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Abstract 

 

Background 

The development of obesity through childhood, often characterised using body mass index 

(BMI), has received much recent interest due to the rapidly increasing levels of obesity 5 

worldwide. However, the extent to which BMI trajectory in the first year of life (the BMI 

‘peak’ in particular) is associated with BMI in later childhood has received little attention. 

 

Subjects 

The Uppsala Family Study includes 602 families, comprised of mother, father and two 10 

consecutive singleton offspring, both of whom were delivered at the Uppsala Academic 

Hospital, Sweden, between 1987 and 1995. Children's postnatal growth data, including serial 

measurements of height and weight (from which BMI was calculated), were obtained from 

health records. All children had a physical examination when they were aged between 5 and 

13 years, at which height and weight were again recorded and used to calculate age- and sex-15 

adjusted BMI z-scores. 

 

Methods 

Subject-specific growth curves were fitted to the infant BMI data using penalised splines with 

random coefficients, and from these the location of the BMI peak for each subject was 20 

estimated. A multilevel modelling approach was used to assess the relationships between the 

BMI peak and BMI z-score in later childhood. 

 

 

 25 
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Results 

The BMI peak occurred, on average, slightly later in females, with a higher BMI peak in 

males. Considered separately, both age and BMI at BMI peak were positively associated with 

later BMI z-score. Considered jointly, both dimensions of BMI peak retained their positive 

associations. 5 

 

Conclusions 

The growth trajectory associated with higher childhood BMI appears to include a later and/or 

higher BMI peak in infancy. 

 10 
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Introduction 

 

Obesity in childhood is increasing rapidly worldwide [1], bringing with it many adverse 

health and social consequences. The acknowledged pattern of tracking of obesity from 

childhood to adulthood [2] means that even if overweight children avoid health problems in 5 

their youth, they have an increased likelihood of being overweight, and thus encountering the 

associated increases in type II diabetes, cardiovascular disease risk factors, and respiratory 

and psychosocial problems [3, 4] in adulthood. 

 

Obesity is often considered in terms of body mass index (BMI), calculated as weight/height
2
, 10 

due to the ease with which measurements can be made. For a typical individual, BMI 

increases from birth until around age 9 months where it reaches a maximum, the ‘BMI peak’. 

It then decreases, reaching a nadir (the ‘BMI rebound’, also referred to as the ‘adiposity 

rebound’) around age 6 years, before increasing once more. Whilst from Rolland-Cachera et 

al [5] onwards [6] earlier BMI rebound has been consistently shown to be associated with 15 

later obesity, little research has been conducted into possible associations between the earlier 

BMI peak and later obesity. 

 

Although not considering the BMI peak explicitly, many studies have investigated the 

relationships between size and/or growth in infancy and later obesity. A systematic review by 20 

Baird et al [7] identified 18 studies concerning infant size, 11 of which found that infants who 

were heavier during infancy or were defined as obese were more likely to develop obesity in 

childhood, adolescence or adulthood. Several reviews, ranging in size from 10 to 21 studies, 

have focused on infant growth as an exposure [7, 8, 9]. The majority of studies in each review 

found more rapid growth in infancy to be associated with a greater risk of subsequent obesity. 25 
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However, the definition of ‘infant growth’ is somewhat inconsistent, with increases in 

absolute weight, weight for age z-score or weight for height z-score over a fixed period after 

birth all utilised. Ong and Loos [9] attempted to standardise the results, concluding that there 

is strong evidence for a true association between rapid infancy weight gain and subsequent 

risk of obesity in later life. A more recent assessment of the nature and strength of the 5 

evidence for this association found it to be supported by observational studies but not by the 

relatively small randomised trials [10]. Further, the statistical methods used to estimate  

individual measures of growth are dictated by the available observations and do not fully 

exploit the data. We have the opportunity to investigate the relationship between the timing 

and extent of the BMI peak and BMI z-score in later childhood in the Uppsala Family Study 10 

(UFS), a dataset of 1204 subjects from Uppsala, Sweden. This dataset is unusual in having a 

large number of serial measurements of height and weight from birth into childhood, which 

we use to estimate age and BMI at BMI peak using penalised splines with random 

coefficients. 

 15 

 

 

Subjects 

 

The UFS population comprised families with two full-siblings and their biological mother and 20 

father [11]. All families with at least two consecutive singleton children delivered at term and 

within 36 months of each other at the Uppsala Academic Hospital, Uppsala, Sweden, between 

1987 and 1995 were potentially eligible for the study. Children also had to share the same 

biological father and families had to live within Uppsala county at the time of the study, with 

both parents of Nordic origin. If there were more than two children in the same family 25 
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fulfilling these criteria then the oldest two siblings were chosen. By linkage between the 

Swedish Medical Birth Registry and the current population register, 5226 women and their 

10,452 offspring were identified as fulfilling these criteria and hence comprised the sampling 

frame for the study. 

 5 

The initial focus of the data collection was to study maternal and early life effects on blood 

pressure and cardiovascular disease [12]. To increase statistical efficiency only families where 

the siblings were either both in the top or bottom quarter of the sex-specific birthweight 

distribution (‘concordant high birthweight’ or ‘concordant low birthweight’) or the sex-

adjusted difference in birthweight between them was 0.4 kg or more (‘discordant 10 

birthweight’) were invited to participate. However, in the context of this paper the study 

design provides no benefits in terms of efficiency. A total of 1967 families were invited to 

take part in the study, with 71% responding, leading to the eventual recruitment of 602 

families (31% of those eligible). Siblings could be same-sex pairs or discordant for sex. 

 15 

Children's birth data were obtained from mothers' obstetric records through the Swedish 

Medical Birth Registry, and their postnatal growth data, including serial measurements of 

height and weight, were obtained from health records kept by Child Health Centres or 

schools. The measurements of height and weight were used to calculate BMI. 

 20 

All 1204 children in the UFS had a physical examination between May 2000 and November 

2001 when they were aged between 5 and 13 years, at which many measurements were 

recorded. Of these, only height and weight were utilised in the present analysis. Height was 

measured with a wall-fixed stadiometer to an accuracy of 0.1 cm with subjects walking 

around the room between measurements, and weight was measured with the subject wearing 25 
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underwear to an accuracy of 0.1 kg using electronic scales. Height and weight measurements 

were taken three times and the mean value used. From the observed height and weight values 

BMI was again calculated, from which age- and sex-adjusted BMI z-scores were obtained 

using the Swedish population reference values [13]. 

 5 

Preliminary exploratory analyses (not shown) estimated the BMI peak to occur at an age of 

between 6 months and 1 year in the majority of individuals. Thus only BMI measurements 

between birth and age 3 years were included in the BMI growth curve modelling. Forty of the 

initial 1204 individuals (3.3%) had no BMI observations within this range so were excluded. 

A further 2 subjects (0.2%) with fewer than 3 datapoints, the minimum number deemed 10 

necessary, were excluded, leaving 1162. The proportion of excluded subjects was similar 

across sexes, sibling types and birthweight groups.. 

 

 

 15 

Methods 

 

The analysis may be considered as a two stage process. First, infant BMI data were used to 

construct subject-specific BMI growth curves from which the BMI peak was identified. Then 

assessment was made of the relationships between features of the BMI peak and later BMI z-20 

score. 

 

Subject-specific growth curves were fitted to the infant BMI data using penalised splines with 

random coefficients. The formulation of this modelling approach is described in the Annex 

and in greater detail elsewhere [14]. 25 
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Briefly, penalised splines are a means of modelling the relationship between two (or more) 

variables without the imposition of a rigid parametric form (for example linear or higher order 

polynomial). They are formed by the piecewise connection of polynomial curves between a 

series of ‘knots’ subject to certain penalties to encourage smoothness. Mixed models [15] may 5 

be fitted to datasets comprising repeated measures across multiple individuals in order to 

obtain subject-specific growth curves [16]. As penalised splines can be handled within the 

mixed model framework they can also be extended in a similar manner. This fusion between 

parametric mixed modelling and smoothing is referred to as ‘semiparametric mixed 

modelling’ [14]. The mixed model representation means that relatively complex penalised 10 

spline models can be implemented using standard statistical software. 

 

Using this approach, only the number of knots and the knot locations need be specified. We 

used 12 knots, a similar number to that used in comparable applications elsewhere [17], 

though perhaps towards the upper limit of what is necessary. A simple approach to selecting 15 

the knot locations is on the basis of the quantiles of the unique observed values of the 

independent variable [14], so knots were placed at the 

thth


















13

12
,...,

13

1
 quantiles of the 

unique ages. 

 

Acknowledged differences in childhood BMI growth between males and females [18] suggest 20 

that different underlying growth trajectories should be used for each sex. Moreover, different 

growth patterns may be expected for individuals with different birthweights [19]. For these 

reasons six separate models were fitted (concordant low birthweight males, concordant high 

birthweight males, discordant birthweight males, concordant low birthweight females, 

concordant high birthweight females and discordant birthweight females). 25 
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As the BMI peak is a turning point in the BMI curve, the age at BMI peak for an individual 

can be estimated via differentiation (with respect to age) of their fitted BMI growth curve. 

BMI at BMI peak is then the BMI value corresponding to this age according to the BMI 

growth curve. Whilst this simple approach to identifying the BMI peak worked well for most 5 

individuals, some subjects had fitted BMI growth curves with local non-BMI peak maxima. It 

was thus additionally required that the first derivative of the BMI curve must be positive 3 

months before and negative 3 months after a maximum for it to be considered the BMI peak. 

 

In the second stage, two features of the BMI peak, the corresponding age and BMI, were 10 

related to BMI z-score in later childhood. To account for the dependencies caused by the 

inclusion of sibling pairs in the UFS, a multilevel (mixed) modelling approach [15] was used, 

with family-specific random intercepts. Sex, birthweight and age at physical examination 

were included, with interactions between BMI peak and each of these variables also 

considered. 15 

 

 

Results 

 

Table 1 summarises the distributions of several variables assessed at birth or at the physical 20 

examination in later childhood in the 1162 subjects with at least 3 BMI observations between 

birth and age 3 years. Mean weight and length at birth were slightly higher in males than 

females, though BMI z-score at physical examination was higher in females. Average age at 

physical examination was approximately 10 years in both sexes, though there was much 

variability. Equivalent summaries for the 42 excluded subjects with fewer than 3 BMI 25 
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observations between age 0 and 3 years (results not shown) showed no substantial differences 

from the values in Table 1. 

 

[Table 1 here] 

 5 

The number of BMI observations for each subject varied greatly between the 1162 individuals 

(median 13, interquartile range 6, range 3-30). Additionally, the distribution of measurement 

ages was far from uniform between birth and age 3 years - over 50% of data corresponded to 

ages less than 6 months, and data were markedly more sparse for ages greater than 1.5 years. 

 10 

 

BMI growth curves 

The population average curves predicted for each birthweight group are plotted separately for 

males (upper plot) and females (lower plot) in Fig. 1. The curves took a similar shape in each 

birthweight group, indicating that the shape of the BMI trajectory in infancy is largely 15 

independent of birthweight, though there were clear vertical displacements of the curves. The 

curves for males were as would be expected, with the concordant low birthweight subgroup 

having a lower trajectory right across the range of ages examined, the concordant high 

birthweight subgroup having a higher trajectory, and the discordant birthweight subgroup 

being between the two. The observed trends in females were very similar, although here the 20 

trajectory of the discordant birthweight subgroup much more closely matched that of the 

concordant high birthweight subgroup. For both males and females the ages at which the 

population average curves reached the maximum differed somewhat between the birthweight 

groups. Whilst some of the curves appear to be plateauing at later ages rather than displaying 

the anticipated decrease in BMI towards the BMI rebound it should be remembered that, as 25 
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well as there being relatively few datapoints at these ages, these are population average 

curves, so individual subject-specific curves may be either increasing or decreasing at any 

given age. 

 

[Fig. 1 here] 5 

 

The combination of these population average curves and the estimated subject-specific 

deviations from them gives the overall fitted subject-specific BMI curves. These are presented 

in Fig. 2 for several males selected in a systematic manner, as described in the figure caption. 

This collection of plots provides examples of each subgroup model for varying levels of 10 

infant BMI. Whilst the subject-specific curves all took the same general shape as the 

population average curves, the inclusion of the random coefficients allowed the subject-

specific curves to, on the whole, provide good fits to the data. The number of data points per 

subject was variable, and for individuals where data were more sparse fitted curves drew 

information from others. Although most of the curves in Fig. 2 showed obvious maxima, 15 

some were flatter than others. Equivalent plots for females (not shown) indicated similar 

patterns. 

 

[Fig. 2 here] 

 20 

Estimated age and BMI at BMI peak 

Table 2 summarises the distributions of age and BMI at BMI peak, along with the number and 

percentage of subjects with identified BMI peak, by sex and birthweight group. The 

percentage of subjects with a successfully identified BMI peak was generally high, though 
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some differences between the birthweight groups were evident, with identifiability being 

greater for smaller babies, and also in females. 

 

[Table 2 here] 

 5 

The BMI peak occurred later in concordant high birthweight males and in concordant low 

birthweight females than in the other birthweight groups (both P<0.001 by t-test). Overall, 

BMI peak occurred later in females than males (P<0.001 by t-test). The median age at BMI 

peak was generally lower than the mean, suggesting a skewed distribution. 

 10 

Average BMI at BMI peak was highest in concordant high birthweight subjects and lowest in 

concordant low birthweight subjects in both sexes, corresponding to the population average 

curves seen in Fig. 1. As a later BMI peak thus corresponded to the highest BMI at BMI peak 

in males (concordant high birthweight subjects) but to the lowest BMI at BMI peak in females 

(concordant low birthweight subjects) there was some evidence that the relationship between 15 

age and BMI at BMI peak may differ by sex and birthweight group.  Generally, BMI at BMI 

peak was greater in males (P<0.001 by t-test). Mean and median were very similar in each 

group, indicating a more symmetric distribution. 

 

The main reason for subjects not having an identified BMI peak was that their BMI 20 

observations continued to increase over the first few years of life. Comparing subjects with 

and without an identified BMI peak suggested that both males and females with no identified 

BMI peak generally had slightly greater weight and length at birth (results not shown). 

 

25 



 12 

Is BMI peak location related to BMI z-score in later childhood? 

Table 3 details the separate effect of age and BMI at BMI peak on BMI z-score at physical 

examination estimated accounting for the within-family correlations. There was no strong 

evidence of interaction between sex and either dimension of the BMI peak, thus sex was 

included as a confounder, as were birthweight and age at physical examination. In particular, 5 

with reference to the observation that the relationship between age and BMI at BMI peak may 

differ by sex and birthweight group, there was no clear evidence of a 3-way interaction 

between age at BMI peak, sex and birthweight (P=0.09). Both a delayed age at BMI peak and 

an increased BMI at BMI peak were associated with a positive and highly statistically 

significant increase in BMI z-score in later childhood. Birthweight was also strongly 10 

positively associated with BMI z-score. Further, for a given BMI at BMI peak and 

birthweight, females had a significantly higher BMI z-score at examination than males. 

 

[Table 3 here] 

 15 

Table 4 details the estimated joint effects of age and BMI at BMI peak, adjusted for sex, 

birthweight and age at physical examination. There was weak evidence (P=0.04) of an 

interaction between age and BMI at BMI peak, suggesting that BMI at BMI peak may be less 

informative in those who exhibit a later BMI peak, but this is not considered further here. 

There were significant associations between both age and BMI at BMI peak and BMI z-score 20 

in childhood, even after mutual adjustment, although the evidence for the BMI at BMI peak 

association was somewhat stronger. There also remained a strong, positive relationship with 

birthweight. In this model, for a given birthweight and age and BMI at BMI peak, females 

were expected to have a higher BMI z-score at examination. 

 25 
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[Table 4 here] 

 

One way to consider the model in Table 4 is to calculate predicted BMI z-scores for different 

combinations of the two exposures of interest. By holding the values of the other explanatory 

variables constant it is possible to examine predicted BMI z-scores for different combinations 5 

of age and BMI at BMI peak through use of a contour plot (Fig. 3, for males with mean 

birthweight and mean age at physical examination). The region of highest predicted BMI z-

score in later childhood corresponded to a late BMI peak and a high BMI at BMI peak. The 

lowest predicted BMI z-scores corresponded to early BMI peak and a low BMI at BMI peak. 

It is clear from the plot that BMI as opposed to age at BMI peak exerted the greater influence. 10 

 

[Fig. 3 here] 

 

Equivalent contour plots using different combinations of values of sex, birthweight and age at 

physical examination would lead to the same interpretation. As these variables entered the 15 

model additively they would only have changed predicted BMI z-score in later childhood by a 

constant value, leaving the shape of the contour plot in Fig. 3 unchanged. 

 

As birthweight is known to affect growth trajectories [19], the study design could result in the 

UFS being unrepresentative both in terms of the BMI peak locations and later BMI z-scores 20 

as well as, potentially, the relationship between the two. However, birthweight group was 

seen to have little effect on the shape of the BMI trajectory through infancy and birthweight 

was included as an explanatory variable in the second stage models, meaning any additive 

effect on BMI z-score should be adjusted for. Additionally, birthweight was not found to 

modify the relationships between the BMI peak and later BMI z-scores in any of the models. 25 
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We explored using models including both birthweight itself and indicator variables for 

birthweight group (results not shown). After adjustment for birthweight, birthweight group 

had no further effect on BMI z-score in any of the models, indicating that the effects of the 

study design were adequately accounted for. 

 5 

We also calculated the residuals between each subject's observed age and BMI at BMI peak 

values and the expected values given their sex and birthweight. The absolute between-sibling 

pair differences in these residuals were then calculated and compared between concordant 

birthweight siblings (both concordant low birthweight and concordant high birthweight 

groups combined) and discordant birthweight siblings. No differences were observed in either 10 

age (P=0.4) or BMI (P=0.9) at BMI peak. These results suggest that once birthweight has 

been accounted for the greater heterogeneity in size in the discordant birthweight siblings has 

little further effect on their growth patterns. We thus believe that the unusual study design 

should not be allowed to detract unnecessarily from the results observed. 

 15 

 

Discussion 

 

The initial peak in BMI at around the age of 6 months to 1 year was a readily identifiable 

feature of the BMI growth curve in the vast majority of subjects in the UFS. On average, the 20 

BMI peak occurred slightly later in females, with a higher corresponding BMI in males. Both 

higher BMI at BMI peak and later BMI peak tended to result in relatively higher BMI in later 

childhood. It is the first time that these associations have been reported. 

 



 15 

Subjects did not contribute to the analysis for two reasons: either they had fewer than 3 BMI 

observations over the relevant ages so were excluded from the start, or it was not possible to 

identify the BMI peak from their BMI growth curve. Only 3.5% subjects had fewer than 3 

BMI observations between birth and age 3 years, so their exclusion is unlikely to lead to 

substantial bias. However, although the BMI peak was identified in the majority of 5 

individuals considered, for 13% this was not the case. The observed BMI values for these 

subjects did not provide any evidence of a BMI peak, usually because BMI continued to 

increase throughout infancy. The analyses were effectively restricted to those subjects who 

exhibited a BMI peak. However, comparisons of those with/without a BMI peak showed no 

evidence of differences in BMI z-score in later childhood (P=0.3). 10 

 

We used penalised spline models with random coefficients to model BMI growth through 

infancy. For individuals with few observations the approach ‘borrows’ information from other 

subjects and fits a subject-specific curve closer to the relevant population average curve. This 

was an effective use of the available data which allowed us to identify the two dimensions of 15 

the BMI peak that we were interested in. 

 

The study design of the UFS included the selection of sibling pairs based on their relative 

birthweights. We accounted for the sibling pairs by fitting random effects models which 

allowed subjects to be more similar to their sibling than to other members of the dataset. 20 

However, if all subjects were treated as independent using standard linear regression, the 

estimated model coefficients would change very little and the conclusions reached would be 

identical (results not shown). Additionally, the physical examinations at which the outcome 

was observed occurred across a wide range of ages (5-13 years). To account for this the 

models relating BMI z-score to dimensions of the BMI peak were adjusted for age at physical 25 
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examination, and age at physical examination was not found to modify the relationships 

between age and/or BMI at BMI peak and BMI z-score. 

 

The inclusion criteria for the UFS provided a contemporary, healthy sampling frame, which 

was likely to be representative of the wider Uppsala population. However, as participation 5 

rates were not particularly high [12], subjects in the UFS may potentially not have been fully 

representative of those within the sampling frame. 

 

Whilst no previous studies have explicitly investigated the effect of the location of the BMI 

peak on later levels of BMI, many studies have investigated the relationships between size 10 

and/or growth in infancy and later obesity [7, 8, 9, 10]. The majority of studies have 

quantified infant size and (particularly) growth in terms of weight, which we have not 

modelled, but some have used BMI. Although it is not possible to directly compare our results 

with those obtained previously as we did not estimate BMI at a given age or BMI gain over a 

given period for each subject, approximate comparisons can be made.  15 

 

By categorising the 10% of subjects with the greatest (sex-specific) BMI at BMI peak as 

being ‘obese at BMI peak’ and the 10% of subjects with the highest BMI z-score in later 

childhood as being ‘obese in later childhood’ we found obesity at BMI peak to lead to an odds 

ratio (OR) of 5.20 (95% CI 2.22-12.21) for obesity in later childhood (adjusting for sex and 20 

birthweight and accounting for the within-family correlations). Whilst this is an admittedly 

crude comparison, this OR is greater than those reported previously when relating obesity in 

infancy to later obesity [7], perhaps indicating a greater predictive capability when the 

exposure is assessed at the BMI peak rather than at a fixed age in infancy. Further adjustment 

for age at BMI peak negligibly attenuated the OR. 25 
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We can also make an approximate comparison to previous results concerning infant growth 

by calculating the infant BMI gain rate (the average monthly increase in BMI between birth 

and BMI peak). By categorising the 10% of subjects with the greatest (sex-specific) infant 

BMI gain rate as having ‘rapid infant BMI gain’ we found rapid infant BMI gain to lead to an 5 

OR of 4.03 (95% CI 1.74-9.33) for obesity in later childhood. Although no previous studies 

focus on BMI gain in infancy, this OR is of comparable magnitude to many of those 

concerning infant weight gain [7, 8, 9]. 

 

If rapid infant BMI gain is associated with greater BMI and age at BMI peak then the 10 

relationship between rapid infant BMI gain and later BMI z-score could provide an 

explanation for the observed relationship between the two aspects of the BMI peak and later 

BMI z-score. However, whilst we found more rapid infant BMI gain to be positively 

associated with BMI at BMI peak, we found it to be negatively associated with age at BMI 

peak (both P<0.001). Thus the relationship between infant BMI gain and later BMI z-score 15 

cannot fully explain our results. 

 

The observed positive relationship between BMI at BMI peak and later BMI could plausibly 

be explained by BMI tracking [2], which has been shown to occur from infancy to middle 

childhood [20]. If a subject has a high BMI relative to their peers at their respective BMI 20 

peaks then, even though these BMI values are not observed at the same age, it seems 

reasonable that they are likely to have a higher BMI several years later. 

 

It is thus the positive relationship between age at BMI peak and later BMI which is perhaps 

the more interesting, particularly as this was in the opposite direction to that widely 25 
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acknowledged between age at BMI rebound and later BMI. This means that higher later BMI 

is associated with both those who are less well developed (in terms of BMI) around age 1 year 

(those having a later BMI peak) and those who are more well developed around age 6 years 

(those having an earlier BMI rebound), which is perhaps surprising. This leads to further 

questions regarding the relationships between these two features of the BMI growth curve and 5 

later BMI. For example, is it the same individuals who have both later BMI peak and earlier 

BMI rebound, leading to increased later BMI? Age at BMI peak and age at BMI rebound are 

both measures of development at that point, with regards to the BMI growth curve at least, 

and thus an inverse relationship between them would seem unlikely. Are there then disparate 

subgroups who have either a later BMI peak or an earlier BMI rebound and then proceed to 10 

increased later BMI? To answer these questions it is essential to have a dataset in which both 

the BMI peak and the BMI rebound can be identified for each individual. Unfortunately the 

present dataset does not afford the opportunity for this. Addressing these questions could 

provide valuable insights into BMI development through childhood. 

 15 

Indeed, were our dataset appended with sufficient data to extend our models to include the 

BMI rebound, the plateauing seen at older ages in Fig. 2 for some subjects would likely 

change to the expected decrease. Whilst this could change the locations of the BMI peaks 

from those currently identified, we would expect any difference to be negligible. 

 20 

As when considering any feature of childhood growth, a key question is whether the location 

of the BMI peak is a causal factor for later BMI itself or whether both the location of the BMI 

peak and later BMI are merely expressions of some genetic predisposition [21]. If it is causal, 

then can it be manipulated? Whilst the level of BMI for an infant, and thus their BMI at BMI 

peak, could be manipulated by changes in dietary intake, it remains unclear whether this 25 
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would have any effect on the timing of the BMI peak. It is also unclear whether age at BMI 

peak could be similarly manipulated. Furthermore, the imposition of dietary limitations on 

infants may be considered undesirable. This is a further area where additional research could 

prove fruitful. 

 5 

Although the associations found in the present analysis between the BMI peak in infancy and 

later BMI z-score are of great interest, the UFS is a relatively small dataset meaning that 

replication in further datasets is necessary to confirm the veracity of the findings. Doing so 

may prove valuable in improving understanding of BMI development through childhood. 

10 
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Annex 

 

Consider initially the fitting of a growth curve for a single subject. Let jy  be the (log 

transformed) BMI for this subject at age jx , nj ,...,1 . Let 1,..., K   be a set of K  distinct 

knots in the range of jx  and define 5 

 

 max(0, )x x  .  

 

Then the spline model of degree p  with K  knots at 1,..., K   is defined as 

 10 

 0 1

1

... ( )
K

p p

j j p j k j k j

k

y x x u x    



       , (1) 

 

where p ,...,1  and 1,..., Ku u  are to be estimated and 
2~ (0, )

iid

j N   . As unconstrained fitting 

of 1,..., Ku u  will result in a ‘wiggly’ fit [14], a constraint such as Cu
K

k

k 
1

2  for some constant 

C  may be imposed. The resulting model is referred to as a penalised spline model. 15 

 

It can be shown [14], using the principle of ‘best linear unbiased prediction’ (BLUP) [22], that 

the penalised spline model (1) can be represented as a mixed model with 2~ (0, )
iid

k uu N  . The 

model can then be considered in the general linear mixed model form, 

 20 

  y Xβ Zu ε  
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where 

 

 

1 1 1 1 1 1
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Subject-specific growth curves are obtained via the inclusion of subject-specific random 5 

(spline) parameters which model the deviation of a given individual's curve from the 

population average (spline) curve. Now consider all subjects in the dataset so that ijy  is the 

(log transformed) BMI for subject i , 1, ,i m , at age ijx , 1, , ij n . Then the penalised 

spline model of degree p  can be extended to give 

 10 

 0 1 0 1

1 1

... ( ) ( )
K K

p p p p

ij ij p ij k ij k i i ij ip ij ik ij k ij

k k

y x x u x a a x a x v x      

 

              (2) 

 

where 2~ (0, )
iid

k uu N  ,  0 , , ~ (0, )
iidT

i ipa a N Σ , where Σ  is an unstructured    1 1p p    

covariance matrix, 2~ (0, )
iid

ik vv N  , 
2~ (0, )

iid

ij N   , and all terms are independent of one 

another apart from 0 , ,i ipa a  for a given i . The present analysis uses cubic penalised spline 15 

models, with both cubic population average curves and cubic subject-specific deviations from 

these (i.e. (2) with 3p  ), to model BMI growth through infancy. 



 23 

References 

 

1 World Health Organisation. Obesity: preventing and managing the global epidemic. 

World Health Organisation, Geneva, 2004. 

 5 

2 Serdula MK, Ivery D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese 

children become obese adults? A review of the literature. Prev Med, 22: 167-77, 1993. 

 

3 Dietz WH. Health consequences of obesity in youth: childhood predictors of adult 

disease. Pediatrics, 101: 518-25, 1998. 10 

 

4 Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult 

obesity: a systematic review. Int J Obes, 23: S1-107, 1999. 

 

5 Rolland-Cachera MF, Deheeger M, Bellisle F, Sempe M, Guilloud-Bataille M, Patois 15 

E. Adiposity rebound in children: a simple indicator for predicting obesity. Am J Clin Nutr, 

39: 129-35, 1984. 

 

6 Taylor RW, Grant AM, Goulding A, Williams, SM. Early adiposity rebound: review 

of papers linking this to subsequent obesity in children and adults. Curr Opin Clin Nutr Metab 20 

Care, 8: 607-12, 2005. 

  

7 Baird J, Fisher D, Lucas P, Kleijen J, Roberts H, Law C. Being big or growing fast: 

systematic review of size and growth in infancy and later obesity. Br Med J, 331: 929, 2005. 

 25 

8 Monteiro PO,  Victora CG. Rapid growth in infancy and childhood and obesity in later 

life--a systematic review. Obes Rev, 6: 143-54, 2005. 

 

9 Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic 

reviews and hopeful suggestions. Acta Paediatr, 95: 904-8, 2006. 30 

 

10 Stettler N. Nature and strength of epidemiological evidence for origins of childhood 

and adulthood obesity in the first year of life. Int J Obes, 31: 1035-43, 2007. 

 

11 Uppsala University. Uppsala family study. http://www.pubcare.uu.se/family, viewed 35 

16 October 2007. 

 

12 Leon DA, Koupil I, Mann V, Tuvemo T, Lindmark G, Mohsen R, et al. Fetal, 

developmental, and parental influences on childhood systolic blood pressure in 600 sib pairs: 

the Uppsala Family Study. Circulation, 112: 3478-85, 2005. 40 

 

13 Karlberg J, Luo ZC, Albertsson-Wikland K. Body mass index reference values (mean 

and SD) for Swedish children. Acta Paediatr, 90: 1427-34, 2001. 

 

14 Ruppert D, Wand MP, Carroll RJ. Semiparametric Regression. Cambridge University 45 

Press, New York, 2003. 

 

15 Goldstein H. Multilevel Statistical Models. Hodder Arnold, London, 2003. 

 

http://www.pubcare.uu.se/family


 24 

16 Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics, 38: 

963-74, 1982. 

 

17 Durbán M, Harezlak J, Wand MP, Carroll RJ. Simple fitting of subject-specific curves 

for longitudinal data. Stat Med, 24: 1153-67, 2005. 5 

 

18 Cole TJ, Freeman JV, Preece MA. Body mass index reference curves for the UK, 

1990. Arch Dis Child, 73: 25-9, 1995. 

 

19 Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB, the Avon Longitudinal 10 

Study of Pregnancy and Childhood Study Team. Association between postnatal catch-up 

growth and obesity in childhood: prospective cohort study. Br Med J, 320: 967-71, 2000. 

 

20 Fuentes RM., Notkola I-L, Shemeikka S, Tuomilehto J, Nissinen A. Tracking of body 

mass index during childhood: a 15-year prospective population-based family study in eastern 15 

Finland. Int J Obes, 27: 716-21, 2003. 

 

21 Charney E, Goodman HC, McBride M, Lyon B, Pratt R. Childhood antecedents of 

adult obesity. Do chubby infants become obese adults? N Engl J Med, 295: 6-9, 1976. 

 20 

22 Robinson GK. That BLUP is a good thing: the estimation of random effects. 

Statistical Science, 6: 15-51, 1991. 



 25 

Tables 

Table 1 Distributions of variables at birth and at physical examination in later childhood for the 1162 

subjects with at least 3 body mass index (BMI) observations between birth and age 3 years, by sex. 

 Males (n = 596) Females (n = 566) 

Variable Mean Median SD Mean Median SD 

At birth 

Weight (kg) 3.74 3.73 0.60 3.65 3.71 0.56 

Length (cm) 51.6 51.0 2.2 50.9 51.0 2.2 

 

At physical examination in later childhood (age 5-13 years) 

Age (years) 10.0 10.1 1.7 10.1 10.2 1.8 

BMI z-score 0.26 0.12 1.20 0.36 0.30 1.09 
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Table 2 Distributions of age and body mass index (BMI) at BMI peak, by sex and birthweight group. The percentage of subjects with identified BMI peak was 

calculated as a percentage of those included in each subgroup model. 

   Age at BMI peak (years) BMI at BMI peak (kg/m
2
) 

Sex Birthweight group
1
 No. (%) with BMI peak Mean Median SD Mean Median SD 

Males 

Concordant high 102 (83.6%) 0.79 0.78 0.13 18.5 18.3 1.4 

Discordant 289 (86.3%) 0.72 0.67 0.17 18.1 18.1 1.3 

Concordant low 126 (90.6%) 0.72 0.65 0.16 17.7 17.6 1.3 

Total 517 (86.7%) 0.73 0.69 0.16 18.1 18.0 1.4 

Females 

Concordant high 121 (83.4%) 0.76 0.70 0.20 17.9 17.9 1.3 

Discordant  272 (90.7%) 0.79 0.75 0.17 17.9 17.7 1.2 

Concordant low 118 (97.5%) 0.87 0.88 0.13 17.1 17.0 1.2 

Total  511 (90.3%) 0.80 0.76 0.17 17.7 17.7 1.3 

 

1
 Siblings had ‘concordant high’ or ‘concordant low’ birthweight if both were in the top or bottom quarter of the birthweight distribution, 5 

repectively. Siblings had ‘discordant birthweight’ if the sex-adjusted difference in birthweight between them was 0.4 kg or more.
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Table 3 Estimated effects, 95% confidence intervals (CI) and Wald test P-values for the models for body 

mass index (BMI) z-score at physical examination fitted on age or BMI at BMI peak, birthweight and sex. 

Models were additionally adjusted for age at physical examination. Models were fitted on the 1028 

subjects with an identified BMI peak. 

Explanatory variable Coefficient 95% CI P-value 

Age at BMI peak (years) 0.94 0.54, 1.34 <0.001 

Birthweight (kg) 0.47 0.35, 0.60 <0.001 

Female sex  0.10 -0.02, 0.23 0.1 

BMI at BMI peak (kg/m
2
) 0.33 0.28, 0.39 <0.001 

Birthweight (kg) 0.18 0.06, 0.31 0.003 

Female sex 0.27 0.15, 0.39 <0.001 

5 
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Table 4 Estimated effects, 95% confidence intervals (CI) and Wald test P-values for the models for body 

mass index (BMI) z-score at physical examination fitted jointly on age and BMI at BMI peak, birthweight 

and sex. Model was additionally adjusted for age at physical examination. Model was fitted on the 1028 

subjects with a successfully identified BMI peak. 

Explanatory variable Coefficient 95% CI P-value 

Age at BMI peak (years) 0.59 0.21, 0.97 0.003 

BMI at BMI peak (kg/m
2
) 0.32 0.27, 0.37 <0.001 

Birthweight (kg) 0.23 0.10, 0.35 <0.001 

Female sex 0.23 0.11, 0.35 <0.001 

5 
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Fig. 1. Population average curves for males (upper plot) and females (lower plot). Solid line is 

the concordant high birthweight group, dashed line is the discordant birthweight group, dotted 

line is the concordant low birthweight group. 

 5 
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Fig. 2. Observed BMI values (circles), estimated population average curves (dashed lines) and 

fitted subject-specific curves (solid lines) for nine males. The top row corresponds to the 

concordant high birthweight model, the middle row to the discordant birthweight model and 

the bottom row to the concordant low birthweight model. Within each row the left hand plot 5 

is for a subject who had generally low body mass index (BMI) through infancy, the middle 

plot is for a  subject who had average BMI and the right hand plot is for a subject who had 

high BMI. Within each combination of birthweight group and BMI level the plotted subject is 

chosen at random from those eligible. 

 10 
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Fig. 3. Contour plot for predicted body mass index (BMI) z-score in later childhood for 

different combinations of age and BMI at BMI peak in males with mean birthweight and 

mean age at physical examination. 


