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Human behaviour plays an important role in the spread of infectious diseases, and

understanding the influence of behaviour on the spread of diseases can be key to im-

proving control efforts. While behavioural responses to the spread of a disease have

often been reported anecdotally, there has been relatively little systematic inves-

tigation into how behavioural changes can affect disease dynamics. Mathematical

models for the spread of infectious diseases are an important tool for investigating

and quantifying such effects, not at least because the spread of a disease among

humans is not amenable to direct experimental study. Here, we review recent ef-

forts to incorporate human behaviour into disease models, and propose that such

models can be broadly classified according to the type and source of information

which individuals are assumed to base their behaviour on, and according to the

assumed effects of such behaviour. We highlights recent advances as well as gaps in

our understanding of the interplay between infectious disease dynamics and human

behaviour, and suggest what kind of data taking efforts would be helpful in filling

these gaps.

Keywords: epidemiology, infectious diseases, behaviour, vaccination

1. Introduction

Recent outbreaks of infectious diseases have brought pictures of empty streets and

people wearing face masks to television screens and front pages, as fear of diseases

of unknown fatality swept around the globe. Arguably one of the most striking

aspects of these outbreaks were the reactions to the disease. During the outbreak of

Influenza A (H1N1) in 2009, the effect on societies, partly through public measures

but also through personal and uncoordinated responses, has been noticeable. The
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public reaction to this disease was sustained and widespread, and interestingly, part

of this reaction resulted from individual behavioural responses to the presence of

the disease.

Historically, human behaviour has been intricately linked with the spread of

infectious diseases (McNeill, 1976). In medieval times, the lethality of the bubonic

plague caused people to “shun and flee from the sick and all that pertained to them,

and thus doing, each thought to secure immunity for himself”, as Boccaccio vividly

records in the Decameron. Equally compelling are the accounts of the citizens of

the Yorkshire village of Eyam who voluntarily quarantined themselves to prevent

spread of the plague from the village (Scott and Duncan, 2001). More recently,

during the influenza pandemic of the early 20th century, people eventually stayed

away from congregated places (Crosby, 1990). In 1995, a presumed outbreak of

bubonic plague in Surat, India, caused widespread panic and flight of hundreds of

thousands of people (Campbell and Hughes, 1995). When SARS broke out in the

early 21st century, the usage of face masks became widespread in affected areas,

and many changed their travelling behaviour (Lau et al., 2005). Prevalence-elastic

behaviour, i.e. protective behaviour which is seen increasingly as a disease becomes

more prevalent, has been observed both in the context of Measles (Philipson, 1996)

and HIV (Ahituv et al., 1996).

While behavioural responses to the spread of a disease have frequently been

reported anecdotally, there has been relatively little systematic investigation into

their nature, or the effect they can have on the spread of the disease. Behavioural

changes are sometimes cited in the interpretation of outbreak data to explain drops

in the transmission rate (e.g. Riley et al., 2003; Nishiura, 2007), yet rarely is it

detailed how these reactions can be quantified and captured in a systematic way.

Mathematical models have been devised to study human behaviour in the context

of, for instance, escape panic (Helbing et al., 2000), pedestrian trails (Helbing et al.,

1997) and traffic jams (Wilson, 2008), but efforts to study human behaviour in the

context of epidemics usually concentrated on judging the effectiveness of various in-

stitutionally enforced public health measures such as school closures (e.g., Hatchett

et al., 2007; Bootsma and Ferguson, 2007). Recently, however, the impact of self-

initiated actions on the progression of an infectious disease has received increased

attention. After all, individual self-initiated behaviour can change the fate of an

outbreak, and its interaction with disease dynamics requires proper understanding

if we are to fully comprehend what happens when a disease spreads through human

populations (Ferguson, 2007).

Here, we aim to systematically review the theoretical studies undertaken so

far to study the impact of individual behaviour on the epidemiology of infectious
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diseases. Our goal is two-fold. First, we propose a classification system that we

believe is useful to help bring order to the complex diversity of models. Second, we

aim to assess the contribution that the models can make towards understanding

dynamics and control of human diseases, as well as the suggestions that follow as

to how responses to outbreaks could be measured and quantified in a reasonable

way.

We decided to apply two restrictions in selecting which models to include in this

review. First, we will focus exclusively on self-initiated, voluntary behaviour, i.e.,

on scenarios where people first assess a situation based on both the information

available to them and their beliefs, attitudes, norms etc., and then make a per-

sonal decision about how to respond to the given situation. This is different from

scenarios where institutions make recommendations or impose new regulations and

expect the public to comply with those recommendations and regulations. As an

example, consider the decision to go to school during an outbreak of a disease. In

the first case, a model could assume that individuals (or their parents) can make a

personal decision about whether to go to school or not during the outbreak. In the

second case, the model might make an assumption about school closure, and indi-

vidual decisions about whether or not to go to school are implicitly excluded from

the model. The second restriction is that we will focus exclusively on models that

consider behavioural reactions to information from the outside world. Take again

the school example: if a model assumes that the decision to go to school depends

solely on whether an individual is infected or not (intrinsic factor), we would not

include the model here. If, however, the model assumes that the decision depends at

least to a certain extent on the outside world (e.g., how many people at the school

are infected – an extrinsic factor), then we would include the model in the review.

While the investigation of intrinsic factors and corresponding behavioural change

has a strong tradition in modelling sexually transmitted diseases, particularly HIV

and the psychological effects of different treatments, such as antiretroviral ther-

apy (Baggaley et al., 2005; Blower et al., 2000), male circumcision (Williams et al.,

2006; White et al., 2008) and a hypothetical vaccine (Blower and McLean, 1994),

we chose not to include such studies for the sake of brevity and focus.

2. The SIR model and simple extensions

A simple model of infectious diseases is the SIR (Susceptible-Infected-Recovered)

model (Kermack and McKendrick, 1927) which forms the basis of almost all disease

models studied since. In the SIR model, the population is divided into three classes,

where susceptibles (S) can be infected by those already infected (I) and subsequently

recover (R), at which point they are immune to the disease or otherwise removed
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from the population (Fig. 1). In the simplest SIR model, the transitions between

these classes are all assumed to occur at a rate proportional to the number of

individuals in the respective classes, as well as to constant rates of infection and

recovery, respectively. That way, the incidence rate is proportional to βSI, where

β is the infection rate, and S and I are the number of susceptible and infected,

respectively. In this simple case, the dynamics of the system can be described by

the following set of ordinary differential equations (Anderson and May, 1991)

dS

dt
= − 1

N
βSI,

dI

dt
=

1

N
βSI − γI,

dR

dt
= γI,

where the last equation for the number of recovered (R) is redundant as the number

of individuals in the population N is constant and at any time N = S+I+R. More

sophisticated models can explicitly include spatial or contact network structure, so

that each individual in the population can be infected only by a constrained set of

other individuals.

A number of studies have considered extensions of the simple SIR model in which

the incidence rate is not bilinear in S and I, but a more general function f(S, I),

to include effects of saturation. One justification which was given for modifying the

model this way is that ”in the presence of a very large number of infectives the pop-

ulation may tend to reduce the number of contacts per time” (Capasso and Serio,

1978). While such models have been shown to yield rich complex dynamics (Liu

et al., 1986, 1987), they rarely went into much detail about the precise impact of the

behavioural reaction, or the dynamics of these reactions. In that sense, they form

an intermediate step between the simple SIR model and the models reviewed in

the following, which are more explicit in the incorporation of behavioural aspects

to modulate the dynamics of the SIR model or the underlying contact network

structure.

While beyond the scope of this paper, it is important to note that it is not a

trivial exercise to associate the model parameters with values which accurately re-

late the model to data (Mollison, 1995). To do this, one usually needs sophisticated

statistical methods allowing for proper estimation of model and parameter uncer-

tainties. For example, statisticians and (control) engineers have developed sensitiv-

ity and robustness analyses, and recent developments in computational statistics

(such as particle filters and sequential Monte Carlo in an approximate Bayesian
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computation setting) combine the strengths of these approaches in a very flexible

framework (e.g. Ionides et al., 2006; Toni et al., 2009).

3. Towards a classification of behaviour-disease models

To discuss and understand the implications of human behavioural responses to

diseases, it is useful to recognise that there are two different processes at play.

Human behaviour is based on attitudes, belief systems, opinions and awareness of

a disease, and all these factors can change over time, both in an individual and

in the population on the whole. The dynamics in these attributes is one element

that is relevant to understanding the impact of behavioural responses to a disease.

On the other hand, the transmission of the pathogen creates a second dynamic, as

outlined above in the description of the SIR model. To fully understand the impact

of human behaviour on infectious disease dynamics, we need to know how both

these processes operate and interact.

There are various ways to model how certain types of behaviour change over

time (Cavalli-Sforza and Feldman, 1981), but rather than going into the technical

details of a particular way of modelling the causes and consequences of behavioural

change, we will here focus on a few main aspects that are relevant for infectious

disease dynamics in humans. We will not concentrate on the mathematical proper-

ties of the models or tools applied to analyse them, but instead focus on conceptual

differences in the attempts to integrate elements of human behaviour in infectious

disease models. With regard to the causes of behavioural change, all models that

we are reviewing here make an assumption about the source of information, and

an assumption about the type of information which people base their decisions on

that will eventually result in a behavioural change (Table 1). With regard to the

consequence of behavioural change, all models make an assumption about the ef-

fect of the change on the dynamics of disease spread (Table 2). We will now discuss

these distinctions in more detail.

Ia. Source of information

Many models assume that the information on which people act – i.e., change

their behaviour in a way that is relevant for the spread of disease – is available to

everyone. Examples are any sort of news published by newspapers, TV stations,

websites and other media channels, information published by public health author-

ities, etc. We will call this globally available information. On the other side of the

spectrum, a few recent models assume that the information is taken from the social

or spatial neighbourhood only. Examples are the spread of information by word
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Table 1. Classification according to source and type of information people base their be-
haviour on. Note that the studies of Epstein et al. (2008) and Funk et al. (2009, 2010)
each appear in two categories because they consider both global and local spread of fear or
awareness of a disease.

Belief-based Prevalence-based

Local Epstein et al. (2008) Gross et al. (2006)

Salathé and Bonhoeffer (2008) Zanette and Risau-Gusmán (2008)

Funk et al. (2009, 2010) Shaw and Schwartz (2008)

Eames (2009) Bagnoli et al. (2007)

Perisic and Bauch (2009a,b)

Global Tanaka et al. (2002) Bauch et al. (2003)

Bauch et al. (2005) Bauch and Earn (2004)

Epstein et al. (2008) Del Valle et al. (2005)

Coelho and Codeço (2009) Chen (2006)

Funk et al. (2009, 2010) Reluga et al. (2006)

Kiss et al. (2009) Codeço et al. (2007)

Tanaka et al. (2009) d’Onofrio et al. (2007)

Galvani et al. (2007)

Vardavas et al. (2007)

Basu et al. (2008)

d’Onofrio et al. (2008)

of mouth, the assessment of the disease prevalence among acquaintances and in

the local community, etc. We will call this locally available information. Thus, by

source of information we mean whether individuals base their behavioural choice on

publicly available information (global), or on information which comes from their

social neighbourhood (local). The difference between globally and locally available

information can be very important: in socially or spatially structured models, in-

formation can occur in clusters which in turn can have strong effects on disease

dynamics. For example, the clustered occurrence of beliefs about vaccines against

a certain disease can lead directly to the clustered occurrence of people suscepti-

ble to that disease (Salathé and Bonhoeffer, 2008). As another example, the local

spread of awareness of a disease in the proximity of an outbreak can completely

stop a disease from spreading (Funk et al., 2009, 2010). The importance of spatial

effect on dynamics processes, in particular in an ecological context, has long been

recognised (Durrett and Levin, 1994) and is directly applicable to the topic at hand.

Ib. Type of information

In the vast majority of models reviewed here, the information that individuals

base a behavioural change on is the prevalence of a disease. However, there is a
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plethora of other information that will possibly affect the decision to behave in

a certain way, and such information can be completely independent of the actual

disease prevalence. The mismatch between subjective and objective assessment of

risk has been demonstrated experimentally (Young et al., 2008), and some of the

key factors contributing to this mismatch – media misrepresentation (Frost et al.,

1997) and social amplification of risk (Kasperson et al., 1988) – are well under-

stood. We thus propose a simplifying classification of the type of information into

”directly relating to disease prevalence” and ”not directly relating to disease preva-

lence”. The crucially important distinction between the two classes is that latter

relates to information whose dynamics are at least partially independent of the

actual disease dynamics (for example, a belief may initially have originated from

prevalence-related information, but subsequently spread independently of current

prevalence). From here on, we will use the terms ”belief-based” and ”prevalence-

based” to separate the two types of information due to which behavioural change

can occur.

There are many alternatives to such a classification, but we argue that the

proposed classification captures the key differences between the two categories. One

such difference is that belief-based behavioural change can occur at time points

(and on time scales) that are very much detached from the temporal dynamics

of infectious diseases. For example, decisions about vaccines can be influenced by

opinions and beliefs that can spread much faster than the corresponding disease,

and decisions about childhood vaccines are mostly made in the absence of actual

disease outbreaks. Secondly, prevalence-based information is by definition objective,

while belief-based information can be highly subjective. A case in point is the

belief that the measles-mumps-rubella (MMR) vaccine can cause autism, a belief

which has spread widely despite the overwhelming evidence that rejects such a

causality (Stratton et al., 2004). Thirdly, prevalence-based behavioural change is

based on a single piece of information (prevalence), while belief-based behavioural

change can be caused by multiple (and even conflicting) pieces of information.

II. Effect of behavioural change

If the behavioural change is to be relevant for infectious disease dynamics, it

must affect either (a) the disease state (S, I, or R – see above) of the individual, (b)

the infection rate or the recovery rate, or (c) the contact network structure relevant

for the spread of disease. We classify the models accordingly. For example, in models

where a behavioural change constitutes a decision to vaccinate, the individual will

leave the susceptible state (S) and move directly into the immune state (R). As

another example, consider a model where disease prevalence causes increased social
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Table 2. Classification according to the effect of behavioural change. Note that the study
of Epstein et al. (2008) appears in two categories because it considers both a change in
parameters as fearful individuals avoid all infectious contacts, as well as a change in
contact structure as individuals free from a disease.

Behaviour changes Behaviour modifies

disease state of individuals model parameters

Bauch et al. (2003) Tanaka et al. (2002)

Bauch and Earn (2004) Del Valle et al. (2005)

Bauch et al. (2005) Bagnoli et al. (2007)

Chen (2006) Epstein et al. (2008)

Reluga et al. (2006) Funk et al. (2009)

Codeço et al. (2007) Kiss et al. (2009)

d’Onofrio et al. (2007) Tanaka et al. (2009)

Galvani et al. (2007)

Vardavas et al. (2007) Behaviour changes

Basu et al. (2008) contact structure

d’Onofrio et al. (2008) Gross et al. (2006)

Salathé and Bonhoeffer (2008) Epstein et al. (2008)

Coelho and Codeço (2009) Shaw and Schwartz (2008)

Eames (2009) Zanette and Risau-Gusmán (2008)

Perisic and Bauch (2009a,b)

distancing – such a behavioural change could be modelled either as a decrease in the

transmission rate, or as reduction in the number of intensity of contacts, provided

the model explicitly assumes a contact network structure.

The class of models that assumes a change in disease state as a consequence of

a behavioural change are models dealing with vaccination decisions. In the simplest

case, the decision to vaccinate results in moving directly from disease state S (sus-

ceptible) to disease state R (immune). The class of models that assumes a change

in parameters or changes in population structure as a consequence of behavioural

change are models dealing with the effect of people reducing their exposure to dis-

eases as a reaction to the presence of either the disease or certain beliefs about the

disease. In the following, we will discuss these two major classes of models.

4. Rational decisions and voluntary vaccination

The epidemiology of many well-known vaccine-preventable diseases is subject to hu-

man behaviour. Common childhood diseases, such as chickenpox and measles (Phil-

ipson, 1996), provide a timely example: The decision whether to vaccinate a child

or not is ultimately a personal decision and thus has a strong behavioural com-
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ponent. An arguably even more striking example of behaviour affecting infectious

diseases is provided by the so-called measles and chickenpox parties, where parents

expose their susceptible children directly to other infected children. The vaccina-

tion policies of a large number of countries are based on voluntary compliance, and

drops in vaccination coverage have led to increased interest in so-called rational

vaccination decisions and their effects on the epidemiology of vaccine-preventable

infectious diseases. While psychological studies have led to considerable insight into

causes for behaviour with regard to disease (Norman and Conner, 2005), and to

the concept of health belief models to explain the concepts and notions underlying

behavioural choices, epidemiological modellers have turned to game theory and fo-

cused on a dilemma introduced by voluntary vaccination. If vaccination is perceived

to come with risks or side-effects, it can be presumed better to opt out and not

take any risk while relying on the rest of the population to keep the coverage high

and provide herd immunity. Besides refusal of vaccination due to religious or other

beliefs and the risk of simply forgetting to vaccinate due to a lack of awareness,

the choice to “free-ride” and exploit the vaccination behaviour of others can reduce

the general level of vaccination. Concerns about proclaimed risks of vaccines can

drive widespread refusal of vaccination and consequent drops in vaccine uptake, as

has been the case with pertussis in the 1970s (Gangarosa et al., 1998) and, more

recently, with the MMR vaccine (Jansen et al., 2003).

By making a rational choice of whether to vaccinate themselves or their chil-

dren, individuals weigh up the costs and risks associated with vaccination with its

benefit of removing or reducing the risk of infection. Game theory (von Neumann

and Morgenstern, 1944; Weibull, 1995) provides a tool to study simple conflicts

of individuals choosing between actions of different costs and benefits while act-

ing perfectly rationally to maximise their own gain. If game theory is applied to

vaccination decisions, one finds that the vaccination level attained from individuals

acting only in their best self-interest is always below the optimal for the commu-

nity (Fine and Clarkson, 1986) because of the protection gained by others that

do vaccinate and the avoidance of potential risks associated with a given vaccine

(see Box). This would make it impossible to eradicate a disease under voluntary

vaccination (Bauch and Earn, 2004; Chen, 2006).

Early studies of the impact of this conflict attempted to parametrise risks and

benefits associated with a given vaccine and potential infection using realistic es-

timates. Using a model for the disease under study, the fraction of the population

infected in an outbreak and the associated individual risk of infection can be es-

timated and weighed up with the risks of a given vaccine to yield a best rational

strategy. Feeding the outcome of this strategy back into the disease model one
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Box: The vaccination game

A simple version of the vaccination game (Bauch and Earn, 2004) has each
member of the population of size N play the strategy “vaccinate with prob-
ability P”. The ratio of the perceived vaccination risk to the risk associated
with vaccination is denoted by r and assumed constant in the population. If πθ
denotes the risk of infection if a fraction θ of the population is vaccinated, the
expected payoff of an individual playing strategy P is

E(P, θ) = −rP − πθ(1− P ). (1)

In game theory, a strategy or set of strategies is a Nash equilibrium if no
player, knowing the strategies of all other players, can improve his or her payoff
by changing strategy if all other players stay with theirs. In the vaccination
example, because all players are equal, this implies that if there is a Nash
equilibrium, all players play the same strategy. In other words, a strategy P ∗

is a Nash equilibrium if no player can improve their payoff (1) by switching to
a different strategy P . In this case, the fraction of the population vaccinated is
θ∗ = P ∗. To find such a strategy, note that πθ, the risk of infection, decreases
with increasing θ, i.e., it is lower the higher the fraction vaccinated, and that
πθ≥θ′ = 0 if θ′ is the threshold vaccination level for herd immunity, θ′ =
1/R0 (Anderson and May, 1991). The gain in payoff from changing strategy
from P ∗ played by the other players to P is

∆E = (π(N−1)P∗+P − r)(P − P ∗) (2)

Now, if r ≥ π0, i.e. if the vaccine is perceived to be more risky than infection,
then r ≥ πθ for all θ, and the only way to achieve ∆E ≤ 0 for all P ∈ [0, 1] is
P ∗ = 0. That is, the Nash equilibrium is never to vaccinate.
If, on the other hand r < π0, we have that r > πθ′ = 0 (excluding the trivial
case where the vaccine is perceived to be risk-free). This implies that there
exists a unique θ∗ ∈ (0, θ′) such that πθ∗ = r. Remember that θ∗ corresponds
to a universally played strategy P ∗ = θ∗. Now, since πθ decreases with θ,
a switch from P ∗ to P > P ∗ will reduce the resulting risk of infection to
π(N−1)P∗+P < πP∗ , such that ∆E < 0. A switch from P ∗ to P < P ∗, on
the other hand, will increase the risk of infection to π(N−1)P∗+P > πP∗ , again
resulting in ∆E < 0. Therefore, for any positive risk of infection r > 0, there
exists a Nash equilibrium P ∗ yielding a suboptimal vaccinated fraction θ∗ < θ′.

can then study the consequences, a method which has been applied to the study

of vaccination against smallpox to prepare for bioterrorism (Bauch et al., 2003),

to childhood diseases (Bauch and Earn, 2004) and to yellow fever (Codeço et al.,

2007).

In society, however, there can be a significant imbalance between perceived and

real risks, especially during vaccine scares such as with the alleged link between the

MMR vaccine and autism in the 1990s (Nicoll et al., 1998; Stratton et al., 2004).
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Studies on influenza (Galvani et al., 2007) or human papillomavirus (HPV) (Basu

et al., 2008) parametrised their models using the results of population surveys and

confirmed the problem that with individuals acting rationally according to their

perceived risk one would not be able to achieve vaccination levels that minimise

disease prevalence in the population.

Even though the dynamics of vaccination behaviour are usually slow with re-

spect to the disease dynamics, negative feedback between these two dynamical

systems can cause interesting overall dynamics. For example, if vaccine scares sig-

nificantly reduce coverage, subsequent outbreaks can increase the perceived risk of

infection and prompt higher uptake of vaccines. Prevalence-elastic behaviour, i.e.

protective behaviour which is seen increasingly as a disease becomes more preva-

lent, has been observed, for instance, in the context of Measles (Philipson, 1996).

Modelling studies based on game theory have shown that the dynamics of rational

behaviour and disease prevalence can lead to oscillations with outbreaks following

upsurges in vaccination coverage and subsequent epidemic troughs. This is the case

when vaccination decisions are assumed to be made by imitating others at a rate

dependent on the individual benefit (Bauch, 2005; Reluga et al., 2006), as well as

when decisions are based on past prevalence of a disease (Reluga et al., 2006; Var-

davas et al., 2007; Breban et al., 2007; d’Onofrio et al., 2007, 2008). The dynamic

belief model of Coelho and Codeço (2009) included random occurrences of adverse

vaccine effects and media amplification of such events and found their results to be

in line with a yellow fever scare in Brazil in 2008.

A different picture emerges if vaccination decisions are assumed to be made

very quickly, that is at the timescale of an outbreak, and to be reactive to infected

cases in the social neighbourhood rather than in the whole population. In that case,

it has been shown that voluntary ring-vaccination of individuals can curtail local

outbreaks if contacts are sufficiently local and the response is fast enough (Perisic

and Bauch, 2009a,b).

Most of these models hinge on the assumption that vaccination decisions are

fully rational, and the extent to which this is true remains unclear. In fact, at

least some of the recent outbreaks of vaccine-preventable disease are known to have

occurred in groups opposing vaccination on ideological grounds (Hanratty et al.,

2000) or in communities beyond the reach of health authorities (Cohuet et al., 2009).

Models have recently been proposed to base vaccination behaviour on the spread

of opinions in a social neighbourhood (Salathé and Bonhoeffer, 2008; Eames, 2009)

rather than individual rational behaviour. In that case, clusters of unvaccinated

individuals can make outbreaks more likely even if population-wide vaccination

coverage levels would be expected to provide herd immunity.
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It is worth mentioning that vaccination decisions are often irreversible, i.e. while

they render a previously susceptible individual immune, a subsequent change in

attitude towards vaccination cannot bring that person back into the susceptible

class. However, many vaccines require renewal at regular intervals because of waning

immunity, or because of pathogen evolution (e.g., seasonal influenza). On top of

that, a change of attitude can still affect the overall dynamics in the population

when an opinion spreads to influence the decisions of others.

5. Other types of behavioural changes

The study of rational decisions is useful in identifying and explaining vaccination

behaviour and its interaction with the epidemiology of a disease. However, there is

a multitude of other behavioural changes that can influence the spread of infectious

diseases, such as reductions in the number of potentially infectious contacts, wearing

of face masks or practice of better hygiene. A number of studies have recently

considered behavioural changes which do not completely remove those that change

their behaviour from the susceptible population, but instead assume the actions to

either change disease parameters or change networks of infectious contacts.

Behavioural traits which affect disease transmission can be transferred between

individuals. Tanaka et al. (2002) studied a model where two different types of

behaviour exist and their frequencies in the population change over time according

to social interaction. The authors were particularly interested in the evolution of

behaviour and found that new behaviour can establish itself in a population when

it is less risky than the current norm, and that behaviour which protects from

disease has an inherent evolutionary advantage if riskier behaviour leads to faster

progression to infection and death. At the same time, belief in the use of certain

practices can spread in a population even if these are inefficient in curing a given

illness, simply because people then stay ill for longer and can be observed applying

their inefficient treatment during that period (Tanaka et al., 2009).

Such behavioural dynamics can be linked to the more immediate reactions in an

emerging epidemic. If fear or awareness of a disease spreads and causes protective

behavioural change, the impact on disease dynamics can be quite remarkable. If

people remove themselves from the circulation of a disease completely when they

are affected by fear from the epidemic, subsequent return into circulation as the

fear subsides can lead to multiple waves of infection (Epstein et al., 2008). The

diffusion of health information, on the other hand, can reduce the prevalence of

infection if individuals avoid infection or seek treatment earlier (Kiss et al., 2009).

If people enter a class of low activity representing reduced travel behaviour or

similar measures, with a given rate depending on the prevalence of a disease, this
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can reduce both the basic reproductive number of the disease and the number of

infected cases (Del Valle et al., 2005).

Individuals in direct contact with infected individuals would usually be expected

to react most strongly to an outbreak. It is therefore particularly interesting to

study the behavioural reactions to a disease in models with population structure.

If, for instance, the susceptibility of individuals is reduced as a direct consequence of

having of infectious contacts in a social network, it has been shown that a disease

can be brought to extinction if the protection is strong enough (Bagnoli et al.,

2007). If awareness of a disease is assumed to originate in infected cases but spreads

independently to cause protective behaviour in the immediate surroundings of an

emerging epidemic, the consequent reduction in susceptibility of those at risk can

curtail an epidemic under certain conditions, and do so particularly effectively if

the network of information spread overlaps with the contact network of disease

transmission (Funk et al., 2009, 2010).

Another way of looking at the impact of reactions to the spread of a disease is

to consider changes in behaviour to affect the structure of the network of disease

transmission itself. The individual-based spatial model of Epstein et al. (2008)

considers people fleeing from a disease location, and the problem that infected

fleeing individuals could spread the disease into parts of the population which would

not have been reached otherwise. Another set of studies has considered changes in

network structure in response to a disease outbreak more explicitly. People who stay

at home or avoid infected peers can be seen as cutting links of possible contagion,

which in turn affects the progression of the disease. In a series of theoretical studies

(Gross et al., 2006; Shaw and Schwartz, 2008; Zanette and Risau-Gusmán, 2008), it

was assumed that healthy individuals cut contact with infected peers while forming

a new link with a random person from the remaining population at the same time.

Under these assumptions, the potential of a disease to invade the whole population is

reduced, although this comes with an increased risk of outbreaks into spontaneously

formed and strongly connected groups of susceptible individuals, or oscillations

between these two scenarios (Gross et al., 2006).

On closer inspection, the models that assume a changing network structure

generally make two assumptions about how the transmission network changes. First,

an existing link is removed. In practice, this is a possibility only in cases where the

wish to distance oneself from the infection overrides the reasons for the existence of

the transmission link in the first place. In certain extreme cases this is defendable

as realistic, for instance, where the contraction of a sexually transmitted disease

such as HIV by a partner in a sexual relationship can motivate the uninfected

partner to stop such a relationship. If such a removal is the only assumption in the
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model, then the effect is very similar to a reduction in the transmission parameter

as discussed above. Some of the models go one step further and assume that after

a link has been removed, a new one is formed (link rewiring) with a random new

contact. For such rewiring to have an effect on infectious disease dynamics, the rate

of change to the network would need to be of a similar magnitude as the spread

of disease which is often not the case. More importantly, however, based on the

available evidence on social network formation in humans, random link formation

is of limited importance in network structure evolution. Thus, in our view, current

models that take into account a change in the network structure can only be applied

with great caution to infectious diseases in humans. Future work on this topic should

take into account social processes such as homophily, i.e. the formation of new ties

due to matching individual traits (McPherson et al., 2001), and triadic closure, i.e.

formation of new ties between individuals A and C because of existing ties A – B

and B – C (Granovetter, 1973).

6. Discussion

Reactions to infectious diseases have varied a great deal in history, and the dif-

ference in the assumptions and outcomes of the models reviewed here highlights

the difficulty in quantifying human behaviour. Which subset of potential actions

is taken by people depends greatly on temporal and societal context and may be

particularly hard to predict in our times of rapid dissemination of information and

opinion. At the same time, modern technology opens up completely new possibilities

to measure behaviour directly (Lazer et al., 2009), for example by means of mobile

phones (González et al., 2008; Eagle et al., 2009), web-based surveys (Jones and

Salathé, 2009), monitoring of web content and traffic (Ginsberg et al., 2009; Bentley

and Ormerod, 2009) or even disease outbreaks in virtual gaming worlds (Lofgren

and Fefferman, 2007).

The modelling efforts undertaken so far to study the impact of human behaviour

on the spread of infectious diseases were based on varying amounts of anecdotal

evidence and common sense, but almost never validated with quantifiable observa-

tions. Still, these efforts have at least shed some light on the potential impact of

behavioural changes on disease dynamics. That in itself can prove a valuable contri-

bution to help inform centralised efforts of controlling future epidemics, and it can

guide our thinking about how to measure human reactions to disease. The increas-

ing number of studies that emphasise the importance of the social neighbourhood

for individual decisions with respect to a given disease is a promising development

in that regard. This choice is affected both by opinions held and behaviour adopted

in the circle of acquaintances of one person. At the same time, changes in behaviour

Article submitted to Royal Society



Human behaviour and infectious diseases 15

are often contingent on the disease being present or at least perceived to be present

nearby. The focus on the impact of the social neighbourhood can produce funda-

mentally different results from homogeneously mixing populations.

Although there is a wealth of studies in the sociological, psychological and public

health literature considering human reactions to the presence of the disease, it has

rarely been studied how these affect the disease dynamics. At the same time, few

efforts have been made to parametrise the models discussed here from observations.

Despite all difficulty in quantifying human behaviour, some potential sources of data

have yet to be exploited in the context of infectious diseases. Based on the variety of

theoretical studies and the classification scheme we propose, the data which would

be needed to inform the choice and parametrisation of model for a given scenario

would include: where people obtain their information from, which of the information

available to them they trust, if and how they act upon that information, and how

effective this reaction is.

Efforts to measure the interaction between individual behaviour and the epi-

demiology of an infectious disease could start at the most immediate level in col-

laboration with individual health care providers and hospitals (Olguin et al., 2009).

Bluetooth-enabled devices allow to measure the number of close-proximity contacts

during a given day (Natarajan et al., 2007) and changes therein if an infectious dis-

ease is present in the neighbourhood. Wireless sensor networks promise similar

uses (Herman et al., 2009). Web-based social networks provide an underlying struc-

ture of friendships and acquaintances and can be used as basis for surveys, opinion

polls and epidemic simulations (Salathé and Jones, 2010). A variety of indirect out-

comes can be measured which translate to responsive behaviour, such as attendance

of public gatherings or web traffic.

Ultimately, mass human behaviour remains to some extent unpredictable, and

particular so in the face of disaster. Still, a concerted approach of observational

studies and further mathematical modelling can be expected to lead to valuable

insights into the way epidemics spread in human populations.
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Jones J.H. and Salathé M. Early Assessment of Anxiety and Behavioral Response

to Novel Swine-Origin Influenza A(H1N1). PLoS ONE, 4(12):e8032, 2009.

Kasperson R.E. et al. The social amplification of risk: a conceptual framework.

Risk Anal, 8:177–178, 1988.

Kermack W.O. and McKendrick A.G. A contribution to the mathematical theory

of epidemics. Proc R Soc A, 115:700–721, 1927.

Kiss I.Z., Cassell J., Recker M. and Simon P.L. The impact of information transmis-

sion on epidemic outbreaks. Math Biosci, doi:10.1016/j.mbs.2009.11.009, 2009.

Lau J.T.F. et al. SARS-related perceptions in Hong Kong. Emerg Infect Dis,

11(3):417–424, 2005.

Lazer D. et al. Computational social science. Science, 323(5915):721–723, 2009.

Liu W., Hethcote H.W. and Levin S.A. Dynamical behavior of epidemiological

models with nonlinear incidence rates. J Math Biol, 25(4):359–380, 1987.

Liu W., Levin S.A. and Iwasa Y. Influence of nonlinear incidence rates upon the

behavior of SIRS epidemiological models. J Math Biol, 23(2):187–204, 1986.

Lofgren E.T. and Fefferman N.H. The untapped potential of virtual game worlds

to shed light on real world epidemics. Lancet Infect Dis, 7(9):625–629, 2007.

McNeill W.H. Plagues and Peoples. Anchor Press, Garden City, 1976.

McPherson M., Smith-Lovin L. and Cook J.M. Birds of a Feather: Homophily in

Social Networks. Annu Rev Sociol, 27(1):415–444, 2001.

Article submitted to Royal Society



20 S. Funk, M. Salathé, V.A.A. Jansen
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Salathé M. and Bonhoeffer S. The effect of opinion clustering on disease outbreaks.

J R Soc Interface, 5(29):1505–1508, 2008.
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Figure 1. Schematic representation of the SIR model with the transitions of infection
(rate β) and recovery (rate γ).
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