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Abstract 
Wastewater and environmental surveillance has been promoted as a communicable 

disease surveillance tool because it overcomes inherent biases in laboratory-based com-

municable disease surveillance. Yet, little empirical evidence exists to support this notion, 

and it remains largely an intuitive, though highly plausible hypothesis. Our interdisciplinary 

study uses WES data to show evidence for underreporting of SARS-CoV-2 in the context 

of measurable and statistically significant associations between economic conditions 

and SARS-CoV-2 incidence and testing rates. We obtained geolocated, anonymised, 

laboratory-confirmed SARS-CoV-2 cases, wastewater SARS-CoV-2 viral load data and 

socio-demographic data for Gauteng Province, South Africa. We spatially located all data 

to create a single dataset for sewershed catchments served by two large wastewater 

treatment plants. We conducted epidemiological, persons infected and principal compo-

nent analysis to explore the relationships between variables. Overall, we demonstrate the 

co-contributory influences of socio-economic indicators on access to SARS-CoV-2 testing 

and cumulative incidence, thus reflecting that apparent incidence rates mirror access to 

testing and socioeconomic considerations rather than true disease epidemiology. These 

analyses demonstrate how WES provides valuable information to contextualise and inter-

pret laboratory-based epidemiological data. Whilst it is useful to have these associations 

established for SARS-CoV-2, the implications beyond SARS-CoV-2 are legion for two 

reasons, namely that biases inherent in clinical surveillance are broadly applicable across 
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pathogens and all pathogens infecting humans will find their way into wastewater albeit in 

varying quantities. WES should be implemented to strengthen surveillance systems, espe-

cially where economic inequalities limit interpretability of conventional surveillance data.

Introduction
Surveillance is a core component of the International Health Regulations, and central to the 
Global Health Security Agenda [1]. World Health Assembly member states are obliged to 
detect, assess, notify and report events, and to assess their capacity to do so using the Core 
Capacities document [2]. During the COVID-19 pandemic, which led to an estimated 775 
million laboratory-confirmed cases to date [3], testing of individual patient clinical material 
(usually nasopharyngeal swabs by PCR) and indicators based on these data (including testing 
rate, incidence rate and proportion testing positive) were the major epidemiological tools used 
to support monitoring of the pandemic and government decision-making.

SARS-CoV-2 is transmitted by droplet and airborne transmission. Factors predisposing to 
transmission include crowded conditions, proximity and duration of contact, particularly in 
the absence of mask-wearing [4]. The clustering of these factors in low socioeconomic house-
holds and communities has been shown to exacerbate disease transmission and lead to higher 
disease incidence [5,6]. However, from the earliest days of the pandemic, it was observed that 
countries and regions with poorer socioeconomic status reported fewer cases of SARS-CoV-2 
[7,8]. Most importantly, a reason for this was limited access to testing, evidenced at a global 
scale by the African region reporting the fewest SARS-CoV-2 cases across the globe alongside 
the least number of SARS-CoV-2 tests per capita [8].

South Africa, a country with a population of over 62 million persons resident in nine prov-
inces and 52 health districts, experienced five reported waves of SARS-CoV-2 [9] each caused 
by different genetic variants. Following initial detection, the first (ancestral strain) and second 
waves (Beta variant) of the pandemic occurred between March-June 2020, and from Novem-
ber 2020 to February 2021 [10]. The third and fourth waves occurred from May to September 
2021 (Delta variant) [10] and from November 2021 to January 2022 (Omicron BA.1 variant) 
[11]. A subsequent resurgence in cases was responsible for a fifth wave dominated by the 
Omicron lineage BA.4 and BA.5 [10]. The impact of the COVID-19 pandemic was devastat-
ing. Disease transmission levels across South Africa were high, with seroprevalence data after 
the third wave of SARS-CoV-2, suggesting that infections were likely 7.8 times higher than the 
number of laboratory-confirmed cases [12]. Excess deaths greatly exceeded reported deaths, 
indicating that official statistics underestimated the death rate [13]. In spite of active case 
finding [14] and the availability of a comprehensive laboratory network, these data suggested 
extensive under diagnosis and under-reporting of cases.

These observations foregrounded the intrinsic shortcomings of traditional approaches to 
laboratory-based communicable disease surveillance programmes. Patient factors (such as 
health care acceptability and accessibility, financial means to procure testing and the presence 
and severity of symptoms); health system factors (such as clinician propensity to test, test 
availability, financial support for testing), and laboratory factors (clerical errors, inherent test 
performance characteristics) mediate laboratory testing and in turn impact the sensitivity, 
quality and representivity of surveillance data. Traditional case-based surveillance methods 
thus underestimate disease burden.

Since the COVID-19 pandemic, wastewater and environmental surveillance (WES) has 
increasingly been implemented as a complementary surveillance modality that has potential 
to overcome these limitations [15]. WES has proven utility in supporting polio surveillance 
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by providing highly sensitive data on the presence of poliovirus in communities, material for 
genomic sequencing and by supporting identification of chains of transmission [16]. These 
data have greatly enabled polio risk assessments and decision-making regarding public health 
interventions including the need for vaccination campaigns. During the COVID-19 pan-
demic, multiple advantages of WES for SARS-CoV-2 became apparent. WES provided first 
evidence of importation of the virus into new geographical regions [17], heralded the onset 
of new waves of infection, illustrated disease transmission patterns and allowed inference 
of relative population burden during endemic phases [18]. WES also provided material for 
genotyping that demonstrated the presence of a broader range of variants than seen clini-
cally [19]. In light of this global experience, the WHO issued updated guidance for countries 
conducting WES (WHO guidelines), citing the ability of WES to overcome the limitations 
of laboratory-based surveillance. However, despite these advantages and recommendations, 
there is a paucity of evidence integrating socioeconomic factors and disease epidemiology 
based on clinical testing data with wastewater surveillance in order to substantiate the claims 
that WES overcomes clinical testing limitations. Thus, definitive evidence for the ability of 
WES to overcome the limitations of laboratory-based surveillance is urgently required. We 
used clinical, wastewater surveillance, demographic and socioeconomic data in two different 
socio-economic contexts to explain and quantify the relationship between these variables and 
burden of SARS-CoV-2 disease, thus substantiating the use of WES as a necessary surveillance 
tool that enables interpretation of clinical surveillance data.

Methods

Conceptual framework
We developed a conceptual framework (Fig 1) to demonstrate the relationships between 
wastewater concentrations of SARS-CoV-2 and SARS-CoV-2 disease indicators in sewered 
communities. The population burden of SARS-CoV-2 infections determines the levels of 
SARS-CoV-2 in wastewater. However, clinical indicators (including incidence rate, testing 
rate and proportion testing positive) reflect the distribution of testing, health care availability 
and accessibility. As these factors may be influenced by socio-economic conditions, reported 
case rates may not accurately reflect the true burden of infections. By determining the 
inter-relationships between wastewater surveillance data, social determinants of health and 
reported SARS-CoV-2 cases, the role of WES may be better understood.

Study setting
The study took place in two sewersheds (sewershed D and sewershed O) in different metropoli-
tan areas of Gauteng Province, South Africa. These sewersheds were purposively selected on the 
basis of geographical representativeness of city populations, namely sewershed D (City of Tsh-
wane), to the north of the Gauteng Province, and sewershed O (City of Ekurhuleni) in the east of 
Gauteng Province (Fig 2). Sewershed D is residential with formal housing in the west and central 
areas, and the metropolitan central business district to the east. A small area of informal housing 
exists to the far west. Sewershed O is mostly residential with low density, low-rise housing with 
areas of industrial and manufacturing activity to the north east. Informal settlements and back-
yard shacks are present in most neighbourhoods in the central areas, whilst a wealthier commu-
nity of gated estates with a low population density is present in the northernmost section.

Data sources and study period
Clinical SARS-CoV-2 laboratory testing and data management.  In South Africa 

public and private laboratories were legally mandated to report all SARS-CoV-2 test results 
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and patient data including residential address via the National Institute for Communicable 
Diseases (NICD). These datasets had been geocoded by NICD as part of outbreak response 
activities and all cases geocoded to Gauteng were extracted. Following ethics review and 
written approval for this study, anonymised and deidentified geocoded data for positive 
and negative SARS-CoV-2 PCR test results were supplied for the study period (1 June 2021 
(epidemiological week 22 of 2021) to 18 March 2022 (epidemiological week 11 of 2022)) and 
the data was obtained on 23 May 2023.

Wastewater SARS-CoV-2 laboratory testing and data management.  Routine SARS-
CoV-2 wastewater surveillance data (obtained from laboratory processing of one litre 
grab-samples collected weekly as previously described [9]) from wastewater treatment plant 
(WWTP) ‘D’ and ‘O’ were identified for the study period. We obtained wastewater flow rates 
(in ML per day) from WWTP managers.

Quality of life survey- data.  The Quality of Life (QoL) survey is a biennial household 
survey produced by the Gauteng City-Region Observatory (GCRO) which covers a range of 
topics including demographics, access to services and perceptions of residents. The survey 
is weighted to ensure representativity to ward level, a geopolitical division of municipalities, 
developed by the Municipal Demarcation Board and the smallest unit for which demographic 
and socioeconomic data are provided in South Africa. We obtained data from the 2020/21 

Fig 1.  Diagram indicating the direction of influence of socio-economic status, population structure and mixing on the true burden of 
SARS-CoV-2 cases, reported burden of SARS-CoV-2 cases and levels of SARS-CoV-2 in wastewater. The green arrow indicates the research 
question posed by this work.

https://doi.org/10.1371/journal.pone.0311332.g001

https://doi.org/10.1371/journal.pone.0311332.g001
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(QoL6) survey (n = 13,616 respondents) pertaining to 207 and 781 respondents from 
sewersheds D and O respectively [21].

Maps of sewershed reticulation methods.  Data for the sewage networks and pipelines 
were obtained from the City of Tshwane and the City of Ekurhuleni, respectively. The City 
of Tshwane provided a comprehensive dataset including sewershed areas, manholes, and 
distribution pipelines. The City of Ekurhuleni consulting engineers provided shapefiles of the 
sewershed. ArcGIS 10.6.2 software was used for all mapping and spatial analysis.

GTI hexagon data for population demographics.  Population demographic variables were 
extracted from a 2020/2021 dataset compiled by GeoTerraImage (GTI) comprising population 
estimates grouped by age cohorts in 400m sided hexagon (0.103755 km2).

Data synthesis and analysis
General approach.  We overlaid sewershed shape files, hexagonal population data, 

geolocated SARS-CoV-2 cases and geolocated QoL respondents in order to create a dataset 
comprising these elements for sewersheds D and O. To minimise the effect of the Modifiable 
Area Unit Problem (MAUP) that is encountered when polygon values require changing 

Fig 2.  Map showing the spatial location of the two sewersheds and locations of health care facilities within the Gauteng Province [20].

https://doi.org/10.1371/journal.pone.0311332.g002

https://doi.org/10.1371/journal.pone.0311332.g002
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because of a change in the shape (zoning effect) or overall area (size effect) of the polygon, we 
scrutinised our datasets to determine the most viable polygon layer for all spatial datasets to 
allow for aggregation and comparability without disaggregation of polygon data. Ultimately 
we manipulated all data to the ward level allowing for comparative analysis over space and 
time. We conducted these analyses using SPSS software version 29.0.2.0 (20).

Data extraction and aggregation to determine population size, socio-economic and 
epidemiological parameters by sewershed.  To determine population size and age structure 
within wards and sewersheds, we extracted population data from the GeoTerraImage (GTI) 
dataset for hexagons whose centroids fell within the sewershed and ward boundaries, and 
aggregated population data into four broad classes, namely children (0–4 years), adolescents 
(5–19), adults (20–59) and elderly (≥60 years). We geolocated QoL respondents within ward 
and sewershed boundaries and extracted and aggregated relevant socioeconomic and health 
fields for these individuals. Geolocated positive and negative SARS-CoV-2 PCR test data were 
aggregated by ward and sewershed level, and used together with population denominator 
data for each spatial unit to determine overall and weekly incidence, positivity rate and testing 
rate per 100,000. We created epidemiologic curves using Microsoft Excel 365 using incidence, 
positivity and testing rates together with SARS-CoV-2 concentration in wastewater for each 
catchment [22].

Principal Component Analysis (PCA).  We conducted principal component analysis 
(PCA) on the socioeconomic, demographic and clinical variables for each sewershed, using 
ward-level aggregated data as the unit of analysis to ascertain which variables relate most 
to epidemiological indicators in each sewershed. Using R (RStudio v4.0.2) and for each 
sewershed, we generated 1) a correlation coefficient (r) matrix for inter-variable correlation 
analysis; 2) a Scree plot for ascertaining the dimensions contributing the most to the explained 
variance as a percentage; 3) a variable loading graph for ascertaining the variables which 
contribute to the identity of the prominent dimensions; 4) and a biplot for plotting the 
variables as vectors in 2D space against the two most prominent dimensions.

Determination of theoretical infectious case load using mass balance equations and 
comparison with laboratory-confirmed cases by epidemiological week.  We estimated the 
theoretical number of persons infected in each sewershed by epidemiological week using mass 
balance equations from Acheampeong et al [23], and Hoffman et al [24] as follows:

	 Persons infected A B C D      = × ×/ 23 	

where A = RNA per L of wastewater (natural scale); B = estimated flow (L/day) obtained from 
the wastewater treatment authorities; C = grams of faeces/ person-day, estimated at 128g [25]; 
D = SARS-CoV-2 RNA per gram faeces, estimated at 2.58 × 10^8 gene copies shed per day 
per infected person [24]. We assumed a linear regression to determine the number of persons 
infected per 100 laboratory-confirmed cases by epidemiological week within each sewershed.

While WBE is useful as a tool to estimate infection prevalence and captures asymptomatic 
and pre-symptomatic cases that are missed from traditional clinical surveillance, the limited 
data in our study places limitations on its use. Particularly, local data is needed on differenti-
ated shedding rates [26–28] as well as better wastewater flow information [23,27].

Ethical statement
This study was reviewed and approved by the University of the Witwatersrand Human 
Research Ethics Committee (HREC), M220904. In addition, the National Institute for Com-
municable Diseases obtained Ethics Approval for essential communicable disease surveillance 
and outbreak and response activities including SARS-CoV-2 (M210752).
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Role of funders
The funders had no role in the study design, collection, analysis and interpretation of data, 
manuscript writing or journal selection.

Results

Demographic, socioeconomic and health characteristics
Sewershed O (land area = 120 km2, population = 905,996 persons) has around four times 
the number of people and just under double the population density of sewershed D (Table 
1). Both sewersheds have similar age profiles and are dominated by younger, working 
age cohorts, with lower proportions of persons over 60 years of age. The proportion of 
households earning < USD90, together with the proportion relying on public transport, 
suggest that households in sewershed O are poorer. Most of the population in Sewershed 
D (98%) and Sewershed O (87%) are connected to the formal sewer network indicating 
that the wastewater surveillance data encapsulates most of the communities within the 
study areas [21]. The remaining population live within informal areas and use alternative 
sanitation options like chemical toilets and ventilated pit latrines. As many as 13% of 
households in sewershed O share sanitation, compared with around 2% in sewershed D. 
Regarding health care, responses suggested that up to 10% of households in sewershed O 
vs 4% in sewershed D struggled to access health care during 2020–2021 period. Up to 35% 
of households in Sewershed O were unable to maintain SARS-CoV-2 non-pharmaceutical 
measures.

SARS-CoV-2 clinical testing, incidence rates and percentage test positive 
(PTP)
During the study period (1 June 2021 to 18 March 2022), 78% and 60% of positive and neg-
ative test results respectively were successfully geolocated. The SARS-CoV-2 clinical testing 
rate per 100,000 in sewershed D (23.7) was over twice the rate in sewershed O (10.6). Despite 
higher absolute numbers of SARS-CoV-2 cases, sewershed O had a cumulative incidence of 
laboratory-confirmed SARS-CoV-2 cases around three times lower than sewershed D (15,293 
total cases and 1,688/100,000, vs 11,026 total cases and 4,483/100,000) (Table 1 and Fig 3).

Fig 3 illustrates changes in testing, incidence and proportion testing positive (PTP) by 
epidemiological week during the two waves of infection that occurred during the study period, 
namely Delta (between epidemiological weeks 15 and 40 in 2021) and Omicron (epidemio-
logical weeks 46 - 51 in 2021). Whilst all indicators follow the similar trends, rates are lower in 
sewershed O.

Relationship between clinical case data and socioeconomic status
Correlation matrices for sewersheds D and O reveal that clinical indicators (PTP, cumula-
tive incidence and testing rates) do not exhibit consistent relationships with demographic, 
or socio-economic indicators within and between sewersheds (Fig 4). In sewershed O, PTP 
correlates with indicators associated with poverty (access to and use of shared sanitation, % 
of the population with income below USD 90, and COVID-19 index (% unable to implement 
COVID-19 preventive measures)), whilst this relationship is not evident in the more affluent 
sewershed D. In sewershed D, it appears that PTP and cumulative incidence are correlated 
with quality of life, use of public transport and proportion of persons with income below 
USD 90, suggesting that economic conditions influence access to testing, in turn leading to 
apparently low cumulative incidence. Taken together, in areas with poorer socio-economic 
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conditions, testing rates and cumulative incidence may not reflect disease burden, whilst PTP 
better reflects disease risk.

Scree plots for sewershed D and O demonstrate that 76.7% and 77.5% of data are explained 
by dimensions 1 and 2 (S1 Fig). The variable loading plot for sewershed D indicates that access 
to shared sanitation, reliance on non-sewered toilets and population groups under 60 years of 
age contributed the most to composition of dimensions 1 and 2 (S2a Fig) whereas in sewer-
shed O, population group under 60 years of age, testing rate and cumulative incidence rate 
contributed the most to the composition of dimension 1 and 2 (S2b Fig). In both sewersheds, 
testing rate and cumulative incidence contributed to dimensions 1 and 2, but the proportion 
test positive and refused COVID testing variables contributed minimally.

The biplots (Fig 5) demonstrate that SARS-COV-2 testing and incidence rates contribute 
equivalent influence and spatial distribution on socioeconomic factors for both sewersheds, 

Table 1.  Comparative table of key SARS-COV-2, wastewater surveillance, socioeconomic and demographic variables for sewersheds D and O during the study 
period 1 June 2021 (epidemiological week 22 of 2021) to 18 March 2022 (epidemiological week 11 of 2022). Variable definitions are included.

Sewershed D Sewershed O
Sewershed area (km2) 62.0 120.7
Total population 245,935 905,996
Population density (persons/km2) 3.97 7.51
Number of wards for analysis 11 26
Demographic data (number of people, %)
 � 0–4 years 21,196 (8.6) 82,230 (9.1)
 � 5–19 years 55,965 (22.8) 204,225 (22.5)
 � 20–59 years 150,798 (61.3) 563,428 (62.2)
 � ≥60 years 17,976 (7.3) 56,111 (6.2)
Wastewater surveillance
 � Mean daily flow rate of wastewater through the treatment plant (ML, standard deviation) 38.4 (9.7) 106.2 (9.9)
 � Median (interquartile range) of SARS-CoV-2 (genome copies/mL) 47.2 (100.5) 46.9 (109.7)
SARS-CoV-2 laboratory surveillance data and indicators
Testing rate (tests/100 000 population) 23.7 10.6
Total recorded SARS-COV-2 cases during study period 11,026 15,293
Mean positivity rate (%, sd) 17 (12.8) 14 (9.9)
Cumulative incidence rate (cases/100 000 population) 4,483.3 1,688.0
Socio-economic and health indicators from Quality of Life Survey 6 (2020/2021)
Income below R1600 (sd)
  Percentage of households that have a combined income less than R1600 per month

21% (4.6) 33% (4.6)

Reliance on public transport (sd)
  Percentage of respondents that rely on public transport

40% (0.5) 47% (0.5)

Access to shared sanitation (sd)
  Percentage of respondents who generally use communal toilets or toilets not connected to the sewage system (e.g., portable toilets)

2% (0.2) 13% (0.3)

Quality of Life score (sd)
  Score out of 100. Calculated with 33 variables, grouped in 7 dimensions

63 (9.0) 59 (11.0)

Struggled access to health care (sd)
  Percentage of respondents that struggled to access healthcare from March 2020 to October 2021

4% (0.2) 10% (0.3)

Refused COVID-19 testing (sd)
  Proportion of respondents who tried but were denied access a COVID-19 test between March 2020 and October 2021

5% (0.2) 3% (0.2)

COVID-19 Index (sd)
  Percentage respondents unable to implement SARS-CoV-2 preventative measures including social distancing

29 (19.0) 35 (20.0)

(sd) = standard deviation, km = kilometre.

https://doi.org/10.1371/journal.pone.0311332.t001

https://doi.org/10.1371/journal.pone.0311332.t001
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whilst the proportion test positive indicator was much less affected by socioeconomic fac-
tors. In the biplot for sewershed D, access to healthcare and refused access to COVID testing 
are more associated with cumulative incidence and testing rates, while only refused access 
to COVID test is associated with the two clinical variables in sewershed O. In sewershed D, 
the clustering of the Quality of Life score and the greater than 60 years age group as well as 
the clustering of COVID-19 Index with income below USD90 indicated these variables are 
influenced by and can inform one another. In sewershed O, struggled to access health care 
and Quality of Life score illustrated similar clustering with the COVID-19 Index and access to 
public transport.

Quantitative SARS-CoV-2 surveillance in wastewater
Wastewater concentrations of SARS-CoV-2 and geolocated laboratory-confirmed SARS-
CoV-2 cases in sewersheds D and O were significantly correlated in each sewershed, though 
less so in sewershed O (Spearman’s correlation coefficient 0.723 (p < 0.001)), 0.476 (p = 0.020) 
for sewersheds D and O respectively). In each sewershed, higher concentrations and case-
loads were observable during the Delta and Omicron waves that occurred during the study 

Fig 3.  SARS-CoV-2 testing rate (per 100 000 population), incidence rate (per 100 000 population), and 4 week moving average proportion 
test positive (%) by epidemiological week 22, 2021 to week 10, 2022, for (a) sewershed D and (b) sewershed O.

https://doi.org/10.1371/journal.pone.0311332.g003

https://doi.org/10.1371/journal.pone.0311332.g003
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period (Fig 6) and both reached an ebb during weeks 40–42 of 2021. Wastewater concentra-
tions (measured in log genome copies per millilitre) for both sewersheds ranged between 0.5 
and 3.5 log copies/mL and were at similar concentrations in the same epidemiological week. 
Weekly laboratory-confirmed case-counts followed similar trends despite different population 
sizes in the two catchments.

Fig 4.  Truncated correlation matrices between socio-economic and demographic parameters against testing, cumulative incidence and 
mean proportion test positive for sewersheds D and O, annotated as a ‘heat map’ to represents the Spearman’s correlation coefficient (r) 
between socio-economic, demographic variables vs clinical variables (1 June 2021 to 18 March 2022).

https://doi.org/10.1371/journal.pone.0311332.g004

https://doi.org/10.1371/journal.pone.0311332.g004
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Comparison of estimated and actual SARS-CoV-2 case burden
Regression analysis by sewershed of laboratory-confirmed SARS-CoV-2 cases versus theoret-
ical number of infections indicated that for each 100 reported cases, sewershed O likely had 
over 63,000 infections compared with sewershed D, with 2,700 cases (Fig 7).

Fig 5.  PCA biplots displaying socioeconomic and demographic status parameters, cumulative incidence rate, testing rate and mean positivity rate within (a) 
sewershed D and (b) sewershed O. In the biplots, the magnitude and colouring of the vectors are related to the variable loading scores, while the vector direction 
and quadrant location is informed by the interrelationship between variables and their contribution to dimensions 1 and 2.

https://doi.org/10.1371/journal.pone.0311332.g005

Fig 6.  SARS-CoV-2 concentrations in wastewater in log-transformed genome copies per millilitre (right axis) and the number of laboratory-confirmed cases 
(top figures, green bars) or incidence per 100,000 persons (bottom figures, blue bars) of SARS-CoV-2 geolocated to a residential address in the sewershed by 
epidemiological week from week 22, 2021 to week 10, 2022 for sewersheds D (left, figures a and c respectively) and O (right, figures b and d respectively).

https://doi.org/10.1371/journal.pone.0311332.g006

https://doi.org/10.1371/journal.pone.0311332.g005
https://doi.org/10.1371/journal.pone.0311332.g006
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Discussion
In our transdisciplinary spatial analysis of clinical and environmental data during two large 
COVID-19 pandemic waves in sewersheds with differing socioeconomic conditions, we 
observed that despite different population sizes, the concentrations of SARS-CoV-2 in wastewa-
ter and the absolute numbers of SARS-CoV-2 cases by epidemiological week were similar. In the 
light of assumed equivalent excretion rates of SARS-CoV-2 in infected individuals and identical 
demographic profiles in each sewershed, equivalent wastewater concentrations suggest vast 
under-reporting of cases in the poorer sewershed. Our socioeconomic analysis demonstrated 
negative correlations between income and SARS-CoV-2 cumulative incidence and testing rates 
in the poorer sewershed. Overall, we demonstrated the co-contributory influences of socio-
economic indicators on access to SARS-CoV-2 testing and cumulative incidence, thus reflecting 
that apparent incidence rates mirror access to testing and socioeconomic considerations rather 
than true disease epidemiology. These analyses demonstrate how WES provides valuable infor-
mation to contextualise and interpret laboratory-based epidemiological data.

Laboratory-based surveillance systems under-represent the true burden of disease due to 
a combination of asymptomatic infection, individual and cultural practices regarding health 

Fig 7.  A scatter plot with inset illustrating the relationship between laboratory-confirmed cases of SARS-CoV-2 identified in sewersheds D and O during the 
study period (epidemiological week 22, 2021 to week 10, 2022) compared to estimated SARS-CoV-2 infections during the same epidemiological week, calcu-
lated using wastewater levels of SARS-CoV-2, wastewater flow rates and assumed per person excretion rates.

https://doi.org/10.1371/journal.pone.0311332.g007

https://doi.org/10.1371/journal.pone.0311332.g007


PLOS ONE | https://doi.org/10.1371/journal.pone.0311332  February 25, 2025 13 / 16

PLOS ONE Wastewater surveillance overcomes socio-economic limits of clinical surveillance when monitoring diseases

seeking, quality of health care and socio-economic factors that impair access to testing. Fur-
thermore, these same socio-economic factors including education and poverty, are associated 
with higher SARS-CoV-2 rates [6]. Underreporting of SARS-CoV-2 cases in South Africa 
was evident through excess mortality reports which indicated over 70,000 excess deaths vs 
28,000 reported COVID-19 deaths during 2020 [13]. Households in lower income groups, 
those who rely on public health care, and Black African and Coloured population groups 
were more likely to have struggled to access healthcare and testing facilities [29]. Our data, 
demonstrating that cumulative incidence and testing rate in sewershed O was negatively 
correlated with low income ( <USD 90 household income per month) suggest that clinical 
testing was missing this population segment.

Few studies have triangulated clinical testing, wastewater surveillance data and socio-economic 
factors. Using WES data in contrast to clinical testing data, Lancaster et al [30] identified spe-
cific communities (Black, poor) that were more vulnerable to SARS-CoV-2. Saingam et al 
[31] demonstrated that a machine learning model to predict COVID-19 and post-infectious 
sequelae is strengthened when including WES data together with socio-demographic parameters. 
Rogawski McQuade et al [32] in Bangladesh, using purposively selected sampling sites across the 
economic spectrum, demonstrated equivalent SARS-CoV-2 levels in wastewater, but 23 and 70 
times the number of clinical tests conducted in the wealthier vs middle and poor income areas. 
Our interdisciplinary study is the first to use WES data to show evidence for underreporting 
of SARS-CoV-2 in the context of measurable and statistically significant associations between 
economic conditions and SARS-CoV-2 incidence and testing rates, something which has been 
intuitively speculated but not empirically demonstrated [33].

Several limitations exist in our data collection and interpretation. A small proportion of 
SARS-CoV-2 cases were not successfully geolocated, however non-geolocated cases are more 
likely to have originated outside the province, or from persons resident in informal settings 
thus not contributing to wastewater levels of SARS-CoV-2. The absence of wastewater sam-
pling points within wards precluded inclusion of SARS-CoV-2 levels in PCA analyses. Whilst 
our wastewater data was generated from urban sewersheds, similar findings in non-sewered 
areas suggest that our findings are generalisable across sewered and non-sewered settings 
[32]. The persons infected calculations are indicative and limited by the availability of daily 
wastewater flow data as well as detailed viral shedding rates [23]. These limitations point to 
key areas for improvement as the field of WES matures within South Africa.

The addition of WES data to national and global surveillance systems will strengthen sensitiv-
ity of event detection for outbreak and pandemic disease, monitoring of endemic disease trends, 
and will jointly provide material for genomic epidemiology [19]. An evaluation of detection of 
H5N1 avian influenza by six northern hemisphere surveillance systems in 2010 demonstrated an 
increase in sensitivity of detection using a combination of data inputs. Authors concluded that 
the range of surveillance methodologies and variation in system designs created synergy between 
systems, led to improved data quality and validity, and allowed data to converge on event detec-
tion [34]. In a low-middle income country, the need for multiple surveillance systems is even 
more necessary, as data quality and completeness from single modality surveillance systems may 
vary, leading to challenges in decision making during a crisis.

Our findings provide evidence to support intuitive thinking that WES overcomes testing 
biases particularly in situations with socio-economic disparities and weaker clinical disease 
surveillance programmes for SARS-CoV-2. Our findings are likely broadly applicable to all 
communicable disease surveillance programmes, as biases affecting clinical surveillance pro-
grammes are not disease-specific, and all pathogens infecting humans are likely to find their 
way into wastewater albeit in varying quantities. As such, our findings strengthen the case for 
investment in implementation of WES. Ongoing implementation of WES will allow public 
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health authorities to determine optimal configurations of WES surveillance systems for each 
pathogen and public health use-case. Further research to determine optimal sample collection, 
processing and testing methods is needed. Interpretive frameworks or mathematical models 
will support integration and interpretation of WES data with clinical surveillance data.

Supporting information
S1 Fig.  Principal Component Analysis Scree plots indicating the percentage of variance 
explained by principal components. Dimension 1 and 2 account for 76.7% in sewershed D 
(a) and 77.5% sewershed O (b).
(TIF)

S2 Fig.  Variable loading bar plots of the variables contributing to the composition of 
dimensions 1 and 2 for (a) sewershed D and (b) sewershed O. Note: Colour ramp matches 
the PCA plots and the darker the shade the lower the loading value.
(TIF)
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