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Abstract 

Background  Joint models are powerful statistical models that allow us to define a joint likelihood for quantify-
ing the association between two or more outcomes. Joint modelling has been shown to reduce bias in parameter 
estimates, increase the efficiency of statistical inference by incorporating the correlation between measurements, 
and allow borrowing of information in cases where data is missing for variables of interest. Most joint modelling 
methods and applications involve time-to-event data. There is less awareness about the amount of literature available 
for joint models of non-time-to-event data. Therefore, this review’s main objective is to summarise the current state 
of joint modelling of non-time-to-event longitudinal data.

Methods  We conducted a search in PubMed, Embase, Medline, Scopus, and Web of Science following the PRISMA-
ScR guidelines for articles published up to 28 January 2024. Studies were included if they focused on joint modelling 
of non-time-to-event longitudinal data and published in English. Exclusions were made for time-to-event articles, 
conference abstracts, book chapters, and studies without full text. We extracted information on statistical methods, 
association structure, estimation methods, software, etc.

Results  We identified 4,681 studies from the search. After removing 2,769 duplicates, 1,912 were reviewed 
by title and abstract, and 190 underwent full-text review. Ultimately, 74 studies met inclusion criteria and spanned 
from 2001 to 2024, with the majority (64 studies; 86%) published between 2014 and 2024. Most joint models were 
based on a frequentist approach (48 studies; 65%) and applied a linear mixed-effects model. The random effect 
was the most commonly applied association structure for linking two sub-models (63 studies; 85%). Estimation 
of model parameters was commonly done using Markov Chain Monte Carlo with Gibbs sampler algorithm (10 
studies; 38%) for the Bayesian approach, whereas maximum likelihood was the most common (33 studies; 68.75%) 
for the frequentist approach. Most studies used R statistical software (33 studies; 40%) for analysis.

Conclusion  A wide range of methods for joint-modelling non-time-to-event longitudinal data exist and have been 
applied to various areas. An exponential increase in the application of joint modelling of non-time-to-event longi-
tudinal data has been observed in the last decade. There is an opportunity to leverage potential benefits of joint 
modelling for non-time-to-event longitudinal data for reducing bias in parameter estimates, increasing efficiency 
of statistical inference by incorporating the correlation between measurements, and allowing borrowing of informa-
tion in cases with missing data.
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Introduction
 Longitudinal studies collect data over time and can, 
therefore, be used to monitor changes over time and for 
determination of individual-level changes and influenc-
ing factors [1]. To determine change over time in different 
fields of research, longitudinal study designs are usually 
employed [1]. However, analysing data from longitudi-
nal studies can be complex [2]. For example, longitudinal 
data are multidimensional and can have a complex ran-
dom-error structure that needs to be accounted for dur-
ing analysis [1]. Challenges related to missing data and 
losses to follow-up are also common [3, 4]. Most studies 
are likely to have multiple outcomes that are often cor-
related and measured repeatedly over time. Multiple out-
comes of interest that are correlated and vary over time, 
should not be modelled separately. Instead, a joint mod-
elling approach that accounts for the correlation and how 
the underlying relationship changes over time should be 
considered [5].

Joint models are a powerful class of statistical models 
that allow us to define a joint likelihood for the quantifi-
cation of the association between two outcomes [6, 7]. In 
the last ten years, application of joint modelling for lon-
gitudinal data has increased, especially for time-to-event 
data. Joint modelling has been shown to; a) reduce bias in 
parameter estimation, b) increase the efficiency of statis-
tical inference by incorporating the correlation between 
measurements, and c) allow the borrowing of informa-
tion in cases where there is missing data for one variable 
of interest [8–11]. Most joint modelling methods and 
applications are for time-to-event data [12]. However, in 
practice, two or more time-varying variables are com-
mon e.g., fetal head circumference and fetal abdominal 
circumference associated with an outcome such as small 
for gestational age or fetal growth restriction. These type 
of data that are non-time to event are common, and they 
have not been given much attention in joint modelling. 
Therefore, there is a need to summarise the current state 
of joint modelling with applications to non-time-to-event 
longitudinal data for future research.

The primary aim of this paper is to perform a scop-
ing review of the methodology and applications of joint 
modelling of non-time-to-event longitudinal data, high-
light any gaps and challenges in application of joint mod-
elling for such data, and opportunities to promote their 
uptake. The specific focus is to review the methods and 
approaches used for joint modelling of non-time to event 
data, methods for accounting for the correlation struc-
ture, and association structure. Finally, to draw recom-
mendations for future research in this area.

Methods
The scoping review was conducted according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for scoping reviews (PRISMA-ScR) 
checklist [13, 14]. We searched five major databases, 
Medline, PubMed, Scopus, Embase and Web of Science, 
for articles published up to 28 January 2024. Studies were 
included if they reported on joint modelling of longi-
tudinal data for non-time-to-event data. Only studies 
published in English were included due to the language 
constraints of the review team. Time-to-event articles 
were excluded from the review. Furthermore, conference 
abstracts, book chapters and studies for which no full 
text is available were also excluded.

Search strategy

joint model OR joint models OR joint modelling OR joint modeling 
AND longitudinal OR multivariate OR multivariable OR multilevel 
OR nonlinear AND NOT (time-to-event* or survival or recurrent event* 
or competing risk*).

A detailed and customised search strategy is available in 
the supplementary materials as additional file 1.

 To sort and manage the articles identified by the 
search, all articles were imported into Research Informa-
tion Systems, EndNote Citation Manager, and Rayyan 
softwares. Duplicates were subsequently removed. The 
screening process involved screening of article title and 
abstracts first, and then full-text screening for those 
passing the title and abstract screening stage. The same 
reviewer (RKO) independently assessed the full-text ver-
sion of the eligible articles (Fig.  1). In instances where 
RKO was uncertain about the inclusion or exclusion of 
an article, deliberations were conducted with EOO and 
MM to reach a consensus.

Data extraction
The articles included were reviewed and data was 
extracted into a Microsoft Excel template. Information 
extracted included: publication year, author, journal in 
which the research was published, the type of longitu-
dinal variables, the sharing structure between the lon-
gitudinal sub-models, the type of sub-models used (e.g., 
linear mixed models, generalised estimating equations), 
the error distribution, random effects distribution, type 
of outcome, the statistical methods employed (Bayesian 
or frequentist), method of estimation, and the specific 
software used for analysis (e.g., R, SAS, STATA).
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Results
We identified a total of 4,681 from the search. Of these, 
2,769 duplicates were identified and removed, 1,912 arti-
cles were reviewed at the title and abstract stage form 
which 190 underwent a full text review. After a full-text 
review, 74 articles met the inclusion criteria (Fig. 1) and 
were published between 2001 and January 2024. Articles 
excluded were conference abstracts, book chapters, and 
non-English articles.

 Figure  2 shows the number of studies identified and 
included in the review by year categorised into five-year 
time periods. Majority of included studies (n = 58, 78%) 
have been published in the last eight years and have tri-
pled since 2016. The identified studies were published 
in various academic journals, notably, thirteen specific 
journals were identified to have published multiple joint 
modelling studies, with statistics in medicine leading 
with 13.5% (10 studies).

 Most studies simultaneously analysed two (n = 57, 
77.0% studies), three (n = 13, 17.6% studies) and four 
(n = 3, 4.1% studies) longitudinal variables. One study 
(n = 1, 1.4%) examined the joint modelling of eight mixed 
longitudinal covariates [15]. Of the total, 26 studies (35%) 
had longitudinal covariates of the same data type (i.e., 
either continuous-continuous, binary-binary, count-
count, and ordinal-ordinal) with continuous-continuous 
being the most common (21/26 studies). For those with 
mixed data type, the majority had a combination of con-
tinuous and binary covariates (17/48 studies) (Table 1 in 
supplementary material additional file 2).

Longitudinal sub‑models
 In general, fifty different sub-models were used where 
most commonly was linear mixed effect model (LME) for 
continuous longitudinal covariates (n = 54 studies) with 
three studies applying an adjusted form of LME i.e., finite 

Fig. 1  Preferred Reporting Items for Systematic Review Meta-Analysis-Extension for Scoping Reviews flow diagram of search results and study 
inclusion process
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mixture LME, flexible LME, and flexible spline-based 
LME model. Generalised linear mixed model (n = 43 
studies), and hurdle model (n = 7 studies). The other 47 
models were used infrequently (n < 4) (Table 2 in supple-
mentary material additional file 2).

We identified studies (n = 10 studies) that utilized non-
linear mixed effects models within the joint modelling 
framework. The various ways they used to handle non-
linearity include: a semi-parametric quantile regression 
model with latent variables and threshold parameters 
[16]; skewed multivariate random effects and a skewed 
generalized t-link [17]; splines for nonlinear covariate 
effects [18]; nonparametric priors and splines for flex-
ible covariate modeling; regression splines within a lin-
ear mixed effects model [19]; a nonlinear heteroscedastic 
mixed model based on the Jenss-Bayley growth function 
[20]; nonlinear mixed models for biomarker profiles [21]; 
a mechanistic nonlinear model within a logistic regres-
sion framework [22]; bivariate thin plate spline surfaces 
[23]; and a flexible spline-based linear mixed effects 
model [24].

In the generalised linear mixed models, different link 
functions were considered: Poisson (6 out of 43 studies), 
probit (10 out of 43 studies), lognormal (7 out of 43 stud-
ies), logit (16 out of 43 studies), and gamma (2 out of 43 
studies).

Error distribution
The random effects were mostly assumed to follow a 
normal or multivariate normal distribution (n = 57, 

77%). Similarly, for the distribution of errors, the nor-
mal or multivariate normal distributions were commonly 
assumed (n = 50, 68%) (Table  1 in supplementary mate-
rial additional file 2).

Association structure
Table  1 summarises the association structures utilised in 
the different studies. Most of the articles were based on ran-
dom effects with 36.5% (n = 27 studies) using separate ran-
dom effects, 28.4% (n = 21 studies) used random effects but 
were unspecified whether they were separate or shared, and 
21.6% (n = 16 studies) were based on a shared random effect.

Modelling approach and estimation method
Of the 74 included studies, 48 (64.9%) used a frequen-
tist approach. The most common method of estimation 

Fig. 2  Year of publication of identified studies

Table 1  Association structure for the joint model

Association Structure for Joint 
Model

N (%) References

Separate random effects 27 (36.48)  [15, 16, 18, 19, 24–46]

Random effects (unspecified) 21 (28.37)  [20–22, 47–64]

Shared random effects 16 (21.62)  [17, 23, 65–78]

Association parameter 3 (4.05)  [79–81]

Separate and shared random effects 3 (4.05)  [82–84]

Marginal model 1 (1.35)  [85]

Cluster-specific random effect 1 (1.35)  [86]

Separate random effects and Current 
value association structure

1 (1.35)  [87]

None 1 (1.35)  [88]
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in the frequentist approach was the maximum likelihood 
(n = 33 studies, 68.7%). Other estimation approaches 
used were: iterative estimation procedure, two-stage 
estimation procedure, partial marginalisation, and likeli-
hood approaches such as pseudo-likelihood and penal-
ised quasi-likelihood. A Bayesian approach was used by 
26 studies (35.1%), with most studies using the Markov 
Chain Monte Carlo with Gibbs sampler algorithm for 
estimation (10 of 26 studies, 38%). A variety of techniques 
were used to assess the convergence of the MCMC chain. 
Of the 26 studies employing a Bayesian approach, 10 

studies (38%) used trace plots or the Gelman-Rubin diag-
nostics tests (Table 2).

Bayesian priors
Most studies assumed a weak or non-informative prior 
for the fixed effects, random effects, and association 
parameters. Priors based on the assumption of a normal 
distribution were mostly applied to fixed effects (15 of 26 
studies, 58%) and random effects (9 of 26 studies, 35%). 
The Inverse Wishart distribution was the most commonly 
assumed distribution for the association structures (21 of 
26 studies, 81%) (Table 1). Sensitivity analysis to evaluate 

Table 2  Method of estimation

Modelling Approach Method of Estimation N (%) References

Bayesian Markov Chain Monte Carlo (Gibbs sampler and Metropolis-
Hastings algorithm)

10 (38.46)  [19, 24, 45, 49, 57, 62, 65–67, 70]

Markov Chain Monte Carlo (Gibbs sampler) 10 (38.46)  [16–18, 22, 43, 46, 58, 68, 69, 80]

Markov Chain Monte Carlo 4 (15.38)  [20, 30, 36, 44]

Markov Chain Monte Carlo (Metropolis-Hastings algorithm) 1 (3.84)  [81]

Hamiltonian Monte Carlo 1 (3.84)  [72]

Frequentist Maximum likelihood 33 (68.75)  [21, 23, 25, 28, 29, 31–33, 38, 40–42, 48, 50, 52, 53, 
55, 56, 60, 61, 63, 64, 71, 73, 76–78, 82–84, 86, 87]

Likelihood approach 9(18.75)  [15, 27, 34, 35, 37, 47, 51, 54, 59]

Two-stage estimation procedure 2 (4.16)  [79, 88]

Iterative estimation procedure 1 (2.08)  [85]

Partial marginalisation for parameter estimation 1 (2.08)  [26]

Unclear 3 (6.25)  [39, 74, 75]

Table 3  Bayesian modelling approach priors

Bayesian Modelling Approach Priors N (%) References

Fixed Prior Normal 15 (57.69)  [16–18, 20, 24, 36, 44, 45, 58, 62, 68–70, 80, 81]

Multivariate normal 3 (11.53)  [46, 49, 66]

Half Cauchy distribution 1 (3.85)  [72]

P variate normal 1 (3.85)  [65]

Shrinkage prior normal 1 (3.85)  [43]

Unclear 5 (19.23)  [19, 22, 30, 57, 67]

Random effects Prior Normal 9 (34.62)  [16–18, 45, 46, 62, 68–70]

Multivariate normal 3 (11.53)  [36, 49, 66]

Dirichlet process prior 3 (11.53)  [19, 24, 43]

P variate normal 1 (3.84)  [65]

Log-normal distribution 1 (3.84)  [44]

Bivariate normal distribution 1 (3.84)  [58]

Half Cauchy distribution 1 (3.84)  [72]

Inverted Gamma prior 1 (3.84)  [57]

Unclear 6 (23.08)  [20, 22, 30, 67, 80, 81]

Association Parameter Prior Inverse Wishart 21 (80.76)  [16–20, 24, 36, 43–46, 49, 58, 62, 65–70, 80]

Normal distribution 1 (3.44)  [81]

Unclear 4 (15.38)  [22, 30, 57, 72]
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the impact of the assumed priors was performed in only 
half of the studies (13 of 26 studies, 50%) (Table 3).

Software
R statistical software was the most used (n = 33, 45%) fol-
lowed by SAS (n = 25 studies, 34%). Other softwares used 
included: WinBUGs, Fortran, MATLAB, Stata, and SPSS. 
Nine of the studies (12%) did not report the software 
used (Table 4).

Discussion
Several approaches have been proposed and employed 
to jointly model longitudinal and non-time-to-event 
data. The frequentist method was the most used model-
ling approach for longitudinal data using a linear mixed-
effects model. The association structure for linking the 
two models was mostly a random effect. Markov Chain 
Monte Carlo with Gibbs sampler algorithm was com-
monly used to estimate the model parameters under the 
Bayesian approach and maximum likelihood for the fre-
quentist approach. The most common area of application 
was in medical research. R software was the most com-
monly used.

Most studies reviewed utilised Maximum Likelihood 
Estimation (MLE) as the primary frequentist method for 
parameter estimation. The MLE approach is favoured for 
its desirable statistical characteristics, such as consist-
ency and asymptotic normality, which makes it a robust 
choice for complex joint modelling scenarios [89–91]. 
MLE provides consistent parameter estimates, meaning 
that as the sample size increases, the estimates converge 
to the true parameter values, ensuring the reliability of 
the model’s predictions [89]. Additionally, MLE estimates 
are asymptotically normally distributed, allowing for the 
construction of confidence intervals and hypothesis tests, 
simplifying the inference process [90]. Furthermore, 
MLE is efficient, achieving the lowest possible variance 
among all unbiased estimators under certain conditions 
and ensuring precise estimates [91].

Despite its advantages, MLE has limitations, such as 
computational complexity, particularly in high-dimen-
sional contexts or scenarios with complex correlation 
structures, especially in joint modelling frameworks [15]. 
However, using parallel computing techniques can help 
spread the computational workload across multiple pro-
cessors, significantly reducing the time required to esti-
mate the parameters. Additionally, implementing more 
efficient algorithms, like the Expectation-Maximization 
(EM) algorithm, can tackle complex models more effec-
tively [92, 93]. Also, we have methods like the Laplace 
approximation or variational inference that can help 
simplify the likelihood function, making the calculations 
more manageable [10].

Furthermore, MLE depends on the correct specifica-
tion of the model, and violating model assumptions can 
lead to biased parameter estimates. It can also be sensi-
tive to outliers, which can significantly affect the param-
eter estimates, necessitating careful data preprocessing 
and outlier detection [26]. However, employing flexible 
models that accommodate a wide range of data distribu-
tions and correlation structures, such as semiparametric 
models, can relax the assumption of normal distribu-
tion, for example, in random effects [94]. Furthermore, 
using robust estimation techniques that are less affected 
by outliers, such as M-estimators or trimmed likelihood 
methods, can help ensure robust parameter estimates 
[95, 96].

Different Bayesian sampling algorithms were applied to 
those studies that employed the Bayesian approach. The 
MCMC is generally used to estimate the parameters in 
the Bayesian approach. The combination of Gibbs sam-
pler and Metropolis-Hastings (MH) algorithms enables 
faster convergence. Gibbs sampling can quickly explore 
the parameter space for some variables, while MH can 
handle the more challenging parts, leading to a more 
efficient overall sampling process. In high-dimensional 
spaces, pure MH can struggle with low acceptance 
rates. Gibbs sampling can break down the problem into 

Table 4  Software used in joint modelling

Software No. (%) References

R 33 (44.59%)  [16, 19, 20, 22–24, 27, 29, 30, 36, 38, 40, 42–44, 46, 47, 49, 52, 56, 58, 63–66, 68, 
70–73, 76–78]

SAS 25 (33.78%)  [15, 21, 26, 28, 32–34, 37, 39, 40, 42, 48, 50, 51, 53, 55, 56, 59, 60, 71, 74, 83–86]

WinBUGS 8 (10.81%)  [18, 43–45, 62, 67, 69, 81]

Fortran 1 (1.35%)  [17]

MATLAB 2 (2.70%)  [57, 61]

Stata 3 (4.05%)  [35, 56, 87]

SPSS 1 (1.35%)  [77]

Unclear 9 (12.16%)  [25, 31, 41, 54, 75, 79, 80, 82, 88]
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lower-dimensional conditional distributions, making 
it easier for MH to operate effectively on the remaining 
dimensions [97]. In addition, the combination of Gibbs 
sampling and MH leads to flexibility in sampling, as 
the Gibbs Sampler is efficient for sampling from condi-
tional distributions when it is easy to sample directly, and 
Metropolis-Hastings is useful for sampling from complex 
distributions where direct sampling is difficult. Hence, 
Gibbs sampling can be used for variables with straight-
forward conditional distributions and MH for more com-
plex ones [97].

Assessing the convergence of MCMC when Bayesian 
estimation is employed is essential. Diagnostic tools have 
been created to assess the time it takes for the chain to 
generate observations from the stationary distribution 
of the Markov chain [98]. The studies reviewed used the 
Gelman-Rubin diagnostics test, trace plots, autocorre-
lation plots, cross-correlation plots, density plots, and 
MCMC chain history.

Bayesian estimation offers a clear advantage by allow-
ing the incorporation of previous studies’ information 
through prior parameter distributions. A prior is typically 
defined for the unknown fixed effect parameter and the 
association parameter. This means that prior information 
from previous studies is used to influence the posterior 
distribution [8] Some studies also assume a prior for both 
fixed and random effect parameters in longitudinal tra-
jectory, providing more flexibility in modelling the trajec-
tory and reducing uncertainty regarding distributional 
assumptions. The most popular prior used was normal 
prior, and the Dirichlet process prior was used to enable 
the creation of a family of distributions for more flexible 
priors than the standard normal distribution.

One of the advancements of joint modelling is predic-
tion [8, 99]. Of the studies reviewed, few articles provided 
dynamic predictions for non-time-to-event outcomes. 
Prediction is beneficial in medical research as it aids in 
tailoring diseases and conditions for individuals and 
hence takes a relatively accurate decision to improve the 
decision-making procedure in health [8]. Hence, there is 
a potential benefit of using joint modelling for the non-
time-to-event longitudinal data, leveraging this advan-
tage among others.

Joint modelling can be more challenging when the 
longitudinal model is nonlinear [93]. In this review, 
studies that utilized nonlinear mixed effects models 
within the joint modelling framework were identi-
fied. For instance, the use of semi-parametric quantile 
regression models, skewed multivariate random effects, 
and splines for nonlinear covariate effects highlight 
the diverse applications of these methods [17, 24, 45]. 
Additionally, the incorporation of nonparametric pri-
ors, mechanistic nonlinear models, and penalized 

splines further illustrates the flexibility of nonlinear 
approaches in joint modeling [18, 22]. These method-
ologies not only enhance the accuracy of predictions 
but also provide a comprehensive understanding of the 
underlying processes in various research contexts. The 
findings from these studies underscore the importance 
of considering nonlinear mixed effects models in joint 
modeling to address the complexities inherent in longi-
tudinal data analysis [100].

In joint modelling, error distributions play a crucial 
role in accurately capturing the relationship between 
different repeated measurements. In most studies, the 
normal distribution and multivariate normal distribu-
tions were commonly used, assuming that the residuals 
(errors) follow a normal distribution. Two studies [16, 
46] used an Asymmetric Laplace distribution to handle 
different quantiles of the data as they used a quantile 
regression model. The error distributions help link the 
longitudinal sub-models, ensuring that the joint model 
accurately reflects the underlying data structure [8, 12].

Similarly, as the error distributions, the majority of the 
studies employed normal distribution and multivariate nor-
mal distributions for the random effects. Some studies used 
a skewed normal distribution to address the uncertainties 
in random effects. Distributional assumptions are vital for 
parameter estimation and inference [101]. However, mis-
specifying the distribution can lead to biased estimates and 
incorrect inferences [102]. In certain cases, a Dirichlet pro-
cess prior is assigned to the random effects to provide flex-
ibility and prevent mis-specification of the random effects 
distribution [103]. We found out that most of the articles 
were based on random effects as an association structure 
in the joint model, which links the longitudinal sub-models 
and allows for individual-specific predictions. The individ-
ual-specific information is crucial for describing the out-
comes, for instance, disease course, and even designing 
interventions for the subjects [104]. Some studies specified 
whether they used separate or shared random effects with 
separate random effects being the most common. Sepa-
rate random effects provide more flexibility in modelling as 
they allow for different sources of variability in both sub-
models [12]. This allows a straightforward interpretation of 
random effects pertaining to a specific sub-model. In some 
cases, it leads to a better data fit, especially if the correlation 
between the longitudinal measurements is weak. In addi-
tion, separate random effects accommodate more complex 
association structures between the longitudinal measure-
ments [10]. Shared random effects have the advantage of 
improving efficiency through borrowing of information 
that leads to more efficient parameter estimates [8]. It also 
allows a simplified model structure by reducing the num-
ber of parameters that need to be estimated [12]. Choosing 
between these approaches depends on the specific context 
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of the study and the nature of the data. Shared random 
effects are often preferred for their efficiency and ability to 
simplify the model structure, while separate random effects 
offer greater flexibility and interpretability.

To conclude, we have reviewed studies with Bayesian 
and frequentist approaches, summarised the modelling 
approach, type of sub-model, association structure, sampling 
algorithms, priors employed, the software used, whether a 
simulation study was conducted, and dynamic predictions.
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