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Author summary
Global risk maps are an important tool for assessing the global threat of mosquito and 
tick-transmitted arboviral diseases. Public health officials increasingly rely on risk maps 
to understand the drivers of transmission, forecast spread, identify gaps in surveillance, 
estimate disease burden, and target and evaluate the impact of interventions. Here, we 
describe how current approaches to mapping arboviral diseases have become unneces-
sarily siloed, ignoring the strengths and weaknesses of different data types and methods. 
This places limits on data and model output comparability, uncertainty estimation and 
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generalisation that limit the answers they can provide to some of the most pressing 
questions in arbovirus control. We argue for a new generation of risk mapping models 
that jointly infer risk from multiple data types. We outline how this can be achieved 
conceptually and show how this new framework creates opportunities to better integrate 
epidemiological understanding and uncertainty quantification. We advocate for more 
co-development of risk maps among modellers and end-users to better enable risk maps 
to inform public health decisions. Prospective validation of risk maps for specific applica-
tions can inform further targeted data collection and subsequent model refinement in an 
iterative manner. If the expanding use of arbovirus risk maps for control is to continue, 
methods must develop and adapt to changing questions, interventions and data availabil-
ity.

Introduction
Global and regional risk maps of disease play an increasingly prominent role in health policy 
and decision making. For arboviruses, risk maps have become integral to estimating global 
distribution and burden [1,2], future projections [3,4], outbreak early warning systems [5,6], 
targeting of interventions [2,7], assessments of intervention cost effectiveness [8] and eval-
uation of the progress towards international goals. These needs have become increasingly 
acute as the global burden of dengue has ballooned to an estimated 57–390 million infections 
per year [1,2,9] with increasingly large outbreaks fuelled by urbanisation, travel and climate 
change [10]. Other Aedes mosquito-borne viruses (Zika, chikungunya and yellow fever), Culex 
mosquito-borne viruses (Japanese encephalitis, Rift Valley fever, West Nile fever) and tick-
borne viruses (Tick-borne encephalitis, Crimean-Congo Haemorrhagic Fever) share many of 
the same environmental drivers and recent increases in incidence and range [11,12].

The World Health Organization Global Arbovirus Initiative (WHO GAI) [13] has iden-
tified risk mapping as a key evidence gap within the surveillance pillar, and a recent project, 
conducted by many of the same authors as this manuscript, has aimed to fill this gap. First, 
a systematic review [14] characterised the current state of the art for arbovirus risk mapping 
and gave key recommendations to improve current practice. Second, new global risk maps 
were generated for dengue, chikungunya, Zika and yellow fever that added 42,134 new con-
temporary data points and standardised methodology to improve comparability among arbo-
virus risk maps and address surveillance biases [15]. In this perspective manuscript, we aim to 
look further ahead and identify the key methodological leaps that need to be made to realise 
the range of new applications of risk maps for arbovirus control. While we focus primarily on 
global mapping of Aedes-borne arboviruses, the identified gaps and proposed solutions are 
also applicable to other viral diseases spread by arthropods.

Different types of data measure different types of risk
Models based on different types of data inform different types of risk which have different, but 
often overlapping, applications (Fig 1). The most common types of risk predicted in arbovirus 
risk maps are: risk of establishing local transmission if introduced, risk of ongoing transmis-
sion, risk of disease and risk of infection, each with their own area or population denominator 
and unit of time (Fig 1) [14]. To estimate risk in areas where arbovirus data are not available 
or are inadequate, risk mapping models integrate data on climate, built and natural environ-
ments, human mobility, interventions, and sociodemographics to identify correlates of arbovi-
rus risk that are then used to make predictions and projections.
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Data from laboratory experiments on mosquitoes can be used to understand how climate 
variables, notably temperature, affect critical steps in arbovirus transmission [16]. Con-
trolled laboratory conditions enable precise measurements of these effects, but experiments 
are performed on minority of mosquito lineages [17] and are unrepresentative of field 
conditions [4,18]. These physiological studies can inform which areas may be vulnerable 
to outbreaks [19], and predict how future climate change may influence the global limits of 
transmission [4,18,20].

Occurrence data [21] (presence/absence of disease in a precise location) are the most 
abundant form of data, and often are the only measure of risk available in data-sparse regions, 
making occurrence data an appropriate choice for mapping the current global distributions 
of arboviral diseases. Occurrence data, however, tells us little about the magnitude of risk of 
transmission and is affected by spatial differences in surveillance intensity. Occurrence data 
for vectors or reservoir species can also inform maps of disease invasion, emergence and 
transmission risk [22].

Fig 1.  The main types of data currently used for arbovirus disease mapping. For each data type, the figure summarises relative abundance and quality of data (bias, 
representativeness and consistency among areas and over time) (as assessed by author consensus, both rated 1–5), the main questions each data type aims to answer and 
associated public health actions that can be undertaken with such knowledge. Use cases that can draw on multiple categories are labelled in bi-directional arrows at the 
bottom of the figure.

https://doi.org/10.1371/journal.pcbi.1012771.g001

https://doi.org/10.1371/journal.pcbi.1012771.g001
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Case incidence data is available from many arbovirus-endemic countries and measures 
changing risk over time, but can be difficult to compare among countries due to differing 
case detection, diagnosis and reporting criteria [23]. Despite these limitations, maps based 
on reported incidence data give the best estimates of clinical burden [24,25] and treatment 
resource need, and provide the most time-sensitive and up-to-date estimates of risk, enabling 
the development of outbreak forecasting systems [5,6] and the evaluation of intervention 
impact [26]. Vector abundance data (mosquito counts over time) can also inform time- 
varying estimates of risk, especially in non-endemic settings with lower case counts.

Age-stratified seroprevalence data [27,28] and serological cohort studies [1], can be anal-
ysed to reconstruct a long-term history of past infection dynamics, but have coarse temporal 
resolution and are geographically sparse and rare in low-transmission areas. As the only types 
of data that measure arbovirus infections (as opposed to disease), they are the only type of 
data able to inform the full extent of disease burden and transmission intensity. Estimates of 
long-term average force of infection can also be obtained by analysing the age distribution  
of cases and/or severe cases provided appropriate validation with seroprevalence data [29,30].

Different approaches intentionally aim to predict different elements of transmission risk 
that, depending on the setting, may not correlate with one another. In many cases, choice of 
approach may depend on the availability of information or end-user needs. Indeed, answers 
to some of the biggest questions on global burden, future change and intervention impact can 
come from multiple separate approaches (Fig 1), at times with contrasting results that can be 
challenging to interpret.

Main limitations of current mapping approaches and why they 
matter
Because each type of data, in isolation, has sizeable gaps in space and/or time many mapping 
approaches aggregate data over longer time periods to give a snapshot estimate of long-term 
average risk. This limits a model’s ability to map detailed changes in risk over time and means 
these approaches often cannot directly attribute such changes to variation in climate, urbani-
sation, travel, and intervention use, although some national and regional examples are begin-
ning to emerge [31]. With the rapid development of new vaccines and vector control tools and 
a growing demand for climate change attribution studies, novel temporally dynamic maps 
with robust mechanistic links to causal drivers are increasingly needed.

Data comparability
Even when data are available over long time periods and broad geographic regions, they may 
not be comparable due to variable surveillance, diagnosis, and reporting practices, an issue 
that is particularly acute for arboviruses due to non-specific disease symptoms [32]. Without 
appropriate adjustment, this may result in risk maps representing surveillance sensitivity and 
specificity rather than, as intended, transmission risk. Key vulnerabilities include comparisons 
of incidence data among countries with different surveillance systems and seroprevalence 
data measured with different assays (especially in areas with Zika, or other related viruses, 
due to cross reactive antibodies). Global risk maps will only offer predictive advantages over 
local risk maps if issues with data comparability can be addressed in the modelling approach. 
Occurrence data models can be designed to account for the inherent spatial biases in occur-
rence data through different methods of background or pseudo-absence point generation, 
but too often random selection is used [14] (which assumes uniform surveillance) despite 
increasingly advanced methods that nest surveillance models in a hierarchical structure being 
available [29].



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012771  April 4, 2025 5 / 13

PLOS Computational Biology  

Prediction uncertainty
Current modelling approaches also often systematically underrepresent uncertainty, leading 
to overly precise risk estimates and overconfident comparisons of risk among areas. Exist-
ing frameworks are rarely capable of quantifying spatial uncertainty due to geographic gaps 
in data, leading to highly confident predictions in areas such as Africa despite sparse data 
coverage [33–35]. Choice of co-variables, their data sources, their methods of processing and 
extrapolation in addition to their validated accuracy are all potential areas of uncertainty that 
are rarely propagated. A better assessment of uncertainty informs data collection and iterative 
model improvement, but is also critical if such maps are to be used to make decisions on, for 
example, intervention targeting. Visualising uncertainty in an interpretable way on maps is 
challenging and current portrayals can lead to overconfident uses of the maps and, on occa-
sion, misinterpretation of the raw data.

Generalisability
Machine learning methods have increased the complexity of the relationships we are able to 
fit between variables and disease risk and often appear to give superior predictive performance 
when evaluated via internal cross validation [14]. One consequence of this flexibility, however, is 
less opportunity to include prior biological, ecological and epidemiological understanding of the 
processes that shape the spatial distributions of these viruses. This can lead to poor generalisability 
with far inferior performance when evaluated against out of sample data. This is particularly acute 
in data sparse areas or in areas with environmental characteristics far outside the observed range, 
which happen to be where the largest changes in future risk are projected, for example, dengue in 
Africa [36]. Despite this, few models are evaluated with prospective data collection [37].

Priority areas for model development
The next generation of arbovirus risk mapping models must formally integrate different types 
of data to overcome the limitations discussed above and, thus, realise this new range of appli-
cations. As a collateral benefit, joint inference approaches also open opportunities for more 
integration of ecological and epidemiological understanding that aim to better represent the 
mechanisms that link risk factors to transmission. To achieve these the following priority areas 
will need to be addressed:

Leveraging strengths of different data types in a combined modelling 
framework
New models need to be formulated with a joint likelihood where transmission intensity is 
inferred at a high spatial and temporal resolution as a function of combined occurrence, inci-
dence and seroprevalence data. Such an approach would take advantage of the more accurate 
long-term estimates of force of infection from seroprevalence data, but also characterise the 
high spatial and temporal heterogeneity measured through occurrence and incidence data, 
respectively. Currently, few areas exist globally where these three data sources overlap at scales 
and resolutions that would make this kind of joint estimation possible. Geospatial models will, 
therefore, be important for spatially projecting estimates of risk from each type of data across 
common areas. This geospatial model would need to be nested within the joint inference 
model through a hierarchical structure. Appropriately estimating and weighting uncertainty 
from the original data, the modifiable areal unit problem, extrapolation of the data and assess-
ing the degree of consensus among different types of data will be key challenges, but exam-
ples from malaria risk mapping where case incidence and prevalence data are increasingly 
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combined show that they can be overcome [38,39]. This new modelling approach will likely 
not work everywhere, but discovering that data from a particular area are too sparse to charac-
terise transmission is, in itself, an informative result.

A useful intermediate step would be a systematic comparison of risk maps derived from 
different approaches across different geographic and transmission strata. This analysis could 
assess consensus and better understand which types of risk are captured by different types 
of data in different settings [40]. These hypotheses can be tested in a data-driven manner 
through model “stacking” wherein predictions from one model are tested for inclusion as a 
relevant covariate in another model [41].

Longer-term, joint inference models could incorporate the growing volume of arbovirus 
genomic data to improve estimates of risk during emergence [42] or stratify risk by differ-
ent viral lineages and the fields of phylodynamics and phylogenetics offer examples of joint 
models that could guide development of the models proposed here [43]. Joint inference 
models could also be used to combine data sets across arboviruses, leveraging their shared 
mosquito vectors and similar spatial and seasonal drivers, but different levels of immunity and 
distinct emergence histories [44]. Achieving this integration will require directly accounting 
for additional measurement error due to misdiagnosis and antibody cross reaction. This step 
would not only improve estimates for the major arboviral diseases by drawing on more data, 
but could also be leveraged to predict the potential spread of new emerging arboviruses with 
pandemic potential.

Incorporating biological, ecological and epidemiological understanding 
with the use of (semi) mechanistic risk functions and constraints
The next generation of arbovirus risk models should include more biologically meaningful 
constraints on the relationships between covariates and risk. The Ross-MacDonald equa-
tion for the reproduction number (R) of a vector borne disease can be used to explore such 
opportunities:

	 R S
ma bcp

r p

n

=
− ( )( )

2

ln
	

Studying the effects of temperature mosquitoes in the laboratory has allowed parameterisation 
of functional relationships between temperature and daily mosquito survival rate (p), virus 
incubation period in the mosquito (n), human biting rate (a) and mosquito–host transmis-
sion rates ( b c, ) [45–47]. Humidity is also a key driver of mosquito survival (and possibly 
biting rate) and can be incorporated in a similar way [48]. With growing availability of species 
distribution models for medically important vector species, there may be new opportunities 
to estimate vector abundance (and thus mosquitoes per person m). Rather than using the 
direct estimates of occurrence probabilities that come from such models, some studies have 
suggested that measures of niche centrality (i.e., how closely an environments’ characteristics 
are to the “ideal” environment) calibrated to field estimates may more accurately estimate 
abundance [49].

The Ross-Macdonald equation also provides a framework for understanding how different 
vector species (or sub-species) jointly contribute to transmission. Incorporating covariates 
that summarise the different epidemiologically relevant bionomics of Aedes aegypti and 
Aedes albopictus may improve risk maps in emerging settings, such as Europe where only Ae. 
albopictus is present, and explain how risk changes when species-specific interventions, such 
as wMel Wolbachia, are used at scale. Genetic or phenotypic differences in key mosquito bio-
nomics (particularly b c a, ,   and n), may explain broad regional differences in transmission 
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risk, such as comparatively low reported incidence of dengue and Zika in Africa compared 
with Asia and the Americas [50].

While most current mapping models focus exclusively on environmental drivers of trans-
mission risk, human susceptibility S to infection and, to a lesser extent, duration of human 
infectiousness r play an increasingly important role. Dengue virus serotype, genotype and 
infection sequence all affect disease severity while current vaccines are inconsistently imple-
mented and show variable effectiveness by serotype [51,52]. Incorporating this dynamic 
landscape of susceptibility must become a priority if models are to inform vaccination strategy 
and burden estimation. Some advances in this area have been made in yellow fever where 
demographic models and vaccination data have been integral to mapping risk [53,54]. Com-
bining such dynamic models with a joint inference framework (Fig 2) can better inform the 
relationship between types of risk, disease incidence and seroprevalence. The next generation 
for arbovirus burden estimation and future projection models should include the mitigating 
effects of accumulating immunity, including how shifting future birth, death and migration 
rates affect population-wide immunity and susceptibility to severe disease outcomes.

Improving methods to measure, propagate and visualise uncertainty and 
validation of map predictions
Appropriate measures of uncertainty are essential for maps to inform public health decisions 
and, increasingly, target further data collection. The highest priority is to more accurately 
convey uncertainty related to geographic gaps in epidemiological data, particularly in Africa. 
This most commonly occurs because models rarely account for spatial autocorrelation in the 
data in their model formulation, instead relying on environmental variables alone. Accounting 
for spatial autocorrelation in the data, using random effects structed by proximity or mobility, 
provides a more robust and statistically valid test for models and are already commonplace in 
analyses of incidence data [55,56]. Sharing the full distribution of uncertainty in risk maps for 
every geographic area can empower local modellers by providing priors for variables that are 
not collected or difficult to estimate. Disaggregating uncertainty into its constituent parts (data, 
covariates, model structure, projection) will also help prioritise model refinement efforts.

When arbovirus transmission risk can be robustly theoretically and empirically linked 
to climatic, environmental, and socioeconomic drivers, it is important that uncertainty in 
estimation and extrapolation of these, often model-estimated, drivers is propagated. This is 
particularly acute with future projection studies where multiple climate models project multi-
ple scenarios. More coordinated efforts are required to align projections of climate with those 
of demographics, urbanisation and migration [35]. For now, generating separate arbovirus 
risk projections for each scenario and climate model combination is a comprehensive, if com-
putationally expensive, solution. Sharing data, predictions, and code via online repositories 
and platforms (e.g. Figshare, [30], Github, https://github.com) enables downstream analy-
ses to better propagate scenario uncertainty (e.g. https://dataverse.harvard.edu/dataverse/
Aedesmaps).

Even the formulation of the risk mapping model itself introduces a range of uncertain 
assumptions. Choice of covariates (or covariate selection procedures) and the degree of 
flexibility in the relationship between covariates and disease risk introduce assumptions that 
could be better routinely clarified using conceptual frameworks, guided by the literature and/
or directed acyclic graphs. Ensembles of multiple plausible mapping model structures would 
bring the field in line with developments in temporal forecasting [5,57].

Communicating prediction uncertainty through maps remains an open challenge in the 
field of spatial epidemiology. While some innovative visualisation approaches have been pro-
posed including pixelating more uncertain areas [58] and use of two dimensional bi-variate 

https://github.com
https://dataverse.harvard.edu/dataverse/Aedesmaps
https://dataverse.harvard.edu/dataverse/Aedesmaps
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Fig 2.  Conceptual overview of a joint inference mapping approach showing example occurrence, incidence and seroprevalence data for Brazil (top row), the kinds 
of risk maps that can be generated from each of these data sets independently using current generation methods (middle row) and the time-varying more accurate 
maps that could be generated from a joint-inference modelling approach (bottom row, uses a simple equal weight ensemble for illustration purposes only).

https://doi.org/10.1371/journal.pcbi.1012771.g002

https://doi.org/10.1371/journal.pcbi.1012771.g002
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choropleth maps [59], the best solution will depend on the specific use case of the map. Sum-
marising probabilistic model predictions around a policy-relevant threshold (e.g. 80% certain 
that prevalence is above 70%) has proven an effective approach for informing mass drug 
administration decisions for other neglected tropical diseases [60].

Finally, validation of risk maps needs to become an iterative, multidisciplinary exercise 
that involves out-of-sample validation including prospective data collection. Out-of-sample 
validation can be accomplished by collecting or accessing new data, and gives a more accurate 
measure of model utility for areas without data, i.e. the areas where risk estimates are most 
valuable. Validation is not solely an exercise to prove the map right or wrong, but an opportu-
nity to discuss with stakeholders across multiple levels of government the strength of evi-
dence for arbovirus risk in different areas, strengthen surveillance and to identify key data or 
model gaps that could improve estimates. Interactive dashboards can facilitate this. Currently, 
arbovirus risk maps are validated through comparison with different measures of risk (Fig 
1) [61,62] or periodically as more of the same types of data are published [63,64]. We are not 
aware of any published examples where a clear study design has been used for the purpose of 
prospective data collection to validate a disease risk map, but examples from species distri-
bution mapping in ecology provide a framework that could be adapted for disease risk maps 
[65]. Further research is needed into disease-specific approaches to risk map validation. An 
arbovirus risk mapping project planned today should consider how structured involvement 
of local experts with a diverse range of expertise and potential map use cases could be used to 
evaluate the reliability and usefulness of risk maps.

Key data needs
The full benefits of these new models will only be realised if they are accompanied by invest-
ments in data collection, standardisation, and accessibility. High-resolution global maps 
should not give the illusion that further data collection is not valuable. Models can gener-
ate maps that target data collection in specific sites to fill geographic and/or environmental 
gaps [39]. Investment in databases to collate, standardise and make accessible arbovirus 
data are also important with initiatives including OpenDengue [23] (https://opendengue.
org), ArboTracker [66] (https://new.serotracker.com/pathogen/arbovirus/dashboard) and 
the WHO Global dengue surveillance dashboard (https://worldhealthorg.shinyapps.io/den-
gue_global/) making progress. Similar resources for roll out of new vaccines and Wolbachia 
replacement technologies will need to be developed and lessons can be learned from yellow 
fever, where databases of vaccine coverage have been pivotal for understanding the distri-
bution of the disease [67,68]. New covariates for human mobility, water and waste manage-
ment infrastructure and other dimensions of the built environment at the global scale would 
improve estimates of risk [10]. Increasing the temporal resolution of covariates for current 
and historical periods is also urgently needed.

Conclusions
As arboviral diseases have emerged and re-emerged as global public health threats, a growing 
range of approaches to map arbovirus risk have proliferated. While these maps have been use-
ful, we are approaching the limits of what can be achieved with current methods. Here, we call 
for the development of a new generation of modelling frameworks that integrate the strengths 
of different types of data, incorporate more epidemiological understanding and appropriately 
quantify uncertainty. These new joint inference mapping models could enable a significant 
advance in how risk maps are used by arbovirus control programmes at a time when they 
need to make difficult decisions about investment in novel vector control tools and vaccines.

https://opendengue.org
https://opendengue.org
https://new.serotracker.com/pathogen/arbovirus/dashboard
https://worldhealthorg.shinyapps.io/dengue_global/
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