.081 

Cough -0.29 0.75 0.13 1.09 0.93 
(0.31) [0.41,1.371 [0.05,0.35] [0.33,3.68] [0.81,1.061 

Shortness of 0.11 1.12 0.08 1.24 0.67 
breath (0.45) [0.46,2.731 [0.02,0.28] [0.23,6.82] [0.56,0.801 

Dry mouth -1.61 0.20 0.10 4.52 0.85 
(0.37) [0.10,0.42] [0.05,0.231 [0.94,21.7] [0.73,0.99] 

Single parameter estimate over all 
dimensions 

CM-squared 7.34 18.6 
test (p=0.02) (p=0.002) 

Estimate 
0.94 Not applicable [0.38.2.32] 

Between subject (level three) variance estimates 

Chest pain 2.03 (0.78) 2.21 (0.82) 2.27 (0.84) 2.87 (0.99) 

Heart burn 2.33 (0.81) 2.60 (0.88) 2.66 (0.89) 2.37 (0.81) 

Anxiety 2.83 (1.00) 2.55 (0.96) 2.61 (0.97) 3.01 (1.08) 

Cough 2.70 (0.82) 2.25 (0.73) 2.32 (0.75) 2.34 (0.75) 

Shortness of 6.24(t. 77) 4.35 (1.39) 4.43 (1.42) 5.93 (1.84) 
breath 

Dry mouth 3.74 (1.22) 3.42 (1.18) 3.58 (1.22) 4.00(l. 32) 

The odds ratios for models 2,3 and 4 are given for: symptoms versus no symptoms at baseline; 
continuous versus split course radiotherapy; and a one week increase in time. Estimated from a 
random effect model, they reflect odds ratios for given underlying subject specific odds. 
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estimates were all small in comparison with their standard error and gave no evidence of a 

difference in the odds of all symptoms between the two treatment groups. A test for 

homogeneity of the treatment difference across all symptoms gave no evidence against the null 

hypothesis (Chi-squared=7.34 on 5 df, p=0.20). Fitting a single treatment parameter gave a 

combined odds ratio estimate of 0.94,95% CI=[0.38,2.63], interpretable as a 6% reduction in 

a subject's odds of symptoms if they were to receive the continuous course as opposed to the 

split course. 

Fitting a linear trend in log odds over time suggested a fall in the odds of symptoms in all 

dimensions over follow-up. This trend was particularly evident for shortness of breath with 

an estimated 33% reduction per week in the subject specific odds of reporting such symptoms, 

95% CI=[ 18%, 46%] reduction. Testing for a homogeneity of linear trend across all symptoms 

gave a Chi squared statistic of 18.6 on 5 df (p=0.002). A single occasion effect was therefore 

not fitted. The estimated overall treatment effect in this model was relatively unchanged from 

that in model three (0.91,95% CI=[0.36,2.27]). 

The estimated covariance structure of the data is of particular interest in this analysis and 

is its advantage over six separate univariate analyses. The estimates given from model four 

with a single treatment effect are presented in table 4.7. The first half of the table gives the 

correlations between subjects which measure the degree of association between the level three 

residuals, u,,, across symptoms. The estimated covariances with standard errors are given 

below the diagonal, translated to correlations above the diagonal. These give an indication 

whether a subject with a higher than `average' odds of one symptom has a higher than average 

odds for a second symptom. Those in the bottom half of the table were estimated within 

subject. Sincea2, was constrained to be equal to one for 1=1,..., 6, the covariance and 

correlation are equal and indicate whether subjects who have higher than expected odds of one 
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symptom at a particular occasion have a similarly higher than expected odds in a second. 

Between subjects, a high degree of positive association was seen between most symptoms. 

Table 4.7: Covariance (SE) and correlation estimates between and within subjects for the reporting of 
symptoms on the RSCL for the CRC NSCLC study. 

Chest pain Heartburn Anxiety Cough Shortness Dry 
of breath mouth 

Between subjects 

Chest pain 2.87 0.52 0.51 0.64 0.44 0.56 

Heartburn 1.34 2.37 0.24 0.44 -0.22 0.35 
(0.71) 

Anxiety 1.50 0.64 3.01 0.55 0.48 0.34 
(0.83) (0.70) 

Cough 1.65 1.04 1.46 2.34 0.49 0.73 
(0.71) (0.61) (0.72) 

Shortness 1.80 -0.82 2.00 1.81 5.93 0.57 
of breath (1.07) (0.88) (I. I I) (0.93) 

Dry mouth 1.89 1.07 1.17 2.21 2.78 4.00 
(0.93) (0.79) (0.91) (0.83) (1.28) 

Within subjects 

Chest pain 1.00 

Heart burn 0.38 1.00 
(0.05) 

Anxiety 0.57 0.33 1.00 
(0.40) (0.06) 

Cough 0.38 0.34 0.35 1.00 
(0.05) (0.06) (0.05) 

Shortness 0.49 0.40 0.45 0.43 1.00 
of breath (0.05) (0.05) (0.05) (0.05) 

Dry mouth 0.62 0.51 0.59 0.42 0.61 1.00 
(0.03) (0.04) (0.04) (0.05) (0.04) 

Within the (6x6) block between subjects, the covariance estimates are given below the diagonal, the 
variance estimates on the diagonal, and the correlation estimates above the diagonal. Given o<<=1, 
for 1=1,..., 6, within subjects, the covariance and the correlation are equal and are given below the 
diagonal. 
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However, the estimated correlation observed between shortness of breath and heartburn was 

negative. The corresponding covariance was however, very small in relation to its standard 

error. The scatter plot matrix in figure 4.8 of the level three residuals from model 4 illustrates 

these associations. Contrasted with the very crude representation of these correlations in figure 

2.17, figure 4.8 demonstrates a major advantage of using the three level model to analyse these 

data giving a very clear impression of the association across dimensions within the data. 

Similarly the multivariate model also gives estimates of covariances (correlations) between 

dimensions within subjects. These estimates (also shown in table 4.7) are adjusted for an 

individual's expected response and show a degree of positive association between symptoms 

which was not at all visible from the crude representation in figure 2.18. Unfortunately the 
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Figure 4.8: Scatter plot matrix of level three residuals of model four showing the between subject 
across dimension correlations for six symptoms measured on the RSCL in the CRC NSCLC study. 

-3 -2 -i 0t 

150 



The analysis of repeated binary outcomes 

Binomial nature of the residuals at this level does not allow a similar graphical representation 

of these estimates. 

As demonstrated in Section 4.3, residual diagnostics for these random effect models are 

extremely important given the dependency of the results to the assumed distribution of random 

effects. Univariate Normal plots and a multivariate Gamma plot are shown in figure 4.9. In 

contrast to those of the earlier example, the univariate distributions showed reasonable 

Normality. The Gamma plot in figure 4.9(g) shows the squared distances of the estimated 

residuals calculated using the fitted level three covariance matrix and shows their distribution 

to be much less dispersed than expected. That shown in figure 4.9(h) shows the squared 

distances calculated using the empirical covariance matrix of the estimated residuals. This 

closely resembles the expected Chi-squared distribution and highlights an important further 

area of work to determine the distribution of these estimated residuals in order to aid future 

model checking. 

4.5.3 Conclusion 

This analysis showed evidence of a fall in the level of reported symptoms over the follow-up 

period after the start of treatment and no evidence of differences in the odds of the six 

symptoms according to treatment received. For subjects who reported symptoms at baseline, 

their odds of reporting symptoms following the start of treatment was increased. A high degree 

of correlation was seen between symptoms both between and within subjects. 

In general the multivariate model allows a greater insight into the subject response on the 

RSCL than is gained from analysing the summary scores as a continuous measure. Further it 

gives an intuitive outcome measure, allowing the discussion of the odds of symptoms and how 

this changes over time rather than, say, a change in the total RSCL score. However, the model 
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Figure 4.9: Residual diagnostics for the multivariate binary model for the CRC NSCLC study showing 
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matrix; and (h) a Gamma plot for multivariate Normality based on the empirical covariance matrix of 
the estimated level three residuals. 

will be sensitive to the Normality assumptions of the level three residuals and so model 

checking is necessary. 
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4.5 Summary and discussion 

This work has reviewed the use of marginal and random effect models (or more specifically, 

hierarchical models), both of which can usefully help the analysis of repeated binary outcomes 

in quality of life data. Given the difference in their interpretation they should not be thought 

of as alternative competing ways of answering the same question. 

Marginal models give overall population covariate effects and treat the associations between 

repeated observations on the same subject as nuisance parameters. Such models are very 

simple to use. In particular, they can be very easily extended to model complex patterns of 

binary response over time which are often seen in quality of life data. The interpretation of 

their parameter estimates is also familiar as they can be considered in the same way as those of 

a cross-sectional analysis. However, if information about the variance structure of the data, 

that is, the dependency between observations on the same subject, is required, more complex 

specifications of these model are needed which may be impractical when the number of 

measurement occasions is high. The models presented here represented a standpoint in middle 

ground, where some attempt to model the correct correlation structure was attempted in order 

to maximise the efficiency of the parameter estimates. Most simply, it is possible to ignore the 

correlation structure altogether in parameter estimation, treating the data as independent and 

using analysis techniques for independent binary outcomes. Using jack-knifing techniques 

(Efron and Tibshirani, 1993), whereby the analysis is repeated n times with one subject 

removed each time, robust standard errors can then be obtained from the standard deviation of 

then jack-knife estimates. These results will be very close to those of a GEE1 with an assumed 

independence `working' correlation matrix. 

Random effect models give subject specific covariate effects. That is, the estimated effect 

of the covariate of interest is on a patient's underlying log odds of positive response which is 

153 



The analysis of repeated binary outcomes 

treated as a random effect from some underlying distribution. In the work presented here, and 

within much of the available software for these models, the random effects are assumed 

Normally distributed. An advantage of the random effect model is that by integrating out over 

these random effects, the random parameters can be transformed to give marginal inferences. 

However, the ability to do this relies on knowing the correct distribution of random effects 

which is the main problem of the random effect model - its results are not robust to failure in 

the assumed distribution of the random effects. For longitudinal binary data, this can be a 

major problem when large numbers of patients give complete positive or complete negative 

responses over the whole follow-up period, as was demonstrated in Section 4.3. Further work 

is therefore needed to determine suitable methods to accommodate this feature of the data for 

more satisfactory modelling of such data. It was shown in Section 4.3.2 that adjusting for 

baseline may sometimes be a simple way to handle the problem. Alternatively, a different 

choice of distribution for the random effects may be used. Such models have been discussed 

by Lee and Nelder (1996), although their formulation is not accessible when the number of 

measurement occasions is high. Alternatively, Monte-Carlo simulation methods may be used 

for full likelihood estimation under more general distributions for the random effects (Gilks et 

a!., 1993). 

Despite the problem of specification of the distribution of random effects, the possibility 

of modelling several dimensions or symptoms within a multivariate repeated measurement 

model could be very valuable for the analysis of quality of life data. Despite its complexity, this 

analysis not only allows examination of the behaviour of response for different symptoms of 

interest, by using a single treatment covariate over all symptoms, it also gives an overall 

estimated effect of treatment which is perhaps more informative and intuitive than a difference 

in the summary scores. Given that the response to the same symptoms is under consideration, 

it would present an estimate which may be compared across studies. 
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Other methods of analysis are also possible. In particular, Zeger and Liang (1992), and 

Diggle et al. (1994) both consider the use of transitional models in which the dependency 

between observations is incorporated into the analysis by explicitly conditioning on previous 

observations by including them as covariates in the model. In addition, summary statistic 

analyses could be used. For example, the proportion of days spent with symptoms calculated 

for each subject could be analysed within a logistic regression analysis. As discussed in 

Chapter 3, with unbalanced data, the analysis would have to suitably weight each subject 

specific estimate in terms of its precision. Again, the parameter estimates from these models 

will have a specific interpretation highlighting that, with binary data, it is important that the 

required focus of research is first determined in order that the most suitable analysis can be 

completed. It should be noted however, that although unfamiliar, within a clinical trial it is 

often the subject specific treatment effects (obtainable from a random effects analysis) that are 

of scientific interest. 

The main restriction with the work demonstrated here is that quality of life data is perhaps 

more commonly measured on an ordered categorical scale rather than as a binary response. 

Although, as done in the examples here, such scales may be dichotomised to form a binary 

outcome, such an approach is not the most satisfactory. This problem is addressed in the next 

chapter which concentrates on the analysis of repeated ordered categorical outcomes. 
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5 The Analysis of Repeated Ordered Categorical Data 

5.1 Introduction 

Many quality of life items are measured on an ordered categorical scale which may, in some 

instances, be combined to give an overall summary score as analysed in Chapter 3. In cases 

when this is not appropriate (as with the daily diary card) or when it is desirable to examine 

particular items on a questionnaire in more detail, a common approach may be to dichotomise 

the score into a simple binary response and apply analyses of the type described in Chapter 4. 

However, both the combination of items to a summary score and the dichotomisation of the 

score, may result in a loss of information as well as power. A solution is to consider analyses 

of all possible dichotomies, and then summarise these to give an overall estimate of the effect 

of interest. A more parsimonious model is to assume the effect of covariates is the same 

regardless of the position of the cut off defining the dichotomy, reducing the question to a 

binary data problem with correlated errors. Such analyses are well developed for cross- 

sectional data. For example, the cumulative odds model, proposed by McCullagh (1980), 

considers the probability of being in category k or below, for k=1,..., K-1, and the continuation 

ratio model, a generalization of the Cox proportional hazard survival model, summarises the 

conditional probability of being in category k given a response in category k or below for 

k=2,..., K (Armstrong and Sloan, 1989). The critical assumption of both of these models is the 

lack of an interaction between the choice of cut point and covariates with the differences 

between cut points are treated as nuisance parameters. 

The extension of these models for repeated measurements has been discussed by several 
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authors. Grizzle et al. (1969) proposed a weighted least squares (WLS) approach which 

considered the full multinominal distribution generated from repeated ordinal data thus giving 

equivalent maximum likelihood estimates for the parameters of interest in the models above. 

Alternatively, Kenward et al. (1994) have used a Dale model (Dale, 1986) to specify fully the 

multinominal distribution of the data for direct maximum likelihood estimation of the model 

parameters. A problem with the WLS analysis is that the data need to be stratified by all 

possible combinations of the covariates, thus requiring continuous covariates to be categorised. 

In addition, as the number of covariates, measurement occasions or response categories 

increases, the observed cell counts fall which can lead to estimation difficulties. The Dale 

model used by Kenward et al. (1994) is similarly restricted by the number of repeated 

measurements that can be easily handled (Lessaffre et al., 1996) and has the additional problem 

of being computationally non-trivial to apply in practice. A further approach which has been 

suggested is to consider the model as a generalised linear model with a correlated error 

structure. Estimation is then a simple extension of that discussed in Chapter 4 and can easily 

cope with large numbers of repeated measurements (Ware et al., 1988, Zeger, 1988). Given 

their relative ease in practical application and their ability to cope with large numbers of 

repeated measurements, it is these models which are applied here for both the cumulative odds 

and continuation ratio parameterisations. Reviews of these and other methods are given by 

Landis et al. (1988), Agresti (1989) and Ware et al. (1988). Ashby et al. (1992) give a general 

annotated bibliography of other proposed methods. 

Section 5.2 describes the parameterisation and the interpretation of the cumulative odds and 

continuation ratio models for cross-sectional data. The extensions of these models for repeated 

measurements in terms of marginal and random effects models are then given in Section 5.3 
. 

Their different interpretations are highlighted. The practical application of both models is then 

demonstrated using data from the shortness of breath item on the RSCL measured in the CRC 
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NSCLC study that was analysed as a binary response in Section 4.3.2. 

5.2 Regression models for ordered categorical data 

Within this section, the parameterisation of the cumulative odds and continuation ratio 

models for cross-sectional data is described. The notation assumes that yd is a (K-1)x1 

response vector for subject i, at fixed time j, where y,, =l for a response in category k for 

ordered response categories k=1,..., K-1,0 otherwise. The probability that subject i, is in 

category k at the fixed time j, is E(y,, )=it,,,. Within the notation used in this section, the 

subscript j, that denotes the time of measurement, is redundant as it is assumed fixed. Its 

incorporation throughout, however, is to allow simple generalisation of the models for repeated 

measurement data. Each model is described in terms of a single covariate, x,. Their extension 

top covariates is trivial. 

5.2.1 Cumulative odds model 

The cumulative odds model was introduced by McCullagh (1980). The motivation for the 

model was that the ordinal response represents an underlying continuous unobservable latent 

variable. The model is parameterised in terms of the cumulative probability of response in 

category k or below 

k 

µa=ý aýr (5.1) 
rýl 

By defining zL=Lyl, where L is a(K-1)x(K-1) lower triangular matrix of ones, the cumulative 

odds model for the effect of a covariate xj can be represented in a logistic regression model for µ,, =E(zU) 

with linear predictor 

log 
µük 

=a+ßx,, (k=1,..., K-1) (5.2) 1 -µig 

in 
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Within this model, ß is assumed independent of the `cut-point' k, and can be interpreted as the 

log odds ratio for a one unit change in the value of xi of being in category k or below at time 

j. The var(z, )=ocLV1LT where V, =var(yv) and ae is an over dispersion parameter. 

This transformation by L introduces an extra complication into the usual logistic regression 

model by inducing a dependency between (z; 
jk, zyki) so that, for k*k', cov(z; jk, zUk)=µijk(1-µijk') 

Ignoring this dependence will lead to an underestimation of the off-diagonal elements var(zy) 

and through this the variance of the model parameters. However, as in this case it has a known 

form, it can be modelled directly (McCullagh and Neider, 1989). Alternatively, it can be left 

unspecified, and robust variance estimates can be obtained using generalised estimating 

equations (GEE) introduced in Chapter 4 with an appropriate working correlation structure. 

5.2.2 Continuation ratio model 

The continuation ratio is an expression of the Cox proportional hazards model for discrete 

data and models the conditional probability of being in category k given a response is in 

category k or below (Armstrong and Sloan, 1989). Again this is done within a logistic 

regression model. Following the same notation as above, this is written 

log! ''k=ak+0*xr, (k=2,..., K) 
µjjk 

(5.3) 

Although this provides a different interpretation to the parameters of the cumulative odds 

model - log odds ratios of a response in category k, conditional upon the response being in 

category k or below for each unit increase in xi - again the parameter ß' is assumed constant 

over all cut-points. In practice, this is most simply derived by defining a new response 

variables zjk, k=2,..., K, where each zük is defined only for the n, k subjects in category k or 

below at time j and takes the value I for a response in category k, 0 otherwise. For p; k=E(z; 
jk), 
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equation (5.3) can be re-written 

log_ µ''k 
=a; +ß`x,, (k=2,..., K) 

1-'Ük 
(5.4) 

An advantage of the continuation ratio logit over the cumulative odds model derives from 

this definition of zjk, k=2,... K, which means that cov(zjik, z. , )=0 for k*k/ (Cox, 1972, 

Armstrong and Sloan, 1989). Thus for the cross-sectional analysis, the usual logistic regression 

estimation procedures may be used to obtain correct inferences about the model parameters. 

5.3 Two model extensions for repeated measurements 

The extension of these cross-sectional analyses for longitudinal data involves the 

incorporation of the additional dependence derived from repeated observations taken on the 

same subject. As an extension of the work of Chapter 4, this is demonstrated here for marginal 

and random effect (or more specifically, hierarchical) models for the cumulative odds and 

continuation ratio in turn. 

5.3.1 Marginal models using generalised estimating equations 

Since they yield consistent parameter estimates with robust standard errors without the 

variance structure of the data needing to be correctly specified, the extension of the marginal 

model of Chapter 4 for both the cumulative odds and continuation ratio is trivial. The only 

drawback is that estimates obtained using a poorly specified working correlation structure, 

although consistent, can be inefficient. However, for an improvement over an independence 

working correlation structure, care is needed to realise the correct structure between cut-points 

within occasions as well as that within subjects over time. 
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For the cumulative odds model in particular, various authors have approached this problem. 

Kenward et al. (1994) noted that p, Jkk, =corr(zfJk, zUk, ) for k<k' can be derived from the cut point 

parameters ak in equation (5.2). They then show that more efficient parameter estimates may 

be obtained by using the m. (K-1) x m, (K-1) block diagonal matrix working correlation matrix 

R., where the element of kth row and k'th column of the jth diagonal block, {R#}kk,, is 

pýlkk'= exp(ak-ak, ) for k<k', with pjkk'=prjk'k" This matrix is assumed the same for all i and is 

updated at each iteration. Such a structure, although improving on the specification of the 

dependence between (zýýk, zijk, ), still assumes an independence structure for observations over 

time on the same subject. Alternatively, Clayton (1992) used an empirical estimate for Rt 

based on the observed proportions in the different categories at different times. A further 

possible estimate for Rr can be obtained using the Pearson residuals given from an 

independence fit. 

For the continuation ratio model, the conditional independence between observed data for 

each cut point at each time makes specification of an efficient working correlation matrix more 

straightforward. For instance, in a simple case with j=1,2,3 and k=0,1,2,3, exchangeable or 

auto-regressive working correlation matrices for the 3(K-1) variables z* with lag one 

correlation p can be written 

13 PI3 pI3 13 pI3 p2I3 

ex (P)= 03 13 03 
, gtAxr(P)= Rj pI3 13 pI3 

PI3 PI3 13 P2I3 pI3 13 PZI3 PI3 13 

(5.5) 

where 13 is a (3x3) identity matrix. Estimation of p for this problem is, however, not trivial. 

5.3.2 Random effect models using a hierarchical structure 

A multilevel (hierarchical) model for repeated ordered categorical data treats the 

dependence between category cut points as an additional level in the hierarchy, thus extending 

P i3 P I3 13 
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the two level repeated binary response model to a three level multivariate model (Hedeker and 

Gibbons, 1994). In the same notation as before, the most simple random effects cumulative 

odds model is written 

Zijk=P ijk+eijk 

where 

logit(µUk) =ak+ (3Xr+ur 

(5.6) 

(5.7) 

At level two, the residuals e. =(e j,,..., euK-i) are constrained to have a multinominal distribution, 

that is, cov(eijk, eýýk1)=aýµýýk(1-µßk, ) for all combinations of {k, k '} , where a, is an overdisperson 

parameter. At the level three, U. is assumed Normally distributed with mean zero and variance 

a, 2,. It therefore follows that a positive u, signifies a subject specific higher than average odds 

of being in category k or below (on the log scale) and therefore typically a lower than average 

symptom score, whereas a negative ui indicates a lower than average odds of being in category 

k or below and thus a typically higher than average symptom scores. 

Although alternative estimation procedures are feasible (Hedeker and Gibbons, 1994), IGLS 

(RIGLS) with a Taylor series expansion to linearise the link function will be used here to give 

penalised quasi-likelihood estimates (Breslow and Clayton, 1993, Goldstein, 1995). 

Similarly, the random effect (or multilevel) model for the continuation ratio is also a three 

level multivariate binary model written 

fr"" 
Zük-µpk+Vü, teük 

where 

cs. s> 

logit(µ; )=040+0 'x1+ur (5.9) 

However, because of the definition of z;, the variance structure of the continuation ratio model 
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has a much simpler form than that of the cumulative odds model as cov(ejk, eýk, )=0 for k#k'. 

In this case a positive u; ̀ suggests a higher than average odds of a response in category k given 

a response in category k or below and therefore a typically higher than average symptom scores. 

5.3.3 Model interpretations 

As with the repeated binary case, the interpretation of the marginal and random effects 

models are very different. The marginal model gives population average effects which have 

the same interpretation as those of a cross-sectional analysis whereas the random effect or 

multilevel analysis gives subject specific covariate effects. These will be larger in absolute size 

than their population average counterparts by an amount directly related to the extent of 

between subject variation. 

There is also a very important distinction to be made between the parameters of the 

cumulative odds and continuation ratio models. The former represent covariate effects as log 

odds ratios of being in category k or below for each unit change in the covariate of interest, 

whereas the continuation ratio gives the log odds ratio of a response in category k given the 

response is at least in that category. In each case, the fundamental model assumption is that of 

equivalent covariate effects over all categories. A summary of the different interpretations of 

a parameter ß for symptoms graded an ordered category scale for an arbitrary treatment 

covariate, x,, taking the value 0 or I are summarised in table 5.1. These practical differences 

are demonstrated with an example from the CRC NSCLC study. 

5.4 Example - CRC NSCLC shortness of breath 

Shortness of breath was measured in the CRC NSCLC study using the RSCL on a four point 

scale: not at all (0); a little (1); somewhat (2); very much (3). Ignoring responses at baseline, 
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Table 5.1: Summary of the interpretations of a parameter ß for repeated ordered categorical data where xi 
is a treatment covariate taking the values 0 or 1. 

Model Interpretation 

I Marginal cumulative odds Log odds ratio of symptoms in category k or below for 
treatment 1 versus treatment 0 

2 Marginal continuation ratio Log odds ratio of symptoms in category k given symptoms 
are in that category or below for treatment I versus 
treatment 0 

3 Random effect cumulative The additional effect of treatment I versus treatment 0 on 
odds each subject specific log odds of being in category k or 

below 

4 Random effect continuation The additional effect of treatment I versus treatment 0 on 
ratio each subject specific log odds of symptoms in the highest 

category given symptoms are in that category or below 

information was available on 62 patients. Over the entire period, there was little difference 

between the two groups in the proportions reporting symptoms in categories 0 or 2 (table 5.2). 

There were however slight differences for categories 1 and 3, with a larger proportion of 

patients in the continuous course reporting in category 1 and therefore the converse for 

category 3. Overall this indicates slightly worse symptoms of shortness of breath in the 

intensive split course. Plotting these proportions on a weekly basis (figure 2.15) showed a 

slight increase over time in the reporting of symptoms graded 1,2,3 in both treatment arms. 

In the light of these observations, this example uses each of the four models described above 

to address both the question of whether there is any evidence of a difference in the reporting 

of shortness of breath in the two treatment arms, or that the reporting of symptoms changed 

with time. 

5.4.1 Model parameterisations 

To demonstrate their differences, the results of the different models were compared in terms 

of their interpretations, as well as the validation of the model assumptions. For the marginal 

models, independence working correlation matrices were initially used. These results were 
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Table 5.2: Proportion of subjects in each response category over the entire 8 week follow-up. 

Category 

0123 

Split course 0.12 0.37 0.25 0.26 

Continuous course 0.13 0.45 0.24 0.1 8 

then compared with those from models with specification of the working correlation matrix 

more closely approximating that expected, as detailed in Section 5.3.1. For the multilevel 

model analyses, RIGLS PQL estimation was used. The four models used are defined below. 

Marginal cumulative odds 

log 
Nijk 

=aM+aM+a2+IMocc +8Mrt1 1-Nil,, 

Random effect cumulative odds 

log 
P', k 

=aRE+aRE+a2E+RREOCCrI+ýjRErli+ui 
1 -µi1k 

!' 

Marginal continuation ratio Random effect continuation ratio 

µiýk .M ýM 'M ßM6 *Mrt log 
µrjk 

_a *RE a . RE 
a; 

R£ n *RE000+8 -RE ýt + i0g * 
=ai +a2 +a3 + occij+ i1+2+3+r ui 

I -Pijk 1 PUk 
(5.10) 

Within the marginal models, the cut point parameters, ak and a; M, k=1,2 for the cumulative 

odds model and k=2,3 for the continuation ratio model were parameterised in terms of 

differences from am and a*M, respectively. Similarly for the random effect models. Inall four 

models, a linear occasion effect was parameterised as occý1=0,..., 7 for weeks 1,..., 8, and 

constant treatment effect, rt1, modelled with the split course as baseline. In each case, the 

proportional odds assumption was tested by fitting a covariate by cut point interaction and 

constructing the combined Chi-squared statistic for simultaneous contrasts on 2 df. 

5.4.2 Results - marginal model 

The results for the two marginal models are given in table 5.3. These should both reflect 
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Table 5.3: Results for marginal cumulative odds and continuation ratio models results for shortness of 
breath in the CRC NSCLC study as an ordinal response. 

Estimate Odds ratio 
(SE) [95% CI] 

Cumulative odds model 

aM (Category 0 or below) -2.62 (0.54) 

a; ' (Category I or below) 2.16 (0.34) 

aM (Category 2 or below) 3.34 (0.39) 

ß'N (OCC) 

&" (/f) 

Continuation ratio model 
.M 

a, 
.M 

a2 

"M ag 

0.09 (0.04) 

0.39 (0.44) 

(Category 1 given 0/1) 1.66 (0.54) 

(Category 2 given 0/1/2) -2.02 (0.43) 

(Category 3 given 0/1/2/3) -2.59 (0.45) 

a'M (occ) -0.06 (0.04) 

vu (rt) -0.27 (0.37) 

Proportional 
odds assumption 

(X2 on 2 df) 

1.09 8.64 
[1.01,1.18] p=0.01 

1.48 0.35 
[0.62,3.50] p=0.84 

0.94 7.91 
[0.87,1.02] p=0.02 

0.76 0.62 
[0.37,1.581 p=0.73 

The standard errors quoted are robust standard errors from a GEE with an independence working 
correlation matrix. 
The treatment effect is given with the split course group as baseline and the occasion effect modelled 
as week 1 to 8 by a linear effect from 0 to 7. 

the patterns in the proportions over time shown in figure 2.15. This is particularly relevant for 

the cumulative odds model in which the category cut point parameters can be transformed from 

log odds (and log odds ratios) to give an estimated intercept for each of the lines displayed in 

figure 2.15(a) for the split course. The estimated treatment effect in this model for the log odds 

ratio of being in category k or below (for all k) for the continuous course versus the split course 

was 0.39 (SE=0.44). Translated in terms of an odds ratio this implies that patients on the 

continuous radiotherapy course were 48% (95% CI=[-38%, 250%]) more likely to be in 

category k or below than those in the split course. There was no evidence to suggest this effect 

167 



The analysis of repeated ordered categorical data 

(a) 

12345678 
Week 

(c) 

12345678 
Week 

(b) 

12345678 
Week 

(d) 

12345678 
Week 

Figure 5.1: Observed and fitted profiles of proportion of patients reporting symptoms of shortness 
of breath in category k or below. The fitted profiles have proportional occasion effects for (a) 
intensive split course; (b) continuous course; and non-proportional occasion effect for (c) split 
course; and (d) continuous course in the CRC NSCLC study. 

was not due to chance (p=0.37) or of a violation of the proportional odds assumption (p=0.84). 

This was not so for the linear occasion effect which gave an estimated 9% [1%, 18%] increase 

in odds per week of being in category k or below. The test of the proportional odds assumption 

gave some evidence of an interaction between occasion and cut point (p=0.01). This is shown 

in figure 5.1 by the fitted profiles for the models with proportional and non-proportional 

occasion effect. They demonstrate that the non-proportionality derived as a result of a fall in 

the proportion of patients in category zero in both treatment arms. 

The interpretation of the parameters of the continuation ratiö are very different, although 
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they do reflect the raw data plotted in figure 2.15. The individual category effects give the log 

odds of being in category k conditional on being in category k or below (for week 0, split 

course). For category 1, the estimated odds was high suggesting that of the responses in 

category 0 or 1, a larger proportion were in category 1. As expected, the corresponding 

estimated odds fall for the higher categories. Their was no evidence that the estimated 

treatment effect varied across categories (p=0.73) and, consistent with the cumulative odds 

model, there was no evidence that the estimated overall treatment difference was not due to 

chance (p=0.77). The direction of this estimated effect was different to that of the cumulative 

odds model highlighting the very different interpretation of the parameters of the two models. 

For the continuation ratio parameterisation, the estimated treatment odds ratio gave the relative 

difference in odds of being in the highest category, given the response was in that category or 

below for the continuous versus split course radiotherapy. The estimate of 0.76 (95% 

CI=[0.37,1.58]) suggested that patients on the continuous course of radiotherapy had lower 

odds of responding in the higher of a set of categories than those on the split course. This was 

therefore consistent with the estimated effect of the cumulative odds model. A similar 

comparison occurs with the linear occasion effect which was estimated to fall over time. As 

with the cumulative odds model, there was evidence to suggest that this effect was not 

consistent over categories (p=0.02). 

The results from the marginal models reported above, were based on an independence 

working correlation matrix. Although inferences based on the robust standard errors from this 

model will be consistent, they may be inefficient because of the poor approximation of the 

working correlation structure to the true covariance structure of the data (Zeger et al., 1988). 

For improved efficiency a number of alternative working correlation structures were assumed. 

For the cumulative odds model, although the dependency between cut points has a known 
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form, the added complexity of the dependence between repeated measurements makes the 

correlation structure more difficult to specify. The matrices used here attempted to improve 

the approximation of the dependence between cut points, although they all incorrectly assumed 

independence between repeated observations on the same subject. They were therefore block 

diagonal with diagonal blocks Ru, j=1,..., 8, that is, 

(Rt, 0 ... 0 

R, = 
o. (5.11) 

0 Ri7 

00R, 

Four matrices were used. Each has been previously described in Section 5.3.1. The first, 

an empirical matrix, was based on the observed correlation between the Pearson residuals 

calculated from an independence model. For computational simplicity, this was based only on 

subjects who responded at all occasions and was assumed the same for all j. The second matrix 

was suggested by Kenward et al. (1994). It used a two stage process with the working 

correlation matrix based on the estimated cut point parameters of the marginal model. Since 

the occasion effect was assumed constant over k (k=O, 1,2), R. was therefore the same for all 

j= l ,..., 8. The two remaining matrices used the method of Clayton (1992) and were based on 

the observed proportions within each category: Clayton (1) combined data over all occasions 

and assumed the same structure for all j; Clayton (2) used the observed proportions at each 

occasion separately, and thus allowed R, to vary across j. A summary of these matrices and 

the results of the analyses are given in table 5.4. 

For the cumulative odds model these illustrated that the exact choice of working correlation 

matrix although making very slight changes to the parameter estimates of the model, did not 

affect the model conclusions. For this example, the Kenward and Clayton (1) working 

correlation matrices were very similar and so it was unsurprising that their results varied very 
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Table 5.4: Estimates (robust SE) {estimate/SE} for marginal cumulative odds with different working 

correlation matrices. 

Working correlation structure 

Empirical Kenward Clayton (1) Clayton (2) 

Category 0 or below -2.56 (0.52) -2.63 (0.54) -2.64 (0.54) -2.63 (0.53) 
(-4.90} (-4.87) (-4.89) (-4.96) 

Category I or below 2.16 (0.32) 2.16 (0.34) 2.15 (0.34) 2.13 (0.34) 
(6.75) (6.35) (6.32) (6.26) 

Category 2 or below 3.34 (0.38) 3.34 (0.39) 3.34 (0.44) 3.30 (0.39) 
(8.79) (8.56) (7.59) (8.46) 

Occasion 0.08 (0.04) 0.09 (0.04) 0.09 (0.04) 0.09 (0.04) 
(2.00) (2.25) (2.25) (2.25) 

Treatment 0.36 (0.45) 0.39 (0.44) 0.39 (0.44) 0.39 (0.43) 
(0.80) 10.89) 10.89) {0.91) 

For each case the (24x24) working correlation matrix, R,, was assumed block diagonal and the same for 
all i. For the Empirical, Kenward and Clayton(1) examples the diagonal blocks, Rd were assumed the 
same for all j, and took the values 

1.00 0.317 0.173 1.00 0.341 0.189 1.00 0.345 0.193 

0.317 1.00 0.243 , 0.341 1.00 0.556 , 0.345 1.00 0.560 

0.173 0.243 1.00 0.189 0.556 1.00 0.193 0.560 1.00 

II 

) 0.317 1.00 0.243 0.341 1.00 0.5561,1 0.345 1.00 0.560 

0.173 0.243 1.00 0.189 0.556 1.00 0.193 0.560 1.00 

respectively. For Clayton(2), Ri has the same block diagonal structure, but Re was varied across 
occasions j=1,..., 8. 

little. Allowing the diagonal blocks to vary over occasions (Clayton (2)) also made little 

difference to the results although it did exhibit a very slight gain in efficiency over the 

independence and the other three working correlation matrices (illustrated by slight reductions 

in the standard errors of the model parameters of interest). Given the simplicity of each of 

these structures, particularly the Kenward and Clayton (! ) working correlation matrices, it is 

recommended that such matrices be used for practical situations. 

For the continuation ratio logit, three different matrices were used. The first two had the 

exchangeable structure given in equation (5.5) with lag one correlation p chosen arbitrarily to 

equal 0.64 and 0.20 respectively. The third matrix had the autoregressive structure described 

in 
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in equation (5.5), with lag one correlation, again arbitrarily chosen at p=0.6. The results are 

given in table 5.5. 

In contrast to the results of the cumulative odds model, in this case the choice of working 

correlation matrix over an independence matrix had some impact on the estimated coefficients. 

This was particularly striking for the cut point parameters but did not alter the conclusions of 

the analysis. The most marked change was seen with the exchangeable matrix with lag one 

correlation, p=0.64. The parameter estimates from this model were also more inefficient than 

those of the independence matrix given in table 5.3 suggesting that this matrix was less 

appropriate than the independence matrix. The results of the model with the autoregressive 

working correlation matrix with p=0.64, were much more efficient, suggesting that the poor 

performance of this first exchangeable matrix, derived from an over specification of the 

correlation between distant occasions. The exchangeable working correlation matrix with lag 

one correlation p=0.2 illustrated the highest gain in efficiency over the independence model. 

Table 5.5: Estimates (robust SE) (estimate/SE) for continuation ratio with different working correlation 
structures. 

Working correlation matrix 

Exchangeable Exchangeable AR1 
(p=0.64) (p=0.2) (p=0.6) 

Category I given 0/1 2.73 (0.64) 1.95 (0.52) 1.86 (0.53) 
(4.27) {3.75) {3.51) 

Category 2 given 0/1/2 . 1.69 (0.49) -1.66 (0.40) -1.12 (0.40) 
(-3.45) (-4.15) (-2.80) 

Category 3 given 0/1/2/3 -3.76 (0.50) -2.78 (0.45) -3.00 (0.49) 
(-7.52) (-6.18) (-6.12) 

Occasion -0.09 (0.04) -0.08 (0.03) -0.08 (0.04) 
1-2.25) (-2.67) (-2.00) 

Treatment -0.25 (0.54) -0.31 (0.41) -0.33 (0.45) 
(-0.46) (-0.76) (-0.73) 
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5.4.3 Results - random effect models 

The results for the random effect models are given in table 5.6. Deriving from random 

effect models, the parameter estimates represent the effect of a particular covariate on a 

subject's underlying odds of being in category k or below for the cumulative odds model, or of 

being in category k given a response in category k or below for the continuation ratio model. 

Their results can therefore not be compared directly with the plots of proportions over time 

given in figure 2.15. As discussed in Section 4.2, the parameter estimates will be larger in 

absolute size than those of the marginal models with the relative difference proportional to the 

or a.. variance of subject specific (log) odds, aü 2 

For the cumulative odds model, the variance in subject specific log odds of being in 

category k or below, was estimated as 14.0, indicating a large amount of variation between 

subjects. For example, this gave a 95% reference range for the subject specific probability of 

being in category 1 or below (for patients in the split course) of [0.0003,0.999]. The effect of 

treatment was consistent in sign with that of the respective marginal model and estimated a 

108% increase (95% CI=[-71%, +1370%]) in the subject specific odds of being in category k 

or below if treated with continuous versus a split course of radiotherapy. There was no 

evidence to suggest this was not due to chance or that it was dependent on the category k. Also 

consistent with the results of the marginal cumulative odds model, there was some evidence of 

an increase in the odds of being in category k or below over time. The estimated change in odds 

over one week was +23% (95% CI=[+10%, +39%]). There was also some evidence of non- 

proportionality of this effect over k. Given the estimated between subject variability and 

assumed Normality of the random effects, the expected ratio of the marginal (population 

average) parameter estimates to these random effect (subject specific) estimates was 0.41. 

Those observed (relative to the marginal model estimates of Clayton (2) in table 5.4) 0.33 and 

0.45 for the occasion and treatment effects respectively. 
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Table 5.6: Results for random effect cumulative odds and continuation ratio models for shortness of 
breath in the CRC NSCLC study as an ordinal response. 

Estimate Odds ratio 
(SE) [95% CII 

Cumulative odds model 

Fixed parameters 

a,, (Category 0 or below) -6.00 (0.85) 

aRE (Category I or below) 5.27 (0.46) 

aZE (Category 2 or below) 8.23 (0.54) 

ßRE (OCC) 

8RE (ri) 

Random parameters 

a2 ý 

Continuation ratio models 

Fixed parameters 

Proportional 
odds assumption 

(x2 on 2 df) 

1.23 8.51 
[1.10,1.39] p=0.014 

0.21 (0.06) 

2.08 1.32 
[0.29,14.7] p=0.52 

0.73 (1.00) 

14.0 (2.74) 

cc RE (Category I given 0/1) 5.65 (0.81) 

OGZRE (Category 2 given 0/1/2) -5.12 (0.46) 

a; RE (Category 3 given 0/1/2/3) -7.70 (0.54) 

0"" (OCC) -0.20 (0.05) 

8 "RS (rt) 

Random parameters 

aZ. 

0.82 8.55 
[0.74,0.911 p=0.014 

0.51 1.37 
[0.08,3.20] p=0.50 -0.68 (0.94) 

12.5 (2.43) 
The treatment effect is given with the split course group as baseline and the occasion effect modelled 
as week 1 to 8 by a linear effect from 0 to 7. 
All estimates were obtained using RILLS with I st order PQL. 

For the continuation ratio model, there was similarly a high degree of variation between 

subjects in the underlying odds of responding category k given k or below. For category 2 

given 0,1,2, the estimated 95% reference range in terms of probability was [0.002,0.999]. In 
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terms of the estimated treatment effect, the estimated difference in subject specific log odds of 

a response in category k given a response in category k or below, for continuous radiotherapy 

versus a split course of radiotherapy, was -0.68 (SE=0.94). This translated to a 49% lower odds 

of being in the higher category if the patient was given continuous therapy versus a split dose 

(95% CI=[92% lower, +220% higher]). As for the population average effect estimated from 

the marginal continuation ratio model, there was no evidence to suggest this was not due to 

chance (p=0.77) or that the effect varied according to the category cut point (p=0.50). Based 

on the estimated between subject variance, and Normality of subject specific residuals, the 

expected ratio of the estimated parameters of the marginal model to its random effect 

counterpart was 0.43. Those observed (relative to the marginal model with exchangeable 

working correlation with p=0.20 given in table 5.5) were 0.46 and 0.40 for the occasion and 

treatment parameters respectively. Residual diagnostics for each of these random effect models 

are shown in figure 5.2. In both cases they showed no substantial deviation from Normality. 
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Figure 5.2: Standardised level three (between subject) residuals for the (a) cumulative odds; (b) 

continuation ratio random effect models for shortness of breath in the CRC NSCLC study analysed 
as an ordinal response. 
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5.4.4 Analysis conclusions 

In conclusion, each of these models gave evidence of a change in the odds of reporting 

symptoms over time, either as a population average effect, or in terms of a change in odds for 

a subject. The direction of this change was shown in all cases to be dependent on the category, 

k. There was no evidence of a difference in the odds in the reporting of the severity of 

shortness of breath between the two treatment groups, although patients on the continuous 

course were shown to have less severe symptoms than those on the split course. 

5.5 Summary and discussion 

As most quality of life measurement scales can, to some degree, be reduced to an ordinal 

scale, this work has assessed the use of two proposed models for such data. Their extensions 

for repeated measurement data using random effect (hierarchical) models and marginal models 

using GEEs for estimation have been explained and applied to the RSCL data in the CRC 

NSCLC study. Other approaches to both the model parameterisation and its extension for 

repeated measurement are possible, in particular the use of transitional models that allow for 

the dependence induced by the repeated measurements by conditioning explicitly on previous 

observations. Such models give a different interpretation again to both the marginal and 

random effect models and have been discussed by several authors, for example, Lindsey et al., 

1995, Follmann, 1994. In particular, Lindsey et al. (1995) use a transitional model in 

conjunction with a continuation ratio for a model that can be fitted using any conventional 

logistic regression software. In terms of parameter estimation, full likelihood parameter 

estimation approaches have been suggested by Grizzle et al. (1969) and Kenward et al. (1994). 

Unfortunately, these are restricted to cope with few repeated measurements and would therefore 

have been difficult to apply to the example data. As these data are typical of those generated 

within quality of life studies, the use of such models is perhaps restricted for this application. 
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An exception to this is, for example, in some breast cancer trials where patient life expectancy 

is relatively long and quality of life measured at a small number of infrequent occasions during 

this time (Fallowfield er al., 1987). 

Once again, within the example presented here, it has been assumed that missing data is 

unrelated to the response process and it has therefore been ignored. A more detailed discussion 

into the implications of this are provided in a Chapter 7. However, Mark and Gail (1994) 

demonstrated with a simple example, that a marginal model for the cumulative odds 

parameterisation with a generalised estimating equation and an empirical working correlation 

matrix gave relatively unbiased estimates even in cases when the missing data observed was 

informative of the underlying response. 

The motivation for analysing the data on its original ordinal scale rather dichotomising it 

to a binary response was to avoid the loss of information which may result from such a 

dichotomisation, the arbitrariness of choosing where to dichotomise and to increase the power 

of the analysis. The information gain of the analysis is unfortunately offset by the increased 

complexity in interpretation of these models. In terms of the gain in power, although this is 

apparent with the random effect analyses (seen by comparing tables 5.6 and 4.2), it was not the 

case for the marginal models (tables 5.4,5.5, and 4.2). This was almost certainly due to the 

loss of efficiency induced by a poorly specified working correlation structure in that they allow 

for the dependence between cut points rather than between repeated measurements. 

Introducing a second set of estimating equations to fully model this structure may help in this 

respect, but the added efficiency is again offset by the additional complexity (Kenward et at., 

1994). 

As with the analyses of Chapters 3 and 4, alternative methods of estimation are available for 
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the marginal or random effect analyses of ordinal repeated measurement data. Those presented 

here were chosen specifically for their application as limited programming is required in order 

for them to be applied, therefore making them accessible in practice. For random effect 

analyses, an equally accessible method is available using Gauss-Hermite quadrature which has 

been implemented by Hedeker and Gibbons (1994). The main problem with the models 

presented here is the unfamiliar interpretation of the covariate effects of both cumulative odds 

and continuation ratio models. Although the equally unfamiliar subject specific interpretation 

of the random effect model may deter application of these models, as for the binary case, it 

should be noted that, although unfamiliar, it is often these subject specific effects which are of 

interest in a clinical trial. 
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6 The Analysis of Quality of Life Censored by Death 

6.1 Background 

In many cancer studies treatment is given in order to improve the quality of a limited 

survival prognosis. In such cases it can be expected that patient death during follow-up will 

occur, leaving a truncated or censored quality of life profile for that individual. The 

consequences of such patient `dropout' when attempting to draw inferences about treatment 

efficacy may be great. This becomes a particular problem when there is a trade-off between 

quantity and quality of survival. Cox et al. (1992) suggest that in such cases, in order to aid 

clinical decision making, it may be best to report quality of life and survival outcomes 

separately, thus allowing the clinician and patient to weigh up the trade-off. Although initially 

appearing to be straightforward, considering quality of life and survival as two distinct 

outcomes is not altogether without problems. The potential for bias introduced as a result of 

early subject dropout has been well documented (Diggle and Kenward, 1994, Little, 1995) and 

a particular, perhaps philosophical, problem is whether the quality of life of patients who 

subsequently die should influence inferences about response beyond their time of death, or 

whether it is the quality of life of only surviving individuals at each time which is relevant. If 

it is the former, ignoring subjects who die and considering solely the remaining subjects may 

give misleading conclusions. 

As an alternative, much work has been done with methods of combining the two endpoints 

to give a quality adjusted survival analysis (Glasziou et al. 1990, Gelber et al. 1986, Korn 

1993). It has been suggested that these methods allow more insight into the quality of life and 
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survival trade-off. Until recently such quality adjusted techniques focused on defining a 

number of health states through which patients progress and summarising the weighted survival 

time which patients spend in each state for some arbitrary weights assigned to each state. This 

work has been used most extensively to analyse patient toxicity and disease progression data 

where health states are naturally defined, whereas their application to self assessed quality of 

life data, where state definitions are more arbitrary, has been extremely limited. Recent work 

by Glasziou (1995) has attempted to address this by considering the use of patient responses 

to self assessed questionaries over time as a weight for their survival, thus avoiding the 

definition of arbitrary health states, but as yet the method has not been tested in practical 

situations. 

The work within this chapter examines the use of both these approaches to quality of life 

data censored by death, contrasting a number of analyses of the quality of life and survival data 

from the CRC HAP trial restricted to that available at June 1st 1993 (described in Chapter 1). 

As full quality of life and survival are also available for all but three subjects in the full version 

of this data set, for some of the analyses presented, these data will also be analysed as a 

comparison. Section 6.2 considers treating death in quality of life studies as a dropout problem 

and discusses types of dropout model which are most appropriate for application to quality of 

life data. Quality adjusted survival techniques based on both health state and continuous 

quality of life responses are presented in Section 6.3. 

6.2 Modelling dropout mechanisms for informatively censored data 

The term dropout in repeated measurements is used to refer to the cessation of a subject's 

response for reasons which may or may not be related to that response. For example, when 

blood pressure is measured on patients being treated for hypertension, patients whose blood 
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pressure reaches a certain level may by design be excluded from the study as they undergo extra 

treatment (Murray and Findlay, 1988). Diggle and Kenward (1994) reported an alternative 

example where dropouts were not due to study design. In this example, which concerned 

measuring the amount of protein in the milk of cows receiving different feeds, dropout was due 

to cows ceasing to lactate before the end of the study. For self assessed quality of life data, the 

censoring or death of a patient are generally the reasons why a patient is regarded to have 

dropped out. 

If it is planned that subjects are to be observed over a predetermined time period, and 

interest lies in the nature of response over this entire period, inferences should naturally be 

based on the hypothetical complete data - that is the sequence of measurement which would 

have been observed in the absence of dropout. It is on such complete data inferences that 

interest in the literature has focused. This work has demonstrated that the complexity of the 

analysis required will depend on the relationship between this sequence of measurements (the 

measurement process) and the probability of patient dropout (the dropout process) (Little, 

1995). 

When the probability of a subject dropping out is unrelated to the observed responses of 

interest, the problem with the data analysis is simply one of being able to cope with unbalanced 

data, for which any of the techniques discussed in the Chapters 3,4 and 5 are appropriate. As 

it is usually reasonable to assume that such an assumption is valid for dropout which arises due 

to censoring because of staggered entry, subsequent discussion for quality of life data is 

focused purely on the problem of dropout due to patient death. 

When there are no a priori ties between the parameters which define the dropout process 

and those of interest for the measurement process, the parameters of the two processes are said 
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to be distinct. For example, supposing the measurement process can be parameterised in terms 

of a linear trend over time defined by ß=(a, ß), and the dropout process is defined by some 

underlying probability function with parameters 4. The two processes are said to be distinct 

if 4 and ß are a priori independent. When this assumption holds, and in addition the 

probability of dropout is related only to observed measurements, it has been well documented 

that, because it is possible to factorize the joint likelihood for the complete data and dropout 

process into two distinct parts, consistent estimates for the parameters of the measurement 

process may be obtained using likelihood analyses of the observed data ignoring the dropout 

process (Little and Rubin, 1977, Zwinderman, 1992, Diggle and Kenward, 1994, Little, 1995). 

This was the case in the example of Murray and Findlay (1988), where their study design 

determined that subjects were withdrawn and placed on an open program of treatment if their 

blood pressure at any time t was greater than 110mmHg. This defined a dropout process such 

that a patient is considered to have dropped out at time t if their measurement at time t-1 was 

greater than 110mmHg. 

When the dropout process does depend on the unobserved data or the parameters of the two 

processes are not distinct, this factorisation of the likelihood is not possible and explicit 

modelling of the dropout process is then required. The possible modelling strategies suggested 

can be separated into 3 classes: selection; pattern mixture; and informatively right censored 

models (Little, 1995). 

Selection and pattern mixture models evolve from different factorisations of the joint 

likelihood for the measurement and the dropout process. Selection models use a model for the 

hypothetical complete data along with one for the dropout process conditional upon the 

hypothetical data (Diggle and Kenward, 1994), whereas pattern mixture models stratify the 

population by the pattern of dropout (Little, 1993, Little, 1995). This is summarized in box 6.1. 
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Box 6.1 
Derivation of selection and pattern mixture models 

Dropping the subscript i, for y=(yl,..., y� ), j=1,..., m, the complete data, made up of that 

observed, (y, a, ), and that missing due to dropout, (y,,,,, ), and r=(ri,..., r�), a corresponding 
indicator such that r, =1, if y, is observed, 0 otherwise, the selection model factorises the 

joint distribution, fiy, r) as 

fy, r) =J(Y)jtrly) =fly,, y,,,;, )frly., y., ) ; 

whereas, for the pattern mixture model it is factorised as 
ly, r) =f(r)fylr)=fir)lyk, y_, I r) 

Both models rely heavily on assumptions about the relationship between the observed and 

missing responses and the dropout process which cannot be validated. For selection models 

this is done implicitly in modelling the dropout process and its relationship with the complete 

data. Most commonly used examples are probit or logistic models which relate the probability 

of dropout to the unknown observation at the time of dropout (Diggle and Kenward, 1994). For 

a pattern mixture model the assumptions are more explicit and concern how the observed data 

from complete `patterns' relate to the observed and unobserved data from different incomplete 

patterns. Under certain assumptions for the pattern mixture model, the two approaches will 

give equivalent results (Molenburghs et al., 1995). 

Unfortunately, since these models condition the dropout process explicitly on past, present 

or future responses, they require responses to be measured at the same times for all subjects and 

more inconveniently, that dropout also occurs at a small numbers of distinct occasions. This 

makes them impractical for the problem of dropout due to death in quality of life studies when 

measurement occasions may not be consistent across subjects, and dropout occurs at many 

different times. In addition, they attempt to make inferences about the complete data (that is, 
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in the absence of dropout). Philosophically, when the reason for dropout is itself is an outcome 

of interest, it is unclear whether such inferences are relevant. 

The third class of models, informatively right censored models, attempt to lessen these 

restrictions by assuming that dropout is a function of some latent variable for each subject. 

Examples have been restricted to the case where the outcome of interest is the rate of change 

in response over time, with dropout, in each case a result of patient death, assumed dependent 

on subject specific intercept and slope (Wu and Carroll, 1988, Wu and Bailey, 1988, Wu and 

Bailey, 1989, Schlucter, 1992). 

Wu and Carroll (1988) used a two stage iterative algorithm with a probit censoring model 

to combine subject specific intercept and slope estimates taken from a linear random effects 

model for the response over time to give a pseudo maximum likelihood estimate of an `average' 

rate of change over time. Wu and Bailey (1989) showed that, under this probit censoring 

model, the rate of change of the subject specific slope is a monotonic increasing or decreasing 

function of the dropout time (with the direction dependent on the sign of the dropout parameter 

of the probit model). By defining a model for the subject specific intercept and slope as a 

function of the dropout time, they derived a linear minimum variance unbiased and a linear 

minimum mean squared error summary estimates for the rate of change. Each use the 

conditional linear model to give an estimated slope for a subjects with an `average' survival 

time which can be compared across different patient groups. 

Although an improvement over pattern mixture and selection models, these models do still 

require that dropout occurs at a limited number of time points during the follow-up. They are 

therefore of restricted use when dropout is indeed due to death and therefore occurs at different 

times across all subjects. Further, subjects with fewer than two observations have to be 
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excluded for tractability. 

These restrictions are overcome by Schlucter (1992) who generalised the conditional linear 

models of Wu and Bailey (1989) to allow the analysis of more unbalanced data generally seen 

in clinical trials and as a result of dropout due to death. Assuming that individual intercept, 

slope and logarithm of survival time (which may also be censored) follow a trivariate Normal 

distribution, an E-M algorithm was used to estimate the covariance structure of the three 

components and, in turn, and give appropriately adjusted estimates for the average response 

pattern for a randomly chosen individual with mean survival. Further, by modelling the joint 

distribution of survival and response, the estimated covariance between response and survival 

allow the conditional expectation of these parameters for different survival times to be 

evaluated allowing inferences which may be particularly relevant for quality of life studies. 

Although Schlucter (1992) expressed his model in terms of its full likelihood and used an 

E-M algorithm to estimate its parameters, it may also be formulated as a multilevel model and 

fitted using the RIGLS algorithm described in Chapter 3 (Touloumi, 1996). This is 

demonstrated here using the restricted CRC HAP trial data. The transformation from the joint 

to the conditional model as a function of survival is also presented. These conditional 

inferences are then compared against those of a conditional linear model which simply includes 

known patient survival times in the multiple regression analysis. As this latter analysis is only 

possible when full survival data is available (that is, the time of death is known for all subjects) 

the CRC HAP trial full data are used for the second example. 

Given the nature of dropout due to death in quality of life studies, none of the other dropout 

models discussed here are considered appropriate and they will therefore not be discussed 

further. 
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6.2.1 Trivariate Normal model 

The multilevel version of Schlucter's log-Normal survival model treats the quality of life 

response and the survival as a bivariate problem. This gives a two level model for the quality 

of life response as described in Chapter 3, modelled alongside a log duration model for the 

survival outcome (Goldstein, 1995, Touloumi, 1996). 

A response yqk where y,,., is the jth quality of life response for the ith subject and yy2 (j=1 

for all i) is the single survival response for that subject defined as above. Two dummy 

variables, zip and zij2, define these responses with zij, =l for a quality of life response, 0 

otherwise, and zU2=1-ziý1. Given these definitions, a simple trivariate Normal model can be 

expressed as 

yijk fl(al+ßltiji+uil+vutijl+erjl). zijI + f2(a2+si2). Zlj2 (6.1) 

where f, is an identity link function giving the simple variance components model discussed 

in Chapter 3 for a trend over time. The timing of the jth measurement for the ith subject, 

j= 1,..., m. is denoted t,,,. As before, the subject level residuals, (u,,, v,, ), for the intercept and 

slope for subject i for this part of the models are assumed Normally distributed with mean 0, 
z 

and variance, Ei= 
oN °wV 

The level one residuals, denoted e, ý, 
for thejth measurement for 

° Qz 
V MV 

the ith subject are assumed to be Normally distributed with mean zero and variance a,. 

Patient survival is modelled using a log duration model denoted f2 which allows 

incorporation of censored individuals (Goldstein, 1995). Although the residual error for this 

part of the model may take a number of distributional forms (Normal, extreme value, Gamma), 

in this example a Normal distribution with zero mean and variance o; is assumed. As there is 

only one survival observation for each subject this varies only at the patient level with residual, 

denoted si2 for subject i. Although the survival part of the model in equation (6.1) does not 

include covariates, this is a simplification for clarity and not a model restriction. 
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Corresponding with the model used by Schlucter, these two parts of the model are combined 

and the level two residuals (uj1, vi,, s12) assumed to follow a trivariate Normal distribution with 

variance 

a' 

AZ on, 

aW 

(6.2) 

Although all survival data (censored or observed) is used in estimation of the fixed components 

of this model, only the uncensored individuals contribute information in estimation of the 

variance components relating to the survival outcome. 

Defining 3, )T and ab, =(o., a,, )T from multivariate Normal theory, the conditional 

distribution of ß, Is, for some known survival time s will also be Normally distributed with 

E(ß, is)=ßl+a3-2oý(s-a2) and var(ß, ls)=EI -as2o, U ab (6.3) 

giving explicit conditional estimates for describing quality of life conditional on a given 

survival time. These are given explicitly in box 6.2. 

As an application of this model, the restricted RSCL physical data from the CRC HAP trial 

Box 6.2 
Mean quality of life profiles conditional on survival 

E(a1ls)=ai+ 
0w(s-as) 

02 

o (s-a_1 

auv our 

2 
av am 

a. a, 

Q2 
vu(a, ls)=a; - "` 2 

of 
s a 

var(ßils)=oý- M 
Z a, 

E(p''S)=ýy'+ -vr- --iý 
YY2 

a, 

cov(a I, 
ß d=aM, - 

arraw 

a2 a_ 

187 



The analysis of quality of life data censored by death 

were analysed with the basic model of equation (6.1) extended to include a treatment covariate 

for both the quality of life (rt, 1) and the survival (rt12) outcomes . 
Each of these variables were 

defined to take the value 1 for patients in the control arm, 0 for those receiving an HAI. Mean 

profiles of these quality of life data were given in figures 2.8 and 2.9 and suggested a slight 

downward trend over time, with an apparent constant treatment difference. To investigate this 

behaviour in the light of patient death, three progressive models were used. The first model 

(model one) assumed the survival and quality of life endpoints were independent, or that 

dropout is uninformative. In the second model (model two) a dependence between survival and 

intercept residuals was allowed, whereas the final model (model three) allowed a full 

covariance structure between survival and both subject intercept and slope. In terms of the 

covariance parameters of equation (6.2), models one and two correspond respectively to 

assuming that o =o,,, =0 and o,,., =O respectively. The results of each model are given in table 

6.1. 

Model one (the independence model) gave some evidence of a small increase in physical 

quality of life score over time which translated to an 0.34 (95% CI=[0.13,0.56]) unit increase 

over a month. There was no evidence of a difference in level of quality of life between the two 

treatment arms (p=0.20). The survival coefficient gave an estimated mean log survival of 5.97 

for the HAI group, translating to a geometric mean survival of 393 (95% CI=[311,496]) days. 

The estimated relative survival difference was 0.64 (95% CI=[0.46,0.89]). These results 

corresponded well with those presented in Appendix 1.2 which gave an estimated median 

survival of 404 and 274 days in the HAI and control groups respectively. The random 

parameter estimates showed a large degree of variation both in patient quality of life intercept 

and slope, but there was no convincing evidence of an association between the two. 

The extension of the model to incorporate dependency between the subject intercept and 
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Table 6.1: Results of a trivariate Normal model for the RSCL physical quality of life scores in the CRC 
HAP trial. 

Model one Model two Model three 

Estimate (SE) Estimate (SE) Estimate (SE) 

Fixed parameters 

a, (cons, ) 10.7(l. 10) 9.88 (1.10) 9.83(l. 10) 

P, (time, ) 0.011 (0.004) 0.012 (0.004) 0.013 (0.004) 

b, (rt, ) -1.33 (1.54) -0.89 (1.55) -0.94 (1.55) 

a2 (con) 5.97 (0.12) 5.95 (0.11) 5.95 (0.11) 

82 (rte) -0.45 (0.17) -0.38 (0.16) -0.37 (0.16) 

Variance parameters 

Level two (12 43.0 (8.50) 44.5 (8.51) 43.4 (8.57) 

0,0.0004(0.0001) 0.0004(0.0001) 0.0005 (0.0001) 

aY 0.50 (0.09) 0.48 (0.08) 0.48 (0.08) 

aMý -0.024 (0.026) -0.025 (0.024) -0.017 (0.027) 

aµr - -2.66 (0.66) -2.52 (0.68) 

aVS -- -0.002 (0.003) 

a; Level two 15.72 (1.09) 15.64 (1.01) 15.60 (1.01) 

-2 log lh 3870.2 3849.4 3847.7 
Within these models, time was recorded in days since randomisation, and treatments (ri, t and rt;, ) 
were both coded with the HAI group as baseline (rt, t=0 for HAI group, I for control). 

their survival times made very little difference to the estimated survival parameter for the HAI 

group despite the slight change in interpretation of the coefficient now representing mean 

survival for subjects with an `average' quality of life score at the start of the study. Since the 

direct comparison being made is conditional on average patient quality of life, there was some 

reduction in the estimated relative difference between the two treatment groups (0.68,95% 

CI=[0.50,0.94]). Similarly the quality of life intercept parameter had a modified interpretation 

being the mean intercept for a randomly selected individual with average survival. This was 

reflected by a reduction in the parameter estimate from 10.7 (SE=1.10) units to 9.88 (SE=1.10) 
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units. There was little change in the estimated average slope which retained the interpretation 

of the previous model. Again there was no evidence of an absolute difference in the level of 

physical quality of life scores between the two groups, although that of the control group was 

again lower than in the HAI group. The random parameter of most interest in model two was 

that for the covariance between intercept and survival. The change in -2 log lh following the 

introduction of this additional parameter was 20.9 gave strong evidence of a negative 

association between the level of a subject's initial quality of life and their survival. This 

indicated that subjects with a lower than average initial quality of life score (better quality of 

life) tended to have a higher than average survival. The estimated correlation coefficient was 

0.58. There was very little change in all parameter estimates from model two to model three. 

This was not surprising given the size of the estimated covariance between survival and slope 

and the lack of evidence to support this as a real effect (change in -2 log Ih of 1.65). 

The basic assumption of this model is trivariate Normality of the level two residuals. 

Residual diagnostics to assess this assumption are shown in figure 6.1. Figures 6.1 (a)-(c) show 

Normal plots of each of the standardised level two residuals in turn showing little evidence of 

a deviation from Normality for each univariate distribution. A Gamma plot to test for trivariate 

Normality is shown in figure 6.1(g). This plots the Mahalanobis distances estimated for each 

subject using their level do_ residuals and the estimated correlation matrix from model 3 

against the quantiles of a Chi-squared distribution on 3 df. Like the univariate Normal plots, 

this gave little evidence of a deviation away from trivariate Normality. Bivariate plots of the 

possible pairs of residuals are given in figures 6.1 (d)-(f). The strong negative association 

between patient survival and intercept is highlighted in figure 6.1(e). 

An advantage of this model is that it allows estimation of the conditional distribution of 

response given survival time using equation (6.3). This was done using the results given in 
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Figure 6.1: Residual diagnostics for the level two residuals of the trivariate Normal model for the 
restricted data of the CRC HAP trial (a)-(c) give univariate Normal plots; (d)-(f) give bivariate scatter 
plots; and (g) a Gamma plot. 

model three for particular values of s corresponding to 6 to 30 months in 6 month intervals. 

The resulting expected conditional intercepts and slopes for each of these values are given in 

figure 6.2 for the HAI and control groups. The intercept and slope are plotted separately as a 

function of observed survival time in figures 6.2(a) and 6.2(b). Realisations of these average 

profiles for the HAI and control group respectively are shown in figures 6.2(c) and 6.2(d). 
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Figure 6.2: Quality of life profiles conditional on survival as estimated for the restricted physical 
quality of life from the CRC HAP trial from the trivariate Normal model summarised by (a) average 
intercept and (b) average slope as a function of survival time. HAI: ; control: --------- and 
average profiles for survival, s=6,12,18,24,30 months (c) HAI and (d) control. 

These figures clarified the relationships indicated by the covariance structure of the joint 

distribution showing lower initial physical scores (better quality of life) for patients with 

increased length of survival. Although there was not the same convincing evidence of a 

relationship between rate of change and survival, the same pattern of a lower rate of change for 

increasing survival was also illustrated. The realisations of these average profiles when plotted 

over time showed that, although starting from different points on the physical quality of life 

scale, by death the profiles had all tended to reach a similar point in the level of quality of life. 

This suggested that differences in quality of life for different survival times may be due simply 

to patients being at different states of their disease progression rather than an overall difference 

in their experience. An important feature highlighted by this analysis was the very different 

conclusions of the descriptive analyses of figures 2.8 and 2.9 which indicated slight downward 

trends in quality of life scores in contrast to the positive trends shown here. As such positive 
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trends were also seen from model one which did not condition on patient survival, this 

emphasises the need not only for analyses that adjust for patient survival, but more importantly, 

the problems associated with these descriptive analyses that ignore repeated measurement data 

structure. 

6.2.2 Conditional linear model 

If survival time was known for all subjects, the problem of obtaining the conditional 

inferences shown in figure 6.2 would be simple using a multilevel or random effect structure 

as discussed in Chapter 3. For example, a model to examine the rate of change in response y. 

for subjects i, i= 1,..., n over time, tU for j=l,..., m1, dependent on survival s, could simply be 

written 

yu=a + ßt,, +Zs, +ýsýtu+u, `+eü (6.4) 

where { is the difference in the intercept and t is the difference in rate of change of response 

for each additional day of survival. This model can then be fitted as demonstrated in Chapter 

3. 

The fundamental difference between this model and the conditional transformation of the 

trivariate Normal model is that within the conditional linear model, the distribution of the 

survival times is left unspecified whereas in the trivariate Normal model they are assumed to 

follow a log Normal distribution. To assess the implications of this difference, both were 

applied to the full data from the CRC HAP trial. In these full data, survival times were known 

for all but three patients who were therefore necessarily excluded. The trivariate Normal model 

used corresponded to model three of the previous section and fitted a full covariance structure. 

For the conditional linear model, the model of equation (6.4) was extended to include a 

treatment coefficient. For consistency with the trivariate Normal model, survival was modelled 
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Table 6.2: Results for a trivariate Normal versus a conditional linear model for the RSCL physical 
quality of life data in the CRC HAP trial full data. 

Trivariate Normal model Conditional linear model 

Estimate (SE) Estimate (SE) 

Fixed parameters 

a] (cons) 10.52 (1.09) a (cons) 10.83 (0.97) 

ßi (time) 0.018 (0.004) ß (time) 0.015 (0.003) 

61 (rti) -1.57 (1.57) 6 (rt) -1.55 (1.54) 

a2 (cons2) 5.89 (0.10) { (surv) -3.99 (1.04) 

62 (rt2) -0.34 (0.15) (time. surv) -0.019 (0.006) 

Variance parameters 

Level two aw 43.8 (8.47) 34.7 (7.00) 

0ý 0.0005 (0.0001) 2 0.0003 (0.0001) 

0; 0.50 (0.08) 

o"v -0.002 (0.003) OM'v, -0.02 (0.02) 

0, -2.09 (0.62) 

0, -0.007 (0.003) 

Level one a; 16.13 (1.05) a; 16.18 (1.05) 

-2 log Ih 3849.6 3663.6 

on the log scale as a deviation from the estimated group mean from the trivariate Normal model 

for these data (5.89 and 5.55 for the HAI and control groups respectively (table 6.2)). The 

parameterisation of the model in this way enables a direct comparison of the parameters ( (, l; } 

of the conditional linear model and (a; 2c 
, o-2a�} used in the transformation from joint to 

conditional inference for the trivariate Normal model. 

Comparing the results for the trivariate Normal model using the full data and those for the 

restricted data given in the final column of table 6.1 showed a number changes although none 
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were substantial. These may be attributed both to the difference in samples, and more 

importantly, because the fixed parameters (al, ß) represent estimated effects for subjects with 

mean survival (and vice versa) some deviation can be expected. 

Given the parameterisation of survival times which has been used, it is possible to compare 

the parameter estimates of the two models. For instance, the estimates of ß, and ß are directly 

comparable and give the average rate of change for survival times equal to the respective group 

means. Similarly, the intercept terms al and a correspond. In both cases, good agreement 

between the estimates was seen (10.5 versus 10.8 for the intercepts, and 0.018 versus 0.015 for 

the slopes). Estimates of (a; 2o 
,, 0; -2a. ) from the results in table 6.2 were 1-4.18, -0.014). 

Again these were in good agreement with those of the conditional linear model for (r, ý) of 

( -3.99, -0-019). The estimates of the covariance structure of the conditional model calculated 

from the trivariate Normal model (using the equations given in box 6.2) corresponded well with 

those of the conditional linear model with ew=35.1,02, =0.0004 and 0. cvý=-0.04. from the 

trivariate Normal model versus 34.7,0.0003 and -0.02 from the conditional linear model. 

As in the previous section, realisations of the conditional model for a number of survival 

times have been plotted. Figure 6.3(a) and (b) give the results for the trivariate Normal 

conditional transformation, (c) and (d) give the equivalent figures for the conditional linear 

model. These highlight a substantial difference between the inferences drawn form the two 

models with figures 6.3(a) and (b) showing less variability with changing s than those of the 

conditional linear model in figures 6.3(c) and (d). This is thought to be due to the assumption 

of log Normality of survival times restricting the behaviour of the estimates of the trivariate 

Normal model. In terms of the conclusions of the analyses for the data, these analyses gave 

very different quality of life profiles for different survival times to those of the restricted data. 

In contrast to the respective plots for the restricted data shown in figure 6.2, they do not suggest 
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Figure 6.3: Average quality of life profiles for survival of 6,12 , 18,24,30 months, (a)-(b) as 

estimated from the trivariate Normal model for the HAI and control groups and (c)-(d) as estimated 
from the conditional linear model for RSCL physical quality of life in the CRC HAP trial. 

a similar profile of quality of life for different survival times. Rather, they show the longer 

term survivors to have a more gradual decline in quality of life than the short term survivors 

(from the conditional linear model, p=0.002). 

6.2.3 Conclusions 

These analyses have demonstrated the use of a trivariate Normal model to analyse quality 

of life and survival data together to obtain inferences about the joint distribution of the two 

outcomes, or inferences about patient quality of life conditional upon survival times. The 

analysis performed well and gave clear and comprehensive representation of the data which 

could be fairly easily explained to a clinician or patient. 

In comparison with the conditional linear model which may be seen as a simple solution to 
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analysing quality of life data alongside survival, the trivariate model performed well although 

more work is needed to determine the properties of this model particularly when a substantial 

amount of data are censored. As the analysis can be easily extended to include more covariates 

than have been considered here, can be fitted easily even when some subjects are censored, and 

may be applied to continuous, binary or ordinal data, it may serve as a useful tool in future 

practical data analysis of quality of life data. 

6.3 Quality adjusted survival analysis 

Rather than considering quality of life and survival as separate endpoints, quality adjusted 

survival analyses have also been proposed (Schumacher et al., 1991, Korn, 1993, Glasziou, 

1995). The combination of quality of life and survival outcomes to give a quality adjusted 

survival was first, and still is commonly, used in health economics for decision making 

(Weinstein and Stason, 1977). In its most simple form, it is assumed that patient quality of life 

may be divided into distinct health states (s=1,..., S) which are assigned weights, w=(w1,..., ws), 

reflecting the value of survival spent in each state. Applying these weights to the time spent 

in each state, denoted t. for subject i in state s, a patient's quality adjusted life years (QALYs) 

is then defined as the sum of the weighted times spent in each state 

S 
QALYr=E wJt. (6.5) 

S-1 

These weighted times are then summarised and compared across different patient groups of 

interest. In recent years, such methods have been adapted and used for the analysis of patient 

toxicity data in cancer and AIDS research under the name of TWIST, that is Time Without 

Symptoms and Toxicity (Gelber and Goldhirsch, 1986, Gelber et at., 1991, Gelber et al., 1992). 

In its original form, the TWIST metric combined patient survival and toxicity data by 

subtracting periods of time during which the patient experiences toxic effects of treatment or 
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symptoms of disease recurrence from overall survival (Gelber and Goldhirsch, 1986). In 

addition, for some side effects or symptoms additional survival time was subtracted to allow 

for recovery. It was therefore equivalent to QALYs where the specific symptoms represented 

the health states with the weights assigned to these health states being less than or equal to zero. 

When survival times are complete for all subjects, a comparison of QALYs across patient 

groups is straightforward using usual methods for continuous outcome data to compare the 

mean QALYs across patient groups. When some survival times are censored, as is often the case 

in clinical trials, survival analyses techniques have been used. It has been shown however, that 

such techniques can lead to biased estimation of the true distribution of QALYs in the form of 

overestimation of the survival function. This is caused by the weighting of individual survival 

times because patients who have poorer quality of life accumulate quality adjusted time very 

slowly, and are therefore more prone to early censoring leading to an underestimation of the 

hazard function, and an overestimation of the survival function (Gelber et at., 1989). The 

problem can be reduced to some degree by restricting the follow-up period by some upper limit, 

L, and focusing the analysis on QALY(L), the amount of QALY accumulated within L time units. 

This has the effect of reducing the extent of censoring, and in turn the extent of bias. 

Unfortunately simulation studies have shown that the degree of bias still remains fairly high 

even when the amount of censoring is low (Gelber et al., 1989). An alternative solution which 

has been shown to perform better is to impute QALYs for censored individuals and then to 

perform an analysis as for uncensored data. This is discussed in more detail in Section 6.3.1. 

In the light of these problems with survival analyses for censored QALYs, the TWIST metric 

was redefined using a partitioned quality adjusted survival analysis (PQAS). Rather than 

weighting individual patient TWIST, a PQAS analysis weights the estimated group means for 

time spent in each health state. Its limitation is that it requires that the health states are 
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progressive, with the final state defined as patient death. For each other state, the 'survival' 

event of interest is defined as an individual progressing from that state to the next. The analysis 

is then performed by estimating the survival for each state in turn. By restricting survival by 

some upper limit L, the restricted mean survival for each state is estimated by the finite area 

under each survival curve. The mean time spent in each state is then calculated by subtracting 

the observed mean survival in state s from that observed in state s+l. Q-TWIST is then defined 

as the weighted sums of these restricted mean survival times for some weights w=(wl.... , ws). 

Although a simple formula for the variance of the estimates is not available, variances can be 

obtained by bootstrapping, thus enabling formal comparisons of Q-TWiST across patient 

groups (Glasziou et al., 1990). 

Since the quality adjusted techniques outlined so far have relied on the existence of 

definable health states they may be inappropriate for the analysis of continuous self assessed 

quality of life. As an alternative, Glasziou et at. (1995) note that a possible definition of the 

rate of gain of QALYs at time t is simply the product of the proportion of people still alive at 

time t multiplied by the average quality of life of the survivors at time t. The integrated 

survival-quality product or mean QALYs over some time period bounded by an upper limit L, 

is then estimable by calculating the area underneath this profile. A similar analysis has also 

been suggested by Korn (1993) in which, rather than summarizing the quality of life at each 

time point for the group as a whole, individual patient profiles are first summarized by 

calculating the area underneath the profile, where the profile is bounded by either the patient's 

survival or censoring time. These potentially censored quality of life summaries for each 

individual are analysed for the group as a whole. Unfortunately, in the same way as for the 

quality adjusted times from health state models, conventional survival estimates for the 

distribution of these individual summaries will be biased because of induced informative 

censoring on the quality adjusted time scale. Although Korn (1993) gives an adjusted survival 
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estimation algorithm which reduces this bias to some degree, the method can be 

computationally intensive and can cope only with quality of life measured at a limited number 

of occasions. Its practical application to the much quality of life data in cancer trials is 

therefore limited and its use will not be pursued further here. 

Although the use of these quality adjusted survival techniques have been much discussed 

in the quality of life literature (Cox et al., 1992, Fayers and Jones, 1983, Schumacher et al, 

1991) very little practical application of use with self assessed quality of life data in clinical 

trials has been reported. Indeed only two practical applications have been found (Allen-Mersh 

et a!, 1994, Korn, 1993). The aim of this section of work is therefore to assess the methods 

outlined above to determine whether they are appropriate for future reporting of self assessed 

quality of life data where large numbers of individuals have died during the measurement 

process. To do this the RSCL physical scores from the CRC HAP trial are analysed using 

modifications to TWiST, PQAS and the integrated quality-survival product in turn. Along with 

each example, the particular analysis is discussed in more practical detail than given so far. 

Results for both the restricted and full data sets will be given. For the two health state methods, 

states were defined on the basis of the recommended RSCL `normal' physical score 

classification, that is a score of less than 20 units. For both the restricted and full data, 

approximately 13% of total follow-up time was classed as abnormal. A discussion of the 

problems and advantages of each analysis is given in Section 6.3.4. 

The lack of practical application of all these methods has meant that software is not 

available. S-Plus (Becker et al., 1988) functions have therefore been written for each case. 

These are listed in Appendix 3. 
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6.3.1 Time with normal quality of life 

Time with normal quality of life (TNQOL) is here defined as that period of a patient's 

survival spent with `normal' RSCL scores. Its definition is based on that of the TWIST metric 

but is more specific to patient quality of life as evaluated by self assessed questionnaires rather 

than patient symptoms and toxicity. In similar notation to that of Gelber et al. (1989) it was 

defined as TNQOL, =TR, -AQOL, where TR, is the time from the start of treatment to death and AQOL, 

is the amount of time of abnormal quality of life patient i experiences during this time. 

Although these quantities may or may not be observed because of censoring, given U,, the 

follow-up time for patient i, their observed values can be obtained by OTR, =U,, and 

OTNQOL, =OTR, -OAQOL, where OAQOL, is the observed amount time spent with abnormal 

quality of life. The censoring variable for OTR, andOTNQOL, is given by 8, =1 if a death is 

observed, 0 otherwise. 

In their published report of the CRC HAP data, Allen-Mersh et al. (1994) analysed such 

OTNQOL, for i= 1_. ^ using Kaplan-Meier estimation of the survival function, and comparing 

the two treatment arms with a log rank test. They concluded that there was a "significant 

prolongation in normal (... ) survival for physical symptoms (p=0.04)" in HAI treated patients 

compared with controls. However, as discussed earlier, the discounting of patient time with 

abnormal quality of life results in informative censoring. This requires some refinement to 

these simple survival analyses to assess the robustness of conclusions to varying severity of 

plausible bias. Based on the work of Gelber et al. (1989) this was done by defining a bounded 

TNQOL, OTNQOL(L),, defined as the amount of TNQOL accumulated within L days from the 

start of treatment. This was given by OTNQOL(L)r=OTR(L)i-OAQOL(L), where 

OTR(L), =min(L, U, ) and OAQOL(L)t is the length of time spent with abnormal quality of life 

within L time units. The censoring variable for OTR(L), and OTNQOL(L), is then 8(L)= 1 if OTR(L), =L 

or the patient has died, 0 otherwise. Thus a patient is only considered censored if they are still 
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alive, but have not been observed for L time units. 

With the exception of the first and last recorded measurements, when 0 and the time of death 

or censoring were used, it was assumed that the transition between quality of life states took 

place midway between the current and the previously observed measurement time. Based on 

these assumptions, the definitions above are illustrated by a hypothetical example in table 6.3. 

As the choice of L influences the results of the analysis, a range of values were used with 

their results plotted against the value of L thus giving an indication whether the analysis 

conclusions change with increasing L, as well as assessing the possible extent of bias. For the 

illustrated example the bounds were chosen at 6,12,18 and 24 months, as well as for the 

maximum follow-up within the sample which was 1273 days (42 months). These bounded times 

were then analysed either by Kaplan-Meier estimation of the censored OTNQOL(L), or by a two 

sample t-test of an uncensored data set with maximum, minimum or mean values imputed for 

censored individuals. These were again based on the definitions of Gelber et a!. (1989) and are 

summarised in box 6.3. These authors noted that for values of L no larger than median follow- 

Table 6.3: Hypothetical example illustrating accumulation of TNQOL. 

Time of measurement 

A 

B 

Quality of life score OAQOL OTNQOL 8 OAQOL(L) OTNQOL(L) 6(L) 

23 51 79 107 135 

21 24 12 14 16 

42 70 98 116 154 

15 14 18 21 16 

65 85 0 65 75 1 

28 143 1 28 112 1 

Within the body of the table the numbers given in bold type refer to the time of quality of life 
measurement in days since randomisation with the quality of life scores given in normal font. 
Patient A was censored at 150 days, and patient B died at 171 days. In the case of the definitions 
requiring an upper bound for survival, L=140 days was assumed. 
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Box 6.3 

max (OTNQOL(L), ) =L-OAQOL, 

min (OTNQOL(L), ) =Ui-OAQOL, 

mean (OTNQOL(L)i) = Ui -OAQOLi +i (L - U, ). 

up, all four methods performed very well. As median survival in the restricted CRC HAP trial 

data were 404 and 274 days for the HAI and control groups respectively, it was expected that 

estimation beyond 18 months may not perform as well as that at 6 and 12 months. 

The Kaplan-Meier estimated survival curves for censored TNQOL for the restricted data 

are shown in figure 6.4 and shows a very slight early advantage for the control group which was 

reversed later in follow-up. Within these data, 22% and 15% of the HAI and control groups 

0 200 400 Soo am 1000 1200 
TNOOI (day. ) 

Figure 6.4: Kaplan-Meier TNQOL based on the RSCL physical scores for the restricted data of the 
CRC HAP trial. HAI: ; control: --------. Censored observations are marked +. 

Definition of Imputed OTNQOL(L)1 for censored individuals 
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respectively were censored. Although these proportions were not high, it was observed by 

Gelber et al. (1989) that even when the degree of censoring was only 10%-20%, the Kaplan- 

Meier derived estimates may still be subject to an unacceptably large bias. The truncated and 

imputed methods to approximate for the bias are given in table 6.4 for L=1273 days (42 

months). Mean survival for the former was estimated by calculating the area under the 

respective truncated Kaplan-Meier curves. Standard errors for these estimates were obtained 

by bootstrapping. A simple bootstrap was used which repeatedly re-sampled from the data with 

replacement and estimated the area under the curve for the resulting sample. This was done 

separately for each treatment group. The number of repeated samples was arbitrarily chosen 

to be 2000. The confidence intervals for the estimated mean difference were calculated 

assuming unequal variances with the degrees of freedom based on Welch's test. The final 

column of the table gives a p-value for an alternative test to Welch's test in each case. For the 

Table 6.4: Mean TNQOL(L) in days over a 42 month period (1273 days) estimated using Kaplan-Meier 
(K-M) and three different imputation methods (detailed in box 6.3) for the RSCL physical scores for 
the CRC HAP trial. 

Mean TNQOL(L) (SE) Mean difference p value p value 
[95% CI] (Welch's (alternative 

HAI Control test) test) 

Restricted data 

K-M area 441.7 326.6 115.1 0.141 0.120 
under curve (62.7) (45.1) [-38.9,269.1] 

Maximum 475.7 380.8 95.0 0.230 0.230 
imputation (56.7) (54.3) [-63.3,251.31 

Minimum 366.1 290.8 75.3 0.215 0.216 
imputation (45.5) (39.6) [-44.8,195.4] 

Mean 461.2 361.0 100.2 0.148 0.148 
imputation (49.8) (47.1) [-36.2,236.6] 

Full data 

K-M area 448.1 310.7 137.4 0.031 0.033 
under curve (47.8) (40.5) [12.8,262.01 
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Kaplan-Meier analysis, a log rank test comparing the survival curves was used, and for the 

imputation methods, an unpaired two sample t-test assuming equal variances. At 1273 days (42 

months) 9 subjects in the HAI group and 6 in the control group were censored. Also given in 

the table are the results from an analysis of the full data over the same 42 month period. These 

results are also presented over time in figure 6.5 which shows the estimated mean difference 

from each of the analyses of the restricted data for all values of L plotted against L. 

Naturally there was some difference in the point estimates for each of the four estimation 

procedures, but all the analyses of the restricted data in table 6.4 gave consistent results with 

an estimated treatment difference in mean TNQOL accumulated within 42 months in favour of 

the HAI group. Although these were results were based on a slightly smaller data set, they were 

consistent with the conclusions of Allen-Mersh et al. (1994). The strength of evidence for all 

ýý 

ý9 s Is j 

I 
01 

0 6 

T 
. --I' 

i.. 

i' 
ý, 

/ . __-I 
FVldih 

TnneýMA 

ý 
/i 

ýýý 

ýýý IAnMnue Yyou"on 

.......... 
1.......... ý 

:................................. ... 
HAI b°ý`............ 

-ý 
CarnrdbNMr 

T- .7 

12 1! 24 
TIRM (na+d ) 

42 

Figure 6.5: Mean difference in TNQOL(L) (HAI-Control) estimated for restricted data using K-M 
following truncation (O), maximum (o), minimum (0) and mean (e) imputation with the observed 
TNQOL(L) for the full data (+). Vertical bars show the lower bounds of a 95% CI for the full data. 
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of the analyses using the restricted data was, however, not convincing in the restricted data. 

At 42 months the difference between the results of each of the three imputation methods and 

that of the truncated Kaplan-Meier for the restricted data was at its greatest and may indicate 

bias in the latter analysis as a result of censoring. At earlier time points (when censoring was 

naturally lower) the differences between the four methods were much reduced. This replicates 

the findings of Gelber et al. (1989). Over the 42 month period, although never reaching 

statistical significance, all of the results for the restricted data showed better quality of life for 

patients receiving HAI over the controls. Such behaviour was also seen with the analyses of 

the full data. 

A possible criticism of this analysis, is the choice of definition for `normal' quality of life. 

Although the chosen cut-off in score was that recommended by the RSCL developers, the 

sensitivity of the results to the cut-off were assessed by lowering the cut off to 16. These 

results are presented in table 6.5 for each of the 4 approximate methods for the smaller data as 

well as for the full data. Although obviously reducing the estimated mean TNQOL, in the HAP 

trial example, changing the cut off in this way did not change the conclusions of the analysis 

that the HAI patients had a longer TNQOL(L) than the control patients although without the full 

data, which is now available, there was no convincing evidence to conclude that this was due 

to a real treatment effect rather than due to chance. 

6.3.2 Partitioned quality adjusted survival analysis 

A partitioned quality adjusted survival (PQAS) analysis assumes that patient quality of life 

moves progressively through a number of defined health states and thus requires the definition 

of appropriate progressive health states. Given the invasive nature of the HAI treatment and 

thus the early expected poor quality of life, improving later in follow-up, for a PQAS analysis 

of the CRC HAP trial data three progressive states (s=1,..., 3) were defined as `treatment related 
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Table 6.5: Mean TNQOL(L) in days over a 42 month period (1273 days) estimated using Kaplan-Meier 
(K-M) and three different imputation methods for a 'normal' quality of life cutoff of 16 units. 

Mean TNQOL(L) (SE) Mean difference p value p value 
[95% CI] (Welch's (alternative 

HAI Control test) test) 

Restricted data 

K-M area 399.4 314.6 84.9 0.273 0.316 
under curve (62.6) (45.9) [-68.1,237.91 

Maximum 44.3 368.5 74.8 0.358 0.359 
imputation (58.9) (55.4) [-86.2,235.8] 

Minimum 322.1 277.8 44.3 0.461 0.462 
imputation (44.5) (40.1) [-74.9,163.51 

Mean 417.2 348.0 69.1 0.319 0.319 
imputation (49.5) (47.9) [-68.0,206.3] 

Full data 

K-M area 393.1 291.3 101.8 0.102 0.100 
under curve (46.1) (40.8) [-20.7,224.2] 

abnormal quality of life', `normal quality of life' and 'quality of life deterioration'. These 

definitions are described in table 6.6 and give a conservative estimate of the amount of time 

spent with normal quality of life scores. This is because once a patient had recorded a quality 

of life deterioration, all remaining survival time was classed as abnormal regardless of whether 

Table 6.6: Partitioned quality adjusted survival state definitions for PQAS analysis of the CRC HAP 
RSCL physical data. 

State name Definition 

Treatment related abnormal Abnormal quality of life immediately following treatment. A 
quality of life patient is deemed to have left this state on the first occurrence 

of a normal quality of life score. 

Normal quality of life Periods of normal quality of life scores. The time of leaving 
this state is defined by the first occurrence of an abnormal 
quality of life score following at least one normal score. 

Quality of life deterioration Periods of abnormal quality of life following periods with 
normal scores. A patient leaves this state at death regardless of 
their quality of life score. 
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Table 6.7: Hypothetical example illustrating transition times for a PQAS. 

Treatment related Normal quality of Quality of life 
abnormal quality life deterioration 

Time of measurement of life 

Quality of life score Survival Status Survival Status Survival Status 

23 51 79 107 135 
A 65 1 150 0 150 0 

21 24 12 14 16 

42 70 98 116 154 
B01 107 1 171 

15 14 18 21 16 

Within the body of the table the numbers given in bold type refer to the time of quality of life 
measurement in days since randomisation with the quality of life scores given in normal font. Patient 
A was censored at 150 days, and patient B died at 171 days. 

normal scores were subsequently recorded. This is illustrated by patient B in the hypothetical 

example given in table 6.7. As with the TNQOL(L) example, the cut-off for a normal score was 

taken according to the RSCL guidelines at 20 units and the time of state to state transitions, if 

they occurred, were taken as midway between the time of current and the previously observed 

measurement. 

Having determined the survival and censoring indicator for each patient and each state, the 

mean quality adjusted survival time was estimated as described by Glasziou et al. (1990). 

Survival curves, S,. (t), for the survival in state s or worse, were estimated for each state 

separately. Given 5 (t) (s=1,..., 3) and an upper bound, L, the restricted mean survival, ps(L), 

was then estimated by calculating the area under S, (t) bounded by L. The restricted mean time 

spent in each state, T, (L), was then estimated by 

T (L) =µ, (L) -µ, _ 1(L) (6.6) 

Assuming that 11o(L)=0, this difference gives the estimated mean time spent in each adjacent 

states. Finally, for some vector of weights, w=(w,,..., w3), the restricted mean quality adjusted 

survival, QAS(L), was estimated by the weighted sum of these differences, 
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3 
QAS(L)=E wsTs(-) 

S-1 
(6.7) 

The variance of this quantity, var(QAS(L))=w'rVw, where V=var(T(L)) for T(L)=(TI(L),..., T3(L)) 

and was obtained by bootstrapping. Again this was a simple bootstrap of size 2000 in which 

subjects within each treated group were repeatedly re-sampled with replacement. The empirical 

estimate of the variance of f(L) estimated for each sample was then used as an estimate for V. 

For the analyses presented, a range of upper bounds for survival corresponding to 6,12,18, 

24 and 42 months were used in order to check for consistency in the analysis conclusions for 

increasing L. The estimated restricted mean times spent in each state for the restricted and the 

full data are shown in table 6.8 for L=1273. The partitioned estimated survival curves for the 

restricted data are shown in figure 6.6. 

As expected, the analysis showed that patients who received the HAI treatment spent on 
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Figure 6.6: Partitioned quality adjusted survival analysis for the restricted CRC HAP trial RSCL 

physical quality of life data: (a) HAI; (b) control. Censored observations are marked +. 
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Table 6.8: Restricted mean (SE) survival time (days) in each progressive health state based on 42 months 
(1273 days) follow-up for both the full and the restricted CRC HAP trial RSCL physical quality of life 
data. 

State Restricted data Full data 

HAI Control HAI Control 

Treatment related 17.8 7.36 22.0 7.01 
abnormal quality of life (7.29) (4.24) (7.98) (4.02) 

Normal quality of life 322.2 306.4 349.1 290.7 
(52.2) (46.6) (47.9) (40.9) 

Quality of life 142.9 36.6 123.7 36.2 
deterioration (46.8) (12.7) (38.7) (12.. 2) 

In order that the area underneath each survival curve is defined, an upper bound for survival was 
required. For the data presented in the table this was 42 months (1273 days) for both the restricted 
and full data. 

average a greater length of time with abnormal quality of life following treatment with 17.8 

days versus 7.36 in the control group. The mean time spent with normal quality of life scores 

was also greater in the HAI group, although the relative difference between the groups was 

much less than that seen for the first state. Similarly, the mean survival following a 

deterioration in quality of life was greater in the HAI group. Over the entire follow-up period, 

this implies that for any given positive weights less than one assigned to each state, the overall 

Table 6.9: Estimated mean QAS for HAI and control groups for different choice of weights for a PQAS 
analysis of the restricted RSCL physical data of the CRC HAP trial. 

Weights QAS (SE) 

1 w2 w3 HAI Control Difference [95% CI] p value 

010 322.2 (52.2) 306.4 (46.6) 15.8 [-123.5,155.1] 0.822 

0.5 1 0.5 402.5 (50.0) 328.4 (44.5) 74.1 [-59.2,207.4] 0.272 

0.25 1 0.75 366.8 (49.3) 319.2 (45.2) 47.6 [-85.6,180.7] 0.479 

0.75 1 0.25 371.2 (49.0) 321.0 (44.9) 50.2 [-82.1,182.5] 0.755 

0.9 1 0.9 466.8 (56.2) 345.9 (43.5) 120.0 [-20.7,262.5] 0.093 

111 482.9 (58.6) 350.3 (43.4) 132.6 [-12.7,277.9] 0.073 
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weighted restricted survival time will always favour the HAI treated arm of the study. 

Although the direction of effect was not altered by the choice of weights given to each state, 

obviously the size of the effect is still dependent on the choice and hence also the level of 

statistical significance. This is illustrated in table 6.9 for different choices of weight. The 

extremes of reasonable positive weights are shown in the first and sixth row of this table and 

corresponding to counting only time with normal quality of life and discarding the quality of 

life states and recognising all accumulated survival time. From these limits it is demonstrated 

that any reasonable choice of positive weight will not only favour the HAI group in terms of the 

estimated difference in mean QAS(L) as was already known, but that there will be no 

convincing evidence of a treatment difference for any given weights as shown by the lack of 

Q ......... ts :................................... " 
...... .... .......... .....................: ýýw. ý.. 

aý 

ffi$ 

g_ 

I 0.8 o. s 
*3 

U 02 CD 02 0.4 0.6 

W1 

02 i 

Figure 6.7: Surface of the realised values of the lower limit of 95% confidence interval for mean 
QAS(L) for all possible combinations of w, and w3 in the interval [0,1]. 
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evidence from the two extreme cases. This is also shown in figure 6.7 which shows the surface 

of 95% lower bounds for mean QAS(L) for all combinations of w, and w3, with w2 always 

equal to one. The figure shows that for all possible combination of weights, the lower 

confidence bound was always less than 0, implying that the 95% confidence interval included 

the null value of no difference. The maximum lower bound shown on the figure corresponds 

to the final row of table 6.9 when total survival in each group is compared. 

As with the TNQOL analysis, a similar picture was also seen at the shorter restricted time 

points as shown in figure 6.8. One exception to this was at 24 months at which time the control 

group had a very slightly higher estimated restricted mean time spent with normal quality of 

life. 
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Figure 6.8: Estimated QAS(L) and 95% Cl for L=6,12,18,24,42 months with weights given by: 
(wi, w2, w3)= (0,1,0): "; (0.5,1,0.5): m; and (1,1,1): " for the restricted RSCL physical quality of life 

scores of the CRC HAP trial. 
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6.3.3 Integrated quality-survival product 

The integrated quality-survival product was outlined by Glasziou (1995) as an alternative 

to health state based models. The basis of the analysis is the observation that the rate of gain 

of quality adjusted life years at times t, denoted qaly(t), may be expressed as the product of the 

survival function and the average quality of life of survivors at that time, 

galy(t)=Q(t)S(() (6.8) 

This then allows the mean quality adjusted life years gained up to some time limit L, denoted 

QALY(L), to be estimated as the area under this quality-survival product 

L 

QALY(L) =f Q(t) S(t) dt 

0 
(6.9) 

A Kaplan-Meier estimate is the obvious estimator for the survival function, but estimation 

of Q(t) has more options. Glasziou (1995) suggest this could be done by simply estimating 

group means at fixed time points, t, and then interpolating between distinct times using either 

a step function assuming quality of life changes at these fixed times or by linear interpolation. 

Alternatively they suggest that the order of estimation could be reversed, such that quality of 

life measured at distinct times for individuals is interpolated to continuous time, with Q(t) 

estimated as an average of these continuous functions. Such an approach is particularly helpful 

when measurement of quality of life takes place at very different times for each subject. 

In the subsequent application, three alternative methods of extrapolation were considered. 

The first used the most simple formulation possible, and assumed a simple group specific linear 

regression model through all the available data. This was then evaluated at all observed 

measurement occasions across subjects. The second analysis used a lowess smoother for an 

average quality of life which was not necessarily of a linear form. The third analysis first 

obtained subject specific quality of life profiles in continuous time. These were obtained by 
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first evaluating quality of life at the planned 30 day measurement times for each subject using 

the mean of the two closest measurements at days 0,30,60, ... etc, and then interpolating 

between these points using a step function. 

Although the idea of integrated quality-survival product was to solve the problem of 

subjectively chosen weights by using patients' quality of life scores to weight survival, the 

scores resulting from typical quality of life measurement instruments still may not give ideal 

weights. For example, the RSCL is scored such that low scores indicate a better physical 

quality of life. In order to obtain a reasonable weighting some transformation of this score is 

obviously needed. This gives a similar arbitrariness problem for choice of weights. For 

example, for the RSCL physical score, the percentage of the total score calculated as 

w, =icould be used. Alternatively, to give a weighting which recognises the small 

clinical differences between low scores in contrast to the large clinical differences between 

Figure 6.9: Profile of weight versus quality of life response as used for the continuous quality 
adjusted survival. 1-(score/40): -; 1-(score/40)2: --------. 
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Table 6.10: Estimation of Q(t) for an integrated quality-survival product analysis of the restricted CRC 
HAP trial data. 

Analysis Weighting 

I WI 

2 WI 

Method of estimation 

A linear function of time evaluated at all observed 
measurement times 

A lowess smoother evaluated at all observed measurement 
times 

Mean of the subject specific quality of life evaluated at the 
3 w1 planned 30 day measurement occasions, t=(0,30,60,... ' 1260) 

4 W2 
A linear function of time evaluated at all observed 
measurement times 

5 

6 

w2 

W2 

A lowers smoother evaluated at all observed measurement 
times 

Mean of the subject specific quality of life evaluated at the 
planned 30 day measurement occasions, t=(0,30,60, ..., 1260) 

high scores, the transformation w2=1-( 40 2 could be used. Both of these weighting functions 

are shown in figure 6.9 and were used for the analysis of the restricted RSCL physical scores 

of the CRC HAP trial giving six analyses in total which are outlined in table 6.10. All analyses 

were restricted to L=42 months follow-up. 

Following estimation of Q(t)and S(t), the quality-survival product, Q(t)S(t), was simply the 

product of Q(t) and S(t) evaluated over t. This is shown in figure 6.10 for the CRC HAP trial 

RSCL physical data for analyses 1,..., 3. Figure 6.10(a) shows S(t), 6.10(b), (d) and (f) give the 

estimated Q(t) for analyses 1,2 and 3 respectively. The product of the survival curve and these 

respective estimated quality of life functions is given in figure 6.10(c), (e) and (g). 

These figures highlight the different degrees of smoothing used in each estimation of Q(t), 

ranging from the linear function in figure 6.10(b), to that based on the subject specific means 

at each planned 30 day interval in figure 6.10(f) which was very noisy. The interesting thing 
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to notice from these figures, is that the degree of smoothing had little impact on the final results 

of the analysis in this example with figures 6.10(c), (e) and (g) all showing very similar 
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Figure 6.10: Estimated (a) survival S(t); and quality of life function Q(t) and quality-survival 
product for (b) and (c) analysis 1; (d) and (e) analysis 2; (f) and (g) analysis 3. HAI: 
control: --------. 
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Table 6.11: Integrated quality-survival product for the restricted RSCL physical data from the CRC HAP 

over a 42 month period. 

Mean (SE) 

Analysis HAI Control 
Difference [95% Cl] p-value 

1 346.7 (54.4) 258.2 (32.7) 88.5 [-38.3,215.3] 0.168 

2 353.4 (58.6) 265.9 (32.5) 87.5 [-46.5,221.4] 0.196 

3 353.2 (47.6) 276.5 (40.1) 76.7 [-47.2,200.6] 0.222 

4 420.1 (58.9) 302.9 (40.4) 118.0 [-24.5,260.5] 0.103 

5 433.8 (65.6) 319.5 (38.3) 114.3 [-37.5,266.1] 0.137 

6 431.6 (55.0) 322.2 (42.2) 109.4 [-28.7,247.5] 0.119 

behavioural patterns. This is further demonstrated by the estimated integrated quality-survival 

products for the three example over the 42 month period which are given in the first three rows 

of table 6.11. Although the smoothed estimates of Q(t) gave slightly increased points estimates 

of the difference between the two groups, there was little to suggest a difference between these 

estimates. Similar results were seen for the alternative transformation of quality of life scores. 

6.3.4 Conclusion 

The aim of this section of work was to assess a number of quality adjusted survival methods 

proposed for the analysis of self assessed quality of life data. Three alternative analyses were 

used. The first two analyses were based on health state models, and although they have been 

extensively used in toxicity studies, their application for self assessed quality of life data has 

been limited. Practical application of the third analysis, although specifically designed for such 

data, has yet to be reported in the quality of life literature. The aim of this work was therefore 

to assess the practical use of these analyses for the analysis of self assessed quality of life data 

and to highlight the issues which they generate. 
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The main problem with the TNQOL analysis (based on TWiST as defined by Gelber et al., 

(1989)) is that of bias induced by the informative censoring of discounted survival times. 

Because of this issue, which lead to the method being abandoned for the analysis of toxicity 

data, it is concluded that, if used, results obtained using Kaplan-Meier estimation of the 

survival curve in analyses in the light of a moderate or large degree of censoring, should be 

presented alongside those of the imputation methods suggested by Gelber et al. (1989). This 

enables the consistency of conclusions over a range of approximate methods to be assessed. 

As demonstrated in these analyses however, although these will give a range of possible values 

for patient group estimated mean TNQOL, differing degrees of bias in these estimates may 

result from the different quality of life behaviour in the two groups. A range containing all 

possible differences may be achieved by comparing the minimum imputed mean in one group 

with the maximum imputed mean in the second group and vice versa. However, unless there 

is very strong evidence of a difference it is unlikely that these estimates will give results on 

which strong inferences can be made. 

A further problem with this analysis is that it is impossible to determine whether any 

apparent advantage in TNQOL(L) for the one group over another is due to the previously 

established survival benefits or indeed a superior quality of life. This has been one of the major 

criticisms of the use of quality adjusted survival techniques in the literature and it is difficult 

to see how it may be overcome. 

The main restriction of the partitioned quality adjusted survival (PQAS) analysis is that it 

requires that the health states defined for the analysis are progressive. Such are inherent for 

the analysis of toxicity data where states of toxicity, TWiST and disease recurrence occur 

naturally. Self assessed quality of life data however can fluctuate throughout treatment and 

follow-up, particularly when periods of treatment are repeated several times during follow-up 
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as is often the case with treatments of chemo- and radio- therapy. This can be overcome to 

some degree by careful definition of states, and incorporation of additional states which allow 

a little more movement in the quality of life profile to occur. For example, `poor quality of life 

after treatment' and `poor quality of life after good'. However, this requires some knowledge 

about the expected behaviour of quality of life within a study, and will not always be 

practicable. In such cases, a partitioned quality adjusted survival analysis will not be feasible. 

The method does have an advantages over the TNQOL (TWiST) analysis in that it overcomes 

the main criticism of such methods in the literature by having a clear interpretation of the 

results in terms of it being possible to determine how the estimated weighted quality adjusted 

survival is made up in terms of time spent in each state. Perhaps more importantly, it is also 

not subject to bias as a result of informative censoring. 

The integrated quality-survival product was suggested specifically as a quality adjusted 

survival analysis for self assessed quality of life data, (Glasziou, 1995). Like TWIST however, 

it suffers from an interpretational problem as it is difficult to understand how the quality 

adjusted survival time has been accumulated and the presentation of the individual components 

of the quality-survival product (Q(t) and S(t)) is vital to facilitate interpretation. Although the 

main aim of this analysis is to eliminate the need for a researcher to subjectively assign weights 

for survival, it is unclear whether the scores obtained from quality of life measuring instruments 

define a reasonable weighting system for the analysis. Transformations of the scores to achieve 

more realistic weights from the scores may be applied, but these suffer from the same 

subjectivity as choosing weights in the first place. 

An unfortunate feature that all these analyses share, is the large number of assumptions or 

subjective decisions that have to be made by the researcher. These include: the definition of 

health states (TNQOL and PQAS); the choice of weighting for each state (PQAS and weighted 
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TNQOL); the choice of transformation of quality of life scale (integrated quality-survival 

product); and the length of time over which quality adjusted survival is evaluated (TNQOL, 

PQAS and integrated quality-survival product), and demand that a number of sensitivity 

analyses are presented along with the study results in order to study the robustness of 

conclusions drawn. These need to include presenting the results over a range of restricted times, 

L and varying the choice of weights. Within an analysis of the integrated quality-survival 

product, the impact of the choice the transformation of the quality of life scores needs also to 

be investigated. 

If feasible, it is concluded that the PQAS based analysis is the most favourable as a quality 

adjusted survival analysis of self assessed quality of life data. The basis of this conclusion is 

its ability to overcome the interpretational criticisms these analyses have faced in the literature. 

When extensive censoring occurs within the data TWiST based analyses like TNQOL, although 

simple to apply, are best avoided. Although the integrated quality-survival product has some 

potential, its lack of an intuitive interpretation of its results may limit its application as a 

reasonable alternative to PQAS. Whatever analysis is finally chosen though, possibly the most 

important part of a quality adjusted survival analysis is an extensive sensitivity analysis to 

accompany any results to support the conclusions in the light of the many arbitrary assumptions 

which all of the analyses require. 

6.4 Summary and discussion 

This work has examined alternative analyses for self assessed quality of life data which are 

censored as a result of patient death. Two very contrasting approaches were considered. The 

first included models for the analysis of data which are incomplete as a result of patient 

dropout. It was concluded that, of the three general classes of such models which have been 
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discussed in the literature, those termed informatively right censored models are the most 

appropriate in relation to the problem at hand. This conclusion was made on the grounds that, 

both pattern mixture models (Little, 1993) and selection models (Diggle and Kenward, 1994) 

rely on measurement (and therefore dropout) occurring at unique time points which is not 

guaranteed in quality of life studies. In addition they attempt to make full data inferences - that 

is, inferences based on expectation in the absence of dropout. This was not regarded as 

appropriate in the context of quality of life data and patient death, since it is the expectation of 

quality of life conditional on a patient being alive which is of interest. For such inferences, two 

different models were presented. Both gave very similar results. The trivariate Normal model, 

attributable to Schlucter, (1992), modelled the joint distribution of patient quality of life and 

survival, which could then be transformed to give inferences for the conditional distribution 

of quality of life given a particular survival time. In the second model, this distribution was 

modelled directly. The latter was unfortunately restricted to circumstances when survival times 

are known for all subjects, whereas the former incorporates censored survival times within the 

analysis. Although both analyses were presented with quality of life modelled in terms of a 

linear trend over time, more complex patterns of response over time may be incorporated. In 

addition, the analyses are not restricted to continuous outcomes, and may be used as extensions 

of the models for the random effect binary or ordinal outcomes discussed in Chapters 4 and 5. 

Further work is however needed in order to fully determine the properties of these models and 

their robustness to differing degrees of censoring. 

The second analysis options considered were different methods for quality adjusted survival 

analyses. Such analyses have been used successfully for the analysis of toxicity data, but have 

been criticised in the quality of life literature as they make it impossible to determine how 

quality adjusted survival has been accumulated, for instance whether patients have a short 

survival with good quality of life or a long survival with poor quality of life. Of the three 
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different quality adjusted survival analyses evaluated, it was concluded that the partitioned 

quality adjusted survival (PQAS) (Glasziou et al, 1990) was the most useful. Unfortunately, 

the analysis requires that progressive quality of life health states are definable, which may make 

it infeasible in many practical situations. In addition, as bootstrapping is required in order to 

obtain measures of precision for estimated effects, they are also computer intensive. 

A third analysis option which has not been considered here is the use of multi-state models. 

These models have been used to study disease progression (Kay, 1986, Andersen et al., 1991) 

where survival and disease development are modelled in the setting of a Markov chain, 

estimating transition intensities (or instantaneous hazard rates) between health states. It has 

been suggested (Olschewski and Schumacher, 1990, Abrams, 1992) that by defining 

appropriate quality of life states with death as a final absorbing state, such analyses could be 

useful for the analysis of self assessed quality of life data. Since there has been no application 

of such models in the quality of life literature, it is unclear how useful they may prove to be, 

and it is an interesting area of research in which further work is needed. 

It should be noted that all of the work included in this chapter once again ignored the 

problem of intermittent missing data. This is a very different problem to that of censored 

quality of life responses due to death that discussed in the following chapter. 
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7 Missing Data in Quality of Life Studies 

7.1 Introduction 

Missing data is a common problem in studies measuring quality of life. In all of the work 

covered so far in this thesis it has been assumed that the implications of some of the data being 

missing can be ignored and it has been considered simply as a problem which generates 

unbalanced data rather than a source of potential bias. The implications of this assumption will 

depend on the reasons underlying the missing data, or more formally the missing value process. 

If responses are missing simply because subjects forget to complete or return questionnaires 

and is not related to the underlying level of quality of life at that time then, although reducing 

the precision of estimates, it is reasonable to assume that the occurrence of missing data will 

not introduce a bias. On the other hand if the reason underlying the incidence of missing 

responses is in some way related to the underlying level of response, for instance if subjects 

tend not to respond when they are depressed or when they are feeling particularly well, 

inferences from analyses that ignore the missing data may be subject to bias. 

Even within a randomised controlled trial, when it is believed that the underlying reasons 

for missing responses are the same across the two treatment groups, a bias in the estimate of a 

treatment comparison may occur if indeed there is a difference in the underlying level of 

response in the two groups. For example, if the probability of subject non-response is related 

to an underlying high level of response, and if one group of patients experience higher 

underlying levels of response than the other, then this group will be more susceptible to missing 

data and the observed crude mean difference in response between the groups will be an 
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underestimation of the true underlying difference. 

Although the implications of missing data have been well documented in terms of missing 

data due to dropout or attrition, very little has been written relating to intermittent missing data. 

In one of the few references to address the problem, Diggle et al. (1994) have suggested that 

if data is intermittently missing, "it may be reasonable to assume that they arise from 

mechanisms unrelated to the measurement process and are therefore missing completely at 

random". Intuitively, this does not seem reasonable for quality of life data. The work in this 

chapter investigates this explicitly and attempts to determine how missing data typical of that 

seen in quality of life studies may affect the conclusions of an analysis. This is done by 

developing two models to investigate how the observed missing data relate to the observed 

quality of life response. These are exemplified using the data from the CRC NSCLC study. 

Before these models are developed however, Section 7.2 describes the notation and well known 

classification of missing response processes as defined by Little and Rubin (1987). This is 

followed by a simulation exercise to exemplify these definitions and their implications for 

particular intermittent missing value processes. The current literature on examining the nature 

of the missing value process within a data set is then discussed and two models that extend this 

work are developed. Using the results of both the simulation exercise and these two models, 

some conclusions as to the effect of missing data on the inferences already drawn from the CRC 

NSCLC study are then discussed. A more general discussion is given in Section 7.4. 

7.2 Missing value processes 

7.2.1 Notation 

The classifications of missing value processes defined by Little and Rubin (1987) will be 

used throughout using the following notation. 
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The vector, y; =(y; 1,..., yim), is the vector of underlying responses for subject i over occasions, 

j=l,..., m. The components of this vector which are observed are denoted y. with those that are 

missing denoted y,.. As such these two sub-vectors form a partition of yi=(yo, yim) 

xi is a design matrix of known covariates which relates y, to 0, a vector of unknown 

parameters describing the relationship of x, and y, about which inferences are to be made. For 

example, x, may be a (mx2) matrix to model 0=(a, ß), an intercept and slope to examine how 

the quality of life response changes over time. 

A second (mx 1) vector, rj=(rýý,..., rrm) denotes the missing value process, where rU=1 if yu 

is observed, 0 if it is missing. The design matrix z, relates ri to 40, a vector of unknown 

parameters for the missing value process where xi and zi may or may not be distinct. For 

example, both the missing data process r, and response y, may change with respect to time. 

The density of y, given 0 and xi is written f, (y, le, x1). Similarly the density of rj given 40, z, 

and y, is given by f2(rrI4 , zi, yj). The joint density of the observed data (yb, r, ) can then be 

obtained by integrating the joint distribution of (y,, r, ) over the sample space of the missing data 

Yin - 

f(ym, rjl9, W, xj, zj) =ff, (yjl6, xj)fz(rjlý, zj, yj)dyjo 
, ý, 

(7.1) 

It is the partitioning of the joint density in equation (7.1) that is critical in defining the 

implications of particular missing data processes. 

7.2.2 Missing completely at random 

An observation is said to be missing completely at random (MCAR) if missingness is 

completely independent of the underlying measurement process. That is 
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fZ(ri4, ZVy, ) _ . 
f(ri'O, Z; ) (7.2) 

Since yj and r, are independent, y10 can be seen as a random sample from y,, and thus 

inferences based only on the observed data (y, 
a, rt) are valid. Further, substituting equation 

(7.2) into equation (7.1) illustrates that ignoring a missing value process that is MCAR will 

introduce no bias although there will be a loss of precision in the analysis because of the 

reduced data size. Treating the missing data as simply a problem of unbalanced data is 

therefore valid under such a missing value process. 

7.2.3 Missing at random 

An observation is defined as missing at random (MAR) if missingness is related to the 

observed data, y, 0. 
Formally 

f2(r, 1 40, zi, yi) = f(rý1 (ý, zr, yro) (7.3) 

Combining this with equation (7.1), the joint density of the observed data (y, 
0, r, 

) reduces to 

f2(rjl40, Z,, yjo) A (yilA, xj) d. Yi. =f2(rrl40, Zj, Yio)f3(Y; o19, x; ) 

r,. 
(7.4) 

Following this partitioning, Rubin (1976) showed that if 0 and (0 are distinct, likelihood 

based inferences about 0 can be made based only on yk and x,. Hence, for continuous 

outcomes, variance component models which use the full available data, such as those used in 

Chapter 3, will be valid. Alternative models are also available. In particular, Zwinderman 

(1992) discussed alternative models for continuous outcomes subject to missing data classed 

as `dropout'. Also, the Dale model proposed by Kenward et al. (1994) for the analysis of 

ordinal data will also be valid under MAR. 
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It should be noted however, that unlike the MCAR process, equation (7.4) shows that y, and 

ri are not independent. This implies that the sampling properties of maximum likelihood 

estimates will depend on the missing value process and thus precision estimates based on the 

expected information matrix will be incorrect. It has been suggested therefore, that under 

MAR, precision estimates and test statistics should be based on the observed rather than 

expected information (Laird, 1988). A further problem with all likelihood based analyses is 

that, they implicitly impute missing data, and can therefore be sensitive to model 

misspecification. 

As an alternative, a weighted GEE for binary and continuous outcomes have also been 

shown to perform well for the MAR case. The basis for this proposed model is a note 

identifying the source of bias in the GEE analysis under MAR and adjusting for this accordingly 

(Rotnitzky and Wypij, 1994, Robins et at., 1995, Robins and Rotnitzky, 1995). 

7.2.4 Not missing at random 

Finally, an observation is said to be not missing at random (NMAR) if given observed 

measurements, there is some residual association of the missingness to the realised value of the 

missing observations. That is 

f2(rj1 10. zO, YI) = f(ri1 4, zt,. Yio, Ym) (7.5) 

In situations where data are NMAR, inferences drawn from an analysis ignoring the missing 

data will be biassed. Simulation exercises by many authors have attempted to address the 

extent of the problem. Wang-Clow at al. (1995) saw that when the missing data process was 

non-ignorable but the same in both treatment groups, non-likelihood based approaches tended 

to do generally better than those based on likelihood. However, in practical situations, in the 
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event of non-ignorable non-response it is impossible to determine the extent of possible bias. 

Given this, the most satisfactory way to determine the implications of the missing data on 

parameter estimation has been suggested to be a combination of pattern mixture models using 

plausible missing data processes and multiple imputation (Laird, 1988, Glynn et al., 1993) to 

give a sensitivity analysis for the different missing data assumptions. 

7.2.5 Two simulated illustrations 

To illustrate the problem of intermittent missing data for analyses of typical quality of life 

data, two simulated examples were performed. Although a number of simulated examples to 

illustrate the problems of the different missing value processes have been recently presented 

in the literature (Wang-Clow et al, 1995, Wu and Carroll, 1988) these have concentrated on the 

problem of patient dropout rather than intermittent missing data which is an additional problem 

in quality of life studies. It was therefore hoped that this exercise with simulation parameters 

typical of those seen in quality of life data, may give more information about the problems that 

intermittent missing data may cause in quality of life studies. 

In each scenario, full data were simulated for eighty-two subjects on eight occasions with the 

subjects split equally between two groups. In the first example, it was assumed that both groups 

had the same underlying response, constant through time. In the second example, the mean 

response, again assumed constant through time, was different in the two groups. In both cases, 

responses for each subject i were generated from a Normal distribution with mean µ, and 

variance oe . These subject specific means were then in turn assumed to be Normally 

distributed with mean µ and variance o,,. The values taken for these parameters are defined 

in table 7.1. The choice of parameters was based on previous experience with the results of the 

NSCLC CRC study reported in Chapter 3. 
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Table 7.1: Simulation parameters for two intermittent missing value simulations. 

Missing data process 
Marginal Variance 

parameters parameters MCAR MAR NMAR 

Ni P2 axi=Q2z Q. t=ä 2 Pr(r, O) Pr(rý=Oly;;. >l8.33) Pr(r,; =OIy�>18.33) 

1 16 16 10 4 
0.20 0.55 0.75 

2 14 17.5 10 4 

For the MAR process missing data is assigned with a probability of 0.55 on the basis of the last 
observed measurement, yü.. 

The impact of missing data for three methods of data analysis were was assessed: an 

unweighted mean of subject specific parameters obtained by least squares (UWLS) (Wu and 

Carroll, 1988); a generalised estimating equation with an exchangeable correlation structure, 

(GEE) (Liang and Zeger, 1986); and full random effect analysis using multilevel models to give 

REML estimates (MLn) (Goldstein, 1995). For the UWLS analysis, subjects who following 

the assignment of missing data had less than three observations overall were excluded. 

Consistent with the simulated data structure, the parameter of interest, the mean response in 

each group was assumed constant over time. Separate variance parameters were estimated for 

each group using MLn thus giving an estimate of the intraclass correlation in each group. A. 

single estimate of the intraclass correlation was used for the GEE analysis. 

The results using each of these methods for the 300 simulated full data sets are given in 

tables 7.2 and 7.3 for the marginal and variance parameters respectively. These very closely 

reflected the simulation parameters used and were the same regardless of estimation method. 

Responses within this full data set were then designated to be missing according to each of the 

missing data processes defined above. For the MCAR case a value was designated missing with 

a probability of 0.2. Under MAR, missingness was determined on the basis of the previously 

observed measurement such that a response was assigned missing with a probability of 0.55 if 

the value of the last available observation was greater than 18.33. For example, if the second 

0.20 0.55 0.75 
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Table 7.2: Estimated marginal parameters (SD) of the full data simulated for missing data simulations. 

Method of analysis 

UWLS GEE MLn 

Simulation one : N1=16, N2=16,8=0 

µ1 16.03 (0.51) 16.03 (0.51) 16.03 (0.51) 

µ2 16.01 (0.51) 16.01 (0.51) 16.01 (0.51) 

6 -0.018 (0.72) -0.018 (0.72) -0.018 (0.72) 

Simulation two : N1=14, P2=17.5,6=3.5 

Ni 

P2 

8 

14.03 (0.51) 14.03 (0.51) 14.03 (0.51) 

17.51 (0.51) 17.51 (0.51) 17.51 (0.51) 

3.48 (0.72) 3.48 (0.72) 3.48 (0.72) 

The mean and standard deviation of the estimates from the 300 simulations are given as the estimate 
in each case. 

Table 7.3: Estimated variance parameters (SD) of the full data simulated for the missing data 
simulations. 

MLn GEE 

Variance estimates p 

Group 1 Group 2 Overall 

Simulation one : aa, =0u2=10; o, '=ai2=4; p=0.71 

02 9.97 (2.36) 9.80 (2.35) 

0,3.99 (0.34) 3.99 (0.32) 0.70 (0.04) 

Intraclass correlation 0.71 (0.05) 0.70 (0.05) 

Simulation two : aäß=022=10; a; 1=a. 2=4; p=0.71 

o. 9.97 (2.36) 9.80 (2.35) 

0,3.99 (0.34) 3.99 (0.32) 0.70 (0.04) 

Intraclass correlation 0.71 (0.05) 0.70 (0.05) 
The mean and standard deviation of the estimates from the 300 simulations are given as the estimate 
in each case. 
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observation was designated missing on the basis of the first, missingness of the third 

observation was also based on the value of the first. Being impossible to determine the value 

of the previous measurement, no dataweredeleted at the first measurement occasion. For the 

NMAR process, a value was designated missing on the basis its own value. If the value 

exceeded 18.33 it was assigned missing again with a probability of 0.75. The observed mean 

proportion of missing data for each simulation are shown in table 7.4. Given the simulation 

parameters, this was approximately 20% overall for the MCAR and NMAR analyses. Under 

MAR the overall proportion of missing data in simulation one was slightly lower at 16%, and 

for simulation two slightly higher at 22%. The distribution of proportion of missing data by 

treatment group and overall for each individual simulation within simulations one and two are 

shown in figure 7.1 along with a summary of the numbers of subjects omitted from the UWLS 

analysis in each case . 

For the MCAR cases, all the distributions were the same. This was because the assignment 

of missing data in both simulations was set to start from the same random seed. For simulation 

one where both groups had the same underlying parameters the distributions of missing data 

Table 7.4: Observed mean proportion of missing data in missing data simulations one and two by group 
and overall. 

Group 1 Group 2 Overall 

Simulation one 

MCAR 0.20 0.20 0.20 

MAR 0.16 0.16 0.16 

NMAR 0.20 0.20 0.20 

Simulation two 

MCAR 0.20 0.20 0.20 

MAR 0.18 0.25 0.22 

NMAR 0.09 0.31 0.20 
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'Figure 7.1: Missing data summary box plots and histograms for simulations one and two showing 
the distribution of the proportion of missing data ((a) & (c)) and the number of subjects who were 
omitted from the UWLS analysis because they had less than three observations ((b) & (d)) for each 
of the 300 simulations. 
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were very similar in terms of the proportions missing as well as the number of subjects with less 

than three observations who were omitted from the UWLS analysis. For simulation two where 

the different group means were used, in line with their expectations, the distribution of missing 

data between the two groups was different for the MAR and NMAR cases where the missing 

data process was related to the underlying response. This was also reflected in the distribution 

of the number of subjects with less than three observations who were omitted from the UWLS 

analysis. 

The results of the three different analyses of these data following the different missing data 

simulations are given in table 7.5 for the fixed (marginal) effects and table 7.6 for the random 

(variance) components. A series of one sample t-tests were used to test for bias in these 

estimates following data deletion under the various missing value procedures with the original 

simulation parameters. All estimates have been rounded to 2 decimal places which accounts 

for some apparent discrepancies of p-values in the tables. 

All three analysis methods performed well for the MCAR case, and gave no evidence of any 

bias in the estimation for both simulations. For simulation one, in the MAR case the UWLS 

analysis produced estimates lower than the true mean effects in each group, although the 

evidence for this as a real effect was not convincing. These were both consistently estimated 

in the GEE and MLn analyses. For all three analyses, the estimated group difference was still 

consistently estimated. However, for simulation two the UWLS analysis overestimated the true 

mean effects in each group, although it did consistently estimate the group difference. 

Although not to the same degree, the estimated group means from the GEE and MLn analyses 

were greater than the true effects. Again-the estimated group difference was still consistently 

estimated. In the NMAR case, the mean parameter estimates were underestimated in both 

simulation examples. 
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Table 7.5: Estimated marginal parameters (SE) (two sided p-value} for simulations one and two 
following the assignment of missing data. 

Method of analysis 

UWLS GEE 

Simulation one : µ, =16, P2=16,6=0 

Missing completely at random (MCAR) 

Ni 

N2 

8 

16.03 (0.03) (0.31) 16.03 (0.03) (0.31) 

16.01 (0.03) (0.74) 16.01 (0.03) (0.74) 

-0.020 (0.04) (0.64) 0.020 (0.04) 10.62) 

MLn 

16.03 (0.03) (0.31) 

16.01 (0.03) (0.74) 

-0.020 (0.04) (0.62) 

Missing at random (MAR) 

N, 

NZ 

6 

15.97 (0.03) (0.28) 16.01 (0.03) {0.83} 

15.96 (0.03) {0.19) 16.00 (0.03) (0.99) 

-0.020 (0.70) (0.981 -0.019 (0.71) (0.981 

16.01 (0.03) (0.76) 

16.00 (0.03) {0.93} 

-0.007 (0.04) (0.87) 

Not missing at random (NMAR) 

Ni 

N2 

8 

15.25 (0.02) (<0.001 } 15.45 (0.03) (<0.001) 

15.22 (0.03) (0.08) 15.43 (0.03) (<0.001 } 

-0.026 (0.04) (0.45) -0.019 (0.04) 10.611 

15.48 (0.03) (<0.001) 

15.46 (0.03) (<0.001) 

-0.023 (0.04) (0.59) 

Simulation two: µi=14, µl=17.5,8=3.5 

Missing completely at random (MCAR) 

Ni 

Pi 

8 

14.03 (0.03) {0.74} 14.03 (0.03) {0.74} 

17.51 (0.03) {0.74} 17.51 (0.03) {0.74) 

3.48 (0.04) (0.48) 3.482 (0.04) (0.48) 

14.03 (0.03) (0.74) 

17.51 (0.03) (0.74) 

3.482 (0.04) (0.48) 

Missing at random (MAR) 

NI 

N2 

6 

14.24 (0.03) (<0.001) 14.08 (0.03) (0.01) 

17.74 (0.03) (<0.001 } 17.58 (0.03) (0.01) 

3.50 (0.04) (0.97) 3.49 (0.04) 10.89) 

14.07 (0.03) (0.02) 

17.57 (0.03) (0.02) 

3.50 (0.04) (0.90) 

Not missing at random (NMAR) 

Ni 

P2 

8 

13.66 (0.03) (<0.001) 13.72 (0.03) (<0.001) 

16.31 (0.03) J<0.001) 16.74 (0.03) 1<0.001) 

2.65 (0.04) J<0.001) 3.01 (0.04) 1<0.001) 

13.73 (0.03) 1<0.001) 

16.77 (0.03) (<0.001 } 

3.04 (0.04) 1<0.001) 
The standard error of the estimates from the 300 simulations is given for each case and used to 
construct a one sample t-test comparing each estimate with the simulation parameter. 
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For the random parameters, the full random effects analysis using MLn performed 

reasonably well in the both MCAR and MAR cases in simulation one. For the latter, the 

estimated between subject variances were slightly lower than the full data example, but there 

Table 7.6: Estimated variance parameters (SE) (two sided p-value) for simulations one and two 
following the assignment of missing data. 

MLn 

Variance estimate 

Group 1 Group 2 

Simulation one : a,, =o4=10; a,, t=a, ==4; p=0.71 

Missing completely at random (MCAR) 

oN 9.98 (0.14) (0.71) 9.79 (0.14) 10.13) 

o; 4.01 (0.02) (0.81) 4.00 (0.02) (1.00) 

Missing at random (MAR) 

oM 9.81 (0.14) (0.18) 9.78 (0.13) (0.08) 

o; 4.00 (0.02) (0.88) 4.01 (0.02) (0.60} 

Not missing at random (NMAR) 

a; 7.66 (0.13 ) (<0.001) 7.44 (0.14) J<0.001) 

a; 3.55 (0.02) (<0.001) 3.54 (0.36) (0.20) 

Simulation two : apt=a =10; a<<=a 2-4; p-0.71 

Missing completely at random (MCAR) 

v; 9.98 (0.14) (0.86) 9.79 (0.14) {0.87) 

o; 4.01 (0.02) {0.83) 4.00 (0.02) 11.00) 

Missing at random (MAR) 

a, ý, 10.13 (0.14) 10.37} 9.72 (0.14) 10.04} 

o; 3.99 (0.02) (0.51 1 4.00 (0.02) 10.91) 

Not missing at random (NMAR) 

W., 8.02 (0.12) (<0.001) 8.02 (0.15) (<0.001) 

o; 3.65 (0.02) {<0.001) 3.52 (0.02) (<0.001) 

GEE 

P 

Overall 

0.70 (0.002) {0.33} 

0.69 (0.002) (0.03) 

0.62 (0.004) (<0.001 ) 

0.70 (0.002) (0.37) 

0.67 (0.003) (<0.001) 

0.63 (0.003) (<0.001) 

The standard error of the estimates from the 300 simulations is given for each case and used to 
construct a one sample t-test comparing each estimate with its simulation parameter. 
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was no evidence to suggest this was not due to chance. For simulation two, although the 

parameters were consistently estimated, under the MAR process estimates for the between 

subject variance were slightly greater than their true values for group 1 and slightly lower for 

group 2. The evidence was, however, not convincing. For the NMAR case, all the parameters 

were under estimated. This is consistent with what was expected, as removal of the larger 

observations will have the effect of drawing the available data for all subjects closer together, 

thus lowering the between subject variance, as well as reducing the variance around a subject's 

fitted parameters. 

Overall these analyses have shown that under an MCAR process, the method of analysis is 

not important in order to avoid biased estimation. They also highlighted that for an NMAR 

process, bias is unavoidable. The most interesting scenario for which some information is 

retrievable is under an MAR process. As expected, the UWLS analysis showed most bias, 

however, although to a smaller degree, some was also seen in estimates using GEE and MLn. 

When compared to the parameter estimates of the full data (tables 7.2 and 7.3) however, the 

extent of this bias was reduced somewhat. 

7.2.6 A third simulated example 

Since in practical situations it may be expected that the level of response will change over 

time a third simulation which allowed a fall in the level of response of time was also performed. 

Its simulation parameters are given in table 7.7. In this example, a fall in the level of response 

over time has been assumed. This has been allowed to vary across subjects. The variation 

between individuals in the underlying level of response has also been increased in this example. 

The missing data processes assumed in each case were the same as in the two previous 

examples. The observed proportions of missing data for each missing data process are shown 

in table 7.8. The distribution of observed proportions for each 300 simulations, as well as the 
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Table 7.7: Simulation parameters (2). 

Missing data process 
Mean Variance 

response (random effects) MCAR MAR NMAR 

PI N2 ß Ei=E2 0e1=0; 2 Pr(rr; =0) Pr(rr/=0y/1. >18.33) Pr(rr1=Oy�>18.33) 

17 14 -0.7 

35 -0.9 

-0.9 0.8 10 0.20 0.55 0.75 

For the MAR simulation, data was designated missing with a probability of 0.55 on the basis of the 
last observed value denoted ye.. 

number of subjects which were omitted from the UWLS analyses due to an excess of missing 

data are shown in figure 7.2. As expected, these show a higher proportion of missing 

observations in group 1 for both the MAR and NMAR cases. Similarly, for the UWLS analysis, 

the distribution of number of subjects removed because of lack of data was different in the two 

groups. 

Table 7.8: Observed proportions of missing data in a third missing data simulation exercise. 

Mean proportion of missing values observed 
Group 1 Group 2 Overall 

MCAR 0.20 0.20 0.20 

MAR 0.19 0.12 0.16 

NMAR 0.25 0.14 0.20 

The results for the full data and those following the application of each of the missing data 

processes are shown in table 7.9 for the marginal parameters and table 7.10 for the variance 

parameters. For the marginal parameters, as for the previous two examples, parameter 

estimation with MCAR missing data was consistent for all analysis methods. When data was 

MAR, the UWLS analysis consistently estimated the group difference, but its performance in 

estimating the group intercepts and slopes was poor. For GEE, although the group means were 
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Figure 7.2: Missing data summaries for simulation three showing (a) the distribution of the 

proportion of missing data; and (b) the number of subjects who were omitted from the UWLS analysis 
because they had less than three observations for each of the 300 simulations. 

again consistently estimated, there was some evidence of a bias in the estimate for the slope 

which was greater in absolute size than the true simulation parameter. Estimation of the fixed 

parameters using MLn was much better with no evidence of a bias for any of the parameters. 

When the data were NMAR all analyses performed badly. With the exception of the slope 

estimated with the GEE analysis, all parameter estimates were significantly lower than their 

respective underlying parameters. 

Estimation of the variance parameters using MLn indicated a bias in estimation of the 

variance between subject intercepts and the covariance between slope and intercept under all 

three missing value processes. However, when compared to the estimates of the full data the 

NMAR 
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Table 7.9: Estimated marginal parameters (SE) {two sided p value) following missing data simulation. 

Method of analysis 

UWLS GEE 

Simulation parameters : N, =17, N2=14,6=-3, ß=-0.7 

Full data (Estimate (SD)) 

III 

112 

8 
ß 

17.06 (1.00) 

14.04 (0.96) 

-3.03 (1.38) 

. 0.70 (0.12) 

17.07 (1.01) 

14.03 (0.98) 

-3.03 (1.42) 

-0.70 (0.12) 

MLn 

17.07 (0.99) 

14.04 (0.95) 

-3.03 (1.34) 

-0.70 (0.12) 

Missing completely at random (MCAR) 

NI 

N2 

8 
a 

17.05 (0.06) (0.40) 

14.02 (0. (6) (0.72) 

-3.04 (0.08) (0.64) 

-0.69 (0.007) (0.30) 

17.05 (0.06) 10.40) 

14.03 (0.06) 10.60) 

-3.02 (0.08) 10.811 

-0.69 (0.007) (0.37) 

17.05 (0.06) (0.41 ) 

14.02(0.06) (0.73) 

-3.03 (0.08) (0.81) 

-0.69 (0.007) (0.35) 

Missing at random (MAR) 

NI 

Ns 

8 
P 

16.87 (0.06) (0.03) 

13.90 (0.06) {0.08) 

-2.97 (0.08) (0.72) 

-0.66 (0.007) 1<0.001) 

17.01 (0.06) (0.89) 

14.02 (0.06) (0.77) 

-2.99(0.08) (0.92) 

-0.74 (0.007) (<0.001) 

17.02 (0.06) (0.78) 

13.99 (0.06) (0.80) 

-3.02 (0.08) (0.78) 

-0.69 (0.007) (0.18) 

Not missing at random (NMAR) 

Al 

P2 

a 

15.41 (0.05) 1<0.001) 15.89 (0.05) (<0.001) 

13.26 (0.05) (<0.001) 

-2.64 (0.07) 1<0.001) 

15.79 (0-05) (<0.001) 

13.13 (0.05) (<0.001) 

-2.65 (0.07) (<0.001) 

13.03 (0.05) (<0.001) 

-2.38 (0.08) 1<0.001) 

0 -0.68 (0.007) (0.01) -0.70 (0.007) (0.81) -0.64 (0.007) (<0.001) 

The standard error of the estimates from the 300 simulations is given for each case and used to 
construct a one sample t-test comparing each estimate with their simulation parameter. 

rating of its performance under MCAR and MAR was improved. Again in the NMAR case, all 

the estimated parameters were further away from their true values than in the MCAR and MAR 

examples with substantial evidence of bias. 
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Table 7.10: Estimated variance parameters (SE) (two sided p value) following missing data simulation. 

Simulation parameters : a; =35, o , =0.8, a,,, =-0.9 a ; -10 

Full data 
Estimate (SD) MCAR MAR NMAR 

o2 37.02 (6.91) 37.03 (0.42) (<0.001) 36.90 (0.42) (<0.001) 29.16 (0.004) 1<0.001) 

aý 0.80 (0.16) 0.79 (0.01) (0.60) 0.79 (0.009) (0.48) 0.69 (0.43) (0.001) 

awv -1.68 (0.87) -1.68 (0.05) (<0.001) -1.72 (0.05) (<0.001 } -1.39 (0.009) (<0.001) 

or 9.98 (0.63) 10.02 (0.04) (0.60) 10.05 (0.04) {0.22} 9.24 (0.04) (<0.001 } 

The standard error of the estimates from the 300 simulations is given for each case and used to 
construct a one sample t-test comparing each estimate with the respective simulation parameter. 

7.2.7 Conclusion 

These simulations have illustrated some elements of the discussion of the previous section. 

Primarily, they have shown that under MCAR missing data processes the choice of estimation 

procedure was not crucial in avoiding bias in the parameter estimation. As expected, under 

MAR the MLn estimated parameters showed little evidence of bias. Surprisingly however, 

GEE, a non-likelihood approach, also performed well. This was not so for the UWLS analysis 

which is some degree is due to the need to exclude completely, all subjects with less that three 

responses. As expected, under NMAR, without taking into account the missing data process 

explicitly in the analysis, all analyses performed badly in all but the most simple case of 

estimating a group difference of zero. 

7.3 Determining the nature of a missing value process 

As is evident from the previous section, the type of analysis required to make valid 

inferences about parameters of interest will always depend on the missing value process. For 

instance, an ignorable process which is MCAR rather than MAR will allow full flexibility in 
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the analysis procedure, whereas a non ignorable (NMAR) process as distinct from an ignorable 

one (MCAR or MAR) will give rise to potentially biased parameter estimation. Methods to 

assess the nature of the missing data process are therefore an important part of any applied 

analysis of data which are subject to missing data. 

Some work has been reported in the literature discussing possible approaches in this area. 

In particular, Diggle (1989) proposed a non parametric test assessing whether missing data due 

to dropout occurred at random within distinct groups of the sample. Rideout (1991), in 

response to Diggle's paper, showed how using a logistic regression model for the odds of 

dropout for a given mean level of response gives an equivalent test for MCAR versus MAR 

processes. Other more recent work in the area has involved stratifying the population 

according to their observed pattern of missing data and then testing for the equivalence of 

response in each stratum (Park et al. 1993, Dawson 1994). 

Unfortunately, the basic nature of missing data means that a robust test to highlight an 

ignorable (MCAR or MAR) process from a non ignorable one (NMAR) is impossible. Diggle 

and Kenward (1994) presented a model which related the odds of dropout to the observed 

measurement history and the conditional expectation of the unobserved response at the time of 

dropout. Essentially the method involves evaluating the expectation of the missing response 

at the time of dropout conditional on the observed responses and an underlying missing value 

process (based on the logistic regression model) in a full data likelihood model. Using these 

conditional estimates, the missing value process is then updated. The procedure continues 

iteratively until convergence. Naturally the results are very sensitive to the model 

Specification for which no possibility of validation is available. 

All of this work to be found in the literature refers to the missing data due to dropout as 

241 



Missing data in quality of life studies 

opposed to intermittent missing values. Particularly when the proposed methods involve 

stratification by the observed pattern of missing data the extension of the methods for the 

intermittent case is not feasible. The remaining work in this chapter discusses an extension of 

the logistic regression model to help distinguish an MCAR from an MAR process for 

intermittent missing values in a repeated measurement problem. This is then extended and 

modelled alongside the quality of life measurement process to model jointly missing data and 

quality of life. 

The first model is a multilevel logistic regression that is an extension of Rideout's logistic 

regression model for the intermittent missing values in a repeated measurement analysis. The 

model is a first order transition model with a random effect which relates the subject specific 

odds of missing responses to the underlying level of response observed at the previous 

measurement occasion (if available). Before applying this model to the missing data problem 

in the CRC NSCLC study, an exploratory data analysis of the missing data in this study is 

performed in more detail than given previously in Chapter 2. 

7.3.1 The data 

A description of the extent of the missing data within the CRC NSCLC study was given in 

tables 2.1 and 2.2. They showed that on a weekly basis, a little over 50% of data was available 

each month. Ignoring the complete non-responders and those subjects who responded only at 

pre-treatment, as they can offer nothing to any data analysis of post treatment response, 57 

subjects remained. The amount of missing data among these subjects is summarised in table 

7.11. Missing data that was due to patient death during follow-up was ignored in the analysis 

the reasoning for this is discussed in the subsequent sections. A 75% to 80% response rate was 

seen overall which was very evenly distributed between treatment groups and over time. 
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Table 7.11: Number of missing data each week in the CRC NSCLC study taken as a proportion of those 
subjects giving at least one post baseline response. 

n Week 

1234S678 

Overall 57 0.28 0.21 0.19 0.25 0.26 0.19 0.18 0.23 

Continuous 
course 

Split 
course 

29 0.21 0.17 0.17 0.28 0.24 0.14 0.14 0.24 

28 0.36 0.25 0.21 0.21 0.29 0.25 0.21 0.21 

Further, in a logistic regression analysis of the proportion of responses given by each 

subject against several baseline covariates (table 7.12) it was seen that women tended to give 

a larger proportion of possible responses. There was also evidence of relationships with 

subject weight and Karnofsky performance score at baseline. The relationship with weight 

suggested that heavier subjects tended to complete a smaller proportion of responses. It was 

felt that this was likely to be confounded with the sex relationship. However, in a multiple 

regression analysis it was the relationship with weight that retained significance rather than 

Table 7.12: Examination of patterns of missing data in the CRC NSCLC study: a logistic regression of 
number of responses recorded on baseline variables. 

Uoharlate analyses 
Partial regression 

coefficients 

Baseline variable Estimate (SE) 95% CI Estimate (SE) 

Abe (years)' -0.08 (0.10) (-0.28.0.118] - 

Weight (kgs) -0.21 (0.09) [-0.3g. -O. 041 -0.22 (0.09) 

Sex (M-0. F-I) 0.35 (0.17) (0.009.0.68] -0.09 (0.22) 

Karnofsky 0.35 (0.08) (0.20.0.501 0.42 (0.11) 

PEV1 (I)' 3.31(l. 85) (-0.30.6.94] - 

Treatment 0.026(0.15) (-0.26.0.32] - 
(short-0. Ions I1 

Results given per 10 unit increase. 
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that of sex. The relationship with Karnofsky performance indicator was as expected: subjects 

with the lower scores at baseline tended to complete a smaller proportion of their responses. 

This was relatively unchanged in a multiple regression analysis. No evidence of a relationship 

was seen with age, FEV 1 (as a marker for disease severity) or treatment. 

7.3.2 Logistic regression model for MCAR versus MAR 

In Chapter 4a random effects logistic regression analysis for repeated measurements was 

introduced which assumed that each subject has an underlying propensity of a positive response 

which was modelled as an odds on the log scale. Within this model, the coefficients of 

covariates in the model represent the absolute changes in this subject specific log odds for unit 

changes in the covariate value. 

The first model presented here to investigate the nature of the missing data process 

investigates the dependency of missing data on the value of the previously observed 

measurement, if available, using this two level logistic regression model with binomial error eÜ 

at level one for a response i, =1 if data is available, 0 if missing for j=2,..., m: 

ru=pu+eu 

with 

log 
pal 

=a+yprevnaýý+6prevobsýý+ui I -PU 

(7.6) 

(7.7) 

where prevna, =1 if 0 otherwise (ie prevnaj=1 if the previous observation is available, 

0 otherwise), prevobsL=yj_l if rij_t=1,0 otherwise (ie prevobsj is the value of the previous 

observation when available). The random effect u1 is assumed Normally distributed with zero 

mean. 
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Under this parameterisation exp(a+u, ) is the subject specific log odds of having a response 

available at occasion j when the response at the previous occasion j-1 is missing. Within 

subject this is assumed constant over all j. The covariate effect y has little interpretable value 

representing the modification on the log scale in subject specific odds of response when the 

previous observation is available and takes the value zero. The parameter of particular interest 

is 8 which give the change in the subject specific log odds for each unit change in the previous 

response when observed. Although not a full test (as the missing value process may be related 

to more observations than simply that observed at the previous measurement occasion), a 

simple test for Ho: MCAR versus H,: MAR is Ho: 6=0. 

It is worth noting that these covariate effects, although giving the same relative changes in 

the odds between subjects, absolute changes in odds for equivalent levels of response at 

occasion j-1 will differ in accordance with each subject's underlying propensity for missing 

data given by u1 . As discussed Chapter 4, these subject specific parameters ur are not estimated 

explicitly. Instead we estimate their variance and thus the extent of variation between subjects 

in terms of this underlying propensity. 

An assumption of the model is that within subject, the incidence of missing data is constant 

over time. A relaxation of this assumption involves incorporating an occasion covariate into 

the model. It may also be possible that variation between subjects may be explained by 

measured baseline covariates. By introducing these as additional covariates into the model of 

equation (7.7) and examining their effect on the extent of variation in the random effect u1 this 

may be examined. Similarly, this may help explain any dependency of the missing value 

process on available responses. 

Within their analyses of dropout data, Diggle and Kenward (1994) observed in many of their 



Missing data in quality of life studies 

examples the incidence of dropout appeared related to changes in the level of response. Their 

model involved investigating changes between the conditional expectation of the unobserved 

response and the observed response at the previous measurement occasion. The role of changes 

in level can also be easily examined by a simple extension of the model of equation (7.7). This 

is done simply by changing the definition of the indicator prevna, to take the value I only when 

the previous two observations are available (and hence a change in response can be calculated) 

and 0 at all other times with this modelled alongside the difference between these two 

measurements. For clarity this model is represented in equation (7.8) with the redefined 

variables denoted chok,, and changed respectively. In order that it is possible to measure the 

change in the previous two responses, with this parameterisation, measurement occasions are 

limited to, j=3,..., m. 

log pal 
=a +y chok, +8 change, +ui 

1-p, (7.8) 

Estimation of the model parameters can be done as an iterative process using RILLS 

(Goldstein, 1995) and a first (or second) order Taylor series expansion to linearise the logistic 

model. As discussed in chapter 4, if only the fixed parameter estimates are used to formulate 

the Taylor series expansion (marginal quasi-likelihood (MQL) estimation) all the parameters 

in the model will be subject to a downward bias which is proportional in size to var(u, ). 

Therefore penalised quasi-likelihood (PQL) estimation, which uses the estimated residuals from 

the model in addition to the fixed effects in evaluating evaluate the Taylor series expansion is 

used here. 

To demonstrate the use of this model and its extensions, an analysis was carried out using 

quality of life responses from all 57 patients in the CRC study who had at least one post 
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treatment quality of life response available. Baseline responses were included in the analysis 

in the same way as those taken post baseline, giving j=1,..., 8 for the model of equation (7.7) 

and j=2,..., 8 for that of equation (7.8). Of these 57 patients, two died during the eight-week 

follow-up and hence the responses for these individuals were truncated at time of death. 

The final data set analysed therefore contained 452 observations consisting of 55 patients 

each contributing eight observations and 2 patients contributing seven and five observations 

respectively. Out of these 452 observations, 102 were classified as missing on the HAD scale. 

Of the 102 missing observations, 47 responses were available at the previous measurement 

occasion. The mean anxiety score at this previous occasion was estimated at 5.66 (SD=4.10). 

The corresponding mean for available observations was 5.14 (SD=4.68). This information is 

summarised in table 7.13 along with the same information for the RSCL. A comparison of the 

two questionnaires shows that overall there were slightly fewer missing responses on the RSCL 

than on the HAD scale. There was some indication that the mean level of previous physical 

Table 7.13: Crude summary of the missing data for the HAD scale. 

Overall 
By previous value 

Previous Previous 
available missing 

Mean (SD) of available 
previous scores 

Hospital anxiety and depression scale Anxiety Depression 

Available 350 298 52 5.14 (4.68) 5.94 (4.31) 
n 

Missing 102 47 55 5.66 (4.10) 6.70 (4.87) 

Odds missing 0.29 0.16 1.06 

Rotterdam Symptom Checklist Physical Psychological 

Available 369 324 45 13.56 (7.91) 12.13 (7.24) 
a 

Missing 83 39 44 17.26 (9.72) 14.69 (7.22) 

Odds missing 0.23 0.12 0.98 
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scores was higher when subsequent responses were missing than when available. 

Initially the relationship of missing data and anxiety response was examined using the basic 

model given in equations (7.6) and (7.7). The results for this model are given in the first 

column of table 7.14. Within the text they have been transformed to refer to the odds of 

missing data by taking the reciprocal of the estimated odds. For a more natural interpretation 

of the parameter of the prevobsj variable, it was modelled as a deviation from the observed 

mean response for the whole data set. In the case of anxiety responses this was 7.03 units. 

This model gave no evidence to suggest that the incidence of missing responses was related 

to the value of the previous anxiety response when available was given. The estimated within 

subject odds ratio and confidence interval for each unit in the value of the previous response 

was 1.03 [0.95,1.10]. This was consistent with the summary results in table 7.13 where the 

mean anxiety response was slightly higher on occasions when the subsequent response was 

missing than when it was available. 

The estimated variance of the random component uj expresses how the underlying (log) 

odds of missing data varied across subjects. From this, a 95% reference range for the subject 

specific odds of missing data was calculated to give ranges on the odds scale of [0.14,3.45] 

where previous values were missing and [0.03,0.62] when previous values were available. On 

a probability scale these ranges correspond to [0.12,0.72] and [0.03,0.26] respectively. These 

intervals signified a large degree of variation between subjects and suggested that the incidence 

of missing data is to a large degree a subject specific phenomena. 

The results for the remaining quality of life dimensions in the CRC NSCLC study are also 

given in table 7.14. Again, the prevobs, variable was modelled in terms of a deviation from the 
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Table 7.14: Estimated coefficients (SE) for the basic model for each quality of life dimension estimated 
by PQL. 

HAD scale RSCL 

Anxiety Deoression Physical Psychological 

Fixed parameters 

a (cons) 0.35 (0.24) 0.40 (0.25) 0.54 (0.27) 0.55 (0.27) 

y (prevna) 1.57 (0.28) 1.53 (0.28) 1.78 (0.32) 1.74 (0.31) 

8 (prevobs) -0.028 (0.040) -0.056 (0.039) -0.059 (0.024) -0.051 (0.027) 

Random parameters 

oý 0.65 (0.30) 0.77 (0.33) 0.81 (0.38) 0.81 (0.38) 

-2 log lh 312.2 322.3 172.1 175.9 

sample mean. For the depression, physical and psychological scores these were 7.90,15.45 and 

14.0 units respectively. Again, estimation used PQL with a second order Taylor series 

expansion. 

There was little evidence of a relationship between missing data and the level of previous 

depression scores also obtained from the HAD scale, (exp(-E)=1.06., 95% CI=[0.98,1.18] for 

each unit score increase in the depression response). However, some evidence of a relationship 

of subsequent missing data with previous quality of life scores on the Rotterdam Symptom 

Checklist was seen. The estimated relative changes in subject specific odds were 1.06 (95% 

CI=[ 1.01,1.11] and 1.05 (95% CI=[ 1.00,1.11]) for each unit increase in the score for physical 

and psychological dimensions respectively. Such relationships corresponded to an increase in 

the incidence of missing data for higher levels of response (lower levels of quality of life). The 

lower limits of the respective confidence intervals for the confidence intervals were both very 

close to one demonstrating that this evidence was not strong. Fitting both dimensional 

responses simultaneously showed the information of the responses on the psychological 
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dimension could be explained by that in the physical dimension with a resulting change in 

deviance on adding the previous psychological scores of 0.4 (on 1 df). Again, these results 

were consistent with those seen in table 7.11. 

Normal plots of level two residuals for each of the four models in table 7.14 are given in 

figure 7.3. These were all very skewed at the upper tail of the distribution signifying an upper 

constraint on the odds of missing data due to the short follow-up period and restricted number 

of possible responses. Given a longer follow-up or more measurement occasions, these 

distributions could be expected to improve. 

The basic model for the relationship of missing data and previous physical quality of life 

responses was then extended. These results are given in table 7.15 to model changes in 

previous responses. Also presented is a repeated analysis for the level of previous observation. 
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Figure 7.3: Normal plots of standardised level two residuals for the (a) anxiety; (b) depression; (c) 

physical; and (d) psychological quality of life responses. 
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Table 7.15: Parameter estimate (SE) for modelling changes in the previous two responses for physical 
quality of life estimate by PQL. 

Estimate (SE) 

Previous response Change in previous two 
response 

Fixed parameters 

a (cons) 0.54 (0.37) 1.65 (0.40) 

y (prevnalchok) 2.85 (0.66) 1.36 (0.46) 

8 (prevphy/change) -0.049 (0.032) -0.015 (0.022) 

Random parameters 

02 1.91 (0.76) 3.040.07) 

-2 log Ih -12.76 -13.00 

These results differ slightly from those given in table 7.14 as the analysis was based on a 

slightly smaller data set with j=2,..., 5 (as opposed to j=1,..., 8 in the previous model). 

There was evidence of an obvious reduction in power for this analysis shown by the ratio 

of parameter estimates to their standard errors being reduced in all cases. In particular the 

analysis failed to give as much evidence for the relationship between the incidence of missing 

data and previous physical response seen previously (p=0.13). Similarly, the lack of evidence 

to support a relationship between the incidence of missing data and changes in the previous two 

responses may have been be due to a lack of statistical power as only 28 cases of missing data 

with a change in previous level of quality of life responses were available. Indeed lack of 

power is a problem in all of the models in this section. 

In the first analyses, a relationship was seen between the incidence of missing data and the 

level of physical quality of life observed on the previous measurement occasion. This gave 

evidence that the underlying missing data process was not missing completely at random. 
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(MCAR). However, if it were possible to explain the observed association by other known 

covariates at baseline, this conclusion may be revised. In the following analysis, the Karnofsky 

performance indicator, a measure of a patient's overall physical condition as judged by a 

clinician, was included in the basic model to assess this. The Karnofsky scale is scored in units 

of 10 between 0 (dead) and 100. Within the CRC NSCLC study data the lowest Karnofsky 

score reported was 50. For modelling purposes, the data were considered as (observed 

Karnofsky score - 50). Treatment and measurement occasion were also considered as 

potentially important covariates of interest. 

Due to missing covariate measurements, 17 patients for whom the Karnofsky score was 

missing were excluded from the analysis. Within this smaller data set there were 319 

observations that consisted of 71 missing values. Of these 71,33 (46%) had a previous 

observation available versus 213 (86%) of the 248 available responses. This was in contrast 

to 46% and 85% in the larger data set. There was very little difference in the summary of 

previous observations in this reduced data set compared to that given in table 7.13. 

The impact of the inclusion of each of the three variables was considered separately (table 

7.16). In each case inclusion of the extra covariate changed the interpretation, and therefore 

estimates, of the intercept parameter. For each model the parameter represents the log odds of 

an available response when the previous response is missing and the covariate of interest takes 

the value zero for a subject with a random effect of zero. For the model parameterisation used 

here, this represents a pre-treatment Karnofsky=50 and split course radiotherapy group. The 

occasion effect was modelled as a linear term with j=2,..., 8 modelled as j=0,..., 6. 

The relationship seen with baseline Karnofsky performance indicator was similar to that 

seen in the earlier model (table 7.12) and gave some evidence that subjects with a lower 
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Table 7.16: Fixed parameter estimates (SE) for a logistic MCAR versus MAR model for previous 
physical quality of life scores extended for baseline covariates (PQL estimation). 

Estimate (SE) 

a (cons) y (prevna) 8 (prevobs) a'. 

Univariate 
extensions to 
the baseline 
model 

Baseline model 

Karnofsky 

Treatment 

Occasion 

0.61 2.88 . 0.053 
(0.43) (0.77) (0.036) 

0.062 -0.87 2.80 -0.047 
(0.026) (0.69) (0.74) (0.034) 

-0.27 0.78 2.89 -0.055 
(0.68) (0.53) (0.79) (0.037) 

-0.034 0.69 2.92 -0.055 
(0.11) (0.50) (0.78) (0.036) 

1.77 

1.24 

1.96 

1.77 

performance score at baseline tended to have a lower proportion of responses. There was a 

little evidence of confounding between this relationship and that observed with previous 

physical quality of life scores with only a small reduction in the estimated effect of the previous 

scores. The main effect of adding the Karnofsky indicator to the model was the noticeable 

reduction in the between subject variance from 1.77 to 1.24. Consistent with the results of the 

preliminary analyses there was no evidence to suggest a relationship of treatment group and the 

missing data. Similarly there was little evidence of a linear trend over time. 

From these series of analyses it may be concluded that the prevalence of intermittent missing 

data in the NSCLC study was related to the patients underlying condition at the start of the 

study (given by their Karnofsky score) as well as their physical recorded physical quality of life 

during the study. It would therefore not be realistic that the missing data in study were missing 

completely at random. 
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7.3.3 Joint modelling of the quality of life and missing data process 

The model in the previous section explicitly conditioned the missing data process on the 

observed data in an attempt to determine the nature of the missing data process. Such a model 

stems from the background of selection and pattern mixture models discussed in Chapter 6. As 

discussed in that chapter, an alternative way of approaching the problem of missing data is to 

condition not on the actual measurements, but some latent variables determining the underlying 

patient response (Wu and Carroll, 1989, Schlucter, 1992). This was demonstrated in Chapter 

6 when patient survival was modelled alongside their quality of life in a multivariate model 

which enabled estimation of the joint distribution of survival and quality of life. A similar 

model may be applied to the intermittent missing data problem. Such a model assumes that 

missing data is not due to the level of observed quality of life at a particular time, but on a 

patient's underlying quality of life response as well as their own propensity for non response. 

The type of inferences this allows are as to whether a subject who has a higher than average 

intercept and slope tends also to have a higher than average propensity for missing data. The 

model therefore does not concentrate on the particular instances of missing data, it focuses 

more on the overall level of missing data for each subject and addresses the question as to 

whether the parameters underlying the quality of life (response) and missing data processes may 

be assumed distinct. 

Unlike the survival model of Chapter 6, the model is a three level model. This difference 

arises because in the case of missing data, there exists random variation both within and 

between subjects for both outcomes of interest. The variation at level three is between subject 

and at level two between occasions. No variation is modelled between dimensions (quality of 

life and missingness) at level one. The response yjk is made up of the quality of life responses y, 

and missing data process rU such that yuk=yj for k= 1, r, j 
for k=2. Given this, the most simple 

model is then expressed as 
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yuk-zrp (a1+ß 
ixýjr +uir +yirxui '11i111) 

+z�2{[1+exp(-a2-uJ2)]-'+e�} (7.9) 

where zij, =1 for all ye,, 0 otherwise and z. 2 =1-z,, =1 for all y. 2,0 otherwise. This gives a 

model for the quality of life responses corresponding exactly to the simple variance components 

model of equation (3.1), where xU, denotes the time of measurement, and one for the missing 

data process that is analogous to the multilevel binary response model of equations (4.14) and 

(4.15). In the latter, the subject residual un denotes the deviation from the average log odds 

of missing data for the ith subject assumed to be Normally distributed with zero mean and 

variance a2 . 2. The residual component of this model, eu2, is assumed to come from a binomial 

distribution and has with mean 9U and variance 6. (1-Os), where 9U=E(rr) and may or may not 

vary with j. 

The extra variance components of this model over and above those of two separate models 

represent the associations at level three between (u,,, uf2) and (u12, v7, ) denoted aw/2 and aav12 

and at level two between (e fl, eU2) denoted ac12 " 
When all of these covariance terms are fitted, 

the model coefficients for the quality of life response give the mean intercept and slope for a 

subject with an underlying mean propensity for missing data (as given by the missing data 

coefficient a2 ). On the other hand, constraining these covariances to be equal to zero, will give 

results exactly comparable with fitting two univariate models. 

An extension to the model of equation (7.9) including additional covariates was fitted to the 

CRC NSCLC physical quality of life data. The extra covariates were fitted within the quality 

of life response part of the model included a treatment covariate denoted rte, =1 for the 

continuous course, 0 for the intensive split course, and a baseline response, base,, which was 

centred around the overall mean of 15.45 units. The data set used therefore consisted only of 

the 42 subjects who responded at baseline and at least one post treatment follow-up. Out of 
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these 42 subjects, the proportion of missing data in each treatment arm was 15% overall, and 

14% and 16% for the long and short courses respectively. 

Three successive models were used. The first assumed independence between the two 

outcomes, with all the covariances between them constrained to be zero. The second model 

allowed a dependency between the two intercept terms, and the final model had a full 

covariance structure. The results are given in table 7.17. 

The results from model one are analogous to those of two separate models: for the quality 

of life response there was some evidence of a slight fall in the level of physical quality of life 

over the period, but no evidence of any difference between the two treatment groups. There 

was a large degree of variability between the subject specific profiles. The missing data part 

of the model fit only an intercept term therefore assuming the same constant level of missing 

data over the period in the two treatment arms. The fitted intercept term of 1.77 (95% 

CI=[1.30,2.24]) gave an estimate of the overall proportion of missing data of 0.15 (95% 

CI=[0.10,0.21]). Again there was a large amount of variation between subjects with a 95% 

reference range for the subject specific proportion of missing data of [0.02,0.55]. 

On extending model one to allow covariance between the level of quality of life and the log 

odds of missing data, the intercept parameter a2 may be interpreted as the log odds of available 

data for a subject with average (baseline adjusted) intercept. Similarly the quality of life 

intercept term a, reflects the average baseline adjusted intercept for a subject with 15% missing 

observations. Very little change in any of the parameter estimates was seen. This was 

indicative of the small estimated correlation between the two intercept terms with very little 

evidence of a real effect with a change in -2 log lh of 0.5 on 2 df for the addition of two extra 

parameters. This was also true for the estimated covariance between the odds of missing data 
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Table 7.17: Parameter estimate (SE) for modelling changes in the previous two responses for physical 
quality of life. 

Estimate (SE) 

Gu12 

Fired parameters 

a, (cons, ) 15.15 (1.41) 

ß, (occ) -0.61 (0.18) 

Ti (base) 0.68 (0.13) 

6, (rt) 1.64 (2.09) 

a2 (cons2) 1.77 (0.24) 

Random parameters 

Level three 0.11 36.7 (9.92) 

awl 

2 av, 

2 a 
r2 

Level two 

Qrvl2 

z all 

Model one 

-1.02 (1.23) (-0.19) 

0.81 (0.27) 

1.01 (0.47) 

10.1 (1.07) 

0,12 

-2 log Ih 1667.0 

Model two 

15.01(1.40) 

-0.61 (0.18) 

0.67 (0.13) 

1.56 (2.08) 

1.77(0.24) 

36.4 (9.86) 

-1.02 (1.23) (-0.19) 

0.81 (0.27) 

1.00 (0.47) 

-0.93 (1.47) 1-0.15) 

10.3 (1.10) 

0.49 (0.23) (0.15) 

1666.5 

Model three 

15.03 (1.40) 

-0.62 (0.18) 

0.68 (0.13) 

1.56 (2.08) 

1.78 (0.24) 

36.5 (9.90) 

-1.04 (1.23) (-0.19} 

0.81 (0.27) 

1.01 (0.47) 

-1.05 (1.56) (-0.17) 

0.06 (0.27) (0.07} 

10.3 (1.10) 

0.48 (0.23) (0.15) 

1666.5 
Standard errors are given on the variance parameters only as an indication of their variability. The 

estimated correlations are given within the curly brackets( ) for the covariance estimates. No estimate 
is given for oi2=var(eu2) as in all cases this has been constrained to be equal to one for binomial 

variation. 

and the rate of change in quality of life - the extension of model two to model three. 

Residual diagnostics for model one are shown in figure 7.4. These show a very poor validity 

of the main Normality assumptions of the model, particularly in respect to the missing data part 

of the model. This is the result of the restricted possible available responses per subject and 

indicates that the model is perhaps more suited to data with a longer follow-up period with more 
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Figure 7.4: Residual diagnostics for joint quality of life and missing data model showing univariate 
Normal plots for (a) ui,; (b) v// ; and (c) u12 ; bivariate plots of (d) (ui1, v1, ) ; (e) (u11, ui2) ; f) (v11, ui2) ; and 
(g) a Chi-squared plot of the Mahalanobis distances. 

measurement occasions. 

7.3.4 Conclusions 

Two models have been used to help determine how the intermittent missing data relates to 

the response process which is observed in a study. The first model examined the relationship 

between the incidence of missing data and previous responses either observed or missing using 

a two level repeated measurement model which considers each subject to have an underlying 
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propensity to miss responses. This subject specific odds is assumed to be acted on in the same 

relative way by covariates in the model for all subjects. For the CRC NSCLC study, this model 

gave some evidence to suggest that missing data was related to the previously observed score 

from either dimension of the Rotterdam Symptom Checklist. This relationship was slightly 

more pronounced for the physical quality of life score, suggesting that subjects with missing 

responses tended to have recorded higher scores (poorer quality of life) in their previous 

response. No similar evidence was seen for the anxiety and depression scores of the HAD scale 

although the observed relationships in the data were in the same direction as those for the 

physical and psychological dimensions. The lack of evidence to support these relationships 

may have been due to a lack of statistical power. In addition, although a relationship between 

missing data and baseline Karnofsky performance was also seen, this did not seem to detract 

substantially from the quality of life association. Therefore, assuming the missing data was 

ignorable (MCAR or MAR) these analyses have given some evidence against the assumption 

of MCAR particularly in terms of patient physical well being. 

In the second model, rather than conditioning on the level of the observed response, the 

model considered allowed the underlying propensity for missing data to be related to the 

underlying level of response characterised by subject specific random effects rather than the 

actual level of observed responses. It therefore addresses the question whether the parameters 

underlying the quality of life (response) process may be assumed distinct from those of the 

missing data process. For the CRC NSCLC RSCL physical data, little evidence of a 

dependence both in terms of underlying level and rate of change of response over time was 

seen. However, residual diagnostics of the model put its conclusions into doubt. This poor 

performance was thought to be due to the small number of measurement occasions in the data 

set. 
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From these results it must be concluded the missing data in the study could not be 

considered as missing completely at random with missingness showing at least some 

relationship to observed physical well being. 

7.4 Summary and discussion 

Intermittent missing data has been reported as a problem in most cancer clinical trials with 

quality of life assessment. Although clear definition of how theoretically the relationships 

between missingness and response may affect analysis options, little practical experience in 

terms of the performance of different methods of estimation has been reported for intermittent 

missing data (as opposed to dropout). In the first half of this chapter, a simulation exercise was 

therefore performed to investigate the performance of three methods of analysis suitable for the 

analysis of continuous outcomes: subject specific analyses with unweighted combination 

(UWLS); generalised estimating equations with an exchangeable correlation structure (GEE); 

and random effect (or hierarchical) models using MLn. Data were simulated under three 

different underlying response processes, and missing data assigned under MCAR, MAR and 

NMAR missing value processes. The results showed that, with approximately 20% of data 

missing, all three analyses performed well under MCAR. When data were MAR, estimates 

from the UWLS analyses were always biassed, with MLn performing best of all. Under NMAR, 

when the underlying response process and missing data processes were the same across patient 

groups, although the estimated patient group means were biased, the estimated group 

differences were unbiased. This was not the case when group differences did exist and 

evidence of bias was seen in the parameter estimates. The GEE analysis performed best of all 

in this situation. The main conclusion to be drawn from these simulations is that, missing data 

(and more particularly the type of missing value process) has a large impact on the choice of 

analysis highlighting the importance of investigating the nature of missing value process. 
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Although some work has been presented in the literature in this area, much of it has dealt 

with the special case of missing data due dropout (or 'monotonic' missing data) rather than that 

which is missing intermittently. The second half of this chapter concentrated on developing 

such models that may help in this process when data is missing intermittently. The first model 

looked at determining whether subsequent missing data was related to previously observed 

quality of life. The model is similar to that suggested by Rideout (1991) for investigating the 

nature of a dropout process. The major difference is that for intermittent missing data, repeated 

missing responses for subjects required the problem to be set in a repeated measurement 

framework. There are a number of drawbacks with this model however, in particular its 

potential lack of power which will be inversely related to the extent of the missing data 

problem, such that the greater the missing data problem, the lower the power of the analysis. 

This in turn means that relationships between missing data and underlying response in small 

data sets should not merely be ruled out on the basis of a lack of statistical evidence. In 

addition, the results are all very model dependent. For instance, in the example given, there 

may have been a relationship with missing data and subsequent response which would never 

have been determined from the series of models fitted here. 

Under the assumption that missing data is MAR, Rubin (1976) showed that inferences based 

on likelihood analyses would be valid provided the parameters which define the missing data 

process and measurement process are distinct. Although a fundamental assumption for Rubin's 

assertion, little work has been done to verify the assumption in practice. The second model 

presented here attempted to do this. Unfortunately in the example here the data set was too 

small to justify the assumptions made. However, with a larger data set the model may be useful 

although more work is needed to truly assess the properties of the model and determine in what 

circumstances its performance is maximised. 
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The type of missing data process which presents the greatest analysis problem is a non- 

ignorable or NMAR process which the work in this chapter has not directly addressed. The 

fundamental problem with such a process is that the validity of any models which are developed 

are impossible to verify due to the very nature of the process one is trying to determine. The 

best current solution to the problem, suggested by Glynn et al. (1993) is that a combination of 

pattern mixture models (Little, 1994) and multiple imputation (Rubin, 1987) be used under 

reasonably assumed non-ignorable processes. This produces a series of sensitivity analyses 

such that the robustness of estimates made ignoring the process can be explicitly assessed. 

Their examples related to survey data and it was suggested that follow-up surveys of non- 

respondents could be used to help decide on reasonable missing data processes. This will not 

be feasible in quality of life assessment in clinical trials studies where the number of missed 

assessments per individual is great and often patients have died by the time of analysis. In 

many studies quality of life assessment, however, often takes place at a similar time to clinical 

follow-up so that some information about a patient's general condition may be available to aid 

in the definition of appropriate missing data processes. 

One of the main limitations of the work in this chapter is that it is focused on the analysis 

of continuous outcomes. Given the amount of data in quality of life studies which is measured 

on an ordinal scale (which may then be dichotomised), further work is needed to asses the ways 

in which intermittent missing data will affect the types of models discussed in Chapters 4 and 

5 for the analysis of such data. A particular example is the case of missing item response for 

which the multivariate binary model of Section 4.5 may be of great help when missingness is 

MCAR. It is unclear however how this model will perform under MAR or NMAR missingness 

processes. 
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8 Discussion and Recommendations 

The assessment of quality of life as a primary outcome in cancer clinical trials is now almost 

universal. To date, its reporting in the applied literature has generally used simple descriptive 

summaries. This means that the statistical inferences that can be drawn about differences in 

quality of life between patient groups, as well as changes in quality of life over time, can be 

limited. Further, as these analyses often ignore many natural characteristics of the data, their 

conclusions could be misleading. There is therefore a definite need to improve the analysis of 

such data. For this end, the aim of this thesis was to assess the practical application of recent 

developments in statistical methodology to handle the problems faced in the analysis of self 

assessed quality of life data from cancer clinical trials. Those of particular concern were 

highlighted in a review paper by Cox et at. (1992) relating to the analysis of typically 

unbalanced repeated measurement data, multiple dimensional outcomes and missing data, 

where the latter may be in the form of censoring of the quality of life response due to patient 

death, or simply because patients have failed to complete questionnaires. 

Descriptive analyses that have been typically used to present quality of life data in the 

applied literature were reviewed in Chapter 2, and it was concluded that, given the quantity of 

data that a quality of life study generates, these are essential in the analysis process. However, 

they should concentrate not only on examination of average behaviour over time, as has 

generally been done to date, but also consider individual patient data, as well as distributions 

of summary statistics calculated for each subject. Additionally, in the light of missing data, 

patterns of missingness both in relation to observed quality of life and disease characteristics 

need to be examined. Given the frequency of missing data as well as the repeated 
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measurements and multiple dimensionality typical of quality of life data, these analyses should 

not constitute the whole data analysis and the use of statistical models that account for the data 

structure and allow solid conclusions to be drawn need to be encouraged. It was on such 

analyses that the remainder of this thesis was focused. 

Essentially two classes of model that appropriately allow for the dependence between 

repeated measurements within subjects were considered: random coefficient (or hierarchical) 

and marginal models. The fundamental difference between the two models is the way in which 

they incorporate this dependency into the modelling framework. In Chapter 3 it was seen that 

the dependency within subjects can be accommodated by incorporating a subject specific 

random effect into the model. In turn, such random coefficient models then allow examination 

of the components of variance of the data. In the most simple case, this is the variance within 

and between subjects. These models were shown also to offer the ability to examine this 

variance structure further in terms of its relationship to other patient characteristics, as well as 

treatment. Further, they can be extended to incorporate the assessment of multiple dimensions 

of quality of life which not only allows estimation of inter-dimensional correlations within and 

between subject, but permits overall covariate effects (for example the effect of treatment) to 

be estimated if appropriate. 

Although the work of Chapter 3 concentrated on the analysis of continuous outcomes, it was 

shown in Chapter 4 that these random coefficient models can also be used for the analysis of 

repeated binary outcomes that arise from arbitrary dichotomisation of the ordinal scales of 

individual items on a questionnaire. This not only allows the pattern of behaviour of specific 

aspects of patient quality of life to be examined using the most basic model, but also a 

multivariate model can be used to obtain an overall analysis of patient quality of life which has 

more intuitive appeal than the more conventional summary scores. Again the associations 
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between the individual symptoms are also examinable in this model. Further, it also offers a 

simple solution to the problem of missing item responses (Fayers, 1996) - that is, when patients 

fail to answer individual questions on a questionnaire as opposed to missing the whole 

questionnaire. Missing items usually result in the loss of the occasion response for a subject 

as they mean that a summary score cannot be evaluated for the questionnaire. However, since 

the random coefficient model can easily handle unbalanced data, if it can be assumed that the 

reasons underlying the missing item are ignorable such missingness is a trivial matter in the 

analysis. 

Marginal models, the second class of models used, treat the dependency between repeated 

observations as nuisance parameters. The resulting parameter estimates have a very different 

interpretation to those of the random coefficient model - they give the estimated effect of 

covariates of interest on the response of population as a whole, whereas those of the random 

coefficient model are estimated in terms of their impact on a subject specific response. It was 

demonstrated in Chapter 4 that, although this distinction is not important when a identity link 

function is used (as is generally done with continuous outcomes), it can be vital when a logit 

link function is used with binary outcomes and can lead to large differences in the resulting 

parameter estimates. In this case, it is therefore important to determine whether it is the 

population average or subject specific covariate effects that are of interest prior to deciding on 

the analysis strategy. In terms of a treatment covariate, this relates to whether it is a general 

public health perspective that is of interest (population average) or simply the effect of 

treatment on an individual patient's quality of life (subject specific). 

Because of the way both of these models incorporate the variance structure into the analysis 

procedure, they can easily be extended to incorporate dependency arising from alternative 

sources. One such additional source variance arises when logistic regression models are used 
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for the analysis of repeated ordinal data following transformations from the ordinal scale to a 

series of correlated binary responses (McCullagh and Nelder, 1983). The application of both 

the marginal and the random coefficient model for two such transformations - cumulative 

probability and continuation ratio - were discussed in Chapter 5. The models presented have 

the same properties as those of Chapter 4 with an important distinction needed between the way 

in which they incorporate the dependency between repeated measurements (as random effect 

or nuisance parameters). In addition, the two transformations presented also result in very 

different parameter interpretations between which a clear distinction is needed. Unfortunately, 

this can make the models difficult to interpret and their practical use may therefore be more 

limited than that of the more simple binary models for chosen dichotomies, despite their often 

arbitrary choice. 

The application of many of the models in Chapter 3 to 5 was demonstrated assuming the 

response to be a simple linear function of time. The exception to this was the use of natural 

cubic splines for the analysis of complex patterns of response due to transient symptoms 

following treatment (Chapter 4). Such behaviour is common in cancer clinical trials, 

particularly involving chemotherapeutic treatment (MRC lung cancer working party, 1991 a). 

Although the application demonstrated the cubic spline within a marginal model, when the 

timing of treatment varies across patients it may also be possible to incorporate such complex 

patterns at a subject level within a random coefficient model. Since this is a feature which can 

frequently occur within cancer clinical trials, it is a particularly relevant, and very interesting, 

area of further research. 

Another important consideration in the analysis of quality of life data is the problem of 

informative censoring of patient quality of life as a direct result of patient death. Two different 

classes of models to address this issue were reviewed in Chapter 6. Dropout models (Little, 
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1995) attempt to obtain correct inferences about the response in the light of such patient 

dropout whereas quality adjusted survival techniques combine the quality of life and survival 

endpoints to give a quality adjusted survival about which inferences are then made. Although 

the latter have been applied extensively and successfully for toxicity data, their use in self 

assessed quality of life data was shown to be problematic and it was concluded that only a 

partitioned quality adjusted survival (PQAS) (Glasziou et al., 1990) analysis is currently 

useful. Unfortunately, this analysis is restricted to instances when progressive quality of life 

states can be defined which somewhat limits their use for self assessed quality of life data that 

is often seen to fluctuate between states. In terms of the three classes of dropout models that 

have been discussed in the literature (Little, 1995), it was concluded the informatively right 

censored dropout models (Wu and Bailey, 1988) and in particular, the trivariate Normal model 

(Schlucter, 1992) is the most suitable for application with quality of life data. Although this 

latter model considers quality of life and survival together, it treats them as a multivariate 

problem estimating their joint distribution, from which their conditional distribution can also 

be determined. This is an area in which more work is needed. In particular, with the 

application of such models to binary outcomes, and their behaviour when many survival times 

are censored. A further class of model, that has not been addressed here, is multi state models 

(Kay, 1985). These are transitional (Markov) models that incorporate death as an absorbing 

state and present a further area of interesting research in this area. 

The value of all of these models for analysing self assessed quality of life data depends on 

their ability to cope with the presence of intermittent missing data during follow-up. This is 

a particular problem in quality of life studies and was discussed in Chapter 7. In the notation 

of Little and Rubin (1987), since the marginal model analyses presented in Chapter 4 and 5 for 

binary and ordinal outcomes used quasi-likelihood estimation procedures, these assume data 

are missing completely at random (MCAR), as do the quality adjusted survival analyses of 
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Chapter 6. Although the random coefficient models presented in Chapters 3 and 6 make the 

assumption that the data are missing at random (MAR), it is unclear under what conditions the 

random coefficient binary models, used in Chapters 4 and 5, will be valid (whether just MCAR 

or MAR). This needs to be assessed with a simulation exercise similar to that presented for 

continuous outcomes in Chapter 7. For such data, these confirmed that under MCAR the choice 

of analysis procedure makes little difference to the analysis conclusions. Under MAR, the 

random coefficient models which used RIGLS (Goldstein, 1986) estimation or the marginal 

models using GEE (Liang and Zeger, 1986) performed adequately, with an unweighted least 

squares analysis leading to estimation bias. When data were not missing at random (NMAR) 

all analyses performed badly, although those using GEE still gave unbiased estimation of rate 

of change and group differences within one example. 

Because of the differential bias of different analysis strategies in the light of missing data, 

investigation of the nature of a missing value process is important. Unfortunately, by definition 

it is impossible to identify a missingness process that is (NMAR) purely on the basis of the 

observed data. Although a number of models to distinguish between MAR and MCAR 

processes have been applied in determining the nature of dropout processes (Rideout, 1991, 

Park et at., 1993, Dawson, 1994), these are generally unsuitable for application with 

intermittent missing data. Two alternative models were suggested in Chapter 7 and, when 

applied to data of a recent cancer clinical trial, gave some evidence of an MAR process as 

opposed to MCAR. However, caution is needed in interpreting these models as they may lack 

power and so be prone to false negative results. Further, as it is impossible to determine 

whether a process may be NMAR, the best current solution seems to be that offered by Glynn 

et al. (1993). This work, however, is little developed in terms of practical application, and is 

an area which offers much scope for interesting and challenging further research. 
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All of the analyses of the work presented in the thesis were performed using MLn (Rasbash 

and Woodhouse, 1995) or S-Plus (Becker et al., 1988) software. MLn has been specifically 

written to estimate the parameters of random coefficient models using (restricted) IGLS. Other 

packages can also fit such models (Kreft et al, 1994), in particular, all the analyses presented 

could be performed using HLM (Bryk et al., 1988), VARCL (Longford, 1988) and BUGS 

(Thomas et al., 1992). In addition, two level models for continuous outcomes can be fitted 

using SAS Proc Mixed (SAS Institute Inc., 1992), S-Plus (version 3.3) and BMDP-5V 

(Zwinderman, 1990). For each case, different estimation procedures are used: for instance, 

HLM uses the EM algorithm (Dempster et al., 1977), and BUGS uses Markov Chain Monte 

Carlo methods (Gilks et al., 1993). Marginal models can be fitted using most software 

packages, although the choice of package will determine the ease in which robust standard 

errors are obtained. The models that were presented here used a first order generalised 

estimating equation (GEE1) which can be fitted using OSWALD (Smith and Diggle, 1994), a 

library of S-Plus function. These functions also allow the alternating logistic regression (ALR) 

models, that were outlined in Chapter 4, to be fitted. Macros which fit models using GEE1 are 

also available for SAS software. Alternatively, robust standard errors can be obtained for the 

simple repeated measurement model by bootstrapping or jack-knifing (Efron and Tibshirani, 

1993) where the individual forms the experimental unit. STATA (StataCorp., 1995) also has 

facilities to obtain Huber (1967) estimates of the standard errors for both continuous and binary 

outcomes that will be very close to those of a GEE1 with an independence working correlation 

matrix. As software to perform the quality adjusted survival analyses is not generally available, 

a number of S-Plus functions were specifically written for the analyses performed here. These 

are listed in Appendix 3. 

This thesis has shown that there exist a number of recently developed statistical methods 

that can be very successfully used to tackle the major issues that have been raised concerning 
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the analysis of quality of life data. Essentially, the central feature required of such models is 

their ability to handle unbalanced repeated measurement data and appropriately adjust for the 

dependence between observations measured on the same subject. Since all the examples in the 

thesis gave evidence of a large degree of between subject variation, the impact of ignoring the 

repeated measurement structure for these data would have been great. As it is believed that 

these data are typical of quality of life studies in general, it is concluded that the use of 

statistical models, such as those presented here, are not only essential for the analysis of quality 

of life data in general, but that they are generally accessible and should therefore be encouraged 

within the applied quality of life literature. This requires not only that the methods themselves 

are communicated within the quality of life research field, but also that the limitations of the 

simple descriptive analyses are highlighted. There are however a number of areas which do 

require further attention, the most challenging of which relate to coping with non-ignorable 

intermittent missing data and the informative censoring of response as a result of patient death. 
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Al Study Description 

A1.1 CRC non-small cell lung cancer study (CRC NSCLC) 

The Cancer Research Campaign, Clinical Trials Centre (CRC CTC) non small cell lung 

cancer trial (NSCLC) was designed to `compare the results of palliative radiotherapy to the 

mediastinum in patients with previously untreated bronchial carcinoma using either an 

intensive short course (a 2-week split course, with the second week of treatment given only to 

well patients randomised to receive it) or a continuous 4-week treatment'. The major outcomes 

of interest in the study were patient survival, measured in days from randomisation; local 

control, as shown by serial chest X-rays; symptomatic relief; and self assessed quality of life. 

Quality of life was measured pre-treatment and then weekly for the 8 weeks following the 

start of treatment. The measuring instruments used were the Hospital Anxiety and Depression 

(HAD) scale and, with slight amendments to incorporate some disease specific items of interest, 

the Rotterdam Symptom Checklist (RSCL). Questionnaires were sent to patients through the 

post to be returned to the trials office using pre-paid envelopes. 

82 patients were randomised into the study, 42 to receive the continuous 4 week treatment 

and 40 to receive the split course. At the one month assessment of patients on the split course, 

15 were subsequently randomised to the one week course, 13 to the two week course. 12 

patients were not re-randomised. Table Al. 1 shows baseline patient characteristics in each arm 

of the study in terms of age, sex and Karnofsky performance measure (Karnofsky et al. 1949). 
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Table Al.!: Baseline patient characteristics for the CRC NSCLC study. 

Continuous course Split course 

Number of patients 42 40 

Sex n (%) male 33 (81) 27 (68) 

Age (yrs) mean (SD) 65.0 (7.11) 67.18 (7.29) 

Weight (kgs) mean (SD) 65.6 (9.99) 62.6 (11.3) 

Karnofsky median (IQR) 70 (10) 70 (10) 

Survival data for the two treatment arms are given in table A1.2 and figure A1.2. These give 

no evidence of a survival difference between the two groups. 
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Figure Al.!: Kaplan-Meier survival curves for the CRC NSCLC study. Split course 
radiotherapy: ; continuous course radiotherapy ---------. Censored individuals are marked +. 
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Table A1.2: CRC NSCLC study: patient survival. 

Survival rate 
Median survival [95% CI] 

(days) 
6 month 12 month 

Split course 223 0.58 0.30 
[0.44,0.75] [0.19,0.48] 

Continuous 239 0.57 0.36 
course [0.44,0.74] [0.24,0.54] 

Log rank test 

2 (p value) 

0.0 (0.922) 

A1.2 CRC Hepatic Artery Pump Trial (CRC HAP) 

This was a randomised multi-centre trial based in four geographical areas: London, the 

Midlands, the South West and the North. The objectives of the study were to `assess the 

quality of life and tumour response in patients with colorectal hepatic metastases treated by 

infra-hepatic arterial fluro-deoxyuridine (FUDR) infusion with that in patients with 

comparable metastases who received the conventional symptomatic treatment' (HAI versus 

control). 

The trial had three principal outcomes of interest: survival, measured in days from the time 

of randomisation into the trial until death; tumour response, as given by the percentage tumour 

involvement measured by a CT scan at 4 monthly intervals; and quality of life, measured by 

patient self assessment using the Sickness Impact Profile (SIP), the Rotterdam Symptom 

Checklist (RSCL) and the Hospital Anxiety and Depression (HAD) scale. These questionnaires 

were completed prior to randomisation and then monthly at the time of the regular monthly 

clinical follow-ups. 
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100 patients were recruited to the study, 51 to the HAI group and 49 to the control group. 

The results of the study, published elsewhere (Allen-Mersh et al, 1994) showed some evidence 

of a survival advantage for patients undergoing pump implantation. Since publication of these 

results, more complete data has become available. These data are shown in figure A1.2 and 

strengthened the evidence for a survival difference. For the purpose of the examples in the 

thesis, the complete data set was restricted to include only information available as of June 1st, 

1993. This was done to reproduce the situation seen for the initial analysis of the quality of 

life data in the study where differential death rates in the two treatment groups meant that 

standard methods of analysis could not be used to analyse the quality of life data. At this time 

only 79 patients had been randomised into the study, 40 to the HAI group, 39 to the control. 

Survival data for this `restricted' data are shown in figure A 1.3. Survival rates for both the full 

and restricted data are given in table A1.3. 
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Figure A1.2: Kaplan-Meier survival curves for the full data set from the HAP trial. HAI: 
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Table A1.3: Survival comparisons for the full and restricted data from the CRC HAP trial. 

Median survival 
(days) 

Full data 

HAI 334 

Control 214 

Restricted data 

HAI 404 

Control 274 

Survival rate 
[95% Cl] 

6 months 12 months 

0.83 0.51 
[0.72,0.95] [0.37,0.70] 

0.58 0.33 
[0.44,0.76] [0.20,0.53] 

0.76 0.49 
[0.66,0.891 [0.37,0.651 

0.53 0.27 
[0.41,0.69] [0.17,0.42] 

Log rank test 

X, (p value) 

4.0 (0.05) 

5.5 (0.02) 
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A1.3 MRC Lung Cancer working party (MRC LU07) 

This was a randomised multi-centre trial comparing two policies of palliative thoracic 

radiotherapy. The aim of the trial was to assess whether a shorter dose of two fractions each 

of 8.5 Gy given one week apart was as effective as the conventional longer dose of a typically 

30 Gy in total given in ten fractions over two weeks. Palliation and disease response were 

assessed monthly by clinicians for the first twelve months and every three months thereafter. 

Daily assessments of palliation were made by the patients using the daily diary card (Fayers and 

Jones, 1983). 

374 patients were initially recruited into the trial. Following the exclusion of 5 patients later 

discovered to have been ineligible on entry, 369 patients remained with 184 receiving the 

shorter dose (F2) and 185 the longer dose (FM). 

The results of the trial reported elsewhere (MRC lung cancer working party, 1991b) showed 

no evidence of a survival differences (table A 1.4 and figure A 1.4) between the two treatment 

groups. Performance status on entry was shown to be related to survival in both groups. 

Descriptive analyses of symptomatic quality of life data highlighted transient dysphagia 

Table A1.4: Survival data for the MRC LU07 study. 

Survival rate 
Median [95% CI] 

survival (days) 
6 months 12 months 

FM 178 0.47 0.21 
[0.40,0.55] [0.16,0.28] 

F2 178 0.46 0.20 
[0.40,0.54] [0.15,0.27] 

Log rank test 

X, (p value) 

0.1 (0.74) 
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Figure A1.4: Kaplan-Meier survival curves for the MRC LU07 study. Multiple fraction radiotherapy 
(FM): ; two fraction radiotherapy (F2: ) ---------. Censored individuals are marked +. 

following treatment in both groups. No evidence of a palliative gain of the conventional longer 

dose to the shorter dose was reported. 
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A2 Description of the Quality of Life Measuring Instruments 

A2.1 Hospital Anxiety and Depression (HAD) scale 

The Hospital Anxiety and Depression (HAD) scale was originally developed to aid the 

detection and management of emotional disorders in patients under investigation and treatment 

in medical and surgical hospital departments. It consists of 14 items measuring patient anxiety 

and depression. The items on the questionnaire are clearly divided into the two subscales and 

rated on a 4-point scale. 

The items comprising the depression subscale are based largely on the an hedonic 

depressive state - that is, an inability to derive pleasure from day to day activities that the 

normal person finds pleasurable. This is because it is believed to be the central 

psychopathological feature of that form of depression that responds well to anti-depressant drug 

treatment, therefore providing useful information to the clinician. The items for anxiety were 

chosen following a study of the Present State Examination (PSE) (Fallowfield, 1990). 

Box A2.1 
Example items from the HAD scale 

I feel tense or 'wound up' I get sudden feeling of panic 

(3) Most of the time (3) Very often indeed 
(2) A lot of the time (2) Quite often 
(1) From time to time (1) Not very often 
(0) Occasionally (0) Not at all 
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Items are scored from 0-3 or 3-0 depending on the direction of the wording which is 

alternated in order to avoid responder bias. High scores indicate emotional problems. Based 

on psychiatric diagnosis as a gold standard, the scores can be categorized as: s7 - normal; 8-10 

- possible case of clinical anxiety or depression; z 11 - definite cases of clinical anxiety or 

depression. 

It has been suggested that for use in cancer clinical trials, a cut-off of 10 or 11 can 

distinguish between patients who are coping well with their disease and those who have 

developed morbid anxiety or depression (Maguire and Selby, 1989). 

Validity of the instrument was assessed with over 100 general medical outpatients and 

hospital staff. Sensitivity tests using PSE as the gold standard showed high correlation between 

the HAD scores and the interviewers' assessment. The scale scores were not shown to be 

affected by physical illness. 

A2.2 Rotterdam symptom checklist (RSCL) 

The Rotterdam Symptom Checklist (RSCL) was developed primarily as a tool to measure 

symptoms reported by cancer patients in clinical research (de Haes et al., 1990). The original 

list of items included in the instrument was based on previous analyses done using alternative 

checklists not specifically designed for cancer patients. A selection of the items from three 

such lists was taken on the basis of factor loadings of principal components analyses, relevance 

according to oncology specialists, and the distribution of the response to the questions (very 

skewed responses were omitted). This gave an initial list of 34 items with an additional eight 

items referring to activities of daily living (ADL). On the basis of further research, the 

checklist was amended in terms of the recommended length of time between repeated 
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administrations and in the inclusion/omission of a number of items. The resulting instrument 

now has 30 items (plus 8 for ADL) which can be efficiently summarised into a psychological 

and physical dimension both of which show good reliability. 

The items are scored on a four point scale: not at all; a little; quite a bit; very much. 

Examples are given in Box A2.2. Normal scores for the physical and psychological dimensions 

have been defined as <20 and <10 respectively. 

Box A2.2 
Example items from the RSCL 

Lack of appetite Sore muscles Nausea 

(1) not at all (1) not at all (1) not at all 
(2) a little (2) a little (2) a little 
(3) somewhat (3) somewhat (3) somewhat 
(4) very much (4) very much (4) very much 

An advantage of the RSCL is its flexibility in allowing the inclusion of relevant disease 

specific items. For instance, in studies of ovarian cancer, the inclusion of items which refer to 

hair loss and sexual interest at the expense of items which were not relevant to the disease, gave 

great insight into the distinction of treatment regimens at no expense of reliability (Maguire and 

Selby, 1989). 

A2.3 Daily diary card 

The daily diary card was originally developed by the Medical Research Council, 

Tuberculosis and Chest Diseases Unit and has been used in several MRC cancer treatment 

studies. The cards are completed each day by the patient and require no assistance. They 
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consist of 5 items to which a patient gives a graded response 1-5. The items which are used on 

the cards may vary according to the nature of the study. For example, in a study of patients 

receiving chemotherapy treatment, an item referring to vomiting may be useful, whereas in a 

study using radiotherapy to treat lung cancer, an item asking about difficulties swallowing are 

more applicable. Extra information about patient quality of life can also be obtained in an open 

free format comments box for each week of the card's use. Example questions from the card 

are given in box A2.3. 

Box A2.3 
Example questions and responses for the daily diary card 

Overall condition Activity 

(1) very well (1) normal work/housework 
(2) well (2) normal work but with effort 
(3) fair (3) reduced activity but not confined to home 
(4) poor (4) confined to home or hospital 
(5) very ill (5) confined to bed 

The advantage of the cards are the speed with which they can be completed. This allows 

their use on a daily basis without putting an excessive burden on the patient. This in turn gives 

a clear picture of the patient quality of life over treatment and follow-up, and can highlight 

transient side effects which may be missed by less frequent follow-up. Unfortunately, as with 

many quality of life instruments, their compliance rate can be poor as patients tire of 

completing the card over too long a follow-up period. 

In terms of validity and reliability, very little has been written about the cards, although they 

have been shown to display the expected features of symptomatic quality of life in the days 

following traumatic treatment. 
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A3 S-Plus Functions for Quality Adjusted Survival Analyses 

A3.1 Introduction 

The following series of S-Plus functions were written in order to perform the quality 

adjusted survival analyses for the RSCL physical data of the CRC HAP trial. In Section A3.2, 

the three main functions used to perform each analysis are broadly described in terms of their 

practical use, arguments and returned value. Listings of the function code are given in Section 

A3.4. Secondary functions which are called by the functions are described in the same way in 

the second half of each section. 

Each of the main functions require the same basic arguments: a patient identifier (Id); 

patient survival (survival); a censoring indicator (status); patient quality of life (qol); and the 

timing of each quality of life measurement (gol. time). These arguments all have the same 

length and are defined with one row of data for each unique gol. time of a patient. 

Table A3.1: Main and secondary functions used for the quality adjusted survival analyses in Chapter 
6. 

Analysis Main unction Calls 

TWIST (TNQOL) TWIST. f QAS. f 

PQAS PQAS. f PQASTIMES. f, QAS. f 

Integrated quality-survival product glaszlou. f glas. f, AUC. f 
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A3.2 Function descriptions and their use 

A3.2.1 TWIST. f 

The function TWiST. f performs a TWIST based analysis (Gelber et al., 1989) to estimate 

the time spent with normal quality of life (TNQOL) where normal quality of life is defined by 

a user specified cutoff for the quality of life dimension of interest. By default, the function 

performs an analysis which uses the censored quality of life times using a log-rank test to 

compare patient groups. Alternatively, when many subjects are censored, it is possible to 

truncate the follow-up time by some time L. Alternatively, TWIST can be imputed for censored 

individuals, as defined by Gelber et a!. (1989), and patient groups compared using arithmetic 

means of the resulting uncensored data. If required, the function provides variance estimates 

for the means calculated as the area underneath the survival curves for censored or truncated 

analyses by resampling with replacement from the group data. 

TWiST. f (id , survival , status , qol , gol. time , group , cut. off , plotit=F , group. names=NULL 

, method = 'censored' ,L= max(survival) , what = 'max' 
, 

boot=F, R=NULL ) 

where 

id, survival, status, qol, gol. time are as defined in the introduction 

group defines the patient groups and is of the same length as 
id 

cut. off defines the cut off for normal quality of life 

plotit is an indicator as whether results should be plotted 

group. names patient group names for the plotted data 

method method of analysis required: 'censored', 'truncated', 
'imputed' 

L maximum follow-up for truncated or imputed analyses 

what method of imputation: 'max', 'min', 'mean' 

boot, R indicator whether bootstrapped variances are required 
and number of samples 
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A3.2.2 PQAS. f 

PQAS. f, directs the analysis for a partitioned quality adjusted survival analysis, (Glasziou 

et al., 1990). Within the function, three health states are determined according to the 

definitions in table 6.4 and a userspecifiedd cut. off for normal quality of life. The function 

returns a summary of the time spent in each of the states for each group separately. If a vector 

of weights for each state are given, a weighted quality adjusted survival time is also returned. 

PQAS. f (id , survival , qol, gol. time, status, group=rep( 1, length(id) ), cutoff=19.5 , 
weight=NULL, L=max(survival) , leg=NULL, boot=F, R=NULL, plotit=F, ... ) 

where 

id, survival, qol, qol. time, status are specified as defined in the introduction 

group defines the patient groups and is of the same length 

cutoff 

weight 

L 

leg 

boot, R 

plotit 

as id 

defines the cutoff for normal quality of life 

a vector of length 3 defining the weights for each 
health state 

upper boundary for the length of follow-up 

a vector of the same length as the number of patient 
groups required for plotting the partitioned quality 
adjusted survival curves if plotit=T 

indicator whether bootstrapped variances of mean 
time in each state are required and the number of 
samples if required 

indicator whether partitioned quality adjusted 
survival curves should be drawn 
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A3.2.3 glasziou. f 

This function perform an integrated quality-survival product analysis Glasziou (1995). If 

bootstrapped variances are not required, it returns a list containing a matrix for each group 

which, in the notation of Section 6.3.3, correspond to t, Q(t), S(t) and Q(t)*S(t). If 

bootstrapped variances are required, a matrix is returned which has estimates of the integrated 

quality-survival product in each group on the first row, with their corresponding standard errors 

as the second. Three different methods of evaluating Q(t) are possible: linear; smooth; and 

mean. These correspond to the analyses described in Section 6.3.3. 

glasziou. f ( id , survival , status , qol , qol. time , group=rep(1, length (survival)) 
, days=seq( 

from=0 , to=max(survival) , by=20) , method='smooth' , boot=F , R=NULL ) 

where 

id, survival, status, qol, qol. time 

group 

days 

method 

boot, R 

are as defined in the introduction 

is a group indicator the same length as id 

gives the days for which Q(t) is to be evaluated. This 
needs only to be specified if method='mean' 

method to be used to evaluate Q(t) : 'linear', 'smooth', 
'mean' 

indicator whether a bootstrapped variances are 
required, and number required 

304 



S-Plus functions for quality adjusted survival analyses 

A3.2.4 PQASTIMES. f 

This function takes patient details of patient quality of life in terms of the actual value and 

timing, and calculates the amount of time each patient spends in each state along with a 

censoring indicator for each state according to whether patients have left that state, or are 

censored whilst remaining in the state. It returns a matrix with 5 columns containing a patient 

identifier, time of exiting each state for each subject and each state, the censoring status of each 

subject on exiting each state, a state identifier and a patient group indicator. 

PQASTIMES. f (id, survival , qol , qol. time, status, group=rep( 1, length(id)) 
, L=max(survival) , cutoff=19.5 ) 

where 

id, survival, qol, gol. time, status specified as defined in the introduction 

group defines the patient groups and is of the same length 
as id 

L upper boundary for follow-up time 

cutoff defines the cutoff for normal quality of life 
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A3.2.5 QAS. f 

This function calculates the area underneath a survival curve as given by survival and status 

which have one record for each patient. It returns a vector containing the area underneath the 

survival curve defined for each state as well as the overall survival curve. 

QAS. f( survival , status, state=rep( 1, length(survival) ), plotit=F , L=max(survival) , leg=NULL , ... ) 

where 

survival 

status 

state 

plotit 

L 

leg 

patient survival with one observation per patient per 
state 

survival censoring indicator, one observation per 
patient per state 

state indicator of the same length as survival 

indicator to determine whether the survival curves 
are plotted 

upper bound on follow-up 

legend required as a label for the required survival 
plot 

any plotting arguments 
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A3.2.6 glas. f 

This function calculates the quality-survival product. It uses a Kaplan-Meier estimate for S(t) 

and estimates Q(t) according to either a linear function through all the data, a lowess smooth 

of all the data, or subject specific means at specified days. It returns either a summary of the 

quality-survival product (a matrix containing t and Q(t)*S(t)) or full details (t, Q(t), S(t) and 

Q(t) *S(t) ). 

glas. f ( sam , qt, times, survival, status, comment=F, summary=T, ld=NULL, method) 

where 

sam identifies which rows of qt are to be used 

qt 

times 

survival, status 

comment 

summary 

id 

method 

gives the data to be used to evaluate Q(t). If 
method='mean', this is a matrix where each row is 
the mean quality of life for each subject evaluated at 
each time point. Otherwise, it is simply the observed 
quality of life listed for each subject in a vector of 
the same form as qol described in the introduction 

times at which Q(t) is to be evaluated. It is only 
required if method='mean' 

survival time and censoring indicator for each 
subject. If method='mean', these have one 
observation per subject. If method='smooth' or 
'linear', they are of the same form as survival and 
status described in the introduction 

an indicator whether comments as to the progress of 
the function should be printed 

an indicator whether a summary of the quality- 
survival product is required or full details 

patient identifier. Required only if method='linear' 
or 'smooth'. It should be of the same form as id as 
defined in the introduction 

method of analysis: 'linear', 'smooth' or 'mean' as 
described above 
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A3.2.7 AUC. f 

Calculates the area underneath a curve defined by the two columns of a given matrix, y. It 

returns either the cumulative area underneath the curve at each value of the second column of 

y, or a summary giving the total area underneath the curve. 

AUC. f ( y, cummulative =F) 

where 

y 

cummulative 

is a matrix with two columns. The first corresponds 
to a response y, the second a covariate x. It is 
ordered in ascending x and defines a curve under 
which the area is to be calculated 

an indicator whether the cumulative sum of the area 
is required, or just simply the overall area underneath 
the curve 
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A3.3 Function listings 
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A3.3.1 TWiST. f 

TWiST. f <- function( id , survival , status , qol , qol. time , cut. off , group , plotit=F , 
group. names=NULL, method ='censored' ,L= max(survival) , what ='max' , boot=F, 
R=NULL)( 

# Error checks of required information 
if ( boot==T & is. null(R) ) 

stop( For a bootstrapped sample R is required') 

if ( method=='imputed' & (what ! ='max' I what ! ='min' I what ! ='mean') ) 

stop( For imputed analysis specify what=max, min or mean') 

# Check a graphics device is active if plot is required 
if (plotit) 

par( cex=1 

# Define variables 
aqol <- rep( 0, length(id) ) 
OTR <- numeric( length( unique(id)) ) 
OAOOL <- numeric( length( unique(id)) ) 
OTWiST <- numeric( length( unique(id)) ) 
delta <- numeric( length( unique(id) ) 
tau <- numeric( length( unique(id) )) 
newgroup <- numeric( length( unique(id) ) 

# Calculate TNQOL for each patient 
patient <- 1 
for (i in unique(id) ){ 

m <- length( gol[id==i) ) 

if(m>1)( 
if ( gol[id==i][1 ]> cut. off ) 

aqol[id==i][1] <- gol. time[id==i][1 ]+(( gol. time[id==i][2] - gol. time[id==i][1 ]) /2 

if ( gol[id==i][m] > cut-Off ) 

agol[id==i][m] <- (( gol. time[id==i][m] - gol. time[id==i][m-1 ]2)+( 
survival[id==i][m] - gol. time[id==i][m] ) 

if (m> 2){ 
for (j in 2: (m-1) ) 

if ( gol[id==i][j] > cut. off ) 
agol[id==i][j] <- ( gol. time[id==i]0+1] - gol. time[id==i][j-1] )/2 

}#ENDm>2 
}# END m>1 

else{ 
if ( gol[id==i][1] > cut-off ) 
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agol[id==i][1] <- survival[id==i][1] 
}# END else 

if ( method =='censored' ){ 
OTR[patient] <- unique( survival[id==i] ) 
delta[patient] <- unique( status[id==i] ) 
OAQOL[patient] <- min( OTR[patient] , sum( agol[id==i]) ) 
OTWiST[patient] <- OTR[patient] - OAOOL[patient] 
}# END if censored 

if ( method =='truncated' I method =='Imputed')( 
OTR[patient] <- min( unique(survival[id==i]) , 

L) 
delta[patient] <- ifelse( OTR[patient] == LI unique( status[id==i] )==1,1 

,0) OAOOL[patient] <- min( OTR[patient] 
, sum( agol[id==i][dsr[id==i]<L]) , L) 

OTWiST(patient) <- OTR[patient] - OAOOL[patient] 

if ( method =='imputed' & delta(patient] == 0 ){ 
OTWiST[patient] <- switch( what, min= unique( survival[id==i]) - 

OAQOL[patient], 
max= L- unique( survival[id==i] ), 

mean= unique( survival[id==i]) - OAQOL[patient] + (0.5*( L- unique( 
survival[id==i] ))) ) 

}# END imputation 
}# END if truncated or imputed 

newgroup[patient] <- unique( group[id==i] ) 

patient <- patient +1 
}# END for 

if ( method =='Imputed')( 
test <- t. test( OTWiST[newgroup==Oj, OTWIST[newgroup==1] ) 

statistic <- matrix(c( mean(OTWIST[newgroup==O]) , mean( OTWIST[newgroup==1] 
var( OTWiST[newgroup==O] ), var( OTWiST[newgroup==1j)) , 2,2, T, list( c('Mean' , 'Variance') 

, c('Pump', 'Control')) ) 
print( test ) 
}# END Imputed 

else { 
test <- surv. diff( OTWIST, delta, newgroup ) 
print( test ) 

statistic <- c( QAS. f( OTWIST[newgroup==0] , deita[newgroup==0] , piotit=F , L=max(OTR) ), QAS. f( OTWIST(newgroup==1] , deita[newgroup==1], plotlt=F, 
L=max(OTR) )) 

# Bootstrapping variances If required 
if ( boot == T)( 

statistic <- rbind( statistic , rep(NA, 2) ) 
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dimnames(statistic) <- list( c('Mean', 'SEM') , c('Pump', 'Control') ) 

for ( grp in 0: 1 ){ 

cat('\nBootstrapping variances using ', R, 'samples\n') 

samples <- NULL 

n <- length( OTWiST[newgroup==grp] ) 
for (r in 1: R ){ 

cat(r) 
sam <- sample(x = 1: n , size = n, replace =T) 
samples <- rbind( samples , 

OAS. f( OTWiST[newgroup==grp][sam] , 
delta[newgroup==grp][sam] , plotit=F , L=max(survival)) ) 

cat('\t') 
}# END resampling 

cat('\n') 
statistic[2, grp+1 ] <- sqrt( var( samples) ) 

# END group 
}# END bootstrap 

# Plot the results if required 
if ( plotit ){ 

surv. plot( OTW iST , 
delta, newgroup, Ity = unique(group)+1 

title(xlab = 'TNOOL (days)' , ylab = "Survival probability" ) 
}# END plotit 

}# END else 

if ( method =='imputed') 
method <- paste( method , what ) 

invisible (list ( id=unique(id), method=method, OTR = OTR, OAQOL = OAQOL, 
OTNQOL = OTNOOL, delta = delta , group= newgroup , statistic=statistic )) 

# END function TWiST. f 
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A3.3.2 PQAS. f 

PQAS. f <- function( Id , survival , qol, qol. time , status , group=rep( 1, length(id)) , 
cutoff=19.5, weight=NULL, L=max(survival) , leg=NULL, boot=F, R=NULL, plotlt=F, ... ){ 

# Error consistency checks 
if ( boot==T & is. null(R) ) 

stop('For bootstrapping variances R is required') 

# Check the graphics device Is active 
if ( plotit ) 

par( cex=1 ) 

cat('\n Obtaining the cummulative survival times for each state ... \n') 

PQAS <- PQASTIMES. f( id, survival , qol , qol. time, status , group=group, cutoff=cutoff 

results <- list() 

cat('\n Calculating the area under the curve ... \n') 
for (g in 1: length(unique(group)) ){ 

grp <- unique(sort(group))[g] 
pqas <- PQAS[ PQAS[, 'group'] == grp, ] 

# Calculating the mean time spent in each state 
results[[g]] <- QAS. f( survival=pgas(, 'survival'] , status=pgas[, 'status'] , 

state=pgas[, 'state'] , plotit=plotit, L=L, leg=leg(g) 
, ... 

) 

# Bootstrapping variance if required 
if ( boot ){ 

cat('\nBootstrapping variances using', R, ' samples\n') 
samples <- NULL 

n <- length( unique(pqas[, 'id']) ) 
for (i in 1: R) ( 

cat(l) 
sam <- sample(x = 1: n, size = n, replace = T) 
sam <- c( sam, sam+n, sam+(2"n) ) 
samples <- rbind( samples, QAS. f( pgas[sam, 'survival'], pqas[sam, 'status'] , 

pgas[sam, 'state'] , plotit=F, L=L) ) 
cat('\t') 
}# END resampling 

# Estimating the weighted QUALITY ADJUSTED SURVIVAL for given weights 
if (lis. null(weight)){ 

temp <- matrix( results[[g]][, 1: length(weight)], length(weight), 1 ) 
temps <- samples[, 1: Iength(weight)] 
weight <- matrix( weight, 1, Iength(weight) ) 
results[[g]] <- cbind( results[[g]] , 'QAS'=weight%"%temp , 'var(QAS)'=weight 

%'% var(temps) %"% t(welght) ) 
)0 END applying weights 
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results[[g]] <- list ( means = results[[g]] , var=var(samples) ) 
} 
cat('\n\n') 

}# END for group g 
names(results) <- paste( 'group' , 1: length(unique(group)) , sep=") 

results 
}# END function PQAS. f 
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A3.3.3 giasziou. f 

glasziou. f <- function( Id , survival , status , qol , qol. time , group=rep(1, length(survival)) , days=seq( from=0 , to=max(survival) , by=20) , method='smooth', boot=F, R=NULL ) 

# Error consistency checks 
# Check the method of estimating qol to be used 

if ( method 1='smooth' & method 1='mean' & method 1='linear') 

stop( 'For Glasziou analysis method may be smooth, mean or linear') 

# For a bootstrapped variance, R is the number of samples 
if ( boot & is. null(R) ) 

stop( 'R is required for bootstrapping variances') 

# Setting estimation parameters 
# The number of people in total 

N <- length( unique( id) ) 

# Make sure the vector of days starts at zero. The total number of days is M 
if ( min(days)i=0 ) 

days <- c( O, days ) 
M <- length(days) 

# Make sure group is >0 
oldgroup <- group 
group <- group - min(group) +1 

cat('\n Performing an Integrated Quality-adjusted survival analysis ... \n') 

# For the survival analysis need unique values for each subjects 
ID <- unique(id) 
SURVIVAL <- numeric(N) 
STATUS <- numeric(N) 
GROUP <- numeric(N) 

patient <- 1 
for (I in unique(id))( 

GROUP[patient] <- unique( group[id==i] ) 
SURVIVAL[patient] <- unique( survival[id==i] ) 
STATUS(patient] <- unique( status[id==i] ) 

patient <- patient +1 
} 

# If the full follow-up Is not used, need to censor individuals who died after last day 
STATUS <- ifelse( STATUS==1 & SURVIVAL>max(days) 0, STATUS) 

# And also their survival 
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SURVIVAL <- if else( SURVIVAL>max(days), max(days), SURVIVAL) 

# qt gives the mean qol for subjects evaluated at each day 
if ( method=='mean')( 

qt <- matrix( NA ,M, N, T, list(as. character(days) , paste('pat', ID, sep=") )) 
cat('\nEstimating qt using subject specific means over time... \n') 

for (j in 1: M ){ 
patient <- 1 
for (i in ID ){ 

# Only if the patient is still alive can their qol be calculated 
if ( SURVIVAL[ID==i] > days[j] ){ 

lower <- gol. time[id==i][gol. time[id==i] max(qol. time[id==i][gol. time[id==i] 
<= days[j] ])][1] 

upper <- gol. time[id==i][gol. time[id==i] min(qol. time[id==i][qol. time[id==i] 
>= days[j] ])][1] 

qt[j , patient] <- mean( c(qol[id==iJ[gol. time[id==i]==Iower] , 
qol[id==i][gol. time[id==iJ==upper]) , na. rm=T ) 

}# END is the patient alive 

# Otherwise it is missing 
else 
qt[j , patient] <- NA 

patient <- patient +1 
)# END each patient 

}# END each follow-up time 
}# END if mean 

# OSt is the survival and qol product for the Glasziou analysis 
Ost <- list() 

# If a bootstrap is done a summary of the results are given by auc 
auc <- matrix(NA ,2, length(unique(group)) 

,T, list(c('auc', 'SE'), paste('group', unique(group), sep=")) ) 

# Analysis done for each group in turn 
for (g in sort( unique(group) ){ 

cat('\nGroup', g, '.. ') 
# How many subjects in group g 

Ng <- sum( GROUP==g ) 

if (method=='mean') 
OSt[[g]] <- glas. f( 1: Ng, gt[, GROUP==g], days, SURVIVAL[GROUP==g], 

STATUS[GROUP==gl 
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, comment=T, summary=F, method=method ) 
else{ 

days <- dsr[group==g] 
QSt[[g]] <- glas. f( 1: Ng , cbind(gol. time, gol)[group==g, ] , days, 

SURVIVAL[GROUP==g], STATUS[GROUP==g] 

, comment=T, summary=F, id=id[group==g] , method=method ) 
} 

# Calculate the auc for the data set 
auc[1, g] <- AUC. f( QSt[[g]][, c('QSt', 'Time')] ) 

# Bootstrapping a variance if required 
if ( boot ){ 

cat('Bootstrapping a variance using', R, 'sampies ... \n') 

# Matrix of generated samples row by row 
samples <- matrix( NA ,R, Ng ) 
for(iin1: R) 

samples[i, ) <- sample( 1: Ng, Ng, replace=T) 

if ( method =='mean') 
bootstrapped. QSt <- apply( samples ,1, glas. f, qt[, GROUP==g], days, 

SURVIVAL[GROUP==g], STATUS[GROUP==g], 
method=method ) 

else 
bootstrapped. QSt <- apply( samples, 1, glas. f , 

cbind(gol. time, gol)[group==g, ] , days, 
SURVIVAL[GROUP==g], STATUS[GROUP==g], 

id=id[group==g], method=method ) 

bootstrapped. QSt <- 
array(bootstrapped. QSt, c(length(bootstrapped. QSt)/(R*2), 2, R), T) 

C8t('\n') 

# Calculating the area under the curve for each sample 
bootstrapped. auc <- apply( bootstrapped. QSt, 3, AUC. f ) 
auc[2, g] <- sqrt( var( bootstrapped. auc) ) 
)# END bootstrapping 

cat('\n') 
)# END group 

group <- oldgroup 
names(OSt) <- paste( 'group _', sort(unique(group)) ) 

if(lboot) 
return( QSt ) 

else 
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return( auc ) 

}# END function glas. f 
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A3.3.4 PQASTIMES. f 

PQASTIMES. f <- function( id, survival , qol , qol. time, status , group=rep( 1, length(id)) 
, 

L=max(survival) , cutoff=19.5 ){ 

# Set up the variables to be created 
n <- length(unique(id)) 
exitl. time <- numeric(n) 
exitl. status <- numeric(n) 
exit2. time <- numeric(n) 
exit2. status <- numeric(n) 
exit3. time <- numeric(n) 
exit3. status <- numeric(n) 
small. group <- numeric(n) 

# IS OOL ABNORMAL 
ab. qol <- qol > cutoff 
patient <- 1 
for (i in unique(id)){ 

# START IN POOR 
if ( ab. qol[id==i][1 ] == T ){ 

# STAY IN POOR 
if ( length( rle(ab. gol[id==i])[[11]) 1)( 

exit l . time[patient] <- min( L, unique( survival[id==i] )) 

exit l . status[patient] <- ifelse( exits . time[patlent]==L , 0, unique( status[id==i])) 
exit2. time[patient] <- min( L, unique( survival[id==i] )) 

exit2. status[patient] <- ifelse( exit2. time[patient]==L ,0, unique( status[id==i])) 
} 

#GOTOGOOD 
else ( 

exitl. time[patient] <- min( L, mean( c( gol. time[Id==i][ 1+ rle( ab. gol[Id==1] 
]) )) )[[111[111, gol. time[id==i][ rle( 11))) 

exitl. status[patient] <- ifelse( exitl. time[patient]==L ,0,1) 

# STAY IN GOOD 
if ( length( rle(ab. gol[id==i])[[1]]) 2 ){ 

exit2. time[patient] <- min( L, unique( survival[id==i]) ) 
exit2. status[patient] <- ifelse( ex1t2. time[patient]==L ,0 unique( 

status[id==i] )) 
} 

# GO BACK TO POOR 
else ( 

exit2. time[patient] <- min( L, mean( c( gol. time[id==i][1 + sum( rle( 
ab. gol[id==i])[[1]][1.2])] , gol. time[id==i][ sum( rle( ab. gol[id-°l))[[1 ]l[1: 2))1)) ) 

exit2. status[patient] <- ifelse( exlt2. time[patient]==L ,0,1) } 
}# END go to good 
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}# END start in poor 

# START IN GOOD 
else { 

exitl. time[patient] <- 0 
exit 1. status[patient] <- 1 

# STAY IN GOOD 
if ( length( rle( ab. gol[id==i])[[1]J) == 1 ){ 

exit2. time[patient] <- min( L, unique( survival[id==i]) ) 
exit2. status[patient] <- ifelse( exit2. time[patient]==L ,0, unique( status[id==i] ) 

}# END stay in good 

# GO TO POOR 
else { 

exit2. time[patient] <- min(L, mean( c( qol. time[id==i][1 + sum( rle( 
ab. qoI[id==i])[[1]][1])], qol. time[id==i][ sum( rle( ab. goI[id==i])[[1]J[1])] )) ) 

exit2. status[patient] <- ifelse(exit2. time[patient]==L ,0,1) 
}# END go to poor 

}# END start in good 
exit3. time[patient] <- min( L, unique( survival[id==i]) ) 

exit3. status[patient] <- ifelse( exit3. time[patient]==L ,0, unique( status[id==i]) ) 

small. group[patient] <- unique(group[id==i]) 
patient <- patient +1 

# END for each individual 

PQAS <- matrix( c( rep(unique(id), 3) , c( exitl. time , exit2. time , exit3. time) , c( 
exitl . status , exit2. status , exit3. status) , rep( 1: 3 , rep( length (unique(id)), 3)) , rep( 
small. group, 3)) , 3*length(unique(id)) ,5, byrow=F , dimnames=list( NULL , 
c('id', 'survival', ' status', 'state', 'group' )) ) 

# Returns the result which is the time spent in each qol state for each subject 
PQAS 
)# END PQASTIME. f 
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A3.3.5 G1AS. f 

QAS. f <- function( survival , status, state=rep( 1, length(survival) ), plotit=F , 
L=max(survival) , leg=NULL, ... ){ 

# Check the graphics device is active 
if (plotit) 

par( cex=1 

# Set up the variables to be calculated 
nstate <- length( unique(state) ) 
survival <- ifelse( survival>L ,L, survival ) 
if ( min(state)==0 ) 

state <- state+1 
mean. surv <- matrix( 0,1, nstate+1 ,F, 

list( NULL , c( paste('state' , 1: nstate , sep=" ) 

, 'survival' )) ) 

# Calculate the area under the survival curve for each state 
for( i in 1: nstate ){ 

fit <- surv. fit( survival[state == I] , status[state == i] ) 
area <- numeric( length(fit$time) ) 
area[1] <- fit$time[1] 
for (i in 2: length(fit$time) ) 

area[iJ <- ( fit$time[i] - fit$time[i-1] )' fit$surv[i-1] 

# Stops missing being generated when no time is spent in a state 
mean. surv[, i] <- ifelse( lis. na( sum(area)) , sum(area), 0) 
}# END estimation for each state 

# Plot the estimated survival curves If requested 
if ( plotit )( 

fit <- surv. fit( survival, status, state, ) 
plot( fit, Ity = rep(1, nstate) , xlim=c(O, L) , ... ) 
abline( v=L, Ity = 2) 
}# END plotting 

# If only one state, return the area under the survival curve otherwise calculate the areas 
within each state 

if ( nstate == 1) 
return(mean. surv[, 1 ]) 

else { 

mean. surv[, nstate+l] <- mean. surv[, nstate] 
for (i in nstate: 2 ) 

mean. surv[, i] <- mean. surv[, i] - mean. surv[, i-t] 
return(mean. surv) 
} 

}# END function OAS. f 
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A3.3.6 glas. f 

glas. f <- function( sam, qt, times , survival, status , comment=F, summary=T, id=NULL, 
method )( 

cat('. ') 
# Qt gives the mean survival of people alive at each of the specified time intervals given by 
the mean qt for each day 

if (comment ) 
cat('\n Estimating Qt 

... 
\n') 

if ( method == 'mean' ) 
Qt <- apply( qt[, sam] ,1, mean , na. rm=T ) 

else{ 
tempx <- split( qt[, 1 ], id ) 
tempy <- split( qt[, 21, id ) 
y <- numeric(O); x <- numeric(O) 

for (i in 1: Iength(sam) )( 
y<-c(y, tempy[[i]]) 
x<-c(xtempx[[i]]) 
} 

x <- x[! is. na(y)]; y <- y[! is. na(y)] 
y <- y[! is. na(x)]; x <- x[! is. na(x)] 
y <- y[order(x)]; x <- x[order(x)] 

if ( method =='smooth')( 
Qt<-Iowess(x, y) 
times <- Qt[[1 ]] 

Qt <- Qt[[2]] 
}# END if smooth 

else { 
beta <- sum( (x-mean(x)) ` (y-mean(y))) / sum( (x-mean(x))A2 ) 
alpha <- mean(y) - (beta*mean(x)) 
Qt <- alpha + (beta*x) 
times <- x 
}# END linear 

}# END method 1='mean' 

m <- length( times ) 

# St gives the probabilities for each group for each day 
if (comment) 

cat('\n Estimating St ... \n') 
St <- numeric( m) 
surv <- surv. fit( survival[sam] , status[sam] ) 
for (j in 1: m){ 

the. prob <- surv$surv[ surv$time== max(surv$time[ surv$time<times[j] ]) ] 
St[j] <- ifelse(length(the. prob)==1, the. prob, 1) 
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}# END of survival estimation 

# Return all the results 
if ( ! summary ) 

return( cbind('Time'=times , 'Qt'=Qt , 'St'=St , 'QSt'=Qt*St) ) 
# Or just a summary 

return( cbind('Time'=times , 'QSt'=Qt*St) ) 

}# END function glas. f 
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A3.3.7 AUC. f 

AUC. f <- function(y, cummulative = F)( 

#y is a nx2 vector 
#M is the number of time points 

M <- nrow(y) 
x <- y[, 2]: y <- y[, 1 ] 

# area is a containing the area in each segment 
area <- numeric(M - 1) 
for( j in 1: (M - 1)) 

area[j] <- (x[j + 1] - x[j]) * mean(c(y[j + 1], y[j]), na. rm = T) 

# cummulative is an indicator whether the cummulative sum or sum is given 
if(cummulative == T) 

return(cumsum(c(O, area))) 
else 

return(sum(area, na. rm = T)) 
}# END function AUC. f 
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