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Background There is growing interest in the relationship between time spent in
adverse circumstances across life course and increased risk of chronic
disease and early mortality. This accumulation hypothesis is usually
tested by summing indicators of binary variables across the life span
to form an overall score that is then used as the exposure in regression
models for health outcomes. This article highlights potential issues
in the interpretation of results obtained from such an approach.

Methods We propose a model-building framework that can be used to formally
compare alternative hypotheses on the effect of multiple binary
exposure measurements collected across the life course. The saturated
model where the order and value of the binary variable at each time
point influence the outcome of interest is compared with nested
alternative specifications corresponding to the critical period, cumu-
lative risk or hypotheses about the effect of changes in environment.
This framework is illustrated with data on adult body mass index and
socioeconomic position measured once in childhood and twice in
adulthood from the Medical Research Council National Survey of
Health and Development, using a series of liner regression models.

Results We demonstrate how analyses that only consider the association of
a cumulative score with a later outcome may produce misleading
results.

Conclusion We recommend comparing a set of nested models—each corre-
sponding to the accumulation, critical period and effect modifica-
tion hypotheses—to an all-inclusive (saturated) model. This
approach can provide a formal and clearer understanding of the
relative merits of these alternative hypotheses.
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MODELLING BINARY VARIABLES OVER THE LIFE COURSE

Introduction

There has been recent epidemiological interest in the
causal pathways by which adverse social circum-
stances across the life course lead to an increase in
the risk of chronic diseases. The most prominent
hypothesis discussed currently in the literature is the
accumulation hypothesis, which assumes that cumu-
lative insults or exposures during the life course
increase the risk of disease mortality irrespective of
the timing.'™ Evidence in support of the accumula-
tion hypothesis originate from studies where graded
relationships have been observed between the number
of time points that an individual has been in an
adverse socioeconomic position (SEP) and the health
outcome of interest.'>%? Alternatively, a critical
period hypothesis pays more attention to the timing
of an exposure and assumes that irreversible changes
in body systems that occur during a particularly
vulnerable phase of life, usually during early devel-
opment, have implications on later health.”*'%!!

Social mobility was considered as a third hypothesis in
a previous paper that attempted to disentangle the life
course processes of accumulation, critical period and
mobility.* However, the social mobility hypothesis has
been less strictly defined than the accumulation and
critical period ones, partly because there are different
ways of defining social mobility. The life course model
of a critical period with later effect modification® (where
the irreversible change of the critical period can be
either enhanced or diminished by later effect) is
analogous to a social mobility model. Both imply that
the effect of an earlier exposure (e.g. childhood SEP) on
health differs across levels of a later factor (adult SEP)
i.e. interaction.

In this article, we present a systematic method to set
out three different hypothesized models using a
counterfactual framework and then contrast them
using a series of nested models. Specifically, we
compare the accumulation, critical period and mobil-
ity models that might relate exposures over time to a
later health outcome. We show how these models can
be viewed as representing different causal structures,
while also clarifying the definition of the mobility
model. From these considerations, there follow dis-
tinct parameterizations of lifetime exposure in a series
of regression models. We will show that the use of an
overall score implicitly relies on strong assumptions
regarding the form of the relationship between the
exposure variables and the outcome.

For illustrative purposes, we use data on social class
at three different ages and body mass index (BMI)
from the Medical Research Council (MRC) National
Survey of Health and Development (NSHD).'?

Methods

The MRC NSHD is a birth cohort study consisting of a
socially stratified sample of 2547 women and 2815
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men born during 1 week in March 1946. There have
been 21 follow-ups of the whole cohort, with the
most recent being at age 53 years with 3035
respondents (1472 men, 1563 women). The majority
(n=2989) were interviewed and examined in their
homes by research nurses, with the rest completing a
postal questionnaire (n=46). Individuals were not
included in the study if they had already died
(n=476), lived abroad (7 =583), were untraced since
last contact at 43 years (n=266) or had previously
refused to take part (7 = 648). The responding sample at
age 53 years is in most respects representative of the
national population of a similar age."

At 53 years, BMI was calculated from height and
weight measured by research nurses according to a
standard protocol. BMI was treated as a continuous and
normally distributed variable. Social class was catego-
rized into six groups according to the Registrar
General’s classification and defined at three time
points: childhood social class was based on the father’s
occupation when the cohort member was aged 4 years;
young adult social class was based on the cohort
member’s own occupation at age 26 years; and later
life social class was from their occupation at 43 years.
Where cohort members had no job at the time of con-
tact, their last occupation was used in order to reduce
missing data for the purposes of illustration, while those
who have never been in paid work (including house-
wives) were excluded from the analysis. For simplicity,
binary indicators of SEP were created at each time point
by collapsing the social class measures into: non-
manual (classes I and II, III non-manual) given a
value of 1, and manual (classes III manual, IV and V)
given a value of 0. For the same reason, no other
covariates were included in the analysis.

Statistical methods

The outcome, Y, in our example is BMI at age 53 years
and is treated as a continuous (symmetrically dis-
tributed) random variable. The binary explanatory
variable, forms a vector S=(Sy, ..., S;), which is in our
example SEP measured at the time points t;, f,, f3
(ages 4, 26 and 43 years). S; takes the value 0 when
social class is manual, and 1 when non-manual.

A general causal estimator takes the form of E(Y(S)
— Y(S')) where S and S’ are alternative trajectories.
Under counterfactual theory a causal effect is a com-
parison of the outcome associated with the observed
trajectory of an individual with that which would
have happened if, contrary to fact, the trajectory had
been different."* In reality it may be problematic to
evaluate these potential alternative trajectories S'.
With J=3 there are eight possible trajectories that
may influence Y corresponding to each permutation of
S1, S5, S3, shown on the left hand column of Table 1.
Unless we impose constraints, an individual’s poten-
tial outcome Y may depend on all three S; which
would imply a simultanecous comparison of all
trajectories.
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Table 1 All possible binary SEP permutations over three time points, expected changes in adverse health outcome BMI
under different hypotheses, and corresponding linear predictor

Expected value of BMI compared with the reference
category of being in always manual (0,0,0), under

Regression coefficients used to calculate
the predicted value of BMI under a

SEP each alternative causal model saturated regression model shown in:
Social
Critical period mobility
Cumulative Any
SEP1 SEP2 SEP3 exposure* at f at t, at 3 Adult mobility  Equation (1) Equation (2)
0 0 0 Reference Reference  Reference  Reference  Reference  Reference  « o
1 0 0 — — 0 0 0 + a+6815D15 a+B1S,
0 1 0 — 0 - 0 + 0 a+ynUnt a+ S,
323 Da3
+‘(//2U12D23
0 0 1 - 0 0 - - — a+yrUss a+BsSs
1 1 0 - - - 0 + + o+ 853053 a+B1S1+B25:1+012515>
1 0 1 - 0 - - 0 o +812D12+Y23Uss3 a+ B8+ BsSs
+ 91 D1xUss +60135153
0 1 1 0 — — 0 — a+yUn o+ B8+ BsSs
+60235,53
1 1 1 — — — — 0 0 a+nS; S, S o+ B8+ BaS>

+ 6585 +01551S>
+ 0535555+ 6,55
S5+ 6123515553

S;j=1 if SEP is non-manual at time ¢, S;=0 if SEP is manual at time #; a: expected value of ¥ when all S; are 0, D;;,, is a binary
indicator for a downward change in social class (i.e. from ;=1 to S; + , =0) and U;;  , is a binary indicator for an upward change
(i.e. from S;=0 to S; ; ;=1). Negative sign is associated with an inverse relationship with BMI.

*The number of dashes refers to the magnitude of the inverse association between BMI and SEP.

The observed trajectories could be used to predict
the outcome under alternative causal models and to
compare them in terms of goodness of fit to the data.
For this purpose, we will also consider an unstruc-
tured model in addition to the three general models
mentioned above (cumulative exposure, critical period
and social mobility). This unstructured model
assumes that each of the possible trajectories is asso-
ciated with a different value of the outcome and
corresponds to a saturated linear model for Y, equiv-
alent to an ANOVA, with as many regression param-
eters as there are possible trajectories. With three time
points there are eight possible trajectories and there-
fore eight parameters. We will consider two equiva-
lent parameterizations of this model. The first is:

E(Y)=a+ 812Dz + y12Uiz 4 623D23 + y23Uss

(1)
+ ¥ D12Uxs + Y2U12D23 + 1515253

where Dj;,, is a binary indicator for a downward
change in social class (i.e. from S;=1 to Sy, =0), and
Ujj+1 is a binary indicator for an upward change (i.e.
from §;=0 to S;;;=1). With this formulation, Y is
modelled as a function of downwards and upwards
mobility over time (via the indicators D;;,; and S;;;1)
plus an indicator for remaining in a higher social class
throughout (represented by the interaction term S; S,
S3). The second parameterization of the saturated
model expressed the expectation of Y as a linear

combination of all §;, their two-way interaction terms
as well as the three-way interaction:

E(Y) = o+ B1S1 + B2S2 + B3S3 + 0125152

2

+ 6023583 + 0135153 + 0123515253 @)

Note that although these two specifications are equiva-

lent to an ANOVA formulation, the latter does not
usually lead to estimation of the model parameters.

We demonstrate that under each of the hypotheses
considered here, specific constraints on the param-
eters of the saturated model [expressed as in either
equations (1) or (2)] lead to different predicted out-
comes and we discuss how comparisons with the
saturated model can help elucidate the underlying
causal mechanisms.

We will use BMI as an example to help the
interpretation of the parameters obtained from the
various models. An overview is given in Table 1,
where the effect of a particular trajectory on predicted
BMI under each hypothesized model is indicated by a
plus or minus sign, assuming that non-manual SEP is
associated with lower adult BMI. Table 1 indicates
under each life course model, the expected change in
BMI by a plus or minus sign relative to being in
manual SEP at all three time points.

Accumulation model
Under the accumulation hypothesis, the longer the
time spent in a non-manual SEP, the lower the
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expected value of BMI, irrespective of the time point
at which the SEP occurred. Hence, those in a manual
SEP at all three time points would be expected to
have a greater BMI than those in a manual SEP at
any two time points who would in turn be expected
to have a greater BMI than those in a manual SEP at
any one time point, with those always in a non-
manual SEP having the lowest BMI. If the outcome is
independent of the timing of being in manual
occupation, it follows that Yyo;= Yo10= Yioo and
Yo11 =Y101 = Y110, where for simplicity here, and in the
causal contrasts, we use Y to denote E(Y) and the
suffix to denote the timing of exposure, e.g. suffix
(001) indicating a trajectory where non-manual
occupation was reported at the third time point
only. If the outcome depends on the amount of
exposure then Yy, < Yoo, and Yy, < Yoy, If it
depends on it linearly then every trajectory can be
represented by the total number of exposed periods,
equal to ) :S; (taking values between 0, always
manual, an({ 3, always non-manual) that we call
the lifetime SEP score. For every unit increase in this
score, the change in mean BMI is assumed to be
constant and equal to A, defined as

~ (Y111 —Yoo0)

Agee = =Y —You=Y1m—Yin

3 3)
=Y —Yno=...=Yo01 —Yooo

Assuming a direct and cumulative causal effect of
SEP, A, would be the causal parameter of interest.
It could be estimated by fitting the linear regression
model:l—3,5,6,9

E¥)=a+B)_S (4)
J

where B corresponds to A,.. The SEP indicators
corresponding to different ages are summed to obtain
a lifetime SEP score (%; S;) that takes values between
0 (always manual) and 3 (always non-manual).

Critical period model

Under the critical period hypothesis there are as many
possible scenarios as there are time points. The one
most investigated in life course epidemiology is the
early life critical period hypothesis. In our example,
this translates to a manual social class in childhood
leading to greater expected BMI, irrespective of later
SEP. Hence, it assumes that

Y111 =Y101 = Y110 = Y100 = Y144, and

)

Yo11 = Yoo1 = Yo10 = Y000 = Youx-

Note that an asterisk indicates that SEP can take all
possible values at that time point. Following the
notation of Sampson et al.'> the theoretical causal
contrast of interest would be the difference in BMI
between those in the manual social class and those in
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the non-manual social class in childhood, averaging
over later time points
Aearly crit. period = Y — Yous. (6)

This model assumes that only SEP in ckildhood has an
effect on BMI, irrespective of the later SEP trajectory.
The equivalent expression for the early adulthood
critical period hypotheses is:
Y111 =You1 = Y110 = Yo10 = Yi14, and
Y101 = Yoo1 = Y100 = Y000 = Yiox, (7)

Acarly adult crit. period = Yirs — YVios-

and for the late adulthood critical period hypothesis:
- Y**O (8)

The linear regression model corresponding to the early
critical period is:

Alate adult crit. period — Y1

E(Y) =a+fi5 )

where B, corresponds t0 Acary crit. period il €quation
(6). Equivalent specifications of the other critical
period models can be similarly specified. For instance,
a model with :32 Only Captures Aearly adult crit. period-

Mobility model

The specification of the causal contrast implied by the
social mobility hypothesis is the more complex of the
three because there are different possible definitions
of social mobility. First, we consider intra-genera-
tional (or adult) mobility as defined by Hallqvist ef al.*
where any downwards (i.e. from non-manual=1 to
manual =0) mobility in adulthood would be harmful
to health (e.g. lead to an increase in BMI), and any
upwards (i.e. from 0 to 1) mobility in adulthood
would be beneficial, irrespective of early life social
background. Thus,

Y101 =Yo01 = Y401 and

(10)

Y110 = Yo10 = Ys10 and Vi1 = Yioo

The causal parameters of interest for the effects of
down and upwards mobility would be

Adownwards adult = Y10 — Ys11 (1 1)

Aupwards adult = Y*Ol - Y*OO (12)

The linear regression model equivalent to this
hypothesis is

E(Y)=a+ 823D + y23Ux (13)

where only transitions between periods 2 and 3 are
relevant. Converting the D;;;, and U;;;; into S; helps
in understanding the parameter constraints that
are implied by any given social mobility hypothesis.
For instance, by specifying D;;i1=Sj(1— S;;;) and
Ujjy1=(1-5;)S;y1 we can re-write equation (13) as
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E(Y) =a+ 8235:(1 — S3) + y23(1 — 53)S3

(14)
= + 635 + 12353 — (823 + 123)52S3,

i.e. the expectation of ¥ is a function of the two adult
SEP values and of their interaction.

Using the notation of equation (2), equation (14)
could be re-written as

E(Y) = a4+ B2S: + B3S3 + 635,53 (15)

where B,=4653, B3=y,; with the constraint that
033 =—(823 + v23) =—(B2 +B3).

An alternative model of social mobility assumes that
all downward changes are equally harmful to health
and all upward changes are equally beneficial. Thus,
we assume that

Y111 = Yooo, Yo = Yoo1 and Y110 = Yigo (16)

i.e. same expected BMI in those with never changed
SEP, and in those who moved from manual to non-
manual at some point in their life time, in those who
moved from non-manual to manual at some point in the
life time. The causal parameters of interest would be
(17)
(18)
This general social mobility model does not specify
the size of Aypwaras relative to Agownwards  OF,
equivalently, whether improving and then worsening
one’s position, as in Yy;o is better or worse than
worsening and then improving it, as in Yiq;.

The linear regression model equivalent to this latter
hypothesis is:

E(Y) =a + 8D + 8Dy + yUrz + yUss
—a+6851(1=S5) +685,(1—S3)
+y(1 =81)82 + y(1 = 52)$5
— a4 85— 5185 + S5 — $155)
+ p(S2 — 5182 + 83 — 85583)
=a+385 4+ +y)SH+vS;
=B+ Y)SiS2 — (6 +y) 8285
Thus, equation (19) could be re-written as
E(Y) = a+ BiS1 + B2S2 + B5S3
+ 0125152 + 0235255

where B;=48, Bz=y, with the constraints
ﬁZ = (8+y) = (,81 +,83) and 912:923:—132.

Aypwards =Yo11 — Yooo = Yoo1 — Yooo

Agownwards =Y100 — Y111 = Y110 — V111

(19)

(20)

that

Model selection

The equations above show that different models
relating the effects of SEP across the life course on
a later outcome can be formulated in terms of
alternative specifications of the regression model of
Y on S, S5, S5 and their two-way interactions. The
various constraints on the equality of parameter
values explain how the same set of SEP values at

the three time points can lead to very contradictory
causal contrasts. For example, with regards to BMI
we would expect Yyoo > Y710 under the accumulation
and both the early life and early adult critical period
hypotheses, but under the two social mobility
hypotheses, because of the constraint Yygo=Y,;, we
would expect BMI to reflect Yyoo < Y110. This means
that alternative hypotheses, due to the different sets
of equality constraints required for each, can be
formally tested by comparison to a saturated model.

Test for the accumulation hypothesis

If the accumulation of risk hypothesis defined in
equation (3) were correct, we would expect—using
the notation in (2)—that 8, =p8,=p5 and that 6,,=
053 =013=015,3=0. This can be formally tested by
performing a partial F-test between the saturated
model with eight parameters and the simpler model
on which these constraints are imposed (and which
estimates only two parameters: « and B=p8,=
B>=p5). The resulting test statistics are then com-
pared with the F distribution with 6 and (N-8)
degrees of freedom (df), where N is the sample size.
Large P-values indicate that the restricted model is as
good as the saturated model in fitting the data and
therefore that the accumulation of risk hypothesis is
supported by the data. However, before selecting any
single hypothesis it is important to determine if other
models also fit the data.

Test for the critical period hypothesis

To test the early life critical period hypothesis the
parameter constraints, using the specification of the
saturated model given in (2), would be B,=p85=
01, =0,3=0,3= 60,,3=0. The corresponding partial
F-test statistic has [6, (N-8)] df and the interpretation
of a resulting test would be as above, i.e. large
P-values indicating consistency with the data.

Test for the social mobility hypotheses
The restricted model used to test the adult social
mobility hypothesis has only three parameters: «, 8>3
and y,; with the constraints that n=38,=y,,=
Y1 =v%,=0, to be tested against the full model in
equation (1) with df for the partial F-test equal to 5
and (N-8). Using the notation of equation (2) we
would impose constraints 6,3=—(8, + pB3), and
B1=01>=0,3=0,535=0, with the same df as above.
The social mobility hypothesis with time invariant
effects would again estimate three parameters,
namely o and §=468,,=4653 and y=y;,=y»3 with
constraints ¢, =v,=n=0. Alternatively using the
notation in equation (2) the constraints would be
Bo=(B1+Bs), Oa=03=—H> and 6;3=0,3=0.
With either specification the partial F-test statistics
would have [5, (N-8)] df.
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Results

For the purpose of the example considered here the
analyses were stratified by sex. Approximately a third
(men 31.2%, women 33.7%) stayed in the non-
manual group at all the three time points (Table 2).
More than twice the proportion of men remained in
manual occupation from childhood to age 43 years
compared with women (26.5% and 13.0%, respec-
tively). Trajectories that indicated change in SEP
through the life course were dominated by those who
changed from a childhood manual group to non-
manual group by age 26 years and remained there at
age 43 years (29% for women and 17% for men).
Those women who were always in the non-manual
SEP group had a consistently lower BMI than those
who were in the manual group in childhood or in the
manual group at age 43 years. Among men the
highest BMI means were observed in three of the four
trajectories that include childhood manual SEP.
Alternative linear regression models were fitted to
the data corresponding to the hypotheses for the
effect of social class over the life course, described in
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the Methods section. The mean values of BMI for
each combination of values of S;, S, and S5 predicted
by these models are displayed in Table 2 next to the
observed mean values.

The accumulation of risk model provides the best fit
to the data for women, since consideration of the
F-statistics (Table 3) shows that only for this model
was no significant difference from the saturated
model observed (P=0.214). The best predictions
from the accumulation model were for the most
frequent trajectories (Table 2). For men the early life
critical period model provides the best fit (P=0.359).
In terms of prediction, the trajectory (0, 1, 0) was an
exception as this group had the greatest disparity
between observed (26.3kg/m®) and expected mean
BMI (27.8kg/m?), but there were very few men
(n=27) who experienced this trajectory. For both
men and women, the accumulation of risk model
indicated significant decreasing linear trends in BMI
with increasing SEP score [ (95% CI) men: —0.34
(—0.54 to —0.14) kg/m? P=0.001; women: —0.95
(—1.26 to —0.63) kg/m? P <0.001]. Hence, if only
considering this model, we might conclude there is

Table 2 Distribution of socioeconomic trajectories within women and men in the MRC National Survey, and observed and
predicted mean BMI (standard error) according to different hypotheses, by SEP permutation and sex

Mean BMI predicted from regression
coefficients estimated imposing constraints
implied by alternative life course hypotheses

SEP? Critical period® Social mobility
Observed
mean BMI Any
Sex SEP1 SEP2 SEP3 N (%) in 1999 Accumulation 1, Iy I3 Adult mobility
Women n=1088
0 0 0 141 (13.0) 28.7 (0.5) 29.2 (0.3) 28.1 (0.2) 28.1 (0.3) 28.7 (0.3) 27.1 (0.2) 26.8 (0.2)
1 0 0 (1.8) 275 (1.1) 282 (0.2) 264 (0.3) 28.1 (0.3) 28.7 (0.3) 27.1 (0.2) 27.8 (0.5)
0 0 (81)  29.1(0.7) 282 (0.2) 28.1 (0.2) 27.1 (0.2) 28.7 (0.3) 28.8 (0.5) 28.6 (0.4)
0 0 1 0 (7.4) 27.8 (0.7)  28.2 (0.2) 28.1 (0.2) 28.1 (0.3) 26.9 (0.2) 27.6 (0.5) 27.6 (0.3)
1 1 0 (3.7) 283 (0.8) 273 (0.2) 264 (0.3) 27.1 (0.2) 28.7 (0.3) 28.8 (0.5) 27.8 (0.5)
1 0 1 35 (3.2) 271 (0.9) 273 (0.2) 26.4 (0.3) 28.1 (0.3) 26.9 (0.2) 27.6 (0.5) 28.6 (0.4)
0 1 1 317 (29.1) 27.6 (0.3) 27.3 (0.2) 28.1 (0.2) 27.1 (0.2) 26.9 (0.2) 27.1 (0.2) 27.6 (0.3)
1 1 1 367 (33.7) 26.0 (0.2) 26.3 (0.2) 26.4 (03) 27.1 (0.2) 26.9 (0.2) 27.1 (0.2) 26.8 (0.2)
Men n=1104
0 0 0 292 (26.5) 27.8 (0.3) 27.9 (0.2) 27.8 (0.2) 27.7 (0.2) 27.5 (0.2) 27.3 (0.1) 27.2 (0.2)
1 0 0 61 (5.5) 272 (0.6) 27.6 (0.1) 26.8 (0.2) 27.7 (0.2) 27.5 (0.2) 27.3 (0.1) 26.8 (0.3)
0 0 27 (2.5) 263 (0.7) 276 (0.1) 27.8 (0.2) 27.1 (0.2) 27.5 (0.2) 26.6 (0.6) 27.4 (0.4)
0 0 1 125 (11.3) 27.8 (0.3) 27.6 (0.1) 27.8 (0.2) 27.7 (0.2) 27.2 (0.2) 27.7 (0.3) 27.8 (0.2)
1 1 0 2(2.0) 269 (0.9) 272 (0.1) 26.8 (0.2) 27.1 (0.2) 27.5 (0.2) 26.6 (0.6) 26.8 (0.4)
1 0 1 45 (4.1) 275 (0.6) 27.2 (0.1) 26.8 (0.2) 27.7 (0.2) 27.2 (0.2) 27.7 (0.3) 27.4(0.4)
0 1 1 188 (17.0) 28.0 (0.3) 27.2 (0.1) 27.8 (0.2) 27.1 (0.2) 27.2 (0.2) 273 (0.2) 27.8 (0.2)
1 1 1 344 (31.2) 26.6 (0.2) 26.9 (0.2) 26.8 (0.2) 27.1 (0.2) 27.2 (0.2) 27.3 (0.2) 27.2 (0.2)

Bold numbers correspond to close observed and predicted means in the more frequent trajectories.

20 refers to manual SEP, 1 refers to non-manual SEP.

PCritical period at time f;, 5, 3 corresponds to ages 4, 26 and 43 years.
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evidence for the accumulation model. However, men
who had trajectories (0, 0, 1) or (1, 0, 0), both with an
SEP score of 1, differed in their observed means (27.8
vs 27.2kg/m?) by more than the estimated effect of
0.34 kg/m? per unit decrease in the lifetime SEP score
(Table 2). This is consistent with our finding that the
best fitting model for men was the childhood critical
period model, with an effect of non-manual class
on BMI of —0.98 (—1.46 to —0.50) kg/m?, P < 0.001.
The social mobility models showed a particularly
poor fit for both sexes as it is significantly different
from the saturated model (P <0.01). The adult social
mobility model estimated for women virtually
no change in BMI for upwards adult SEP mobility

[723 (95% CI): 0.48 (—0.57 to 1.52) kg/m?, P=0.372],
and some increase in BMI for downwards mobility
[855 (95% CI): 1.70 (0.70 to 2.70) kg/m?, P=0.001],
and for men no significant effects of changing adult
SEP [y;: 0.34 (—0.318 to 1.01) kg/m?, P=0.308 and
855 —0.78 (—1.94 to 0.38) kg/m?> P=0.187]. In
women, the more general social mobility model
estimated both upward and downward change in
SEP to be associated with increases in BMI [y: 0.84
(0.19 to 1.48) kg/m?, P=0.011 and §: 0.97 (0.10 to
1.83) kg/m?, P=0.028]. This was due to the generally
higher weight for women in all trajectories compared
with those women who remained in the non-manual
trajectory throughout. In men, the same model

Table 3 Series of full and partial F-tests for different contrasts according to different hypotheses

Model tested: using notation

Partial F-test against

corresponding saturated model
Hypothesis Equation (1) Equation (2) df F-statistic ~ P-value
Women
No effect a=08=y12=0;= Bri=B=B3=01,=03= 7, 1080 6.26 <0.001
Y=y 1=¥>=n=0 013="0123=0
Accumulation of risk S2=Y12=08x3=yx»n= Br=PB2=Ps; O12=0,3= 6, 1080 1.39 0.214
Yi=v>=0;, n=1 O13="0123=0
Critical period?®
I d=yu=v1=v%=n=0 Ba=PB3=012="0= 6, 1080 2.57 0.018
913:9123:0
tz 823:]/23:1/”:1,02:0 ﬁ1:ﬁ3:912 :923: 6, 1080 597 <00001
913:9123:0
I3 dp=ynt+v1=v=n=0 Bi=B2=012=0,3=03= 6, 1080 3.36 0.003
9123:0
Social mobility
Adult 77:812:)/12:w1 :WZZO 923:_(ﬁ2+ﬁ3), ﬁl = 5, 1080 6.42 <0.0001
012:913:9123:0
Any mobility §=0812=08x Y=V12=V23 Ba=(B1+B3), O1a= 5, 1080  5.97 <0.0001
Yi=v>=n=0 03 =—P2, 013=0123=0
Men
No effect a:812:y12:823:y23: ,61 :,32:/33:912: 7, 1096 3.25 0.002
Yr1=v>=n=0 03 =013=0123=0
Accumulation of risk S2=Y12=0n3=yn=Y= Bi=PBr=Ps 01,=0,3= 6, 1096 1.99 0.060
Y=0 n=1 O3 =0123=0
Critical period?®
L d=yn=v1=¢>=n=0 Bo=B3=01="053= 6, 1096 1.10 0.359
913:9123:0
5] $=yu=V1=Y>=10 Bi=PB3=012=03= 6, 1096  2.66 0.015
913:9123:0
5 dp=ynt+v1=v2=n=0 Br=pB2=012=0= 6, 1096  3.54 0.002
913:0123:0
Social mobility
Adult n:812:y12:1//1:1//220 623:_(ﬂ2 + ﬂ3), 5, 1096 3.94 0.002
,31 :912:913:9123:0
Any mobility §=81,=053, Y=Y12= V23, Ba=(B1+B3), O12="053= 5, 1096  3.28 0.006

Y1=v>,=n=0

_ﬂZr 613 = 0123 =0

Critical period at time f,, t5, t3 corresponds to ages 4, 26 and 43 years.
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estimated some minor increase in weight for an
upward change, and no change in weight for a
downward change in SEP [y: 0.59 (0.09 to 1.09)
kg/m?, P=0.020 and §: —0.41 (—1.10 to 0.27) kg/m?,
P=0.239]. This was due to an upward change in SEP
only being possible by being in a manual SEP
beforchand and to the strong effect of childhood
manual SEP on BMI in men.

Discussion

In this article, we have examined models that are
frequently discussed in the literature>*®®'® and
parameterized them so that they could be viewed as
alternative nested specifications of a more general
(saturated) model. We have done this within a linear
regression framework but it can be easily extended to
any generalized linear model, e.g. Poisson or logistic,
with the only difference concerning the test
statistics used to compare the model specifications.
While partial F-tests should be wused in linear
regression to compare nested models, the likelihood
ratio test or one of its approximations would be
used with generalized linear models.'”” We have
focused on mean outcomes to illustrate the method,
other features of the outcome distributions, such as
the median or 25th percentile, may equally have been
used. We have shown how analyses that only consider
the association of a cumulative score with a later
outcome may result in a misleading conclusion.

Our analyses of the MRC NSHD data found that for
the BMI of women at age 53 years an accumulation of
risk model for adverse social circumstances seemed to
be most appropriate. This supports results previously
found for women in this study and others.'®! In
contrast, for men our results suggest that childhood
was a critical period for adult BMI. This is in line with
previous reports in the literature.'®'® If we had not
considered the whole spectrum of alternative model
specifications, we might have concluded that the data
on men were consistent with the accumulation of risk
hypothesis, because the lifetime SEP score parameter
actually captured the effect of the childhood critical
period (its estimated coefficient, 0.979, being about
three times that for the lifetime score, 0.336). We might
have also concluded that the data on women were
consistent with one of the social mobility models, given
the significance of the y and § parameters.

In general, results based on a lifetime score may be
driven by particular combinations of values over the
three time points, these obviously being specific to the
period and place where the data were collected. For
example, in this study the majority of those with a
cumulative score of 2 had trajectory (0, 1, 1) due to
the considerable upward inter-generational mobility
in this British post-war cohort. Re-weighting the
social class indicator by the prevalence of that social
class has been used to address the issue of the
changing socioeconomic distribution over time,°
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although this will lead to more complex variance
structures. The problems surrounding the use and
interpretation of lifetime SEP scores remain. Their
popularity when dealing with three or more time-
changing indicators of social class may be due in part
to concerns regarding multi-collinearity. However,
unless the binary indicators are measured very closely
in time this is unlikely to be an issue.

Our proposed methods work for both critical period
and accumulation hypotheses even as the number of
time points increases beyond three. This is because
the prior hypothesis will reduce the dimensionality of
the data when testing a critical period model, while
with the accumulation model one would simply sum
the SEP indicators across time points to generate an
overall score. However, the method would not
generalize to more than three time points for the
social mobility model. In this case the model should
be simplified, or alternatively latent variable/class
modelling could be used to define the main social
trajectories.”* Bayesian information criteria or
Akaike’s information are fairly established criteria
for assessing model fit in this context. While our
method could handle more time points, the challenge
would be to have a study large enough to enable us to
test the different life course models—all causal
contrasts rely on equality of effects of other time
points, and the larger the study the larger the power
to detect small and meaningful differences in effect
between trajectories/time points.

We have introduced a new parameterization for
mobility models. Such parameterizations in terms of
change, clarify algebraically what mobility models
mean in a given study setting. The definitions of
inter- and intra-generational mobility will depend on
which time points are used in a particular study, the
number of childhood and adult measurements. Our
results have highlighted two issues in relation to the
mobility models. First, mobility is conditional on
the selected starting point—for example being born in
a manual environment—and therefore results are to
be interpreted accordingly. Second, we can only test
for the presence of a mobility model if the data
include sufficient changes from manual to non-
manual occupation, and vice versa. Related to this,
interaction terms are part of the specification of the
mobility models and there may not be sufficient
power to detect such interactions. Lack of power may
also limit the ability to extend models to incorporate
larger numbers of SEP trajectories as discussed above.

In reality, the processes operating across the life
course may not conform to any of the causal models
specified here and so it may be unrealistic to expect to
disentangle explicitly such effects in practice. For
example, the analyses were carried out under the
assumption that these are representative of all
participants, and that it is valid to assume that
individuals with missing scores have remained in the
same category at a later time point. Both these
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assumptions are debatable. Also, the current article
has ignored issues related to uncertainty in assigning
a given value of social class at a given point in time.
For instance, it may be that the measurement errors
associated with assigning SEP are much higher for
adults than for their fathers, with resulting larger
effects for childhood SEP. If we had data with more
time points, then the correlations of SEP between two
subsequent measurements would help to deal with
measurement error issue (assuming non-differential
errors). But correlations of SEP over time may lead to
certain trajectories being very rare and hinder the
analysis.

It is highly advantageous to have an understanding
of the biological mechanisms underlying the effect of
exposures on specific health outcomes upon which to
base the statistical modelling. This may lead to a
different specification of the mobility model than is
used here. However, our approach highlights that the
researcher should not adopt an a priori hypothesis
without testing to see if other models fit the data
equally well.

With more complex causal structures and/or more
social class categories or indicators, latent socio-
economic constructs at each time point could be
used to model pathways explicitly.*'** Although the
latent variable modelling has more apparent flexibility
in terms of integrating over missing information
using maximum likelihood, it still relies on assump-
tions on how these various SEP indicators are related
and crucially on the structure of the available data, as
discussed in De Stavola et al.?> among others. It may
be more appropriate to refer to sensitive periods,
where there is more scope for modification or reversal
of changes outside that time, in contrast with critical
periods where developmental changes are irreversi-
ble.” In such cases, where the model fit tests indicate
more than one model is plausible, further equality
constraints could be relaxed to define a combined
model, which can then be tested. Simulation studies
may be used to see how often one model structure is
preferred over another.

In this article, we have adopted a counterfactual
framework to outline the causal hypotheses however
there remains the issue of using observational data to

infer causality.?* We have used ‘causal contrast’ to
refer to the parameter of interest. More broadly it is
important to consider the potential for confounding,
such as due to exogenous events between time points,
and to consider the possibility for reverse causality
(for instance, a chronic condition associated with high
BMI that leads to a lowering of SEP from childhood
to adulthood). As Kaufman comments, while rigid
conditions can be applied to the models to simplify
such issues, such as requiring monotonicity of effects,
many contrasts may remain unidentifiable or many
apparent patterns may be artefacts of the chosen
contrasts.”> In summary, regardless of which model is
selected, issues of measurement error, missing data,
survival bias, confounding factors are inevitable in life
course studies and hence results may still be biased
and thus caution is required in their interpretation.

We have illustrated how analyses that simply report
effects of an overall score based on its statistical
significance may produce misleading or incomplete
results that do little to help the understanding of how
life course trajectories affect health. While Hallgvist
et al.* found that testing different models against the
null hypothesis was unable to disentangle empirically
causal processes, we have shown that our alternative
model fit approach can be wused to distinguish
different life course hypotheses, given the assumption
of no measurement errors and provided the study has
sufficient power. Specifically we recommend compar-
ing a set of nested models—each corresponding to the
accumulation, critical period and effect modification
hypotheses—to an all-inclusive (saturated) model.
This approach can provide a formal and clearer
understanding of the relative merits of these alter-
native hypotheses.

Funding

Medical Research Council.

Acknowledgement

We would like to thank the anonymous referees for
their very helpful comments.

Conflict of interest: None declared.

KEY MESSAGES

e In life course epidemiology, analyses that only consider the association of a cumulative score, such as
from a binary SEP variable, with a later outcome may produce misleading results.

e We present a model fit approach to disentangle the different life course hypotheses, given the
assumption of no measurement errors and provided the study has sufficient power.

e We recommend comparing a set of nested models—ecach corresponding to the accumulation, critical
period and effect modification hypotheses—to an all-inclusive (saturated) model.

e Our approach highlights that the researcher should not adopt an a priori hypothesis without testing to
see if other life course models fit the data equally well.
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