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ABSTRACT
Motivated by the Swedish Betula study, we consider the joint modeling of longitudinal memory assessments and the haz-
ard of dementia. In the Betula data, the time-to-dementia onset or its absence is available for all participants, while some
memory measurements are missing. In longitudinal studies of aging, one cannot rule out the possibility of dropout due to
health issues resulting in missing not at random longitudinal measurements. We, therefore, propose a pattern-mixture sensi-
tivity analysis for missing not-at-random data in the joint modeling framework. The sensitivity analysis is implemented via
multiple imputation as follows: (i) multiply impute missing not at random longitudinal measurements under a set of plausi-
ble pattern-mixture imputation models that allow for acceleration of memory decline after dropout, (ii) fit the joint model to
each imputed longitudinal memory and time-to-dementia dataset, and (iii) combine the results of step (ii). Our work illus-
trates that sensitivity analyses via multiple imputations are an accessible, pragmatic method to evaluate the consequences of
missing not at-random data on inference and prediction. This flexible approach can accommodate a range of models for the lon-
gitudinal and event-time processes. In particular, the pattern-mixture modeling approach provides an accessible way to frame
plausible missing not at random assumptions for different missing data patterns. Applying our approach to the Betula study
shows that worse memory levels and steeper memory decline were associated with a higher risk of dementia for all considered
scenarios.

1 | Introduction

Joint modeling (JM) of longitudinal and time-to-event data [1–4]
has become pivotal in various clinical applications, such as per-

Abbreviations: MAR, missing at random; MNAR, missing not at random.
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sonalized prediction of time to a clinical milestone [5–8]. In
the cognitive aging literature, joint modeling has proven partic-
ularly useful in evaluating the association between various lon-
gitudinal health trajectories and subsequent dementia risk. For
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example, joint modeling has been used to study the association
between dementia risk and cognition [9–11] and brain imaging
measures [12].

The present study is motivated by the Swedish Betula study, [13,
14] which aims to investigate how memory functions change in
healthy and pathological aging, to identify risk factors for demen-
tia, and to determine early preclinical signs of dementia. Betula
is a prospective cohort study that collected health data from over
4 000 participants, with some individuals’ health being followed
for up to 25 years. One challenge in Betula, as well as in many (if
not all) longitudinal aging studies, is missing longitudinal data
due to participant attrition. Note here that in the Betula study,
dementia diagnoses were obtained from medical records even
after dropout, so the time-to-event outcome is assumed to be
available for everyone. Missing longitudinal data due to dropout
is particularly pronounced among older cohorts, where an indi-
vidual’s current declining health may influence their decision to
withdraw from the study. As a result, study withdrawal might be
related to missing longitudinal data that was initially intended to
be used in the analysis even given all available data. In such a
case, missing longitudinal health-related data are called missing
not at random (MNAR) [15]. The cognitive aging literature has
long acknowledged that people who drop out of studies typically
exhibit (prior to study dropout) worse cognitive performance and
steeper decline compared to those who remain, [16–19] and has
seen this as an indication of MNAR data. Properties of statisti-
cal analyses of such data rely on the assumptions made about
the missing data mechanism, that is, the relation of the fact that
data is missing to available and not available for the analyses data
(Chapter 1.3 in Little and Rubin [20]). Conventional approaches
assume missing at random (MAR) missing data mechanism,
which means that the fact that data is missing is not related to
the missing values given the available data [15]. For example,
memory is missing at random if its missingness does not depend
on missing memory measurements given other available mea-
surements that can be incorporated into the analyses. Since the
conventional methods disregard the MNAR nature of the missing
data, they may yield biased inferences.

For example, consider the task of predicting dementia risk for a
new subject with regularly monitored memory measures based
on a model built from prospective data with possibly MNAR
memory data. Only considering the observed data under the
assumption of MAR data in the model-building step may lead to
falsely overestimating memory performance in the general pop-
ulation [21, 22]. This bias may distort inferences on the relation-
ship between memory and dementia risk, consequently result-
ing in misleading predictions of dementia risk for new patients.
To understand the extent to which this might be an issue, one
has to explore the robustness of inferences to assumptions about
missing data mechanism. Previous work on MNAR longitudinal
data within the JM framework for longitudinal and survival data
has either considered a shared parameter modeling approach, in
which the hazard of dropout is modeled as dependent on the
last observed value and on the random effects, [23] or employed
a competing risk analysis, where dropout is modeled as a com-
peting event to dementia [24]. However, the former relies on
untestable assumptions about the latent random effect distribu-
tion, while the latter does not directly account for the possibil-
ity of progression to dementia after dropout. A fully Bayesian

approach to analyses with missing data is described in Linero and
Daniels [25]. This approach has been applied in the joint model-
ing framework but with an application for longitudinal normal
and binary, but not survival, data in Gaskins et al. [26] However,
we are not aware of any applications of a fully Bayesian approach
to joint modeling of longitudinal and survival data.

Unfortunately, in longitudinal aging studies, the researchers can
not control all mechanisms that lead to data being missing. Addi-
tionally, assumptions about the exact nature of the missingness
mechanism are inherently untestable from the observed data
only. In these settings, sensitivity analyses can aid in understand-
ing the robustness of inferences and predictions for a range of
contextually plausible assumptions about the (possibly MNAR)
data [27, 28]. Herein lies a dual challenge for statisticians: Fram-
ing missing data assumptions comprehensibly for our collab-
orators, and incorporating such assumptions into the analyti-
cal framework. Previously, Carpenter and colleagues [29] argued
that pattern-mixture imputation models provide an accessible
approach for sensitivity analyses and that multiple imputation is
a practical approach to analyzing incomplete data while incorpo-
rating various assumptions about missing data.

In this article, we extend the pattern-mixture multiple imputation
approach to sensitivity analyses for missing not-at-random data
to joint models. We apply the approach to explore the relationship
between longitudinal trends in episodic memory and dementia
risk using the Betula data under various assumptions about the
missing data. First, we perform multiple imputations of missing
memory scores using the information about the dropout time
via a pattern-mixture approach. We consider various assump-
tions about missing data, reflecting different scenarios about
post-dropout memory decline acceleration. Secondly, we fit the
joint model to each completed data set containing the observed
and the imputed data and use standard multiple imputation
techniques for inference. Finally, we compare inferences from
the joint model under different assumptions about post-dropout
memory decline acceleration.

The paper is structured as follows: Section 2 briefly introduces the
Betula study, Section 3 sets out our proposed methodology, which
we apply in our analysis of the Betula data set in Section 4. We
conclude with a discussion of the practical and methodological
findings and implications for future work in Section 5.

2 | The Betula Study

The Betula study is a population-based prospective cohort study
of aging, memory, and dementia conducted at Umeå University,
Sweden [13, 14]. The Betula study was approved by the Regional
Ethical Vetting Board at Umeå University and written con-
sent was obtained from all participants. Participants were ran-
domly sampled from the population registry and were between
25 and 95 years old at enrollment. Key inclusion criteria were
being dementia-free at enrollment, having Swedish as a mother
tongue, and having no vision/hearing impairment; full details are
described in detail in Nilsson et al. [13]. To date, six major waves
of data collection, T1–T6, have been conducted, with approxi-
mately five years between successive waves. At each wave, partic-
ipants underwent an extensive health examination, completed a
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TABLE 1 | Number of participants of the Betula study with available episodic memory score before dementia diagnosis, by Betula cohort (S1–S6)
and follow-up waves (T1–T6)a.

Betula wave → T1 T2 T3 T4 T5 T6
Betula cohort ↓ 1988–1990 1993–1995 1998–2000 2003–2005 2008–2010 2013–2014

S1 999 824 620 486 355 218
S2 975 585 7
S3 950 715 552 383 229
S4 547 1
S5 557
S6 356 63

Note: Empty cells correspond to no scheduled observations.
aThe number of participants in Table 1 is comparable to the number of memory examinations in Table 1 in Nyberg et al. [14] The difference is due to some participants not
having a score for all five tests used to calculate the episodic memory score. Also, the memory scores for 7 participants of Betula Cohort 2 at Wave 5 and one participant of
Betula Cohort 4 at Wave 5 were available but not scheduled by the initial Betula design. We include these 8 data points in our analyses. Additionally, 10 participants started
participation in Betula later than their scheduled first measurement waves. Thus, the sum of the number of participants in the first scheduled wave for each Betula cohort is
4 384, not 4 394.

questionnaire about socioeconomic factors, and underwent cog-
nitive assessments. As Table 1 shows, the Betula sample consists
of six cohorts, S1–S6, that started participation in Betula at differ-
ent waves and were scheduled for varying numbers of measure-
ment waves.

In this article, we consider episodic memory as the longitudi-
nal outcome. Episodic memory was assessed by calculating the
sum of scores for five episodic memory tasks: Immediate free
recall of 16 short sentences without enactment, immediate free
recall of 16 short sentences with enactment, delayed cued recall
of nouns from the previously presented sentences without enact-
ment, delayed cued recall of nouns from the enacted sentences,
and immediate free recall of a list of 12 orally presented nouns.
The memory scores range from 0 to 76, with lower scores indi-
cating worse memory [13]. The number of people with available
episodic memory scores is presented in Table 1. If the score of
one or more of the five component tests is missing for a partici-
pant at a follow-up episodic memory is defined as missing at that
follow-up wave. There were 198 such data points: 87 had missing
scores for four tests; 7 for three tests; 16 for two tests, and 88 for
one test.

Nyberg et al. [14] thoroughly described dementia assessment in
Betula, which we briefly summarize here. The diagnostic pro-
cedure was based on medical records and a health and mem-
ory assessment. To identify dementia onset during Betula data
collection, participants that (a) had a mini-mental state exam-
ination score below 24 or a decline of at least 3 points from
the score of the previous Betula visit or (b) had their cognitive
performance declined from high to normal/low or from nor-
mal to low from the previous testing occasion or (c) reported
memory dysfunction or (d) had a cognitive or behavioral vari-
ation that implies neurocognitive impairment were identified
and were referred for an extended dementia evaluation. This
evaluation was based on the DSM-IV classification core criteria
for dementia [30]. The year when the core criteria for demen-
tia were met was defined as dementia onset. After a partici-
pant had withdrawn from the Betula study, information about
their dementia diagnosis and death was available from medical
records. The dementia evaluations were updated roughly every

five years, and this paper incorporates the latest updates available
up to the year 2 022. For around 60% of dementia cases, dementia
onset started after they had stopped participating in the Betula
study.

Of 4 394 participants in the current study, 2 179 had some sched-
uled observations missing because they withdrew or died (679
out of 4 394 participants died less than five years after their
last available memory measurement). The most frequent rea-
sons for withdrawal were health issues, unwillingness to par-
ticipate, and relocation from the catchment area. Some inter-
mittent measurements were missing for 59 out of 4 394 partic-
ipants before their last follow-up (see Table B1 for the presen-
tation of the patterns of observed data and missing intermittent
measurements).

3 | Methods

We propose a sensitivity analysis approach based on multiple
imputation [31] in the joint modeling framework. Multiple impu-
tation consists of replacing each missing value several times
according to some assumed distribution of missing values given
observed data, estimating the model of interest to each completed
data set, and pooling the estimates from the completed data sets.
There are various ways to perform imputations as long as imputa-
tions are proper, [31] for example, in case of multivariate missing
using a joint model of missing and observed data or a fully con-
ditional specification [32]. When data are MNAR, the observed
data alone can be consistent with numerous joint distributions of
the observed and unobserved data (full-data distributions) [33].
Therefore, a natural sensitivity analysis approach begins with
analyses of the observed data, assuming MAR. Analyses are per-
formed under the primary model of interest, commonly referred
to as a substantive model within the multiple imputation frame-
work [29]. Then, one explores how inferences on the substantive
model change when data are imputed according to the various
departures from MAR. For example, in cognitive aging studies a
common assumption is that individuals dropping out have worse
memory than corresponding members of their study cohort who
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do not drop out. Therefore, it is natural to investigate the robust-
ness of inferences from the observed data to additional cogni-
tive decline after dropout, beyond that which would be predicted
from individuals who do not drop out. We, therefore, propose a
sensitivity analysis within the joint modeling framework, adher-
ing to the following conventional multiple imputation steps [31,
Chapter 1.5]:

A. Fit the substantive joint model to the observed data assum-
ing MAR data.

B. Specify the range of plausible full-data distributions under
MNAR data parameterized by a sensitivity parameter Δ.

C. For each considered full-data distribution (each value of Δ)
perform multiple imputation as follows:
1. Impute each missing value 𝐾 times according to some

imputation model to obtain 𝐾 completed data sets con-
taining both the observed and the imputed data.

2. Estimate the parameters of interest by fitting the sub-
stantive joint model to each of 𝐾 completed data sets.

3. Combine the 𝐾 parameter estimates into one pooled
estimate [31, 34].

D. Compare inferences and predictions on the substantive
joint model across the range of sensitivity parameter Δ
values.

The details of the substantive model are presented in Section 3.1
and the pattern-mixture-based imputation model used in step C
is presented in Section 3.2. In Appendix A, we provide the rules
for combining estimates in step 3.

3.1 | Substantive Model: A Joint Model

Within the joint modeling framework, longitudinal trajectories
are typically represented by linear mixed-effects models (LME)
[35], while the time-to-event data are described by a proportional
hazard, a competing risk, or a multi-state model [3]. To repre-
sent the link between the longitudinal and time-to-event data,
certain aspects of the longitudinal memory trajectory, that is,
the level and/or rate of change, are included as predictors in
the time-to-event model (for details see Chapter 4 in Rizopoulos
[3] figure A).

In the present study, we specify an LME submodel for the lon-
gitudinal outcome and a proportional hazards model for the
time-to-event outcome. Let 𝑦𝑖(𝑡) denote the observed longitudinal
outcome and ℎ𝑖(𝑡) denote the hazard of the event for participant 𝑖

at time 𝑡, 𝑖 = 1, . . . , 𝑁. Time 𝑡, for example, can represent age or
time from enrollment in the study. Then the joint model is:

⎧⎪⎪⎨⎪⎪⎩

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝜀𝑖(𝑡),
𝑚𝑖(𝑡) = 𝑥⊤

𝑖
(𝑡)𝛽 + 𝑧⊤

𝑖
(𝑡)𝑏𝑖,

𝑏𝑖

𝑖𝑖𝑑∼  (0, 𝐷), independent of 𝜀𝑖(𝑡)
𝑖𝑖𝑑∼  (0, 𝜎2),

ℎ𝑖(𝑡|𝑖(𝑡), 𝑤𝑖) = ℎ0(𝑡) exp
(
𝛾⊤𝑤𝑖 + 𝛼⊤𝑓

(
𝑚𝑖

)) (1)

Here, the observed outcome 𝑦𝑖(𝑡) is the sum of the true value of
the longitudinal outcome at timepoint 𝑡, 𝑚𝑖(𝑡), and the measure-
ment error, 𝜀𝑖(𝑡). The function 𝑚𝑖(𝑡) models the mean memory

score given covariates 𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) and random effects 𝑏𝑖. The
design vectors 𝑥𝑖(𝑡) and 𝑧𝑖(𝑡) are for the fixed and the random
effects, respectively, including baseline and time-varying covari-
ates. A vector of subject-specific random effects 𝑏𝑖 is independent
of the error term 𝜀𝑖(𝑡). The error terms are mutually independent
and normally distributed random variables with zero mean and
variance 𝜎2.

In the time-to-event submodel, the hazard of the event for
individual 𝑖 at time 𝑡, ℎ𝑖(𝑡|𝑖(𝑡), 𝑤𝑖) = lim𝑑𝑡→0 Pr(𝑡 ≤ 𝑇 ∗

𝑖
< 𝑡 +

𝑑𝑡|𝑇 ∗
𝑖
≥ 𝑡,𝑖(𝑡), 𝑤𝑖)∕𝑑𝑡, where 𝑇 ∗

𝑖
represents the true time of

the event, depends on baseline covariates 𝑤𝑖 and the history of
the true unobserved longitudinal process up to time 𝑡, 𝑖(𝑡) =
{𝑚𝑖(𝑠), 0 ≤ 𝑠 < 𝑡} (here 𝑠 denotes time before 𝑡). The term ℎ0(𝑡)
represents the baseline hazard at time 𝑡. The term 𝛼⊤𝑓 (𝑚𝑖) quanti-
fies the relationship between the hazard of the event at time 𝑡 and
the true longitudinal process. The choice of 𝑓 (𝑚𝑖) depends on the
research question. For example, 𝑓 (𝑚𝑖) can be the true value of the
longitudinal outcome 𝑚𝑖(𝑠) at time point 𝑠, the slope of the trajec-
tory 𝑚′

𝑖
(𝑠), a vector of the true value and slope, (𝑚𝑖(𝑠), 𝑚′

𝑖
(𝑠))𝑇 , the

random effects 𝑏𝑖, etc. (Chapter 4 in Rizopoulos [3]).

Joint models can be fitted in R [36] using a frequentist
approach with R-packages such as JM, joineR, lcmm,
frailtypack, rstanarm or with a Bayesian approach using
JMbayes, JMbayes2 and bamlss, see Cekic et al. [4] for the
comparison of packages’ functionality. These software packages
analyze the observed data and, therefore, provide valid conclu-
sions when longitudinal outcomes are missing at random. How-
ever, if longitudinal outcomes are thought to be missing not at
random, these approaches are generally invalid and might intro-
duce biased estimates [20].

3.2 | Imputation Model

The imputation steps B and C in Section 3 require specification
of the range of plausible full-data distributions and the corre-
sponding imputation models assuming data are MNAR. Note
that, we consider MNAR longitudinal outcome data (i.e., MNAR
episodic memory data), and non-informative censoring in the
time-to-event data. The pattern-mixture model provides an intu-
itive approach for framing sensitivity analyses: The model speci-
fies that people with different patterns of missing data (usually
time in the study) might have different full-data distributions
(see (12) in Little, 1995 [37] and prior application to the Betula
data in Josefsson et al. [38]). In longitudinal aging studies, it may
be plausible to assume an MNAR process whereby people with
shorter follow-up times have worse memory performance, both
in level and rate of change, compared to those who stay in the
study longer. To incorporate this in the imputation model we start
with some additional notation.

Let 𝑦𝑖 = (𝑦𝑖1, . . . , 𝑦𝑖𝑛𝑖
)𝑇 denote all 𝑛𝑖 longitudinal data scheduled

to be observed for participant 𝑖 at times 𝑡𝑖 = {𝑡𝑖1, . . . , 𝑡𝑖𝑛𝑖
}𝑇 ,

𝑖 = 1, . . . , 𝑁. Let 𝑟𝑖𝑗 , 𝑗 = 1, . . . , 𝑛𝑖, be an indicator of data
being observed, that is, 𝑟𝑖𝑗 = 1 if 𝑦𝑖𝑗 is observed and 0 oth-
erwise. Let 𝑟𝑖 = {𝑟𝑖1, . . . , 𝑟𝑖𝑛𝑖

}⊤. Observed memory-related
data for participant 𝑖 includes the measured covariates,
the observed outcomes, and the indicators of the observed
outcomes {𝑥𝑖(𝑡𝑖)⊤, 𝑧𝑖(𝑡𝑖)⊤, {𝑦𝑖𝑗 , 𝑗 ∶ 𝑟𝑖𝑗 = 1}, 𝑟⊤

𝑖
}. For each par-

ticipant 𝑖 that drops out, we define the dropout time 𝑡𝑖𝐹𝑖
as
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the time of the last observed measurement, 𝐹𝑖 = max{𝑗 ∶
𝑟𝑖𝑗 = 1}. Following the pattern-mixture framework of anal-
yses with missing data, the imputation model is the joint
distribution of all data and missingness where the distri-
bution of the longitudinal data depends on the missing
data pattern 𝑑𝑖. As such, 𝑝(𝑦𝑖(𝑡), ℎ𝑖(𝑡), 𝑏𝑖, 𝑑𝑖|𝑥𝑖(𝑡), 𝑧𝑖(𝑡)) =
𝑝(𝑦𝑖(𝑡)|𝑏𝑖, 𝑑𝑖, 𝑥𝑖(𝑡), 𝑧𝑖(𝑡))𝑝(𝑏𝑖|𝑑𝑖, 𝑥𝑖(𝑡), 𝑧𝑖(𝑡))𝑝(𝑑𝑖|𝑥𝑖(𝑡), 𝑧𝑖(𝑡)). There-
fore, we impute missing longitudinal data using the posterior for
the longitudinal outcome from the model (1) with 𝑚𝑖(𝑡) allowed
to differ between the missing data patterns:

𝑚𝑖(𝑡) = 𝑥⊤
𝑖
(𝑡)𝛽𝑑𝑖 + 𝑧⊤

𝑖
(𝑡)𝑏𝑖 + Δ(𝑡 − 𝑡𝑖𝐹𝑖

)+ (2)

Here, the information about the dropout time is used for imputa-
tions by allowing memory to depend on the missing data pattern.
Additionally, because the missing longitudinal data are imputed
using the joint model, the imputations are informed by both the
longitudinal and survival data. Traditionally, the pattern-mixture
approach involves stratifying data based on 𝑟𝑖 [31]. However, in
studies with a complex design and multiple follow-ups, as in the
Betula study, the response indicator vector, 𝑟𝑖, can take a large
number of values, each representing a distinct observed data pat-
tern. Thus, there may be only a few individuals (and hence obser-
vations) for some values of the vector 𝑟𝑖. Consequently, some
model parameters might be unidentified from the data. The solu-
tion employed here is to group missing data indicators 𝑟𝑖 into
missing data patterns 𝑑𝑖 based on the number of scheduled mea-
surements and length of stay in the Betula study before dropout
(for example, 25 years for the participants that stayed in the
Betula study for all 6 waves or 10 years for participants that stayed
for 3 waves.)

To allow for MNAR outcome data, we introduce the sensitivity
parameter Δ. The sensitivity parameter represents the change
in the linear slope of the longitudinal outcome after the last
follow-up (where (𝑡 − 𝑡𝑖𝐹𝑖

)+ = 𝑡 − 𝑡𝑖𝐹𝑖
if 𝑡 > 𝑡𝑖𝐹𝑖

and 0 otherwise).
If Δ = 0, then one assumes that given the missing data pattern
𝑑𝑖, the trajectory of longitudinal outcome does not change after
dropout, i.e., data are consistent with MAR given the missing
data pattern. If Δ is negative, then one assumes that the decline
of the longitudinal outcome after dropout is steeper than before
the dropout. A negative Δ can also be thought of as an “addi-
tional decline” compared to Δ = 0: The longitudinal outcome
after dropout changes on average by Δ more per time unit com-
pared to Δ = 0. The value of Δ might also depend on time or the
value of other covariates. Figure D1 shows an example of how
different sensitivity parameter values affect the imputed values.

Since Δ describes how the unobserved data differs from the
observed data, it is undefined from the observed data and is a sen-
sitivity parameter (see Section 8.4.2 in Daniels and Hogan [27]
and p. 246 in Carpenter et al. [29]). Imputing missing data and
fitting the joint model for various values of Δ allows studying the
sensitivity of inferences to different changes in linear slope after
the last observed follow-up.

4 | Empirical Study

We now use the proposed procedure to study the association
between episodic memory and the risk of dementia five years

later in the Betula study [13, 14]. The code for all analyses is pro-
vided in the Supporting Information.

4.1 | Data Preparation

The data preparation steps before the analyses are described in
detail in Appendix B. Briefly, memory observations after demen-
tia diagnosis are deleted because we focus on predicting demen-
tia risk from the preceding memory trajectory. For participants
not diagnosed with dementia, age at censoring is defined as
either the age of death or the age at the latest dementia evalu-
ation, whichever comes first (1 253 and 2 140, respectively, out
of 4 394 participants). The latest dementia evaluation was per-
formed between 2 013 and 2 021 after most Betula follow-up vis-
its. For 74 participants for whom information about the most
current dementia and death evaluation was unavailable, age at
censoring is defined as the age at the last memory assessment
plus 0.003 years (approximately one day). Individuals with early
dementia onset (before 65 years old, 11 participants) are excluded
since they likely have a more aggressive disease progression,
which is hard to capture due to the long period of 5 years between
the Betula waves. We also excluded 63 participants with missing
information about their education (83 memory measurements
are excluded due to missing education). Such listwise deletion
provides valid estimates if the probability of education being
missing does not depend on memory scores (the outcome) or the
hazards of dementia. As a result, the analytical sample consists of
9 339 observed memory measures for 4 331 participants and 2 246
memory measures to be imputed for 1 443 participants. Out of the
1 443 participants with missing data, 1 027 participants had only
one measurement to impute.

4.2 | The Substantive Model: Joint Model

We are interested in studying the relationship between level and
change in memory and the risk of dementia five years later. The
joint model then becomes (3):

⎧⎪⎪⎨⎪⎪⎩

𝑦𝑖(𝑡) = 𝑚𝑖(𝑡) + 𝜖𝑖(𝑡)
𝑚𝑖(𝑡) = 𝑓 (𝑡) + 𝑥⊤

𝑖
(𝑡)𝛽 + 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡)

(𝑏0𝑖, 𝑏1𝑖) ∼  (0, 𝐷), 𝜀𝑖(𝑡) ∼  (0, 𝜎2)
ℎ𝑖(𝑡|𝑖(𝑡), 𝑤𝑖) = ℎ0(𝑡) exp

(
𝛾⊤𝑤𝑖 + 𝛼1𝑚𝑖(𝑡 − 5) + 𝛼2𝑚′

𝑖
(𝑡 − 5)

) (3)

Here, 𝑦𝑖(𝑡) represents the memory score for participant 𝑖 at
age 𝑡 years, 𝑓 is a smooth function of 𝑡, 𝑡 is the mean age at
memory assessments with observed memory scores, that is, 𝑡 =∑𝑁

𝑖=1
∑𝑛𝑖

𝑗=1𝑟𝑖𝑗 𝑡𝑖𝑗∑𝑁

𝑖=1
∑𝑛𝑖

𝑗=1𝑟𝑖𝑗

, where 𝑡𝑖𝑗 is the age of participant 𝑖 at their 𝑗th mem-
ory assessment. The vector of covariates, 𝑥𝑖(𝑡) for participant 𝑖

consists of sex, years of education, an indicator of the first mea-
surement to adjust for practice effects (improvement of perfor-
mance due to repeated exposure to a cognitive test), an interac-
tion between the first measurement indicator and age to allow
for practice effects that change with age. Birth cohort, a contin-
uous variable defined as the difference between a participant’s
birth year and 1 937, is also included to control for cohort effects.
The covariates 𝑤𝑖 consist of sex and years of education. The
smooth function 𝑓 is approximated by natural cubic splines with
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FIGURE 1 | Mean observed memory scores before dementia versus age at memory assessment for each considered missing data pattern 𝑑 in the
Betula data set (see the text for definitions of the patterns). A point at age 𝑥 represents the mean of observed memory scores among the participants
aged between 𝑥 − 2.5 years and 𝑥 + 2.5 years at the time of memory assessment, who belong to a specific missing data pattern and are not yet demented
at age 𝑥. For example, the mean observed memory score for individuals in pattern 𝑑 = 2, aged between 87.5 and 92.5 years old and not demented at this
assessment is approximately 11.

3 degrees of freedom. Model selection for the longitudinal sub-
model is described in Appendix C. Note that the choice of a
five-year lag is unrelated to Betula’s design but driven by the
research question.

The joint model (3) is fitted using the R-package JMbayes2 [39]
with three chains (default setting), 10 000 warm-up iterations and
100 000 iterations afterward. We use every 10th iteration after
warm-up for posterior inferences. The baseline hazard is approx-
imated using B-splines (the package’s default). To ensure model
convergence, we have checked that the scale reduction factor was
close to 1, acceptance rates were not too low or too high, and that
the trace plots showed the well-mixed chains.

4.3 | Imputation Model

We impute missing longitudinal memory measurements after
dropout for people who withdrew from the study. Note that we
do not impute intermittent observations. Since we are interested
in the association of memory and the hazard of a subsequent
event, we do not impute longitudinal measurements after the
occurrence of the event. Similarly, we do not impute longitudi-
nal measurements after death because considering memory after
death is not conceptually reasonable.

To specify a pattern-mixture full-data distribution according to
model (2) and the corresponding imputation models, one has first
to define the missing data patterns. In this study, we consider six
missing data patterns on the length of participants’ stay in the
Betula study and their respective Betula cohort:

• Patterns 𝑑 = 0.𝑎 and 𝑑 = 0.𝑏 represent people who do not
withdraw before their last scheduled measurement wave.
Pattern 𝑑 = 0.𝑎 includes Betula cohorts S1 and S3, which
were scheduled for five or six measurement waves, respec-
tively (see Tables 1, B1 and B2). Pattern 𝑑 = 0.𝑏 includes the
remaining Betula cohorts that were scheduled for only one

or two time points by study design. We separate 𝑑 = 0.𝑎 and
𝑑 = 0.𝑏 since, as Figure 1 shows, the memory profile for 𝑑 =
0.𝑏 is very different from the profile for participants in 𝑑 =
0.𝑎, where the latter is a highly selected group who stayed
in Betula for 20–25 years. As Table 1 shows, since memory
measurements after dementia were not used in the analyses
and intermittent missing memory values infrequently occur,
the total number of memory observations is sometimes less
than the scheduled number of measurement waves.

• 𝑑 = 𝑗, 𝑗 = 3, 4, 5 for the participants from longitudinal
Betula cohorts S1 and S3 that drop out after their 𝑗th sched-
uled measurement (Betula wave T𝑗 for S1 and T(𝑗 + 1) for
S3).

• 𝑑 = 2 for dropouts from all Betula cohorts with memory
measurements available from one or two Betula waves. Note
that this pattern includes participants with one memory
measurement to allow identification of the LME model from
the observed data. The parameters of the LME model with
random intercept and slope are not identified for a pattern
with only one data point per subject available.

Information about participants’ Betula cohort was used to define
missing data patterns since cohorts were scheduled for varying
numbers of measurements by the Betula design. Other groupings
into missing data patterns are possible, such as those based on
age at dropout or the number of available measurements. How-
ever, since Betula participants entered the study at different ages
and were scheduled for varying numbers of measurements, we
believe that the length of stay, approximated by the time between
the first and last observations, is more representative of a dropout
pattern in the Betula study (as memory patterns for the partic-
ipants with only two observations by design might differ from
those who were scheduled for six measurements but dropped out
after two).

6 of 17 Statistics in Medicine, 2025
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TABLE 2 | Descriptive characteristics for the Betula data per missing data pattern.

Missing data pattern N Male Demented Deceased Education Age enrol. Age dementia Age censor.

0.a 451 210 (47%) 25 (6%) 39 (9%) 12.1 48 79.7 74.1
5 142 67 (47%) 22 (15%) 47 (33%) 10.7 51 80.9 76.8
4 308 123 (40%) 60 (19%) 149 (48%) 10.0 59 81.2 79.3
3 326 147 (45%) 79 (24%) 210 (64%) 9.4 63 81.1 79.2
2 1 403 648 (46%) 227 (16%) 717 (51%) 10.1 61 81.4 71.8
0.b 1 764 864 (49%) 244 (14%) 612 (35%) 10.7 60 82.1 73.3
Total 4 394 2 059 (47%) 657 (15%) 1774 (40%) 10.5 59 81.5 73.8

Abbreviations: Age Censor., mean age at censoring among censored participants; Age Dementia, mean age at dementia onset among individuals diagnosed with dementia;
Age Enrol., mean age at enrollment; Education, mean number of years of education; Deceased, number (percentage) of deceased participants; Demented, number
(percentage) of participants diagnosed with dementia; Male, number (percentage) of male participants; N, number of individuals in the sample.

As noted above, 59 participants had one or two intermittent miss-
ing measurements (based on “Observed waves before demen-
tia diagnosis” used in the analyses, see Table B1). In total,
intermittent missing appeared for less than 1% of scheduled
measurements.

Figure 1 shows that, on average, participants with fewer obser-
vations had worse memory than those of the same age who
remained in the study longer. The notable “jump” observed in the
𝑑 = 5 group at older ages is due to one individual. Table 2 shows
that among patterns 0.𝑎, 5, 4, and 3 in the Betula data, groups with
fewer memory observations available, a higher proportion of par-
ticipants diagnosed with dementia, and individuals tended to be
older at enrollment compared to groups with more observations.

Following Equation (2), we impute missing memory observations
𝑦𝑖(𝑡) for individual 𝑖 at time 𝑡 after their dropout time 𝑡𝑖𝐹𝑖

and up
to the first of their (i) observed event time, or (ii) final scheduled
follow-up time 𝑇𝑖 using the corresponding posterior draws from
joint model (3) with 𝑚𝑖(𝑡) substituted by (4):

𝑚𝑖(𝑡) = 𝑓 0.𝑎(𝑡 − 𝑡) +

{ ∑
𝑑∈{0.𝑏,2,3,4,5}

𝐼(𝑑𝑖 = 𝑑)𝑓𝑑(𝑡 − 𝑡)

}
+ 𝑥𝑖(𝑡)⊤𝛽 + 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + Δ(𝑡 − 𝑡𝑖𝐹𝑖

)+ (4)

Here, we allow memory development, represented by a smooth
function of age, to depend on the dropout pattern while the
covariates have common parameters 𝛽 across the patterns.

We also consider three assumptions about the missing memory
data for sensitivity analyses. First, we assume that memory devel-
opment post-dropout adheres to the same function of age and
missing data pattern as before dropout, without any additional
post-dropout memory decline, i.e., Δ = 0. This corresponds to a
form of missing not at random, since the memory trajectories
depended on missing data patterns, and hence on the response
indicator 𝑟.

Secondly, we consider missing memory measures for subjects
dropping out before the age of 60 years, to follow the same age
trend as before dropout, i.e., Δ = 0. Conversely, for those who
dropped out after 60, their memory is assumed to decline by
an additional 1 point per year (Δ = −1, note that the maximum
of the memory score is 76) compared to the memory trajectory

estimated from the measurements before dropout. The cut-off
of 60 years is chosen since missingness is thought to be more
informative (memory is more strongly related to the dropout
mechanism) at older ages. The cut-off is also dictated by the
Betula data: Figure B1 shows that it is mostly people younger
than 60 years old at dropout had five missing memory measure-
ments (only one memory observation available). If imputing with
additional decline after dropout for these people, their memory
decline would have been estimated as the most severe among all
individuals, which is not plausible given the young age of these
participants. Furthermore, these participants, who only engaged
in the Betula study once, are more prone than older participants
to drop out due to factors other than memory decline, such as
time constraints related to participation.

Finally, we consider an accelerated additional memory decline
after dropout, represented by allowing for different Δs for differ-
ent ages. In our analyses, we use Δ = −((age − 25)∕75)3, where
additional memory decline before the age of 60 years old is nearly
zero and becomes increasingly bigger as a function of age. Here,
for a hypothetical individual, the memory at age 25, the youngest
age in Betula, is imputed using Δ = 0, while the memory at 100
years old for this hypothetical individual is imputed using Δ =
−1.

Figure 2 illustrates how decreasing Δ results in a lower mean
memory. The biggest differences between the approximations are
for missing data pattern 2 with the highest proportion of data
imputed. As per construction, the imputations before the age of
60 do not depend on Δ. Also, the predictions for patterns 0.a and
0.b do not depend on Δ because no data are imputed for them.
Figure D1 shows that, as expected, the posterior means of mem-
ory score decreases with more negative Δ for those who dropped
out after 60 years old.

In practice, we follow the Bayesian framework for imputation, as
described below. We first fit joint model (3) with 𝑚𝑖(𝑡) substituted
by (4) to the observed data using JMbayes2R-package and three
chains (package’s default), 50 000 warm-up iterations, and 50 000
iterations afterward. We save every 50th MCMC iteration as pos-
terior draws for fixed and random effects from each chain, result-
ing in a total of 3 000 posterior draws (1 000 draws for each chain).
Note that for the observed data Δ(𝑡 − 𝑡𝑖𝐹𝑖

)+ is 0 since times 𝑡 are
less than dropout times 𝑡𝑖𝐹𝑖

. For each scenario, corresponding to
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FIGURE 2 | Observed (black) and posterior means over 3 000 posterior draws for missing memory scores for Δ = 0 (orange), age-varying Δ =
−((age − 25)∕75)3 (pink), and Δ = −1 (blue) per missing data pattern 𝑑 for patterns with imputed data (no data is imputed for patterns “0.a”, “0.b”).
The curves represent LOESS smooth approximation of the mean memory.

each specific assumption about Δ, we impute missing memory
measurement 𝐾 = 5 times using (4) with the true values of model
parameters substituted by five randomly selected posterior draws.
The 𝐾 = 5 draws used for imputations are different for different
values of Δ. If the suggested imputation memory score was below
0, we impute 0. We acknowledge the recommendations to use
more imputations [29, 40]. However, we have chosen to use five
imputations due to the long computational time (approximately
30 min for one scenario and one imputation). We accept a relative
efficiency loss of around 4% for a 19% loss of information, given
that 19% of longitudinal measurements are missing.

According to step C of the framework, after imputing missing
longitudinal measurements, we fit the joint model (3) to each
of 𝐾 = 5 completed data sets using JMbayes2 R-package [39]
with three chains (default setting), 20 000 warm-up iterations,
30 000 iterations afterward, and use every 30th iterations after the
warm-up as posterior draws from each of five imputation itera-
tions. For parameter pooling, we first combine the estimates from
the three chains into one chain of size 3 000 for each imputation
and combine the resulting chains using the parameter pooling
approach for Bayesian analyses described in Appendix A.

4.4 | Results

The estimates and the 95% credible intervals for the parameters
of the joint model based on the observed data and the three con-
sidered assumptions about missing data are presented in Table 3.
The corresponding standard errors are presented in Table D1. The
posterior chains converged well as the scale reduction factor was

estimated to be less than 1.11 for the fixed effects of the joint
model and the variance of errors in the longitudinal submodel.
The acceptance rates varied between 0.4 and 0.5 for all chains.

The results, based on 95% credible intervals, revealed that, on
average, males were estimated to have poorer memory perfor-
mance than females; higher baseline education corresponded to
a better memory level. There were practice effects, i.e., partici-
pants were estimated to perform more poorly at the first mea-
surement compared to the follow-ups. The interaction of practice
effects and age suggested that older people improved less from
the first to the second measurement compared to younger peo-
ple. The credible intervals for these relationships did not include
zero regardless of the considered missing data mechanism. The
regression parameter estimate for the birth cohort decreases with
Δ, however, interpreting this decrease in isolation is challenging
due to the strong correlation of approximately −0.86 between the
birth cohort and age.

In the time-to-event model, females were estimated to have a
higher hazard of dementia than males. The relationship between
baseline education and the risk of dementia attenuated with more
extreme changes after dropout where the 95% credible intervals
included 0. The association between dementia risk and the mem-
ory level and speed of memory decline 5 years prior remained
negative in the considered analyses. Worse memory levels and
steeper memory decline were associated with a higher risk of
dementia for all considered assumptions about the missing data.
We also investigated the sensitivity of the results to cutoffs at

8 of 17 Statistics in Medicine, 2025
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TABLE 3 | Estimates (95% credible intervals) for the parameters of the joint model (3) fitted to the observed data and while accounting for missing
longitudinal data according to multiple imputation procedure in Section 3 for different values of Δ.

Estimate (CI)

Predictor Observed data MI, 𝚫 = 0 MI, age-varying 𝚫 MI, 𝚫 = −1

Longitudinal submodel
(Intercept) 31.93 (30.09, 33.86) 32.59 (30.9, 34.3) 35.62 (33.9, 37.34) 35.55 (33.81, 37.31)
ns(𝑡 − 𝑡, df = 3)1 −4.37 (−5.72, −3.11) −6.03 (−7.32, −4.72) −8.07 (−9.3, −6.85) −8.42 (−9.62, −7.23)
ns(𝑡 − 𝑡, df = 3)2 −20.17 (−23.92, −16.56) −23.62 (−26.87, −20.46) −33.44 (−36.86, −30.08) −35.86 (−39.24, −32.5)
ns(𝑡 − 𝑡, df = 3)3 −29.64 (−31.61, −27.62) −33.14 (−35.07, −31.33) −42.5 (−44.37, −40.7) −47.15 (−48.93, −45.41)
Male −2.9 (−3.36, −2.44) −2.9 (−3.35, −2.45) −2.93 (−3.38, −2.48) −2.92 (−3.37, −2.46)
Education 0.83 (0.76, 0.89) 0.83 (0.77, 0.9) 0.84 (0.77, 0.9) 0.85 (0.78, 0.92)
First −3.92 (−5.08, −2.64) −4.19 (−5.31, −3.02) −4.91 (−5.98, −3.84) −5.43 (−6.43, −4.37)
First*age 0.04 (0.02, 0.06) 0.05 (0.03, 0.07) 0.06 (0.04, 0.08) 0.07 (0.05, 0.09)
Cohort 0.11 (0.09, 0.14) 0.09 (0.06, 0.11) 0.02 (0, 0.05) 0.01 (−0.02, 0.03)

Survival submodel
Male −0.48 (−0.77, −0.2) −0.47 (−0.76, −0.18) −0.42 (−0.71, −0.14) −0.36 (−0.65, −0.09)
Education 0.04 (0.01, 0.08) 0.03 (0, 0.06) 0.02 (−0.01, 0.05) 0.01 (−0.02, 0.05)
Value(EM) −0.07 (−0.09, −0.05) −0.06 (−0.08, −0.04) −0.05 (−0.07, −0.04) −0.04 (−0.06, −0.02)
Slope(EM) −2.57 (−3.49, −1.65) −4.56 (−5.53, −3.58) −3.2 (−4.08, −2.34) −2.56 (−3.52, −1.66)

Note: Missing data patterns are ignored while fitting the substantive model to the observed data, while the fit of the substantive model under Δ = 0 uses data imputed under
the pattern-mixture model, which considers missing data patterns. ns(𝑡 − 𝑡, df = 3)i: The ith vector in a natural cubic spline basis.
Abbreviations: Cohort, The difference between the participant’s birth year and 1 937; Education, Years of education; EM, episodic memory score; First, The indicator of the
first measurement; Male, 1 for males, 0 for females; t, Age; 𝑡, The mean age at memory assessments with observed memory scores.

55 and 65 years instead of 60 years old and found that the rela-
tionship between dementia risk and memory was not materially
affected by such cutoff choices (see Table D2).

Figure 3 illustrates how different considered assumptions about
the nature of missing data used to fit the models affect the
dynamic predictions of memory function and survival for sev-
eral new hypothetical “average” individuals, whose memory is
equal to the corresponding mean memory in the Betula data and
who were dementia-free at their last memory measurement. To
illustrate how predictions would look like for “real” patients,
Figure D2 shows dynamic predictions for new individuals that
have the same data as specific individuals in the Betula data. Note
here that the observed longitudinal data for these new individ-
uals stayed the same regardless of the model used to calculate
the predictions. The difference between predictions is due to the
substantive model being fit to different data. Under MAR, the
substantive model was fitted to the observed Betula data alone (no
imputation), while in the sensitivity analyses, the model was fit-
ted to the completed after multiple imputation data sets. In each
completed data set, only memory data changed while the survival
data remained the same as in the observed data. The variation
in survival predictions stemmed, among others, from differences
in the estimated baseline hazards, survival model parameter esti-
mates, as well as the estimates for the value and slope of memory
changes. As expected, the predicted memory decline accelerated
with more negative Δ since the fit is based on worse imputed
memory. The prediction of the cumulative incidence of demen-
tia was characterized by high uncertainty, as indicated by the
wide credible intervals. The changes in the predicted incidence

of dementia due to the considered sensitivity analyses were small
compared to the uncertainty in the estimation of the hazards. As
expected, worse observed memory was associated with a higher
hazard of dementia (see individuals represented by the first, sec-
ond, and the last three columns in Figure D2).

Our analysis found it challenging to determine the absolute value
and direction of bias when predicting dementia risk for a new
subject assuming MAR instead of MNAR data. For example,
the predicted cumulative incidence of dementia from the sce-
nario with the sharpest memory decline after dropout (Δ = −1)
was the highest for some new subjects (see the second column
in Figure 3), while for others this scenario resulted in lower
risk (see the fourth column in Figure 3). Hence, our investiga-
tion did not reveal one factor that explains the relative position
of the incidence predictions. In particular, further investigation
showed the results were not driven by negative/positive random
effects or higher/lower than average memory levels. The differ-
ence between the predictions may be related to the ages of a
patient at which the longitudinal measurements are available.
By construction, the imputations of the longitudinal data before
60 years old are not affected by sensitivity parameter Δ. For new
people that have observed longitudinal data only at younger ages
(columns 1 and 2 in Figure D2), the survival predictions at older
ages are primarily informed by the imputed data at older ages,
and as expected, a higher hazard of dementia is predicted from
the models fitted to more sharply declining memory trajectories.
Conversely, for new people with longitudinal data observed at
older ages, their data are more optimistic compared to all other
data used to fit the substantive models under Δ = −1 than under
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FIGURE 3 | Observed data and dynamic prediction of memory (top row) and cumulative incidence function (CIF, bottom row) from the joint model
fitted to the observed data (MAR) and while accounting for missing data for four new female individuals born in 1 937 with 10.5 years of education
(mean education in the Betula data) that are dementia-free at the last available memory measurement. The first woman has measurements only at 25,
30, 35, and 40 years of age; the second has measurements only at 40, 45, 50, and 55 years of age; the third woman has measurements only at 55, 60, 65,
70 years of age; the fourth woman has measurements at 70, 75, 80, 85 years of age. The measurements at ages 25, 30, . . . , 85 were equal to the mean
of the observed memory scores at baseline and follow-ups among the participants aged (22.5, 27.5), (27.5, 32.5), . . . , (82.5, 87.5). Shaded areas represent
credible intervals for the predicted memory and cumulative incidence function by combining 1 000 draws from each completed data set according to
Appendix A.

Δ = 0. Therefore, the risk of dementia is estimated more opti-
mistically when Δ = −1.

5 | Discussion

This paper contributes to the application of disease predic-
tion for new subjects from previously collected longitudinal
health-related data. A pressing problem arises when predic-
tions are derived from models fitted to incomplete longitudinal
datasets with MNAR missingness, which may severely distort
models’ predictive performance. In the present study, we pro-
posed an accessible and practical sensitivity analysis approach
to investigate the robustness of inferences from the joint mod-
els to different assumptions about missing data. We applied the
approach to longitudinal data from the Betula study and found
that level and change in episodic memory are informative for
predicting dementia risk five years later. We further explored the
robustness of results to various assumptions regarding the miss-
ingness mechanism and found the associations to be weaker for
larger departures from MAR. Our sensitivity analyses showed
that if considering missing not at random data, future predic-
tive analyses might consider modifying the regression weights of
memory when predicting dementia risk.

From a methodological perspective, this paper presents a
multiple-imputation-based pattern-mixture approach to perform
sensitivity analyses in the joint modeling of longitudinal and
time-to-event data. Pattern-mixture modeling offers an intu-
itive method for capturing variations in the full-data distribu-
tions by acknowledging that the distribution of longitudinal
and time-to-event data may differ among various missing data
patterns. By incorporating sensitivity parameters, the approach
allows representing deviations from the standard missing at ran-
dom (MAR) assumption. In this paper, the sensitivity parame-
ter accounts for an additional decline in the longitudinal out-
come after dropout (but note thatΔ = 0 corresponds to an MNAR
assumption too, because the imputation varies between the miss-
ing data pattern). This interpretation facilitates a clearer under-
standing of the differences between the imputed and the observed
values, which is essential for effective research communication.
As with any method, the pattern-mixture approach has some
drawbacks. When data has many missing patterns, as in the
Betula study, the pattern-mixture approach requires the specifica-
tion of many unidentified parameters. Moreover, the model can
be unidentified as, for example, a mixed effect model with ran-
dom intercept and slope for the pattern with only one observation
per person. To reduce the number of parameters, one might need
to define the relationships between the unidentified parameters
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or combine the missing data patterns, [25, 27] as this study did.
Such adjustments introduce additional assumptions about data.
Also, choices must be made about trajectories after dropout and
intermittent missing through the choice of sensitivity parameters:
Should they depend on the covariates, timing of dropout, be cor-
related, etc.? Additionally, pattern-mixture models are designed
to specify data models conditional on the missing data pattern,
whereas the primary focus is often on the model’s marginalized
overall patterns.

An alternative to the proposed multiple imputation approach is a
fully Bayesian analysis. The motivation for the multiple imputa-
tion approach lies in the separation of the imputation and analy-
sis of the substantive model. The separation allows for the inclu-
sion of additional information in the imputation model that is
not in the substantive model. Also, an important practical advan-
tage of this separation is that it enables analysts to use existing
joint-modeling software to fit the substantive and the imputation
models, such as JMbayes2 R package instead of more challeng-
ing specification of full likelihood in the software for one-step
fully Bayesian inferences.

In the present study, we only considered missingness in the longi-
tudinal outcome (episodic memory), and not missingness in the
time-to-event outcome (dementia), since this was the case in the
Betula data, where dementia diagnoses were obtained from med-
ical records even after dropout. However, further research might
consider other settings where dementia diagnosis after dropout is
unobserved. In such cases, for example, dropout can be modeled
as a competing risk [24, 41] or the time-to-event outcome can be
also imputed. Additionally, a natural extension of the proposed
approach is to consider a multi-state illness-death model, with
“healthy”, “demented,” and “dead” states. Such a model would
require modification of the substantive model.

The proposed approach can easily be modified for other research
settings. For example, we chose to infer a lag-5 dependency
between the true memory level, the speed of memory decline,
and time-to-dementia. Alternative association structures and lags
can also be considered. Moreover, in the sensitivity analyses, we
solely considered changes in the linear slope after dropout despite
non-linear memory trajectories. Non-linear and more individ-
ualized adjustments post-dropout could also be explored, for
example, changes depending on the missing data pattern (which
would require introducing multiple sensitivity parameters into
the model), relative changes, etc., achieved by appropriately mod-
ifying the imputation model.
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Appendix A

Parameter Pooling

In step 3 in Section 3, estimates of a quantity of interest and their vari-
ances, {𝑄̂𝑘, 𝑈𝑘}𝐾

𝑘=1 from fitting the substantive model to the 𝐾 completed
data sets are combined for final inference. The quantity of interest can be
a substantive model parameter, for example, the association 𝛼 between
the longitudinal measures and the hazards of dementia in the model (1),
or some other known function of the data.

In the frequentist approach, the scalar parameter estimates that are nor-
mally distributed can be combined using Rubin’s rules [31]. The com-
bined estimate is 𝑄 = 1

𝐾

∑𝐾

𝑘=1𝑄̂𝑘. The estimate of the total variance 𝑇 of
the combined estimate 𝑄 is the weighted sum of variances within each
of 𝐾 completed data sets and the variance between the completed data
sets: 𝑇 = 𝑈̄ +

(
1 + 1

𝐾

)
𝐵. Here, the within-variance is 𝑈̄ = 1

𝐾

∑𝐾

𝑘=1𝑈̄𝑘,
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and the between-variance is 𝐵 = 1
𝐾−1

∑𝐾

𝑘=1(𝑄̂𝑘 − 𝑄)2. The 100(1 − 𝛼)%
confidence interval of 𝑄 can be calculated as 𝑄 ± 𝑡𝜈,1−𝛼∕2

√
𝑇 , where

𝑡𝜈,1−𝛼∕2 is the quantile corresponding to probability 1 − 𝛼∕2 of the
t-distribution with 𝜈 = 𝐾−1(

𝐵+𝐵∕𝐾

𝑇

)2 degrees of freedom (Equation 3.1.6 in

Rubin [31]). Non-normal parameters can be transformed toward normal-
ity before applying Rubin’s rules and then back-transformed (see Section
5.2 in van Buuren [32]).

Using a Bayesian approach, respective pooled summaries for quantity 𝑄

can be constructed by firstly sampling 𝐽 values of 𝑄 from the posterior
𝑓 (𝑄|𝐷𝑘) for each of the completed data set 𝐷𝑘, 𝑘 = 1, . . . , 𝐾 and where
𝐽 is some large number [34]. We denote these 𝐽 draws as 𝑓 (𝑄𝑘). Secondly,
the draws 𝑓 (𝑄𝑘), 𝑘 = 1, . . . , 𝐾 are combined to obtain a set of all posterior
draws 𝑓 (𝑄𝑎𝑙𝑙) of size 𝐽𝐾. The point estimate of 𝑄 can be the mean or
median of posterior draws 𝑓 (𝑄𝑎𝑙𝑙). The (1 − 𝛼)100% credible intervals can
be defined as (𝑝𝛼∕2, 𝑝1−𝛼∕2), where 𝑝𝛼∕2 and 𝑝1−𝛼∕2 are the 2.5𝑡ℎ and 97.5𝑡ℎ

percentiles of 𝑓 (𝑄𝑎𝑙𝑙).

Appendix B

Data Preparation
• Each row in a data file represents an observation of memory and

health for a specific participant for a specific Betula wave.

• From a data file, delete 1 374 rows with no data for any of the five
memory tests (9 733 rows for 4 424 people left).

• Define
⋅ sex to be 0 for females and 1 for males.
⋅ memory score as the sum of scores for five episodic memory

tasks: Immediate free recall of 16 short sentences without enact-
ment, immediate free recall of 16 short sentences with enactment,
delayed cued recall of nouns from the previously presented sen-
tences without enactment, delayed cued recall of nouns from the
enacted sentences, immediate free recall of a list of 12 orally pre-
sented nouns. The memory scores range from 0 to 76.

⋅ age at memory assessment for each Betula wave as rounded to one
decimal age at memory test if available; for 85 rows with no infor-
mation on the memory test, define age as rounded to one decimal
age at health test.

⋅ date of testing as the date of memory test (using year, month, and
the first day of the month if the testing was performed in the first
half of the month, otherwise the 15th of the month) if available;
otherwise, the date of health test, defined similarly using year,
month and a half of the testing month.

⋅ date of birth by subtracting age from date of testing.
⋅ age at death as a sum of age at testing and the difference between

the date of death and the age at testing.
⋅ age at death evaluation as the sum of age and the difference

between the date when the participants’ vital status was last
checked and the date of testing.

⋅ age at dementia evaluation as a sum of age and the difference
between the date of the latest dementia diagnostic evaluation and
the date of testing.

⋅ time to impute the memory measures as the time at the last
follow-up plus 5 years multiplied by the order of missing measure
(1 for the first missing measure, 2 for the second, etc.)

• Delete data for 11 subjects (20 rows, 9 713 rows for 4 413 people left)
with early onset of dementia. Individuals with early onset dementia
are excluded since they have a more aggressive disease progression,
and the long time span of 5 years between the Betula waves does not
allow capturing this progression.

• Delete 197 rows with missing scores for some of the five tests used
to calculate the memory score (9 516 rows for 4 394 people are left).

• Define age at the event as age at dementia onset if available (657
out of 4 394 people), otherwise age at censoring. Age at censoring is
defined as the minimum age of death and age at the latest demen-
tia evaluation, if available (3663 people); for 74 participants with no

date of death or latest dementia evaluation, the age at censoring is
defined as the age at memory assessment plus 0.003 years (equals
approximately a day).

• Use baseline education instead of time-dependent education. If
baseline education is unavailable, we have checked if any informa-
tion about education is available at other assessment waves. One
participant had two observations of 5 years of education; we used
five as their years of education. For three participants, zero years of
education was recorded at the sixth Betula wave (this could be the
data or denote no info about education if measurement or process-
ing error; the reason for zero is not stated in the variable explanation
file, so we use 0).

• For one subject, substitute their highly unlikely value of education
of 70 years to not available.

• Delete 94 longitudinal observations after dementia onset (9 422 rows
for 4 394 participants are left).

• Delete 83 observations (63 participants, 9 339 rows in the longitu-
dinal data, and 4 331 rows in the survival data left) with missing
education since education is one of the covariates in the model.

Appendix C

Cognitive Trajectory Modeling

To select the model for longitudinal memory trajectories, we compared
the fit of several linear mixed effects models to the observed data. In
the models, lme_fit_1—lme_fit_5, memory 𝑦(𝑡) at age 𝑡 depended on
the polynomial of the age of the first, second, third, fourth, and fifth
degree. We also compared these parametric models to less restricted mod-
els lme_fit_ns2—lme_fit_ns5, where the age-memory relationship was
modeled through a smooth function via a natural cubic spline with 1,
2, 3, 4, and 5 internal knots (2–6 degrees of freedom, respectively). In
all compared models, we included the following covariates: Sex, base-
line education, age cohort defined as the difference between the partici-
pant’s birth year and 1 937, an indicator of enrollment to estimate practice
effects and interaction of age, and the enrollment indicator to represent
the dependency of practice effects on age at the first measurement. Each
model included a random intercept and a random linear slope for each
participant.

The compared models are

lme_fit_1: 𝑦𝑖(𝑡) = 𝛽0 + 𝑥𝑖(𝑡)⊤𝛽1 + 𝛽2(𝑡 − 𝑡)

+ 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_2: 𝑦𝑖(𝑡) = 𝛽0 + 𝑥𝑖(𝑡)⊤𝛽1 + 𝛽2(𝑡 − 𝑡)

+ 𝛽3(𝑡 − 𝑡)2 + 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_3: 𝑦𝑖(𝑡) = 𝛽0 + 𝑥𝑖(𝑡)⊤𝛽1 + 𝛽2(𝑡 − 𝑡) + 𝛽3(𝑡 − 𝑡)2

+ 𝛽4(𝑡 − 𝑡)3 + 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_4: 𝑦𝑖(𝑡) = 𝛽0 + 𝑥𝑖(𝑡)⊤𝛽1 + 𝛽2(𝑡 − 𝑡) + 𝛽3(𝑡 − 𝑡)2

+ 𝛽4(𝑡 − 𝑡)3 + 𝛽5(𝑡 − 𝑡)4 + 𝑏0𝑖

+ 𝑏1𝑖(𝑡 − 𝑡) + 𝜀(𝑡)

lme_fit_5: 𝑦𝑖(𝑡) = 𝛽0 + 𝑥𝑖(𝑡)⊤𝛽1 + 𝛽2(𝑡 − 𝑡)

+ 𝛽3(𝑡 − 𝑡)2 + 𝛽4(𝑡 − 𝑡)3 + 𝛽5(𝑡 − 𝑡)4

+ 𝛽6(𝑡 − 𝑡)5 + 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_ns2: 𝑦𝑖(𝑡) = 𝑓 (𝑡 − 𝑡, 𝑑𝑓 = 2) + 𝑥𝑖(𝑡)⊤𝛽 + 𝑏0𝑖

+ 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_ns3: 𝑦𝑖(𝑡) = 𝑓 (𝑡 − 𝑡, 𝑑𝑓 = 3) + 𝑥𝑖(𝑡)⊤𝛽 + 𝑏0𝑖

+ 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_ns4: 𝑦𝑖(𝑡) = 𝑓 (𝑡 − 𝑡, 𝑑𝑓 = 4) + 𝑥𝑖(𝑡)⊤𝛽

+ 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)
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TABLE B1 | Number of participants per missing data pattern and Betula waves with observed memory and the waves with observed memory before
dementia onset.

Missing data
pattern 𝒅

Betula
cohort

Observed
waves

Observed waves
before dementia

Number of
participants

0.a S1 123456 12345 4
0.a S1 123456 123456 209
0.a S1 12346 12346* 3
0.a S1 12356 12356* 4
0.a S1 12456 12456* 1
0.a S1 1256 1256* 1
0.a S3 23456 23456 220
0.a S3 2346 2346* 6
0.a S3 2356 2356* 2
0.a S3 2456 2456* 1
5 S1 12345 1234 6
5 S1 12345 12345 127
5 S1 1235 1235* 3
5 S1 1245 1245* 4
5 S1 125 125* 2
4 S1 1234 12 1
4 S1 1234 123 10
4 S1 1234 1234 127
4 S1 124 12 2
4 S1 124 124* 4
4 S1 134 134* 1
4 S3 2345 234 1
4 S3 2345 2345 148
4 S3 235 235* 9
4 S3 245 2 1
4 S3 25 25* 2
4 S3 345 34 1
4 S3 345 345 1
3 S1 123 12 10
3 S1 123 123 121
3 S1 13 13* 5
3 S3 234 23 14
3 S3 234 234 162
3 S3 24 2 2
3 S3 24 24* 11
3 S3 34 34 1
2 S1 1 1 156
2 S1 12 1 13
2 S1 12 12 185
2 S2 2 2 383
2 S3 2 2 208
2 S3 23 2 15
2 S3 23 23 148
2 S3 3 3 2
2 S6 5 5 293
0.b S2 23 2 11
0.b S2 23 23 573
0.b S2 235 23 1
0.b S2 235 235 6
0.b S2 25 25 1
0.b S2 3 3 5
0.b S4 3 3 546
0.b S4 35 35 1
0.b S5 4 4 557
0.b S6 56 56 63
Total 4394

Note: Missing memory measurements are represented by missing corresponding Betula wave numbers in “Observed waves” and “Observed waves before dementia”.
*Denotes the patterns with intermediate missing (S2 patterns 23 and 235 as well as S4 pattern 35 do not have an intermediate missing since S2 and S4 were scheduled only for one measurement but
some people participated more than once).
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FIGURE B1 | Histogram of ages at the last memory observation by the number of missing memory measurements for dropouts.

TABLE B2 | Number of participants per Betula cohort and missing data pattern.

Betula cohort Missing data pattern 𝒅 Number of participants

S1 0.a 222
S1 5 142
S1 4 145
S1 3 136
S1 2 354
S2 2 383
S2 0.b 597
S3 0.a 229
S3 4 163
S3 3 190
S3 2 373
S4 0.b 547
S5 0.b 557
S6 2 293
S6 0.b 63
Total 4 394

TABLE C1 | Longitudinal model comparison.

Model df AIC BIC logLik Test L.Ratio p-value

lme_fit_1 1 11.00 62712.57 62791.13 −31345.28
lme_fit_2 2 12.00 62287.12 62372.82 −31131.56 1 versus 2 427.45 0.00
lme_fit_3 3 13.00 62240.97 62333.81 −31107.48 2 versus 3 48.15 0.00
lme_fit_4 4 14.00 62240.08 62340.07 −31106.04 3 versus 4 2.88 0.09
lme_fit_5 5 15.00 62240.02 62347.15 −31105.01 4 versus 5 2.07 0.15
lme_fit_ns2 6 12.00 62281.67 62367.38 −31128.84 5 versus 6
lme_fit_ns3 7 13.00 62233.84 62326.69 −31103.92 6 versus 7
lme_fit_ns4 8 14.00 62235.39 62335.38 −31103.70 7 versus 8
lme_fit_ns5 9 15.00 62236.43 62343.56 −31103.22 8 versus 9
lme_fit_ns6 10 16.00 62237.67 62351.94 −31102.84 9 versus 10

Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; df, Degrees of freedom in the model; L. Ratio: Likelihood ratio for the
likelihood-ratio test performed; logLik, Log-likelihood, Test indicates what models were compared in a corresponding likelihood-ratio test.
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lme_fit_ns5: 𝑦𝑖(𝑡) = 𝑓 (𝑡 − 𝑡, 𝑑𝑓 = 5) + 𝑥𝑖(𝑡)⊤𝛽

+ 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡)

lme_fit_ns6: 𝑦𝑖(𝑡) = 𝑓 (𝑡 − 𝑡, 𝑑𝑓 = 6) + 𝑥𝑖(𝑡)⊤𝛽

+ 𝑏0𝑖 + 𝑏1𝑖(𝑡 − 𝑡) + 𝜀𝑖(𝑡) (C1)

Random effects 𝑏𝑖 = (𝑏0𝑖, 𝑏1𝑖) were assumed to be normally distributed
with variance-covariance matrix 𝐷 independent from the error terms 𝜀𝑖.

Errors 𝜀𝑖(𝑡)were assumed to be uncorrelated. All models were fitted using
lme function within nlme R-package [42].

Table C1 provides measures of the fit of the considered models to the
observed data and their comparisons. The model with a smooth function
of age three degrees of freedom (two internal knots) lme_fit_ns3 provided
the best fit to the data according to AIC and BIC.

Appendix D

Some Illustrations of Imputations and Inferences for the
Substantive Model
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FIGURE D1 | Observed (filled circles) and posterior means of missing memory scores per participant and timepoint where data are imputed for
different values of Δ for some participants with missing memory measurements and at least two observed memory scores. Participants 6 and 36 dropped
out before 60 years old therefore, posterior means of their imputed memory for Δ = 0 and Δ = 1 are the same, while a small decrease of memory is
introduced when Δ is age-varying. Since Δ is closer to −1 for older ages when considering age-varying Δ, imputations for older ages under age-varying
Δ are closer to the imputations under Δ = −1.
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FIGURE D2 | Observed data and dynamic prediction of memory (top row) and cumulative incidence function (CIF, bottom row) from the joint
model fitted to the observed data (MAR) and while accounting for missing data for five new female individuals that are similar to some individuals in
the Betula data born with 9–11 years of education that are dementia-free at the last available memory measurement. Shaded areas represent credible
intervals for the predicted memory and cumulative incidence function by combining 1 000 draws from each completed dataset according to Appendix
A.
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TABLE D1 | Standard errors of the estimates for joint model (3) fitted to the observed data and while accounting for missing longitudinal data
according to multiple imputation procedure in Section 3 for different values of Δ.

Standard errors

Predictor Observed data MI, 𝚫 = 0 MI, age-varying 𝚫 MI, 𝚫 = −1

Longitudinal submodel
(Intercept) 0.94 0.88 0.88 0.89
ns(𝑡 − 𝑡, df = 3)1 0.66 0.67 0.63 0.61
ns(𝑡 − 𝑡, df = 3)2 1.88 1.65 1.72 1.71
ns(𝑡 − 𝑡, df = 3)3 1.04 0.96 0.93 0.90
Male 0.23 0.23 0.23 0.23
Education 0.03 0.03 0.03 0.03
First 0.63 0.59 0.55 0.53
First * age 0.01 0.01 0.01 0.01
Cohort 0.01 0.01 0.01 0.01

Survival submodel
Male 0.15 0.15 0.15 0.14
Education 0.02 0.02 0.02 0.02
Value(EM) 0.01 0.01 0.01 0.01
Slope(EM) 0.46 0.50 0.44 0.48

Note: Missing data patterns are ignored while fitting the substantive model to the observed data, while the fit of the substantive model under Δ = 0 uses data imputed under
the pattern-mixture model, which considers missing data patterns.
Abbreviations: Cohort, The difference between the participant’s birth year and 1 937; Education, Years of education; First, The indicator of the first measurement; Male, 1
for males, 0 for females; ns(𝑡 − 𝑡, df = 3)i, The ith vector in a natural cubic spline basis; t, Age; 𝑡, The mean age at memory assessments with observed memory scores.

TABLE D2 | Estimates (95% credible intervals) for the parameters of the joint model (3) fitted to data while accounting for missing longitudinal
data according to multiple imputation procedure in Section 3 with Δ = −1 for those who drop out after 55 years, 60 years, and 65 years old.

Estimate (CI)

MI, 𝚫 = −1

Predictor Cut-off 55 Cut-off 60 Cut-off 65

Longitudinal submodel
(Intercept) 36.49 (34.57, 38.57) 35.55 (33.81, 37.31) 35.47 (33.63, 37.34)
ns(𝑡 − 𝑡, df = 3)1 −10.58 (−12.05, −9.19) −8.42 (−9.62, −7.23) −7.41 (−8.67, −6.17)
ns(𝑡 − 𝑡, df = 3)2 −37.59 (−41.44, −33.92) −35.86 (−39.24, −32.5) −35.37 (−39.12, −31.68)
ns(𝑡 − 𝑡, df = 3)3 −48.44 (−50.36, −46.62) −47.15 (−48.93, −45.41) −45.75 (−47.77, −43.77)
Male −2.92 (−3.38, −2.46) −2.92 (−3.37, −2.46) −2.91 (−3.37, −2.47)
Education 0.85 (0.78, 0.92) 0.85 (0.78, 0.92) 0.85 (0.78, 0.91)
First −5.56 (−6.64, −4.46) −5.43 (−6.43, −4.37) −5.47 (−6.53, −4.43)
First*age 0.07 (0.05, 0.09) 0.07 (0.05, 0.09) 0.07 (0.05, 0.09)
Cohort −0.03 (−0.06, 0) 0.01 (−0.02, 0.03) 0.03 (0, 0.05)
Male −0.34 (−0.62, −0.06) −0.36 (−0.65, −0.09) −0.38 (−0.66, −0.1)
Education 0.01 (−0.03, 0.04) 0.01 (−0.02, 0.05) 0.02 (−0.02, 0.05)
Value(EM) −0.03 (−0.05, −0.01) −0.04 (−0.06, −0.02) −0.05 (−0.06, −0.03)
Slope(EM) −2.42 (−3.25, −1.6) −2.56 (−3.52, −1.66) −2.82 (−3.81, −1.9)
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