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SUMMARY

A central tenet of close-contact or respiratory infection epidemiology is that infection patterns

within human populations are related to underlying patterns of social interaction. Until recently,

few researchers had attempted to quantify potentially infectious encounters made between people.

Now, however, several studies have quantified social mixing behaviour, using a variety of

methods. Here, we review the methodologies employed, suggest other appropriate methods and

technologies, and outline future research challenges for this rapidly advancing field of research.
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INTRODUCTION

Understanding the spread of respiratory pathogens is

a public health priority as many of the greatest threats

to human health are spread by direct person-

to-person contact. A major challenge is identifying

and quantifying the behavioural, social and environ-

mental factors which permit the transmission of

such pathogens and generate larger-scale patterns

of spread. Accurate predictions of the likely impact of

new or re-emerging pathogens and improved target-

ing of control interventions require a quantitative

understanding of the factors and mechanisms that

promote or inhibit the spread of pathogens through

populations.

A principal assertion within the epidemiology of

respiratory pathogens is that patterns of social mixing

behaviour at the individual level contribute to the

dynamics of infection seen at the population level.

Despite controversy about the precise role different

mechanisms may play in infection [1, 2], proximity or

social contact is thought to be a major factor in the

transmission process for many important infections,

including SARS, influenza and tuberculosis [3, 4]. The

prevention of social interactions lies at the heart of

non-pharmaceutical interventions for these and other

respiratory pathogens. However, robust measures of

social encounters were, until recently, lacking, making
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it difficult to identify the interactions most likely to

lead to transmission or the impacts of interventions

meant to curtail those interactions. The lack of

quantitative measures of infectious contacts makes

the parameterization of large-scale transmission

models difficult as well, particularly for models which

rely explicitly on simulated social contacts to generate

infection events.

Currently, there are a number of published studies

which have sought to quantify potentially infectious

contacts between individuals. This paper seeks to

highlight recent and current research in this area

and to review the various methodologies and instru-

ments available to quantify social interactions that

might lead to transmission. Relevant studies come

from many different disciplines and, as such, we have

not conducted a systematic review. We discuss the

strengths and weaknesses of the methods employed in

relevant studies, and suggest promising alternative

technologies. Finally, we outline key research chal-

lenges currently preventing a better understanding

of the role played by specific social contacts in

the transmission of respiratory and close-contact

infections.

NETWORKS OF CONTACTS

First, we define a potentially infectious contact.

Brankston et al. [2] identified four main modes of

transmission for respiratory infections, each of which

defines a contact differently: we refer to these modes

as airborne, droplet, direct, and fomite. Airborne

transmission involves pathogens expelled from an in-

fectious host through coughing or sneezing within

small droplets, which become aerosolized. In this

form, pathogens can remain suspended and viable in

the air for long periods depending on environmental

conditions, may be widely dispersed, and can be in-

haled by susceptible hosts causing infection [5–7].

Droplet transmission is where pathogens are expelled

from the host in larger, heavier droplets, which do not

travel far from the infecting host, quickly settling on

surfaces, whether those surfaces are inanimate objects

or the mouth or mucosal surfaces of susceptible hosts

[6, 8–10]. Direct transmission can occur where the

secretions of an infector are transferred directly to the

respiratory tract of a susceptible individual, such

as through kissing or sharing a cigarette [11–13].

Fomite transmission is where pathogen is depos-

ited by an infector onto an inanimate object (door

handles, keyboards, etc.) also handled by susceptible

individuals and ingested [14–16]. It is unlikely that

any respiratory pathogens are passed between hosts

via a single transmission mode: transmission is more

likely to occur to differing degrees via all four modes

[17]. However, understanding the relative role of each

mode is important, both for control and for defining

the type of contact networks to quantify. Signifi-

cantly, airborne and fomite transmission pathogens

do not necessarily require hosts to have close contact

to enable infection, while direct and droplet trans-

mission do. Environmental conditions – such as tem-

perature, humidity and ultra-violet light levels – affect

the survival rate of pathogens, particularly viruses

[8, 18], influencing the exposure risk to individuals

and whether it is appropriate to consider them a

contact. In a similar way, the use and material of

surfaces upon which fomites are deposited influences

pathogen viability [7, 19] and who should be con-

sidered a contact.

Contacts between individuals are often represented

as a network, where nodes represent individuals and

links between nodes represent their contacts and op-

portunities for transmission (Fig. 1). Network theory

has provided epidemiology with many insights into

how different patterns of contact and their network

structures can affect transmission [20]. Visualizing

transmission opportunities as networks is difficult,

and often fails to capture many of the complex

characteristics of the interactions. Sexual partner-

ships, which may often be more discrete in time and

lower in number than social contacts, are difficult to

reduce to simple networks based around degree dis-

tributions, due to other important characteristics

such as sexual behaviour within partnerships which

affect transmission risks [21, 22]. Moreover, the dy-

namical nature of interactions – changes in contact

with individuals or changes in the duration or inten-

sity of contact – is well known to be important for the

transmission and control of infections, but is difficult

to represent in a static network unless weighted

links between nodes are used [23–27]. For respiratory

infections, where contacts can be classified along a

continuum of proximity and duration according to

the transmission modes involved, there are likely to

be severe limitations by representing interactions as

a simple static network. The network approach,

however, continues to be a useful way for researchers

to think about interactions and transmission be-

tween individuals despite its shortcomings. In ad-

dition, network theory has shown the importance of

different network properties and structures, such as
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clustering and centrality, for the spread of infections

[20, 28–30].

The network framework permits detailed modelling

of different pathogens, for a range of different sce-

narios, at the individual level. For certain infections

where contact tracing is conducted (e.g. SARS or tu-

berculosis), some network information may be routi-

nely collected in combination with outbreak and

case data. For the majority of respiratory infections,

however, there is relatively little data available to

relate outbreak data to the contact network of

cases. Studies of clustered outbreaks involving mi-

crobiological sampling may uncover the network

structure behind the cases, but are expensive, labour-

intensive and difficult. A more practical solution is to

measure likely proxies of the true underlying network

of potentially infectious contacts, with the presump-

tion that these types of interactions are representative

of those that effect transmission. For respiratory in-

fections, these proxy contacts are likely to include

spatial and temporal proximity. The methods and

studies described below are all based on this contact-

proxy approach.

DIRECT OBSERVATION

The direct observation of individuals and their as-

sociation in time and space is the foundation of many

recent studies of contact between animals and their

behavioural ecology [31, 32], but has rarely been em-

ployed to study human social interactions from the

perspective of disease transmission. There is, how-

ever, a history of using video methods in ethnographic

studies in the social sciences, for example to study

family cohesion [33] or pedestrian interaction dy-

namics [34].

We know of only two published studies which di-

rectly observed and quantified human contact pat-

terns and networks. Polgreen et al. [35] observed the

number of encounters made by health-care workers

during the course of their duties. Villaseñor-Sierra

and colleagues [36] asked teachers to observe contacts

(a) (b)

(d )

True Diary / recall

LocationProximity(c)

Fig. 1. A stylized illustration of the abilities of different methodologies to capture contact network structures. Individuals are

represented as small circles and interactions which permit transmission are links between them. Larger circles represent
particular environments or locations in which enclosed individuals are present at the same time. Individuals participating in
hypothetical studies are coloured. (a) The true network of contacts between individuals which are viable transmission op-

portunities for a particular pathogen. (b) The network as measured by anonymous contact diaries, where contacts are not
named. Egocentric contact diaries can be used to capture some information on the clustering of contacts, but cannot easily
identify links between participants. As the information is subjective it can contain inaccuracies, both missing and erroneous
contacts. (c) The network as measured by proximity sensors. Here, clustering may be inferred by the co-location of contacts,

and some information on higher-order network structure (longer range links) between participants can be captured. (d) The
network inferred by location-based network modelling, where modelled locations are depicted by larger circles. This method
is critically dependent on accurate location description, and may lead to overestimation of both the number of contacts made

and the local level of clustering.
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between children at daycare centres, where the chil-

dren were too young to question directly.

Recent advances in software and technology mean

that automation of observation studies may now be

possible [37–40] ; this may help considerably in gath-

ering and analysing interaction data. Observations

could be made using video cameras and rel-

evant contacts between participants identified with

computer software detection methods (e.g. spatial

location and face-recognition technology) [41]. Neck-

mounted cameras which automatically take a picture

every few seconds have been trialled as a memory aid

for patients suffering memory impairment [42, 43],

and a similar system could record much of the social

interactions an individual might make during a day,

as well as detailing some information about the type

of interaction and duration. Security camera record-

ings are a potentially useful data source for interac-

tions in public space, if such data could be accessed in

an ethical way: perhaps by using image processing

algorithms to anonymize individuals immediately

after they are recognized.

However, there are several reasons why this meth-

odology may be unattractive for human subjects’ re-

search. Observational studies are likely to be

expensive and logistically challenging if they are to

capture the behaviour of a large number of people.

There are limitations to the ability of current face-

recognition and movement-tracking software algo-

rithms to accurately identify and track the motion or

interaction of individuals. Observation from multiple

angles is often required to assist the software and to

reduce occlusion [40], although this is unlikely to be

sufficient in high-density public areas. Such studies

may also be perceived as too invasive of individuals’

privacy, however well the data are anonymized.

Additionally, there is the perception that any obser-

vation of a subject would need to be exhaustive to

capture all the contacts relevant to infection.

Nonetheless, there is great potential for utilizing

observations or video recordings of normal interac-

tions to quantify networks of potentially infectious

contacts. An important innovation that video-based

data provides is that it enables the estimation of sev-

eral different types of social interaction relevant to

transmission. Further, the entire interaction network

may be documented (including sharing of objects and

fomite pathways). Additionally, there is minimal

burden or disruption to participants, although it may

require labour-intensive analysis for the researchers.

Observational methods may be most suitable to small

populations within closed settings, where all interac-

tions can be observed easily. Household, work- and

school-based studies of interactions may benefit

greatly from this type of approach. Additionally, this

may be the only reliable method to record interactions

in locations which are difficult to capture using other

methods, for example mass transport environments or

crowded public spaces, although, again, there are

obvious issues in protecting the anonymity of passive

participants.

CONTACT DIARIES

Sociology has a long tradition of measuring and

analysing social networks, where typically the em-

phasis is on relationships between the subject and

other individuals (termed the ego and alters in the

sociological literature). One method often used is the

self-reported contact diary, where study participants

are asked to record particular social interactions

made within a time period [44–48]. Unfortunately for

epidemiologists eager to parameterize models of dis-

ease transmission, few of the sociological studies

conducted using such instruments are directly rel-

evant. Definitions in these studies of ‘ interaction’ can

often include email or telephone communications, or

are restricted to a limited subset of all possible en-

counters, such as those individuals whom participants

can name or have a particular relationship with

[46, 48].

In attempts to quantify social contact, epidemiolo-

gical studies which use the contact diary approach

have employed tailored definitions of a contact and

attempt to only capture infection-relevant encounters.

This method has now been applied, from an epide-

miological perspective, in a variety of convenience

studies [24, 49–52], school-based populations [53–57],

heathcare settings [58], and larger studies of the gen-

eral public [59–62]. The predominant methodology to

emerge is for participants to record encounters made

with other people that include a face-to-face conver-

sation or physical touch (of skin on skin). Additional

characteristics of contacts can also be sought, such as

estimates of duration or typical frequency of contact,

or the social setting of encounters. An important dis-

tinction should be made between ‘anonymous’ diar-

ies, where subjects only record characteristics of their

contacts, and diaries which ask subject to name their

contacts – permitting repeat encounters with the same

individual to be captured and the full network of

participant encounters to be described [24, 63]. This
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methodology is clearly dependent on how well

individuals can be identified from the information

recorded. In addition, it is possible to capture some

higher-scale network properties beyond the first de-

gree by asking participants to report which of their

contacts also had contact with each other (see Fig. 1b).

Some studies have assessed different study designs.

Mikolajczyk & Kretzschmar [52] compared de-

signs where participants completed diaries pro-

spectively – adding contacts and information as

they were made during study days – and retro-

spectively – reporting contacts the following day.

They found, on average, more contacts were reported

using the prospective design. In contrast, Beutels et al.

[50] found no significant difference between prospec-

tively and retrospectively collected contact data in a

similarly designed study. McCaw et al. [64] compared

participants’ prospective estimation of the number of

contacts with data collected retrospectively, finding

participants tended to report fewer contacts when

asked prospectively. This study also compared paper

diaries with an electronic PDA device which promp-

ted participants to complete contact information fol-

lowing a change in their location; participants

reported more contacts when using the paper diary

than the PDA device, and they preferred the paper

diary, perhaps because it imposed less of a reporting

burden.

Retrospective paper-based contact diaries were the

recording instrument used by the largest study rel-

evant to respiratory infections conducted so far. The

POLYMOD study [60] recorded single-day contact

characteristics of 7290 individuals in eight European

countries. This study found strong assortivity of

contacts by age – contacts tended to be made between

people of a similar age. While the study found some

differences in average contact rates between countries,

there are remarkable similarities between countries,

particularly in the age-based contact rates and the

distribution of contacts between social settings, dur-

ation and intimacy. Indeed, quantifying age-related

mixing patterns using the contact diary method has,

perhaps, been the most significant advance to date in

this field, helping to explain observed serological and

infection patterns [59, 65–68].

There are two primary limitations of the contact

diary methodology. First, there are difficult-to-

quantify potential biases in participant recall and

reporting, particularly for participants who have ex-

perienced a complicated day with many different

contacts in different environments. Studies that

record identifiable contacts can assess these biases to

some extent. Read et al. [24] found only 30.2% [95%

confidence interval (CI) 25.7–35.0] of any identifiable

encounters between participants were recorded by

both participants. This recording rate improved when

restricted to contacts involving touch (90.2%, 95%

CI 83.2–95.0) or non-work settings (84.9%, 95% CI

75.5–91.7). Smieszek et al. [63] found a higher level of

agreement between pairs of participants (65.0%,

95% CI 61.1–68.8) and also found the agreement

rate improved when restricted to physical contacts

(78.6%, 95% CI 67.1–87.5), and increased with the

duration of reported contact, suggesting that short-

lived encounters are those most easily forgotten.

Collecting longitudinal information on participants’

contacts is also subject to study fatigue: several

longitudinal studies have found a decrease in reported

contacts with time [63, 64, 69].

The third limitation is that defining contacts as

those that include conversation or touch potentially

limits the reported encounters to a subset of all the

social encounters that could permit transmission. For

example, there are many circumstances where in-

dividuals may be close enough to share airspace and

pathogens, such as commuters on a crowded train, yet

they may not converse or touch. Further, the conver-

sation and touch definitions fail to capture interac-

tions with shared objects that would permit fomite

transmission, although appropriate questions could

be included within diaries to attempt to capture such

information.

Despite these shortcomings, the contact diary

method has important advantages over other meth-

ods. The instrument is easy to administer and able to

collect information retrospectively ; it is able to cap-

ture social interactions in a wide range of environ-

ments and settings ; it does not rely on peer-groups of

participants. Additionally, it has been able to capture

transmission-relevant mixing sufficiently well to ex-

plain age-based patterns of infection of varicella zos-

ter virus and parvovirus B19 [70], mumps [59] and

pertussis [65]. The development of the contact diary as

an epidemiological instrument is likely to continue.

PROXIMITY SENSORS

The proximity sensing method relies on the use of

automated electronic sensors, also called motes or

tags, which can measure proximity to or presence

within a particular distance of other sensing devices,

using radio communication [71, 72]. A network of
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spatial proximity of subjects can be derived from

participants carrying devices, and contact between

subjects inferred. Devices may be designed to only

transmit, in which case static receiving base-stations

are required to identify the spatial location of subjects

[73–76]. Alternatively, devices worn by participants

may both transmit and receive signals and therefore

may detect the presence of other devices, removing

the need for static base-stations [77]. Contact patterns

of individuals may be inferred by either of these

approaches.

There are two main types of communication sig-

nalling: radio-frequency identification (RFID) and

Bluetooth. Both operate in a similar manner, trans-

mitting signals that can be picked up by receiving de-

vices. Radio-frequency tagging has been used in

animal ecology but until recently has been little used

for disease-relevant studies in humans. Advances in

technology mean that very small, highly accurate de-

vices with a long battery life are now available for

social network studies. Bespoke devices have shown

themselves to be ideal for such studies; being light-

weight and compact, and able to record a large

amount of data. Bluetooth has promise as an epi-

demiological instrument, because its use is now wide-

spread in many developed societies, functioning in

many portable devices such as mobile phones, wire-

less headsets, car satellite navigation systems or lap-

top computers, thus providing a unique opportunity

for large-scale social observations [78].

A number of studies have now been conducted

using proximity sensors worn by subjects in a different

settings, including a conference [73], hospital wards

[74], schools [75, 77], a public exhibition [73], and

several other smaller convenience studies within the

academic computer science community [72, 79–82].

Although the objectivity of electronic sensors is

appealing compared to contact diaries, a significant

disadvantage of proximity sensors is that only inter-

actions between participants can be recorded. This

limits their applicability to closed social environments

or peer-groups. Another disadvantage of proximity

sensors for social encounter studies is that the sensors

can potentially record contacts where none may be

made in an epidemiological sense (see Fig. 1c). This is

a particular problem of Bluetooth technology in

commercially available devices such as mobile

phones. Bluetooth on these devices has a typical range

of 5–10 m and can penetrate glass or walls. The range

of custom-made RFID devices can be tuned, or the

strength of signal recorded, and careful calibration

might overcome the problem seen in mass-produced

hardware to some extent. It should also be noted that

current sensing technologies are not perfect : reci-

procity between electronic sensors, while better than

contact diary methods, is not complete in field studies

[77]. Nonetheless, automated objective methods of

proximity measurement are clearly preferable to self-

reported diary studies for particular circumstances,

especially in closed environments where participation

rates are high and most encounters can be captured.

INFERRING CONTACT PATTERNS

FROM SECONDARY DATA ANALYSIS

We leave many traces of our physical presence in the

modern world, at individual and collective levels.

Examples include : credit card and mobile phone

usage; purchasing habits and patterns; healthcare

registration and history; vehicle licensing; employ-

ment and education history; security camera record-

ings ; patterns of transport and traffic flow; national

censuses of households, schools and workplaces.

Some, although by no means all, of these types of in-

formation have been used to parameterize models of

infection by inferring how often and where people

interact. The inference of contact patterns from such

diverse and disparate information sources is a justified

approach given the absence of better estimates of true

social mixing patterns. This type of analysis is now

conducted routinely on large datasets, in which the

movement and interactions of millions of people and

are included. The primary objective of these studies is

to assess the efficacy of infection control strategies,

such as border quarantine controls or travel restric-

tions.

Socio-demographic information (population de-

mography, employment data, household and work-

place size distributions, etc.) have been used in a

number of modelling studies to generate detailed si-

mulations of epidemics [83–86]. These studies gener-

ate a ‘synthetic ’ population, where individuals are

typically assigned membership of virtual households

and workplaces or schools. The location and size of

the households, schools and workplaces is simulated

so as to agree in aggregate with available data. Cru-

cially, these modelling studies are forced to make as-

sumptions regarding the transmission probabilities in

different social settings and contacts with other

household and workplace members, due to the lack

of available information from contact studies at the

time.
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An alternative approach generates contact net-

works from location and activity information, most

notably the EpiSims model [87]. Here, specific prem-

ises (schools, households, business or leisure centres)

and their geographical position, as well as their hu-

man capacity, are explicitly depicted in the model.

Once these locations are integrated with known travel

and activity information of residents entire cities

are simulated, person by person, hour by hour, jour-

ney by journey. The raw simulations are used to gen-

erate detailed contact networks [87, 88]. Similar

methods have been developed and employed by re-

searchers from the human geography field [89], and by

combining with time-use survey information [90, 91].

Two studies have compared contact patterns pre-

dicted by synthetic population modelling with ob-

served patterns. The ‘Little Italy ’ study [91] found a

good comparison between the model’s age-based

mixing patterns and Italian contact patterns mea-

sured by the POLYMOD study [60]. Yang et al. [92]

predicted a distribution of daily contacts and cluster-

ing metrics for a synthetic population, after calibrat-

ing the mean number of contacts to lie close to

reported values.

The future of these very detailed simulation studies

no doubt lies in the robust incorporation of infor-

mation from contact studies as well as other data,

such as mobile telephone location as a proxy for hu-

man location [93].

FUTURE CHALLENGES

The temporal dynamics of contact patterns

It is uncertain how much variation there may in the

daily patterns of social contact of individuals as few of

the studies described above have measured the social

contact patterns of subjects for longer than a single

day. Consequently, it is unknown how long a sam-

pling period is required to capture a representative

picture of an individual’s contact patterns given day-

to-day variation and variability in routine by type of

day. This sort of information has only been gathered

for small convenience samples [24, 45, 94] (Fig. 2). A

related issue is the uncertainty in how contact patterns

may change in response to infection or control. It is

largely unknown how contact patterns may change

due to personal illness, illness of dependants, or
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Fig. 2. The daily variation in number of contacts reported by participants in the study by Read et al. [24]. Participants are
ranked by their average number of contacts (red crosses) ; the size of circles denotes the number of days where a participant
encounters the same number of contacts. There is much day-to-day variation in participants’ reported number of contacts.
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authority imposed school or workplace closures, al-

though some recent studies have attempted to quan-

tify some of these behaviours [56, 57] or inferred

them by considering how contact patterns change

during holiday periods [58, 69]. Understanding the

character and magnitude of behavioural changes has

important implications for the way that epidemics

should be modelled, and also for estimating the so-

cietal impact of the disease itself and the efficacy of

non-pharmaceutical interventions to prevent it.

Capturing fomite transmission

Fomite transmission, acquiring infection from shared

objects such as door handles or telephones, is thought

to be a significant route of infection for many respir-

atory infections yet it is largely ignored when mod-

ellers construct contact networks. There is much

uncertainly for many respiratory pathogens as to

what proportion of infection occurs via a fomite

transmission route: it is not known even for a rela-

tively well-researched pathogen like influenza [15].

Significantly, for the methodologies outlined above,

fomite transmission does not require immediate tem-

poral proximity – an individual exposing themselves

to a pathogen on a surface or object may do so later

than the infecting individual deposited the organisms.

Thus, one challenge is how best to deconstruct meas-

ured contacts into those where individuals are present

at the same time at a location and those who visit the

same location but at different times. Explicit temporal

and location information of individuals could gener-

ate sufficiently detailed information, combined with

sampling of objects, surfaces and the environment

for viable pathogen and an exposure or infection

outcome would elicit valuable information. There is

likely to be strong directionality in the fomite contact

network, and the significance of this for infection dy-

namics is unknown.

How big is the small-world of infection?

In the 1950s and 1960s, the concept that society was a

‘small world’ was developed and attempts were made

to measure the degrees of separation or steps between

individuals in terms of relationship or influence

[47, 95]. In the experiments, participants were asked

to ensure a letter or package was delivered to a par-

ticular target individual, unknown to the starting

participants, but they could only do this by passing it

onto their friends. Although the experiments and the

reporting of them were flawed or incomplete [96], the

‘result ’ that the median chain length was six has en-

tered popular consciousness as a measure of higher-

scale social connectivity. While the experimental

design is clearly not directly relevant to disease

transmission, it serves as an elegant example of large-

scale structure within populations. Despite higher-

order network structure being thought an important

characteristic within social theory and networks of

influence [97, 98], and a range of metrics being devel-

oped by researchers to quantify such structure [23, 99],

it has rarely been quantified in representative popu-

lations from the perspective of close-contact or res-

piratory infection transmission.

The topology of network links beyond the first and

second degree greatly influences how fast a respirat-

ory infection can spread across a community or na-

tion, and the most appropriate control [100]. There is

a distinction to be made between social networks of

encounters – most relevant to transmission – and so-

cial networks of influence and information diffusion,

which the sociological literature has focused on.

There is likely to be considerable overlap between

these two types of network and in certain circum-

stances, such as a major outbreak with a high degree

of social awareness, transmission may be a function of

both networks [101]. Control efforts may be max-

imized by considering both networks [102], although

this may be premature given neither network type is

well quantified.

The closing of schools, workplaces or public gath-

erings is often suggested as a control measure for

epidemics of respiratory infections. These non-

pharmaceutical interventions attempt to force extra

steps in the path of an infectious wave-front, and so

reduce or halt the progression of transmission within

a community. However, social control measures may

prove futile if there are alternative paths of contacts

of similar or even shorter steps between individuals

[103]. Epidemiology currently lacks a quantified un-

derstanding of how these types of social distancing

controls operate, and there is little evidence that they

work in the way simple simulation models might

predict. Retrospective analysis of social distancing

policies in past epidemics can help to determine the

strength of effect [104, 105], but sheds little light on

the mechanism by which social interaction patterns

actually changed. The challenge remains: how to

measure relevant higher-order network properties of

societies, and how they may change in response to

infection threats or intervention.
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Embedding contact networks into geographical space

As we move from individual or household scales up to

the community or population scales, it seems reason-

able to presume an interaction between higher-order

network properties and geographical space. People

are limited in their capacity to interact by a large ex-

tent through social convention and culture, and by

restrictions on their movement and travel, whether

through architecture, town and transport planning or

large-scale geographical limitations. Very few studies

have measured epidemiologically relevant social-

contacts networks and geographical space. Bates et al.

[106] found a strong negative correlation between the

geographical distance between households and the

number of social interactions made between them in

rural Ecuador. A study of HIV within the USA [107]

measured a social interaction network of sexual en-

counters and drug use and related this to distance

between participants’ residences, demonstrating an

intriguing relationship and tantalizing clues about

how network structure may scale with geography.

However, no study has yet provided a reliable esti-

mate on how a social network and its properties im-

portant for infection may scale with geographical

distance. It may prove possible to infer some higher-

scale properties from outbreak data [108]. Moreover,

contact-tracing studies may be useful, particularly

where genetic distance of infections can help identify

transmission pathways.

Linking contact measures with infection risk

The major validation required for all of the methods

described above is to directly relate measures of con-

tact to measures of infection. We know of only two

studies that attempted to simultaneously measure

contact patterns and infection outcome for the same

subjects. Group A streptococcus (GAS) infection in

children was partly explained by the network struc-

ture of observed interactions at daycare [36]. The au-

thors measured social connectivity between a group

of 3- and 4-year-olds in a daycare centre by asking

teachers to provide a categorical assessment of in-

teraction between the children. Several genetically

distinct strains of GAS bacteria were isolated from

children. Those carrying identical GAS bacteria were

more likely to have extensive contact and high levels

of within-group social contact than the mean levels

across all children. The study provides a rare simul-

taneous observation of multiple measures of social

contacts and infection. However, analysis was limited

due to small numbers of children in the study and

even fewer who became colonized or infected during

the study.

Social connectivity measures at the community le-

vel, derived from self-reported food-sharing social

contacts, were identified as risk factors for diarrhoeal

infection [106]. The mean number of reported social

contacts and the mean number of food-sharing con-

tacts at the community level were both associated

with risk of acquisition of diarrhoeal infection.

There are numerous studies, based around out-

break investigations using contact tracing, which

could be used to link contact measures with infection

risk. For example, Rea et al. [4] retrospectively as-

signed contact intensities to contacts of SARS pa-

tients, and found significant differences in estimated

attack rates for contact encountered by patients in

different social settings and with different levels of

contact. Such analysis is reliant on the investigations

reporting total contacts (rather than just those who

are positively diagnosed), recording some character-

istics of the encounters between contacts and patients

(such as duration and setting), and having a good

understanding of prior immunity within the study

population.

There is, however, strong circumstantial evidence

that the contact diary approach, with a definition of

contact which includes conversational or physical

touch encounters, can capture aspects of social inter-

action important for the transmission of infection [59,

65, 70]. These studies have investigated the utility of

social contact data in explaining patterns of serologi-

cal prevalence in a population. Wallinga and collea-

gues estimated age-specific transmission parameters

in models with and without social contact data on the

age-specific conversational or physical touch contacts

to explain patterns of mumps seroprevalence in a

cross-sectional survey collected in The Netherlands

[59, 109]. Models that included social contact data

performed better than models that assumed homo-

geneous or proportionate mixing between age groups.

This result is encouraging for the utility of social

contact information obtained by surveys. However,

the model using this information was compared to

relative simple models of mixing. Comparison to

models using other age-specific information would

help determine the relative utility of the information

in this survey to other approaches. Melegaro et al. [70]

compared multiple measures of social contact in its

ability to predict seroprevalence of parvovirus and

varicella in multiple European countries. They found
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evidence that more intimate reported contact (i.e.

physical contact, longer duration contact, home con-

tact and frequent contacts) were more useful in fitting

the seroprevalence pattern of these two diseases. The

consistency of this with biological mechanisms of

transmission and the consistent pattern across coun-

tries provides clear support of the utility of social

contact information obtained from surveys. Rohani

et al. [65] also used the POLYMOD age-mixing

data to model pertussis infection in Sweden during

subsequent periods of different immunization poli-

cies. They found including the contact data provided

a reasonable fit to observed changes in incidence

without including assumptions of waning immunity,

but did not conduct an extensive comparison to

a range of alternative models featuring age-specific

assumptions.

Many authors have assumed that infection risk is

proportional to the number of contacts that occur

[60, 65]. However, this is not necessarily the case and

methodological challenges remain in linking infection

and empirical measures of contact [25]. Multiple ad-

vances have been made in recent years in linking in-

fection data to mechanistic models of disease

[110–112] and in inferring network structure from

egocentric or incomplete network data [113, 114].

These advances will help determine what types of

contacts are most likely involved in transmission

and will guide future empirical study design and the

development of analytical methods.

There are a number of important questions for

which a mechanistic understanding of the role of

contact networks in disease spread would greatly en-

hance modelling studies and improve control – from

contact tracing to the efficacy of school closure and

social distancing. What are the appropriate contacts

to inform risk? Does the risk of acquiring respiratory

infection depend on an individual’s number of con-

tacts, or their centrality within the social network?

Does infection risk vary within different parts of the

network, or by the social settings or location in which

contacts occur?

CONCLUSIONS

A fundamental challenge within infectious disease

epidemiology is to understand how individuals ‘fit ’

together, through their interactions in time and space,

to form a contact network upon which respiratory

infections spread. A plethora of recent studies have

quantified social mixing behaviour for a variety of

populations, with a range of different methods in-

cluding observation, contact diaries and electronic

proximity sensors. There is a clear need to continue to

quantify social interactions, and to better understand

the instruments that capture this information.

An improved understanding of social mixing patterns

and heterogeneities of behaviour may significantly

improve targeted control interventions, and would

lead to the development of non-pharmaceutical in-

terventions that minimize transmission while also

minimizing social and economic disruption.

Few large-scale studies that can be thought of as

representative have been conducted, and little in the

way of validation of method against infection risk has

been explored. There is still considerable uncertainty

as to the most appropriate tool for different research

questions and within different social or medical set-

tings. In addition, the diversity of approaches to

studying human encounters makes interpreting results

difficult. While proximity sensors may relieve the

burden of participation that self-reporting diary

methods impose, it is not clear how much of the vast

amount of information they generate will be useful or

how best to interpret such information. To date, no

large-scale study has directly compared the social

mixing behaviour captured by the range of methods.

However, to some extent, a focus on the relative merits

of one method of measuring contacts over another is

premature. Perhaps the most important challenge is to

relate any of the current methods directly to infection

risk, for a variety of respiratory pathogens.
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