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Abstract 
 

 
Understanding the drivers of viral outbreaks is crucial for assessing future epidemic potential and 

options for outbreak control. However, disentangling the role of intrinsic drivers, such as 

population immunity, from extrinsic drivers, such as climatic variation or human behaviour, is 

challenging, particularly in complex settings with heterogenous immune landscapes. In this thesis, 

I integrate serological and climate data streams within modelling frameworks to disentangle the 

impact of immune, climatic and behavioural drivers of acute viral outbreaks, and consider the 

implications for disease control. I focus on SARS-CoV-2 and dengue virus as case studies, two 

pressing health threats with complex epidemic dynamics and the ability to cause large outbreaks 

with the potential to overwhelm health systems. 

 

Through analysis of a seroepidemiological workplace cohort in the United States from April 2020 

– February 2021, I found that primary infection with SARS-CoV-2 provided protection against 

reinfection for most individuals. I then used a multi-strain, age-stratified compartmental model to 

estimate the impact of immunity, population behaviour and vaccination on SARS-CoV-2 

transmission in the Dominican Republic from 2020 – 2022. By jointly fitting to serological and 

surveillance data, I found that epidemic dynamics were largely driven by the accumulation of post-

infection immunity but that, despite this, vaccination was essential in enabling a return to pre-

pandemic behaviour without incurring considerable additional morbidity and mortality.  

 

Next, I used a Bayesian hierarchical mixed model to quantify the effects of immunity and climate 

on dengue dynamics in Singapore from 2000 – 2023, with a view to improving early warning for 

outbreaks. I found non-linear and delayed impacts of climatic variation on dengue risk, with 

increased risk at intermediate temperature and rainfall levels, during El Niño events, and in the 

period following a switch in dominant serotype. I then adapted this model into an early warning 

framework, generating dengue forecasts at 2-8 week lead times. Accounting for serotype dynamics 

as a proxy for immunity, as well as climatic variation, improved the predictive power of the 

forecasting model, and particularly the prediction of outbreaks. Finally, I used a Bayesian space-
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time hierarchical model, fit to surveillance data from 2013 – 2023 in the 155 municipalities of the 

Dominican Republic, to estimate the role of climatic and epidemic drivers in spatiotemporal 

dengue dynamics. I leveraged serological data to estimate a proxy for the build-up of immunity in 

a dengue season and then accounted for this, as well as autocorrelation in case counts from the 

force of infection, within the modelling framework. I found evidence of increased dengue risk at 

higher maximum temperatures and humidity, as well as in drought or El Niño conditions. I found 

that El Niño and drought indicators are influential predictors of temporal dengue dynamics, while 

lagged cases, weighted to represent the force of infection, predict both spatial and temporal 

patterns. 

 

Overall, in this thesis, I consider immune drivers alongside important extrinsic drivers within 

modelling frameworks to better characterize acute viral transmission dynamics in complex 

epidemiological settings. I found that, by including multiple data streams within modelling 

frameworks, I was able to distinguish between epidemiological hypotheses underlying disease 

transmission and improve prediction of outbreak risk to inform epidemic response.   
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Chapter 1 

Introduction 

1.1 Background 

 

The transmission dynamics of acute viral infections are complex and challenging to predict as they 

are driven by an interplay between intrinsic properties of pathogen biology and the development 

of host immunity, and extrinsic factors such as climate or changes in population behaviour [1,2]. 

Nonlinearity is often a key feature of viral outbreak dynamics; for instance, where the build-up of 

immunity in a population reduces later transmission, or where contact patterns driving 

transmission change in response to the outbreak itself.  

 

Towards the end of the 20th century, epidemiological data provided to the WHO demonstrated 

that the burden of disease attributable to infectious diseases was decreasing, due to improved 

medical treatment, vaccination and sanitation [3]. However, large outbreaks of SARS, pandemic 

influenza, dengue, Ebola, SARS-CoV-2 and mpox have demonstrated the ongoing threat to human 

health posed by emerging viruses [3,4]. In recent decades, mechanistic and statistical models have 

been used to investigate the dynamics of acute viral outbreaks, and to inform public health decision 

making around epidemic response [5–11]. Modelling can be used to support multiple aspects of 

public health decision making. First, modelling can enable the estimation of key epidemiological 

parameters. Second, scenario modelling can be used to understand the potential impact of different 

public health interventions, or, similarly, retrospective counterfactual analysis can assess the 

impact of past interventions, informing pandemic preparedness strategies. Third, models can be 

used to generate short-term forecasts (one or two weeks ahead) or longer-term seasonal forecasts 

(several months ahead). These can aid outbreak response by improving situational awareness or 

informing early warning systems linked to anticipatory response activities.
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Given the complexity of viral outbreaks, accurately characterising dynamics requires the 

disentangling of multiple processes driving transmission. As such, modelling frameworks are 

increasingly incorporating multiple data streams to reflect the multifaceted nature of viral disease 

systems, capitalising on novel data streams available in the ‘big data’ era [12,13]. This introduces 

challenges in how to harmonize different data sources, which may be at different spatiotemporal 

resolutions and have complex underlying mechanistic relationships, and how to compare a model 

to these data to inform parameterisation and fitting [12]. However, considering multiple data 

streams simultaneously within a single modelling framework can allow us to distinguish between 

different epidemiological hypotheses for viral outbreak risk, and avoid incorrectly attributing 

variation in risk to a single factor (say a climatic variable, or the introduction of a new serotype) 

when it is actually the result of multiple important drivers working in combination [12,14,15].  

 

This thesis focuses on the challenge of disentangling key drivers of viral transmission, particularly 

focusing on the role of immunity, climate and behaviour, by integrating multiple data streams into 

models that can inform public health decision making. In this thesis I investigate SARS-CoV-2 

and dengue virus as case studies; two pressing challenges to global health due to their complex 

epidemic dynamics and their ability to cause large outbreaks with the potential to overwhelm 

health systems. I leverage data streams from the USA, the Dominican Republic and Singapore and 

explore the role of immunity and extrinsic drivers such as climate and behaviour in complex 

epidemiological settings.  

 

1.2 SARS-CoV-2  
 

1.2.1 Epidemiology and transmission 
 

SARS-CoV-2, a novel coronavirus, was first identified in January 2020 in Wuhan, China, 

following the identification of a cluster of pneumonia cases of unknown aetiology in 2019 [16–

18]. Since its emergence, SARS-CoV-2 has spread to every continent and led to substantial 

morbidity and mortality, particularly in settings where health-care systems were overwhelmed.  

The WHO declared SARS-CoV-2 a public health emergency of international concern on 30th 
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January 2020. This remained in place until 5th May 2023, by which point over 750 million cases 

had been reported and nearly 7 million deaths [19–21].  

 

SARS-CoV-2 is a respiratory virus transmitted primarily through direct contact or via respiratory 

droplets or aerosols [22–24]. Early analysis estimated a reproduction number (that is, the average 

number of secondary infections generated by an infected individual) of around 2-3 [25–27]. SARS-

CoV-2 transmission is overdispersed, with around 10% of individuals thought to cause 80% of 

secondary transmission [28].  

 

In September 2020, a new variant (Alpha or B.1.1.7) was first sequenced in the United Kingdom. 

Alpha was designated a variant of concern (VOC) by the World Health Organization in February 

2021 and estimated to be 43-90% more transmissible than the original lineage as well as displaying 

increased disease severity [29,30]. The Gamma variant (or P.1) was identified in Brazil in early 

2021 and was estimated to be 2.4-fold more transmissible and exhibited immune evasion, whereby 

past infection was less protective against Gamma infection compared with previous variants [31]. 

The Delta variant (B.1.617.2) became the dominant strain globally in mid-2021 and was again 

estimated to be more transmissible than prior variants [32]. The Omicron variant (B.1.1.529) was 

reported in late 2021 and subsequently spread to global dominance, displaying high levels of 

immune evasion to both vaccine and post-infection immunity [33–35]. 

 

1.2.2 Clinical manifestation 
 

Infection with SARS-CoV-2 is most often asymptomatic or causes mild symptoms including fever, 

dry cough, shortness of breath or loss of taste or smell. In some individuals infection can lead to 

severe disease requiring hospitalisation or ICU admission, which can progress to critical disease 

and death. Susceptibility to infection and subsequent clinical severity are both age-dependent, with 

clinical symptoms estimated to manifest in around 20% of 10-19 year olds and around 70% of 

over 70 year olds [15,36,37]. The infection-fatality ratio (risk of death per infection) increases with 

age, following a log-linear relationship [38]. As such, early estimated infection-fatality ratios differ 

substantially between countries, depending on their age structure; for instance, overall IFR was 

estimated to be around 1.41% in England compared with 0.24% in Kenya [38,39]. 
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1.2.3 Diagnosis and serology 
 

Viral testing for COVID-19 diagnosis can be performed using RT-PCR (reverse transcriptase 

polymerase chain reaction), which amplifies and quantifies viral RNA from a nasopharyngeal 

sample and is considered the gold standard for confirming current infection. Viral testing can also 

be done using rapid antigen testing, which detects SARS-CoV-2 antigen and has lower sensitivity 

than PCR testing [40]. Studies have estimated that over 95% of symptomatic COVID-19 cases 

develop detectable immunoglobulin G (IgG), immunoglobulin M (IgG) and immunoglobulin A 

(IgA) antibodies against SARS-CoV-2, with most individuals developing antibodies 1-3 weeks 

after symptom onset. Similarly to other viral infections, IgM and IgA antibodies wane faster than 

IgG antibodies [41–43]. Serological assays measuring antibody levels can be used to determine if 

someone has experienced past infection or vaccination. Assays can target antibodies against 

specific SARS-CoV-2 antigens such as the spike (anti-S) or  nucleocapsid (anti-N) glycoproteins. 

While post-infection immunity to COVID-19 results in ‘broad’ immunity to SARS-CoV-2 

antigens, several key COVID-19 vaccines were developed using the S protein (such as 

Pfizer/BioNTech, Oxford/AstraZeneca or Moderna) and therefore different assays can give 

information on an individual’s  immune history. For instance, an individual with anti-S antibodies 

but not anti-N antibodies is likely to have been vaccinated but not previously infected, while an 

individual with both anti-S antibodies and anti-N antibodies is likely to have been previously 

infected, and may or may not have been vaccinated [44–46]. It should be noted this is not the case 

for inactivated virus vaccines, such as Sinovac-Coronavac, which result in both anti-S and anti-N 

responses [47]. In this context, seroepidemiological studies measuring antibody responses in a 

sample of the population have been used throughout the pandemic to understand SARS-CoV-2 

transmission and immunity [48]. 

 

A schematic of viral and antibody kinetics relevant for PCR and serological testing is shown in 

Figure 1.1. Studies have estimated a median incubation period (time between exposure and 

symptom onset) of around 5 days, ranging from around 2 to 14 days [49,50]. Initial estimates of 

the generation interval (the time interval between an infector and infectee being infected) were 

around 5 days [49]. However, evidence suggests that the incubation period and generation interval 

vary for different variants [52–54].  
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Figure 1.1 Schematic of viral and antibody kinetics for SARS-CoV-2 

Lines showing levels of viral RNA (yellow line), viral antigen (orange line), immunoglobulin M, IgM 

(green line) and immunoglobulin G, IgG (turquoise line) following exposure and symptom onset [55]. 

Median incubation period of ~ 5 days is indicated with an arrow, while the maximum incubation period of 

~ 14 days is shown with a light purple bar [50]. Median seroconversion of ~13 days is shown with an 

arrow [43].  

 

1.2.4 Control measures 
 

Before the development of vaccines or antivirals, the global response to COVID-19 was focused 

on non-pharmaceutical interventions [56]. Throughout the pandemic, countries differed in their 

approach to response, with some aiming to completely control transmission (with ‘zero covid’ 

policies) and others aiming to protect the most vulnerable and mitigate the impact of the pandemic, 

for instance by ensuring that hospital capacity was not overwhelmed. As with many other 

infectious disease outbreaks, contact tracing and case isolation are key interventions aiming to 

break chains of transmission. Other non-pharmaceutical interventions rely on physical distancing 

measures aiming to keep a distance of 1-2m between individuals to reduce transmission. Physical 
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distancing measures range from cancellation of large public events, closure of schools and 

workplaces and stay-at-home recommendations or restrictions, including curfews or lockdowns 

[57]. Many countries also mandated the use of face coverings when in public places. Finally, travel 

restrictions (and post-travel quarantines) were imposed by many countries during the pandemic 

based on the emergence of variants, incidence or domestic COVID-19 strategy. 

 

By late 2020, the first COVID-19 vaccine was approved for use by the WHO and several countries, 

and the fist vaccination programme was started in the United Kingdom [58]. Several vaccines such 

as Pfizer BNT 162b2 vaccine, AstraZeneca ChAdOx1 and Moderna mRNA-1273 were developed 

around the same time, and were found to be safe and effective against symptomatic disease and 

more severe outcomes [44–46]. By 5th May 2023, over 5.5 million people are thought to have 

received a COVID-19 vaccination [21]. However, despite international initiatives for equitable 

vaccine sharing, vaccine availability and rollout was highly inequitable globally, with low and 

middle income countries (LMICs) often receiving delayed or limited vaccine doses, or vaccines 

with lower efficacy profiles [59,60]. 

 

1.2.5 SARS-CoV-2 in the Dominican Republic 
 

The Dominican Republic is a small-island developing state in the Caribbean, on the eastern side 

of Hispaniola, which it shares with Haiti. It is classified as an upper-middle income country by the 

World Bank, with a population of 10.8 million [61]. The Dominican Republic reported their first 

case of COVID-19 on 1st March 2020. On 17th March a state of emergency was declared, 

implementing border closures, and closures of schools and commercial businesses. Subsequently, 

a mandatory curfew (“toque de queda”) was introduced on 27th March. The Dominican Republic, 

like many countries in Latin America and the Caribbean, experienced a high burden of SARS-

CoV-2 in 2020, with hospital capacity nearly reached or exceeded at several points [62,63]. Non-

pharmaceutical measures began to be relaxed in July 2021 and were mostly lifted by October 2021 

with the reopening of schools and relaxation of curfew measures.  

 

A community-based seroprevalence survey was undertaken in the Dominican Republic between 

May – June 2020, targeting emerging hotspots of transmission. Researchers used a 
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chromatographic test targeting the S1 domain of the spike protein with reported IgG sensitivity 

and specificity of 56% and 100% respectively. The study found overall seropositivity for anti- 

SARS-CoV-2 IgG of 5.5%, varying from 18.6% (Duarte) to 1.8% (San Jose de Ocoa) in surveyed 

regions [64]. While these findings were based on a sampling approach that targeted known 

hotspots, and are not representative of the general population, they suggest there was high 

heterogeneity in seroprevalence in May-June 2020 and indicate that substantial immunity may 

have accrued in some provinces by this point. 

 

Subsequently, a nationally representative seroprevalence study was conducted in the Dominican 

Republic between June and October 2021 [65]. This study estimated that 85.0% (95% CI 82.1 – 

88.0) of the ≥5 years population had been immunologically exposed and 77.5% (95% CI 71.3 – 

83) had been previously infected. Data from this survey are used in several chapters of this thesis, 

and further details of survey methodology and findings are available in Section 2.1.2. 

 

Vaccination against SARS-CoV-2 began in February 2021, beginning with health-care 

professionals and then following a three-phase age-based approach first targeting individuals over 

60 years of age and subsequently expanding to individuals over 50 on 3rd May 2021 and all adults 

over 18 on 10th May 2021 [66]. The Dominican Republic was the first country in the Americas to 

approve vaccination with a third dose and booster vaccination for highly vulnerable individuals 

began in July 2021 [67]. Most doses administered for the primary vaccination series were Sinovac-

CoronaVac inactivated COVID-19 vaccine. This is an inactivated whole-virion vaccine with lower 

reported efficacy compared with Pfizer-BioNTech, Moderna or Oxford-Astrazeneca vaccines. A 

phase III trial in Brazil found that two doses resulted in a 50.4% (95% CI: 35.3 – 62.0) efficacy 

against symptomatic SARS-CoV-2 infection and 100% efficacy against hospitalisation [68]. A 

real-world effectiveness study in Chile estimated vaccine effectiveness of 65.9 % against 

symptomatic disease (95% CI: 65.2 – 66.6) with efficacies over 80% against hospitalisation or 

death outcomes [69]. Contrastingly, phase III trials of the Oxford-Astrazeneca in the United States, 

Chile and Peru found vaccine efficacy of 74.0% (95% CI: 65.3% – 80.5%) with 100% efficacy 

against severe or critical COVID-19 [70]. A real-world effectiveness study of the Pfizer-BioNTech 

vaccine in Israel found 97.0% vaccine effectiveness against symptomatic disease (95% CI: 96.7 – 

97.2%) and 97.2% effectiveness against hospitalisation (95% CI: 97.1 – 97.8%) [71]. 
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1.3 Dengue virus 
 

1.3.1 Epidemiology and transmission 
 

Dengue virus is a rapidly expanding arbovirus (arthropod-borne virus) causing an estimated 390 

million infections a year, with 96 million of these manifesting as disease [72]. Dengue is primarily 

transmitted by Aedes aegypti and Aedes albopictus in urban and peri-urban areas [73]. Both are 

day-time biting mosquitoes that typically lay eggs in domestic water containers. The global spread 

of Aedes vectors (and subsequent dengue transmission) is thought to be driven by international 

travel and trade, particularly the used tire and plant trade, as well as rapid population growth, 

urbanisation and climate change [74,75]. Around half of the global population are estimated to be 

at risk of dengue transmission, with highest risk in the Asia-Pacific, followed by Latin America 

and the Caribbean, and reported dengue cases have doubled every decade in the past 30 years 

[72,76]. These increases in geographical range and burden are projected to continue as global 

heating increases climate suitability for Aedes vectors and dengue transmission [77].  Dengue can 

exhibit both endemic and epidemic transmission patterns. Within endemic settings, transmission 

typically varies seasonally and can display large interannual variation, causing occasional large 

outbreaks with the potential to overwhelm health systems [78,76].  

  

1.3.2 Clinical manifestation 
 

While most dengue infections are asymptomatic or cause mild illness, they can also cause acute 

flu-like symptoms (dengue) or potentially fatal severe disease (severe dengue). Dengue symptoms 

appear around 4 –10 days after infection and typically include fever, as well as headaches, muscle 

and joint pain and potentially nausea or vomiting. Severe dengue usually develops after the febrile 

phase and is characterised by plasma leakage. Symptoms of severe dengue include severe 

abdominal pain, repeated vomiting, bleeding gums and fatigue [79]. Risk factors for dengue 

infection include; age (where older adults and children have higher risk), sex (where female sex is 

associated with severe dengue) previous dengue infection, ethnicity, comorbidities, and use of 

personal protection against mosquitos [80,81]. Risk is also influenced by environmental factors 



Chapter 1: Introduction 

 8 

including; hygiene and water infrastructure in the home, and living in an urban or peri-urban 

dwelling [82]. 

 

1.3.3 Diagnosis and serology 
 

There are four immunologically distinct serotypes of dengue virus (DENV-1 to DENV-4). Primary 

infection results in a temporary increase in IgM, which peaks about two weeks after onset of 

symptoms and wanes over 2-3 months [83]. Evidence suggests levels of IgG increase more slowly 

and persist for life, conferring life-long serotype-specific immunity and short lived cross-

immunity. A secondary infection with a heterologous serotype results in reduced peak IgM levels 

but a more rapid increase in IgG which is then detectable at high levels. IgM/IgG ratios can thus 

be used to distinguish between primary and secondary infection [73]. Secondary infection is also 

associated with an increased risk of severe disease, possibly through antibody-dependent 

enhancement [83]. 

Due to the broad range of dengue symptoms, clinical diagnosis alone is often unreliable and 

laboratory testing is required for case confirmation. Laboratory diagnosis for dengue virus can be 

performed using a nucleic acid amplification test (NAAT) such as RT-PCR or an NS1 antigen test 

(nonstructural protein 1) in the acute phase of infection up to ~ 7 days post symptom onset, 

depending on the assay used [83–85]. IgM testing can also be used to detect infection, and is the 

most widely used test in laboratory surveillance [78]. IgG testing can be used to test for past 

infection; although IgG ELISA assays lack specificity between dengue virus and other flaviviruses 

such as Zika [83]. 

 

1.3.4 Control measures 
 
To date, two dengue vaccines have been licensed; Dengvaxia (CYD-TDV) a live, recombinant 

tetravalent vaccine with a yellow fever backbone, and Qdenga (TAK-003), a live-attenuated 

tetravalent vaccine with a DENV-2 backbone. CYD-TDV is licensed on a 3-dose schedule with 6 

month intervals between doses while TAK-003 is licensed on a 2-dose series, three months apart. 

However, due to evidence of decreased vaccine efficacy among seronegative individuals as well 
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as increased risk of severe dengue in seronegative vaccinees, CYD-TDV is only recommended for 

use following pre-vaccination screening [86–89]. TAK-003 is currently only recommended for use 

in high intensity areas, due to a lack of data on the efficacy-risk profile for DENV-3 and DENV-4 

in seronegative individuals [89]. 

 

As such, the primary control measure to reduce dengue burden is currently Aedes vector control. 

Integrated vector management (IVM) is recommended by the WHO to optimise the use of 

resources for vector control [90]. Control methods can be environmental, biological or chemical. 

Environmental control methods involve improving housing or water and sanitation infrastructure 

to prevent the creation of mosquito-breeding habitats and reduce Aedes proliferation [91]. 

Biological and chemical control aims to reduce the population of adult or larval Aedes mosquitos; 

for instance, through the introduction of biological larvicides or spraying homes with adulticides. 

Other approaches focus on reducing human-vector contact using mosquito nets (which may be 

impregnated with insecticide) or personal repellents [92].  

 

Novel vector control strategies have been developed using Wolbachia, a maternally inherited 

obligate intracellular bacteria, to infect Aedes mosquitos. Wolbachia inhibits the ability of dengue, 

and other pathogens, from infecting the mosquito [93]. There are two primary Wolbachia-mediated 

vector control strategies: introgression, where Wolbachia-infected mosquitoes are introgressed 

into wild mosquito populations; and the incompatible insect technique, where male Wolbachia-

infected mosquitoes are released and cannot produce viable eggs with wildtype females due to 

cytoplasmic incompatibility [94,95]. 

 

Climate-informed early warning systems (EWS) offer the potential for advanced warning of 

disease outbreaks, with longer lead times for epidemic response than decision-support tools based 

on epidemiological surveillance [96]. However, despite much academic research into EWS for 

dengue and other vector-borne diseases, few countries have fully operationalised systems able to 

inform epidemic response [97–99]. 
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1.3.5 Climate and dengue 
 

In endemic settings there is often strong seasonality in dengue incidence, accompanied by 

interannual variation. The influences of climate on dengue virus transmission are well recognised, 

if complex, affecting various stages of the pathogen and vector life cycle including viral 

replication, mosquito breeding, mosquito survival and mosquito biting patterns. Temperature is an 

important predictor of transmission, shaping the timing, length and geographical extent of dengue 

seasons [77,100]. The optimal temperature for transmission is thought to be around 29°C, with 

thermal limits between 17.8°C - 34.5°C [101].  While typically wet and humid conditions lead to 

the creation of mosquito breeding habitats, the effects of rainfall are nuanced, and can depend on 

local context such as the level of urbanisation, hygiene and water infrastructure, and population 

behaviour during drought or flooding [102,103]. For instance, excess rainfall can lead to flushing 

events, where mosquito breeding habitats are washed away, resulting in decreased transmission 

risk [104,105]. On the other hand, drought can increase the risk of transmission at long lead times, 

in cases where households increase the number of water storage containers around the home. 

Experimental evidence suggests that increased humidity increases vector survival and egg 

production [106,107]. The effect of humidity on dengue transmission is less well studied, with 

some studies finding evidence of a statistical association between humidity and dengue cases 

[108].   

Dengue transmission is also affected by the El Niño Southern Oscillation (ENSO). This is an 

interannual climatic phenomena affecting oceanic and atmospheric temperatures around the 

Pacific Ocean. El Niño events are defined as periods of above average Pacific sea surface 

temperatures, while La Niña events are periods with below average temperatures.  ENSO accounts 

for a large proportion of interannual variation in climate, and often impacts the occurrence of 

extreme weather, such as temperature and precipitation extremes, drought or flooding [109]. El 

Niño events are associated with an average global temperature increase of 0.5°C; however, the 

effects on precipitation vary geographically. For instance, El Niño events have been associated 

with increased risk of drought in Southeast Asia, Southern Africa and Australia but with increased 

rainfall along the western coast of South America [110]. In Singapore, El Niño events typically 

lead to hotter and drier climatic conditions. Similarly, in the Dominican Republic, El Niño events 
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are associated with warmer temperatures and risk of droughts, while La Niña events are associated 

with an increased intensity of the Atlantic hurricane season [111–114]. The 2014-2016 El Niño 

event was one of the strongest events on record, according to the National Oceanic and 

Atmospheric Administration (NOAA) with evidence of increased disease incidence across the 

globe [115]. ENSO indicators may be particularly useful for dengue forecasting models, as they 

predict interannual climatic variability, and could therefore be helpful to predict high incidence 

seasons as opposed to seasonal patterns [110]. The extent to which a weather variable (such as 

temperature or precipitation) is sensitive to ENSO varies across space and time, and can vary even 

between instances of strong El Niño events, making disentangling the causal impact of ENSO and 

downstream weather effects on dengue transmission challenging [109]. 

 

1.3.6 Dengue in Singapore and the Dominican Republic 
 
 
Singapore is an equatorial city-state in Southeast Asia with a tropical climate, experiencing hot 

and humid conditions year-round and monsoon seasons from December – March and June – 

September [116]. Dengue is hyperendemic in Singapore, with all four serotypes in circulation, 

displaying  cyclical outbreaks with increasing frequency and magnitude [117,118]. Dengue 

outbreaks typically follow switches in the dominant circulating serotype which, until 2020, 

switched between DENV-1 and DENV-2 [117,119]. This pattern has been disrupted with an 

increasing contribution from DENV-3 between 2019 – 2020, resulting in a DENV-3 outbreak in 

2022 [120]. Unlike many countries in southeast Asia and Latin America, dengue transmission in 

Singapore is thought to have increased during the COVID-19 pandemic, as social distancing 

measures resulted in more of the population working from home, which is associated with greater 

dengue risk [121,122]. 

 

Over the past 50 years Singapore has implemented strict dengue prevention measures, centered 

around vector control and public education. This has led to sharp decreases in Aedes indices such 

as the Aedes House index, as well as estimated dengue seroprevalence in the population [118]. 

Despite this, reported dengue cases have been increasing since the 1990s, alongside more frequent 

outbreaks. This could be the result of low levels of population immunity to dengue increasing 
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Singapore’s vulnerability to outbreaks; particularly given that increasing travel and trade are likely 

to have resulted in more frequent introductions of new viral genotypes [118,100]. Improved case 

ascertainment is also likely to have played a role, particularly following the introduction of NS1 

rapid tests in clinical laboratories in 2008 [123]. Alongside traditional vector control, Singapore 

has also launched Project Wolbachia, a Wolbachia-Aedes suppression strategy, which began 

targeted releases in May 2020 and aims to cover 35% of Singapore’s households in 2024 [95,124]. 

 

The Dominican Republic also experiences endemic dengue transmission, with multiple serotypes 

circulating. The Dominican Republic has a tropical climate but is geographically diverse, with 

multiple climate zones [125]. In much of the country the rainy season falls between May and 

October, while along the northern coast it typically occurs between November and January. The 

Dominican Republic is vulnerable to hurricanes and cyclones due to its position on the Atlantic 

hurricane belt, which typically occur between August and October. In recent decades, outbreaks 

have been increasing in size, with the largest outbreak to date in 2019 reporting over 20,000 cases. 

There is limited serotype surveillance in the Dominican Republic, with low numbers of samples 

sequenced each year to detect which serotypes are circulating. Between 2005 and 2022 DENV-2 

was the most common serotype detected, followed by DENV-1. DENV-3 and DENV-4 are 

reported more rarely and can coincide with large outbreaks; for instance DENV-3 was reported 

only in 2015 and 2019, both large outbreak years [126]. 

 

1.4 Aim and objectives of thesis 
 

The aim of this thesis is to integrate multiple data streams within statistical and mechanistic 

modelling frameworks to investigate the role of immunity, climate and behaviour in driving viral 

outbreak dynamics, considering the implications for disease control.  

 

The aim will be met through the following objectives: 

1. Estimate the risk of reinfection following SARS-CoV-2 infection 

2. Understand the dynamics of SARS-CoV-2 in the Dominican Republic and quantify the 

role of mobility, immunity and vaccination on transmission and control 
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3. Develop a forecasting model for dengue in Singapore incorporating climate and serotype 

drivers of transmission 

4. Analyse the role of climate and epidemic drivers in spatiotemporal dengue outbreak 

dynamics in the Dominican Republic 

 

1.5 Thesis structure 
 

This thesis is structured in a research paper style with four chapters written as journal articles that 

have either been published or are in the process of publication. This first introductory chapter 

provides background on SARS-CoV-2 and dengue virus, while the second methods chapter 

describes modelling approaches used to understand viral outbreak dynamics. This is followed by 

four results chapters, described below, and a discussion of the findings. 

 

Chapter Three: Investigating immunity to SARS-CoV-2 in a community seroepidemiological 

cohort in the United States 

This chapter was published in PLOS Biology in 2022 [127]. It contains an analysis of longitudinal 

PCR and serological testing data from a seroepidemiological workplace cohort in the United 

States, estimating reinfection risk for SARS-CoV-2. This chapter addresses objective one. 

 

Chapter Four: Modelling the impact of population mobility, post-infection immunity and 

vaccination on SARS-CoV-2 transmission in the Dominican Republic 

This chapter has been published in The Lancet Regional Health - Americas in 2024 [128] and 

addresses objective two. It presents a mechanistic modelling analysis of SARS-CoV-2 

transmission in the Dominican Republic from 2020 – 2022, quantifying the role of immune and 

behavioural drivers of SARS-CoV-2 transmission. The study also details a counterfactual analysis 

assessing the impact of the vaccination campaign and considering alternative vaccine 

counterfactuals around timing and efficacy of vaccine products.  
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Chapter Five: Disentangling the role of climate and serotype competition to forecast dengue 

outbreaks in Singapore 

This chapter has been submitted for publication and addresses objective 3. It contains an analysis 

of the role of climate and serotype competition in shaping dengue risk in Singapore from 2000 – 

2023. The paper then presents a statistical forecasting model for early warning and evaluates 

predictive performance for 2 –8 week ahead forecasts. 

 

Chapter Six: Understanding the role of climate and epidemic drivers in spatiotemporal 

dengue outbreak dynamics in the Dominican Republic 

This chapter addresses objective 4. It describes a spatiotemporal analysis of dengue in the 

Dominican Republic using surveillance data from 2013 – 2023. It details the results from Bayesian 

hierarchical modelling to explore the role of climatic drivers (including temperature, rainfall, 

humidity and ENSO) as well as epidemic drivers in dengue outbreak dynamics. The study 

evaluates the influence of climatic and epidemic drivers in predicting temporal and spatial patterns 

of disease risk. 
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Chapter 2 

Methods 
 

2.1 Study sites 

 

2.1.1 Seroepidemiological cohort in the United States  
 

Chapter 3 makes use of data from a seroepidemiological cohort of SpaceX employees in the United 

States. Employees from seven sites in California, Florida, Texas and Washington state were invited 

to partake by email, with no exclusion criteria. Serological testing was performed with the 

Ragon/MGH ELISA assay, with 82.4% sensitivity and 99.6% specificity [1,2]. Serological and 

PCR testing data were available for 1,800 individuals, with serological samples taken during four 

rounds of testing between April and September 2021, and PCR testing data available until January 

2021. 

 

2.1.2  Seroprevalence survey in the Dominican Republic 
 

Chapters 4 and 6 of this thesis make use of seroprevalence data from a nationally representative 

seroprevalence survey conducted in the Dominican Republic from June – October 2021 [3]. Nilles 

et al followed a three-stage sampling design, selecting 134 clusters from 12,565 communities in 

the Dominican Republic. In the first stage, clusters were allocated to each of the 32 provinces 

weighted by population while also maximising spatial distribution and balancing urban and rural 

environments. In the second stage, clusters within each province were selected using a grid method 

to maximise their spatial dispersion. Finally, 23 households were chosen for each cluster, again 
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using grid methodology on satellite images. Two provinces (San Pedro de Macorís and Espaillat) 

were oversampled, as a longitudinal acute febrile illness hospital surveillance study was taking 

place in these provinces. Any household member ≥ 5 years old was invited to participate. Written 

consent was obtained for all participants; for children < 18 this was obtained from a legal guardian. 

6,683 study participants were enrolled from 3832 households in 134 clusters, with an enrolment 

rate of 84.4% of eligible individuals present at the time of the visit. 

 

Samples were tested with Roche Elecsys SARS-CoV-2 electrochemiluminescence immunoassays 

for antibodies against SARS-CoV-2 spike protein (anti-S) and nucleocapsid protein (anti-NC). 

Large non-manufacture sponsored studies demonstrated specificity and sensitivity of 99.8% (95% 

CI: 99.3–100) and 98.2% (95% CI: 96.5–99.2) for the anti-S assay and 99.6% (95% CI: 98.9–100) 

and 90.8% (95%: CI 81.3–95.7) for the anti-NC assay [4,2]. A subset of 200 samples from Espaillat 

and San Pedro de Macoris were tested for dengue IgG positivity using an in-house DENV1-4 

ELISA assay. 

 

In Chapter 4, I make use of publicly available COVID-19 surveillance data streams including daily 

reported deaths from the Dominican Republic’s COVID-19 dashboard, as well as daily hospital 

and intensive care unit (ICU) bed occupancy from daily COVID-19 bulletins by the Ministerio de 

Salud Pública y Asistencia Social, available from 19th September 2020 onwards [5]. In Chapter 

6, I investigate dengue surveillance data provided by the Ministerio de Salud Pública y Asistencia 

Social from the Sistema Nacional de Vigilancia Epidemiológica (SINAVE), aggregated to weekly 

reported case counts, including clinically and laboratory confirmed cases. I also obtained weekly, 

municipality-level mean, minimum and maximum weekly temperature (°C), precipitation (mm), 

relative humidity (%), absolute humidity (g/m3) and specific humidity (g/kg) from the ERA5-Land 

reanalysis dataset from coauthors in the Barcelona Supercomputing Centre (BSC). Niño 3.4 sea 

surface temperature anomaly (SSTA) data is publicly available from the National Oceanic and 

Atmospheric Administration, NOAA [6]. 
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2.1.3 Dengue surveillance in Singapore 
 

In Chapter 3, I investigate over 20 years of dengue surveillance data in Singapore, from 1st January 

2000 – 31st December 2022, provided by the National Environment Agency (NEA) and the 

Ministry of Health. We used weekly laboratory-confirmed cases, with laboratory confirmation 

through antigen detection of nonstructural protein 1 (NS1) or the detection of viral RNA by PCR. 

From 2006, a virus surveillance programme was set up by the NEA’s Environmental Health 

institute, where a subset of dengue samples are serotyped using RT-PCR each week [7]. I also 

made use of yearly population size estimates, obtained from the Department of Statistics, weekly 

minimum, mean and maximum temperature (°C), and relative (%) and absolute (g/m3)  humidity. 

Daily precipitation (mm) values were also provided. 

 

2.2 Modelling methods 
 

This thesis draws on both statistical and mechanistic modelling approaches, with elements drawn 

from machine learning literature, such as cross-validation methodology. Statistical models, also 

known as phenomenological models, make inferences from a sample regarding the entire 

population, under a set of assumptions about the probability distribution giving rise to the observed 

data [8]. Contrastingly, mechanistic approaches, also referred to as dynamic or mathematical 

modelling, make inferences by constructing a simplified representation of a process using 

mathematical equations. In epidemic modelling, mechanistic models represent an epidemic, or 

how an infectious disease spreads through a population [9]. While typical statistical approaches 

aim to understand the probability of observing some epidemic data , given the underlying process 

, or , mechanistic approaches often aim to understand the joint probability of the 

underlying epidemic state and the probability of observing data, or  

[10]. The choice of modelling approach depends on the study aims, the type and extent of data 

available and the model outputs needed. While no model is able to perfectly represent the 

complexities of infectious disease transmission, models should balance accuracy (the ability to 

reproduce observed epidemic dynamics), transparency (being able to understand how different 

parameters interact to affect modelled dynamics) and flexibility to suit their purpose, and be 
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parameterisable from available data [11]. Another important concept in model choice is that of 

parsimony, that a good model should be as simple as possible, while capturing the features of a 

biological system that are needed to answer the question at hand. Modern model building 

techniques often incorporate different aspects of statistical and mechanistic approaches. 

 

While these modelling approaches have different strengths and weaknesses, they can both be used 

as predictive tools, or to further understanding of underlying epidemiological processes. Within 

statistical modelling, a distinction is often made between models that aim to explain, or test causal 

explanations (for instance, asking what climatic conditions increase transmission), and those that 

aim to predict (for instance, asking how many cases we are likely to see in two weeks time). 

Whether a model is explanatory or predictive can be used to guide decisions in model formulation, 

selection and evaluation [12]. However, there are also benefits to integrating explanatory and 

predictive modelling approaches, synthesizing causal relationships to make improved predictions 

[13]. For instance, quantifying the predictive power of hypothesis-driven explanatory models can 

test the generalisability of inferred causal relationships. In cases where predictive power is limited, 

this could motivate future work on new hypotheses or reveal intrinsic limits to the predictability 

of a system [13,14]. Similarly predictive models, such as forecasting models, based on inferred 

causal relationships may be more generalisable and provide more insight when considering a 

system under long-term changes, such as the climate crisis. Forecasting models with a clear 

explanatory framework are also often more interpretable than their ‘black-box’ alternatives, which 

can be helpful when communicating outcomes to policymakers. 

 

2.2.1 Mechanistic modelling   
 

Compartmental models 

 

Mechanistic models, or transmission dynamic models, typically represent host disease states, in 

human or animal hosts, and track changes in these states over time [11,9]. A common transmission 

dynamic model framework is the compartmental or  model which, in its simplest form, divides 

the population into compartments of ‘Susceptible’, ‘Infected’ and ‘Recovered’ (or ‘Immune’) 

states [15]. These models can be deterministic (where given the same initial conditions and the 
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same parameters we will always observe the same trajectory) or stochastic (which approximate the 

element of chance in transmission). Furthermore, models can be constructed in continuous time 

using differential equations, or in discrete time using difference equations. In the simplest, 

deterministic case in continuous time, the SIR model is given by the following ordinary differential 

equations: 

 

 2.1 

 2.2 

 2.3 

 

Here  represents the effective contact rate (the rate at which two individuals come into effective 

contact per unit time). The force of infection, , is the per-capita rate at which susceptible 

individuals become infected. Assuming homogenous mixing, where contact between any two 

individuals occurs with equal probability, this is defined as .  represents the recovery rate 

and  represents the average infectious period. In this simple scenario,  defines the basic 

reproduction number, typically given by . This is defined as the average number of secondary 

cases arising from an average primary case in a completely susceptible population. 

 

This framework can be extended, depending on the complexity of the system studied. A common 

extension is to add an  compartment for diseases with a latent period (where individuals are 

exposed but not yet infectious) resulting in an  model. Similarly, for infectious diseases that 

are not fully immunising, reinfection can be added where individuals can move from the  

compartment, back to the  compartment.  

 

For diseases where contact patterns, and transmission, is age-dependent, each compartment can be 

stratified by age. This is particularly useful when modelling transmission of respiratory diseases, 

such as influenza or COVID-19 [16,17]. In this case, the force of infection for age group  is given 

by: 
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  2.4 

Here  represents the age group of the susceptible individual and  represents the age group of the 

infected individual and  represents contact rates between age groups, scaled for reciprocity of 

contacts between age groups [18,19]. In this case, we can calculate  using the method outlined 

by Diekmann et al, whereby  is the dominant eigenvalue of the next generation matrix [20]. The 

next generation matrix  is a matrix of numbers of newly infected individuals in each age category 

in consecutive generations and is given by: 

 

   2.5 

 

Where  is the transmission rate between age group  and age ,  is the duration of 

infectiousness,  is the number of susceptible individuals in age class  and  is the population 

size in age class . These frameworks can then incorporate data on age-dependent contact rates, 

such as those estimated through the POLYMOD or the CoMix survey, as well as age-dependent 

susceptibility or infectiousness [21,22]. 

 

Catalytic models 

 

Another type of compartmental model commonly used in epidemiology is the catalytic model. 

Originally formulated by Muench in the 1930s, this assumes individuals are infected at a constant 

rate (given by the force of infection ), which can then be estimated from age-stratified 

seroprevalence data [23]. For a simple catalytic model, assuming a constant force of infection 

independent of time or age and that individuals remain seropositive after seroconversion, the 

probability of being infected by age  is given by:  

 

 2.6 
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This can be extended in several ways.  In cases where measured antibodies wane over time a 

reverse catalytic model can be used to jointly estimate the force of infection, , and antibody 

waning,  [24]. Here: 

 

 2.7 

 2.8 

 

By integrating the formula above we find that the probability of being infected by age  follows: 

 

 2.9 

 

There are several limitations to mechanistic models. Firstly, they rely on assumptions around the 

transmission process of the pathogen in question, and as such are less suitable for instances where 

the causal pathways underlying transmission are poorly characterised. Additionally, mechanistic 

models can be challenging to fit, particularly in cases where many individuals or compartments 

are being modelled, as they become increasingly time consuming to simulate and the number of 

fitted parameters increases. 

 

2.2.3 Statistical modelling  
 

Regression models are a class of statistical models that quantify the associations between 

covariates and an outcome which, in epidemiological use cases, is usually a disease outcome. 

Generalized linear models (GLMs) are an extension of linear regression, which estimate a linear 

relationship between explanatory covariates and the outcome. GLMs allow for non-linear 

associations by relating a linear model to a response variable through a link function. Logistic 

regression is one form of GLM, which models the probability of a binary outcome (for instance, 

whether an individual tests positive or negative for a particular infection). As probability  of 

testing positive is bounded between 0 and 1, it is transformed via a logit link function to the log 
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odds scale,  where . Here, the outcome, for instance test positivity,  is 

binomially distributed with probability of testing positive . The equation for this is given by: 

 

 2.10 

                 2.11 

 

Here,  is the intercept,  represents  explanatory variables and  represents their coefficients.  

Similarly, disease count data (for instance, weekly surveillance data of reported cases or 

hospitalisations) can be modelled assuming a Poisson distribution. One limitation of Poisson 

regression is that it assumes variance is equal to the mean; however, overdispersion, where 

variance is greater than the mean, is common in epidemiological data. In these cases, a quasi-

Poisson, which assumes variance is a linear function of the mean, or negative binomial regression, 

which assumes variance is a quadratic function of the mean and estimates a dispersion parameter, 

can be used. In this thesis I have assumed surveillance count data follows a negative binomial 

distribution as this accounts for the overdispersion seen in epidemiological data, in a flexible 

manner. Here: 

 

  2.12 

 2.13 

 

Generalised additive models extend this framework by allowing the linear predictor to be defined 

by smooth functions of some or all predictor variables and are able to capture non-linear predictor-

outcome relationships [25].   

 

Hierarchical or mixed-effects models (such generalised linear mixed models, GLMMs or 

generalised additive mixed models, GAMMs) allow predictors to be organised into groups where 

the relationship between the predictor and response can vary across groups [25–27]. A typical 

example of this would be to account for region-specific effects in a population model, or 

individual-level effects if a study involves repeat measurements from the same individuals. 

Random effects can be used to model varying intercepts between groups, or varying slopes, where 
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estimated regression coefficients can vary by group [26]. For time-series based regression models, 

random effects can be used to incorporate seasonality or interannual effects. Similarly, spatial or 

spatiotemporal models can take into account the underlying spatial structure of data, based on a 

range of assumptions about the dynamics across space [28]. Statistical methods are often limited 

by the extent and quality of available data, which determine the statistical power. This can make 

them less useful when considering policy questions around emerging or re-emerging diseases with 

little historical data. 

 

2.2.4 Applications of modelling to COVID-19 and dengue virus 
 

COVID-19 

 

During the COVID-19 pandemic, a wide variety of modelling techniques were applied to 

understand key epidemiological parameters and inform public health decision making through 

scenario projections and forecasts [10]. Examples of these diverse approaches include the use of 

branching process models to estimate overdispersion in SARS-CoV-2 transmission, network 

modelling to estimate the efficacy of local control strategies, renewal equations to estimate  or 

individual-level models to model the impact of testing and quarantine strategies [29–33]. 

Compartmental models were used extensively, particularly when fitting to data at a national level 

to model options for epidemic response at a national level. These frameworks often adapted model 

structures originally developed for other respiratory viruses, particularly pandemic influenza. As 

part of this thesis, I adapt covidm, a transmission dynamic model originally designed by Davies 

and colleagues to quantify the impact of NPIs in the UK [34–36]. This was used in conjunction 

with modelling from other UK universities to generate evidence for the Scientific Advisory Group 

for Emergencies (SAGE) to advise the government on epidemic response.  

 

Catalytic modelling is more typically applied to endemic diseases, where age-stratified 

seroprevalence reflects transmission intensity over time, as opposed to exposure during a large 

outbreak. However, Rees and colleagues used catalytic modelling to estimate the duration of 

immunity following infection for seasonal coronaviruses, thereby providing insight into potential 

dynamics for SARS-CoV-2 early on in the pandemic [37]. Statistical modelling was also used to 
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address a wide range of questions during the pandemic from evaluating efficacy in trials for 

pharmaceutical interventions, estimating key epidemiological parameters such as the incubation 

period from delayed and censored data, understanding the association between COVID-19 

incidence with climatic variables, and short-term forecasting of hospital admissions [38–40].  

 

Dengue 

 

Mechanistic models for dengue are often derived from the Ross-Macdonald model of mosquito-

borne pathogen transmission [41–43]. This describes  for vector-borne diseases as a function of; 

mosquito-to-human ratio, human biting rate, probability of human infection, probability of vector 

infection, the extrinsic incubation period (or the time taken for the pathogen to develop inside the 

host) and the vector survival rate. Agent-based models have been used to model Aedes and dengue 

spread through a population, and to assess the potential impact of interventions such as vector 

control or vaccination, often at a city or local level [44]. Compartmental models of dengue 

transmission typically include compartments for both host and vector populations, as well as 

potentially modelling multiple serotypes, and have been used to understand theoretical behaviour 

of dengue transmission, investigate vector-control strategies or vaccine impact, often over larger 

spatial scales [45–51]. Within the field of dengue forecasting, time-series based regression 

approaches are the most regularly employed approach, with fewer examples of mechanistic and 

machine learning models [52–58]. 

 

In 2015, an open forecasting challenge, the Dengue Forecasting Project, was launched. This 

compared predictions from 16 forecasting teams for two dengue endemic locations, Iquitos in Peru 

and San Juan in Puerto Rico [58]. This study found that while forecasts performed well mid-season 

to provide situational awareness, forecast skill was generally lowest early in a season and for 

seasons with large outbreaks, both situations where accurate forecasts would have high operational 

utility. Additionally, mechanistic models had lower average forecast skill than statistical 

approaches that did not explicitly include biological processes underlying transmission (91).  
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2.2.5 Model fitting    
 

Fitting models to data can be performed using Bayesian or frequentist inference. Frequentist 

inference considers probabilities in terms of the frequency of an event in a very large sample. 

Contrastingly, Bayesian inference incorporates a prior belief in the probability of an event, which 

is then updated with data. Until recently, fitting complex Bayesian spatiotemporal statistical 

models and mechanistic models to data was challenging due to the long computation times 

required for statistical inference of model parameters. However, techniques such as Markov chain 

Monte Carlo (MCMC) and alternative methods have allowed for more efficient estimation of 

model parameters, increasing computational tractability of complex models. Bayesian inference is 

based on Bayes’ theorem, whereby the posterior distribution is proportional to the likelihood of 

the data  given the parameters , multiplied by the prior distribution .  

 

 2.14 

 

 

Until recently, Bayesian inference could be challenging, or impossible to perform, as the 

normalizing constant  required integrating the likelihood with respect to the prior, and was 

often intractable. The key innovation of MCMC algorithms is to instead consider the ratio of 

probabilities of proposal distributions (such that the normalizing constant cancels out) and to 

sample repeatedly, building a Markov chain with an equilibrium distribution equal to the posterior. 

Metropolis-Hastings MCMC algorithms follow the following steps to sample from the posterior 

distribution. First, a starting point is selected such that such that . Then a new sample is 

proposed from a proposal or jumping distribution : 

 

 2.15 

The new proposal is then accepted with probability , where 

 

 2.16 
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If the proposal is rejected, the current proposal is used again and these steps are repeated until 

convergence is achieved. Typically, a multivariate normal distribution is used as a proposal (or 

jumping) distribution, and a common issue with traditional MH-MCMC is specifying the 

covariance matrix, which determines the scale and orientation of the proposed jump in parameter 

space. 

 

Hamiltonian Monte Carlo (HMC) is an MCMC method which uses derivatives of the sampled 

density function (similar to the concept of ‘momentum’ in physics) to move through the target 

distribution [26,59]. This allows for more efficient exploration of the posterior distribution than 

the random walk behaviour exhibited in Metropolis-Hasting MCMC algorithms, and is 

implemented in the programming language Stan [60]. For MCMC based algorithms it is important 

to assess convergence. This can be done by assessing chain mixing through trace plots as well as 

through the Gelman-Rubin (R-hat) statistic, which compares variation between chains to variation 

within chains and the effective sample size (ESS), giving the number of independent samples. 

Larger values of ESS are better while R-hat <1.1 is typically indicative of convergence [26].  

 

Similarly, Differential Evolution Markov Chain (DE-MC) offers a similar improvement on 

traditional MH-MCMC [61]. Here, chains are run in parallel and can learn from each other and the 

jump for one chain is chosen using the remaining chains. First, two of the other chains are chosen 

at random and then the difference of the vectors of these chains is taken and multiplied by a factor. 

This difference vector then determines the scale and orientation of the proposal for the original 

chain. This allows for the parameter space to be explored more efficiently, particularly in cases of 

collinearity between parameters. 

 

Another method for Bayesian inference is the integrated nested Laplace approximation, INLA 

[62]. Instead of estimating the joint posterior distribution  this focuses on approximating 

univariate posterior distributions  and requires models to be expressed as latent Gaussian 

Markov random fields. This is a computationally efficient method of Bayesian inference, 

particularly suited to large spatiotemporal models. 
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Throughout this thesis information criteria are calculated to inform Bayesian model selection. In 

particular, we use the widely applicable information criteria, WAIC, and the deviance information 

criteria, DIC [63,64]. These criteria aim to approximate out-of-sample prediction error, correcting 

for biases introduced through using in-sample model fit. The WAIC computes the log pointwise 

predictive density, , adjusted by a penalty term proportional to the variance in the posterior 

predictions. This is given by: 

 

                                                    2.17 
where  is the data and  is the posterior distribution. 
 

The DIC is defined by: 

 2.19 

where  is the effective number of parameters [26].  
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Chapter 3 

Investigating immunity to SARS-CoV-2 in a 

community seroepidemiological cohort in the 
United States 

 
The extent and duration of immunity following acute viral infection is an important determinant 

of potential epidemic dynamics, as well as optimal disease control strategies. Longitudinal 

serological studies can provide insights into antibody dynamics over time which, when coupled 

with routine testing for current infection, can be used to estimate reinfection risk. Analysis for this 

chapter began in late 2020, when there was limited understanding of the effect of SARS-CoV-2 

antibodies on reinfection risk or the implications of post-infection immunity on transmission in 

the population. The question of whether SARS-CoV-2 infection would provide long-lasting 

immunity in the majority of individuals (similar to SARS-CoV-1) or immunity which waned 

rapidly (similar to human seasonal coronaviruses) had important implications for public health 

strategy, such as the intensity and frequency of non-pharmaceutical interventions, as well as the 

potential for vaccine development. In this study, I aimed to use seroepidemiological cohort data 

from April 2020 to February 2021 in the United States to estimate SARS-CoV-2 reinfection risk. 

I also discuss difficulties in estimating reinfection risk in real-time in the early phase of an 

outbreak, and address these by adjusting for individual-level variation in infection risk and 

considering the impact of population-level epidemic dynamics in the study period. 
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This paper was published in PLOS Biology in February 2022. Supplementary material is included 

in Appendix B. 
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3.1 Abstract 
 
Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-

term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a 

prospective cohort of 4411 US employees in four states between April 2020 and February 2021. 

We conducted a multivariable logistic regression investigating the association between baseline 

serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. 

We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 - 0.63) to 0.28 (95% 

CI: 0.05-1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with 

around 72-86% reduced odds of a subsequent PCR positive test based on our point estimates. This 

suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the 

majority of individuals, at least over a sixth month time period. We also highlight two major 

sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, 

confounders and the choice of baseline time point, and show how to account for both in reinfection 

analysis. 
 

 3.2 Introduction 
  

The rapid global spread of COVID-19 throughout 2020 occurred as a result of the introduction of 

a highly transmissible virus, SARS-CoV-2, into populations with little pre-existing immunity [1]. 

Identifying the extent and duration of protective immunity afforded by natural infection is 

therefore of crucial importance for understanding possible long-term epidemic dynamics of SARS-

CoV-2 [2]. 

  

Studies have estimated that over 95% of symptomatic COVID-19 cases develop antibodies against 

SARS-CoV-2, with most individuals developing antibodies within three weeks of symptom onset 

[3,4]. Several serological studies have also characterised individual-level immune dynamics, with 

some finding evidence for antibody waning and others for sustained antibody responses over 

several months [5–10]. Antibody kinetics are thought to vary between individuals and are possibly 

associated with severity of illness, where asymptomatic or mildly symptomatic individuals may 
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develop lower levels of antibodies that wane more rapidly [3,7,11]. While neutralising antibodies 

are thought to be associated with protection from reinfection, there are still limited studies on the 

impact of post-infection seropositivity on future reinfection risk [12]. Confirmed cases of 

reinfection with SARS-CoV-2 have been reported since August 2020 [13]. However, existing large 

studies examining the relative risk of reinfection in antibody positive individuals have typically 

involved specific cohorts who may not be representative of the wider community, such as closed 

communities or healthcare worker cohorts [14–17]. To evaluate the relative risk of SARS-CoV-2 

infection and reinfection over time, we analysed PCR and serological testing data from a 

prospective cohort of SpaceX employees in the USA between April 2020 and February 2021 

[18,19]. 
  

3.3 Results 
  

Of 4411 individuals enrolled, 309 individuals tested seropositive during the study period (Figure 

1). This resulted in an overall adjusted percentage ever-seropositive of 8.2% (95% CI: 7.3-9.1%) 

by the end of August 2020, after the final round of serological testing (Figure 2B). Here, imperfect 

test sensitivity and specificity were adjusted for using the Rogan-Gladen correction [20]. We 

defined a possible reinfection as a new positive PCR test more than 30 days after initial 

seropositive result. This identified 14 possible reinfections with a median time of 66.5 days 

between initial seropositive test and PCR positive test (Figure 2C). 
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Figure 3.1 PCR and serological tests in seroepidemiological cohort 

 A) Number of PCR tests and PCR positive tests in the cohort between 5th April 2020 and 31st January 

2021 from 3296 participants. B) Number of serological tests and seropositive tests between 29th March 

2020 and 23rd August 2020 from 4411 participants. 

  

3.3.1 SARS-CoV-2 infection and reinfection 
  

We estimated the odds ratio for SARS-CoV-2 reinfection using multivariable logistic regression, 

to adjust for any background individual-level variation in the risk of infection (see Methods). This 

required us to choose a cut-off week in order to define baseline seroprevalence and the subsequent 

observation period for PCR testing. To examine how our estimate for the odds ratio for reinfection 

varied depending on the cut-off week chosen, we repeated the analysis using every possible cut-

off week. 

  

We considered that the most robust estimation of the odds ratio for reinfection would occur mid-

epidemic when using cut-off weeks in between two ‘waves’ of the epidemic seen in the study 

cohort. We validated this methodological assumption by conducting a simulation study (see 

Supplementary Materials).  
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We defined a mid-epidemic period in between two epidemic waves where PCR positivity in the 

study cohort was below the WHO specified threshold of 5%, which occurred between 26th July 

2020 and 27th September 2020 (see Figure 2A). During these cut-off weeks, estimates of the odds 

ratio for reinfection (Figure 2D) ranged from 0.14 (95% CI: 0.019 - 0.63) to 0.28 (95% CI: 0.05-

1.1). Our point estimates suggest that the presence of SARS-CoV-2 antibodies confers around 72-

86% protection against reinfection with SARS-CoV-2, at least over a six-month period. As a 

sensitivity analysis, we conducted the same analysis but excluding records where individuals had 

recorded a specific trigger reason for testing such as symptom onset or potential exposure (and so 

reflecting individuals tested at random). Considering the weeks between 26th July 2020 and 27th 

September 2020, we found estimates of the odds ratio for reinfection ranged from 0.18 (95% CI: 

0.024-0.80) to 0.36 (95% CI: 0.06-1.5).  
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Figure 3.2 PCR positivity, seropositivity and reinfection risk 

A) PCR positivity (%) in the cohort between 5th April 2020 and 31st January 2021. B) Percentage ever 

seropositive in the cohort (number ever seropositive/ cumulative number enrolled) between 29th March 

2020 and 23rd August 2020. Note that the percentage ever positive decreases initially as participants 

continue to be enrolled in the study. C) Number of possible reinfections in cohort over time (defined as a 

new positive PCR test more than 30 days after initial seropositive result). D) Odds ratio estimates comparing 

odds of reinfection in the seropositive group with odds of primary infection in the seronegative group, 

estimated using logistic regression and adjusted for potential confounders. The estimates are presented with 
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their associated 95% confidence intervals and with the cut-off week used to define baseline seroprevalence 

on the x-axis. 

  

In the adjusted analyses, odds ratio estimates for reinfection converged to similar values for cut-

offs spanning a period after the first peak of infection in early July. By this point, sufficient 

numbers of participants had been both recruited and tested seropositive (see Figure 2B) that we 

had enough data to distinguish infection dynamics in seropositive and seronegative groups. 

Adjusted odds ratio estimates for reinfection then lost precision when using late cut-off weeks 

from mid-December onwards due to increasingly small numbers of participants experiencing PCR 

infection after the cut-off point, consistent with our simulation study (see Supplementary 

Materials). 

 

Unadjusted odds ratio estimates tended to overestimate the odds ratio for reinfection compared 

with primary infection, particularly when using early cut-off weeks (Figure 3). Notably, with early 

cut-off weeks the unadjusted analysis estimated a higher odds of reinfection compared to primary 

infection, albeit with wide confidence intervals. This is the result of a subset of individuals who 

are at higher risk of initial seroconversion (who would be included in analyses at earlier time 

thresholds) and also at higher risk of later reinfection, giving a biased estimate of the association 

between antibodies and subsequent infection when using earlier cut-off weeks.  
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Figure 3.3 Unadjusted and adjusted odds of reinfection 

A) Unadjusted odds ratio estimates comparing odds of reinfection in the seropositive group with odds of 

primary infection in the seronegative group. The estimates are presented with their associated 95% 

confidence intervals and with the cut-off week used to define baseline seroprevalence on the x-axis.  B) 

Odds ratio estimates comparing odds of reinfection in the seropositive group with odds of primary infection 

in the seronegative group, estimated using logistic regression and adjusted for potential confounders. The 

estimates are presented with their associated 95% confidence intervals and with the cut-off week used to 

define baseline seroprevalence on the x-axis.  

 

3.4 Discussion 
  

We identified 14 possible reinfections out of 309 seropositive individuals in the prospective 

seroepidemiological cohort between April 2020 and February 2021, estimating an odds ratio for 

reinfection ranging from 0.14 (95% CI: 0.019 - 0.63) to 0.28 (95% CI: 0.05-1.1). This provides 

evidence that primary infection with SARS-CoV-2 results in protection against reinfection in the 

majority of individuals, at least over a sixth month time period. Our findings are broadly consistent 

with estimates of 0·17 (95% CI 0·13-0·24) odds ratio (14) and 0·11 (0·03-0·44) incidence rate 

ratio (15) for healthcare workers, 0·18 (0·11-0·28) incidence rate ratio for military recruits (16) 

and 0·195 (95% CI 0·155–0·246) incidence rate ratio from a Danish population-level study [21]. 

  

Our analysis addressed two key sources of bias and uncertainty in estimating the relative risk of 

reinfection. First, confounders may inflate estimates; if a specific subset of the cohort is at higher 

risk of infection (e.g. due to underlying health conditions or increased risk of exposure), these 

participants will be more likely to be both initially seropositive and to have a subsequent 

reinfection. Second, the time period considered could increase uncertainty; defining the baseline 

seroprevalence at an early time point means few will be seropositive, whereas defining it at a later 

point means there is less time to observe possible reinfections. We accounted for these two factors 

by adjusting for key confounders to calculate an adjusted odds ratio for reinfection. We then 

investigated how changing the cut-off date to define baseline seroprevalence impacted the 

accuracy of the adjusted odds ratio calculated. We assumed that for a two-wave epidemic scenario, 

a cut-off week in the period in between the two waves of infection risk would result in the most 
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robust estimates of the odds ratio for reinfection, which we validated using a simulation study (see 

Supplementary Materials). This suggests that the robustness of estimates of the relative risk of 

reinfection will be sensitive to the study period chosen, relative to population-level epidemic 

dynamics. 

  

There are several limitations to the underlying data that should be considered when interpreting 

these findings. This prospective cohort was recruited opportunistically from employees at one US 

company and is unlikely to be representative of the general population. However, as we did not 

identify any workplace outbreaks, infections in this cohort are likely to be more reflective of 

community transmission than in health-care worker cohorts or other specialised populations. 

Additionally, we only considered possible reinfections (as opposed to probable or true 

reinfections). As possible reinfections did not meet a stringent case definition, such as confirmation 

through genomic sequencing, they may include cases of prolonged viral shedding following an 

initial infection. This would result in an overestimation of the odds ratio for reinfection and so our 

analysis reflects the minimum possible effect of antibodies on future SARS-CoV-2 infection risk 

according to the mechanism investigated here. Finally, the date of infection among seropositive 

participants is unknown, limiting inference on exact duration of protection. 

  

As well as quantifying the relative risk of reinfection over a six-month period among a 

prospectively followed workplace population, our study highlights the importance of accounting 

for both individual-level heterogeneity in infection risk and population-level variation in epidemic 

dynamics when assessing the potential for reinfections. 

  

3.5 Methods 
  

3.5.1 Seroepidemiological cohort description 
  

We used data from a seroepidemiological study of US employees at SpaceX, as described 

previously [19]. In brief, this study involved employees from seven work locations in California, 

Florida, Texas and Washington State, with ages ranging from 18-71. 4411 employees volunteered 
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to participate in the study and were enrolled from ~8400 total employees. All employees were 

invited to participate by email and there were no exclusion criteria. Study participants were offered 

SARS-CoV-2 IgG receptor-binding domain (RBD) antibody testing with an in-house ELISA assay 

with 82·4% sensitivity and 99·6% specificity [22]. Serological samples were taken during four 

rounds of testing between April - September 2020. A questionnaire including demographic, 

symptom and exposure information was conducted at enrolment, and with each round of 

serological testing. Individuals continued to be enrolled throughout the study period, and around 

half of the total participants (48%) were tested at more than one time point. Participants occupied 

a range of job positions within SpaceX including office-based and factory-based jobs. 

Additionally, symptomatic and asymptomatic PCR testing were widely available for employees 

using the Infinity BiologiX (IBX) TaqPath rRT-PCR assay, with data available from April 2020 - 

January 2021. Employees could request a test for any reason and testing was also specifically 

performed for symptomatic individuals, individuals with potential exposure and mission critical 

employees. Both serology and PCR testing data were available for 1800 individuals. 

  

3.5.2 Ethics Statement 
  

The study protocol was approved by the Western Institutional Review Board. The use of de-

identified data and biological samples was approved by the Mass General Brigham Healthcare 

Institutional Review Board. Secondary data analysis was approved by the LSHTM Observational 

Research Ethics Committee (ref 22466). All participants provided written informed consent. 

  

3.5.3 Statistical Analysis 
  

To estimate the odds ratio for SARS-CoV-2 reinfection, we conducted multivariable logistic 

regression analysis investigating the association between baseline serological status and 

subsequent PCR test result, given a test was sought. 

  

The choice of cut-off week used to define participants’ baseline seroprevalence and the subsequent 

observation period for PCR testing has important implications in the estimation of the odds ratio 
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for reinfection. For instance, a cut-off week early in the study period will result in few seropositive 

individuals, while a cut-off week later in the study period leaves less time to observe subsequent 

PCR testing and detect possible reinfections, impacting the accuracy of estimates. To assess how 

the choice of cut-off week affected estimates of the odds ratio for reinfection, we repeated the 

multivariable logistic regression for every possible cut-off week. We assumed the most robust 

estimation of the relative risk of reinfection would occur in the between the two ‘waves’ of 

infection risk seen in the study cohort. We validated this assumption by conducting a simulation 

analysis using a known underlying probability distribution of infection and reinfection (see 

Supplementary Materials). 

  

Potential confounding variables included; age, sex, race, ethnicity, BMI, state, work location, job 

category, household size, history of chronic disease, history of smoking and test frequency. We 

used a backwards selection procedure to select which variables to adjust for in our analyses, 

minimising root mean square error (RMSE) at each step [23] . Age and sex were considered 

‘forced’ variables which we decided to control for a priori and were adjusted for in all analyses 

[24,25]. We conducted variable selection separately for each cut-off week and the variable sets 

adjusted for in each regression analysis are listed in Supplementary Materials S1. For most cut-off 

weeks (specifically those between 19th May 2020 and 22nd November 2020) all potential 

confounders were adjusted for, while early weeks (between 26th April 2020 and 3rd May 2020) 

and late weeks (between 20th December 2020 and 17th January 2021) adjusted for a subset of 

potential confounders. 

 

As a sensitivity analysis, we performed the same analysis but excluding records where individuals 

had recorded a specific reason for test such as onset of symptoms or potential exposure to a 

COVID-19 case. As such, this sensitivity analysis included only individuals tested at random. 
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Figure 3.4 Propensity to seek a PCR test between the seronegative and seropositive groups 

Propensity to seek a PCR test shown for each cut-off week considered in the main analysis. This was 

calculated as the percentage of those enrolled by the cut-off week shown on the x-axis who received at least 

one PCR test in the subsequent observation period. 

  

We investigated the propensity to be tested among seronegative and seropositive individuals for 

each cut-off week by examining the percentage of those enrolled in the study by each cut-off week 

who had at least one test in the subsequent observation period and found that for cut-off weeks 

from mid-July onwards they were broadly similar between the two groups (Figure 5). However, 

the average distribution of test frequency differed between the seropositive and seronegative 

groups, with higher frequency of testing more common in the seronegative group. To account for 

this, we included PCR test frequency as a potential confounder in our analysis, defined as the 

number of PCR tests each individual took during the observation period (1-2, 3-5 or 6+). Protection 
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against infection with SARS-CoV-2 conferred by the presence of antibodies was estimated from 

the adjusted odds ratio (AOR) such that   

!"#$%&$'#(!" = 1− +,-#$%&'$()%*&. 

   

Analysis was conducted in R version 4.0.3. Code to reproduce the figures and simulation analysis 

presented here can be found at https://github.com/EmilieFinch/covid-reinfection. 
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Chapter 4 

Effects of mobility, immunity and vaccination 
on SARS-CoV-2 transmission in the 

Dominican Republic: a modelling study 
 

SARS-CoV-2 transmission is determined by a complex and non-linear interplay of post-infection 

immunity from prior transmission, changes in population behaviour (which can vary seasonally, 

as a result of changes in non-pharmaceutical interventions or in response to epidemic trends), the 

introduction of new variants and vaccination campaigns. Disentangling the relative role of these 

drivers on dynamics requires the integration of multiple data sources within modelling 

frameworks. Serological data, estimating past exposure in a population, is particularly valuable to 

distinguish between hypotheses behind observed epidemiological patterns. During the pandemic, 

mechanistic models were used routinely to provide decision-support to policy makers. However, 

there has been a lack of in-depth modelling for low- and middle-income countries. In particular, 

SARS-CoV-2 dynamics in countries that were unable to fully suppress transmission through non-

pharmaceutical interventions prior to vaccine roll-out are not well understood. The Dominican 

Republic saw high incidence of SARS-CoV-2, with around three-quarters of the population 

previously infected by the autumn of 2021, and launched a vaccination campaign in February 

2021, primarily using Sinovac-CoronaVac. 

 

In this study, I jointly fit a multi-strain, age-stratified compartmental model to serological and 

surveillance data to investigate the transmission dynamics of SARS-CoV-2 in the Dominican 

Republic between 2020 and 2022. I also incorporated vaccination data and mobility data as model 

inputs. Once I had reconstructed the underlying epidemic dynamics, I was able to explore
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counterfactual scenarios by changing model inputs, first assessing the impact of the vaccination 

campaign. I then explored the effect of using alternative vaccine products with higher efficacy 

vaccine, as well as the effect of delaying the campaign to wait for a higher efficacy product, 

retrospectively examining key policy decisions. Finally, I investigated the trade-off between levels 

of vaccination coverage and population mobility on COVID-19 burden, estimating the ‘return-to-

normality’ afforded by the vaccination campaign. 

 

This chapter was published in the Lancet Regional Health – Americas in September 2024. 

Supplementary Material for this paper is included as Appendix C.  



Chapter 4: Effects of mobility, immunity and vaccination on SARS-COV-2 transmission 

 70 

 

 

 

RESEARCH PAPER COVER SHEET 
 

Please note that a cover sheet must be completed for each research paper included within a thesis. 

 
 

SECTION A – Student Details 

 

Student ID Number 1802674 Title Miss 

First Name(s) Emilie 

Surname/Family Name Finch 

Thesis Title 
Modelling the role of immunity, climate and behaviour in viral 
outbreak dynamics and control 

Primary Supervisor Adam Kucharski 
 
If the Research Paper has previously been published please complete Section B, if not please move 

to Section C. 

 

 

SECTION B – Paper already published 

 
Where was the work published?       

When was the work published?       

If the work was published prior to 
registration for your research degree, 
give a brief rationale for its inclusion 

      

Have you retained the copyright for the 
work?* 

Choose an 
item. 

Was the work subject 
to academic peer 
review? 

Choose an item. 

 
 
*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, 
please attach evidence of permission from the copyright holder (publisher or other author) to include this 
work. 
 

 

SECTION C – Prepared for publication, but not yet published 

 

Where is the work intended to be 
published? 

The Lancet Regional Health - Americas 

Please list the paper’s authors in the 
intended authorship order: 

 Emilie Finch, Eric J Nilles, Cecilia Then Paulino, Ronald 
Skewes-Ramm, Colleen Lau, Rachel Lowe1, Adam J 
Kucharski 
 

Stage of publication In press 





Chapter 4: Effects of mobility, immunity and vaccination on SARS-COV-2 transmission 

 72 

4.1 Abstract 
  

Background 

COVID-19 dynamics are driven by a complex interplay of factors including population behaviour, 

new variants, vaccination and immunity from prior infections. We quantify drivers of SARS-CoV-

2 transmission in the Dominican Republic, an upper-middle income country of 10.8 million 

people, and assess the impact of the vaccination campaign implemented in February 2021 in saving 

lives and averting hospitalisations. 

  

Methods 

We fit an age-structured, multi-variant transmission dynamic model to reported deaths, hospital 

bed occupancy, and seroprevalence data until December 2021, and simulate epidemic trajectories 

under different counterfactual scenarios. 

  

Findings 

We estimate that vaccination averted 7210 hospital admissions (95% CrI: 6830 –7600), 2180 ICU 

admissions (95% CrI: 2080 –2280) and 766 deaths (95% CrI: 694 – 859) in the first 6 months of 

the campaign. If no vaccination had occurred, we estimate that an additional decrease of 10-20% 

in population mobility would have been required to maintain equivalent death and hospitalisation 

outcomes. We also found that early vaccination with Sinovac-CoronaVac was preferable to 

delayed vaccination using a product with higher efficacy. 

  

Interpretation 

SARS-CoV-2 transmission dynamics in the Dominican Republic were driven by a substantial 

accumulation of immunity during the first two years of the pandemic but, despite this, vaccination 

was essential in enabling a return to pre-pandemic mobility levels without considerable additional 

morbidity and mortality. 
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4.2 Introduction 
  

During 2020-22, many countries experienced a significant burden of COVID-19 and imposed non-

pharmaceutical interventions (NPIs) aiming to control SARS-CoV-2 transmission. Despite this, 

countries experienced markedly different epidemic dynamics, mediated by a complex interplay of 

factors including population behaviour, government interventions, the introduction of new 

variants, the roll-out of vaccination campaigns and prior levels of transmission. Serological 

surveys have proven crucial to understand global and national landscapes of population immunity, 

as well as indicating the extent of prior exposure to SARS-CoV-2 [1]. Some countries pursued an 

elimination strategy throughout the pre-Omicron era, with stringent public health interventions 

resulting in low levels of seroprevalence towards the end of 2021. For example, in Hong Kong, 

serosurveillance studies found <1% of sera tested was positive for anti-N SARS-CoV-2 IgG prior 

to March 2021 [2]. Other countries, such as the UK and many EU countries, saw epidemic waves 

linked to the strengthening and relaxing of public health interventions, alongside the emergence of 

more transmissible variants. In England, approximately 20% of the population were estimated to 

have been infected with SARS-CoV-2 between April 2020 and July 2021 [3]. In contrast, SARS-

CoV-2 transmission was largely unmitigated in some settings such as in Manaus, Brazil, where 

76% of the population are thought to have been infected by October 2020 [4].  

  

Latin America and the Caribbean was a global hotspot for SARS-CoV-2 transmission during 2020-

21, prior to the emergence of the Omicron variant, which caused large epidemics globally [5,6].  

The Dominican Republic is an upper-middle income country with a population of 10.8 million, 

which shares the island of Hispaniola in the Caribbean with Haiti. They reported their first case of 

COVID-19 on the 1st of March 2020, which was followed by the imposition of strict public health 

measures including the closure of schools and workplaces, the cancellation of public events and 

the imposition of curfews. These began to be relaxed in July 2021 and were mostly lifted with the 

reopening of schools and relaxation of curfew measures in October 2021. In the first two years of 

the pandemic, the Dominican Republic experienced four waves of transmission: the first peaked 

in August 2020, with cases increasing again from November 2020 before a second peak in January 

2021. A third wave of transmission took place over the summer of 2021, following the introduction 

of more transmissible variants, including Mu, with cases rising sharply to peak in July 2021. 
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Following the introduction of the Delta variant, a fourth wave took place in October and November 

2021 [7]. A nationally representative serological survey involving 6683 individuals from 3832 

households took place between June and October 2021 [8]. Results from the serological survey 

estimated that 76.6% (95% CI 70.1 – 82.5) of the population had been previously infected by the 

study midpoint. This vastly exceeded earlier estimates constructed from coarse reported data for 

the Dominican Republic, and the wider region of Latin America and the Caribbean [9]. 

  

The government of the Dominican Republic launched a national COVID-19 vaccination 

programme on 16th February 2021 initially focusing on health-care professionals and then 

following a three-phase age-based approach [10]. The campaign first targeted individuals over 60 

years of age, then expanding to individuals over 50 on 3rd May 2021 and all adults over 18 on 

10th May 2021 (Supplementary Table 1). Booster vaccination for highly vulnerable individuals 

began in July 2021, with the Dominican Republic being the first country in the Americas to 

approve vaccination with a third dose [11]. During the study period, approximately 90% of vaccine 

doses administered were Sinovac-CoronaVac (an inactivated viral vaccine), with 

Oxford/AstraZeneca vaccine (ChAdOx1-S, an adenovirus vector vaccine) and Pfizer/BioNTech 

(BNT162b2, mRNA vaccine) also administered [8]. By the current study’s endpoint (15th 

December 2021), 62% of the population had received at least one dose of a COVID-19 vaccine 

and 50% had received two doses. 

  

Mathematical models have been used throughout the pandemic to provide decision-support to 

policy makers through estimation of key epidemiological parameters, forecasts of future incidence, 

projections of epidemic trajectories under different scenarios, and quantification of the impact of 

non-pharmaceutical interventions. However, despite regular and in-depth modelling decision-

support for high-income countries, there has been a lack of equivalent modelling analysis to 

understand transmission and control in low- and middle-income countries [12–18]. To address this 

gap, we used an age-structured transmission dynamic model to quantify the drivers of epidemic 

dynamics in the Dominican Republic during the first two years of the pandemic, and to assess the 

impact of the vaccination campaign on COVID-19 hospitalisations and deaths. 
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4.3 Methods 
 

4.3.1 Data 
 

 
Figure 4.1 Map of the study setting and time-series of COVID-19 cases.  

Figure showing a map of the Caribbean with the location of the Dominican Republic shown in a box (a), a 

map of the Dominican Republic showing clusters sampled in the 2021 serosurvey (b), and daily COVID-

19 cases in the Dominican Republic (bars) and the 7-day moving average (line) from March 2020 – January 

2022 (c). The shaded grey area indicates the timing of the serological survey. 

 

For this analysis we incorporated multiple data streams. Aggregated daily reported deaths were 

collected from the Dominican Republic’s COVID-19 Dashboard. Aggregated daily hospital and 

ICU bed occupancy were scraped from daily COVID-19 bulletins published by the Ministerio de 

Salud Pública y Asistencia Social, available from 19th September 2020 onward [19]. We also used 
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serological data from a nationally representative multistage SARS-CoV-2 seroprevalence survey 

undertaken between June - October 2021. This survey employed a multistage sampling method 

which assigned clusters to provinces, taking into account population, urban-rural divide, and the 

spatial dispersal of clusters. Individuals aged ≥5 years old were eligible to enroll in the study and 

6683 individuals were surveyed in total. SARS-CoV-2 antibodies were measured using the Roche 

Elecsys SARS-CoV-2 electrochemiluminescence immunoassays. Large non-manufacture-

sponsored studies demonstrated specificities and sensitivities of 99.8% (CI 99.3–100) and 98.2% 

(CI 96.5–99.2) for the Elecsys anti-S assay and 99.6% (CI 98.9–100) and 90.8% (CI 81.3–95.7) 

for the anti-NC assay [20,21]. Seroprevalence estimates were adjusted for study design, national 

demographics and assay characteristics. Further details of survey methodology and findings are 

available elsewhere [8]. 

  

 To obtain estimates of age stratified vaccination rates, we used data on the daily number of second 

vaccine doses distributed in the population and assumed that daily doses were evenly distributed 

between eligible age groups as per the government’s vaccination program [22], Supplementary 

Table 1). If an eligible age group became fully vaccinated during the vaccination allocation, 

remaining vaccine doses were distributed between the remaining eligible age groups or, if all were 

fully vaccinated, between adults > 20, mimicking the vaccination of younger health care workers 

or those with chronic health conditions. Estimated vaccination coverage by age group over time is 

shown in Figure 2. 
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Figure 4.2 Google mobility data, SARS-CoV-2 sequence data, and estimated vaccination coverage by age 

Panel a shows Google mobility data showing the proportional change in population mobility in different 

locations relative to a pre-pandemic baseline, panel b shows the frequency of SARS-CoV-2 sequences from 

the Dominican Republic on GISAID by variant and panel c shows estimated vaccination coverage by age 

assuming vaccine doses were evenly distributed between eligible age groups. 
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4.3.2 Transmission dynamic model 

 
Figure 4.3 Model schematic showing a two-variant SEIR model structure with a vaccination compartment 

(V)  

Model compartments !! , #! , $"! , $#,!,, $%! represent the number of individuals who are  susceptible, exposed, 

infected (pre-clinical), infected (clinical) and infected (sub-clinical or asymptomatic) in age group % and 

either the wild-type or Delta variant respectively. Parameters are defined as follows: &!& 	is the force of 

infection for age group	%	and	variant	k, 0! is the number of daily vaccinations for age group %;	1  is 1/4#  

(where 4#  is the duration in the exposed compartment or the latent period); 	5" is  1/46	(where 46 is the 

duration of preclinical infectiousness); 	5% is  1/4!	 (where 4!  is the duration of clinical infectiousness); 

	5# is  1/47	 (where 47 is the duration of sub-clinical infectiousness). 8!  is the probability of clinical 

symptoms given infection for age group % . 9' is the rate of waning of post-infection immunity and	9(  is 

the rate of waning for post-vaccination immunity. A latent compartment : between compartments ;and $% 

for vaccinated individuals who have been exposed to infection but protected from disease has been omitted 

for simplicity but is included in Supplementary Materials Table 2. Further description of model equations 

and parameter values is given in the Supplementary Materials Tables 2-6. 
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We used covidM, an age-stratified, deterministic, compartmental model originally developed to 

model the effects of NPIs on SARS-CoV-2 transmission in the UK, and described fully elsewhere 

[23–25]. In brief, covidM is structured into 5-year age groups, with individuals moving from a 

susceptible state (S) to an exposed state (E) and then either to a pre-clinical and clinical infected 

state (Ip followed by Ic) or a sub-clinical infected state (Is) and finally to a recovered state (R). The 

model explicitly considers two variants of SARS-CoV-2; wild-type and B.1.617.2 (Delta), while 

the introduction of other variants in the Dominican Republic in the intervening period (which 

include Mu, Gamma and Alpha) is captured by fitting a gradual increase in transmissibility in the 

first half of 2021, following a logistic function (Supplementary Materials, Table 2). We fit the 

model to daily reported deaths, daily hospital and ICU bed occupancy and a cross-sectional 

seroprevalence estimate from June - October 2021. We fit the model using data until 15th 

December 2021, when cases began to increase due to the Omicron variant, and only simulate 

epidemic trajectories until this point. 

  

Hospitalisation, ICU admission and death are modelled as observation processes according to age-

specific infection-severe ratios, infection-critical ratios, infection-fatality ratios and length of stay 

based on estimates from the literature. These are adjusted on the log odds scale by several fitted 

parameters and delays from infection to hospitalisation, ICU admission and death are estimated 

during the model fitting process. We assume that the observed number of deaths, hospital bed 

occupancy and ICU bed occupancy are distributed according to a negative binomial distribution, 

with the overdispersion parameter estimated during the model fitting process. We used a skew-

normal likelihood for seroprevalence with the same mean and 95% confidence interval as reported 

for the data evaluated for the period of the serosurvey. 

  

We consider a central waning assumption corresponding to 15% loss of post-infection protection 

after 1 year. Full details on model equations, fixed and fitted model parameters can be found in 

Supplementary Tables 2-6. 

 

4.3.3 Vaccination parameters 
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We also incorporated information on SARS-CoV-2 vaccination in the Dominican Republic, using 

data collated by Our World in Data [22]. Fully vaccinated individuals moved to a vaccinated model 

compartment (V) from which, subject to vaccine waning parameters, they can move to the exposed 

state (E) or through a latent compartment (L) directly to a sub-clinical infection (Is). We assume 

vaccinated individuals have a lower probability of clinical or sub-clinical infection but that, once 

infected, they have the same infectiousness as non-vaccinated individuals. We model vaccine 

efficacy against infection (./%&') and vaccine efficacy against severe disease given infection 

(./+,|%&') as described in Figure 3 and Supplementary Table 5. We used vaccine efficacy against 

severe disease rather than symptomatic disease as we fit directly to hospitalisations, ICU 

admissions and deaths. However, we conducted sensitivity analysis around the vaccination 

parameters  used, as well as waning assumptions (Supplementary Tables 7-9). 

 

As 90% of primary course vaccinations given in the Dominican Republic were CoronaVac 

(Sinovac COVID-19 vaccine) we used vaccination efficacy parameters based on the literature 

available for this vaccine product. We model differing vaccine efficacy by strain but assume the 

same vaccine efficacy across age groups [26,27]. Note that we do not directly model vaccine 

efficacy against hospitalisation or death. 

 

4.3.4 Mobility 
  

In this analysis, we used separate age-stratified social contact matrices for contacts in the home, at 

work, in school, or in other locations (for instance leisure or transport), simulated from contact 

surveys and demographic data [28].  To estimate changes in contact rates during the pandemic, we 

used population mobility data captured by Google’s COVID-19 Community Mobility Reports as 

a proxy for changes in population behaviour. We mapped changes in mobility to changes in contact 

rates using the relationship between mobility and contact survey data found in the UK [23,29]. 

School contact rates were set to zero during school closures and school holiday periods. The 

representativeness of Google mobility data is dependent on the proportion of the population with 

smartphones using Google products. As this differs between the UK and the Dominican Republic, 

we infer a weighting between UK-adjusted contact rates and pre-pandemic baseline contact rates 
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in the Dominican Republic, fitting a separate weighting parameter for each year of the simulation 

period [28]. We found the UK-adjusted value was given more weight in the first year of the 

pandemic than the second, suggesting that the relationship between measured population mobility 

and contact rates changed during the pandemic.  

 

4.3.5 Model fitting 
  

We performed Bayesian inference using Markov chain Monte Carlo to estimate model parameters. 

We used the Differential Evolution Markov Chain Monte Carlo (DE-MCMC) algorithm which 

combines a genetic algorithm (Differential Evolution) with MCMC [30]. Here, multiple Markov 

chains are run in parallel and learn from one another to determine the scale and orientation of the 

proposal distribution, which allows for more efficient exploration of a complex parameter space 

than traditional Metropolis-Hastings algorithms, particularly when considering correlated 

parameters. Model convergence was assessed using trace plots of MCMC chains and the Rhat 

statistic [31]. 

  

4.3.6 Counterfactual analysis 
  

We conducted counterfactual scenario analysis using the fitted model to simulate epidemic 

trajectories under different scenarios. We considered five key scenarios with changes applied from 

the beginning of the vaccination campaign (15th February 2021) until the end of the analysis 

period: 

1. No vaccination 

2. Vaccination using a vaccine with a Pfizer/BioNTech efficacy profile 

3. Delayed vaccination using a vaccine with a Pfizer/BioNTech efficacy profile 

4. Vaccination using a vaccine with an Oxford/AstraZeneca efficacy profile 

5. Delayed vaccination using a vaccine with an Oxford/AstraZeneca efficacy profile 
 

In Scenario 1 we assume no vaccine doses are distributed. In Scenarios 2 and 3 we assume the 

same timing of vaccine distribution, but with a Pfizer/BioNTech or Oxford/AstraZeneca efficacy 
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profile. For Scenarios 3 and 5 we consider a vaccination programme using a Pfizer/BioNTech or 

Oxford/AstraZeneca efficacy profile with a delay of two months. Here vaccination would begin 

15th April 2021, aligning with initial deliveries of Oxford/AstraZeneca vaccine doses through 

COVAX [32]. 

  

For each scenario we ran 500 simulations, drawing parameters from the posterior distribution of 

each fitted parameter, and calculated the difference in hospital admissions, ICU admissions and 

deaths from the original model fit to estimate the impact of the scenario considered. 

  

We also conducted a counterfactual analysis to examine the trade-off between differing levels of 

vaccination coverage and changes in population mobility on deaths, hospital admissions and ICU 

admissions during the time period between 16th February - 16th August 2021. We considered 11 

vaccination coverage scenarios with coverage by 16th August 2021 ranging from 0 to 100% in 

10% increments, and 9 population mobility scenarios changing ‘Work’ and ‘Other’ mobility by an 

extra -40% to +40% compared with the Google mobility data during the simulation period. 

Vaccination allocation for each scenario was performed in a similar way as described above, where 

daily vaccinations are multiplied by a factor equal to ./012341!"#$%&'"()
./012341&*'$&%

. Vaccination doses are then 

distributed between eligible age groups and, once these are fully vaccinated, between age groups 

> 20 and then finally between age groups < 20. We then used the fitted model to simulate epidemic 

trajectories for 99 scenarios, considering all combinations of vaccination coverage and population 

mobility change, and estimated the impact of the scenario considered as above. 
 

4.4 Results 
  

4.4.1 COVID-19 transmission dynamics between 2020 – 2022 
  

Our modelling analysis suggests that, after an initial decline in transmission following a sharp 

reduction in social interactions, COVID-19 dynamics were driven by substantial accumulation of 

immunity throughout 2020-2022 (Figure 4), as well as the spread of novel variants such as Mu in 

mid-2021 and Delta in late 2021. By jointly fitting to reported deaths, hospital bed occupancy, 
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ICU bed occupancy and seroprevalence data, the model reproduced the overall observed epidemic 

dynamics. Estimated deaths did not track closely with observed deaths during the first wave from 

March - September 2020, and deaths and hospitalisations were slightly underestimated during the 

second wave in January 2021. 

 

  

 
 

Figure 4.4 Comparison of model fit to observed data in the Dominican Republic from February 2020 to 

December 2021 

Panels show comparison between modelled and observed hospital bed occupancy (a), ICU bed occupancy 

(b), reported deaths (c) and proportion of the population previously infected (d).  Black lines show observed 

data, with vertical dashed lines in panels (a) and (b) indicating the point at which hospitalisation data 

became available. For panel (d) the black cross shows the duration of the serosurvey (horizontal line) and 

the 95% confidence interval around the central estimate (vertical line). Modelled hospital bed occupancy, 

ICU bed occupancy, deaths, and proportion previously infected, are shown in orange, red, purple and green 
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respectively, with associated 50% and 95% credible intervals in surrounding ribbons. Note that uncertainty 

in the observation process is included in modelled outputs for surveillance data streams (a, b and c) but not 

for the proportion previously infected (d). 

 

Reconstructing the underlying epidemic dynamics, we found that changes in the effective 

reproduction number, Rt, reflected changes in contact rates derived from Google mobility data 

during 2020, but were less strongly associated with contact rates during 2021 (Figure 5). We 

estimated that 33.4% (95% CrI: 33.3-33.5) of the population had been infected by the end of 2020 

(Figure 5), ranging from around 45% in those aged 20-39 to around 20% in those aged under 19 

and above 70 (Figure S.3). This accumulation of population immunity contributed to a decline in 

transmission, with Rt remaining around 1 despite gradual increases in contact rates from May 2020. 

By the end of 2021, we estimated that 82.1% (95% CrI: 81.9 - 82.4%) of the population had been 

infected, ranging from above 90% in those aged 20-39 to around 55% in those over 70 (Figure 

S.3). Again, high levels of post-infection immunity resulted in reduced levels of transmission 

despite contact rates approaching pre-pandemic baseline levels, except during the emergence of 

more transmissible variants in May and September 2021. 
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Figure 4.5 Immune status, contact rates and reproduction number estimates from January 2020 to December 

2021  

Panel a shows the modelled distribution of immune states in the Dominican Republic over time showing 

the proportion of the population that are: currently infected (brown), susceptible (beige), protected post-

infection (blue) and protected post-vaccination (dark blue). Note that the vaccinated area (dark blue) does 

not include individuals that were vaccinated post-infection and so does not correspond with observed 

vaccination coverage. Panel b shows inferred contact rates in home, work, school and other settings relative 

to a pre-pandemic baseline. Panel c shows estimated R0 and Rt. R0, the basic reproduction number, is defined 

as the average number of secondary cases generated by a primary cases in a susceptible population, while 

Rt, is its time-varying equivalent. Here, changes in R0 reflect changing contact rates and transmissibility 

while changes in Rt incorporate both changing contacts and transmissibility as well as the build-up of 

immunity over time. The vertical lines on Panel c show the time at which Mu sequences start to increase, 

according to GISAID, the global data science initiative. Note that within the model, increases in 

transmissibility due to Mu and Delta are allowed to begin earlier in time (from February and May 2021 

respectively) to reflect likely delays in their detection due to low levels of sequencing [33].   
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4.4.2 Impact of vaccination campaign 
  

To estimate the impact of vaccination, we used our calibrated model to simulate counterfactual 

epidemic trajectories under different scenarios. First, we considered a ‘no vaccination scenario’, 

estimating deaths, hospital and ICU admissions in the absence of any vaccination during 2021 

(Figure 6). By comparing these counterfactual outcomes to the original model estimates we were 

able to estimate the burden averted by the vaccination campaign in the 6 and 10 months following 

its launch in February 2021 (Table 2). It should be noted that this analysis assumes all other factors 

remain constant and, in particular, we assume the same changes in contact rates and variant 

transmissibility as in the original model fitting displayed in Figure 4. This is a simplifying 

assumption, as in reality it is possible countries would respond to rising COVID-19 cases with 

impositions of further restrictions or would see accompanying changes in population behaviour. 

  

We estimated that the vaccination campaign averted 7210 hospital admissions (95% CrI: 6830 –

7600) hospital admissions, 2180 ICU admissions (95% CrI: 2080 –2280) and 766 deaths (95% 

CrI: (694—859) in the 6 months following its launch. This is equivalent to averting 27.0% (95% 

CrI: 25.6 - 28.5) of hospital admissions, 33.2% (95% CrI: 31.8 - 34.8) of ICU admissions and 

36.2% (95% CrI: 32.8 - 40.6) of reported deaths considering the median values expected under a 

‘no vaccination' scenario. Notably, we estimated hospital bed and ICU bed capacity would have 

been exceeded under a ‘no vaccination’ scenario, given population behaviour and variant 

introductions observed in 2021 [19]. 

  

Given the challenges and inequities of vaccine availability in real-time, with some products 

available at scale before others, we evaluated the impact of using alternative vaccine products with 

or without a delay in the vaccination programme on deaths, hospital and ICU admissions. 

  

We estimated that while vaccination with a more efficacious product would have reduced 

hospitalisations, ICU admissions and deaths, delaying the vaccination campaign to vaccinate with 

a more efficacious product would have resulted in a higher overall burden in subsequent waves in 

2021 (Figure 7). This is due both to the speed of vaccination rollout, with 50% of the population 
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receiving a two-dose primary series by the end of 2021, as well as the introduction of variants of 

concern or interest (particularly the Mu variant) in the summer of 2021 [22]. 

 
Figure 4.6 Impact of vaccination campaign 

Figure showing modelled deaths (a), hospital admissions (b) and ICU admissions (c) from the original 

model fit (blue) and from a ‘no vaccination’ counterfactual (red). Lines show the median value from 500 

simulations.  To facilitate comparison between scenarios, modelled deaths do not include uncertainty 

generated through the observation process. 
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Scenario Additional 

hospital 

admissions in 

next 6 months 

Additional 

hospital 

admissions in 

next 10 months 

Additional ICU 

admissions in 

next 6 months 

Additional ICU 

admissions in 

next 10 months 

Additional 

deaths in next 6 

months 

  

Additional 

deaths in next 

10 months 

  

No vaccination 7210 (6830 –

7600) 

8330 (7850 –

8830) 

2180 (2080 –

2280) 

2500 (2380 –

2640) 

766 (694 – 859) 863 (773 – 978) 

Pfizer efficacy or 

equivalent 

-565 (-597 – 

-535) 

-2070 (-2320 – 

-1840) 

-149 (-157 – 

-143) 

-599 (-660 – 

-541) 

-48 (-54.2 – 

-43.5) 

-179 (-239 – 

-129) 

Pfizer efficacy or 

equivalent and 

delay 

4840 (4540 –

5140) 

2070 (1550 –

2580) 

1380 (1310 –

1450) 

533 (415 – 658) 475 (412 –548) 228 (101 – 344) 

AZ efficacy or 

equivalent 

-88.8 (-107 – 

-71.5) 

-1410 (-1600 – 

-1240) 

-11.9 (-15.8 – 

-7.99) 

-408 (-452 – 

-365) 

-0.447 (-4.21 –

2.53) 

-115 (-161 – 

-78.7) 

AZ efficacy or 

equivalent and 

delay 

4970 (4670 –

5280) 

2470 (1970 –

2960) 

1420 (1360 –

1500) 

654 (540 – 776) 490 (429 – 564) 267 (146 – 379) 

  

 Table 3.1: Estimated total hospital admissions, ICU admissions and deaths under different counterfactual 

vaccination scenarios. 

 Median values and 95% credible intervals are shown from 500 simulations. Estimates are split into the 

cumulative burden estimated during the 6 months following the beginning of the vaccination campaign 

(until 16th August 2021, aligning with the Mu wave) and the 10 months following the beginning of the 

vaccination campaign (until 15th December 2021, aligning with the Mu and Delta waves). 

  
 

4.4.3 Trade-off between vaccination and population mobility 
  

Finally, we investigated the trade-off between levels of vaccination coverage and population 

mobility on hospitalisations, ICU admissions and deaths. Here, we explore different counterfactual 

combinations of vaccination coverage and population mobility change to understand how much 

relaxation of social distancing measures vaccination could ‘buy’ in the later stages of a pandemic. 
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We found that, overall, changes in population mobility resulted in greater variation in disease 

burden than vaccination, where an increase in population mobility resulted in more additional 

deaths, hospitalisation and ICU admissions than a corresponding decrease in vaccination (Figure 

8). For instance, our analysis suggests an increase of 20% in population mobility would result in 

around 7,200 extra hospital admissions, 1,700 extra ICU admissions and 570 extra deaths, while a 

reduction of 20% in vaccination coverage would result in around 2,400 extra hospital admissions, 

690 extra ICU admissions and 230 extra deaths (Figure 8). 

  

We also compared combinations of population mobility reduction and vaccination coverage that 

resulted in the same outcomes (looking at lines of equivalence in Figure 8). We found that in the 

absence of vaccination, an additional 10-20% reduction in population mobility would have been 

required to obtain the same hospitalisation and death outcomes seen in this period, quantifying the 

‘return-to-normality’ associated with the first 6 months of vaccination in this setting. 

  

Additionally, if population mobility had remained as measured in this period but perfect 

vaccination coverage had been achieved, an estimated an additional 4530 (95% CrI: 4250 – 4840), 

976 ICU admissions (95% CrI: 923 – 1035) and 288 deaths (95% CrI: 252 – 331) would have been 

averted. This additional burden averted (going from the observed coverage of 43% to 100%) is 

lower than the burden averted that we estimated in the earlier ‘no vaccination’ scenario (going 

from 0% coverage to the observed 43% coverage, Table 1). This illustrates the importance of an 

age-targeted approach in reducing morbidity and mortality. Finally, a simulated change in mobility 

of +30% would have returned contacts in February 2021 back to (or slightly above) pre-pandemic 

baseline levels. This suggests that a return to baseline mobility at the beginning of the vaccination 

campaign would have resulted in an extra 8,210 hospital admissions (95% CrI: 6530 – 9840), 2070 

ICU admissions (95% CrI: 1760 – 2370) and 678 deaths (95% CrI: 380 – 976).   
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Figure 4.7 Modelled total additional hospital admissions, ICU admissions and deaths in the 6 months 

following the vaccination campaign launch (16th February 2021 – 16th August 2021) 

These contour plots show tbe number of additional deaths (a), hospital admissions (b) and ICU admissions 

(c) compared to the original model fit under different levels of simulated vaccination coverage reached by 

16th August 2021 (y-axis) and changes in population mobility during the 6 month period (x-axis). The 

actual vaccination coverage observed on 16th August 2021 is shown by a cross (vaccination coverage = 

43% and mobility change = 0). 

 
4.5 Discussion 
  

We used an age-structured transmission dynamic model to quantify the drivers of SARS-CoV-2 

transmission in the Dominican Republic and investigated the impact of the vaccination campaign 

and other counterfactual vaccination scenarios. We found that despite substantial prior 

accumulation of post-infection immunity, the vaccination campaign had an important impact on 

disease burden in 2021 and was essential in enabling a return to pre-pandemic mobility levels 

without incurring substantial additional burden. We estimate the campaign averted 7210 hospital 

admissions (95% CrI: 6830 – 7600), 2180 ICU admissions (95% CrI: 2080 – 2280) and 766 deaths 

(95% CrI: (694 – 859), in the first 6 months of the campaign. In addition to this, we found that 

earlier vaccination with Sinovac-Coronavac was preferable to delayed vaccination with a higher 

efficacy product, resulting in a lower burden over the subsequent waves of 2021. While these 

findings are contingent on local epidemiological factors in the Dominican Republic (particularly 

the speed of vaccine roll-out and the introduction of the Mu variant in the summer of 2021), they 
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illustrate the importance of timely and equitable access to vaccines during pandemics and large-

scale outbreaks. 

  

From 2020-2021 the Dominican Republic experienced four distinct waves of SARS-CoV-2 

transmission. We found that, after the initial emergence of SARS-CoV-2 in March 2020, the first 

wave was largely controlled by the imposition of NPIs and the associated sharp drop in contact 

rates. The subsequent build-up of immunity in the following months maintained an estimated Rt 

of around 1 until the end of the 2020, despite the gradual increase of social contact rates from their 

trough. This contrasts with other settings with well-characterised transmission dynamics, such as 

the United Kingdom, where SARS-CoV-2 dynamics were largely driven by the imposition of NPIs 

before the widespread rollout of vaccination (19). The second wave from November - February 

2021 was driven by a spike in contacts in December 2021, while the third wave during the summer 

of 2021 is best explained by gradually increasing contact rates back to pre-pandemic levels 

alongside the emergence of more transmissible variants, including the Mu variant. Finally, the 

fourth wave between September and December 2021 was driven by the Delta variant, alongside 

the reopening of schools and the relaxation of NPIs including curfews. 

  

We estimated that the 43% two-dose coverage achieved by the vaccination campaign by mid-

August 2021 would have offset a 10-20% increase in mobility – a proxy for social interactions – 

in this period, quantifying the ‘return-to-normality’ enabled by the vaccination campaign. Indeed, 

from July 2021 the Dominican Republic began to reopen the economy, culminating in the removal 

of curfew measures in October 2021 with population mobility almost returning to pre-pandemic 

baseline levels. This contrasts with other settings where higher levels of vaccination coverage were 

required to lift measures, such as the United Kingdom, which relaxed many measures in the 

summer of 2021 with a two-dose vaccine coverage of around 60% and population mobility still 

well below baseline [22,34]. Many other countries were unable to lift measures before intense 

Omicron transmission generated substantial population immunity or until very high vaccination 

coverage was achieved [35]. The trade-off between vaccination and population mobility on disease 

burden is likely to differ depending on the setting and epidemiological context. For instance, 

countries with lower levels of post-infection immunity would likely see greater changes in burden 

associated with changes in vaccination coverage. This balance will also be affected by the 
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emergence of new variants which may be more transmissible or exhibit immune evasive 

properties. 

  

There are several limitations to this analysis. During the first wave (March - September 2020), the 

model struggled to reproduce the observed pattern in reported deaths. This may reflect limits in 

testing infrastructure and COVID-19 death reporting during this period, as observed in many 

countries globally [36]. Hospitalisation and ICU data were only publicly reported from September 

2020, and deaths were probably under-reported early in the pandemic. While we partially 

accounted for changes in COVID-19 death reporting by allowing the infection-fatality ratio to vary 

over time, there remains substantial uncertainty in the modelled size and timing of the first wave. 

  

Our modelling framework only incorporates protection from full primary vaccination with two 

doses and does not incorporate protection from a single dose. This would result in an 

underestimation of the impact of vaccination. However, as estimated protection of a single dose of 

Coronavac is low (particularly against the Delta strain), we do not expect this to have an important 

impact on our results [27]. Additionally, we assume fully vaccinated individuals are immediately 

afforded protection according to vaccine efficacy estimates used. Similarly, we also do not take 

into account protection from a single dose of Oxford-Astrazeneca and Pfizer-BioNTech 

vaccination in our counterfactual analysis and assume that fully vaccinated individuals are 

immediately afforded protection once vaccinated. The combined effect of these two assumptions 

may be to overestimate the vaccine efficacy of the alternative vaccine products. However, when 

we conducted sensitivity analysis considering lower vaccine efficacy estimates we found the 

direction and magnitude of our results did not change, providing evidence that the conclusions 

from our assessment of potential vaccination strategies are robust (Supplementary Table 8). We 

do not consider the impact of booster vaccination, which had begun in the Dominican Republic by 

late 2021, and we do not consider any additional benefit afforded by vaccination for individuals 

with post-infection immunity. Due to limited information on the introduction and epidemiological 

characteristics of variants introduced in early 2021, we parameterised the model for wild-type and 

Delta variants and modelled the effect of Mu and other VOC/VOIs in mid 2021 through a fitted 

sinusoidal increase in transmissibility over this period. We therefore do not capture the effect of 

immune evasion of Mu (or other variants such as Gamma) on the epidemic dynamics. Assuming 
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increased transmissibility of Mu or other variants, rather than immune evasion, would result in an 

underestimation of the impact of the vaccination campaign, as fewer individuals would remain 

susceptible during vaccine roll-out and therefore able to benefit from post-vaccination rather than 

post-infection protection. 

  

Despite this, our analysis untangles the complex interactions between population behaviour, the 

introduction of variants and changes in population immunity in the Dominican Republic, enabling 

us to estimate the impact of vaccination in a complex immunological landscape and consider other 

counterfactual scenarios. We quantify the impact of these epidemic drivers in a setting with high 

seroprevalence during vaccination rollout, providing alternative insights to much comparable 

modelling in high-income countries. Our conclusions are therefore likely to be relevant to many 

other countries that were unable to suppress transmission through NPIs prior to vaccination roll-

out. We also highlight the importance of having multiple data streams available to accurately 

characterise transmission dynamics during an epidemic. A particular strength of this study is the 

representativeness of the serological data used to parameterise the model and estimate population 

infection history, which was generated through one of the few national SARS-CoV-2 serological 

studies conducted in Latin America and the Caribbean during the pandemic using a rigorous 

multistage study design [8]. Similarly, the availability of hospital and ICU occupancy data is 

crucial for understanding how the relationship between infection, severe outcomes and death 

modulates during the epidemic due to improved treatment, the introduction of VOC/VOIs, and 

vaccination. Understanding these dynamics in real-time is essential to avoid potential problems 

such as reopening the economy too late when the population has high levels of immunity or 

delaying the re-imposition of NPIs when new variants emerge or contact rates increase 

unexpectedly. Ensuring that reliable data streams can be set-up quickly across both high income 

and low- and middle income countries should be a priority for future pandemic planning and 

preparedness. 

  

Data sharing 
  

All code and data used for this analysis are available at: https://github.com/EmilieFinch/DR-

covid19 
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Chapter 5 

Disentangling the role of climate and 
serotype competition to forecast dengue 

outbreaks in Singapore 

 
Dengue transmission in hyperendemic settings occurs in a landscape of complex population 

immunity. While SARS-CoV-2 population immunity (discussed in the previous chapter) is 

complicated by vaccination, waning immunity and the introduction of novel variants, dengue 

dynamics (the focus of this chapter) are the result of complex interactions between serotypes. As 

infection with one serotype results in lifelong immunity to the infecting serotype and short-term 

cross-immunity, changes in the distribution of serotype impact population vulnerability to dengue 

outbreaks. Climatic variation also impacts transmission, shaping dengue seasonality as well as the 

timing and magnitude of dengue outbreaks. Despite this, to date few climate-informed early 

warning forecasting frameworks account for the effects of immunity, potentially limiting the 

ability to forecast large outbreaks with operationally useful lead time. 

 

In this study, I aimed to address this research gap by incorporating climate and serotype data into 

a Bayesian hierarchical forecasting model for Singapore, using data from 2000-2023. I used 

weekly climate, case and serotype surveillance data, leveraging daily rainfall data to construct 

more informative indicators for dengue transmission, and tested climatic variables with different 

aggregations and lags. I quantified the impact of temperature, rainfall and El Niño sea surface 

temperature anomalies on dengue incidence, as well as the time since a switch in dominant 
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serotype, disentangling the impacts of climate and immunity. I then adapted the model for use in 

early-warning, producing probabilistic forecasts of dengue cases with 2 to 8 week lead times. I 

compared forecast skill of a model including both climate and serotype information with a climate-

only and serotype-only model, as well as a seasonal baseline, including only weekly random 

effects. I assessed predictive accuracy using proper scoring rules as well as outbreak detection 

metrics to evaluate the model’s potential public health utility in an early warning system. 

 

The supplementary material for this chapter is included as Appendix D. 
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5.1 Abstract 
 

Dengue poses a rapidly increasing threat to global health, with Southeast Asia as one of the worst 

affected regions. Climate-informed early warning systems can help to mitigate the impact of 

outbreaks; however, prediction of large outbreaks with sufficient lead time to guide interventions 

remains a challenge. In this work, we quantify the role of climatic variation and serotype 

competition in shaping dengue risk in Singapore using over 20 years of weekly case data. We 

integrated these findings into an early warning system framework able to predict dengue outbreaks 

up to 2 months ahead. While climatic variation improved the predictive power of the model by 

54% compared to a seasonal baseline, including additional serotype information increased 

predictive performance to 60%, helping to explain interannual variation. By incorporating serotype 

competition as a proxy for population immunity, this work advances the field of dengue prediction 

and demonstrates the value of long-term virus surveillance
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5.2 Introduction 
 

Climate-informed forecasting models can be used to give advance warning of infectious disease 

outbreaks and mitigate their impact. Early warning systems integrating climate information are 

becoming an increasingly important tool for epidemic response as the climate crisis leads to more 

frequent climatic extremes and shifts the dynamics of climate-sensitive infectious diseases, such 

as dengue [1,2]. 

 

Dengue is an emerging vector-borne disease, transmitted by Aedes aegypti and Aedes albopictus 

in urban and peri-urban areas [3]. Global reported dengue incidence has increased by 30-fold over 

the past 50 years, alongside increases in the geographical range of transmission, and approximately 

half of the global population is thought to be at risk of dengue transmission [4]. There are four 

antigenically distinct serotypes of dengue virus (DENV1-4): infection with one serotype results in 

life-long immunity to the infecting serotype, and limited cross-immunity to others [5,6]. Dengue 

epidemic dynamics are complex and challenging to predict, with large outbreaks driven by 

multiple factors including climate variation, competition between the four dengue serotypes and 

traditional and novel vector-control efforts.  

 

Singapore, an equatorial city-state in Southeast Asia, experiences hyperendemic dengue 

transmission with all four serotypes in circulation and cyclical replacements in the dominant 

serotype [7]. Singapore experiences warm and humid temperatures year round, with suitable 

conditions for mosquito breeding and dengue transmission. Rainfall is affected by two monsoon 

seasons, with the Northeast monsoon occurring from December until early March and the 

Southwest monsoon occurring from June to September [8]. The peak dengue season usually occurs 

between June and October, typically following the warmest and most humid months of the year. 

Since the 1960s, Singapore has implemented stringent dengue prevention measures focused on 

vector control and public education. This has led to a reduction in the Aedes House Index (AHI, a 

measure of the percentage of houses positive for Aedes breeding) from 48% in 1966 to around 1% 

in the 1990s [9]. Periodic seroprevalence surveys have demonstrated a concurrent decrease in 

seroprevalence in almost all age groups, with an estimated decrease in force of infection (FOI) 

from around 0.1 per year in the 1960s to 0.01 per year from the 1990s onwards [10,11]. This is 
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also reflected in surveillance data showing an increase in the average age of reported cases from 

children to young adults [7,9,12]. Despite this, reported cases have increased in recent years. 

Possible explanations for this include improved case detection and reporting, particularly after 

2008 where a campaign was launched encouraging the use of NS1 rapid tests in laboratories or 

higher population vulnerability to dengue outbreaks (for example, after the importation of a new 

viral genotype) due to lower immunity [9,11].  

 

Singapore experiences cyclical dengue outbreaks which have been increasing in frequency and 

magnitude [7,9]. These have followed switches in dominant circulating serotypes, with the 

exception of the 2019 outbreak. Between 2006 and 2020, virus surveillance showed the dominant 

serotype switching between DENV1 and DENV2 [7,13]. Accordingly, population immunity to 

DENV1 and DENV2 is believed to be higher than against DENV3 and DENV4. For example, a 

study of healthy blood donors in 2009 amongst 16 to 60 year olds found seropositivity of 35.8% 

anti-DENV1 and 36.4% anti-DENV2 compared with 15.4% anti-DENV3 and 7.7% anti-DENV4 

[9,10]. However, the cyclical pattern of DENV1 and 2 dominance has been disrupted in recent 

years. A large, predominantly DENV2 outbreak in 2019-2020 saw increasing contribution from 

DENV3, which then gained predominance in the next outbreak year in 2022 [14]. Dengue 

outbreaks have also been associated with El Niño events, the warm phase of the El Niño Southern 

Oscillation (ENSO), involving warmer than normal oceanic and atmospheric temperatures in the 

Pacific, which typically lead to hotter and drier climatic conditions in Singapore [15–17].  

 

Climate influences dengue transmission through effects on the vector (Aedes mosquitos) and the 

dengue virus itself. Temperature affects mosquito survival, development and reproduction, as well 

as the viral extrinsic incubation period, with an optimal temperature for transmission of around 

29°C and thermal limits between 17.8°C – 34.5°C [18]. Temperature has been found to shape the 

timing, length and geographical extent of dengue seasons [2,19]. Contrastingly, the impact of 

rainfall on dengue transmission is more nuanced. While increasingly wet and humid conditions 

can lead to the creation of mosquito breeding sites, the effect of rainfall on transmission is 

dependent on human water storage behaviour, and the availability of water and sanitation 

infrastructure, which can lead to non-linear and delayed impacts of rainfall on dengue transmission 

[20–22]. In particular, excessi5ve rainfall can lead to flushing effects, where mosquito breeding 
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habitats are washed away entirely. This has been documented in Singapore, where dengue outbreak 

risk was found to decrease following flushing events [23]. Previous research in Singapore has 

demonstrated the utility of temperature, precipitation and absolute humidity in predicting dengue 

incidence [24–26]. Currently, Singapore uses a machine learning approach to generate operational 

forecasts of dengue incidence for outbreak alerts and decision-support [27]. This methodology is 

based on LASSO (least absolute shrinkage and selection operator) regression analysis, which 

applies a penalty term to improve predictive ability through regularization and variable selection. 

 

Forecasting models can capitalise on inherent lags between climatic variation and dengue 

transmission to predict outbreak risk at operationally useful lead times [28]. In Singapore, an 

analysis of vector control found that local authorities needed an average of 2 months to mitigate 

the impact of a dengue outbreak, suggesting that early warning forecasts with several months lead 

time would be optimal [29]. Forecasts at shorter horizons may also be helpful to inform situational 

awareness. To date, dengue forecasting models have struggled to predict interannual variability in 

dengue seasons and shown worse predictive performance for high incidence seasons, which have 

the greatest public health impact [30]. Additionally, forecast skill is typically lower earlier in the 

season when aiming to forecast several months ahead, which is when forecasts have the most 

potential operational value. While immunity is theoretically recognised as an important driver of 

interannual dengue dynamics, to our knowledge no current dengue forecasting models directly 

account for serotype dynamics or changes in immunity, which are likely to be particularly 

important in hyperendemic regions such as Southeast Asia. To address this, we incorporate climate 

and serotype dynamics within a Bayesian hierarchical modelling framework to forecast dengue 

incidence. We quantify the effect of climatic variables, the Niño 3.4 index and switches in 

dominant serotype on dengue incidence, and evaluated forecasts of dengue incidence with a 2-8 

week forecast horizon. 
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5.3 Results 
 

5.3.1 Reported dengue cases in Singapore over the past two decades 
 

Between 1 January 2000 and 31 December 2022, 234,358 cases of dengue were reported in 

Singapore. Most cases were reported between June and September, typically following warm and 

humid climatic conditions (Figure 1, panels D-F). Cyclical outbreaks, which historically were 

thought to occur every 5-6 years, have become more frequent and of larger magnitude (Figure 1). 

For instance, while the 2004 dengue outbreak led to 9,459 cases overall and peaked at 332 reported 

weekly cases, the 2022 outbreak resulted in 32,259 reported cases and peaked at 1,568 reported 

weekly cases. We defined an outbreak week using a seasonal moving 75th percentile threshold. 

For a given month and year, we defined an outbreak threshold of the 75th percentile of weekly 

cases in that month using all years up to (but not including) the given year. This identifies the same 

outbreak periods as the endemic channel threshold used within the NEA but has several added 

benefits. Firstly, a percentile threshold is simpler to calculate and adjusts on a rolling basis rather 

than year-on-year. Additionally, by incorporating the seasonal patterns underlying dengue 

transmission, this definition allows outbreak periods to be defined earlier than with a fixed, non-

seasonal threshold (Supplementary information, Figure 1). 

 

We then defined an outbreak year as a year containing more than 12 outbreak weeks. This 

identified outbreaks in; 2004, 2005, 2007, 2013, 2014, 2015, 2016, 2019, 2020 and 2022. In some 

years, dengue outbreaks coincided with switches in dominant serotype; such as the switch from 

DENV-2 to DENV-1 in 2013 or from DENV-2 to DENV-3 in 2022 (Figure 1). Additionally, 

outbreaks sometimes coincided with El Niño events, defined when sea surface temperature (SSTs) 

in the Niño 3.4 region exceed 0.5°C for 5 consecutive months.  
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Figure 5.1 Dengue cases, climate variability and serotype dominance in Singapore.  

Figure showing epidemiological and climatic data for Singapore from 2000 – 2023. A) Bars show weekly 

reported dengue cases from 1 January 2000 – 31 December 2022. B) Stacked bars show the proportion of 

each serotype detected through virus surveillance. To calculate this, we aggregate the number of serotyped 

cases for DENV1-4 at a monthly level and divide each by the total number of cases serotyped in that month. 

C) Line graph showing weekly Niño 3.4 sea surface temperature anomalies, dashed lines indicate +0.5°C 

and -0.5°C which are often used as thresholds to define El Niño and La Niña events. Blue shading indicates 

negative values of the Niño 3.4 index (indicating La Niña conditions), while orange shading indicates 

positive values, associated with El Niño conditions. Heatmaps for (D) monthly mean maximum temperature 

(°C), (E) total precipitation (mm), and (F) mean absolute humidity (g/m3). 
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5.3.2 Climate and serotype dynamics shape dengue risk with non-linear and 
delayed effects 
 

To quantify the effect of climate, ENSO, and changes in serotype on dengue risk, we fit a Bayesian 

hierarchical model to weekly case data. We used a negative binomial likelihood and incorporated 

weekly random effects to capture seasonality and yearly random effects to account for unexplained 

interannual variation in dengue risk, for instance, due to control measures (Methods). We then 

compared a baseline model (including only weekly and yearly random effects) with models 

containing climatic and serotype covariates to see whether their inclusion improved model 

adequacy statistics, and reduced unexplained interannual variation in the model. We tested 

temperature (non-linear and linear), precipitation (non-linear and linear), humidity (linear) and 

ENSO (non-linear and linear) variables considering lags from 0:20 weeks, as well as serotype 

variables (non-linear and linear). We selected a final model including: 12-week rolling average 

maximum temperature in °C; 12-week total days without rain; 12-week rolling average Niño 3.4 

SSTA with a 4 week lag; and a time-varying covariate measuring the number of weeks since a 

switch in dominant serotype (Methods). We found a non-linear relationship between maximum 

temperature and dengue incidence risk, with increased risk around 32 °C and decreased risk at 

particularly low or high maximum temperatures (Figure 2, panel A). Similarly, we found increased 

risk of dengue at intermediately wet conditions, with around 30 days without rain in the previous 

3 months, and decreased risk in dry conditions, with more than 45 days without rain in the previous 

3 months (Figure 2, panel B). We found decreased dengue risk with negative Niño 3.4 SSTA 

values and non-linearly increasing dengue risk with values of Niño 3.4 SSTA upwards of around 

1.4 (Figure 2, panel C). Finally, we found a non-linear relationship between the time since a switch 

in dominant serotype and dengue risk, with increased risk in the first two years following a switch, 

decreased risk between 2-6 years following a switch, and subsequent increased risk at 6+ years 

following a switch (Figure 2, panel D). 

 

We then compared the yearly random effects estimated for our final climate and serotype model, 

a climate only model including climatic covariates and random effects, a serotype only model 

including the serotype covariate and random effects, and a baseline model including weekly and 

yearly random effects (Figure 2, panel E). As yearly random effects account for unexplained 
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interannual variation in dengue incidence, we would expect these values to be closer to 0 when 

other model covariates are able to explain this variation. We found no difference in estimated 

yearly random effects between the four models before 2006, which we would expect as no serotype 

information is available before this date. From 2007 onwards, overall, models including serotype 

information tended to have yearly random effects closer to 0. By calculating the percentage 

reduction in mean absolute yearly random effects between covariate models and the baseline 

model, we can quantify how much model covariates explain interannual variation in dengue 

incidence (Methods). While a climate only model reduced unexplained interannual variation in 

dengue incidence by 4.1%, including additional serotype information (in the climate and serotype 

model) resulted in a 26.8% reduction. Contrastingly, a serotype only model reduced unexplained 

interannual variation by 19.4%. 
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Figure 5.2 Effects of climatic variability and switches in dominant serotype on dengue incidence in 

Singapore 
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Panels A-D show posterior marginal effects and density plots for covariates in the final selected model. 

These include maximum temperature in °C (12 week running average), days without rain (12 week total), 

Niño 3.4 SSTA (12 week average with a 4 week lag) and weeks since switch in dominant serotype. These 

are shown on the relative risk scale displaying the median value and associated 95% credible interval and 

can be interpreted as the effect of the covariate on dengue incidence rate with all other parameters held 

constant. Panel E compares the estimated yearly random effect, 5)[+], for a seasonal baseline with year 

model including only weekly and yearly random effects  5)[+] + =-[+] (in yellow), the final selected climate 

and serotype model including all climate and serotype covariates and random effects (in purple), a climate 

only model with random effects (in pink), and a serotype only model with random effects (in green). The 

estimated yearly random effect from the baseline model indicates whether dengue incidence was higher or 

lower for that year than the overall mean incidence. We would expect the estimated yearly random effects 

for covariate models to be closer to 0 (indicated with a dashed line) when covariates are able to account for 

interannual variability in dengue incidence.  

 

5.3.3 Accounting for serotype and climate dynamics improves probabilistic 
predictions of dengue case incidence and outbreak detection 
 

We used a time series cross-validation approach to produce probabilistic dengue predictions and 

calculate the probability of exceeding a predefined outbreak threshold in a given week [31]. This 

is an appropriate design to assess model utility for forecasting, as we preserve the underlying time-

order of the data. We first generated probabilistic predictions using our candidate models with no 

lead time (using information up to a target date to predict dengue cases on that date) to compare 

out-of-sample predictive ability between 2009 and 2022 (Figure 3). The first 8 years of data were 

used exclusively for training (Methods). We compared our final selected climate and serotype 

model with a climate only model and a serotype only model containing only climatic and serotype 

covariates respectively (Supplementary information, Table 3). We compared these to a seasonal 

baseline model which only included weekly random effects. This is equivalent to a climatological 

baseline model which uses the average seasonal pattern in dengue incidence to predict cases in a 

given target week. We assessed forecast skill in predicting weekly dengue cases using the 

continuous ranked probability score (CRPS), where smaller values indicate better performance. 

We also calculated the continuous ranked probability skill score (CRPSS) which is defined as the 

percentage improvement in CRPS compared to a baseline model. We also assessed the predictive 
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ability of the candidate models for outbreak detection using the Brier score and conducted receiver 

operating characteristic (ROC) analysis. Here, we compared model hit rate (proportion of outbreak 

weeks correctly identified) with false alarm rate (proportion of weeks without an outbreak where 

an outbreak was predicted to occur). We calculated the area under the curve (AUC) to measure 

model skill in classifying outbreak and non-outbreak weeks (Methods). 

 

The climate and serotype model was able to reproduce dengue epidemic dynamics in Singapore 

between 2009 and 2022 and had a lower CRPS than all other models, indicating better 

performance. In particular, the climate and serotype model is better able to predict the decrease in 

early 2016 than a serotype-only model (which predicts a late peak around July 2016). Similarly, 

the climate and serotype model outperforms the climate-only model in predicting the decrease in 

cases following peaks in mid-2013 and mid-2014, as well as better predicting peak cases in July 

2019. All covariate models underpredicted the peak in 2020 but were able to accurately predict 

peak timing. Similarly in 2022, covariate models underpredicted the peak and predicted later peak 

timing than what was seen.The climate and serotype model showed a 60% relative improvement 

over the seasonal baseline model according to the CRPSS. The climate only and serotype only 

models also performed well, with a 54% and 49% relative improvement over the seasonal baseline 

model respectively (Supplementary information, Table 3).  The climate and serotype model also 

outperformed other models in outbreak detection, with a lower Brier score (indicating better 

performance). This can be seen in Figure 4, where the climate and serotype model is better able to 

assign high probability of an outbreak to actual outbreak weeks and lower probability of an 

outbreak to non-outbreak weeks. The climate and serotype model also had the highest area-under-

the-curve (AUC) (98%, 95% CI: 97.7 - 99.0%) and corresponding lowest false alarm rate (2.1%) 

and the highest hit rate (92%) of the candidate models, with an optimal model outbreak alert 

threshold of 71% (Supplementary information, Table 4). The climate only and serotype only 

models also performed well in outbreak detection, as can be seen from the overlapping ROC curves 

in Figure 4. 

 

 
 



Chapter 5: Disentangling climate and serotype competition to forecast dengue outbreaks  

 114 

 

 

Figure 5.3 Comparing time series cross-validated predictions of candidate models.  

Figure showing time series cross-validated posterior predictions of dengue cases for each model from 2009 

– 2022. We used an expanding window cross-validation methodology, where the model is trained on data 

up to but not including the target week and then posterior predictions are generated for the target week. 

Coloured lines show the median posterior prediction of weekly dengue cases, shaded areas show the 95% 

credible interval and the dark grey lines show the data. From top to bottom the figure shows: predictions 

for the final selected ‘Climate and serotype’ model with weekly and yearly random effects 5)[+] + =-[+] in 

purple; predictions for a ‘Climate only’ model with weekly and yearly random effects in pink; predictions 

for a ‘Serotype only’ model with weekly and yearly random effects in green; and predictions from a 

‘Seasonal baseline’ model with only weekly random effects =-[+]in orange. 
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Figure 5.4 Comparing outbreak detection of candidate models.  

Panels A and B show tile plots of model posterior predictions of exceeding the outbreak threshold for each 

week between 2009 – 2022. White indicates 6./+012)& = 	0, while dark green indicates 6./+012)& = 1. 

Circles indicate observed outbreak weeks defined using a seasonal moving 75th percentile threshold. For a 

given month and year, we defined an outbreak threshold using the 75th percentile of weekly cases in that 

month using all years up to, but not including, the given year. Panel E shows an ROC curve, plotting hit 

rate against false alarm rate for different model outbreak alert thresholds. Hit rate (or sensitivity) is defined 

as the proportion of outbreak weeks that were correctly predicted. False alarm rate (1 - specificity) is defined 

as the proportion of weeks without an outbreak where an outbreak was predicted to occur. The shaded area 

shows the 95% confidence interval around the ROC curve. 
 

5.3.4 Dengue forecasting for early warning with 2-8 weeks lead time 
 

Having identified a model able to predict dengue cases and outbreak weeks with no lead time, we 

then adapted our framework for use in an early-warning context, producing forecasts with 2 to 8 
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weeks lead time. For each forecast horizon, we used the best approximation of the covariates in 

the final models available at the lead time considered (Methods, Supplementary information, 

Figure 3). We then produced probabilistic predictions of dengue using our candidate models to 

compare predictive ability with 2-8 week forecast horizons. Forecasts for 4 weeks ahead and 8 

weeks ahead are shown in Figure 5, with forecasts for all horizons in Supplementary information, 

Figure 2. As expected, predictive ability declined with forecast horizon, with better performance 

at shorter lead times and increased uncertainty around model predictions at longer lead times 

(Figure 6). For instance, at an 8 week forecast horizon, the climate and serotype model struggled 

to predict peaks in late 2015-2016, first over and then under-predicting. However, all three 

covariate models considered were able to capture broad epidemic dynamics from 2009-2022 even 

at longer lead times and offered considerable improvement in performance compared with the 

seasonal baseline. For instance, at an 8 week forecast horizon the climate and serotype model 

showed 32% relative skill improvement over the seasonal baseline. Additionally, the climate and 

serotype model continued to accurately detect outbreak weeks at all forecast horizons, with an 

AUC of 94% (95% CI: 92.7 - 95.7%) at an 8 week forecast horizon (Supplementary information, 

Table 4). 

 

We compared forecast skill metrics for each model from 0-8 weeks ahead and found the climate 

and serotype model had a lower CRPS than other models (indicating better performance) until a 6 

week forecast horizon, when its performance was equivalent to the climate only model. However, 

when considering outbreak detection metrics (Brier score and AUC) the climate and serotype 

model outperformed all other models at all forecast horizons (Figure 6). 
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Figure 5.5 Dengue forecasts for early warning at 4 and 8 week forecast horizons.  

Figure showing time series cross-validated posterior predictions of dengue cases for each model from 2009 

– 2022 at 2 - 8 week forecast horizons. We used an expanding window time series cross-validation 

methodology, where posterior predictions for each week are generated from a model fit to data up to and 

including the target week. Coloured lines show the median posterior prediction of weekly dengue cases, 

shaded areas show the 95% credible interval and the dark grey line shows the data. From top to bottom the 

figure shows: predictions for the final selected climate and serotype model with weekly and yearly random 

effects 5)[+] + =-[+] in purple; predictions for a climate only model with weekly and yearly random effects 

in pink; predictions for a serotype only model with weekly and yearly random effects in green; and 

predictions from a seasonal baseline model with only weekly random effects =-[+] in orange. From left to 

right each column shows forecasts at 4 and 8 weeks ahead respectively. 
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Figure 5.6 Predictive performance over different forecast horizons.  

Figure showing forecast metrics for each model across all forecast horizons from 2009 – 2022. From top 

left to bottom right these show: interval coverage %, bias; CRPS (continuous ranked probability score), 

CRPSS (continuous ranked probability skill score, %), Brier score, AUC (area under the curve, %), hit rate 

(%) and false alarm rate (%). Interval coverage shows the percentage of observations falling inside a given 

prediction interval. A perfectly calibrated forecast would have coverage equal to the nominal prediction 

interval; that is, 95% coverage equal to 95% and 50% coverage equal to 50%, indicated by dashed 

horizontal lines. Bias measures the relative tendency of the model to over- or under-predict, and is bounded 
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between -1 and 1, with 0 indicating unbiased forecasts. The CRPS can take values between 0 and infinity, 

with smaller values indicating better performance. The CRPSS indicates the relative improvement of each 

covariate model over the seasonal baseline model and can take values from 0%, indicating that the model 

performs the same as the baseline, and 100%, indicating perfect forecasting skill. The Brier score can take 

values from 0 – 1, with smaller values indicating better performance. The AUC can take values from 0-

100% with 100% indicating perfect classification. Hit rate and false alarm rate also take values from 0 – 

100% with higher and lower values indicating better performance respectively. 

 

5.4 Discussion 
 

Climate and serotype dynamics have important impacts on dengue transmission and outbreak risk; 

however, to date few statistical forecasting models account for both drivers within the same 

framework. This could lead to misattribution of dengue risk caused by changes in population 

immunity to climatic or other non-climatic factors, and limit the ability to forecast large outbreaks 

in advance. Additionally, mechanistic approaches aiming to better capture the biological processes 

underlying transmission have been found to perform less well than statistical approaches to 

forecast dengue [30]. We analyse 20 years of data from Singapore to understand the relative impact 

of climatic and serotype dynamics on dengue risk and to produce probabilistic forecasts from 0 - 

8 weeks ahead. Our approach integrates a proxy for changes in population immunity and the 

epidemic potential of the dominant virus in circulation, within a statistical framework, aiming to 

generate accurate probabilistic predictions of dengue incidence through improved inference. 

 

The impacts of climatic variables on dengue risk in Singapore were complex, with non-linear and 

delayed effects. We found increased risk of dengue at a maximum temperature of 32 °C and at 

intermediately wet conditions, with decreasing risk in very hot and very dry conditions. This 

suggests that dengue seasonality in Singapore may change as climate change leads to increasing 

temperatures, with fewer cases in the middle of the year. We also found non-linearly increasing 

dengue risk with increasing Niño 3.4 SSTAs, reflecting increased risk during El Niño conditions. 

We found a non-linear relationship between the time since a switch in dominant serotype and 

dengue transmission. In the first two years following a switch, when population immunity to the 

new serotype is low, we found increased dengue risk, followed by decreased dengue risk in the 
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subsequent 4 years as immunity to the dominant serotype increases in the population. We then 

found evidence of increased risk at 6+ years following a serotype switch, which likely reflects the 

accumulation of susceptibles in the population as well as the risk associated with the growth of a 

non-dominant serotype before it reaches dominance, for instance growing DENV3 prevalence in 

2019. Our results are in line with previous research on climate-dengue relationships in Singapore, 

finding that increases in temperature and precipitation increase dengue risk, as well as El Niño 

conditions [16,29]. However, we also found evidence of non-linearity in the temperature-dengue 

relationship, with decreased risk at high maximum temperatures. Xu and colleagues found that 

absolute humidity was a better predictor for dengue incidence than other climatic variables, due to 

the stability of its relationship with dengue incidence during different subperiods of serotype 

circulation [25]. In this work, we accounted jointly for the impact of serotype circulation and local 

weather indicators on dengue risk, and therefore were able to estimate the marginal effects of each 

climatic indicator without confounding from concurrent serotype dynamics. As a result of this we 

found stronger evidence for a role of temperature and rainfall in transmission, with little additional 

benefit of humidity information.  

 

El Niño is thought to affect dengue transmission through changes in local weather conditions. We 

included covariates to capture both El Niño and local weather conditions within the same model 

structure, following the logic that the full effect of ENSO on transmission is unlikely to be fully 

captured by the weather covariates included in the model. For instance, ENSO may affect 

humidity, which was not explicitly included in the model, or temperature and precipitation metrics 

other than those included in the model, potentially affecting dengue season length or timing, or the 

spatial spread of dengue in Singapore.  

 

We adapted our model into a proposed early-warning framework, generating accurate forecasts at 

operationally useful lead times [29]. We used a rigorous time series cross-validation methodology 

to realistically evaluate model performance for early warning. This retrospective statistical 

validation is a necessary step in the construction of a forecasting model for early-warning. When 

a model is implemented, forecasts are used for decision-making which directly impacts dengue 

transmission and complicates the evaluation of forecast accuracy. This analysis was designed in 

collaboration with stakeholders in the National Environment Agency of Singapore to address key 
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questions around local dengue transmission in Singapore and offers a more interpretable 

forecasting framework than current LASSO based dengue forecasts [27]. This framework could 

also be used to generate probabilistic forecasts under different scenarios (e.g. comparing forecasts 

with or without a switch in dominant serotype or under different possible Niño 3.4 SSTAs) to 

understand potential outbreak risks.  

 

Accounting for serotype dynamics within our forecasting framework helped to explain interannual 

variability in dengue transmission, improved dengue case forecasts at shorter lead times (up to 4 

weeks ahead) and increased outbreak detection accuracy at all lead times. By comparing our full 

climate and serotype model with models only containing climate or serotype information, we were 

able to identify time periods where particular covariates were improving predictions. For instance, 

including serotype information helped to predict decreases following peaks in 2013 and 2014, as 

well as the peak in 2019. Contrastingly, including climate information helped to predict peak 

intensity and timing in 2016, during an El Niño event. It should also be noted that while our climate 

and serotype and climate only models perform equally well when forecasting dengue cases at 

longer lead times (6-8 weeks ahead), this is largely due to the flexible random effects incorporated 

in the modelling framework. When generating probabilistic forecasts, the covariate models 

estimate yearly random effects based on data available for that year up until the forecast target 

week. We conducted sensitivity analysis around this, running these models without a yearly 

random effect. In this case, the climate only model performs worse than the climate and serotype 

model at all forecast horizons (Supplementary information, Figures 4-5). While this demonstrates 

that including serotype information is helping to predict interannual variability, it also highlights 

the power of a flexible random effects structure to account for unmeasured variation and improve 

seasonal forecasts, particularly for settings without regular virus surveillance. 

 

Despite this, there are several limitations to this study.  Our climate and serotype model struggled 

to predict peak weekly cases in 2020 and 2022. This is likely due to the increase in dengue 

transmission in Singapore seen under SARS-CoV-2 social distancing measures, which is not 

accounted for in our model framework [32]. We included serotype dynamics using the time since 

a switch in dominant serotype as a proxy for population immunity, but it would arguably be 

preferable to include measures of seroprevalence or estimates of the proportion susceptible 
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directly. We were also unable to include serotype-specific dynamics due to the low number of 

switches in dominant serotype, even within a 17 year period of virus surveillance. This could be 

important to include as certain serotypes are associated with greater clinical severity and secondary 

infections are thought to be associated with increased severity as a result of antibody dependent 

enhancement (27, 28). Similarly, we only consider switches in antigenic serotype and don’t 

consider changes in genotype prevalence, which are also hypothesised to increase outbreak risk 

[35]. We did not incorporate vector density into the model, which mediates the relationship 

between climatic conditions and dengue transmission. We did not have access to data on vector 

control efforts, therefore any effects of interventions would be accounted for via yearly random 

effects. However, it should be noted that vector control is stringently maintained within Singapore 

and vector density has been low for several decades. We also do not account for the early phase of 

pilots of Wolbachia Aedes suppression control strategy in Singapore with targeted releases from 

May 2020. This has demonstrated effectiveness in reducing mosquito populations and dengue 

cases, and will likely impact climate-dengue relationships and serotype dynamics in the future 

[36]. Finally, we conducted model evaluation with forecast skill metrics and ROC analysis. In an 

ideal implementation scenario, forecast outputs such as outbreak warning alerts would be tied to 

specific control interventions or public health actions [28]. This would allow for the cost of a false 

alarm or missed event to be calculated and enable a cost-effectiveness analysis of the early warning 

system as a whole.  

 

Our analysis disentangles the role of climate and serotype dynamics in driving dengue outbreaks 

over a 23-year period in Singapore, capitalising on a rich dataset of epidemiological, weather 

station and virus surveillance data. We translate these findings into an early warning framework 

able to forecast dengue cases and generate outbreak alert predictions with 0-8 weeks lead time. In 

this study, we integrate explanatory and predictive modelling approaches with a view that 

understanding the key causal relationships underlying transmission allows for the construction of 

forecasting models that are more generalisable [37]. This can also result in greater interpretability, 

allowing for clearer communication of forecasts to policymakers and a more intuitive 

understanding of how transmission may vary under future large-scale changes, such as climate 

change. Climate-driven early warning systems will become increasingly important adaptation 

measures as climate change alters the geographical range of dengue transmission and leads to 



Chapter 5: Disentangling climate and serotype competition to forecast dengue outbreaks  

 123 

greater climatic extremes. We demonstrate the additional value of viral surveillance in improving 

forecast accuracy, and particularly in addressing the challenge of predicting dengue outbreak 

years. Future extensions of this work could include comparing this approach to other forecasting 

methods, including the current forecasting model in Singapore as well as alternative statistical and 

mechanistic approaches more broadly. 
 

5.5 Methods 
 

5.5.1 Data 
 

In Singapore, dengue case reporting by clinicians and laboratories is mandatory. Weekly 

laboratory-confirmed cases from 1 January 2000 – 31 December 2022 were provided by the 

Ministry of Health, Singapore [14]. Laboratory confirmation is performed through antigen 

detection of nonstructural protein 1 (NS1) or detection of viral RNA by polymerase chain reaction 

(PCR) in the first five days of illness, or serological detection of immunoglobulin M (IgM) after 

five days of illness [7]. Since 2006, the National Environment Agency’s (NEA) Environmental 

Health Institute has serotyped a subset of dengue samples using RT-PCR as part of a virus 

surveillance programme [13]. In our dataset, for years where serotype information is available, 

~27% of reported dengue cases are serotyped. Weekly DENV1-4 frequencies and total number of 

serotyped samples were provided by the Ministry of Health [14]. We calculated a smoothed 

proportion for DENV1-4 for each week with a GAM multinomial logistic regression using mgcv 

1.8.36 [38]. To smooth the serotype data, we only used data up to and including the week of interest 

to enable resulting models to be useful in a forward-looking early warning framework. We then 

use these smoothed DENV proportions to classify the dominant serotype for each week. We 

defined a switch event as occurring where the current dominant serotype is different from the 

dominant serotype in the previous week, identifying 4 switch events in our dataset. We then 

defined the time since a switch in dominant serotype as the number of weeks since the most recent 

switch event. 
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Midyear population size estimates were obtained from the Singapore Department of Statistics, 

which included both local and foreigner populations. 

 

Weekly maximum, minimum and mean temperature (°C), absolute (g/m3) and relative humidity 

(%), and precipitation (mm) were provided by the NEA. Daily precipitation (mm) was also 

provided and used to calculate: the number of days without rain per week (calculated as ∑63 = 0 

where !, represents rainfall on a given day); number of days with heavy rain per week (calculated 

as ∑63 ≥ 40); number of days with moderate to heavy rain per week (calculated as ∑63 ≥

20);	and number of days with consecutive rainfall (i.e. a count of consecutive days where !, ≥

1). Thresholds were chosen based on exploratory analysis of daily rainfall data and broadly align 

with 90th and 97.5th percentiles.  Weekly Niño 3.4 SSTA was obtained from the National Oceanic 

and Atmospheric Administration (NOAA) [39]. This index measures the El Niño Southern 

Oscillation (ENSO); interannual fluctuations in the oceanic and atmospheric temperature around 

the Pacific Ocean. The index is commonly used to define El Niño events (unusually warm) and La 

Niña events (unusually cool). Sea surface temperature anomalies are calculated by subtracting the 

observed sea surface temperatures from a historical mean, calculated for the period 1981 - 2010. 

El Niño and La Niña events are typically defined by a sea surface temperature anomaly of +/- 

0.5°C for over 6 months.  

 

5.5.2 Model framework 
 

We used a Bayesian hierarchical mixed-effects model to produce probabilistic predictions of 

weekly dengue incidence. Inference was performed using integrated nested Laplace approximation 

in INLA 23.04.24 [40]. Weekly dengue counts (7)) were assumed to follow a negative binomial 

distribution to account for overdispersion in the data, with a mean A) and overdispersion parameter 

B. 

7)~9%:;'((=) , ?) 

@#:(=)) 	= 	@#:(!5[)]) 	+ B	 +	CD8E8,) + F5[)] + G:[)]
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Here @#:(=))	is the linear predictor, where @#:(!5[)]) is a population offset with population per 

100,000 by year a and C is the model intercept . ∑D8E8,) are I climate and/or serotype covariates, 

55[)] is a yearly random effect and =:[)]is a weekly random effect. We use the weekly random 

effect to account for seasonality and seasonal autocorrelation, while the yearly random effect 

accounts for any unexplained interannual variation in the data, for example as a result of vector 

control efforts or COVID-19 restrictions [32]. Details on model prior specifications and 

hyperparameters are available in the Supplementary Materials. 

 

5.5.3 Model selection 
 

We calculated Pearson’s rank correlation index to assess correlation between variables using 

corrplot 0.92 and considered 	" ≥ 	0.5	as indicative of high correlation. We also calculated the 

variance inflation factor to assess multicollinearity. This measures how easily a model covariate is 

predicted from a linear regression of other covariates and we considered .JK ≥ 	5 as evidence of 

high collinearity. Based on this, we excluded relative humidity from further analysis due to high 

correlation with temperature variables and rainfall.   

 

We tested all remaining variables with a 0, 4, 8, 12 and 16 week lag. For temperature, humidity 

and Niño variables we tested 1, 4, 8 and 12 week running averages, while for precipitation 

variables we tested 1, 4, 8 and 12 week running totals. Finally, we also tested non-linear 

formulations of temperature, precipitation and Niño 3.4 variables. We explored the best 

combinations of different classes of covariate (temperature, precipitation, humidity and Niño), 

conducting model selection in a forward stepwise manner, comparing models of increasing 

complexity (Supplementary information, Table 2). Covariate models were compared to a baseline 

model including only weekly and yearly random effects (55[)] + G:[)]). Overall 505 model 

formulations of climatic and serotype covariates were tested. We used various model adequacy 

criteria including: the widely applicable information criteria (WAIC) and deviance information 

criteria (DIC). WAIC and DIC are metrics which aim to maximise model fit while also penalising 

model complexity, with lower scores indicating a more parsimonious model.  
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Once we had selected the best performing climate model, we tested the inclusion of serotype 

variables including: dengue serotype proportions (individually and in combination, numeric 

variables), dengue serotype growth rates (individually and in combination, numeric variables), 

yearly or weekly dominant serotype (factor variable with four levels), serotype switch event 

(binary variable), time since serotype switch (numeric). 

 

We quantified how much model covariates were able to explain interannual variation in dengue 

incidence by comparing the mean absolute value of the yearly random effects 55[)] between 

covariate models and the baseline model. We calculated the proportion of interannual variation 

explained by the model as: 

 	1	 − 	 <+,-./
<012./34.

  

 where L	 =
∑>?1[6]>

!
	and A is the total number of years in the dataset. 

 

5.5.4 Model evaluation 
 

We evaluated the performance of four candidate models: a climate and serotype model; a climate 

only model; a serotype only model; a seasonal baseline model. We conducted model evaluation 

using time series cross-validation methodology to produce posterior predictions, and comparing 

observed and predicted outcomes to evaluate predictive performance. This is an appropriate cross-

validation design when conducting statistical validation of forecasting models, as it preserves the 

time order of the underlying data, i.e. only data prior to an observation occurring is used to generate 

the prediction.To do this, we refit the model for each week in the dataset from 2009-2023 using an 

expanding window approach [31]. Data for the first eight years was used solely for training. Then, 

for each target week $ in the dataset, we trained the model on data until week  and then 

simulated a posterior predictive distribution for dengue cases in week $, using climatic data up 

until time t. Serotype covariates are constructed only using data until  for each time point t as 

serotype frequencies are linked to dengue case counts. The posterior predictive distribution was 

simulated using 1000 samples from the posterior distribution of model parameters and 

hyperparameters. Note that all our final models (except the seasonal baseline) included a yearly 
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random effect,	F5[)], which is estimated using only using data available until week $ for the year 

of the target week.  

 

We also calculated posterior predictive probabilities of exceeding the outbreak threshold. This 

both evaluates the model’s ability to distinguish between outbreak and non-outbreak periods, and 

provides an operationally useful model output for decision makers. For instance, it may be easier 

to tie specific response measures or public health decisions to a probability of exceeding an 

operationally meaningful threshold than to the full probabilistic forecast. Here, we calculated 

outbreak thresholds for each week based on the seasonal moving 75th percentile of cases 

(Supplementary information, Figure 1). For each week $, we then calculated the proportion of 

posterior predictive samples that were greater than the threshold value. 

 

Forecasts were scored using the scoringutils 1.2.1 package [41]. We aimed to evaluate both how 

successful models were at predicting dengue case incidence and detecting outbreak weeks. Dengue 

case forecasts were scored using the continuous ranked probability score (CRPS); this is a proper 

scoring rule which can be considered a generalisation of mean absolute error that takes into account 

the entire predictive distribution [42]. This is calculated such that: 

M-!N(K, 7) = 	O (K(P) − 1(P ≥ 7))@RP
A

BA
 

where 7 is the observed value and K is the cumulative density function (CDF) of the predictive 

distribution. Smaller CRPS values indicate a better forecast, and the metric penalises both under- 

and over-prediction. Sharper forecasts (where predictions are concentrated in a narrower range) 

will also score better. We then calculated the continuous ranked probability skill score (CRPSS), 

which is calculated as 1	 − 	 C#DE+,-./
C#DE012./34.

 and measures the percentage improvement of the 

considered model over a baseline model. A value of 1 indicates that the model has perfect skill 

compared to the baseline, 0 indicates the model is equivalent to the baseline and a negative value 

indicates that the model is worse than the baseline.  

 

We also assessed model calibration by calculating interval coverage at the 50% and 95% levels. 

Interval coverage measures the proportion of observed values falling in a given prediction interval 

range. For a given prediction interval, a perfectly calibrated model would have interval coverage 
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equal to the nominal prediction interval (that is, 95% of observations falling within the 95% 

prediction interval). We also calculated bias , measuring a model’s tendency to over or under-

predict. This was calculated for a data point 7) such that: 

 

B(P, y4) = 1 − JP(y4) + P(y4 − 1)K 

 

Where !(7)) is the predicted probability mass for all outcomes smaller or equal to 7). 

 

To score the models’ ability to forecast future outbreaks we calculated the Brier score comparing 

the posterior predictive probability of exceeding the outbreak threshold with observed outbreak 

weeks. The Brier score is a proper scoring rule for binary outcomes where smaller values indicate 

better forecasts [43]. This is defined as: 

;"'%"	S&#"% = 	
1
9
C(T& − 7&)@
F

&GH

 

where	T& are the predicted probabilities that corresponding events 7& will be equal to one. Finally, 

we used receiver operating characteristic (ROC) analysis to determine the optimum threshold for 

issuing outbreak alerts, balancing hit rate with false alarm rate, using the pROC package 1.18.4 

[44,45]. Here, hit rate (or sensitivity) is defined as the proportion of events (outbreak weeks) that 

were correctly predicted. False alarm rate (or 1 - specificity) is defined as the proportion of weeks 

without an outbreak where an outbreak was predicted to occur. We generated ROC curves for each 

model, which show hit rate against false alarm rate at different outbreak alert thresholds and 

calculated the area under the ROC curve (AUC). The AUC is a measure of model performance in 

classifying outbreak and non-outbreak weeks, with higher values indicating a better classification 

[46]. We selected outbreak alert thresholds by choosing the point closest to the top left of the ROC 

plot (representing perfect sensitivity or specificity).  

 

5.5.5 Adapting the model for early warning 
 

To adapt our model framework for use in an early warning scenario, we produced and evaluated 

dengue case forecasts at 2, 4, 6 and 8 week ahead forecast horizons. To do this, we used the best 
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approximation of each covariate used in the final models available at the forecast horizon being 

considered. For instance, as in our final models we use a 12 week running average of maximum 

temperature (°C), to produce forecasts, at a 4 week ahead time horizon we instead use an 8 week 

running average of maximum temperature (°C), with a four week lag. As the rainfall covariate we 

include is a 12 week total of days without rain, to approximate this for a 4 week ahead time horizon 

we use an 8 week total of days without rain, scaled up by a factor of 1.5. Full details of the variables 

used for prediction at each time horizon are available in Supplementary information, Table 5.  

 

When conducting model evaluation for week $ and forecast horizon ℎ, we used the same expanding 

window time series cross-validation approach described earlier. We trained the model using the 

final selected covariates on data available until week $ − ℎ. Unlike the model evaluation design 

described earlier, we then predicted dengue incidence in week $ using lagged covariates available 

at time $ − ℎ. For example, considering only the temperature covariate for simplicity, when 

predicting dengue cases with a 4 week ahead time horizon, we fit the model up until week $ − 4 

using a 12 week running average temperature to estimate model parameters. Then, using these 

estimated model parameters, we predict dengue cases at week $ by inputting 8 week running 

average temperature with a 4 week lag (alongside other lagged covariates). A schematic showing 

the cross-validation design for different forecast horizons is shown in Supplementary Figure 3. 

This approach allows us to preserve the key relationships between climate and serotype covariates, 

and dengue cases that we estimate in full model fitting and then use the best climate data available 

at different lead times to generate forecasts for early warning.  

 

Code availability 
  

All code and data used for this analysis are available at: https://github.com/EmilieFinch/dengue-

singapore 
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Chapter 6 

Understanding the role of climate and 
epidemic drivers in spatiotemporal dengue 

outbreak dynamics in the Dominican 
Republic 

 

Following on from Chapter 5, where I explored using serotype surveillance data as a proxy for 

population immunity to improve dengue forecasting in Singapore, this chapter focuses on 

leveraging cross-sectional serological data to improve dengue prediction in the Dominican 

Republic. Serocatalytic models can be used to estimate average annual force of infection from age-

stratified seroprevalence data. In this study, I applied a serocatalytic model to samples from a 

serological survey undertaken in 2021 in the Dominican Republic to estimate average annual 

attack rate. This allowed me to estimate the proportion of dengue infections reported and a proxy 

for population immunity built up in a dengue season.  

 

I then constructed a spatiotemporal Bayesian hierarchical model for 155 municipalities in the 

Dominican Republic, using weekly surveillance data and gridded climate data from 2013 - 2023. 

By incorporating a proxy for the build-up of immunity and lagged cases, weighted by the serial 

interval, I was able to better quantify the effect of climate on dengue transmissibility. I explored 

temperature, precipitation, humidity, El Niño and drought indicators, investigating different 

aggregations and lags. I then conducted model evaluation using different cross-validation schema 

to assess the model’s predictive ability, and to quantify the influence of included model covariates 



Chapter 6: Climate and epidemic drivers of spatiotemporal dengue outbreak dynamics  

 136 

on temporal and spatial predictive ability. This analysis forms an important first step in the 

development of a climate-informed early warning system for dengue in the Dominican Republic. 

 

The supplementary material for this chapter is included as Appendix E. 
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6.1 Abstract 
 

Background 

Emerging vector-borne diseases, such as dengue, are an important health threat in the Caribbean, 

a region particularly vulnerable to climate change. Dengue is hyperendemic in the Dominican 

Republic, causing large, irregular outbreaks; however, the drivers of these are not well understood. 

Here, we quantify the effects of climatic and epidemic drivers of spatiotemporal dengue risk in the 

Dominican Republic from 2013 to 2023. 

 

Methods 

We developed a Bayesian space-time hierarchical model to quantify the effect of climatic variation 

on dengue transmission in the 155 municipalities of the Dominican Republic, using 10 years of 

surveillance data. By leveraging serological survey data from 2021, we account for epidemic 

drivers in our modelling framework, incorporating the build-up of immunity during a dengue 

season, as well as autocorrelation in cases.  

 

Findings 

We found evidence for increased risk of dengue at higher maximum temperatures and relative 

humidity, as well as in drought or El Niño conditions. While including climatic variation improved 

the predictive power of the model by 8.1% over a baseline including seasonal and year-specific 

spatial random effects, incorporating epidemic factors increased this to 12.7%. We found El Niño 

and drought indicators are influential predictors of temporal dengue dynamics, while weighted 

lagged cases, representing the force of infection, predict both spatial and temporal patterns.  

 

Interpretation 

We found seasonal and interannual climatic variation shape dengue risk in the Caribbean, with 

non-linear and delayed impacts. Additionally, incorporating proxies for seasonal immunity and the 

force of infection improved the ability of the model to predict unseen dengue observations. Early 

warning systems are an increasingly important climate change adaptation tool. In this study, we 

identify climate-dengue relationships that are able to predict space-time variations in dengue risk, 

in a first step towards an early warning system. 
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6.2 Introduction 
 

Dengue is a rapidly expanding mosquito-borne disease, transmitted primarily by Aedes aegypti 

and Aedes albopictus. Climatic changes, alongside increasing travel, trade and urbanisation, have 

shifted the dynamics and geographic distribution of dengue with reported cases doubling every 

decade in the past 30 years, and around half of the global population estimated to be at risk [1–3]. 

These trends are projected to continue, with increasing suitability for dengue transmission driven 

by future global heating [4,5].  

 

While two dengue vaccines have been licensed, they are currently only recommended for use after 

pre-vaccination screening or in high transmission settings due to potential risks in seronegative 

individuals [6]. As such, many countries remain focused on vector control to limit transmission 

and disease burden. Climate-informed forecasting models can be used to mitigate the impact of 

dengue outbreaks by giving advanced warning of when outbreaks are likely to occur and helping 

policy makers to decide when and where to target vector control efforts, as well as informing 

public communication strategies [7]. Early warning systems integrating forecasting models with 

appropriate response mechanisms are becoming an increasingly important tool for disease control 

as climate change leads to more frequent climatic extremes and shifts the dynamics and 

distribution of dengue, as well as other climate-sensitive infectious diseases. 

 

Climate-informed forecasting models capitalise on inherent lags between climatic variation and 

dengue transmission to predict periods with increased risk. Climate can influence transmission 

through effects on the vector life-cycle, the dengue virus itself, or both. Temperature affects both 

mosquito survival and reproduction, as well as the viral extrinsic incubation period, and 

temperatures of 29°C are thought to be optimal for transmission [8,9] . While increased rainfall 

can create vector breeding sites, excessive rainfall can cause flushing events, washing larval 

habitats away entirely [10,11]. The effects of rainfall also depend on population water storage 

behaviour; for instance, in cases where droughts lead to an increase in water storage containers 

around the home that can act as larval habitats [12,13]. The role of humidity in dengue transmission 

is less well-studied, although there is a clear mechanistic link between water vapour content in the 

air and vector desiccation stress [14]. Experimental evidence suggests increased humidity 
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increases vector survival and egg production, while previous studies have found statistical 

associations between humidity and dengue transmission [15–17].  Finally, dengue risk can be 

affected by the El Niño Southern Oscillation (ENSO); interannual fluctuations in oceanic and 

atmospheric temperature around the Pacific Ocean. This can result in El Niño events (periods of 

above average Pacific sea surface temperatures) or La Niña events (periods of below average 

Pacific sea surface temperatures). This is an important driver of interannual climatic variability in 

the Caribbean, with El Niño events associated with warmer temperatures and drought while La 

Niña events are associated with increased intensity of the Atlantic hurricane season [18,19]. ENSO 

indicators can be particularly valuable in forecasting frameworks as they offer the potential to 

predict interannual variation in dengue risk, and periods when large outbreaks may be more likely 

[20,21]. 

 

Emerging vector-borne diseases are a key health threat facing Caribbean islands, with small island 

developing states particularly vulnerable to health impacts of climate change [22,23]. The 

Dominican Republic experiences endemic dengue transmission, with large outbreaks that have 

been increasing in frequency and magnitude over past decades and the highest case-fatality ratio 

in the Caribbean [24]. Previous work investigating correlation between climate indicators and 

dengue cases in the Dominican Republic between 2015-2019 found that relative humidity was 

most frequently correlated with dengue cases in the nine provinces studied [25]. Contrastingly, 

another study of the 2019 outbreak in eight provinces found that temperature and rainfall were 

better predictors of dengue cases than relative humidity at lags of 2-5 weeks [25,26]. 

 

In this work, we use a Bayesian hierarchical modelling framework to quantify the effect of climate 

on spatiotemporal dengue risk in the Dominican Republic for 155 municipalities between 2013 

and 2023, accounting for the build-up of immunity in a dengue season as well as autocorrelation 

in weekly cases. This is an important first step in constructing a forecasting framework able to 

provide early-warning of dengue risk and inform targeted public health action. 
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6.3 Methods 
 

6.3.1 Study setting 
 

The Dominican Republic is an upper-middle income country in the Caribbean, sharing the island 

of Hispaniola with Haiti. It is classified as a small island developing state by the United Nations 

[27]. The country is divided into 32 provinces and 155 municipalities and has an estimated 

population of around 10.8 million [28]. While the Dominican Republic has a tropical climate, it is 

a geographically diverse country, with the highest peak in the Caribbean of 3,101 m and several 

climate zones [29].  

 

Most of the country experiences a rainy season between May and October, although this occurs 

later in the year on the northern coast, typically between November and January (Supplementary 

Figure 2). The Dominican Republic is situated on the Atlantic hurricane belt, and experiences 

hurricanes and cyclones between August and October. The frequency of hurricanes and extreme 

weather events is affected by ENSO, with more frequent hurricanes and cyclones during La Niña 

conditions, which also bring cooler and wetter weather [30]. 

 

6.3.2 Surveillance data 
 

Weekly dengue cases between 31st March 2013 and 26th March 2023 were provided by the 

Dirección de Epidemiologia from the Sistema Nacional de Vigilancia Epidemiológica (SINAVE). 

Data was aggregated by municipality and week of reporting, using epidemiological weeks running 

from Sunday - Saturday.  

 

6.3.3 Population data 
 

We used municipality-level population estimates available from 2015-2020 and province-level 

population estimates available between 2000-2030, both from the Oficina Nacional de Estadística 

[28]. To obtain municipality-level estimates for other years in the dataset we extrapolated the 
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nearest value in time, scaled by province-level trends in population. For instance, to obtain 

municipality-level population estimates in 2021, we used estimates from 2020, scaled by the 

relative increase or decrease seen at the province level from 2020 to 2021.  

 

6.3.4 Climate data 
 

In this study, we obtained mean, minimum and maximum weekly temperature (°C) and 

precipitation (mm) from the ERA5-Land reanalysis dataset [31]. We calculated relative humidity, 

absolute humidity and specific humidity from mean temperature, surface pressure and dew point 

temperature extracted from the ERA5-Land dataset. We then spatially aggregated climate data by 

municipality (using a geographic mean over administrative boundaries) and by epidemiological 

week running from Sunday - Saturday. 

 

We also used the standard precipitation index (SPI), an indicator recommended by the World 

Meteorological Organization to characterise meteorological drought on a range of timescales 

[32,33]. This quantifies the distance in standard deviations between observed precipitation and 

long-term mean precipitation, modelled by a gamma distribution. This was calculated at a weekly 

level for each municipality using the SPEI package [34]. Negative SPI values indicate drier 

conditions than would be expected while positive values indicate abnormally wet conditions, a 

value of >2 indicates extremely wet conditions, while <-2 indicates extremely dry conditions. SPI 

can be calculated at different timescales, reflecting the impact of drought on different water 

resources. At shorter time-scales, the index reflects soil moisture conditions while at longer 

timescales the index reflects groundwater, streamflow and reservoir storage conditions [33]. We 

calculated the SPI at 1, 3, 6 and 12 month timescales. 

 

We obtained the Niño 3.4 sea surface temperature anomaly (SSTA) index from the National 

Oceanic and Atmospheric Administration, NOAA [35]. This measures sea surface temperature 

anomalies in the Niño 3.4 region (an area across the Pacific from the dateline to the South 

American coast) and is one of the indices commonly used to define El Niño (warm) and La Niña 

(cool) events. Anomalies are calculated by subtracting observed sea surface temperature from the 



Chapter 6: Climate and epidemic drivers of spatiotemporal dengue outbreak dynamics  

 144 

historical mean (1981-2010).  El Niño and La Niña events are typically defined when the 5-month 

running average Niño 3.4 SSTs exceed +/- 0.5°C for a period of 6 months or more [20].   

 

6.3.5 Seroprevalence study 2021 
 

We used age-stratified seroprevalence data from a subset of samples collected during a cross-

sectional serological survey in the Dominican Republic between June and October 2021 [36]. The 

full serological survey enrolled 6683 participants from 3832 households. In brief, this survey 

employed a multistage sampling method to select 134 clusters out of 12,565 communities. First, 

clusters were assigned to provinces, taking into account population, urban-rural divide, and the 

spatial dispersal of clusters. Then, clusters were selected within each province using grid 

methodology to maximise the spatial distribution of clusters and, finally, households were selected 

using grid methods applied to satellite images. Individuals were eligible for the study if they were 

a household member ≥ 5 years old.  

 

We used data from a subset of 200 samples from Espaillat and San Pedro de Macorís provinces, 

tested for DENV IgG positivity using an in-house DENV1-4 ELISA assay. 

 

6.3.6 Serocatalytic model 
 

Serocatalytic models can be used to estimate the force of infection from age-stratified 

seroprevalence data [37,38]. The force of infection  is defined as the rate at which susceptible 

individuals become infected. In a simple catalytic model, we assume a constant force of infection 

independent of time or age, and that individuals remain IgG positive after seroconversion. In this 

case, the probability of being infected by age  is given by  

 

 
 

For a reverse catalytic model we continue to assume a time-constant force of infection but allow 

IgG positivity to wane over time with waning rate  [37]. Here: 



Chapter 6: Climate and epidemic drivers of spatiotemporal dengue outbreak dynamics  

 145 

 

 
 

By integrating the formula above we find that the probability of being infected by age  follows: 

 

 
 

As we assume infections follow a Poisson process, and therefore that the time until next infection 

follows an exponential distribution, the probability that a susceptible individual becomes infected 

in a year (or the annual attack rate) follows the cumulative distribution function of the exponential 

distribution such that:  

 

 
 

We fit models using the RSero package, with parameter estimation implemented in Stan using 

Hamiltonian MCMC with a No-U-Turn sampler (NUTS) algorithm [39]. We assessed 

convergence using trace plots (Supplementary Figure 4) and the Gelman-Rubin R hat statistic, 

ensuring Rhat < 1.1 and the effective sample size is >200. We selected the best fitting model using 

the widely applicable information criterion, WAIC, and deviance information criterion, DIC 

[40,41].  

 

6.3.7 Bayesian hierarchical model framework 
 

Statistical approaches for infectious disease forecasting often use generalised linear modelling 

frameworks where disease counts  are assumed to follow a Poisson or Negative Binomial 

distribution, with a matrix of space-time varying covariates explaining variation in the outcome. 

For climate-sensitive infectious diseases, such as dengue, these often use climatic, environmental 

and socio-economic factors to explain variation in disease incidence. However, there are several 

features of the dynamics of infectious disease outbreaks that are not fully captured by these 
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frameworks [42]. In particular, the build-up of immunity (and depletion of the population 

susceptible to infection) and the inherent autocorrelation in the epidemic process (whereby cases 

at time  are dependent on past cases via the force of infection). Previous studies have accounted 

for the build-up of immunity using cumulative counts of cases in the current or previous seasons, 

or by using known proxies of population immunity [43]. Alternatively, generalised linear mixed 

modelling frameworks can use random effects to account for unexplained spatiotemporal variation 

caused by changes in population immunity, as well as other factors [12,44]. Similarly, 

autocorrelation between current and previous infected individuals has been accounted for by 

including cases at time  as a predictor, as in ARIMA models, or weighted cumulative previous 

cases for the duration of the serial interval [45,46]. 

 

It is also possible to derive a regression model framework from a semi-mechanistic renewal 

equation. Here we use the method by Cori and colleagues that links the instantaneous reproduction 

number with current and past incidence data [47].  Following an approach taken by Camacho and 

colleagues [42,43], we consider that dengue cases  for week  and municipality  can be modelled 

using a renewal process such that:  

 
Here,  is the instantaneous reproduction number at week  and municipality  and  is a 

discretised probability distribution of the serial interval by week .  can be expressed as a 

product of the basic instantaneous reproduction number  and the proportion of the population 

susceptible individuals ( ) in the population ( ). When discretising , we  assume that  

is fixed at the value at the beginning of the time-step, and so is determined by the proportion of 

susceptible individuals  in the population . Similarly, we assume that the force of 

infection is determined by cases up to t-1, and that there is no probability mass on a serial interval 

of 0.  
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We make the simplifying assumption that immunity lasts for the duration of the dengue season, 

with  set to the beginning of the respective dengue season at time . We consider dengue seasons 

running from epiweek 14 (around the beginning of April) until epiweek 13 of the subsequent year, 

to align with the seasonality of dengue in the Dominican Republic. 

 

By substituting this expression for  into the original renewal equation, and taking the logarithm 

of the expectation we find: 

 

 
 

Following previous studies [43], this allows us to consider  to be composed of three 

components: a transmissibility term , a term representing the force of infection 

 and a term representing decreasing susceptibility from the accumulation of 

immunity .  

 

We use a discretised serial interval for dengue estimated by Siraj and colleagues, weighting 

municipality-level lagged cases with a 1-5 week lag with weights 0, 0.2, 0.425, 0.25, 0.125 [48].  

Reported dengue cases  are likely to be substantially underreported (as many cases are 

asymptomatic or present with mild flu-like symptoms). As such, cumulative reported cases divided 

by the total population is likely to underestimate the accumulation of immunity. To correct for 

this, we estimate an underreporting factor . We first estimate the number of infections per year 

by comparing the estimated average annual attack rate from our previous catalytic model with the 

estimated population susceptible in 2021 according to the 2021 seroprevalence study. We then 

compare this average number of yearly infections with the average number of yearly reported cases 

in our dataset, estimating that ~ 7.5% of infections are reported. We then scale up reported cases 

such that the depletion of susceptibility is given by: 
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Finally, we model the effect of climate on the transmissibility term by: 

 

 
 

Where  is the model intercept,  is a vector of  climate covariates   is a weekly random 

effect accounting for seasonality and  are year-specific spatially structured and 

unstructured random effects. 

 

We fit this model in a Bayesian hierarchical model, implemented in R-INLA. We use a negative 

binomial parameterisation to account for overdispersion in the data. 

 

Model priors and hyperparameters 

 

The weekly random effect  was assigned a random walk 2 prior distribution (second order 

difference prior distribution) where we assume that second order increments follow a Gaussian 

distribution with zero mean and precision  . This was defined to be cyclic (so the first week of 

the year is dependent on the last two weeks of the previous year).  

 

We also included year-specific spatial random effects using the bym2 model [49].  This includes a 

structured component    assuming a conditional autoregressive model (CAR) following a 

neighbourhood matrix, as well as an unstructured component  of normal random effects. Here, 

the structured component takes into account that municipalities closer together are likely to 

experience similar dengue transmission while the unstructured component accounts for other 

spatial heterogeneities, for instance due to spatial variation in vector control. The bym2 model is 

defined as: 

 
 

with a precision parameter  and a mixing parameter , which controls the contribution to the 

variance of  and  We used the default hyperparameters implemented in INLA with penalised 

complexity (PC) priors. 
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Non-linear covariates were modelled by setting a random walk 2 prior on the coefficients of the 

covariates. We used PC priors for precision L, with hyperparameters 10 = 	0.5 and C	 = 	0.01 for 

all non-linear covariates and the weekly random effect. The PC prior is defined on the standard 

deviation 1	 = 	 V−1/2 such that !(1	 > X0) 	= 	B.		these penalize departure from 1	 = 	0. PC priors 

follow the principle of parsimony, favouring a base model (where	X	 = 	0) unless evidence is 

provided against it [50]. 

 

Model selection 

 

In our analysis we grouped climatic variables into: temperature variables (including mean, 

minimum and maximum temperature); rainfall variables (including precipitation and SPI 

indicators); humidity variables (including absolute, relative and specific humidity), and the Niño 

3.4 index. First, we assessed correlation between classes of climatic variables. We calculated 

Pearson’s rank correlation index using corrplot 0.92 and considering 	" ≥ 	0.5	as indicative of high 

correlation. We then calculated the variance inflation factor to assess multicollinearity with a 

threshold of .JK ≥ 	5 for evidence of high collinearity. We found that absolute humidity and 

specific humidity were highly correlated with temperature variables. Based on this, and their 

mechanistic relationship with temperature, we excluded these from further analysis.  

 

We tested temperature, precipitation and humidity variables at 0, 2, 4, 6, 8, 12, 14 and 16 week 

lags,  based on previous lagged climate-dengue relationships identified in the literature and 

exploratory analysis [9, 12]. For SPI indicators and Niño 3.4 we considered lags up until 20 weeks, 

in 2-weekly increments, as these capture longer-term climatic processes. We also explored 

different aggregations of climate variables, to obtain the optimal signal from available weekly data. 

For temperature, humidity and Niño 3.4 variables we considered 1, 4, 6, 8, 10 and 12 week running 

averages, while for precipitation we considered 1, 4, 6, 8, 10  and 12 week running totals. We 

tested 264 lagged climate indicators in total, with all climate indicators tested as non-linear 

covariates. We performed model selection using stepwise forward selection, comparing models of 

increasing complexity. Covariate models included susceptibility and force of infection terms as 
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detailed above, and were compared to a baseline model including only weekly and year-specific 

spatial random effects, .  

 

We conducted model selection based on the widely applicable information criteria (WAIC) and 

deviance information criteria (DIC). These are metrics aiming to maximise model fit while 

penalising model complexity, with lower scores indicating a more parsimonious model [40,41]. 

We also considered the  statistic in model selection, which provides a measure of goodness-of-

fit and can be interpreted as the ability of the model to account for variation in dengue cases. At 

each step of model selection, the best performing variable was carried forwards and tested against 

all variables in remaining climate classes. Overall, 635 models were tested; model adequacy 

criteria for the best performing model at each step of the model selection process are shown in 

Supplementary Table 1.  

 

Model evaluation 

 

We evaluated model performance using two evaluation designs, allowing us to compare posterior 

predictions with observed outcomes to evaluate predictive performance. We conducted a time-

series cross-validation using an expanding window approach [46,51]. This is an appropriate cross-

validation design when evaluating the potential utility of models for forecasting, as it preserves 

the time order of the underlying data. Data from the first two dengue seasons was used solely as 

training data, then for each week from the start of the 2015/16 dengue season until the end of the 

2022/2023 dengue season, we refit the model to generate posterior predictions for each 

municipality and week. For each target week t in the dataset, we trained the model on data until 

week t-1 and then simulated a posterior predictive distribution for dengue cases in week t.  

 

We then conducted a k-fold block cross-validation with a spatial design [52]. Municipalities were 

randomly assigned to 5 folds. For each fold k, the model was fit to data for the remaining four 

folds and posterior predictions were generated for the entire time series of municipalities in fold k. 

To account for variation in fold-allocation we repeated this 10 times, aggregating samples from 

each repetition to generate posterior distributions at the municipality and province level. The cross-

validation schemes used for both experimental designs are illustrated in Supplementary Figure 7. 
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We estimated the posterior predictive distribution using 1000 samples from the posterior 

distribution of model parameters and hyperparameters.  

 

To investigate the influence of each model covariate in explaining dengue dynamics in the 

Dominican Republic, we repeated the cross-validation excluding each model covariate, following 

an approach by Gibb and colleagues [53]. We then compared the out-of-sample continuous ranked 

probability score (CRPS) to that of the full model. The continuous ranked probability score is a 

proper scoring rule which can be considered a generalisation of mean absolute error that takes into 

account the entire predictive distribution [54]. Smaller CRPS values indicate better prediction. 

 

We scored model predictions over time (Supplementary Figure 8). Here we scored quantile 

predictions using the weighted interval score (WIS), an approximation to the CRPS for quantile 

forecasts, for computational tractability. The WIS is also a proper scoring rule, where smaller 

values indicate better performance, that converges to the CRPS as more quantiles are reported 

[55]. We also calculated model bias over time; this measures the tendency of the model to over or 

under predict. If the prediction is smaller than the observed value, the bias is calculated as the 

maximum percentile rank where the prediction is smaller than the observed value. Conversely, if 

the prediction is larger than the observed value the bias is the maximum percentile rank where the 

prediction is larger than the observed value. We also calculated the interval coverage to assess 

probabilistic calibration. We calculated coverage as the proportion p of observations that fall 

within the 50% and 95% prediction intervals. For a perfectly calibrated model coverage would 

equal the nominal prediction interval (i.e. 50% coverage for the 50% prediction interval and 95% 

coverage for the 95% prediction interval). Scoring was performed using the scoringutils 1.2.1 

package [56]. 
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6.4 Results 
 

6.4.1 Dengue epidemiology in the Dominican Republic between 2013 and 2023 
 

Between 31st March 2013 (epiweek 14) and 26th March 2023 (epiweek 13) 85,903 dengue cases 

were reported in the Dominican Republic. Almost half of these were reported in the provinces 

containing the two major cities and their immediate surroundings (Santo Domingo, Distrito 

Nacional and Santiago). Contrastingly, dengue incidence rates were highest in the smaller 

provinces of San Jose de Ocoa and Hermanas Mirabal. Dengue transmission varies seasonally, 

with peak incidence between June and November, coinciding with the rainy season and high 

average temperatures (Supplementary Figures 1 and 2). The Dominican Republic has experienced 

large outbreaks of dengue, for example, in 2013, 2015, 2019 and 2022 (Figure 1, panel b and c). 

In 2019, the largest outbreak to date was reported with over 20,000 cases. 
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Figure 6.1: Dengue epidemiology in the Dominican Republic  

(a) Map of the Dominican Republic showing mean annual dengue incidence rate (DIR) from 2013 - 2023 

at the municipality level. The map insert shows a map of the Caribbean with the location of the Dominican 

Republic outlined in a rectangle. (b) Weekly reported dengue cases (grey bars) between 31st March 2013 

and 26th March 2023. (c) Mean monthly dengue incidence per 100,000 population by province, with 

months running from April - March on the x-axis and dengue season on the y-axis. Provinces are arranged 

to mirror their geographic location in the Dominican Republic. Dengue incidence rates are log+1 

transformed for visualisation. 
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6.4.2 Estimating the annual force of infection 
 

We estimated the average annual force of infection by fitting serocatalytic models to age-stratified 

seroprevalence data. We considered a catalytic and reverse catalytic model structure (with the 

latter allowing for waning of seropositivity). As both fit similarly well to the data according to 

WAIC and DIC values, we used a simple catalytic model, following the principle of parsimony. 

We estimated an average annual force of infection of 0.129 (95% CrI: 0.103 - 0.162), 

corresponding to an average annual attack rate of 12.1% (95% CrI: 9.75% - 15.0%). 
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Figure 6.2: DENV seropositivity by age and mean age of dengue cases 

Estimated seroprevalence by age from the serocatalytic model is shown in panel a (green line) with 

associated 95% model credible intervals (light green shaded area), alongside the proportion of individuals 

seropositive to a DENV1-4 ELISA assay by age (black points and line bars). The mean age of reported 

dengue cases reported to the Dominican Republic’s surveillance system (SINAVE) by municipality is 

shown in panel b, with earlier mean ages indicated by darker purple. 

 

Once we obtained an estimated attack rate, we then estimated the proportion of infections reported 

by first approximating the number of infections a year, multiplying the attack rate by the proportion 
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susceptible. As ~9% of the population were IgG seronegative in our seroprevalence sample we 

considered the proportion susceptible to be 9% of the 2021 population (10.53 million) resulting in 

an estimated ~ 11,500 infections per year. We then divided the average reported yearly cases in 

our dataset (8,590) by the estimated infections a year to obtain an estimated reporting rate of 

7.47%, assuming a constant reporting rate over time. For each dengue season, we estimated the 

population susceptible, as outlined in the Methods.  

 

6.4.3 Quantifying the impact of climate variation on dengue risk  
 

We fit a Bayesian spatiotemporal model to weekly surveillance data, using a negative binomial 

likelihood. We incorporated temporally correlated weekly random effects to account for 

seasonality and seasonal autocorrelation (seasonal random effects) and year-specific municipality 

level spatially structured and unstructured random effects to account for unexplained 

spatiotemporal variation in the data (spatiotemporal random effects).  

 

We investigated whether the inclusion of temperature, rainfall, humidity and Niño 3.4 covariates 

improved model adequacy criteria when compared with a baseline model only including random 

effects (Supplementary Table 1). We tested climatic covariates with different aggregations, with 

non-linear effects specified using a second-order random walk (Methods). Given the inherent lag 

in the relationship between climate and dengue risk, we tested including climatic variables with 

lags from 0 weeks up until 16 weeks, or, for the Niño 3.4 and standard precipitation indices, until 

20 weeks. Each model tested also included the municipality-level estimated proportion susceptible 

over each dengue season and a running average of cases with a 2-5 week lag, weighted by the 

serial interval distribution [48] (Methods). Following model selection, we found the best 

performing model included: Niño 3.4 sea surface temperature anomaly (SSTA), using a 12 week 

average with a 6 week lag; maximum temperature (°C), using an 8 week average with a 4 week 

lag; relative humidity (%) using a 10 week average with a 2 week lag; and the standard 

precipitation index (SPI) on a 12 month time scale (Supplementary Table 1). The full model also 

included lagged cases weighted by a discretised serial interval distribution (representing the force 

of infection) and an estimated proportion susceptible as described in the Methods. 
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To understand the relative role of climate in shaping dengue risk we estimated the marginal effects 

of each variable, these were exponentiated so the effects can be interpreted on the multiplicative 

response scale (Figure 3, panels a-d). We found that positive values of the lagged Niño 3.4 SSTA 

(indicative of El Niño conditions) were associated with increased dengue risk (Figure 3, panel a). 

The effect of maximum temperature on dengue risk was non-linear; with peak risk upwards of 

28°C and risk plateauing as temperatures exceed 30°C (Figure 3, panel b). Similarly, we found 

increased dengue relative risk in humid conditions, with greatest risk upwards of 80% relative 

humidity (Figure 3, panel c). Drought conditions, indicated by negative values of the SPI, were 

associated with increased dengue risk, while abnormally wet conditions (indicated by positive 

values) were mostly protective (Figure 3, panel d). 

 

We explored how model covariates were able to explain spatiotemporal variation in dengue 

incidence by investigating estimated spatiotemporal random effects. The spatiotemporal random 

effects indicate whether dengue incidence is higher or lower than expected for a given municipality 

and year than the overall mean incidence: therefore, if model covariates are able to account for 

spatiotemporal variation in dengue incidence we would expect the estimated spatiotemporal 

random effects to be closer to 0. We calculate the average municipality-level difference between 

the absolute value for spatiotemporal random effects in the final model and the baseline model, 

such that negative values indicate municipalities where included covariates are able account for 

spatiotemporal variation in dengue cases (Figure 4, panels e-f). 

 

We found that, during outbreak years (2013, 2015, 2019 and 2022), included model covariates 

reduced unexplained variation in dengue incidence in most municipalities, and particularly in those 

in the East and South of the Dominican Republic (Figure 2, panel e). During non-outbreak years, 

model covariates again reduced unexplained variation in most municipalities, with effects 

concentrated in the West and south-East (Figure 2, panel f). We compared the contribution of 

climatic covariates and epidemic covariates in reducing unexplained spatiotemporal variation in 

the model in Supplementary Figure 6. 
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Figure 6.3: Effects of climate on dengue risk in the Dominican Republic 

Posterior marginal effects and density plots for climatic covariates in the full model are shown in panels a-

d. These include: Niño 3.4 sea surface temperature anomaly (SSTA) using a 12 week average with a 6 week 

lag, mean temperature in °C (8 week average with 4 week lag), relative humidity (%, 8 week average with 

a 4 week lag) and SPI (12 month timescale). These are shown on the outcome scale displaying the median 

value and associated 95% credible interval, a value of 1 suggests no association between the covariate and 

the outcome, while positive and negative values indicate the covariate is associated with increased and 

decreased risk respectively. The impact of including model covariates on unexplained spatiotemporal 
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variation is shown in panels d and e. These show the absolute difference in spatiotemporal random effects 

in the full covariate model compared with a baseline model including only seasonal and spatiotemporal 

random effects. Panels d and e show the difference in absolute average marginal spatial random effects 

during outbreak years and non-outbreak years respectively. This is calculated as:  

 

|N!,)[+] + 0!,)[+]|5/66 − |N!,)[+] + 0!,)[+]|7)%26!'2 	. Municipalities where the magnitude of the spatial random 

effects was smaller (i.e. closer to zero) after the inclusion of model covariates are shown in purple. The 

more negative the difference (and the darker the purple) the greater the contribution of climatic and 

epidemic model covariates in explaining variation in dengue risk. Municipalities where covariates increased 

the marginal random effects are shown in green and those with no change are shown in white. 

 

6.4.4 Out-of-sample dengue predictions 
 

We generated out-of-sample probabilistic dengue predictions using a time series cross-validation 

methodology (TSCV) and assessed model performance. Probabilistic predictions were generated 

at the municipality level and samples were aggregated to the province level for visualisation 

(Figure 4). The model was able to capture spatial patterns in dengue cases, ranging from high 

intensity of dengue cases in Distrito Nacional, Santiago and Santo Domingo to very low numbers 

of cases in provinces such as Baoruco and Pedernales. The model was also able to capture broad 

temporal outbreak dynamics. However, while the peak cases in the 2015 and 2022 outbreaks were 

successfully captured in most provinces, the peak of the 2019 outbreak was under-predicted in 

nearly all provinces (Supplementary Figure 8). 
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Figure 6.4: Time-series cross validated posterior predictions of dengue cases from 2015 – 2023 

Figure showing time series cross-validated posterior predictions of weekly dengue cases for the full model 

from 2015 – 2023. We used an expanding window cross-validation methodology, where the model is 

trained on data up to, but not including, the target week and then posterior predictions are generated for the 

target week (Supplementary Figure 7). The first two years of data were used exclusively for training, and 

predictions are therefore shown for the following 8 dengue seasons from 2015 –  2023. Green lines represent 

median posterior predictions of weekly dengue cases, the shaded green area shows the associated 95% 

credible interval, and the grey lines show the data. The model was fit at the municipality level and posterior 

samples for each time step were then aggregated to the province level. Provinces are arranged according to 

their approximate geographic position in the Dominican Republic. 

 

We also generated out-of-sample dengue predictions using a k-fold cross-validation design, shown 

in Supplementary Figure 9. 

 

We assessed the influence of each covariate in predicting temporal and spatial dynamics by 

repeating the cross-validation experiments, excluding one model covariate from the full model at 

a time (Figure 5). We used the time series cross-validation design to understand a covariate’s 
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influence in predicting temporal dynamics, and a k-fold spatial holdout design to understand a 

covariate’s influence in predicting spatial dynamics. Under a k-fold spatial holdout design, 

predictions of dengue cases are inferred from neighbouring municipalities through spatial random 

effects. The change in predictive ability when a covariate is excluded therefore reflects the extent 

to which that covariate explained differences in the expected similarities between neighbouring 

municipalities. Contrastingly with a TSCV design, predictions are inferred from seasonal random 

effects capturing seasonality in transmission, as well as the estimated year-specific spatiotemporal 

random effect. As such, changes in the predictive ability of the model when the covariate is 

excluded reflect how the covariate explains differences from expected seasonal and interannual 

variation up to the prediction week. The influence of a covariate on dengue predictions was 

measured as the percentage change in the continuous ranked probability score (CRPS) when the 

covariate was excluded (Figure 5).  

 

For both spatial and temporal holdout designs the full model showed improved predictive accuracy 

over a baseline. Weighted lagged cases and the Niño 3.4 indicator were particularly influential 

covariates in predicting temporal dynamics, followed by a smaller role for SPI-12 and relative 

humidity. The influence of maximum temperature and susceptibility was small but positive. We 

found that including climatic covariates improved the predictive power of the model by 8.1%, over 

a baseline, while incorporating climatic and epidemic factors increased this to 12.7% 

(Supplementary Table 2). Weighted lagged cases, representing municipality-level force of 

infection, were the most influential covariate in predicting spatial dynamics. Climatic covariates 

and susceptibility appear less influential in driving spatial dynamics, with very small median 

increases in CRPS, and 95% credible intervals crossing zero (Supplementary Table 3). 
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Figure 6.5: Influence of climatic and epidemic drivers on dengue predictions 

Influence of model covariates on out-of-sample continuous ranked probability score (CRPS). This is 

estimated by calculating the percentage increase in CRPS score when each model covariate is excluded 

(note that smaller CRPS scores indicate better predictions). We evaluated the influence of model covariates 

using time-series cross-validation (panel a), which represents the importance of the covariate in explaining 

temporal dynamics, and 5-fold spatial cross-validation, representing the importance of the covariate in 

driving spatial patterns of dengue risk (panel b). To account for random variation in fold allocation we 

repeated the k-fold evaluation 10 times, and report a median % increase in CRPS (point) and the associated 

95% credible interval (lines). The colours reflect the type of covariate considered with climate covariates 

shown in orange, epidemic covariates shown in purple and the baseline model (where all covariates are 

excluded) shown in green. 

 

6.5 Discussion 
 

To date, dengue early warning systems have typically been based on statistical models, which have 

been found to outperform mechanistic methods [57]. However, statistical regression methods often 

do not account for inherent epidemic drivers of infectious disease transmission, absent from other 

typical use-cases such as environmental epidemiology or economics [42]. In particular, statistical 

regression models typically do not account for changes in population immunity, influencing the 



Chapter 6: Climate and epidemic drivers of spatiotemporal dengue outbreak dynamics  

 163 

underlying population at risk of disease, which may limit their ability to predict the timing of an 

outbreak peak or, conversely, when a large outbreak may be more likely to occur. 

 

We analyse 10 years of climate and dengue data in the Dominican Republic to quantify key drivers 

of dengue transmission; a first step in the development of an early warning system for dengue. We 

develop a spatiotemporal Bayesian framework, incorporating both climatic and epidemic drivers 

of transmission, which is able to generate probabilistic predictions of dengue cases at the 

municipality level with improved out-of-sample predictive performance over a baseline model. 

Our climate-driven statistical modelling framework was informed by catalytic modelling of age-

stratified seroprevalence data. We estimated an average annual attack rate of 12.1% (95% CrI: 

9.75% - 15.0%), suggesting that around 7.5% of dengue infections are reported and allowing us to 

approximate the proportion of the population remaining susceptible during each dengue season. 

We included both this and an average of lagged cases, weighted by the serial interval distribution. 

These terms represent the accumulation of immunity and the force of infection during each dengue 

season, capturing epidemic drivers and allowing us to quantify the impact of climate on dengue 

transmissibility (as measured by the reproduction number, R0) directly. The best performing model 

also included the following climatic covariates: Niño 3.4 sea surface temperature anomaly (SSTA), 

using a 12 week average with a 6 week lag; maximum temperature (°C), using an 8 week average 

with a 4 week lag; relative humidity (%) using a 10 week average with a 2 week lag; and the 

standard precipitation index (SPI) on a 12 month time scale (Supplementary Table 1).  

 

We found non-linear and delayed effects of climate on dengue risk, as has been seen in other 

settings in the Caribbean, as well as Latin America more widely [12,13]. We found increased 

dengue risk during El Niño conditions, as well as with increasing temperatures and relative 

humidity. We also found evidence of increased dengue risk during drought conditions with 

reduced risk during periods of heavy rainfall. While this is in line with other studies, the impact of 

drought and extreme rainfall on dengue risk is known to be mediated by local water and sanitation 

infrastructure, as well as population water storage behaviour, and is likely to differ depending on 

the setting studied [58,53].  
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Our results are in line with a previous study on dengue in several provinces of the Dominican 

Republic, which found that lagged relative humidity and temperature were correlated with dengue 

cases, and that precipitation (measured in mm) was not a strong predictor [25]. However, unlike 

Robert and colleagues we found a positive relationship between relative humidity and dengue 

cases, which is likely a result of accounting for both temperature and relative humidity together in 

a multivariable model [25]. Our work also builds on previous research identifying useful predictors 

for dengue outbreaks in the Dominican Republic, which found that probable cases could be used 

to predict outbreaks of hospitalised cases but that meteorological data obtained for the study did 

not capture enough geographic variation to improve predictions [59]. Here, we were able to 

understand spatiotemporal impacts of climate on disease transmission beyond the areas 

represented by weather station data by leveraging fine-scale gridded climate reanalysis data [31].  

 

We then conducted rigorous model evaluation to test the ability of our inferred climatic and 

epidemic drivers to predict unseen observations [53,60]. Using a time-series cross-validation 

approach to assess the potential utility of a model framework for forecasting, we found that the 

model was able to capture broad spatiotemporal outbreak dynamics in the Dominican Republic. 

However, the model underpredicted the 2019 peak in cases in almost all provinces. This is likely 

due to our simplification of dengue immune dynamics in the Dominican Republic, and particularly 

our inability to incorporate the impact of switches in dominant serotype on population 

susceptibility. While there is limited historical serotype surveillance in the Dominican Republic, 

DENV3 was reported in 2019 for the first time since 2015, suggesting there may have been 

increased population susceptibility for circulating serotypes or genotypes at this time [24]. 

 

We found the most influential drivers of temporal dengue risk were weighted lagged cases, 

representing the force of infection, as well as the Niño 3.4 index and SPI-12, representing 

interannual climatic drivers. Contrastingly, we found that only weighted lagged cases were the 

most influential driver of spatial risk, with less evidence for an influence of included climatic 

covariates on spatially structured dynamics (that is, how different transmission is from 

neighbouring municipalities than what would be expected). Despite this, we did find that included 

epidemic and climatic model covariates reduced the unexplained spatiotemporal variation in 

dengue cases, suggesting they are able to account for non-spatially structured variation in 



Chapter 6: Climate and epidemic drivers of spatiotemporal dengue outbreak dynamics  

 165 

transmission. The inclusion of socioeconomic variables could improve the spatial predictive ability 

of the model but would possibly have less impact in a forecasting application as these factors are 

unlikely to vary significantly over time. While we lacked the data needed to parameterise a fully 

mechanistic model in this setting, we compared our mechanistically informed statistical 

framework with a more typical climate-only model. We found that while including climatic 

variation improved the predictive power of the model by 8.1% over a baseline including seasonal 

and year-specific spatial random effects, incorporating epidemic drivers increased this to 12.7% 

(Supplementary Table 3).   

 

There are several limitations to this work. We also did not have access to data on vector control 

efforts, which may have changed in intensity, particularly following the 2015-16 Zika outbreak, 

or on vector density, which both mediate the relationship between climate and dengue risk. 

Additionally, we only had access to seroprevalence data from two provinces in the Dominican 

Republic and for individuals ≥ 5 years old. Due to high seropositivity in this sample, we were 

unable to investigate temporal trends in the force of infection, which would have allowed a more 

precise estimation of reporting rate and population susceptibility over time. In this study, we use 

DENV1-4 IgG ELISA testing data, which can be affected by cross-reactivity with other 

flaviviruses. This would inflate our estimates of DENV seropositivity. To address this, we 

compared ELISA assay data with DENV1 and DENV2 neutralisation test data using fluorescent 

reported virus and live imaging, finding similar patterns of age-stratified seropositivity 

(Supplementary Figure 10). We assumed a constant force of infection (reflecting endemic dengue 

transmission in the country), estimating the average FOI over circulating serotypes. As we lacked 

the serotype surveillance data necessary to understand serotype dynamics over time, we also 

calculated susceptibility for each dengue season, making the simplifying assumption that 

population immunity was seasonal. We therefore did not incorporate long-term homotypic and 

short-term heterotypic immunity of dengue, which likely limited our ability to predict large 

outbreak peaks such as in 2019 [61,62]. Future extensions of this work could include evaluating 

dengue forecasts generated by this modelling framework at appropriate lead times for public health 

response, either through the use of identified lagged climatic covariates or climate forecasts. 

Additionally, further work could consider alternative parametric assumptions for the discretised 

serial interval distribution, which may improve predictive ability [45]. 
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In this work, we leverage serological data to account for important aspects of the dengue 

transmission process in our modelling framework, enabling us to quantify the impact of climate 

on transmissibility. We used rigorous cross-validation methodology to estimate out-of-sample 

predictive error to test whether the climate-dengue relationships identified enable prediction of 

unseen observations; an important first step in the development of a dengue early warning system. 

Early warning systems able to accurately forecast dengue dynamics will be increasingly important 

in the Dominican Republic, as climate change impacts future outbreak risk.  
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Chapter 7 

Discussion 
 

In this thesis I have explored the ways in which intrinsic immune drivers and extrinsic drivers such 

as population behaviour or climatic variation shape the dynamics of viral outbreaks. Understanding 

the relative role of these drivers can have important implications for disease control, particularly 

when considering viruses that pose major public health risks. This research focused on two 

pressing viral threats; SARS-CoV-2 and dengue virus, exploring their transmission dynamics in 

complex high-incidence settings.  

 

7.1 Summary of findings 
 

At the outset of this PhD in October 2020, there was limited understanding of SARS-CoV-2 

immune dynamics. Key questions included: the extent of protection against reinfection afforded 

by primary SARS-CoV-2 infection, and indeed whether phenomena such as antibody-dependent 

enhancement might be observed; the duration of protection from neutralising antibodies; and the 

extent of cross-immunity from previous infection with seasonal coronaviruses [1–3]. As a result 

of this, it was not possible to simulate potential long-term dynamics for SARS-CoV-2, without 

assuming dynamics similar to SARS or influenza [4]. By September 2020, preliminary evidence 

from a SARS-CoV-2 outbreak on a fishing vessel suggested neutralising antibodies were 

protective against reinfection, as the three individuals with prior neutralising antibodies were not 

infected [5]. However, the extent of this protection was unclear, as were the implications of this 

for widespread transmission in the general population. 

 

In my first published paper (Chapter 3), I analysed longitudinal PCR and serological testing data 

from a large workplace cohort of over 4,400 employees in the United States. In this study, we 
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found that primary infection with SARS-CoV-2 provides protection against reinfection for most 

individuals, at least over a 6-month time period. Our analysis adjusted for confounders, which is 

particularly important when considering reinfection risk. If a specific subset of the cohort is at 

higher risk of infection then they will be more likely to be both initially seropositive and then also 

to have a subsequent reinfection, which would inflate estimates of reinfection risk. Similarly, we 

found that accurate estimation of reinfection risk was dependent on the cutoff date used to define 

baseline seroprevalence (and the subsequent window to observe possible reinfections). Notably, 

we found that unadjusted estimates using early cutoff weeks resulted in point estimates for an odds 

ratio of reinfection above one, demonstrating how early data can give misleading impressions of 

immune dynamics in evolving outbreaks with novel pathogens. 

 

These findings then informed the parameterisation of a compartmental model of SARS-CoV-2 

transmission in Chapter 4, which I fit to surveillance and serological data to understand drivers of 

transmission in the Dominican Republic. In this analysis, I found that COVID-19 dynamics were 

largely driven by substantial accumulation of immunity, estimating that around a third of the 

population were infected by the end of 2020 and over 80% by the end of 2021. The increasing 

levels of population immunity kept  around one despite increases in contact rates, except during 

periods where novel variants emerged. I retrospectively assessed the impact of the vaccination 

campaign, which primarily administered CoronaVac, finding that the speed and timing of the 

campaign had an important impact on disease burden, despite high levels of post-infection 

immunity in the population. I also quantified the potential effect of using vaccine products with 

higher efficacy (such as Pfizer/BioNTech or Oxford/AstraZeneca), aiming to understand the 

impact of iniquities and delays in COVID-19 vaccine roll out in low- and middle-income countries. 

Here I found that, while using a higher efficacy product would have reduced disease burden over 

subsequent waves, delaying the vaccination program to wait for such a product to be delivered (for 

instance, through the COVAX mechanism) would have resulted in increased burden. A novel 

aspect of this work involved directly assessing the trade-off between changes in population 

mobility and vaccination on disease burden. This illustrated important nonlinearities in public 

health response measures; for instance, quantifying how initial increases in vaccine coverage had 

a bigger impact on disease burden than later ones due to the age-targeted rollout. We also 

quantified the return-to-normality afforded by the vaccination campaign, finding that in the 
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absence of vaccination, a 10-20% reduction of mobility would have been required to maintain 

equivalent death and hospitalisation outcomes. 

 

Chapter 5 presented the results of an analysis exploring how climate variation and serotype 

competition drive dengue outbreak dynamics in Singapore. While both climate and changes in 

population immunity caused by shifts in dominant serotypes are well-recognised drivers of dengue 

outbreaks, few modelling frameworks account for both factors [6,7]. I used a Bayesian hierarchical 

modelling framework to quantify the impact of temperature, rainfall, El Niño Southern Oscillation 

(ENSO) and switches in the dominant DENV serotype on dengue incidence. I explored different 

climatic indicators at a range of biologically plausible lags to identify the best predictors of weekly 

dengue incidence, as well as different serotype indicators. In this analysis I found delayed and non-

linear relationships between climatic variation and dengue incidence. I found evidence of a non-

linear association between maximum temperature and dengue risk, with decreasing risk at very 

high temperatures. This has important implications for future dengue transmission in Singapore as 

climate change may shift seasonal transmission patterns, resulting in more transmission earlier or 

later in the season. I found that intermediately wet conditions were associated with increased 

dengue risk, with decreased risk in very dry conditions, as well as non-linearly increasing risk in 

El Niño conditions. Finally, I found a non-linear relationship between the time since a switch in 

the dominant serotype and dengue risk, with increased risk in the years immediately following a 

switch and increased risk again at 6+ years since a switch. This likely reflects the accumulation of 

susceptible individuals in the population, as well as risk associated with the growth of non-

dominant serotypes. 

 

I then adapted this model to forecast dengue incidence for early warning, generating accurate 

forecasts from 2-8 weeks ahead. I assessed the model’s ability to predict dengue incidence and the 

probability of an outbreak using strictly proper scoring rules [8]. Additionally, I conducted receiver 

operator characteristic (ROC) analysis, calculating the model’s hit rate (sensitivity) and false alarm 

rate (1-specificity) in detecting outbreaks and providing a more operationally focused assessment 

of model performance. We found that including serotype dynamics helped to explain interannual 

variability in dengue transmission and improved the quality of the dengue forecasts, particularly 

the ability to discriminate between outbreak and non-outbreak weeks. These findings demonstrate 
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the utility of incorporating serotype competition as a proxy for immune dynamics within 

forecasting frameworks, particularly to predict interannual variability in incidence. 

 

In Chapter 6, I used a Bayesian spatiotemporal model to quantify the impact of climatic variation 

on dengue risk in the Dominican Republic. Again, I explored different climatic indicators at a 

range of lags. While I found similar non-linear relationships between Niño 3.4 SSTA, maximum 

temperature and dengue incidence as those in Singapore, in the Dominican Republic, relative 

humidity and drought indices were also strong predictors. I found evidence of increased dengue 

risk with increasing humidity, as well as during drought periods, with decreased risk following 

exceptionally wet periods. The relationship between temperature and dengue incidence found in 

Singapore was broadly similar to the non-linear thermal performance curves identified in 

laboratory experiments with decreasing dengue risk at very high temperatures (upwards of 32 °C) 

[45]. Contrastingly, in the Dominican Republic, I found increasing uncertainty around the effect 

estimates at higher temperatures. This could be because fewer locations and/or weeks are too hot 

for dengue transmission in the Dominican Republic, making this non-linearity harder to detect. 

 

In this analysis, I also incorporated additional epidemic drivers into the modelling framework, 

leveraging dengue seroprevalence data. Specifically, I included weighted lagged cases 

(representing the force of infection) as well as an estimated proportion susceptible in the current 

dengue season, informed by serocatalytic modelling. I estimated an average annual attack rate of 

around 12%, suggesting approximately 7.5% of dengue infections are reported. Despite the 

approximate nature of the epidemic terms, their inclusion helped to account for additional 

unexplained interannual variation when compared with a climate-only model and improved the 

model’s predictive ability. I then assessed the influence of each covariate in predicting temporal 

and spatial dynamics. The most influential drivers of temporal dengue risk were weighted lagged 

cases (representing the force of infection) as well as the Niño 3.4 index and SPI-12 (representing 

interannual climatic drivers). I then found only weighted lagged cases were the most influential 

driver of spatial risk, with less evidence for an influence of climatic drivers. Finally, I generated 

and scored out-of-sample probabilistic predictions of dengue cases to assess the predictive skill of 

the full epidemic- and climate-informed model. I found that the model was able to capture key 
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spatiotemporal outbreak dynamics and outperformed a baseline model in a step towards the 

development of an early warning system.  

 

7.1 Strengths of this work 
 

7.1.1 Integrating multiple data streams 
 

One of the key strengths of this work is the use of modelling frameworks to integrate and jointly 

analyse different data streams, enabling a better understanding of the drivers of viral transmission. 

In Chapter 4, I jointly fit a transmission dynamic model to seroprevalence data, reported deaths, 

hospital occupancy and ICU occupancy over time in the Dominican Republic. This enabled me to 

parameterise a complex age-structured model, accounting for vaccination as well as changes in 

hospitalisation and death risk due to improved treatment or the introduction of new variants, and 

changes in the relationship between measured mobility data and true social contacts. Fitting to 

multiple data streams can inform different components of the transmission process and make use 

of uncorrelated error or bias when data sources are from different studies or surveillance systems 

[9]. In addition to this, I made use of other valuable datasets including: Google mobility reports 

which, when combined with a simulated contact matrix for the Dominican Republic, helped to 

inform changes in contact rates over time; vaccination data collected by Oxford’s Our World in 

Data to inform vaccination rates in the population; and SARS-CoV-2 sequence data published on 

GISAID to inform the timing of introduction of new variants [10–13]. 

 

The ideal complexity of a transmission dynamic model is a trade-off between accuracy, the ability 

to reproduce observed epidemic dynamics, and transparency, being able to understand how 

different parameters interact to affect modelled dynamics [14]. In this case, a relatively complex 

model structure was required to characterize the non-linear effects of immunity, social contacts 

and viral evolution on transmission, and conduct plausible counterfactual analysis. Fitting to 

multiple data streams allowed me to distinguish between alternative hypotheses for disease 

transmission. For instance, from the data it is difficult to assess the true size of the first wave of 

SARS-CoV-2 transmission, as cases (and probably deaths) were likely substantially underreported 
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due to limited testing capacity. In light of this, without the understanding of population immunity 

gained through the serosurvey, the model would not have been able to distinguish between a 

scenario with a very large first wave generating high levels of immunity and reducing the effective 

reproduction number, , or a scenario with low transmission with a lower initial estimated basic 

reproduction number, , or increased influence of reductions in social contacts due to non-

pharmaceutical interventions. By jointly fitting to both data streams, and incorporating changes in 

contacts over time, I found that the scenario best supported by the data lay in the middle of these 

two extremes; where cases and deaths were underreported in the first wave and a combination of 

a steady build-up of immunity and reduction in social contacts drove  to around 1 for much of 

2020. 

 

Similarly, in Chapter 5, by combining dengue case data, climate data, an ENSO indicator and 

serotype surveillance data, I was able to both better quantify the impact of climatic variation on 

dengue incidence and to improve forecasting ability. While dengue forecasting models have shown 

good performance at predicting seasonal patterns of transmission, a longstanding challenge in the 

field has been how to predict large outbreaks in advance, with models generally also showing poor 

predictive ability early in the season [6]. Ideally, dengue forecasting models would be able to give 

early warning of large outbreaks, as well as accurately predict peak timing and intensity. This 

warning should be given with operationally useful lead time to allow for vector control and other 

public health interventions to be carried out [6,7,15]. Previous research in Singapore found that a 

lead time of three months was optimal for dengue control, with 1-3 months lead time also offering 

operational utility [16]. 

 

Immunity is well-recognised to be an important driver of dengue transmission, with much 

theoretical modelling work demonstrating the role of serotype competition in determining 

dynamics [17,18]. However, to date few dengue forecasting models incorporate serotype or 

immunity data. This is partly because the majority of dengue early warning forecasting models 

(particularly those employed operationally) are based on statistical regression frameworks, where 

it is more challenging to account for the nonlinearity introduced by the accumulation of immunity 

in the population [19]. Chapters 5 and 6 address this question, aiming to incorporate proxies of 

immunity into forecasting frameworks, using different approaches based on the data available. 
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Chapter 5 contributes to the field of dengue prediction by demonstrating that the inclusion of 

serotype data helps to account for unexplained interannual variation in dengue case data. By 

including an indicator for the time since a switch in serotype, I was able to improve predictions of 

dengue incidence at short lead times and improve outbreak detection at 2–8 weeks lead time, when 

compared with a climate-only model. The model developed also could also be used to generate 

forecasts under different scenarios, for instance, what would forecasts look like with typical 

climatology and a switch in dominant serotype or with an El Niño event? This work was developed 

in collaboration with the National Environmental Agency in Singapore and offers a more 

interpretable forecasting framework than the current LASSO-based forecasting model [20]. As 

part of this ongoing collaboration with the NEA, the Bayesian hierarchical model presented in 

Chapter 5 will be integrated into Singapore’s routine dengue forecasting, as part of an ensemble 

forecasting approach. 

 

In Chapter 6, I combine gridded climate data, ENSO and drought indicators with dengue 

seroprevalence data from 2021, incorporating proxies for underlying immune drivers into a 

climate-informed forecasting model. Specifically, I used an estimate of the annual force of 

infection for dengue to calculate the average reporting ratio for dengue and approximate the 

proportion infected in each dengue season. As well as this, I incorporated lagged cases weighted 

by the serial interval distribution, to approximate the force of infection. While this was a relatively 

crude approximation, including epidemic elements representing the force of infection and changes 

in population immunity allowed me to estimate the impact of climate drivers on transmissibility, 

or , rather than on dengue cases, and improved spatiotemporal predictive ability. 

 

7.1.2 Representative data 
 

Another strength of this thesis is the variety and quality of the data used throughout. In particular, 

the serological data used in Chapters 4 and 6 is from a high quality nationally representative dataset 

[21]. The serological study used a multistage survey design, accounting for population, urban-rural 

divide, and spatial distribution of selected clusters. Adults and children  ≥5 years old were eligible 

to partake in the study and over 6,600 individuals were surveyed. Nationally representative 

serosurveys are relatively unusual, with serological surveys often leveraging samples from blood 
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donors or other convenience samples, limiting the representativeness of the data [22]. This survey 

was performed between June and October 2021, providing insight into SARS-CoV-2 dynamics as 

vaccines began to be rolled out in the Dominican Republic. Serosurveys of this quality were rarely 

performed outside of high-income countries in the pandemic, and few nationally representative 

studies were conducted in Latin America and the Caribbean [23]. Serosurvey samples were tested 

for SARS-CoV-2 using the Roche Elecsys electrochemiluminescence immunoassay, which had 

high sensitivity and specificity, according to large non-manufactured sponsored surveys [24,25]. 

This SARS-CoV-2 seroprevalence data informed analysis in Chapter 4. Subsequently, a subset of 

samples were selected for testing with a DENV1-4 ELISA assay, which I was able to leverage to 

improve the predictive power of a climate-informed model in Chapter 6. 

 

This thesis also makes use of Singapore’s dengue surveillance data, through a collaboration with 

the National Environmental Agency in Singapore. This is high quality surveillance data, with 

laboratory confirmation of dengue cases and a world-class dataset of DENV serotype surveillance 

from 2006 [26]. 

 

7.1.3 Reproducibility 
 

Throughout my PhD, I have aimed to make my research as reproducible and transparent as 

possible. A reproducible data analysis is defined as one where the data and code needed to perform 

the analysis are made available to others for independent study and analysis [27]. This must, 

however, be balanced with ethical issues surrounding individual-level data, such as ensuring 

anonymity for study participants. 

 

Chapter 3 relied on individual-level serological and PCR data, including sensitive data such as 

race and ethnicity, job categories, and history of chronic disease. As a result of this, weekly 

aggregated PCR and serological data were made available on GitHub, as well as code to reproduce 

the simulation analysis. I also included a file of odds ratio estimates such that all figures in the 

manuscript could be recreated. All data and code used in the analysis in Chapter 4 are available on 

GitHub. As well as making the analysis reproducible, this brings together several useful datasets 

for the Dominican Republic (including surveillance data, GISAID sequence data, Google mobility 
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report data and vaccination data), creating a repository for potential future analysis. Similarly, for 

Chapter 5, all data and code needed to reproduce the analysis are available on GitHub. 

Additionally, a more comprehensive code base was shared with the National Environment Agency, 

to enable analysts to run the model independently and incorporate it into routine dengue ensemble 

forecasts. This contained data wrangling steps needed to routinely run forecasts from raw data 

inputs. I also plan to publish code and data needed to reproduce the analysis presented in Chapter 

6 as part of the publication process. 

 

7.2 Limitations  
 

7.2.1 Data 
 

While the variety and quality of the data used throughout this thesis is a strength of the work 

presented, there are limitations, often inherent to the data used, that must be considered when 

interpreting study results.  

 

Chapter 3 analysed data from an opportunistic workplace cohort which is unlikely to be 

representative of the national population. However, I did not identify any workplace outbreaks 

within the study period, and so infections are likely to represent community transmission unlike, 

say, in healthcare worker cohorts where transmission is often nosocomial [28]. Additionally, 

reinfection was not confirmed by genomic sequencing and as such may reflect instances of 

prolonged viral shedding rather than true reinfection. While these cases appear to be relatively 

rare, this would result in an overestimation of the odds ratio for reinfection, meaning that our 

estimate of reinfection risk is conservative, reflecting the minimum possible association between 

antibodies and future infection risk. 

 

In Chapter 4, COVID-19 surveillance data streams were likely to have been poorer quality in the 

early phase of the pandemic. Hospital and ICU data only began to be reported in September 2020, 

and deaths may have been underreported in the first wave due to limited testing capacity. Indeed, 

test positivity was high in this period, above 15%, which is indicative of underreporting [11]. To 
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address this, I considered different weighting options for surveillance and serological data within 

the likelihood, giving the serological data more weight. As in many other low- and middle-income 

country settings, genomic sequencing was limited throughout the pandemic, which meant I was 

unable to precisely date the introduction and rise to dominance of novel variants from available 

data. As a result of this, I fit parameters describing these dynamics for Delta and conducted 

sensitivity analysis around different introduction periods for Mu. Similarly, while the real-time 

publication of mobility data during an outbreak, such as the Google mobility reports used here, is 

unprecedented, there are limitations in using this as a proxy for social contacts. Firstly, Google 

mobility reports are only informative of the mobility patterns among users of Google products. 

Secondly, the relationship of this data to social contacts affecting transmission may change during 

the pandemic, as non-pharmaceutical interventions such as physical distancing measures and face 

masks began to be employed. To take this into account I fit two parameters modifying the 

relationship between Google mobility data and contact rates within the model framework, one for 

each year of the pandemic. 

 

In Chapter 6, I used reported dengue cases in the analysis, which have not necessarily been 

laboratory confirmed. Due to the nonspecific clinical presentation of most dengue cases, this could 

result in misdiagnosis of other acute febrile illness as dengue, particularly during the large 

chikungunya outbreak of 2014 and Zika outbreak in 2015/16. The impact of dengue misdiagnosis, 

particularly if it were to vary over time, is ameliorated by the use of year-specific spatial random 

effects. These random effects can account for interannual variation in dengue incidence, 

potentially due to increased misdiagnosis due to a concurrent outbreak of non-dengue acute febrile 

illness, as well as other factors such as changing vector control efforts. Additionally, outside of the 

large chikungunya and Zika outbreaks, dengue burden is much higher than other similarly 

presenting acute febrile illness, suggesting misdiagnosis is unlikely to substantially impact 

inference of spatiotemporal dynamics. Chapter 6 also makes use of serological data, tested using 

an DENV1-4 ELISA assay. Cross-reaction is a common problem faced in serological analysis of 

flaviruses, particularly when using ELISA assays, which have lower specificity than other assays 

[29–31]. Despite this, advancements have been made in distinguishing between flavivirus 

infections. Where longitudinal data is available, this can be achieved by looking at changes in titre 

values over time or, if only cross-sectional data is available, by jointly modelling dengue and Zika 
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seroprevalence [32–34]. In this analysis, we use cross-sectional DENV seroprevalence data from 

2021, where cross-reaction from previous infection with other flaviruses could inflate estimates of 

DENV seropositivity. However, I found support for high seroprevalence of DENV antibodies in 

the population from supplementary datasets, testing for DENV1 and DENV2 neutralising 

antibodies. These found similar patterns of age-stratified seropositivity as the broader, less specific 

DENV1-4 ELISA assay, suggesting high levels of endemic dengue transmission with nearly all 

adults having had prior infection. 

 

In Chapters 5 and 6, I include different approximations for changing population immunity to 

dengue virus into forecasting frameworks. Predictions for both of these models would likely be 

improved by more accurate measurements of immunity over time, for instance, by incorporating 

modelled seroprevalence to the currently dominant serotype. However, until serological testing is 

routinely performed, using well-validated assays able to distinguish between prior infection with 

a particular DENV serotype, this work shows proxies for temporal immune dynamics drawn from 

serotype surveillance or cross-sectional serology can add valuable contributions to forecasting 

frameworks. 

 

7.2.2 Model assumptions 
 

While trade-offs between model accuracy, transparency and, in some cases, analytical tractability 

are intrinsic to infectious disease modelling, the work presented here is limited by modelling 

assumptions, which are important to consider when interpreting model findings. In Chapter 4, we 

lacked age-stratified vaccination data, and as such made several assumptions regarding this 

process. I only incorporated protection from full vaccination (after two doses in a full primary 

vaccination schedule) and did not incorporate the partial protection afforded by a single dose. 

However, as vaccine efficacy from Sinovac-CoronaVac from a single dose is low, I do not expect 

this to have a meaningful impact on our results [35,36]. As we lacked age-stratified data, I assumed 

that vaccine doses were divided equally between eligible age groups for vaccination, according to 

VacúnateRD policy [37]. If all eligible age groups were completely vaccinated, excess doses were 

distributed throughout the rest of the population at random, reflecting the vaccination of healthcare 

workers and other vulnerable individuals of all ages. Finally, I only incorporated vaccine efficacy 
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against severe disease and not against symptomatic disease or death. Substantial uncertainty in the 

efficacy of CoronaVac meant that I was unable to construct a full pipeline of vaccine efficacy 

against multiple end points within the modelling framework and as I fit directly to hospitalisation 

and ICU admissions (but not cases), vaccine efficacy against severe disease was the most relevant 

estimate to incorporate. As this assumption was important when considering counterfactual 

scenarios around vaccination impact, I conducted sensitivity analyses around vaccine efficacy and 

waning assumptions. Specifically, in a sensitivity analysis using lower vaccine efficacy (based on 

estimates in the literature for protection against symptomatic disease rather than severe disease), 

we found a lower estimated impact of vaccination. However, results from our sensitivity analyses 

were in the same order of magnitude and direction, showing the key conclusions from the 

assessment of potential vaccination strategies are robust. 

 

In Chapters 5 and 6, I made assumptions around causal processes underlying dengue transmission, 

informing my choices of which climatic and non-climatic variables to test in model selection. In 

both chapters I decided to test Niño 3.4 sea surface temperature anomalies (SSTAs) measuring the 

El Niño Southern Oscillation, as well as climatic variables such as temperature, precipitation and 

humidity within the same model. In other similar studies quantifying the impact of climatic 

variation on disease these were kept separate, following the logic that the impact of ENSO on 

transmission is mediated through local weather conditions [38]. Here, I reasoned that, while this 

is likely to be true to an extent, ENSO is also likely to have other climatic impacts not captured 

through say, changes in weekly average temperature or cumulative rainfall. For instance, ENSO 

could result in changes to longer-term climatic variation, influencing annual temperatures 

determining geographical and seasonal limits of dengue transmission [39]. Similarly, ENSO could 

impact climatic variables not incorporated in the modelling framework, such as humidity in 

Chapter 5, or the likelihood of a hurricane or tropical storm in Chapter 6. Finally, in the 

spatiotemporal analysis presented in Chapter 6, I did not incorporate socioeconomic variables such 

as level of urbanisation or access to piped water, which are known to impact dengue transmission. 

Spatial socioeconomic differences are instead accounted for through the inclusion of year-specific 

spatial random effects. While this likely limits the spatial predictive power of the model, this is 

not likely to impact the model’s suitability as an early-warning framework as these factors often 

do not change in the time frame (weeks to months) relevant to short-term forecasting. 
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7.2.3 Generalisability 
 

Another limitation of this work is the extent to which findings are generalisable. In Chapter 3, 

while we utilize a US-based workplace cohort, we aim to estimate a key epidemiological parameter 

which is generalizable to other settings. The results of Chapter 3 are dependent on the wider 

epidemiological context, particularly the variants circulating in the US in the study period between 

April 2020 and January 2021. However, this period predates the rise to dominance of the first 

variant of concern (Alpha), and so reinfection risk likely reflects that associated with wild-type 

SARS-CoV-2. Analyses of key epidemiological parameters, such as reinfection risk, were repeated 

as new variants emerged to characterise their epidemiological properties. For instance, a study in 

South Africa demonstrated increased risk of reinfection with the emergence of Omicron, 

suggestive of immune evasion [40].  

 

In Chapter 4, I sought to develop an in-depth modelling study of SARS-CoV-2 transmission 

dynamics in the Dominican Republic, able to offer similar insights to studies performed regularly 

in high-income countries, such as the UK. As such, my approach, data streams and methods were 

tailored to the setting in question. Despite this, the findings may have broader relevance in 

understanding transmission dynamics in countries where non-pharmaceutical interventions alone 

were unable to suppress transmission, those with relatively high levels of population immunity at 

vaccine roll out and those using a primarily Sinovac-CoronaVac vaccination campaign. For 

Chapters 5 and 6, I demonstrated the value of developing climate-informed models tailored to local 

climate-dengue relationships, leveraging the data streams available in each setting to incorporate 

proxies for immunity, and building on previous work in other settings [41–43]. However, these 

findings are likely to be relevant to other dengue endemic areas, particularly those experiencing 

hyperendemic circulation of multiple serotypes. 

 

7.3 Implications and future work 
 

This work has been developed with a view to informing and enhancing epidemic response. This 

framing has shaped the analyses performed; for instance, designing the counterfactual scenarios 
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developed in Chapter 4 or the model evaluation methodology used in Chapters 5 and 6. The 

analysis in Chapter 3, focused on estimating the relative risk of reinfection, a key epidemiological 

parameter needed to consider the potential impact of future non-pharmaceutical interventions, and 

to inform vaccine development. In Chapter 4, counterfactual analysis around COVID-19 

vaccination strategies in the Dominican Republic aimed to add to lessons learnt from the pandemic 

to inform future pandemic preparedness, particularly considering optimal vaccination strategies 

and arguing for improved global vaccine equity.  

 

In Chapter 5, I developed a functional forecasting model for early warning in Singapore, and 

through ongoing work with the National Environmental Agency I am supporting its 

implementation into routine dengue forecasting. Similarly in Chapter 6 I developed a prototype 

space-time dengue model, demonstrating good predictive ability; an important first step in 

developing an early warning framework. These two chapters demonstrate the value of proxies for 

population immunity in improving predictive power of forecasting models, and particularly in 

addressing the challenge of predicting large outbreak years. Further work is needed to explore 

methods to incorporate measures of seroprevalence directly into forecasting frameworks. 

Particularly, work to disentangle serotype-specific population immunity levels, through improved 

algorithms for analysis of assay data or joint analysis of serotype surveillance and serological data, 

would allow for a better characterisation of outbreak risk associated with the growth of a specific 

serotype. Here, research aimed at improving the predictive performance of mechanistic models in 

hyperendemic settings could be beneficial, as these can be parameterised to include multiple 

serotypes and more fully capture dengue immune dynamics. Potential avenues for improving 

mechanistic dengue forecasting models include integrating local climate-dengue relationships to 

inform transmissibility or fitting jointly to serological or serotype surveillance data as well as 

dengue case surveillance. This work would rely on the expansion of reliable serological and 

serotype surveillance data streams, which are currently limited in many low and middle-income 

countries experiencing a high burden of dengue.  Future work is also needed to compare state of 

the art climate-informed statistical dengue forecasting frameworks with mechanistic or semi-

mechanistic approaches. Ultimately, ensemble forecasting frameworks, leveraging the benefits of 

multiple models (as well as mitigating their potential pitfalls) are likely to offer greatest predictive 

performance [44,6].  
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7.4 Concluding remarks  
 

In this thesis, I aimed to bring together diverse modelling approaches and data sources to 

disentangle the role of immunity from extrinsic drivers, such as climate and behaviour, in driving 

acute viral outbreaks. The research presented has advanced understanding of these interactions in 

settings with complex landscapes of population immunity; for instance, with multiple SARS-CoV-

2 variants in circulation and a mix of post-infection and post-vaccination immunity, or with 

hyperendemic circulation of dengue serotypes. Disentangling these dynamics within modelling 

frameworks allows us to more accurately predict future or counterfactual transmission patterns, 

thereby better informing epidemic response.  
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S1 Text: Confounder adjustment for logistic regression analyses 

 

Table A: Confounding variables adjusted for in logistic regression analysis for each cut-off week. 

Variable selection was conducted separately for each cut-off week. The final variable set adjusted for was 

selected using backwards selection minimising RMSE at each step from a list of potential confounders 

selected a priori. These included: age, sex, race, ethnicity, BMI, state, work location, job category, 

household size, history of chronic disease, history of smoking and test frequency. Age and sex were 

considered ‘forced’ variables and were adjusted for in all analyses.  

 

Date Variables adjusted for 

26/04/2020 Sex, age, BMI, history of chronic disease, household size, job category 

03/05/2020 Sex, age, history of chronic disease, household size, job category, race, history of smoking 

10/05/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking 

17/05/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking 

24/05/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking 

31/05/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

07/06/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

14/06/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

21/06/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

28/06/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

05/07/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

12/07/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

19/07/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

26/07/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

02/08/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

09/08/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

16/08/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

23/08/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  
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30/08/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

06/09/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

13/09/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

20/09/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

27/09/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

04/10/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

11/10/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

18/10/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

25/10/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

01/11/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

08/11/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

15/11/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

22/11/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

29/11/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

06/12/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

13/12/2020 Sex, age, state, BMI, race, ethnicity, job category, test frequency, history of chronic disease, household size, smoking  

20/12/2020 Sex, age, BMI, history of chronic disease, ethnicity, household size, job category, history of smoking, state, test frequency 
 

27/12/2020 Sex, age, BMI, history of chronic disease, ethnicity, household size, smoking, state, test frequency 
 

03/01/2021 Sex, age, ethnicity, household size, smoking 
 

10/01/2021 Sex, age, BMI, state, test frequency 

17/01/2021 Sex, age, BMI, race, state 
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Figure A: Effect sizes of confounders adjusted for in main analysis for the cut-off week of 26/7/2021. Estimates 

are presented with their associated 95% confidence intervals. The upper bound of the 95% confidence interval for 

‘Race - Black or Other’ of 23.7 is not shown. The estimate of ‘Job Category D’ is not well defined due to a low 

sample size, and the upper bound is not shown.  Reference categories for categorical variables are: Times Tested 1-

2; State - California; Never-smoker; Sex - Female; Seronegative; Race - White; Job Category A; Household Size 1; 

Ethnicity - Not Hispanic/Not Latinx; No History of Chronic Disease. Job categories have been anonymised for data 

protection. 



Appendix B: Supplementary Material Chapter 3  

 200 

 

 

Figure B: Effect sizes of confounders adjusted for in main analysis for the cut-off week of 16/8/2020. Estimates 

are presented with their associated 95% confidence intervals.  The upper bound of the 95% confidence interval for 

‘Race - Black or Other’ of 51.4  is not shown. The estimate of ‘Job Category D’ is not well defined due to a low 

sample size, and the upper bound is not shown. Reference categories not shown for categorical variables are: Times 

Tested 1-2; State - California; Never-smoker; Sex - Female; Seronegative; Race - White; Job Category A; 

Household Size 1; Ethnicity - Not Hispanic/Not Latinx; No History of Chronic Disease. Job categories have been 

anonymised for data protection. 
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Figure C: Effect sizes of confounders adjusted for in main analysis for the cut-off week of 13/9/2020. Estimates 

are presented with their associated 95% confidence intervals. The upper bound of the 95% confidence interval for 

‘Race - Black or Other’ of 93.7 is not shown. The estimate of ‘Job Category D’ is not well defined due to a low 

sample size, and the upper bound is not shown.  Reference categories not shown for categorical variables are: Times 

Tested 1-2; State - California; Never-smoker; Sex - Female; Seronegative; Race - White; Job Category A; 

Household Size 1; Ethnicity - Not Hispanic/Not Latinx; No History of Chronic Disease. Job categories have been 

anonymised for data protection. 
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S2 Text: Description of simulation analysis investigating how the estimation of the relative risk of 

reinfection varies depending on population-level epidemic dynamics 

  

We conducted a simulation analysis to validate our methodological assumption that the most robust 

estimation of the odds ratio for reinfection would occur in the mid-epidemic period, and to  

further investigate how the estimation of the odds ratios for reinfection varies depending on population-

level epidemic dynamics. 

  

We simulated a two-wave epidemic scenario using a cumulative probability distribution for infection 

derived from PCR testing data from the study cohort (see Figure 2A in the main text). This was scaled so 

the overall cumulative probability of infection reflected the overall percentage ever-seropositive in the 

cohort (8%). We considered a sample size of 2000 individuals over a period of 44 weeks. For each time 

point i, the number of seropositive and seronegative individuals up to and including that time point was 

simulated, according to the cumulative probability of infection at time point i (see Eq. 1-2). We then 

simulated how many of these seropositive and seronegative individuals would test PCR positive or 

negative after time point i, with a pre-set risk ratio for reinfection of 0.15 (see Eq. 3-6). 

 

6(!OPQRQS%T%0O) =U6P(V = W+

!

+89

) 
(1) 

6(!OPQXOYZT%0O)	 = 	1 −U6P(V = W+)

!

+89

 
(2) 

6(67[	6QS%T%0O	|	!OPQXOYZT%0O)	 = 1 − \	(1 − U 6P(V = W+)

'

+8!;9

) 
(3) 

6(67[	]OYZT%0O	|	!OPQXOYZT%0O)	 = 1 − (1 − \	(1 − U 6P(V = W+)

'

+8!;9

)) 
(4) 



Appendix B: Supplementary Material Chapter 3  

 203 

6(67[	6QS%T%0O	|	!OPQRQS%T%0O)	 = 0.15	 × (1 − \	(1 − U 6P(V = W+)

'

+8!;9

)) 
(5) 

P(PCR	Negative	|	!OPQRQS%T%0O) = 1 − (0.15	 × (1 − \	(1 − U 6P(V = W+)

'

+8!;9

))) 
(6) 

 

Finally, we re-estimated the risk ratio for reinfection for each cut-off time point and assessed the accuracy 

by comparing the estimated risk ratio using each cut-off week with the ‘true’ ratio of 0.15. 

 

When considering this two-wave epidemic scenario, we found that the accuracy in the estimated risk ratio 

for reinfection was maximised in the middle of the simulation period (i.e. between the two ‘waves’ of 

infection risk). This supports our methodological assumption that the most robust estimation of the 

relative risk of reinfection would occur in between two ‘waves’ of infection in our study cohort, where we 

considered odds ratios given the need for an underlying regression analysis. 

 

 

Figure A: A) Probability of infection used for simulation analysis, derived from PCR testing data in the study 

cohort. B) Risk ratio estimates comparing the risk of reinfection with the risk of primary infection. The 
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estimates are presented with their associated 95% confidence intervals and with the cut-off week used to define 

baseline infection status on the x-axis. The dashed line represents the pre-set reinfection risk ratio of 0.15. 
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Supplementary methods 
 
VacúnateRD vaccination timeline 
 
Supplementary Table 1: Eligibility of age groups for vaccination in the Dominican Republic 
 

Phase Date Age group 

Fase IC 25/02/2021 > 70 

Fase ID 24/04/2021 > 60 

Fase II 03/05/2021 > 50 

Fase III 10/05/2021 > 18 
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Model parameters 
 
Supplementary Table 2: Description of model compartments 
 

Compartment Description 

<! Number of susceptible individuals in age group i. 

=! Number of individuals in age group i protected from infection by full vaccination. Note that only susceptible 
individuals can enter the vaccinated compartment, and so this does not represent individuals who have both post-
infection and post-vaccination immunity 

>!" Number of individuals in latent compartment who have been exposed to infection but protected against disease by 
vaccination for variant k in age group i 

?!" Number of exposed individuals (with a latent infection) with variant k in age group i  

@#!" Number of individuals with a sub-clinical (asymptomatic) infection with variant k in age group i 

@$!" Number of individuals with a pre-clinical infection with variant k in age group i  

@%!" Number of individuals with a clinical (symptomatic) infection with variant k in age group i 

A!" Number of individuals recovered from variant k in age group i 

 
Model equations 
 

!!(T + 1) = !!(T) ⋅ J1 − &!(T)K −	0!(T + 1) ⋅
!!(T)

]!(T)
	+ [!&(T) ⋅ 9' + ;!(T) ⋅ 9(	 (1) 

;!(T + 1) = 		;!(T) + 0!(T + 1) ⋅
!!(T)

]!(T)
	− ;!(T) ⋅ &!(T) ⋅ J1 − ;#!'B,&K −	;!(T) ⋅ 9(	 (2) 

:!&(T + 1) = :!&(T) ⋅ (1 − 1) + 	;!(T) ⋅ &!(T) ⋅ J1 − ;#!'B,&K ⋅ ;#%3|!'B,& 

#!&(T + 1) = 	#!&(T) ⋅ (1 − 1) + ;!(T) ⋅ &!(T) ⋅ J1 − ;#!'B,&K ⋅ (1 − ;#%3|!'B,&) (3) 

$"!&(T + 1) = 	$"!&(T) ⋅ J1 − 5"K + #!&(T) ⋅ 1 ⋅ 8! (4)	

$#!&(T + 1) = 	 $#!&(T) ⋅ 	 (1 − 5#) +	$"!&(T) ⋅ 5" (5)	

$%!&(T + 1) = 	 $%!&(T) ⋅ 	 (1 − 5%) +	#!&(T) ⋅ 1 ⋅ (1 − 8!) + :!&(T) ⋅ 	1 (6)	

[!&(T + 1) = 	[!&(T) ⋅ (1 − 9') + $%!&(T) ⋅ 	5% 	+ $#!&(T) ⋅ 	5# 	 (7)	

 
Model compartments !!, ;!, #!& , $"!& , $#!& , $%!& and [!& are defined in Table 1. Parameters are defined as 
follows: &! is the force of infection for age group	% and is the sum of variant specific &!,& 	as defined 
below; 0! is the number of daily vaccinations for age group %; 1 is 1/4# (where 4# is the duration in the 
exposed compartment or the latent period); 5" is 1/46	(where 46 is the duration of preclinical 
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infectiousness); 5# is 1/47 (where 47 is the duration of clinical infectiousness); 5% is 1/4!	(where 4! is 
the duration of sub-clinical infectiousness). 8! is the probability of clinical symptoms given infection for 
age group %. ;#!'B,& is vaccine efficacy against infection with variant l  and ;#%3|!'B,& is vaccine 
efficacy against disease given infection for variant l. 
9' is the rate of waning of post-infection immunity and 9( is the rate of waning for post-vaccination 
immunity. Further description of parameter values is given in Table 2. 
 
The force of infection is given by: 

&!&(T) = 	N!& ⋅ U 7!,D,+ ⋅
$"D(T) +	$#D(T) + 	m ⋅ 	 $%D(T)

]D

E

D	8	1

(8) 

	 
 

Where N!& is susceptibility for age group i and variant k. j also depicts age group with J of 16 and f 
represents the relative infectiousness of sub-clinical (or asymptomatic) infections, which is 50%.  
 
In this study we model vaccine protection against two outcomes: infection, with effectiveness ;#!'B; 
severe disease given infection ;#%3|!'B. Vaccine efficacy against severe disease given infection is 
calculated from overall efficacy against infection, ;#!'B , and severe disease, ;#%3 ,	as follows: 
 

;#%3|!'B =
;#%3 − ;#!'B
1 − 	;#!'B

	 (9) 

 
 
Hospitalisation, intensive care unit (ICU) admission and death are modelled as observation processes. 
Individuals enter observation processes when they mature from the $" compartment based on associated 
delays and age-specific probabilities. We use infection-hospitalisation ratios, infection-severe ratios and 
infection-fatality ratios estimated in the literature and calculate age-specific probabilities of 
hospitalisation, ICU admission and death given symptomatic infection as follows: 
 

6F.%",! =
$o[!
8!

		 (10) 

	 

6GHI,! =
$![!
8!

	 (11) 

 

632)+F,! =
$p[!
8!

(12) 

 
These are then adjusted on the log odds scale by several fitted parameters to account for changes in the 
probability of severe outcomes due to improvements in treatment over time and the introduction of new 
variants, as described in Supplementary Table 2.  
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The delay between symptom onset and death is assumed to follow a gamma distribution where the mean 
is estimated during model fitting (and bounded between 5 and 30 days) and the shape parameter is 2.2. 
The probability density function is bounded at 60 days and given by:  
 

qOrZ832)+F 	= 	sZttZ(tOZX	 = 4OZTℎJ2)', SℎZRO	 = 	2.2)	 (13)		 
 
The number of deaths occurring at time T is the sum of deaths occurring over all delays T − 4 and is given 
by: 

q(T) = 	U U $"(T − 4)! ⋅ qOrZ832)+F(4) ⋅ 632)+F,!,&

3	8	K

3	8	9

		

!	8	G

!	8	1

(14) 

 
Hospitalisation and ICU admissions are estimated using the same approach with shape parameters 0.71 
and 1.91 respectively. 
 

qOrZ8F.%" 	= 	sZttZ(tOZX	 = ℎQSRJ2)', SℎZRO	 = 	0.71) (15)	 

oQSR(T) = 	U U $"(T − 4)! ⋅ qOrZ8F.%" ⋅ 6F.%",!,&

3	8	K

3	8	9

	

!	8	G

!	8	1

(16) 

qOrZ8GHI 	= 	sZttZ(tOZX	 = %vNJ2)', SℎZRO	 = 	1.91) (17) 

$7x(T) = 	U U $"(T − 4)! ⋅ qOrZ8GHI ⋅ 6GHI,!,&

3	8	K

3	8	9

!	8	G

!	8	1

(18) 

 
The full likelihood is the sum of the likelihoods listed below. 
  

yL.%"(T)~	]OY{%XJVL.%"(T), BL.%"K	 (19) 

:L.%" 	=U6M2N7!'JyL.%"(T)|VL.%"(T), BL.%"K

+8O

+89

	 (20) 

 
yGHI(T)~	]OY{%X(VGHI(T), BGHI) (21) 

:GHI 	= U6M2N7!'(yGHI(T)|VGHI(T), BGHI)
+8O

+89

(22) 

 
yK2)+ℎ%(T)~	]OY{%X(VK2)+ℎ%(T), BK2)+ℎ%) (23)	 

:K2)+F% 	= U6M2N7!'(yK2)+F%(T)|VK2)+F%(T), BK2)+F%)
+8O

+89

	 (24) 

 
yP21.(T)~	!lO9]QPt(VP21.(T), }P21., ~P21., CP21.) (25)	 

:P21. 	=U6P&2-M.1J(yP21.(T)|VP21.(T), }P21., ~P21., CP21.)	

+8O

+89

(26) 
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We use a logistic-shaped curve parameterized to be a smooth S-shaped function to parameterize parts of 
the model whereby: 
 

ZSv(W, 8Q, 89, S., S9) = 	8Q + (89 − 8Q)
rQY%ST%vJS. + W(S9 −	S.)K − rQY%ST%v(S.)

rQY%ST%v(S9) − rQY%ST%v(S.)
(27) 

 
where, 

rQY%ST%v(W) = 	
OR

1 +	OR
(28) 

 
Here, the curve goes from 8Q  at W = 0 to 89 at W = 1, with an inflection point at S%!

S%!;	%"
 if SQ < 1. 
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Supplementary Table 3: Fixed model parameters 

 

Parameter Description Value Reference 

tS 
Start date of wild-type SARS-CoV-2 
epidemic in days after 1 Jan 2020 

20 Determines the date which seeding begins (1) 

dE 
Latent period (E to Ip and E to Is in 
days) 

~gamma(μ = 2. 5, T = 2. 5) 
2.5 so that the incubation period (latent period 
plus period of preclinical infectiousness is 5 
days). Lauer et al, 2020 (2) 

dP Duration of pre-clinical infectiousness ~gamma(μ = 2. 5, T = 4) 
Assumed to be half the duration of total 
infectiousness in clinically-infected individuals 
(3) 

dC Duration of clinical infectiousness ~gamma(μ = 2. 5, T = 4) 
Infectious period set to 5 days to result in a 
serial interval of approximately 6 days (4 – 6)  

dS Duration of subclinical infectiousness ~gamma(μ = 5. 0, T = 4) 
Assumed to be the same duration as total 
infectious period for clinical cases, including 
preclinical transmission  

yi 
Probability of clinical symptoms given 
infection for age group i  

Estimated from case distribution 
across 6 countries 

(7) 

f 
Relative infectiousness of subclinical 
(asymptomatic) cases 

50% Assumed (7,8) 

Cij 
Number of age-j individuals contacted 
by an age-i-individual per day, prior to 
changes in mobility 

Dominican Republic specific 
contact matrix 

(9) 

Ni Number of age-i individuals From demographic data  

∆t Time step for discrete-time simulation 0.25 days  

P.death Infection-fatality ratio by age  
Using estimates based on age-specific death 
data from 45 countries and 22 seroprevalence 
surveys from O'Driscoll et al (10) 

P.hosp 
Infection-severe ratio by age (infections 
resulting in hospitalisation) 

 
Using estimates based on on multi-country 
serology studies in Herrera-Esposito et al (11) 

P.critical 
Infection-critical ratio (infections 
resulting in admission to ICU) 

 
Using estimates based on multi-country 
serology studies in Herrera-Esposito et al (11) 

extra_voc_
takeoff 

Dates during which transmissibility 
increases according to a logistic growth 
function 

8th February - 5th April Informed by GISAID sequence data (12) 

UVW&'#$ Length of stay in hospital 
~lognormal(X(') = 11.08, 	W^(') =
1.20) 

Estimated from UK CO-CIN data (13) 

UVW*+, Length of stay in ICU 
~lognormal(X(') = 13.33, W^(') =
1.25) 

Estimated from UK CO-CIN data (13) 
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Supplementary Table 4: Fitted parameters and prior distributions  
 
Parameter Description Prior Note 

u Basic susceptibility to infection 
~normal(0.09, 0.02) 

≥ 0.05 and ≤ 0.2 
Determines the basic reproduction number, R0 

death_mean 
Mean delay in days from start of 
infectious period to death 

~normal(15, 2) 
≥5 and  ≤30 

Delay is assumed to follow a gamma 
distribution with shape parameter 2.2. Prior and shape of 
distribution informed by analysis of CO-CIN data (13) 

hosp_admission 
Mean delay in days from start of 
infectious period to hospitalisation 

~normal(8, 1) 
≥4  and  ≤20 

Delay is assumed to follow a gamma 
distribution with shape parameter 0.71. Prior and shape of 
distribution informed by analysis of CO-CIN data  

icu_admission Mean delay in days from start of 
infectious period to ICU admission 

~normal(12.5, 1) 
≥8 and ≤14 

Delay is assumed to follow a gamma 
distribution with shape parameter 1.91. Prior and shape of 
distribution informed by analysis of CO-CIN data (13) 

cfr_rlo 
cfr_rlo2 
cfr_rlo3 

Relative log-odds of the case 
fatality rate (CFR) for COVID-19 
for different time periods 

~normal(0, 0.1) 
≥-2 and ≤2 

Age-specific case fatality rates based on O'Drisoll et al (10). This 
was adjusted by cfr_flo, cfr_rlo2 and cfr_rlo3 over time 

hosp_rlo 
hosp_rlo2 

Log-odds of hospital admission 
given infection derived from 
Herrera-Eposito et al. relative to 
age-specific probabilities of hospital 
admission in first half of 2020 

~normal(0, 0.1) 
≥-2 and ≤2 

Age-specific probabilities of hospitalisation are based on 
Herrera-Esposito et al (11) then adjusted based on the icu_rlo 
and icu_rlo2 parameters. icu_rlo applies for the first half of 2020 
while icu_rlo2 applies for the second half of 2020 into 2021. 

icu_rlo 
icu_rlo2 

Log-odds of intensive care unit 
(ICU) admission relative to age-
specific probabilities of ICU 
admission in first half of 2020 

~normal(0, 0.1) 
≥-2 and ≤2 

Age-specific probabilities of ICU admission are based on 
Herrera-Esposito et al (11). These are then adjusted based on the 
icu_rlo and icu_rlo2 parameters. icu_rlo applies for the first half 
of 2020 while icu_rlo2 applies for the second half of 2020 into 
2021. 

disp_deaths 
disp_hosp_inc 
disp_hosp_prev 
disp_icu_prev 

Negative binomial dispersion for 
deaths, hospital incidence 
(admissions), hospital prevalence 
(beds occupied), and ICU 
prevalence 

~exponential(10) 
We estimate the size parameter for negative binomial likelihood 
functions of deaths, hospital incidence, hospital prevalence and 
ICU prevalence, where size = 1/(disp2) 

contact_adj_a 
contact_adj_b 

Parameter determining the 
weighting given to comix-adjusted 
contacts vs baseline contacts from 
Google mobility data. contact_adj_a 
applies in 2020 and contact_adj_b 
applies in 2021 

~beta(15, 1) 
 

To account for differences in the relationship between Google 
mobility data and contact patterns between the UK and the 
Dominican Republic, we allow modelled contacts to be scaled 
towards pre-pandemic baseline values through fitted parameters 
contact_adj_a and contact_adj_b. 

extra_voc_relu Relative transmissibility of Mu (and 
other VOI in mid 2021) ~lognormal(0.4, 0.1) 

Prior centred around estimated transmission advantage of 
variants of interest (VOIs) over wild-type (WT) of 1.5 

v2_relu Relative transmissibility of Delta 
variant ~lognormal(0.92, 0.1) 

Prior centred around estimated transmission advantage of Delta 
over WT of 2.5. (14) 

v2_when 
Date of introduction of Delta 
variant in days after 1st Jan 2020 ~uniform(486, 517) 

On this date, ten random individuals contract B.1.617.2 (Delta). 
We use a uniform prior between 1st May 2021 - 1st June  2021 
based on sequence data available for the Dominican Republic 
(see Main Text Figure 3) 

v2_hosp_rlo 
v2_icu_rlo 
v2_cfr_rlo 

Relative log-odds of hospitalisation, 
Intensive care unit (ICU) admission 
and death for Delta compared to 
pre-existing variants 

~normal(0, 0.1) 
≥-4 and ≤4 

Vague priors 
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Supplementary Table 5: Vaccine efficacy parameters 
 

Parameter Description Value Reference 

%&89:,<=  Overall efficacy against 
infection with ancestral variant 

0.67 Assumed to be the same as efficacy against disease. 

%&>?,<=  Overall efficacy against severe 
disease with ancestral variant  

0.92 Imai et al (Table 2) (15) 

%&89:,?@ABC  Overall efficacy against infection 
with Delta variant 

0.39 Assumed to be the same as efficacy against disease. 

%&>?,?@ABC  Overall efficacy against severe 
disease with Delta variant 

0.61 Wu et al 2022 (Table 3) (16) 
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Supplementary Table 6: Waning parameters 
 

Parameter Description Default value (central waning) 

'9 Rate of waning from the recovered compartment to the 
susceptible compartment for all strains 

log(0.85)/-365,corresponding to exponential waning with a 15% loss of protection 
after 1 year 

'D  Rate of waning from the vaccinated compartment to the 
susceptible compartment 

log(0.6)/-182.5, corresponding to exponential waning with a 40% loss of protection 
after 6 months. Based on Cerqueira-Silva et al (17) 
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Supplementary Table 7: Vaccine efficacy parameters for two doses of Pfizer and AstraZeneca vaccines 
against wild-type (WT) and Delta variants 
 

Description Value 

Pfizer overall efficacy against infection with WT 0.85 

Pfizer overall efficacy against severe disease with WT 0.95 

Pfizer overall efficacy against infection with Delta variant 0.8 

Pfizer overall efficacy against severe disease with Delta variant 0.96 

AZ overall efficacy against infection with WT 0.75 

AZ overall efficacy against severe disease with WT 0.9 

AZ overall efficacy against infection with Delta variant 0.63 

AZ overall efficacy against severe disease with Delta variant 0.93 

Table adapted from Supplementary Table 6 and 7 in Barnard et al 2022 (14) 
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Model validation 

 

Supplementary Figure 1: Posterior estimates of fitted parameters 
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Supplementary Figure 2: Histogram of residuals 
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Sensitivity analyses 
 
We conducted sensitivity analyses around key vaccine efficacy, waning and transmission parameters used 
in the main manuscript. In particular we consider: 

1. A conservative estimate of vaccine efficacy against disease, using estimated vaccine efficacy 
against symptomatic disease rather than severe disease (;#PK) 

2. High waning of post-infection and post-vaccination immunity (9'ZX4	9() 
3. Low waning of post-infection and post-vaccination immunity (9'ZX4	9() 
4. High relative infectiousness of subclinical (asymptomatic) individuals (m) 

 
A full description of the parameters considered in the sensitivity analyses is given in Table 8, while 
estimated hospital admissions, ICU admissions and deaths under different vaccination assumptions and 
counterfactual scenarios are shown in Table 7.   
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Supplementary Table 8: Sensitivity analysis: estimated deaths, hospital admissions and intensive care unit 
(ICU) admissions under different waning and vaccine efficacy assumptions 
 

Scenario Additional 
hospital 

admissions in 
next 6 months 

Additional 
hospital 

admissions in 
next 10 months 

Additional 
ICU 

admissions in 
next 6 months 

Additional ICU 
admissions in next 

10 months 

Additional 
deaths in next 6 

months 
 

Additional 
deaths in next 10 

months 
 

No vaccination 
(low VE against disease) 

4870 (4590 – 
5240) 

5040 (4650 – 
5510) 

1440 (1360 – 
1540) 

1480 (1370 – 
1610) 

524 (466 – 
645) 

538 (457 – 681) 

No vaccination 
(high waning) 

6190 (5900 – 
6480) 

6700 (6340 – 
7070) 

1840 (1770 – 
1920) 

1970 (1870 – 
2070) 

646 (586 – 
724) 

685 (611 – 777) 

No vaccination 
(low waning) 

7640 (7270 – 
8040) 

9310 (8820 – 
9840) 

2320 (2210 – 
2430) 

2820 (2680 – 
2970) 

826 (749 – 
914) 

968 (872 – 1080) 

No vaccination 
(high asymptomatic 
infectiousness) 

6660 (6330 – 
6980) 

7780 (7370 – 
8190) 

2020 (1930 – 
2110) 

2340 (2230 – 
2460) 

719 (644 – 
802) 

814 (724 – 912) 

Pfizer efficacy or 
equivalent 
(low VE against disease) 

-1760 (-1900 
–  
-1660) 

-3360 (-3780 –  
-3010) 

-518 (-554 –  
-491) 

-997 (-1100 –  
-905) 

-186 (-231 –  
-165) 

-332 (-444 –  
-229) 

Pfizer efficacy or 
equivalent 
(high waning) 

-469 (-492 –  
-447) 

-1220 (-1430 –  
-1010) 

-124 (-130 –  
-119) 

-342 (-401 – -284) -41 (-46 – -37) -111 (-165 – -60) 

Pfizer efficacy or 
equivalent 
(low waning) 

-616 (-649 – 
 -585) 

-2730 (-2980 – 
 -2500) 

-163 (-171 –  
-155) 

-805 (-869 – -741) -52 (-57 – -47) -224 (-275 –  
-185) 

Pfizer efficacy or 
equivalent 
(high asymptomatic 
infectiousness) 

-555 (-582 – 
 -528) 

-2020 (-2230 – 
 -1820) 

-148 (-154 –  
-141) 

-590 (-642 – -540) -48 (-53 – -43) -173 (-222 – 
 -128) 

Pfizer efficacy or 
equivalent and delay 
(low VE against disease) 

2980 (2760 – 
3300) 

160 (-346 – 
722) 

820 (764 – 
891) 

-38 (-159 – 93) 287 (229 – 
391) 

24 (-92 – 223) 

Pfizer efficacy or 
equivalent and delay 
(high waning) 

4080 (3850 – 
4310) 

1850 (1410 – 
2270) 

1140 (1080 – 
1200) 

454 (348 – 559) 387 (336 – 
449) 

166 (58 – 275) 

Pfizer efficacy or 
equivalent and delay 
(low waning)  

5180 (4890 – 
5480) 

2140 (1640 – 
2660) 

1490 (1420 – 
1570) 

553 (426 – 683) 522 (460 – 
592) 

269 (156 – 376) 

Pfizer efficacy or 
equivalent and delay (high 
asymptomatic 
infectiousness) 

4430 (4180 – 
4670) 

1790 (1350 – 
2210) 

1270 (1210 – 
1330) 

445 (342 – 545) 440 (378 – 
507) 

206 (93 – 314) 

AZ efficacy or equivalent 
(low VE against disease) 

-995 (-1070 –  
-940) 

-1890 (-2150 –  
-1670) 

-294 (-314 –  
-278) 

-566 (-632 – -507) -105 (-130 –  
-93) 

-189 (-259 –  
-123) 

AZ efficacy or equivalent 
((high waning) 

-50 (-62 –  
-38) 

-756 (-910 –  
-610) 

-4 (-7 – -1) -211 (-254 – -170) 0 (-2 – 3) -65 (-104 – -28) 
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AZ efficacy or equivalent 
(low waning) 

-118 (-137 –  
-100) 

-1940 (-2130 –  
-1770) 

-19 (-23 –  
-14) 

-575 (-623 – -527) -1 (-5 – 2) -151 (-190 –  
-121) 

AZ efficacy or equivalent 
(high asymptomatic 
infectiousness) 

-96 (-110 –  
-83) 

-1370 (-1510 –  
-1230) 

-15 (-18 –  
-12) 

-399 (-435 – -366) -2 (-5 – 1) -110 (-145 – -79) 

AZ efficacy or equivalent 
and delay 
(low VE against disease) 

3200 (2980 – 
3530) 

1100 (656 – 
1620) 

893 (836 – 
965) 

250 (142 – 370) 314 (260 – 
418) 

117 (17 – 295) 

AZ efficacy or equivalent 
and delay 
(high waning) 

4200 (3960 – 
4430) 

2150 (1730 – 
2550) 

1180 (1120 – 
1230) 

547 (446 – 648) 402 (351 – 
463) 

198 (96 – 302) 

AZ efficacy or equivalent 
and delay 
(low waning) 

5310 (5020 – 
5620) 

2580 (2090 – 
3080) 

1540 (1460 – 
1610) 

687 (564 – 814) 538 (477 – 
609) 

309 (201 – 414) 

AZ efficacy or equivalent 
and delay (high 
asymptomatic 
infectiousness) 

4560 (4310 – 
4800) 

2190 (1770 – 
2600) 

1310 (1250 – 
1370) 

570 (471 – 666) 455 (393 – 
523) 

245 (137 – 349) 
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Supplementary Table 9: Sensitivity analysis: description of waning and vaccine efficacy assumptions 
 

Scenario Description Value 

 
 
Central waning (main 
manuscript results) 
 

Rate of waning from the recovered compartment 
to the susceptible compartment for all strains 

log(0.85)/-365, corresponding to exponential waning with a 
15% loss of protection after 1 year 

Rate of waning from the vaccinated compartment 
to the susceptible compartment 

log(0.6)/-182.5, corresponding to exponential waning with a 
40% loss of protection after 6 months (17) 

 
 
High waning 
 

Rate of waning from the recovered compartment 
to the susceptible compartment for all strains 

log(0.85)/-182.5, corresponding to exponential waning with a 
15% loss of protection after 6 months 

Rate of waning from the vaccinated compartment 
to the susceptible compartment 

log(0.6)/-91.25, corresponding to exponential waning with a 
40% loss of protection after 3  months 

 
 
Low waning 
 

Rate of waning from the recovered compartment 
to the susceptible compartment for all strains 

log(0.85)/-730, corresponding to exponential waning with a 
15% loss of protection after 2 years 

Rate of waning from the vaccinated compartment 
to the susceptible compartment 

log(0.84)/-120, corresponding to exponential waning with a 
16% loss of protection after 4 months.  

Low vaccine efficacy 
against disease  

Sinovac-Coronavac  0.67 against disease for wild-type (WT) and 0.39 efficacy 
against disease for Delta  (14) 

 Pfizer-like efficacy 0.9 efficacy against disease for WT and 0.81 efficacy against 
disease for Delta (14) 

 AZ-like efficacy 0.8 efficacy against disease for WT and 0.65 efficacy against 
disease for Delta (14) 

High asymptomatic 
infectiousness 

Higher relative infectiousness of asymptomatic 
cases 

0.7 (assumed) 
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Supplementary Results 
Main results broken down by age 
 
Supplementary Figure 3: Modelled hospitalisations, deaths, and proportion previously infected by age 
group 

 
 
 
Figure shows median estimates of modelled hospital bed occupancy (a), ICU bed occupancy (b), reported deaths (c) 

and the proportion of the population previously infected (d).  Shaded areas show the burden broken down by age 

groups. Vertical dashed lines in panels (a) and (b) indicate the date at which hospitalisation data became available. 
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Supplementary Figure 4: Modelled immune status of the population by age group 

Figure showing the modelled distribution of immune states in the Dominican Republic over time, faceted by age 

group. The shaded areas show the proportion of the population that are; currently infected (brown), susceptible 

(beige), protected post-infection (blue) and protected post-vaccination (dark blue). Note that the vaccinated area 

(dark blue) does not include individuals that were vaccinated post-infection and so does not correspond with 

observed vaccination coverage.  
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Supplementary Figure 5: Impact of vaccination with alternative vaccine products with and without delay 
 

 
 
Figure showing modelled deaths (a), hospital admissions (b) and intensive care unit (ICU) admissions (c) from the 

original model fit (in blue) and from counterfactual scenarios (in red) with: vaccination with a Pfizer/BioNTech 

efficacy profile; vaccination with a Pfizer/BioNTech efficacy profile and a delay in vaccination of 2 months; 

vaccination with an Oxford/AstraZeneca efficacy profile; and vaccination with an Oxford/AstraZeneca efficacy 

profile with a delay of 2 months. Pfizer/BioNTech and Oxford/AstraZeneca efficacy profiles are labelled as Pfizer 

and AZ respectively. Lines show the median value from 500 simulations with associated 95% credible intervals in 

surrounding ribbons. To facilitate comparison between scenarios, modelled deaths do not include uncertainty 

generated through the observation process and are therefore higher than those shown in the model fit in Figure 4 of 

the main text. 
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Model priors and hyperparameter formulations 
 
The weekly random effect =-[+] was assigned a random walk 2 prior distribution (second order difference 
prior distribution) where we assume that second order increments follow a Gaussian distribution with zero 
mean and precision τ. This was defined to be cyclic (so the first week of the year is dependent on the last 
two weeks of the previous year). We included independent and identically distributed (iid) random effects 
for each year 	5)[+]. Non-linear covariates were modelled by setting a random walk 2 prior on the 
coefficients of the covariates. We used penalized complexity priors (PC priors) for precision L, with 
hyperparameters 1Q = 	0.5 and C	 = 	0.01 for all non-linear covariates and random effects in the model. 
The PC prior is defined on the standard deviation 1	 = 	 LS9/d such that 6(1	 > 1Q) 	= 	C.		these penalize 
departure from 1	 = 	0. PC priors follow the principle of parsimony, favouring a base model (where	1	 =
	0) unless evidence is provided against it (1). 
 
Table 1: Covariates tested in model selection 
 

Variable name Covariate class Variable type 

Minimum temperature °C Temperature Numeric 

Mean temperature °C Temperature Numeric 

Maximum temperature °C Temperature Numeric 

Absolute humidity g/m3 Humidity Numeric 

Relative humidity % Humidity Numeric 

Total precipitation (mm) Rainfall Numeric 

Number of days without rain Rainfall Numeric or categorical 

Number of days with heavy rain Rainfall Numeric or categorical 

Number of days with moderate or heavy rain Rainfall Numeric or categorical 

Number of days with consecutive rainfall Rainfall Numeric or categorical 

Niño 3.4 sea surface temperature anomalies (SSTA) ENSO Numeric 

Serotype proportions Serotype Numeric 

Serotype growth rates Serotype Numeric 

Dominant serotype Serotype Factor 

Switch in dominant serotype Serotype Binary 

Time since switch in dominant serotype Serotype Numeric 
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Table 2: Details of model selection 
 
We conducted forwards stepwise selection, grouping climatic indicators into classes of covariate 
including: temperature, rainfall, humidity and Niño 3.4. At each step of model selection, the best 
performing variable was carried forwards and tested against all variables in remaining climate classes. 
Note that at the third stage of model selection of model selection the 12 week total days without rain 
performed similarly well to 12 week total precipitation (mm); we selected the former due to the high 
influence of outlier precipitation values on the estimated effect size. Finally, we did not include absolute 
humidity as there was evidence for no effect on dengue incidence and only marginal improvements in 
model adequacy criteria. 
 

Step Variable WAIC DIC Rsq 

1 Maximum temperature (12 week running average, non-linear, 0 lag) 12830.96 12829.96  0.067 

2 Maximum temperature (12 week rolling average, 0 lag) + Niño 3.4 (12 week 
rolling average, non-linear, 1 month lag) 

12786.84 12785.10 0.103  

3 Maximum temperature (12 week rolling average, 0 lag) + Niño 3.4 (12 week 
rolling average, non-linear, 1 month lag) + 12 week total days without rain (0 
lag) 

12756.24 12754.75 0.139  

4 Maximum temperature (12 week rolling average, non-lineaer, 0 lag) + Niño 
3.4 (12 week rolling average, non-linear, 1 month lag) + 12 week total days 
without rain (non-linear, 0 lag) + absolute humidity (4 month lag) 

12748.57  12746.83  0.146  

Adding 
serotype 

Maximum temperature (12 week rolling average, non-linear, 0 lag) + Niño 3.4 
(12 week rolling average, non-linear, 1 month lag) + 12 week total days 
without rain (non-linear, 0 lag) + time since switch in dominant serotype (non-
linear) 

12498.13 12498.27 0.331  
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Table 3: Details of selected models 
 
Full model formulae for full climate and serotype model and other models compared in the main text. 
 

Final models Formula 

Climate and 
serotype 

Time since switch in dominant serotype (non-linear) + maximum temperature °C (12 week average, non-
linear) + days without rain (12 week total, non-linear) + Niño 3.4 SSTA (12 week average with a 4 week 
lag) + !#[%] + "'[%] 

Climate only Maximum temperature °C (12 week average, non-linear) + days without rain (12 week total, non-linear) + 
Niño 3.4 SSTA (12 week average with a 4 week lag) + !#[%] + "'[%] 

Serotype only Time since switch in dominant serotype (non-linear) + !#[%] + "'[%] 

Seasonal 
baseline 

"'[%] 

 

Table 4: Forecast metrics over different forecast horizons 
 
Forecast skill metrics for each candidate model at forecast horizons from 0-8 weeks. Metrics include: CRPS (lower 
scores are better) CRPSS (higher scores are better), Brier score (lower scores are better), AUC (higher scores are 
better), false alarm rate (lower scores are better) and hit rate (higher scores are better). The trigger threshold which 
maximises the AUC for each model is also shown. The best score for each forecast metric and horizon is shown in 
bold. 
 

Horizon Model CRPS CRPSS Brier 
score 

AUC False alarm 
(%) 

Hit rate 
(%) 

Trigger threshold 
(%) 

0 Climate and 
serotype 

50 59.5 0.0544 98.4 (95% CI: 
97.69-99.03) 

2.08 91.6 71.4 

0 Serotype only 63.2 48.9 0.062 97.8 (95% CI: 97-
98.65) 

2.54 90.7 65.4 

0 Climate only 57.5 53.5 0.0655 97.8 (95% CI: 
96.95-98.6) 

3.92 93.4 54.7 

0 Seasonal 
baseline 

124 0 0.232 73.4 (95% CI: 69.8-
77.09) 

11.8 65.2 37.8 

2 Climate and 
serotype 

56.4 54.9 0.0623 97.8 (95% CI: 
96.96-98.58) 

3.46 91 64 

2 Serotype only 70 43.9 0.0713 97 (95% CI: 95.99-
98.03) 

2.77 88.9 65.6 
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2 Climate only 62.3 50.1 0.0722 97 (95% CI: 96.05-
98.03) 

4.38 92.5 49.6 

2 Seasonal 
baseline 

125 0 0.235 71 (95% CI: 67.22-
74.79) 

14.6 66.7 37 

4 Climate and 
serotype 

67.9 46.3 0.0773 96.5 (95% CI: 
95.44-97.62) 

5.54 90.4 49.2 

4 Serotype only 82.4 34.9 0.0894 94.9 (95% CI: 
93.45-96.4) 

5.19 87.1 50.6 

4 Climate only 71.7 43.4 0.0863 95.4 (95% CI: 
94.11-96.78) 

5.07 89.5 49.2 

4 Seasonal 
baseline 

127 0 0.24 68 (95% CI: 64.11-
71.94) 

15.6 64.3 37 

6 Climate and 
serotype 

86.5 32.4 0.0889 95.4 (95% CI: 94.1-
96.74) 

6.23 89.5 45.4 

6 Serotype only 104 18.8 0.105 93.1 (95% CI: 
91.31-94.86) 

5.77 83.2 54.6 

6 Climate only 86.2 32.7 0.0982 94 (95% CI: 92.37-
95.57) 

4.38 83.5 52.5 

6 Seasonal 
baseline 

128 0 0.243 65.3 (95% CI: 
61.35-69.35) 

17.1 64.6 36.2 

8 Climate and 
serotype 

86.5 32.4 0.098 94.2 (95% CI: 
92.65-95.75) 

6.92 90.7 41.7 

8 Serotype only 104 18.8 0.123 90.9 (95% CI: 
88.79-92.98) 

7.38 81.4 51.5 

8 Climate only 86.2 32.7 0.115 92.1 (95% CI: 
90.24-93.92) 

6 80.5 51.6 

8 Seasonal 
baseline 

128 0 0.245 64.3 (95% CI: 
60.27-68.33) 

14.2 56.5 37.8 

CRPS: continuous ranked probability score; CRPSS: continuous ranked probability skill score; AUC: area under the curve; CI: confidence 
interval 
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Table 5: Variables used for prediction at each time horizon 
 

Forecast 
horizon 

 
Temperature Precipitation ENSO Serotype 

0 
 

12 week average maximum 
temperature °C, 0 week lag 

12 week total days with no rain, 
0 week lag 

12 week rolling average 
Niño 3.4 SSTA, 4 week 
lag 

Time since serotype 
switch, 0 week lag 

2 
 

10 week average maximum 
temperature °C, 2 week lag 

10 week total days with no rain, 
2 week lag, scaled up by 1.2 

12 week rolling average 
Niño 3.4 SSTA, 4 week 
lag 

Time since serotype 
switch, 2 week lag + 2 

4 
 

8 week average maximum 
temperature °C, 4 week lag 

8 week total days with no rain, 4 
week lag, scaled up by 1.5 

12 week rolling average 
Niño 3.4 SSTA, 4 week 
lag 

Time since serotype 
switch, 4 week lag + 4 

6 
 

6 week average maximum 
temperature °C, 6 week lag 

6 week total days with no rain, 6 
week lag, scaled up by 2 

10 week rolling average 
Niño 3.4 SSTA, 6 week 
lag 

Time since serotype 
switch, 6 week lag + 6 

8 
 

4 week average maximum 
temperature °C, 8 week lag 

4 week total days with no rain, 8 
week lag, scaled up by 3 

8 week rolling average 
Niño 3.4 SSTA, 8 week 
lag 

Time since serotype 
switch, 8 week lag + 8 
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Figure 1: Dengue cases and outbreak threshold 
Figure showing weekly reported dengue cases from 1 January 2000 – 31 December 2022 (grey bars) and seasonal 
moving 75th percentile outbreak threshold (green line) and the endemic channel threshold used operationally by the 
NEA (brown line). For a given month and year, we defined a seasonal moving 75th percentile outbreak threshold 
using the 75th percentile of weekly cases in that month using all years up to, but not including, the current year. The 
NEA uses an endemic channel threshold which is calculated as two standard deviations in excess of mean cases over 
the past 5 years, with outliers removed. Outliers are defined as any weekly cases greater than the threshold for that 
year. 
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Figure 2: Dengue forecasts for early warning at 2-8 week forecast horizons  

Figure showing time series of cross-validated posterior predictions of dengue cases for each model from 2009 – 
2022 at 2 - 8 week forecast horizons. Columns for 4 weeks ahead and 8 weeks ahead are also shown in Figure 5 of 
the main text. Coloured lines show the median posterior prediction of weekly dengue cases, shaded areas show the 
95% credible interval and the dark grey line shows the data. From top to bottom the figure shows: predictions for the 
final selected ‘Climate and serotype’ model weekly and yearly random effects a[t]+w[t] in purple; predictions for a 
‘Climate only’ model with random effects in pink; predictions for a ‘Serotype only’ model with random effects in 
green; and predictions from a ‘Seasonal baseline’ model with only weekly random effects w[t] in orange. From left 
to right each column shows forecasts at 2, 4, 6 and 8 weeks ahead respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendix D: Supplementary Material Chapter 5  

 237 

Figure 3: Schematic of time series cross validation design to generate forecasts 
 
Schematic showing how h week ahead forecasts are generated using time series cross-validation. Blue blocks 
represent the training data, orange blocks time points to be forecasted and grey points represent data not included in 
the forecast generation. Columns show the training/testing design for 2-step ahead and 3-step ahead forecasts 
respectively, while rows show different example municipalities. We use an expanding window approach where, for 
each forecast horizon h, we train the model on data available until week t - h. We then predict dengue incidence in 
week t, using lagged covariates When conducting model evaluation for week t and forecast horizon h, we used the 
same expanding window time series cross-validation approach (Methods). We trained the model using the final 
selected covariates on data available until week t-h. We then predicted dengue incidence in week t using the best 
approximation of each climatic covariate. For example, considering only the temperature covariate for simplicity, 
when predicting dengue cases with a 4 week ahead time horizon, we fit the model up until week t-h using a 12 week 
running average temperature to estimate model parameters. Then, using these estimated model parameters, we 
predict dengue cases at week t by inputting 8 week running average temperature with a 4 week lag (alongside other 
lagged covariates). This allows us to preserve the key relationships between climate and serotype covariates, and 
dengue cases that we estimate in full model fitting and then use the best climate data available at different lead times 
to generate forecasts for early warning.  
 
Note that this differs from the design used for model evaluation (shown in Figure 3 of the main text), where data 
until t-1 is used to train the model. Climatic data up to time t is then used to generate predictions for dengue 
incidence at time t. Serotype covariates are constructed using data until t-1 as serotype frequencies are dependent on 
case counts. 
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Figure 4: Dengue forecasts for early warning at 2-8 week forecast horizons showing covariate models 
without yearly random effects 

Figure showing time series of cross-validated posterior predictions of dengue cases for each model from 2009 – 
2022 at 2 - 8 week forecast horizons. Here, unlike Figure 5 in the main text, the Climate and serotype, Climate-only 
and Serotype-only models do not include a yearly random effect a[t]. Coloured lines show the median posterior 
prediction of weekly dengue cases, shaded areas show the 95% credible interval and the dark grey line shows the 
data. From top to bottom the figure shows: predictions for the final selected ‘Climate and serotype’ model with 
weekly random effects w[t] in purple; predictions for a ‘Climate only’ model with weekly random effects in pink; 
predictions for a ‘Serotype only’ model with weekly random effects in green; and predictions from a ‘Seasonal 

baseline’ model with only weekly random effects in orange. From left to right each column shows forecasts at 2, 4, 
6 and 8 weeks ahead respectively. 
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Figure 5: Predictive performance over different forecast horizons for covariate models without yearly 
random effects.  
Figure showing forecast metrics for each model across all forecast horizons from 2009 – 2022. Unlike Figure 6 in 
the main text, here covariate models do not include a yearly random effect a[t]. Figure showing forecast metrics for 
each model across all forecast horizons from 2009 – 2022. From top left to bottom right these show: interval 
coverage %, bias; CRPS (continuous ranked probability score), CRPSS (continuous ranked probability skill score, 
%), Brier score, AUC (area under the curve, %), hit rate (%) and false alarm rate (%). Interval coverage shows the 
percentage of observations falling inside a given prediction interval. A perfectly calibrated forecast would have 
coverage equal to the nominal prediction interval; that is, 95% coverage equal to 95% and 50% coverage equal to 
50%, indicated by dashed horizontal lines. Bias measures the relative tendency of the model to over- or under-
predict, and is bounded between -1 and 1, with 0 indicating unbiased forecasts. The CRPS can take values between 0 
and infinity, with smaller values indicating better performance. The CRPSS indicates the relative improvement of 
each covariate model over the seasonal baseline model and can take values from 0%, indicating that the model 
performs the same as the baseline, and 100%, indicating perfect forecasting skill. The Brier score can take values 
from 0 – 1, with smaller values indicating better performance. The AUC can take values from 0-100% with 100% 
indicating perfect classification. Hit rate and false alarm rate also take values from 0 – 100% with higher and lower 
values indicating better performance respectively. 
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Figure 1: Mean temperature in the Dominican Republic from 2013 - 2023 
 
Tile plot showing average monthly mean temperature °C with months running from April - March on the x-axis and 
dengue season on the y-axis. Darker red tiles indicate higher average temperatures. Provinces are arranged to mirror 
their geographic location in the Dominican Republic. 
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Figure 2: Cumulative precipitation in the Dominican Republic from 2013 - 2023 
 
Tile plot showing average monthly cumulative precipitation in mm with months running from April - March on the 
x-axis and dengue season on the y-axis. Darker blue tiles indicate higher precipitation levels. Provinces are arranged 
to mirror their geographic location in the Dominican Republic. 
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Figure 3: Average relative humidity (%) in the Dominican Republic 2013 - 2023. 
 
Tile plot showing average monthly relative humidity (%) with months running from April - March on the x-axis and 
dengue season on the y-axis. Darker purple tiles indicate months with higher humidity. Provinces are arranged to 
mirror their geographic location in the Dominican Republic. 
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Figure 4: Catalytic model trace plot 
 
Figure showing sampled values for the annual force of infection at each step of the Hamiltonian MCMC using a No-
U-Turn sampler (NUTS) algorithm for four chains. 
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Table 1: Model adequacy statistics from model selection 
 
We conducted forwards stepwise selection, grouping climatic indicators into classes of covariate including: 
temperature, rainfall, humidity and Niño 3.4. At each step of model selection, the best performing variable was carried 
forwards and tested against all variables in remaining climate classes. Model adequacy criteria considered include 

WAIC and DIC (where lower values are better) and  (which can take values 0 to 1, where high values are better). 
All covariate models tested included weighted lagged cases (on a log scale) and estimated proportion susceptible (on 
a log scale). Note that while maximum temperature or SPI individually do not improve model adequacy criteria (in 
Steps 2a and 2b), including them together in Step 3 results in a lower WAIC and DIC. The final selected model is 
shown in Step 4. 
 

Step Variable WAIC DIC Rsq 

1 Niño 3.4 (12 week running average, non-linear, 6 
week lag) + log(weighted lagged cases) + 
log(susceptibility) 

123513.13 
 

123520.2 
 

0.05 
 

2a Niño 3.4 (12 week running average non-linear, 6 
week lag) + maximum temperature (8 week running 
average with 4 week lag, non-linear) + log(weighted 
lagged cases) + log(susceptibility) 

123544.13 
 

123549.65 
 

0.05 
 

2b Niño 3.4 (12 week running average, non-linear, 6 
week lag) + SPI (12 month time scale) + 
log(weighted lagged cases) + log(susceptibility) 

123587.46 123589.14 0.049 

3 Niño 3.4 (12 week running average, 6 week lag, 
non-linear) + SPI (12 month  timescale) + 
maximum  temperature (8 week running average 
with 4 week lag, non-linear) + log(weighted lagged 
cases) + log(susceptibility) 

123384.68 123389.88 0.052 

4 Niño 3.4 (12 week running average, 6 week lag, 
non-linear) + SPI (12 month  timescale) + 
maximum  temperature (8 week running average 
with 4 week lag, non-linear) + 
relative humidity (10 week running average, 2 week 
lag, non-linear) + log(weighted lagged cases) + 
log(susceptibility) 
 
 

123268.5 123271.33 0.054 
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Figure 5: Comparing average year-specific spatiotemporal random effects for covariate and 
baseline models 
 
Figure showing spatiotemporal random effects for each year, averaged over all municipalities by year. The value of 
the yearly average spatiotemporal random effect indicates whether, on average, dengue incidence is higher or lower 
than expected for a given year. These are shown on the additive, linear predictor scale where a value of 0 indicates no 
contribution of the spatiotemporal random effect. Therefore, where model covariates are able to account for 
interannual variation in dengue risk, we would expect these to be closer to zero. Average spatiotemporal random 

effects are shown for: a baseline model including only seasonal (weekly) and spatiotemporal random effects 

, in green; a model including only climate covariates, in orange, a model including only 
epidemic terms (that is, weighted lagged cases and susceptibility during each dengue season), in purple, and a full 
model including both climate and epidemic terms, in pink.  
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Figure 6: Change in municipality-specific spatiotemporal random effects between covariate and 
baseline models 
 
Figure showing the absolute difference in spatiotemporal random effects in covariate models compared with a baseline 
model including only seasonal and spatiotemporal random effects, during outbreak and non-outbreak years 
respectively. This is calculated as: 
 
|)8,C[B] + +8,C[B]|EFAA − |)8,C[B] + +8,C[B]|GC>@A89@	 Municipalities where the magnitude of the spatial random effects was 

smaller (i.e. closer to zero) after the inclusion of model covariates are shown in purple. The more negative the 
difference (and the darker the purple) the greater the contribution of climatic and epidemic model covariates in 
explaining variation in dengue risk. Municipalities where covariates increased the marginal random effects are shown 
in green and those with no change are shown in white. The first row shows the difference in spatiotemporal random 

effects between a model only including climatic covariates (panels a and b). The second row shows the difference in 
spatiotemporal random effects between a model only including epidemic components (weighted lagged cases and 
susceptibility) and a baseline model (panels c and d). Finally, the third row shows the difference in spatiotemporal 

random effects between the full covariate model (including both climatic and epidemic covariates) and the baseline 
model, as shown in Figure 3 in the main text. 
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Figure 7: Model evaluation designs 
 
Schematic showing model evaluation designs. The left panels represent time series cross validation with blue blocks 
representing training data and orange blocks representing testing data. Here for a given week t, the model is trained 
on data up until and including week t-1 with week t used to test the model. For each iteration, we refit the model with 
an additional week of data in the training set, until we have obtained posterior predictions of dengue incidence for 
each week and municipality. The right panels represent k-fold cross validation with a spatial holdout design. We 
conducted 5-fold cross validation, holding out entire municipalities at a time. Each municipality is randomly allocated 
to a fold from 1:5, the model is then refit 5 times. For each fold f all the municipalities in that fold will be used to test 
the model, while data from the remaining municipalities will be used for training. To account for random variation in 
assigning municipalities to folds, this was repeated 10 times with different fold allocations. Posterior predictions for 
each repetition were then aggregated to the municipality and week level as shown in Supplementary Figure 9.   
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Figure 8: Comparing out-of-sample evaluation metrics over time for the full covariate model and a 
baseline model 
 
Figure shows model evaluation metrics on out-of-sample predictions for a full model including climatic and epidemic 
covariates, in green, and a baseline model including only seasonal and spatiotemporal random effects, 

, in purple. Panel a shows the interval coverage at the 50% and 95% level (shown by solid 
lines and dashed lines, respectively). This metric assesses model calibration and is related to the concept of reliability. 
It is calculated as the proportion p of observations that fall within the nominal prediction interval. For a perfectly 
calibrated model, 50% of the observations would fall within the 50% prediction interval and 95% of the observations 
would fall within the 95% prediction interval. If p is higher than the prediction interval (k) then the model is 
underconfident, while if p is lower than the relevant prediction interval the model is overconfident. 95% and 50% are 
indicated with horizontal dashed lines. Panel b shows the model bias, values under 0 indicate that the model tends to 
underpredict, while values greater than 0 indicate overprediction. If the prediction is larger than the observed value 
the bias is calculated as the maximum percentile rank where the prediction is larger than the observed value, whereas 
if the prediction is smaller than the observed value it is the maximum percentile rank where the prediction is smaller 
than the observed value. Panel c shows the weighted interval score, this is an approximation to the continuous ranked 
probability score for quantile forecasts, where smaller values indicate better performance. It penalises predictions 
based on overprediction, underprediction and sharpness (width of the confidence interval). 
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Figure 9: Posterior predictions of dengue cases from 5-fold spatial cross-validation  
 
Figure showing out-of-sample posterior predictions of weekly dengue cases from the full model from 2015 – 2023. 
Posterior predictions are generated through 5-fold spatial cross validation, as described in Supplementary Figure 7. 
Green lines represent the median posterior prediction of weekly dengue cases, the shaded green area shows the 95% 
credible interval, and the grey lines show the data. The model was fit at the municipality level and posterior samples 
for each time step were then aggregated to the province level. 
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Table 2: Influence of covariates on dengue predictions (temporal) 
 
Table comparing the continuous ranked probability score (CRPS) and continuous ranked probability skill score 
(CRPSS) for the full model to models with each covariate excluded. The CRPS is calculated by comparing out-of-
sample posterior predictions of dengue cases from time-series cross validation with observed values. Lower CRPS 
values indicate better predictive ability. The CRPSS is defined as the percentage improvement in CRPS compared 
with a baseline model and can take values from 0% (indicating the model performs the same as the baseline) to 100% 
(indicating perfect forecasting skill). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Covariate excluded CRPS CRPSS (%) 

Full model (none) 0.455 12.7 

Climate-only (weighted cases and 
susceptibility excluded) 

0.479 8.1 

Epidemic-only (climate covariates 
excluded) 

0.482 7.5 

Niño 3.4 0.475 8.8 

SPI-12 0.46 11.7 

Maximum temperature 0.455 12.7 

Relative humidity 0.458 12.1 

Susceptibility 0.455 12.7 

Weighted cases 0.479 8.1 

Baseline (all) 0.521 0 
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Table 3: Influence of covariates on dengue predictions (spatial)  
 
Table comparing the median continuous ranked probability score (CRPS) and continuous ranked probability skill 
score (CRPSS) for the full model to models with each covariate excluded. The CRPS is calculated by comparing out-
of-sample posterior predictions of dengue cases from 5-fold spatial cross validation with observed values. Here, we 
show the median CRPS value over 10 repetitions of the 5-fold cross validation, with the associated 95% confidence 
interval. Lower CRPS values indicate better predictive ability. The CRPSS is defined as the percentage improvement 
in CRPS compared with a baseline model, and can take values from 0% (indicating the model performs the same as 
the baseline) to 100% (indicating perfect forecasting skill). 
 
 

Model CRPS CRPSS (%) 

Full model (none) 0.855 (95% CrI: 0.853 – 0.86) 10.3 (95% CrI: 9.49 – 10.57) 

Climate-only (weighted 
cases and susceptibility 

excluded) 
0.923 (95% CrI: 0.921 – 0.927) 3.084 (95% CrI: 2.744 – 3.385) 

Epidemic-only (climate 
covariates excluded) 

0.87 (95% CrI: 0.867 – 0.876) 3.084 (95% CrI: 2.744 – 3.385) 

Niño 3.4 0.859 (95% CrI: 0.854 – 0.862) 9.9 (95% CrI: 9.57 – 10.41) 

SPI 0.858 (95% CrI: 0.854 – 0.862) 9.8 (95% CrI: 9.49 – 10.54) 

Maximum temperature 0.858 (95% CrI: 0.855 – 0.861) 9.91 (95% CrI: 9.53 – 10.26) 

Relative humidity 0.862 (95% CrI: 0.86 – 0.87) 9.4 (95% CrI: 8.53 – 9.95) 

Susceptibility 0.855 (95% CrI: 0.851 – 0.859) 10.2 (95% CrI: 9.73 – 10.73) 

Weighted cases 0.924 (95% CrI: 0.922 – 0.931) 3.0 (95% CrI: 2.38 – 3.41) 

Baseline (all) 0.953 (95% CrI: 0.95 – 0.955) 0 
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Figure 10: Comparing age-stratified seropositivity from DENV IgG ELISA and neutralisation tests 
 
Figure comparing age-stratified seropositivity tested by DENV1-4 ELISA assay (panel a), DENV1 
neutralisation test (panel b) and DENV2 neutralisation test (panel c). IgG ELISA testing was performed by 
a US CDC in-house assay, while neutralisation testing was performed using fluorescent reporter virus and 
live imaging of cells.  
  

 
 


