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Abstract

Background: It is becoming generally recognized that an individual's phenotype can be shaped not only by its
own genotype and environmental experience, but also by its mother’s environment and condition. Maternal
environmental factors can influence mosquitoes’ population dynamics and susceptibility to malaria, and therefore
directly and indirectly the epidemiology of malaria.

Methods: In a full factorial experiment, the effects of two environmental stressors - food availability and infection
with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto) on their
offspring’s development, survival and susceptibility to malaria were studied.

Results: The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than
those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food

availability had no effect on the survival of their offspring up to emergence, and microsporidian infection
decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers
decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither
maternal treatment influenced their survival up to dissection).

Conclusions: Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as
direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects.
Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing
the efficacy of the microsporidian for the biological control of malaria.

Keywords: Maternal effects, Anopheles gambiae, Malaria, Immune priming, Host-parasite relationships

Background

The population dynamics of anopheline mosquitoes and
the epidemiological dynamics of malaria have long been
recognized to depend on environmental variables such
as temperature [1-3] and its daily variability [4]. In addi-
tion to shaping the individuals exposed to them, envir-
onmental factors can also have longer-term effects on
future generations. It is becoming generally accepted
that an individual’s phenotype can be influenced not
only by its own genotype and environmental experience,
but also by its mother’s environment and condition
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[5-7]. Such maternal effects can be adaptive [8,9]. In
Anopheles stephensi, for example, the daughters of low-
food mothers take up more blood and lay more eggs
than the daughters of well-fed females, even if the
daughters themselves experience the same environment
[10]. Alternatively, maternal effects may reflect the
mother’s condition [11]. Food-deprived mothers may
not be able to compensate for their poor environment
and, therefore, have offspring of lower quality [12-15].
Thus, the maternal environment could influence the
population dynamics of mosquitoes.

An individual’s susceptibility to parasites may be influ-
enced by its mother’s environmental quality [16], or
whether she herself was infected [17-20]. Thus, it is pos-
sible, and indeed likely, that malaria transmission could
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be changed by maternal effects, and that control strate-
gies altering the mosquitoes’ environment will affect the
main parameters underlying the epidemiology of malaria
- the mosquitoes’ susceptibility to malaria, longevity and
other life-history traits - not only directly, but also indir-
ectly and over a longer period.

Mothers may be exposed to several types of environ-
mental stress simultaneously, including poor resource
availability, changing climate, competition with conspe-
cifics, predation and parasitism. Food stress, for exam-
ple, can exacerbate the harmful effects of infection
[21-23], so it may also increase the importance of trans-
generational effects. Potentially adaptive effects may also
switch with the presence of a second stressor. The con-
sequences of a combination of maternal stressors (such
as limited food availability and infection) on the transfer
of a female’s experiences to her offspring could have
important and unexpected consequences for the
dynamics of the host and the parasite.

The microsporidian parasite Vavraia culicis [24] has
been suggested as a potential late-acting control agent
of anopheline malaria vectors that will impose little evo-
lutionary pressure for resistance [25,26]. Mosquito larvae
orally ingest V. culicis spores and become infected;
infectivity rates range between 90-100%. Effects of the
microsporidian on Anopheles gambiae sensu stricto (s.s.)
include delayed pupation by 10%, decreased fecundity
by 23% and reduced adult lifespan by 27% [25], and
reduced susceptibility to malaria [27]. Despite the
obvious reductions in fitness, resistance mechanisms of
mosquitoes to microsporidians are not known [28].

In this study, maternal effects were evaluated for two
environmental variables: the food regime available to
larvae and infection by V. culicis. Similarly to micro-
sporidian infection, poor nutrition of mosquito larvae
increases development time [23,29] and decreases survi-
val [25]. Here, a full factorial experiment where Ano-
pheles gambiae s.s. mosquitoes were exposed to a low or
high food regime with or without infection with V. culi-
cis was conducted. It was investigated how these mater-
nal experimental conditions influence the offspring with
regard to susceptibility to malaria, which directly deter-
mines malaria transmission, and two life-history traits
that influence the transmission indirectly by affecting
the mosquitoes’ population dynamics (larval survival and
developmental time).

Methods

Figure 1 shows the experimental design of this study.
The mosquitoes originated from a genetically diverse
colony established from A. gambiae s.s. caught in
Yaoundé, Cameroon [30]. Mosquitoes were held at 26 +
1°C and 70 * 5% relative humidity with 12 hours light:
dark cycles at Silwood Park Campus (Imperial College
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London, UK). Infection of mosquitoes with Plasmodium
berghei took place in an insectary kept at 19 + 1°C and
70 + 5% relative humidity with 12 hours light: dark
cycles. The Vavraia culicis floridensis spores were pro-
vided to us by J.J. Becnel (USDA Gainesville, USA). At
Silwood Park Campus, the microsporidian parasite has
been propagated in large groups of Aedes aegypti and A.
gambiae s.s. mosquitoes. For consistency with earlier
studies, the parasite is called V. culicis throughout the
manuscript, whilst acknowledging the subspecies status
of the Florida isolate [24].

Maternal generation

For the maternal generation, 300 larvae were individu-
ally reared in 2 ml de-ionized water in 12-well plates for
each of four treatment groups: (1) no microsporidian
infection, reared on high food (Tetramin fish food: Day
0 (hatching): 0.06 mg, Day 1: 0.12 mg, Day 2: 0.24 mg,
Day 3: 0.36 mg, Day 4: 0.48 mg, Day 5 and following
days: 0.6 mg per individual); (2) infection with 20,000 V.
culicis spores, reared on high food; (3) uninfected,
reared on low food (half of the high amount of food
increasing in incremental steps to account for larval
growth; see above); (4) microsporidian-infected, reared
on low food (Figure la). Food and infection levels were
chosen on the basis of past experience: The standard
amount generally lets larvae develop within about 8
days from hatching to adult with low levels of juvenile
mortality, whereas half of this amount puts larvae under
increased nutritional and developmental stress (JCK,
pers. comm.). An intermediate spore concentration
affects the host adversely by delaying pupation and
decreasing survival, but without killing mosquitoes too
quickly [25] to ensure that enough mothers survived
and reproduced despite the harmful fitness effects of the
microsporidian. Larvae were fed every 24 hours and
those to be infected were exposed to the microsporidian
when they were two days old (Figure 1b). Larvae
pupated after seven to nine days. Pupae were placed
into individual 50 ml Falcon tubes to emerge. For each
treatment group, 41-46% emerged as female mosquitoes.
All females from one treatment group were placed into
one cage the day after they emerged. A mix of 66 males
from the two microsporidian-free treatments was added
to each one of the four cages one or two days after
female emergence (Figure 1c). Adult mosquitoes were
provided daily with cotton soaked with 6% glucose solu-
tion and were allowed to mate for three days, when
females were offered a blood meal on JCK’s arm for 10
min. One day after the blood meal, the fully engorged
female mosquitoes (N = 96) were placed into individual
oviposition cups containing a dish lined with filter paper
filled with 20 ml de-ionized water (Figure 1d). The eggs
from each mother were placed into individual Petri
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Figure 1 Schematic representation of the experimental set-
up. For the parental generation, (a) 600 Anopheles gambiae (s.s.)
larvae were reared individually under high and low food
conditions, and (b) 300 larvae of each food treatment were
exposed to Vavraia culicis spores. (c) After emergence, the
females were placed into mating cages according to their
treatment, given access to uninfected males, and allowed to
blood-feed. (d) Fully engorged females (= mothers) were put
into individual egg-laying cups. (e) To start the offspring
generation, the eggs of each mother were bleached and placed
into Petri dishes for hatching. (f) Six larvae of each mother were
reared individually in 12-well plates. (g) The pupae were placed
into individual tubes for emergence. (h) Two adult females of
each family were moved to two cages (replicates) per treatment,
and allowed to feed on malaria-infectious blood. (i) After blood-
feeding the mosquitoes were held individually in cups until
dissection. (j) Mosquitoes of cages C1 were dissected for oocysts
12 days after blood-feeding; the mosquitoes of cages C2 were
dissected for sporozoites 19 days after blood-feeding.
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dishes (Figure le). Spores of V. culicis can be attached
to the eggs of microsporidian-infected females [31],
though the natural occurrence of the frequency and
intensity of the trans-ovarial transmission route has not
been quantified. Due to this uncertainty, and in order to
disentangle physiological maternal effects from external
ones, spores were eliminated by bleaching all eggs (irre-
spective of maternal infection) with 1% household
bleach on the day they were laid [32].

After mothers had laid their eggs, they were killed and
stored at -20°C. Subsequently, they were individually
homogenised in 0.1 ml of de-ionised water, and V. culi-
cis infection was confirmed by counting spores under a
phase-contrast microscope (400 x magnification) using a
haemacytometer. All 43 mothers from the infection
treatments were infected with V. culicis spores.

Offspring generation

For each of the 96 mothers, the susceptibility of her off-
spring to malaria was investigated. To ensure that each
mother was represented equally, one female offspring
per mother for each measurement was used. To have a
good chance of obtaining the required two females per
mother, six larvae per mother were reared. If more than
two females survived to adulthood, two were chosen
haphazardly. Life-history traits (larval survival and age at
pupation) were measured for each of the six larvae.

The larvae were reared individually on the high food
level (see above; Figure 1f). Larval mortality and pupa-
tion were checked every 24 hours. Pupae were placed
into individual 50 ml Falcon tubes and allowed to
emerge (Figure 1g). Two cages for each of the four
maternal treatments were prepared, each containing one
of the two female offspring haphazardly selected per
mother to measure two aspects of susceptibility: the
parasite’s development to 1) the oocyst stage and 2) the
sporozoite stage. One of the cages later gave the mos-
quitoes for oocyst detection; the other the mosquitoes
for sporozoite-detection (Figure 1h).

GFP-expressing transgenic P. berghei ookinetes
(PbGFPcon strain; [33,34]) were produced by R. Arm-
son at R.E. Sinden’s laboratory at Imperial College Lon-
don according to the laboratory’s standard protocol. The
ookinete culture was centrifuged at 500 g for 10 minutes
at 19°C, the supernatant was removed and the ookinetes
were counted under a microscope (400 x magnification)
with a haemacytometer. Blood of uninfected mice was
added to give a concentration of 800 ookinetes per pl.
400 pl of the mixture were injected into membrane fee-
ders that had been preheated to 37 + 1°C with a water
bath and covered with Parafilm “M” (Pechiney Plastic
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Packaging). The mosquitoes had access to glucose up to
24 hours before their blood meal. They were blood-fed
with the malaria-infectious blood meal for one hour in
darkness at 19 + 1°C five to seven days after emerging.
Each group of mosquitoes (two cages per maternal
treatment) was provided with two membrane feeders to
reduce the effect of possible differences among feeders.
One day after the blood meal, fully engorged mosquitoes
were placed into cups, which were kept at 19 + 1°C and
were supplied with cotton soaked with 6% glucose solu-
tion every 24 hours until dissection (Figure 1i). Twelve
days after the blood meal, the mosquitoes from one of
the cages from each treatment were dissected (N = 42)
and their midguts fixed with 4% formaldehyde in PBS
and mounted in antifade mounting fluid (Vectashield,
Vector Laboratories Inc., Burlingame). Oocysts on mid-
guts were counted under a fluorescent microscope (100
x magnification). Nineteen days after the blood meal,
the mosquitoes from the second cages were dissected (N
= 24), their salivary glands mounted on slides and their
sporozoites counted under a microscope (400 x magnifi-
cation). The dissection days were chosen to be 12 and
19 days after the blood meal in order to maximize the
malaria parasite detection rate (E. Dawes, pers. comm.;
Figure 1j).

Statistical analysis

Full models included maternal food level, maternal
microsporidian infection status, their interaction and
(when necessary) mother as a random factor. The final
models were selected by comparing Akaike Information
Criterion (AIC) values, with models with the lowest AIC
values chosen as the minimum models [35]. The signifi-
cance level o was set to 0.05.

The number of eggs produced by mothers from the
four treatment groups was analysed with an analysis of
variance. To test whether maternal treatment had any
effects on the egg hatching rate, a generalized linear
model (GLM) with binomial error structure and logit
link function was performed.

As the offspring’s age at pupation was restricted to
seven to nine days after hatching (with most pupating
after seven or eight days), mosquitoes with early (pupa-
tion on day 7) and late (pupation after day 7) pupation
were compared. Generalized linear mixed models with
binomial error structures and logit link functions were
performed to test whether maternal treatments had
effects on offspring survival and pupation. ‘Mother” was
set as the random factor. When testing for effects on
pupation, offspring sex was included as a fixed factor in
the analysis.

Offspring mosquitoes from each maternal treatment
group were reared in two cages and the mosquitoes
from each cage were dissected for malaria at different
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days (12 and 19 days after the blood meal). In order to
determine whether maternal treatment had an effect on
the proportion of offspring harbouring malaria parasites
whilst accounting for survival until the different dissec-
tion days, the following two analyses were performed.
First, a GLM with binomial error structure and logit
link function was fitted to explain the proportion of
mosquitoes surviving until the day of dissection. Cage,
maternal food, microsporidian infection and their inter-
actions were set as explanatory variables. Second, a
GLM with binomial error structure and logit link func-
tion with cage, maternal food, microsporidian infection
and their interactions was fitted to explain their effects
on the proportion of mosquitoes infected with malaria
parasites (oocysts or sporozoites).

Analyses were performed with JMP 8 [36] and pack-
age ‘lme4’ [37] in R Version 2.13.0 [38].

Results

Maternal traits

Anopheles gambiae (s.s.) females reared on high larval
food in a microsporidian-free environment laid more
than twice as many eggs (58 + 3 s.e.) as uninfected
females reared on low food (27 + 3 s.e;; Fy 101 = 40.6, p
< 0.001). Infection with V. culicis reduced the number
of eggs laid to 26 (+ 3 s.e.) and 19 (£ 3 s.e.) for high
and low food treatments respectively (F; 101 = 44.5, p <
0.001). Infection had a larger effect on the total number
of eggs produced by well-fed mothers than on those
from low-food mothers (54% egg reduction for high-
food mothers, 30% reduction for low-food mothers; food
by infection: F; 101 = 15.6, p = 0.001). Of those eggs laid
by low food mothers, 75% (C.I. 52%-89%) hatched; 86%
(C.I. 72%-94%) from high-food mothers did (x;* = 17.1,
p < 0.001). Microsporidian infection reduced the pro-
portion of eggs that hatched from 86% (C.I. 71%-94%)
to 74% (C.I 51%-89%; y,> = 17.6, p < 0.001), but this
was not affected by the mother’s food level (non-signifi-
cant interaction term).

Offspring development

It was tested whether the maternal treatments had an
effect on their offspring’s larval survival and develop-
mental time. From 96 mothers, 576 offspring were
analysed for larval emergence and 552 individuals for
pupation. The offspring of V. culicis-infected mosqui-
toes were 3% less likely to survive their juvenile period
than those of uninfected mothers (probability of survi-
val of the offspring of uninfected mothers: 97% (C.IL.
95%-99%), of infected mothers: 94% (C.I. 90%-96%);
x12 = 3.6, p = 0.056). Maternal food had no effect on
the offspring’s probability of survival (y,* = 0.2, p =
0.70), regardless of the mother’s infection status (1% =
1.2, p = 0.26).
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As most individuals pupated seven or eight days after
hatching, with only 2.2% pupating later, mosquitoes
with early (pupation on day 7) and late (pupation after
day 7) pupation were compared. Females pupated signif-
icantly later than males (11 = 60.3, p < 0.001). Maternal
microsporidian infection increased the proportion of
mosquitoes pupating late from 31% (C.I. 26%-37%) to
54% (C.I. 48%-60%; y,> = 21.0, p < 0.001). When
mothers were uninfected, their offspring’s development
period was not affected by material larval food treat-
ment (x,> = 2.2, p = 0.14). However, in the presence of
V. culicis, the offspring of mothers exposed to low food
availability pupated late (63%, C.I. 54%-71%), while most
of the offspring from mothers exposed to abundant food
had already pupated by day 7 (Figure 2; food by inflec-
tion: x,% = 6.1, p = 0.014).

Offspring malaria infection

The effects of maternal food and microsporidian infection
on the offspring’s susceptibility to malaria, measured as
the probability that the mosquitoes harboured Plasmo-
dium parasites after feeding on an infected blood meal,
were investigated. As neither maternal food (y;* = 0.9, p =
0.35) nor maternal V. culicis infection (3% = 0.1, p = 0.92)
had an effect on the survival of offspring (N = 121) up to
their day of dissection, and the two cages had similar levels
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of malaria infection (3, = 0.1, p = 0.75), the use of the two
cages as replicates to compare malaria-infected with
malaria-uninfected mosquitoes was justified.

66 individuals for maternal effects on offspring malaria
infection were analysed. Both maternal treatments
affected the success of malaria. The offspring of low-
food mothers were, on average, 32% more likely to har-
bour malaria parasites than those of well-fed females
(71%, C.I 53%-85% vs. 39%, C.L 22%-58%; 1. = 6.4, p =
0.012). Seventy percent (C.I. 51%-84%) of the offspring
of microsporidian-free mothers were infected with P.
berghei, but only 42% (C.I. 26%-61%) of V. culicis-
infected females were (y;% = 4.6, p = 0.032). The off-
spring of high-food, microsporidian-infected mothers
were least likely to be infected with malaria parasites
(18%, C.I. 5%-44%) whereas the offspring of the other
maternal treatments were more susceptible (offspring of
high-food, uninfected mothers: 64% (C.I. 36%-86%), of
low-food, uninfected mothers: 75% (C.I. 49%-90%), of
low-food, infected mothers: 69% (C.I. 41%-88%); Figure
3). However, this interaction was not statistically signifi-
cant (food-by-infection: y;> = 2.9, p = 0.089).

Discussion
The two types of maternal stress - low food and infec-
tion by V. culicis - considered here had different
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hatching as a function of their mother’s access to food and infection by Vavraia culicis. The symbols (diamonds: uninfected mothers; squares:
microsporidian-infected mothers) show the proportions, the vertical lines the 95% confidence intervals based on a binomial distribution.
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effects on traits that influence the epidemiology of
malaria. With both stressors, A. gambiae s.s. had off-
spring that took longer to pupate. Offspring were
more likely to be infected by P. berghei if their
mothers were reared on low-food than on high food,
whereas offspring from microsporidian-infected
mothers were less, rather than more, susceptible to
infection by malaria.

Offspring development

Mothers reared in stressful environments often produce
smaller and less viable eggs [13,39,40]; examples show
that maternal stress leads to weaker offspring are rove
beetles (Tachyporus hypnorum, [13]), Hawaiian fruit flies
(Drosophila grimshawi, [12]) and locusts (Schistocerca
gregaria, [14]). Infection by the microsporidian V. culicis
corroborates this pattern: infected Ae. aegypti mosqui-
toes lay smaller eggs (S. Fellous, pers. comm), and here,
microsporidian-infected mothers laid fewer eggs that
were less likely to hatch. The larvae that did hatch were
less likely to survive as juveniles and pupated later than
the offspring of uninfected mothers. This effect of
microsporidian infection was exacerbated when mothers
were reared on low food (Figure 2). However, daughters
of badly nourished A. stephensi females take larger
blood meals and lay more eggs than those of well-fed
mothers [10], suggesting that offspring could compen-
sate for expected decreased lifespan in response to poor
maternal environments [8,41]. Despite clear maternal
effects, it is thus not yet clear how maternal stress
would affect the long-term population dynamics of the
mosquito.
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Offspring malaria infection

Whereas low-food Daphnia magna females produce off-
spring that are less susceptible to bacterial infection
than well-fed females [16], daughters of low-food A.
gambiae s.s. in this experiment were more likely to be
infected with malaria. A possible explanation for this
result is that stressed mothers cannot compensate for
their poor environment, and therefore invest fewer
resources in their offspring. This would reduce the off-
spring’s ability to mount costly immune responses [14]
and lead to greater susceptibility to infection.

In contrast, maternal infection by V. culicis led to off-
spring that were less likely to harbour malaria (Figure
3). This could be due to trans-generational immune-
priming, which occurs in shrimps (Penaeus monodon,
[42]), water fleas (D. magna, [43]), bumblebees (Bombus
terrestris, [19,44,45]) and yellow mealworm beetles
(Tenebrio molitor, [17,46,47]). Although immune-prim-
ing is usually specific to the parasite species or strain,
immune responses of A. gambiae s.s. against malaria can
be activated with bacterial challenges [48-55]. Micro-
sporidian infection impedes the development of malaria
[27,56-60], suggesting that an unspecific component of
immune-activation [61] may be extended to trans-gen-
erational immune priming of the offspring. Alternatively,
the pattern could reflect a trade-off between growth and
resistance to infection [62-65]; mothers could subtly
change the development of their offspring so that off-
spring invest more in their immune system at a cost to
their growth. For example, daughters of stressed D.
magna mothers increase their growth rates, but are
slightly more susceptible to bacterial infection [15].
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Trans-generational immune priming in 7. molitor, on
the other hand, resulted in offspring with longer larval
development times [17,47]. In this study, offspring from
V. culicis-infected A. gambiae s.s. mothers also took
longer to develop into adult mosquitoes, but were less
likely to be infected with malaria, thus corroborating a
previously demonstrated link between age at pupation
and immuno-competence [63]. This association could
not explicitly be tested, as all the mosquitoes were
pooled after emergence irrespective of their age at
pupation.

A lack of sufficient replication limited the power of
this study design; each treatment group and sampling of
malaria infection was represented by only one mosquito
cage. Therefore, maternal treatment, time of dissection
and cage were not completely independent variables.
However, the use of the two cages as replicates for
maternal treatment was still justified as maternal treat-
ments had no effect on offspring survival (maternal
food: p = 0.35; maternal infection: p = 0.92), and malaria
infection was similar in both cages (p = 0.75). These
results add to the confidence that the apparent differ-
ences between traits of offspring from different maternal
treatment groups represent real differences and trans-
generational effects rather than artefacts of cage-effects.

Conclusions

In summary, resource availability and infection with V.
culicis of A. gambiae s.s. mosquitoes not only act as
direct environmental stimuli for changes in the success
of one generation, but can also lead to maternal effects.
As A. gambiae s.s. is a major vector of malaria in sub-
Saharan Africa, and microsporidia, such as V. culicis
and other biopesticides are being considered as potential
control agents against this deadly disease [25,66,67],
these results may have important social implications.
Co-infection of mosquitoes with microsporidia and
malaria directly inhibits malaria development [27,59,60].
Maternal V. culicis infection could also make offspring
more resistant and less likely to transmit malaria, thus
further enhancing the efficacy of the microsporidian as a
control agent.
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