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ABSTRACT
In various missing data problems, values are not entirely missing, but are coarsened. For coarsened observations, instead of observ-
ing the true value, a subset of values - strictly smaller than the full sample space of the variable - is observed to which the true
value belongs. In our motivating example for patients with endometrial carcinoma, the degree of lymphovascular space invasion
(LVSI) can be either absent, focally present, or substantially present. For a subset of individuals, however, LVSI is reported as being
present, which includes both non-absent options. In the analysis of such a dataset, difficulties arise when coarsened observations
are to be used in an imputation procedure. To our knowledge, no clear-cut method has been described in the literature on how to
handle an observed subset of values, and treating them as entirely missing could lead to biased estimates. Therefore, in this paper,
we evaluated the best strategy to deal with coarsened and missing data in multiple imputation. We tested a number of plausible ad
hoc approaches, possibly already in use by statisticians. Additionally, we propose a principled approach to this problem, consist-
ing of an adaptation of the SMC-FCS algorithm (SMC-FCSCoCo: Coarsening compatible), that ensures that imputed values adhere
to the coarsening information. These methods were compared in a simulation study. This comparison shows that methods that
prevent imputations of incompatible values, like the SMC-FCSCoCo method, perform consistently better in terms of a lower bias
and RMSE, and achieve better coverage than methods that ignore coarsening or handle it in a more naïve way. The analysis of
the motivating example shows that the way the coarsening information is handled can matter substantially, leading to different
conclusions across methods. Overall, our proposed SMC-FCSCoCo method outperforms other methods in handling coarsened data,
requires limited additional computation cost and is easily extendable to other scenarios.

1 | Introduction

A frequent problem in statistical analyses is the presence of
incomplete data. In the most commonly studied setting, the
observation of one or more variables is completely unknown
(missing) for a subset of individuals. For this setting, an extensive
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“missing data” framework has been derived, with approaches
for different missingness assumptions [1, 2]. When the miss-
ingness is assumed to be missing at random (MAR) - meaning
that the probability of a value to be missing only depends on
observed data - multiple imputation (MI) can be applied to deal
with the missing observations to obtain valid inference. In this
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three-step approach, missing data is iteratively drawn from an
imputation model forming several complete data sets, which are
then analyzed as usual via a regression model or another stan-
dard approach. Results from these regression models are pooled
to obtain estimates of the parameters of interest. It is important
for valid inference that the imputation and regression model of
the first two steps are compatible, which might be challenging
for a non-linear relationship between predictors and outcome.
The substantive model compatible fully conditional specifica-
tion (SMC-FCS) procedure ensures compatibility by accommo-
dating the substantive model for the outcome in the imputation
procedure [3].

However, in various common situations incomplete data is not
entirely missing. Instead, the value of the variable for a subject is
only partly unknown; it is known that the value belongs to a strict
subset of the sample space of the variable. This phenomenon has
been termed coarsening [4], and the resulting data are referred to
as coarsened data. This name is used as an overarching term for
various forms of partly observed data, including censoring and
grouping of data [5, 6]. Censoring denotes the situation when
only a lower or upper bound for a value is known, such as in
survival analysis, when the occurrence of an event takes place
outside the observational window and only minimal event-free
time can be defined as end of follow-up. Within the field of sur-
vival analysis, multiple methods have been specifically designed
to account for censoring and to obtain valid estimates. However,
problems arise when instead of a censored outcome, one of the
covariates is censored, for example, when the age of clinical diag-
nosis is an important predictor but this time point lies after the
observational period [7]. Examples of grouping are the catego-
rization of a continuous age into various intervals, or grouping
multiple disease categories into a single level. Grouping can be
intentional to reduce model complexity, but can also arise due to
limitations in the measurement process. For example, limitations
in the KIR genotyping process often lead to ambiguous genotype
calls, each corresponding to a subset of compatible diplotypes [8].
These subsets exclude already a large number of diplotypes, but
the true diplotype remains unknown.

Similar to the missingness framework, there are different coars-
ening mechanisms, which make different assumptions about the
coarsening mechanism given observed data [9]. For coarsening
completely at random (CCAR) the coarsening occurs randomly,
independently of observed data, leading to unbiased results when
a complete case analysis, where both completely missing or
coarsened observations are discarded, is employed [10]. The
coarsening at random (CAR) assumption is similar to the MAR
assumption in the sense that both assume that the probability
of a particular coarsened observation occurring depends only on
observed information. Intuitively, the CAR assumption implies
that each possible value within the subset has the same proba-
bility of becoming coarsened, conditional on other observed vari-
ables. A formal definition will be given in the next section. With
coarsening not at random (CNAR), which implies that coars-
ening depends also on unobserved information, the problem
becomes non-identifiable.

The motivation for this paper is a study in endometrial cancer,
where data from a number of clinical trials were combined for a

model predicting recurrence. An important risk factor for recur-
rence in this disease is lymphovascular space invasion (LVSI) -
indicating to what degree the cancer has spread into the blood
and lymph vessels of the myometrium. Commonly, this vari-
able is scored as either absent, focally present or substantially
present [11]. However, in a number of trials the variable was only
recorded to be either absent or present, where the present group
is a combination of focally and substantially present. Since only
the substantial presence of LVSI has been shown to be associated
with recurrence, interest lies in the use of all three levels [12].
Thus, the observations for the individuals recorded as present are
coarsened and need to be handled appropriately.

In this paper, we investigate the best strategy to handle such
coarsened data occurring in categorical covariates with multiple
imputation procedures. We work in a context where the covari-
ates are used in a regression model and the main interest is in the
regression parameters. To our knowledge, no thorough investi-
gation is available for such a data problem. In Section 2 we pro-
pose a principled method based on an adaptation of the substan-
tive model compatible fully conditional specification (SMC-FCS),
and suggest a number of intuitive ad hoc approaches, which are
tested in a simulation study in Section 3. Section 4 illustrates the
methods on the motivating dataset, and the paper closes with a
discussion in Section 5.

2 | Methodology

Our main contribution is an extension of the SMC-FCS approach
to MI to accommodate coarsened data in Section 2.1. We first
briefly review SMC-FCS, motivate our proposal to incorporate
coarsened data in this setting, and discuss how the {smcfcs} pack-
age in R can be extended to include coarsened data. We then
restrict to categorical coarsened data and review some intuitive
ad hoc approaches in Section 2.2.

2.1 | Coarsening Compatible SMC-FCS

Bartlett et al. [3] consider the setting where a substantive model,
that is, a model representing a research question, for a fully
observed outcome 𝑌 has been specified based on covariates, of
which some are partially observed, 𝑋 = (𝑋1, . . . , 𝑋𝑝), and the
remainder are fully observed, 𝑍 = (𝑍1, . . . , 𝑍𝑞). In the standard
missing data setting, an individual observation in one of the par-
tially observed covariates is either completely missing or present.
The indicator value 𝑅 of this observation then takes the values
0 (when missing) or 1 (when present). Letting 𝑋obs and 𝑋mis
denote the observed and missing components of 𝑋 for a given
individual, the MAR assumption states that 𝑃 (𝑅 | 𝑋, 𝑌 ,𝑍) =
𝑃 (𝑅 | 𝑋obs, 𝑋mis, 𝑌 , 𝑍) = 𝑃 (𝑅 | 𝑋obs, 𝑌 , 𝑍).

Coarsening can be defined by allowing set-valued observations
for each partially observed covariate 𝑋𝑗 . For the corresponding
sampling space Ω𝑗 , an individual has observation 𝑋′

𝑗
⊂ Ω𝑗 . If

𝑋′
𝑗
= Ω𝑗 , then 𝑋𝑗 is completely missing, while if 𝑋′

𝑗
is a sin-

gle point, 𝑋𝑗 is completely observed for the respective subject.
Otherwise, an observation is said to be properly coarsened for
any other subset 𝑋′

𝑗
. Therefore, 𝑋′

𝑗
∈ (Ω𝑗), the power set of Ω𝑗 ,

which is finite if and only if 𝑋𝑗 is discrete. In practice, also if
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the distribution of 𝑋𝑗 is continuous, in a finite sample only a
finite number of possible subsets of Ω𝑗 will be observed. To sim-
plify the exposition, we assume that 𝑋′

𝑗
can only take a finite

number of values (non-empty subsets of Ω𝑗). We enumerate all
possible distinct combinations of observations of 𝑋′

𝑗
, and cate-

gorize all (observed) subsets of Ω as 0 (completely missing), 1
(completely observed), 2, . . . ,𝑗 , where 𝑗 is the total number
of these combinations. Let 𝑅 = (𝑅1, . . . , 𝑅𝐽 ) be a vector of coars-
ening indicators 𝑅𝑗 , with 𝑅𝑗 ∈ {0, . . . ,𝑗}. We extend the orig-
inal definition of 𝑅 used to distinguish between MCAR, MAR
and MNAR, to include these possible values, thus changing the
definition of 𝑅𝑗 from a missing data indicator to a coarsen-
ing indicator. The coarsening at random (CAR) assumption now
states that𝑃 (𝑅 | 𝑋, 𝑌 ,𝑍) = 𝑃 (𝑅 | 𝑋′, 𝑌 , 𝑍), both being multino-
mial distributions. Tsiatis [10] gives an equivalent definition.

The substantive model is denoted by 𝑓 (𝑌 | 𝑋,𝑍;𝜓) with param-
eter 𝜓 , which we assume to be well specified. In fully conditional
specification multiple imputation (FCS MI) - the procedure
underlying the MICE algorithm - models are specified for each
partially observed variable, conditional on all other variables and
the outcome. Denote the chosen model for partially observed
covariate 𝑋𝑗 by 𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝑌 , 𝜃𝑗), parameterized by 𝜃𝑗 . Typ-
ically, a generalized linear model is used, which, in general, is
not compatible with the substantive model. FCS MI starts by
replacing missing values in each 𝑋𝑗 by observed values from
𝑋𝑗 . Then missing values are repeatedly imputed, condition-
ing on the most recent imputed values of the other variables.
Define 𝑥

mis,(𝑡)
𝑗 to be the imputed values of 𝑥mis

𝑗 in iteration 𝑡,
𝑥
(𝑡)
𝑗 = (𝑥obs

𝑗 , 𝑥
mis,(𝑡)
𝑗 ) the completed vector of observed and imputed

values at iteration 𝑡, and 𝑥
(𝑡)
−𝑗 = (𝑥(𝑡)

1 , . . . , 𝑥
(𝑡)
𝑗−1, 𝑥

(𝑡−1)
𝑗+1 , . . . , 𝑥(𝑡−1)

𝑝
).

Then the 𝑡th iteration of FCS MI consists of drawing, first from
𝜃
(𝑡)
𝑗 ∼ 𝑓 (𝜃𝑗)𝑓 (𝑥obs

𝑗 | 𝑥(𝑡)
−𝑗 , 𝑧, 𝑦, 𝜃𝑗), 𝑗 = 1, . . . , 𝑝, then from 𝑥

mis,(𝑡)
𝑗 ∼

𝑓 (𝑥mis
𝑗 | 𝑥(𝑡)

−𝑗 , 𝑧, 𝑦, 𝜃
(𝑡)
𝑗 ). Above steps are continued until conver-

gence, although in practice, a finite number of iteration steps is
chosen. This whole procedure is repeated 𝑚 times, where each
time the last iteration is taken, forming 𝑚 imputed datasets. Each
imputed dataset is analyzed with the same substantive regression
model and coefficients are pooled with Rubin’s rules [1, 2]. This
procedure is regularly used, and has been implemented in the R
package {mice}.

The idea behind SMC-FCS is to specify an imputation model
for 𝑋𝑗 that is compatible with the substantive model. Models
𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝜙𝑗) are specified, with non-informative priors for
the parameters 𝜓 and 𝜙𝑗 . Then, noting that

𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝑌 ) ∝ 𝑓 (𝑌 | 𝑋,𝑍)𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍) (1)

the idea is to impute missing values in 𝑋𝑗 from the density pro-
portional to the product of 𝑓 (𝑌 | 𝑋,𝑍, 𝜓) and 𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝜙𝑗).
This product density typically does not belong to a standard class
of parametric distributions, requiring sampling methods such as
rejection sampling to draw observations [3]. Note that for dis-
crete variables direct draws are possible, since then for each pos-
sible value 𝑥𝑗 ∈ Ω𝑗 the product of 𝑃 (𝑋𝑗 = 𝑥𝑗 | 𝑋−𝑗 , 𝑍, 𝜙𝑗) and
𝑓 (𝑌 | 𝑋,𝑍, 𝜓) (𝑋 containing 𝑥𝑗) can be calculated, their stan-
dardized (so as to add up to one) values defining a multinomial
distribution on Ω𝑗 . For the 𝑡th iteration, these probabilities are
calculated by first drawing 𝜓 (𝑡,𝑗) ∼ 𝑓 (𝜓)𝑓 (𝑦 | 𝑥(𝑡−1)

𝑗 , 𝑥
(𝑡)
−𝑗 , 𝑧, 𝜓) and

𝜙
(𝑡)
𝑗 ∼ 𝑓 (𝜙𝑗)𝑓 (𝑥

(𝑡−1)
𝑗 | 𝑥(𝑡)

−𝑗 , 𝑧, 𝜙𝑗), 𝑗 = 1, . . . , 𝑝, and then drawing
the missing values of 𝑋𝑗 from the density proportional to (1) [3].
This way, in each iteration, the imputed values for the missing val-
ues of 𝑋𝑗 are updated. This is repeated for a pre-specified number
of iterations, where all iterations up to (and not including) 𝑡 (here
𝑡 = 20) are used as “burn-in” samples to reach convergence of the
sampler.

Suppose now that for a particular subject the value of 𝑋𝑗 is prop-
erly coarsened and suppose 𝑋′

𝑗
= 𝑆 is observed, in other words

it is known that only the points in subset 𝑆 of Ω𝑗 are compatible
with 𝑋𝑗 . If the above SMC-FCS approach is naïvely applied by
ignoring the coarsening information, imputations will be drawn
under the assumption that 𝑋𝑗 is completely missing, possibly
leading to imputations outside 𝑆. Since we know that 𝑋𝑗 ∈ 𝑆,
the aim is to impute from 𝑓 (𝑋𝑗 | 𝑋𝑗 ∈ 𝑆,𝑋−𝑗 , 𝑍, 𝑌 ), rather than
from 𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝑌 ), as would be the case if 𝑋𝑗 is completely
missing for the individual. Note that by the CAR assumption

𝑓 (𝑋𝑗 | 𝑋𝑗 ∈ 𝑆,𝑋−𝑗 , 𝑍, 𝑌 ) =
⎧⎪⎨⎪⎩

0, if 𝑋𝑗 ∉ 𝑆;
𝑓 (𝑋𝑗 | 𝑋−𝑗 ,𝑍,𝑌 )

𝑃 (𝑋𝑗∈𝑆 | 𝑋−𝑗 ,𝑍,𝑌 )
, if 𝑋𝑗 ∈ 𝑆

(2)

which is proportional to 𝑓 (𝑌 | 𝑋,𝑍)𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍), as in
Equation (1), but limited to 𝑋𝑗 ∈ 𝑆. Whereas, SMC-FCS allows
to impute missing values in 𝑋𝑗 from the density proportional
to 𝑓 (𝑌 | 𝑋,𝑍, 𝜓)𝑓 (𝑋𝑗 | 𝑋−𝑗 , 𝑍, 𝜙𝑗), then the coarsening compat-
ible SMC-FCS (SMC-FCSCoCo) method simply adds a (second)
rejection step, which accepts a value 𝑋𝑗 drawn using SMC-FCS
only if 𝑋𝑗 ∈ 𝑆, and rejects it otherwise. Since 𝑋𝑗 is discrete, again
it is possible to avoid rejection sampling by first calculating the
product of 𝑃 (𝑋𝑗 = 𝑥𝑗 | 𝑋−𝑗 , 𝑍, 𝜙𝑗) and 𝑓 (𝑌 | 𝑋,𝑍, 𝜓) for all val-
ues 𝑥𝑗 limited to 𝑥𝑗 ∈ 𝑆. Subsequently, values for 𝑋𝑗 ∈ 𝑆 can be
drawn with probabilities relative to these calculated values. In
practice, this means that when 𝑋𝑗 is discrete, two adjustments are
made to the SMC-FCS algorithm: (1) initial values for the missing
values in each 𝑋𝑗 are drawn from the set of observed values that
are compatible with 𝑆, and (2) probabilities estimated for points
that are not compatible with 𝑆 are set to zero before normaliza-
tion of the probabilities. The implementation of this extension in
the SMC-FCS package is described in Appendix A.

2.2 | Other Methods

The SMC-FCSCoCo method is generally applicable whenever
SMC-FCS can be used. The simulation study in Section 3 illus-
trates SMC-FCSCoCo for the special case of a single categorical
covariate with coarsening and potential missingness. The reason
for that is that for this common situation, other ad hoc methods
seem obvious to suggest and are used for method comparison. For
the remainder of the paper we restrict to this case.

Our motivating example, mentioned in the introduction and fur-
ther detailed in Section 4, concerns the PORTEC and MST studies
in which the variable LVSI was assessed through a central pathol-
ogy review [12]. In PORTEC-1, PORTEC-2 and MST, the variable
LVSI is quantified in three levels: Absent, focally present and
substantially present [13–15]. However, for a subset of patients,
the coarsened present, meaning either focally or substantially
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TABLE 1 | Coarsening data example for nine individuals. For individuals 1–3 𝑋 is completely observed, for individuals 4 and 5 𝑋 is in a situation
with coarsening, indicated by {𝑏, 𝑐} the coarsened combination of 𝑏 or 𝑐, and for individuals 6–8 𝑋 is missing. Column 𝑋compl contains the true (but
unobserved) measurement, column 𝑋obs the observed information, which is split into two columns 𝑋 and 𝐶 . Column 𝐶 is differently structured (NA
or {𝑎, 𝑏, 𝑐}) for different methods. Lastly, columns 𝑍1, 𝑍2 and 𝑌 are two fully observed covariates and the outcome.

ID 𝑿compl 𝑿obs 𝑿 𝑪 𝒁1 𝒁2 𝒀

1 𝑎 𝑎 𝑎 𝑎 −0.966 −0.166 −0.170
2 𝑏 𝑏 𝑏 {𝑏, 𝑐} 1.097 −0.619 1.592
3 𝑐 𝑐 𝑐 {𝑏, 𝑐} 0.714 2.389 4.592
4 𝑏 {𝑏, 𝑐} NA {𝑏, 𝑐} −0.291 0.743 −0.543
5 𝑐 {𝑏, 𝑐} NA {𝑏, 𝑐} 0.729 0.456 2.270
6 𝑎 NA NA NA/{𝑎, 𝑏, 𝑐} 1.035 0.204 1.387
7 𝑏 NA NA NA/{𝑎, 𝑏, 𝑐} −0.351 −0.317 0.637
8 𝑐 NA NA NA/{𝑎, 𝑏, 𝑐} 0.224 −0.150 0.430

present, is also observed. In the PORTEC-3 trial, the LVSI vari-
able was registered dichotomized, as absent or coarsened present
[16]. We use this setting to guide the simulation study in the next
section, and also to explain the other methods to be compared in
the simulation study now. To simplify the notation but without
loss of generality, we use a variable 𝑋 with three levels: 𝑎, 𝑏 and 𝑐.
The only coarsening we consider for a subset of the observations
𝑋 is that the observation is either 𝑏 or 𝑐, which is indicated by
{𝑏, 𝑐} (present), rather than 𝑏 or 𝑐. For another subset of observa-
tions, 𝑋 is completely missing. Table 1 shows data for 8 patients,
the first three of which are completely observed, the next two are
coarsened, and the last three are missing. Column 𝑋compl shows
the true (but unobserved) information. The information that is
observed is shown in column 𝑋obs, which can take values 𝑎, 𝑏,
𝑐, {𝑏, 𝑐} (so the coarsened combination of 𝑏 and 𝑐) or NA (com-
pletely missing). For some of the ad hoc methods, the observed
information is split into two columns for further analysis, 𝑋 and
𝐶 , which will then be considered as the partially missing covari-
ates in the multiple imputation procedure. Column 𝑋 contains
the “certain” information of 𝑋obs, that is, it copies the observa-
tions that are completely observed, and is missing otherwise. The
coarsening column 𝐶 takes values 𝑎, {𝑏, 𝑐}, or is completely miss-
ing (which can be denoted as NA or as {𝑎, 𝑏, 𝑐}). The idea behind
introducing the auxiliary covariate 𝐶 is that during the imputa-
tion cycles information about 𝑋, needed for instance for individ-
uals 4 and 5 in Table 1, can be borrowed from 𝐶 , for instance from
individuals 2 and 3. Columns𝑍1,𝑍2 and 𝑌 in Table 1 are two fully
observed covariates and the outcome, respectively.

The set-up described above is thus based on the above mentioned
PORTEC and MST studies, but other options for coarsening (e.g.,
{𝑎, 𝑏} or {𝑎, 𝑐}) would be equally possible. With multiple ways
of coarsening 𝑋compl, multiple auxiliary 𝐶 columns would be
needed.

To deal with the coarsened data, we consider several methods.
Not all methods are expected to perform equally well, but they are
chosen because of their simplicity and therefore their expected
use in practice. For all methods, the imputation model for 𝑋

depends on the outcome 𝑌 and the auxiliary variables 𝑍1 and
𝑍2. The methods differ in the way they structure and handle the
coarsening variable 𝐶 . In contrast, the substantive model for each
method is the same: The outcome is regressed on 𝑋, 𝑍1 and 𝑍2,

while 𝐶 is ignored (but information in 𝐶 is possibly indirectly
transferred into 𝑋 through the imputation model). Since it is pos-
sible to have a dataset where observations can be either coarsened
or completely missing, all methods are equipped to handle both
under the assumptions of CAR and MAR.

1. Complete case analysis (CCA): All individuals with a coars-
ened or missing observation are discarded from the dataset.

2. MICE: Multiple imputation via the MICE algorithm [17] (R
package {mice}): The missing values in 𝑋 are imputed via
the multinomial logistic regression (“polytomous”) regres-
sion for unordered categorical data (“polyreg”) approach.
Four different sub-approaches are used.
– MICE: 𝐶 is ignored in the imputation model.
– MICEmis: 𝐶 is included in the imputation model as extra

auxiliary variable. When there are also missing observa-
tions in 𝑋, these individuals will also have missing obser-
vations in 𝐶 . These missing observations in 𝐶 will be
denoted by NA (Table 1), and will thus also be imputed
via an imputation model that depends on 𝑋, 𝑍1, 𝑍2 and
𝑌 via the “polyreg” approach.

– MICEfct: 𝐶 is included in the imputation model as extra
auxiliary variable. When there are also completely miss-
ing observations in 𝑋, these missing observations in
𝐶 will be grouped in the separate factor level {𝑎, 𝑏, 𝑐}
(Table 1) and thus do not need to be imputed. Thus, the
NA’s in column 𝐶 of Table 1 are considered a separate
category. When no missing observations are present in
𝑋, MICEmis and MICEfct are equivalent.

– MICE2S: Two-step approach. In step 1 a subset is made
containing all individuals with coarsened observations
(i.e., all observations with {𝑏, 𝑐}) and with fully observed
𝑏 or 𝑐. The coarsened observations in this subset are
then imputed based only on observations that are 𝑏 or
𝑐 to ensure compatibility. When there are also missing
observations in 𝑋, these are imputed in step 2 based on
a completed dataset, containing the imputed coarsened
observations of step 1 and any additional missing obser-
vations. Without missing observations in 𝑋, the second
step is omitted. To end up with the same number of
imputed datasets as in the other methods, in step 2 only

4 of 15 Statistics in Medicine, 2025
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one dataset is imputed for each imputed dataset from
step 1.

3. SMC-FCS: Imputations via the default SMC-FCS algorithm
[18], as implemented in the {smcfcs} package in R.
The same four approaches are studied as for the MICE
algorithm, named SMC-FCS, SMC-FCSmis, SMC-FCSfct and
SMC-FCS2S. Here the missing values in 𝑋, and where appli-
cable 𝐶 , are imputed via the multinomial logistic regression
for unordered categorical variables (“mlogit”) approach.

4. SMC-FCSCoCo: Imputations via the SMC-FCSCoCo
algorithm, as described in Section 2.1.

3 | Simulation Study

3.1 | Set-Up

The simulation studies described here follow the aims, data-
generating mechanisms, estimands, methods, and performance
measures (ADEMP)-structure discussed in Morris et al. [19].

3.1.1 | Aim

The aim of the simulation study is to evaluate SMC-FCSCoCo and
the methods suggested in Section 2.2, to deal with coarsened and
missing data under different settings.

3.1.2 | Data Generation Mechanism

For each dataset, 𝑛obs = 2000 individuals were simulated, each
with three explanatory variables (𝑋,𝑍1 and 𝑍2) and an out-
come (𝑌 ). Covariate 𝑋 is categorical with three levels, denoted
𝑎, 𝑏, and 𝑐, while 𝑍1 and 𝑍2 are continuous. For each scenario
described below, 𝑛sim = 165 independent replications were run.
This number is based on the desired Monte-Carlo Standard Error
(MCSE) of the bias of all regression coefficients, which is defined
as MCSE(bias) =

√
𝜎2∕𝑛sim. For this study, a MCSE(bias) ≤ 0.01

was deemed to be acceptable. To determine the 𝜎2 per parameter,
a pilot study was run with different scenarios. A global 𝜎2 was
chosen as the 95% percentile over all estimated 𝜎2s, which was
found to be 0.128. This led to a final sample size (𝑛sim) of 165.

Covariates

Three covariates (𝑋̃, 𝑍1, 𝑍2) were simulated following
a trivariate normal distribution with mean 𝜇 = (0, 0, 0),
and variance-covariance matrix Σ with diagonal elements
𝜎2
𝑋̃
= 𝜎2

𝑍1
= 𝜎2

𝑍2
= 1 and correlations 𝜌𝑋̃𝑍1

= 𝜌𝑋̃𝑍2
= 𝜌𝑍1𝑍2

= 0.
To investigate performance under different scenarios, we
also evaluated alternative choices 𝜌𝑋̃𝑍1

= 0.7, 𝜌𝑋̃𝑍2
= 0.3 and

𝜌𝑍1𝑍2
= 0.7, leading to a total of 8 sets of correlation parameters.

A categorical variable 𝑋 with 𝑃 (𝑋 = 𝑎) = 𝑝𝑎, 𝑃 (𝑋 = 𝑏) = 𝑝𝑏, and
𝑃 (𝑋 = 𝑐) = 𝑝𝑐 , with 𝑝𝑎 + 𝑝𝑏 + 𝑝𝑐 = 1 was derived by dividing 𝑋̃

into three disjunct intervals, where 𝑋̃ ≤ Φ−1(𝑝𝑎) corresponds to
𝑋 = 𝑎, Φ−1(𝑝𝑎) < 𝑋̃ ≤ Φ−1(𝑝𝑎 + 𝑝𝑏) corresponds to 𝑋 = 𝑏, and
𝑋̃ > Φ−1(𝑝𝑎 + 𝑝𝑏) corresponds to 𝑋 = 𝑐 (Φ(𝑥) representing the
cumulative distribution function of a standard normal random

variable, see Bonneville et al. [20]). We considered the follow-
ing values for (𝑝𝑎, 𝑝𝑏, 𝑝𝑐):

(
1
3
, 1

3
, 1

3

)
,
(

1
2
, 1

4
, 1

4

)
, and

(
1
2
, 1

3
, 1

6

)
.

In the simulation study, we refer to these values as uniform,
bc-uniform, and skewed, respectively.

Outcomes

It is well known that SMC-FCS performs similarly to MICE for
continuous (normal) outcomes with covariates entered linearly,
but outperforms MICE for non-linear substantive models, like
logistic or Cox regression [3]. For this reason, we consider both
a continuous, normally distributed, outcome and a time-to-event
outcome. A continuous outcome was drawn according to

𝑌 = 𝛽0 + 𝛽11{𝑋 = 𝑏} + 𝛽21{𝑋 = 𝑐} + 𝛽3𝑍1 + 𝛽4𝑍2 + 𝜖 (3)

where 𝜖𝑖
i.i.d.∼ 𝑁(0, 1). A survival outcome was simulated as

𝑇̃ ∼ exp(exp{𝛽0 + 𝛽11{𝑋 = 𝑏} + 𝛽21{𝑋 = 𝑐} + 𝛽3𝑍1 + 𝛽4𝑍2})

𝑇𝐶 ∼ Unif(5, 10) (4)

the model has a constant baseline hazard and the 𝑇̃ and 𝑇𝐶

contain an event time and a censoring time for each indi-
vidual, respectively. We define 𝑇 ∶= min(𝑇̃ , 𝑇𝐶 ) as the indi-
vidual’s observed time, with corresponding event indicator
𝐷 ∶= 1(𝑇̃ ≤ 𝑇𝐶 ).

Reference values of the regression coefficients were taken to be
𝛽0 = 0 for the continuous outcome and 𝛽0 = log(0.1) for the sur-
vival outcome, 𝛽1 = 𝛽3 = 𝛽4 = 0.5 and 𝛽2 = 1. Moreover, addi-
tional scenarios were generated by multiplying 𝛽1 and 𝛽2 by
{0.5, 1, 2} (effect sizes).

Coarsening and Missing Data

Coarsening and missingness was induced only in 𝑋, mean-
ing that both 𝑍1, 𝑍2 and the outcome were always completely
observed. We induced coarsening and missingness in 𝑋, depend-
ing on 𝑍1 and 𝑍2, using a multinomial logistic regression set-up
for a random variable 𝑅 taking the values 0 (𝑋 completely miss-
ing), 1 (𝑋 completely observed) and 2 (coarsening in 𝑋), with
probabilities

𝑃 (𝑅 = 0 | 𝑍) = 1
1 + 𝑒𝛾

⊺
1𝑍 + 𝑒𝛾

⊺
2𝑍

,

𝑃 (𝑅 = 𝑟 | 𝑍) = 𝑒𝛾
⊺
𝑟 𝑍

1 + 𝑒𝛾
⊺
1𝑍 + 𝑒𝛾

⊺
2𝑍

, 𝑟 = 1, 2

with 𝑍 = (1, 𝑍1, 𝑍2). Default values for 𝛾1 and 𝛾2 were 𝛾1 =
(𝛾10, 𝛾11 = 1, 𝛾12 = 0) and 𝛾2 = (𝛾20, 𝛾21 = 0, 𝛾22 = 1), where 𝛾10
and 𝛾20 were chosen so that pre-specified percentages of coarsen-
ing and missingness were obtained, namely (𝑃 (𝑅 = 0), 𝑃 (𝑅 = 1),
𝑃 (𝑅 = 2)) = (0.0, 0.4, 0.6) and (0.2, 0.4, 0.4).

Coarsening could only apply to observations for which 𝑋 = 𝑏

or 𝑋 = 𝑐, so for observations with 𝑋 = 𝑎 coarsening was not
applied. Observations that were coarsened or missing were both
made missing in 𝑋, where a coarsening indicator 𝐶 was created
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to distinguish between these two, which is defined as

𝐶 =
⎧⎪⎨⎪⎩
𝑎, if 𝑋 = 𝑎 & 𝑅 ≠ 0
{𝑏, 𝑐}, if (𝑋 = 𝑏 or 𝑋 = 𝑐) & 𝑅 ≠ 0
NA, if 𝑅 = 0

(5)

3.1.3 | Design

The simulation study follows a full factorial design, where the
parameter sets mentioned above are evaluated in all combina-
tions. Two combinations of the correlation parameters, namely
the scenarios with 𝜌𝑋̃𝑍1

= 0, 𝜌𝑋̃𝑍2
= 0.3, and 𝜌𝑍1𝑍2

= 0 or 𝜌𝑍1𝑍2
=

0.7, were not investigated. This results in 6 (correlation parame-
ters) × 3 (category frequencies, choices for (𝑝𝑎, 𝑝𝑏, 𝑝𝑐)) × 2 (out-
comes) × 3 (effect sizes) × 2 (coarsening strength, 𝛾 ’s) = 216
combinations.

3.1.4 | Estimands

The main estimand of the simulation studies is the vector of
regression coefficients (𝛽0, 𝛽1, . . . , 𝛽4) of intercept (only linear
regression), indicators of 𝑋, and of 𝑍1 and 𝑍2. A second esti-
mand is the percentage correct classifications of the coarsened
individuals.

3.1.5 | Methods to Evaluate

Each simulated dataset was analyzed with the methods described
in Sections 2.1 and 2.2.

All missing observations were imputed based on the observed
auxiliary covariates 𝑍1 and 𝑍2 and the outcome, and depend-
ing on the method, based on 𝐶 . When a survival outcome was
simulated, the MICE algorithm included the Nelson-Aalen esti-
mate of the marginal cumulative hazard and the event indicator
as outcome information [21]. Default imputation models were
used for each imputation approach. For each simulated dataset,
50 imputed datasets are made. Each imputed dataset was ana-
lyzed with the same analysis model, namely a well-specified lin-
ear regression model or a Cox proportional hazards model with
𝑋 (categorical), 𝑍1 and 𝑍2 (linear) as covariates.

3.1.6 | Performance Measures

For each of the regression coefficients 𝛽 in our substantive regres-
sion model, each method yields 𝛽𝑖, 𝑖 = 1, . . . , 𝑛sim, as the esti-
mates, and ŜE𝑖, 𝑖 = 1, . . . , 𝑛sim, as the estimated standard errors
for the 𝑖th replication. Based on these, define the averages 𝛽 =

1
𝑛sim

∑𝑛sim
𝑚=1𝛽𝑖 and ŜE = 1

𝑛sim

∑𝑛sim
𝑖=1 ŜE𝑖. With these coefficients, the

root mean square error (RMSE) =
√

1
𝑛sim

∑𝑛sim
𝑖=1 (𝛽𝑖 − 𝛽)2, bias =

𝛽 − 𝛽 and the coverage = 1
𝑛sim

∑𝑛sim
𝑖=1 1{𝛽𝑖 − 𝑧0.975ŜE𝑖 < 𝛽 < 𝛽𝑖 +

𝑧0.975ŜE𝑖} are calculated as performance measures.

Another performance measure that we consider is the percent-
age incompatibly classified coarsened individuals. Considering

the individuals with a coarsened observation, that is, with an
𝑋obs = {𝑏, 𝑐}, we calculate the percentage of observations that are
imputed incompatibly with the coarsened observation, so that are
imputed with an 𝑎, while the observation is either an 𝑏 or an 𝑐.
This percentage is shown as an average over all imputed datasets
over all replications.

3.2 | Simulation Results

For clarity of exposition, the 216 simulation combinations are
divided into 12 scenarios, each with 18 sub-scenarios. The sce-
narios are divided based on the outcome (continuous: Scenar-
ios 1–6 and survival: Scenarios 7–12) and correlation structure
between 𝑋, 𝑍1 and 𝑍2 (no correlation: Scenarios 1 and 7; cor-
relation between 𝑋 and 𝑍1 only: Scenarios 2 and 8; correlation
between 𝑋 and 𝑍1 and between 𝑋 and 𝑍2, but no correlation
between 𝑍1 and 𝑍2: Scenarios 3 and 9; correlation between 𝑍1
and 𝑍2 only: Scenarios 4 and 10; correlation between 𝑋 and 𝑍1
and between 𝑍1 and 𝑍2, but no correlation between 𝑋 and 𝑍2:
Scenarios 5 and 11 and correlation between𝑋,𝑍1 and𝑍2: Scenar-
ios 6 and 12). Within each scenario the coarsening probabilities,
category frequencies and the effect sizes are varied, leading to the
18 sub-scenarios as described in Section 3.

In Section 3.2.2 the simulation results are illustrated for two spe-
cific sub-scenarios. The simulation results for all 12 scenarios are
then discussed in Section 3.2.3.

3.2.1 | Infeasible Methods

Due to complete separation between 𝑋 and 𝐶 , the two
SMC-FCS methods that directly use 𝐶 in their imputation model
(SMC-FCSmis and SMC-FCSfct) often fail to reach convergence.
Depending on the scenario settings, all replications can be subject
to this model failure (Table SB1). Because this problem extends
to all scenarios and a majority of the sub-scenarios SMC-FCSmis
and SMC-FCSfct are discarded from further analyses. The issue
with the complete separation between 𝑋 and 𝐶 is also observed
with the two corresponding MICE methods. However, because of
implementation of the augmentation method of White et al. [22]
in MICE, the models do not fail and coefficients are still estimated
in each replication.

3.2.2 | Two Sub-Scenarios

Simulation results are first illustrated with two sub-scenarios, one
from scenario 3 (continuous outcome) and one from scenario
9 (survival outcome). Settings for both sub-scenarios include a
dependence between 𝑋 and 𝑍1 and between 𝑋 and 𝑍2; uniform
category frequencies; medium effect sizes and both coarsening
and missingness simulated. For both sub-scenarios, results are
shown over all 165 replications.

Incompatible Classification

Coarsening is only applied to individuals with a simulated 𝑏 or
𝑐, so imputing an 𝑎 for such individuals is by definition incor-
rect. To assess how well the methods prevent these incorrect

6 of 15 Statistics in Medicine, 2025
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imputations, the incompatible classification of the coarsened
individuals is quantified. Table 2 displays the mean percentage
of incompatibly classified individuals, relative to the number
of coarsened individuals, for each sub-scenario. The methods
that ignore the coarsening information (MICE and SMC-FCS)
have a high-level of incompatible classification with percentages
around 22%, independent of the simulated outcome. Because 𝐶

is ignored in these methods, CNAR applies, although because
of the correlation between 𝑋 and 𝑍1 and via the outcome
some of the coarsening information is retained. For the meth-
ods MICEmis and MICEfct, only a few individuals are incompat-
ibly classified, with percentages remaining below 0.1%. In con-
trast, the methods MICE2S, SMC-FCS2S and SMC-FCSCoCo show
no incompatible classifications. This is expected as imputations

TABLE 2 | Incompatible classification of coarsened individu-
als. Mean percentages (SD) for the different methods (between brackets
the SDs) over all 165 replications.

Continuous Survival

MICE 21.99 (1.54) 22.98 (1.51)
MICEmis 0.07 (0.01) 0.07 (0.02)
MICEfct 0.02 (0.01) 0.02 (0.01)
MICE2S 0 (0) 0 (0)
SMC-FCS 21.82 (1.58) 22.94 (1.48)
SMC-FCS2S 0 (0) 0 (0)
SMC-FCSCoCo 0 (0) 0 (0)

have to be compatible with the coarsening information by
construction.

Coefficients

Coefficients for each covariate level are estimated in each repli-
cation. For the two sub-scenarios, the biases and RMSEs of
the coefficients 𝛽2 and 𝛽3 from variables {𝑋 = 𝑐} and 𝑍1 (see
Equations (3) and (4)) are shown in Table 3. Figure 1 displays
the distributions of the estimates of these coefficients across the
replications. For the sub-scenario with continuous outcome, the
methods can be divided into two groups, those that perform
well and those that do not. The CCA, MICE2S, SMC-FCS2S and
SMC-FCSCoCo methods perform well, yielding only small bias for
all levels. The latter three methods also have comparable low
RMSE values, while the RMSEs of the CCA are slightly higher
for 𝛽3, the coefficient of 𝑍1, probably due to the lower retained
sample sizes. Biased estimates are obtained for the other four
methods (MICE, MICEmis, MICEfct and SMC-FCS), accompanied
with much higher RMSEs.

Similar results are obtained for the sub-scenario with a survival
outcome. The SMC-FCS2S and SMC-FCSCoCo methods remain
practically unbiased with low RMSE values and the four other
methods still have highest biases and RMSEs. In contrast to
the continuous outcome, the MICE methods, including MICE2S,
now perform worse than their SMC-FCS counterparts, which is
expected due to the fact that MICE is known to perform worse
with non-linear outcomes. MICE2S is not unbiased anymore and
the MICE method performs worse than SMC-FCS.

TABLE 3 | Performance two sub-scenarios. For the two sub-scenarios the bias, standard error (SE) of the coefficient, RMSE and 95% confidence
interval (CI) coverage is displayed for two regression coefficients: 𝛽2 and 𝛽3 for 𝑋 = 𝑐 and 𝑍1, respectively. Values in bold are considered good: For the
RMSE this entails that the values in bold are at most 10% higher than the minimum value over all methods and for the coverage the values are bold if
the estimated coverage lies between 0.925 and 0.975. Performances for the other estimates are given in Tables SB2–B4, for the bias, RMSE and coverage,
respectively.

Continuous Survival

Bias SE RMSE Cov Bias SE RMSE Cov

𝑋 = 𝑐 CCA −0.029 0.105 0.109 0.945 0.016 0.141 0.143 0.964
MICE −0.042 0.083 0.108 0.855 −0.085 0.113 0.156 0.836

MICEmis −0.234 0.086 0.251 0.273 −0.289 0.112 0.308 0.285
MICEfct −0.387 0.073 0.396 0.000 −0.454 0.090 0.464 0.000
MICE2S −0.020 0.088 0.103 0.903 −0.042 0.121 0.142 0.909

SMC-FCS −0.064 0.097 0.118 0.909 −0.033 0.133 0.137 0.952
SMC-FCS2S −0.027 0.098 0.105 0.927 −0.001 0.133 0.141 0.945

SMC-FCSCoCo −0.027 0.096 0.101 0.945 0.000 0.132 0.138 0.952
𝑍1 CCA 0.007 0.043 0.047 0.921 −0.002 0.067 0.064 0.945

MICE 0.023 0.030 0.042 0.848 0.019 0.042 0.048 0.921
MICEmis 0.077 0.031 0.084 0.339 0.072 0.041 0.083 0.636
MICEfct 0.112 0.029 0.116 0.030 0.102 0.039 0.110 0.261
MICE2S 0.008 0.032 0.037 0.927 0.011 0.043 0.047 0.915

SMC-FCS 0.030 0.033 0.046 0.818 0.015 0.045 0.046 0.933
SMC-FCS2S 0.010 0.034 0.037 0.945 0.005 0.045 0.047 0.921

SMC-FCSCoCo 0.011 0.033 0.037 0.933 0.007 0.045 0.046 0.927
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FIGURE 1 | Distribution of estimated coefficients for the two sub-scenarios. Coefficients estimated in all 165 replications are plotted per
method. The red horizontal line represents the true value, the horizontal black lines display, per method, the mean coefficient value. (A) {𝑋 = 𝑐} with
continuous outcome, (B) 𝑍1 with continuous outcome, (C) {𝑋 = 𝑐} with survival outcome and (D) 𝑍1 with survival outcome.

Coverage

Table 3 shows the estimated coverage for the two sub-scenarios.
The coverage assesses in how many replications the true coeffi-
cient lies within the estimated 95% CI. For the sub-scenario with
a continuous outcome, the same four well-performing methods
(CCA, MICE2S, SMC-FCS2S and SMC-FCSCoCo) have coverages of
about 95%, except for the coverage for {𝑋 = 𝑐} of MICE2S and 𝑍1
of CCA. The other four methods perform worse, with the major-
ity of coverages often not close to 95%. Especially the coverages
of MICEmis and MICEfct are very low. For the sub-scenario with a
survival outcome, similar coverages are observed, except for the
SMC-FCS method for which all variable levels now also reach
correct coverage.

3.2.3 | All Scenarios

In this section, simulation results are shown for all 18
sub-scenarios for each of the 12 scenarios. The two sub-scenarios
discussed above are part of the scenarios 3 and 9, with depen-
dence between 𝑋 and 𝑍1 and between 𝑋 and 𝑍2.

Incompatible Classification

The percentage of incompatible classifications for all scenar-
ios is comparable to the percentages observed for the two

sub-scenarios: The methods that ignore 𝐶 (MICE and SMC-FCS)
have a high percentage of incompatible classification; the two
MICE methods with 𝐶 in their imputation model (MICEmis and
MICEfct) do have some incompatible classifications, although
the percentages are very low, while the MICE2S, SMC-FCS2S
and SMC-FCSCoCo methods have no incompatible classification
(Table SB5 and Figure SB1, see Supporting Information). When
dependence between 𝑋 and 𝑍1 is introduced, the proportion of
incompatible classifications in the MICE and SMC-FCS methods
decreases substantially, where (additional) dependence with 𝑍2
has only a minimal effect.

Coefficients

For each method, the bias and RMSE are estimated for all covari-
ate levels. Figure 2 shows the nested-loop plot for the bias (A) and
RMSE (B) of the regression coefficient 𝛽2 of {𝑋 = 𝑐} for the sce-
nario with dependence between 𝑋 and 𝑍1 and between 𝑋 and
𝑍2, and a normal outcome. When only coarsening is simulated,
the error in MICE and SMC-FCS is much higher than in the other
methods, while MICEmis and MICEfct also perform comparably
poorly with additional simulated missingness. In contrast, CCA,
MICE2S, SMC-FCS2S and SMC-FCSCoCo perform comparably well
for each sub-scenario. In general, the impact of varying category
frequencies or effect sizes is small, where deviations are only
observed for the worse performing methods, with higher errors
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FIGURE 2 | Nested-loop plot for coefficients of {𝑋 = 𝑐} with continuous outcome. The 18 sub-scenarios of the scenario with dependence
between 𝑋 and 𝑍1 and between 𝑋 and 𝑍2 are plotted for (A) bias and (B) RMSE for each of the methods. Each colored set of points depicts a sub-scenario
with a different set of parameters, which are defined by the lines at the bottom of the graph. The sub-scenarios differ in the probabilities (lower line
is only non-zero coarsening probabilities; upper line is both non-zero coarsening and missingness probabilities), category frequencies (lowest line is
uniform; middle line is b and c uniform and upper line is skewed) and effect sizes (lowest line is low; middle line is medium and upper line is high).
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with higher effect sizes. The biases and RMSEs for 𝑍1 are com-
parable, only CCA now has higher errors in most sub-scenarios
(Figure B2, see Supporting Information).

With other correlation structures, similar patterns are observed.
For various sub-scenarios, the error of SMC-FCSCoCo is lower than
for all other methods, while its bias remains comparable to the
rest (Figure B3, see Supporting Information). The difference with
both two-step methods remains small, however. SMC-FCSCoCo
seems to outperform most for {𝑋 = 𝑐}, as long as there is a depen-
dence simulated between 𝑋 and 𝑍1. This benefit is most pro-
found for the sub-scenarios where both coarsening and missing-
ness are simulated and act independently of category frequencies
or effect size.

With a survival outcome, only the MICE2S, SMC-FCS2S and
SMC-FCSCoCo methods show acceptable performance, with
substantially higher errors for the other methods (Figures 3
and B4, see Supporting Information). Although, the differ-
ences between the MICE2S and the two SMC-FCS approaches
(SMC-FCS2S and SMC-FCSCoCo) can still become considerable.
For most sub-scenarios of the covariates {𝑋 = 𝑐} and 𝑍1, the two
SMC-FCS approaches have a lower RMSE, which is at least partly
because of a lower bias. Interestingly, the error in the MICE2S now
also increases with higher effect sizes at various sub-scenarios,
where the SMC-FCS2S and SMC-FCSCoCo methods remain insen-
sitive for varying effect sizes. With other correlation structures,
the two SMC-FCS methods still perform best overall (Figure B5,
see Supporting Information).

Coverage

Table SB6 shows the mean coverage across all sub-scenarios for
the scenarios with dependence between 𝑋 and 𝑍1 and between
𝑋 and 𝑍2 and a continuous outcome. Similar as before, MICE,
MICEmis, MICEfct and SMC-FCS have low coverage for at least
some of the variable levels. The variation in the sub-scenarios
for these methods is large, where coverage is especially low
when both coarsening and missingness are simulated and when
effect sizes are higher. The variation for the other methods, CCA,
MICE2S, SMC-FCS2S and SMC-FCSCoCo, is low, with good cover-
ages for all. Only for {𝑋 = 𝑐} for MICE2S coverage is below 0.9.

For the sub-scenarios with a survival outcome similar coverages
are observed, with a clear separation between the well and badly
performing methods (Table SB7). Only the MICE methods per-
form slightly worse, with the coverage for {𝑋 = 𝑐} of MICE2S
dropping further.

4 | Illustration

The illustration consists of a collection of four cohorts
(PORTEC-1, PORTEC-2, PORTEC-3 and MST), all investi-
gating the best adjuvant treatment strategy for patients suffering
from endometrial carcinoma [13–16]. A total of 2071 patients
were followed over time, with a median follow-up of 10.0 years.
Important clinical risk factors for endometrial carcinoma include
patient age, disease stage, histological type and LVSI. The latter
is subject to coarsening, where for 410 patients it is only known
that lymphovascular space invasion is present, mainly from the

PORTEC-3 cohort (Table 4). For 15 individuals from the MST
cohort, the LVSI observations are missing, together with their
histological type.

Each method described in Sections 2.1 and 2.2 was applied to
the PORTEC and MST data. For each method, a Cox model was
run with the time to recurrence free survival (RFS) as the event
of interest. A total of 832 patients experienced either death or
recurrence during follow-up, the other patients were censored at
last follow-up. The clinical covariates patient age, disease stage,
histological type, and LVSI and the RFS time and status indi-
cator were used for the imputation and analysis model. For the
MICE methods, the RFS time was excluded from the imputa-
tion method and replaced by the Nelson-Aalen estimate of the
cumulative marginal hazard [21]. For the methods that use 𝐶 as
predictor in the imputation model, 𝐶 was also added to the impu-
tation model of LVSI and histological type, and vice versa. For the
two-step methods, histological type was only imputed in the sec-
ond step, since it only occurred in combination with missing (and
not coarsened) LVSI observations.

As with the simulation study, the SMC-FCS methods with 𝐶

in the imputation model (SMC-FCSmis and SMC-FCSfct) did not
converge due to complete separation between 𝑋 and 𝐶 . There-
fore, the analyses were only run for the other eight methods. The
methods without coarsening information have high-percentages
of incompatible classification (in all replications > 80%), while
in contrast, all other methods impute the coarsened individuals
always into one of the two compatible levels (Table SB8).

Based on the coefficients for LVSI, the methods can be roughly
divided into two groups (Figure 4 and Table SB8, see Supporting
Information). The methods CCA, MICE and SMC-FCS have com-
parable estimates that are higher than those obtained by the other
methods. The differences between the other five methods are
small for the focally LVSI and slightly bigger for substantial LVSI.
For the latter, the SMC-FCS2S and SMC-FCSCoCo methods per-
form comparably and are most divergent with the MICEmis and
MICEfct methods. The MICE2S method has an estimated coeffi-
cient between these two groups of methods. The coefficients of
the other covariates are similar for all methods, except for the
CCA for which also the standard errors are inflated compared to
the rest and the coefficients for disease stage IIIC, which shows a
similar method division as with LVSI.

5 | Discussion

In this study, we developed a new method for dealing with coars-
ened and missing data in multiple imputation. This method was
compared to a number of ad hoc approaches which could be con-
sidered as alternatives in practice. Coarsening is a broad term
for various forms of partly observed data. It includes censoring,
grouping and rounding as special cases, each coming with its
implications and underlying assumptions. Here, we have used
the term coarsening to mean that for some individuals a sub-
set of the full sample space is observed that includes the true
underlying observation, instead of the true observation itself.
To our knowledge, no clear-cut method has been described to
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FIGURE 3 | Nested-loop plot for coefficients of {𝑋 = 𝑐} with survival outcome. The 18 sub-scenarios of the scenario with dependence
between 𝑋 and 𝑍1 and between 𝑋 and 𝑍2 are plotted for (A) bias and (B) RMSE. Explanation about the Nested-loop plots is given in the legend
of Figure 2.
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impute coarsened observations in a regression context. We there-
fore developed a principled approach to this problem, consisting
of an adaptation of SMC-FCS, and suggested a number of plau-
sible ad hoc approaches, possibly already in use by statisticians.
We compared these in a simulation study. These ad hoc methods
cover a variety of different approaches, although different choices
could have been made.

Based on the motivating study, we chose to investigate a data
problem with a categorical variable with three categories, where
for a subset of individuals coarsened observations {𝑏, 𝑐} are
observed instead of either 𝑏 or 𝑐. Extensions to this simple data
problem are simple to imagine, with coarsening being present

TABLE 4 | Observations of LVSI. The number of patients with the
different LVSI observations per cohort. Individuals that are scored as
present are coarsened. Their true observation is either focally present or
substantially present, but certainly not absent.

PORTEC-1 PORTEC-2 PORTEC-3 MST

Absent 641 344 271 152
Focally
present

36 53 0 50

Substantially
present

26 20 0 53

Present 11 10 389 0
Missing 0 0 0 15

also for other category combinations, such as {𝑎, 𝑏} or {𝑎, 𝑐}. Most
presented methods are cumbersome to extend to such a situation,
since the coarsening indicator 𝐶 has to be constructed in a dif-
ferent way. The proposed SMC-FCSCoCo method has no difficulty
with accommodating such more complex coarsening structures,
is easy to use and is implemented in the {smcfcs} package in R
(see Appendix A).

The simulation study shows that the methods that ensure that
coarsened observations are imputed with a value that is compati-
ble with the coarsened information, that is, MICE2S, SMC-FCS2S
and SMC-FCSCoCo, perform consistently better, in terms of a
lower bias and RMSE and better coverage, than the other meth-
ods that ignore the coarsening information, or handle it in a more
naïve way. Both two-step methods (MICE2S and SMC-FCS2S)
impute values based only on the observations that are compat-
ible with the coarsening information, while the SMC-FCSCoCo
method imputes values based on Equation (2), thus preventing
incompatible imputations. Additionally, the two SMC-FCS meth-
ods also perform better than MICE2S for certain scenarios, espe-
cially when survival outcomes are simulated.

Results of methods in the real data analysis showed heterogene-
ity. The methods can be divided into two groups: The CCA and the
two methods that ignore the coarsening information versus the
methods that (in)directly implement the coarsening information
in the imputations. Because in the real data there is a majority of
observations with absent LVSI (𝑎), the methods that impute 𝑋 in
a naïve way (MICE and SMC-FCS) have a very high-percentage

FIGURE 4 | Real data forest plot. Hazard ratios (95% CI) are shown for each covariate level for the eight different methods.
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of incompatible classifications (> 80%). These results are there-
fore likely to be invalid. For the other group of methods, both
SMC-FCS methods show very similar results to MICEmis and
MICEfct for the effect of focal LVSI, and comparable effect size for
the substantial LVSI level. For the latter somewhat higher effects
were observed for the SMC-FCS and MICE2S methods.

Although in the real data analysis the MICE methods MICEmis
and MICEfct perform comparably to the other methods, the sim-
ulation study shows that they can lead to high-bias and RMSE
and unfavorable coverage under several scenarios. Especially
in the scenarios where both coarsening and missingness are
simulated, the two methods can perform poorly. However, in
the MST cohort, there were only 15 missing LVSI observations
(< 1%), which were probably not influential enough to cause any
problems.

With the MICE2S, SMC-FCS2S and SMC-FCSCoCo methods, esti-
mates were performing well in general. However, a potential
practical problem with the two-step methods is their lack of gen-
erality. Both methods impute based on a subset of the observa-
tions, which can become difficult to manage with multiple levels
of coarsening or problematic when the sample size of the subset
becomes low. Additionally, there is the difficulty of how to impute
the missing observations in other covariates. In contrast, since
for the SMC-FCSCoCo method only the imputation probabilities
are altered, it is simple to extend without adding much compu-
tational complexity and it imputes all variables in a single step.
It would probably also be possible to adjust the MICE algorithm
to work in a similar way. The exclude argument in {mice} already
allows for excluding certain categories from the imputation pro-
cedure, although this exclusion has to be the same for all cases.
This feature can directly be applied to a coarsening problem with
only one type of coarsening and no completely missing data or
implemented in a procedure which is in essence the same as the
two-step methods presented earlier. It is however not as straight-
forward to be applied on the same scale as SMC-FCSCoCo. We
only implemented it for the SMC-FCS algorithm because the
SMC-FCS algorithm performs better for non-linear relations [3].
This superior performance of the SMC-FCS was also observed
here, implying it extends to scenarios with coarsened data.

A difficulty with the SMC-FCS algorithm is dealing with perfect
separation between covariates with more than two categories.
SMC-FCSmis and SMC-FCSfct could not be evaluated because
many imputation models did not converge due to the perfect
separation between 𝑋 and 𝐶 , leading to improper imputations.
In MICE, the data augmentation of White et al. [22] is imple-
mented, which concatenates pseudo-observations with a small
weight to the data, thereby avoiding infinite estimates [2]. This
approach assumes that although the observation is not observed,
it could still occur in the population. However, it is known that
this is not the case for coarsened data, because when we know
LVSI is present, it can never be also absent. Related issues with
how to deal with perfect separation are discussed previously [22].
Because this was out of the scope of this article, we did not
pursue this.

The real data example is based on the PORTEC and MST studies,
which aim to determine the best adjuvant treatment strategy for
patients with endometrial carcinoma [13–16]. Results presented

here are in line with what was found previously, with the effect of
substantive LVSI more profound than focal LVSI. However, focal
LVSI was not significantly different from absent, which has been
observed earlier [12]. It has to be kept in mind that the analysis
presented here is undertaken with the aim of evaluating the dif-
ferent methods to deal with coarsening, not to estimate a causal
relation between predictors and outcome or to optimize predic-
tion accuracy. Therefore, only a limited set of covariates, which
have an assumed correlation with the coarsened variable LVSI,
has been included and no other modeling strategies were investi-
gated. Interpretation of the results should thus be taken with care.

Although examples of coarsening are easy to imagine, coarsen-
ing is rarely described in literature. In contrast, the completely
missing framework is extensive, with many theoretical and prac-
tical implementations. Both data processes have similar assump-
tions, where especially CAR and MAR are standard assumptions
in practice. Under CAR, it is assumed that each value within an
observed coarsened subset has the same probability of becom-
ing coarsened, given the other observed data. Like the MAR
assumption, also the CAR assumption is untestable. But even
correct specification of the imputation model can prove to be
insufficient. In our previous studies investigating coarsening in
the genotyping process of the KIR gene region, the imputation
model had to operate in a high-dimensional setting, due to the
vast number of genotype options, and was unable to correctly esti-
mate effect sizes [8].

This omics example points out that the problem of coarsening is
much broader than clinical covariates. The continued refinement
of measurement technology creates data sets that can be viewed
as being coarsened relative to each other. Examples include
genotyping by SNP arrays versus sequencing [23] or increasing
sequencing depth in gene expression data [24].

In summary, we have presented an extension to the SMC-FCS
algorithm that handles a coarsened data problem appropriately.
For categorical covariates our extension is simple to apply as it
requires limited additional computational cost and is straightfor-
ward to extend to multiple coarsening settings.
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Appendix A

A: SMC-FCSCoCo Implementation

For the implementation of the SMC-FCSCoCo method in the {smcfcs}
package in R, an additional argument was added: Restrictions. This argu-
ment requires a list of vectors of strings that indicates whether the variable
is a coarsened variable. For variables for which no coarsening is observed,
this needs to be indicated with an empty string. Each string of a coarsened
variable has to contain three elements in the form of𝑋obs = {𝑏, 𝑐} ∼ 𝑏 + 𝑐:

• Variable name (𝑋obs): The variable in the dataset that contains the
coarsening information.

• Value ({𝑏, 𝑐}): The individuals for which additional coarsening infor-
mation is available are the set of individuals who, for the specified
variable (𝑋obs) have an observation that matches the value.

• Options (𝑏 + 𝑐): The options that the observations of the coarsened
variable can be.

It is possible to omit the third element (the “Options” element), then the
possible options are extracted from the name of the value. In this case,
the value name consists of 𝑏 and 𝑐, so that are considered to be the only
possible options.

For the analysis of the dataset as in Table 1, we would have a dataset with
5 columns in the following order: 𝑋obs, 𝑋, 𝑍1, 𝑍2 and 𝑌 . Coarsening is
observed in variable 𝑋 (the second column), where the coarsening infor-
mation is stored in variable 𝑋obs (the observed information). To make that
clear to the algorithm, the arguments would look like

restrictions = list(c("", "X_{obs} = {b, c} ∼
b + c", "", "", "")

smcfcs(..., restrictions = restrictions)

Because a string is specified for thes second element of restrictions (which
corresponds to the 𝑋 column), the algorithm will detect additional infor-
mation for 𝑋. This additional information comes from the column 𝑋obs,
for the observations that match value {𝑏, 𝑐} where the 𝑋 values for those
observations should either be 𝑏 or 𝑐. The . . . in the smcfcs function indi-
cate other required parameters. For the completely missing observations,
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nothing needs to be specified. Since their value of 𝐶 is not {𝑏, 𝑐}, no alter-
ations in the code are made.

Multiple Ways of Coarsening

When multiple variants of coarsening are observed for a single vari-
able, this can be indicated with multiple strings in the list element. For
example, when in 𝑋 there would also be coarsening between {𝑋 = 𝑎}
and {𝑋 = 𝑏} ({𝑎, 𝑏}). This analysis can then be performed as

restrictions = list("", c("X_{obs} = {b, c} ∼ b + c",
"X_{obs} = {a, b} ∼ a + b"), "", "", "")

smcfcs(..., restrictions = restrictions)
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