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Abstract

Background and Aims: Prognostic models provide evidence‐based predictions and

estimates of future outcomes, facilitating decision‐making, patient care, and

research. A few of these models have been externally validated, leading to uncertain

reliability and generalizability. This study aims to externally validate four models to

assess their transferability and usefulness in clinical practice. The models include the

respiratory index of severity in children (RISC)‐Malawi model and three other models

by Lowlavaar et al.

Methods: The study used data from the Clinical Information Network (CIN) to

validate the four models where the primary outcome was in‐hospital mortality.

163,329 patients met eligibility criteria. Missing data were imputed, and the logistic

function was used to compute predicted risk of in‐hospital mortality. Models'

discriminatory ability and calibration were determined using area under the

curve (AUC), calibration slope, and intercept.

Results: The RISC‐Malawi model had 50,669 pneumonia patients who met the

eligibility criteria, of which the case‐fatality ratio was 4406 (8.7%). Its AUC was 0.77

(95% CI: 0.77−0.78), whereas the calibration slope was 1.04 (95% CI: 1.00 −1.06),

and calibration intercept was 0.81 (95% CI: 0.77−0.84). Regarding the external

validation of Lowlavaar et al. models, 10,782 eligible patients were included, with an

in‐hospital mortality rate of 5.3%. The primary model's AUC was 0.75 (95% CI:

0.72−0.77), the calibration slope was 0.78 (95% CI: 0.71−0.84), and the calibration

intercept was 0.37 (95% CI: 0.28−0.46). All models markedly underestimated the risk

of mortality.

Conclusion: All externally validated models exhibited either underestimation or

overestimation of the risk as judged from calibration statistics. Hence, applying these

models with confidence in settings other than their original development context

may not be advisable. Our findings strongly suggest the need for recalibrating these

model to enhance their generalizability.
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1 | INTRODUCTION

Childhood mortality remains high in low and middle‐income countries

(LMICs) despite a significant reduction since 1990, but it's uncertain

how much in‐hospital mortality has changed over this duration.1,2

Mortality rates among hospitalized children in sub‐Saharan Africa

remain high, and most deaths occur within the first few hours of

admission.3 An example of such a comparison can be found in

Sharrow et al.4 which reported a marked disparity in under‐five

mortality rates between low‐income and high‐income settings, with

rates of 67% and 5%, respectively. EmergencyTriage Assessment and

Treatment (ETAT) guidelines, produced by the World Health

Organization (WHO), guide immediate care for children admitted to

hospitals. ETAT guidelines provide guidance on triage and use

syndrome‐based approach to the management of common childhood

conditions, but they are still used inconsistently and implemented

suboptimally in Africa despite having been in existence since 2005.5

Regardless of an underlying condition, children at risk of death

during hospitalization often present with similar danger signs and

prompt triage and immediate supportive management are most

important in reducing mortality and morbidity in admitted children.6

Identification of children at risk of in‐hospital mortality is the first

step in directing supportive treatments that have the potential to

reduce deaths. Therefore, clinical prediction models that identify the

sickest children immediately upon arrival at the hospital for

immediate supportive care and targeted close monitoring may be

useful.7 However, many prognostic models do not meet methodo-

logical standards, reducing their utility and generalizability.8,9 A

common methodological weakness is the small sample size which

makes a resultant model to have a low signal‐to‐noise ratio, limited

number of events‐per‐variable (EPV), with some having EPV of less

than 20, which is thought to lead to biased estimates.10‐13 Other

weaknesses include poor handling of incomplete data, inappropriate

statistical analyses, and optimistic interpretations of the model

output. Furthermore, overreliance on fully automated statistical

techniques, such as the stepwise model selection algorithm (back-

ward or forward), which do not require expert or consensus input,

can lead to overoptimistic or biased models that are not always

relevant in routine practice.11,14‐16

Independent external validation of risk scores is recommended to

assess their transferability and generalizability to other patient

populations before their use in clinical practice. However, few

models have been validated externally hence most models have

uncertain reliability and generalizability.15,17,18 In this study, we

conduct external validation of four prognostic models predicting in‐

hospital mortality for pediatric patients in LMICs using routine

hospital data collected by the Clinical Information Network (CIN) in

Kenya. These models were identified in the recent systematic review

of pediatric prognostic models.8,9

2 | METHODS

2.1 | Ethics and reporting

This external validation study followed recommendations for

developing, reporting and validating prognostic studies stipulated in

the TRIPOD (Transparent Reporting of a multivariable prediction

model for Individual Prognosis or Diagnosis) statement.12,13 Kenya

Medical Research Institute's (KEMRI) scientific and ethical review

committee approved the CIN study (#3459). The Kenya Ministry of

Health (MoH) permitted this work using deidentified routine patient

care data abstracted from medical records after discharge without

individual patient/clinician consent.

2.2 | Patient and public involvement

Patients were not involved in the study's design, so research

questions were not informed by patients' priorities, experiences, or

preferences.

2.3 | Study design and setting

This validation study uses data collected from CIN, which comprises

20 public county referral (previously district) hospitals in Kenya

whose locations are shown in Figure 1. These hospitals serve as first‐

referral level hospitals but also serve patients who seek care directly

from their homes. The CIN is a collaboration between researchers

from the KEMRI‐Wellcome Trust Research Programme (KWTRP), the

Kenya MoH, the Kenya Paediatric Association, and participating

hospitals. The selection of these hospitals under CIN was purposeful

to represent wide geographical variation in Kenya and targeted those

with a high volume of pediatric admissions, at least 1000 children per

year. More details about the selection of these hospitals and their

locations have been given elsewhere.3

2.4 | Outcome

In our study, the outcome of interest was all‐cause in‐hospital

pediatric mortality. To minimize bias in outcome assessment, the

hospital data clerks who abstracted data from medical records were

kept unaware of the study, ensuring their inability to influence the

outcome assessment and maintaining blindness to predictors. We

aimed to comprehensively represent the target population by

considering all pediatric patients admitted to the hospital during

the study period. By including all eligible patients, we sought to avoid

systematic selection bias related to the outcome of interest.
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2.5 | Prognostic models included for external
validation

Models included in this external validation were obtained from a

recent systematic review of prognostic models,9 which identified 11

models predicting in‐hospital mortality for children admitted in LMICs

hospitals. However, we excluded nine models19–24 since they did not

publish the relative weights of the risk factors and model intercept

for the logistic regression models or the baseline hazard function for

the survival models as required for the external validation. Before we

decided to exclude these models, we contacted the corresponding

authors of those studies by email, asking for the complete model

formula without success. The following are the models included in

the current external validation study.

2.5.1 | Respiratory index of severity in children
(RISC)‐Malawi prognostic model

RISC‐Malawi is a predictive model developed using prospectively

collected clinical data from a cohort of 14,665 hospitalized children

aged 2−59 months with pneumonia diagnosis in Malawi between

2011 and 2014. The total number of deaths in the model

development cohort was 465, and the case‐fatality rate was 3.2%

across the seven hospitals under study.25 The authors utilized logistic

regression to develop a prognostic model whose intercept and odds

ratios for the seven prognostic factors are provided in Table 1. The

author reported an area under the receiver operator characteristic

curve (ROC) of 0.79 (95% CI: 0.76−0.82), demonstrating a fair ability

to discriminate children's mortality risk.

F IGURE 1 Locations of hospitals included in the validation cohort. CIN, Clinical Information Network.

OGERO ET AL. | 3 of 14
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2.5.2 | Lowlaavar et al. prognostic models

Lowlaavar et al.26 developed three models utilizing a two‐site prospective

observational study in Uganda which enrolled children between 6 months

and 5 years admitted with a proven or suspected infection. In their study,

1307 children were enrolled consecutively, and 65 (5%) of participants

died during their hospital stay. The study was conducted between March

2012 and December 2013. The primary model included three predictors

namely weight‐for‐age z‐score (WAZ), Blantyre coma scale, and HIV

status. Based on the derivation dataset, the area under the curve (AUC)

was 0.85 (95% CI: 0.80−0.89). The second model included MUAC (mid‐

upper arm circumference), Blantyre coma scale, and HIV status. The area

under the ROC curve of this model was 0.84 (95% CI: 0.79−0.89). The

third model included two variables MUAC and Blantyre coma scale, with

an AUC of 0.82 (0.72−0.91). The equations of these three models are

provided in Table 1.

2.6 | Data collection

Patients admitted to CIN hospitals have the following data routinely

collected and documented: biodata (e.g., age, gender), history of illness

(e.g., length of illness, history of fever, diarrhea, vomiting, convulsions,

vaccinations), examination findings (for instance vital signs, presence of

thrush, edema, and visible wasting), investigations done during admission

(e.g., malaria, hematology, glucose, HIV, and lumber puncture tests

results), admission and discharge diagnoses, treatment received at

admission (e.g., antibiotics, anti‐malarial, anti‐tuberculous medications),

supportive care (oxygen support, blood transfusion, fluids, bolus fluids

treatment), vital signs measurements for the initial 48 h of admission, and

outcome at discharge. These patient details are systematically documen-

ted by clinicians and nurses using a standardized medical record form

called Pediatric Admission Record (PAR),27 adopted for use by hospitals

participating in CIN. Upon discharge or death of a patient, a trained data

clerk abstracts these data to a customized data capture tool designed

using a nonproprietary Research Electronic Data Capture (REDCap)

platform.28 As part of quality assurance protocols, data quality checks

(data completeness and transcription errors) are run locally using a script

written in R programming language before data are synchronized to a

central database. If any inconsistencies, data omissions or transcription

errors occur, the data clerk corrects these after verification from the

patient record. The data clerk does not make corrections to documenta-

tion errors made by the clinical or nursing teams.

2.7 | Patient inclusion criteria

Patients hospitalized in pediatric wards across 20 CIN hospitals were

eligible for inclusion from September 2013 to December 2021.

Surgical cases of burns patients, healthy children accompanying sick

babies, children admitted with poisonings such as organophosphate

ingestion, or any other form of poisoning, and traumatic & road traffic

cases were all excluded from the validation cohort. We also excluded

patients admitted during healthcare workers (nurses and doctors)

strikes.29 These exclusions were done to make the validation dataset

as similar as possible to the derivation cohort of the models whose

performance is assessed in this study. The following eligibility criteria

were applied to obtain a model‐specific cohort for external validation.

2.7.1 | Eligibility criteria for RISC‐Malawi model's
external validation cohort

As defined in the study that derived RISC‐Malawi model, the external

validation cohort included patients aged 2−59 months with admission

diagnoses of pneumonia that were defined as follows; history of

cough or difficulty breathing and at least one of the danger signs,

which included central cyanosis, grunting, chest‐wall indrawing,

stridor, inability to drink/breastfeed, and or painful responsive (P)

or unresponsiveness (U) based on the disability scale of AVPU (Alert,

Verbal, Painful responsive, unresponsive) see Figure 2.

RISC‐Malawi model predictors were defined in the validation

cohort as follows; moderate malnourished was defined as MUAC

between 11.5 cm and 13.5 cm. Severe malnourished was defined as

MUAC < 11.5 cm. Unconsciousness was assessed using the disability

scale of AVPU (Alert, Verbal, Pain, Unresponsive). Thus, patients were

assumed to be unconscious if they responded to pain only or were

unresponsive altogether (P or U). Moderate hypoxemia was defined

as oxygen saturation ranging from ≥90% to ≤92%, and severe

hypoxemia was defined as oxygen saturation <90%.

To understand the performance of the RISC‐Malawi model in a

scenario where the definition of predictors varied from the original

study, we performed sensitivity analyses where pneumonia diagnosis

was defined based on the clinical diagnosis instead of danger signs.

2.7.2 | Eligibility criteria for Lowlavaar et al.
models' external validation cohort

To match the clinical characteristics of the external validation cohort

to that of the model derivation, we included children aged 6 to ≤60

months and excluded patients with the following features: mal-

nourished cases (defined as clinical diagnoses of malnutrition),

readmission cases, those with a cancer diagnosis, those with a heart

condition, and patients with any parasitological confirmed or clinically

suspected noninfectious illness see Figure 2.

Model predictors were defined as follows; weight‐for‐age z‐score

was computed based on the reference materials in theWHOwebsite (for

patients <24 months)30,31 and the National Centre for Health Statistics

(for patients >24 months),32 and abnormal Blantyre coma score (BCS).

Since BCS data was only collected in 6 out of 20 CIN hospitals, we

limited the validation data to include patients from the 6 hospitals whose

locations are shown in Figure 3. The collection of BCS data was

introduced in September 2019 in the 6 hospitals participating in the

OGERO ET AL. | 5 of 14
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WHO‐led study evaluating the subnational pilot introduction of the

RTS,S/AS01 malaria vaccine in western Kenya—a region with high malaria

transmission throughout the year.33 Therefore, as defined in the model

derivation study, a patient with a BCS of less than five was considered

abnormal.

2.8 | Assessing performance of the prognostic
model in the external validation

Model regression coefficients were used to determine predictions of

the risk of mortality in the validation dataset as follows; for each

patient in the validation cohort, the presence of the model predictor

was assigned a value of 1, while its absence was assigned a value of 0.

This was then multiplied by the corresponding regression coefficients

and added together with the model intercept to get a linear predictor.

The patient's predicted risk of in‐hospital mortality was then

computed on the resultant linear predictor using the logistic function
exp β β X β X

exp β β X β X

( + + …
1 + ( + + …

k k

k k

0 1 1
0 1 1

, where β0 is the model intercept and βi is the

regression coefficient for a given predictor X.

Model performance was determined based on two metrics:

discriminatory index and model calibration. To determine the

discriminative ability of the model, we used the AUC, also known

as c‐statistic which is a measure of the power of a model/score to

distinguish between two classes.11 We classified the model's

discriminatory ability using the following cutoffs; (AUC) ≥ 0.90 was

classified as “excellent discrimination,” AUC ranging from 0.80 to

0.89 was classified as “good discrimination,” AUC ranging from 0.70

to 0.79 as “fair discrimination,” and “poor discrimination” was for the

model whose AUC was <0.70.34,35

Model calibration was assessed by plotting the predicted

probability of in‐hospital death against the observed proportion.

The observed proportion is calculated using the proportion of events

that occurred relative to the total number of observations in the

datasets used for validation. The predictive model calculates the

probability of an event occurring for each observation in the dataset

to obtain the predicted probability. Two calibration metrics are

computed, namely calibration slope and calibration intercept.36

The calibration slope, which has a reference value of 1, examines

the dispersion of the predicted risks such that a slope value of <1

suggests that estimated risks are too extreme, while a slope value of

>1 indicates that the estimated risks are too low. On the other hand,

the calibration intercept is a measure of calibration‐in‐the‐large and

has a reference value of 0 such that a calibration intercept of <0

indicate overestimation while that of >0 indicates an underestimation

of risk.36 The confidence intervals for both c‐statistic, calibration

slope and intercept were calculated through bootstrap resampling

using the CalibrationCurves package in R.37

F IGURE 2 Flow chart of patients included in a model external validation cohort.

6 of 14 | OGERO ET AL.
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2.9 | Handling missing data

The two models selected for external validation in the current study

used variables that had varying levels of documentation in the

validation cohort. For instance, the data in MUAC, which was used to

determine malnutrition status, were missing in 49.8% of the eligible

population for the RISC‐Malawi model. Documentation of this

variable was also not very well documented in the derivation dataset

by Hooli et al. whereby the data were missing in 45.8% of the eligible

population. See Table 4 for the data missingness of predictors in the

RISC‐Malawi model and Table 5 for the Lowlavaal et al. models.

To avoid bias that may have resulted from excluding observa-

tions with missing data, we undertook multiple imputations to

account for the uncertainty caused by missing data.38,39 To do this,

we created 50 imputation datasets under the assumption of missing

at‐random mechanism. Variables to be imputed were ordered based

on their levels of data missingness from low to high. This was meant

to fully benefit from the imputing algorithm's chained equations and

boost convergence. The simulation error in the multiple imputations

was minimized by using 100 iterations between imputations.

Validation of the prognostic model was carried out on each of the

imputed datasets. Rubin's rules40 were used to pool estimates from

the 50 multiply‐imputed datasets. As recommended,41 a plot of

densities of both the observed and imputed values suggested that the

imputations generated from the imputing algorithm were plausible, as

shown in Supporting Information: Figure 1.

All analyses were done using R 3.6.3 (R Foundation for Statistical

Computing; http://www.cran.r-project.org).

F IGURE 3 Locations of the six hospitals
whose patients were included in the validation
cohort of Lowlaavar et al. models.
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3 | RESULTS

3.1 | Eligible population

The CIN's database had 212,654 patients admitted and 162,329

patients were eligible to be included in the validation cohort from all

hospitals (n = 20). We further applied model‐specific exclusions, as

shown in Figure 2 to obtain n = 50,669 and n = 10,782 patients

eligible for the external validation of the RISC‐Malawi and Lowlaavar

models, respectively. Model performance results are presented using

multiply‐imputed datasets.

3.1.1 | Characteristics of the cohort used in the
external validation of the RISC‐Malawi prognostic
model

We had n=50,669 patients who met the eligibility criteria to be included

in the validation dataset of the RISC‐Malawi model. Out of this cohort,

the pneumonia case fatality ratio was 8.7%, ranging from 1.9% to 16.3%

across hospitals. Upon examining the characteristics of this cohort, we

observed that 3221/50,669 (6.4%) of the patients were unconscious, of

which 1281/3221 (39.8%) died. 3042/50,669 (6%) of all patients were

severely malnourished, and 604 (19.9%) of them died. In addition, the

data also suggested 8949/50,669 (17.7%) patients experienced severe

hypoxemia, of which 14% (1253/8949) died, as shown in Table 2.

3.1.2 | Characteristics of the cohort used in the
external validation of the Lowlaavar et al. models

Since the derivation study of the Lowlaavar models included the BCS

as a model predictor, the eligibility criteria for the model validation

cohort included patients from six hospitals where the BCS data was

collected. In this dataset, 10,782 children met the eligibility criteria,

of which 570/10,782 (5.3%) experienced in‐hospital mortality. As

defined in the model's derivation study, patients with a BCS <5 were

considered to have abnormal BCS that was present in 1199 patients,

of whom 236 (19.7%) died in the hospital, as shown in Table 3.

3.1.3 | Comparison of patients' profile between
validation and derivation cohort

A comparative analysis of patients' case mix between the validation

and derivation cohort of the RISC‐Malawi model indicates a

satisfactory degree of similarity in their characteristics. However, it

is noteworthy that the dataset employed to validate the RISC‐Malawi

model exhibited a relatively higher pneumonia case fatality rate

(8.7%) compared to the dataset used in its derivation (3.2%).

Additionally, there was a significantly higher prevalence of uncon-

sciousness in the validation dataset (6.4%) compared to the

derivation cohort (3.7%), as shown in Table 4. Similarly, the dataset

employed in developing the Lowlaavar models demonstrated a

mortality rate of 5% which was comparable to the mortality rate of

the dataset used for validation purposes (5.3%). However, the

derivation cohort exhibited relatively higher levels of malnutrition,

as evidenced by their MUAC values and stunting levels, as presented

in Table 5.

3.1.4 | Performance of RISC‐Malawi prognostic
model in external validation dataset

The discriminatory ability (c‐statistic) of the RISC‐Malawi model was

0.77 (95% CI: 0.77−0.78), whereas the calibration slope was 1.04

TABLE 2 Demographic and clinical characteristics of the cohort used to externally validate RISC‐Malawi model.

All patients Survived Died

Population n = 50,669 46,263/50,669 (91.3%) 4406/50,669 (8.7%)

Child‐sex (female) 22,184/50,669 (43.8%) 20,001/22,184 (90.2%) 2183/22,184 (9.8%)

Age (months)
median (IQR)

13 (7−24) 14 (7−25) 9 (6−16)

Moderate hypoxemia 3875/50,669 (7.6%) 3591/3875 (92.7%) 284/3875 (7.3%)

Severe hypoxemia* 8949/50,669 (17.7%) 7696/8949 (86%) 1253/8949 (14%)

Moderately malnourished* 8699/50,669 (17.2%) 7988/8699 (91.8%) 711/8699 (8.2%)

Severely malnourished* 3042/50,669 (6%) 2438/3042 (80.1%) 604/3042 (19.9%)

Wheeze present 6666/50,669 (13.2%) 6181/6666 (92.7%) 485/6666 (7.3%)

Unconsciousness* 3221/50,669 (6.4%) 1940/3221 (60.2%) 1281/3221 (39.8%)

Note: Unconscious* defined as either painful responsive or unresponsive in the disability scale of AVPU (Alert, Verbal, Painful responsive, unresponsive).
Severe hypoxemia* defined as oxygen saturation <90%. Severely malnourished* defined as mid‐upper arm circumference (MUAC) <11.5 cm. Moderately
malnourished* defined as MUAC between 11.5 and 13.5 cm.

Abbreviation: RISC, respiratory index of severity in children.
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(95% CI: 1.00−1.06). The calibration intercept was 0.81 (95% CI:

0.77−0.84), indicative of a poorly calibrated model since it under-

estimates the risk (intercept >0) see Figure 4.

3.1.5 | Performance of Lowlaavar et al. models in
external validation dataset

We computed the performance statistics for the three models

derived by Lowlaavar et al. and the findings were as follows; the

primary model (model 1), which included three predictors (abnormal

BCS, HIV+, weight for age z‐score) had a c‐statistic of 0.75 (95% CI:

0.72−0.77) while the calibration slope was 0.78 (95% CI: 0.71−0.84),

and the calibration intercept was 0.37 (95% CI: 0.28−0.46). The

second model (model 2) included the following three predictors:

abnormal BCS, HIV+, and MUAC had a c‐statistic of 0.78 (95% CI:

0.77−0.80) while the calibration slope was 0.82 (95% CI: 0.76−0.89)

and the calibration intercept was 0.92 (95% CI: 0.84−1.10). The third

model with two predictors (abnormal BCS and MUAC) had a

c‐statistic of 0.71 (95% CI: 0.68−0.73), while the calibration slope

TABLE 3 Demographic and clinical characteristics patients from six hospitals who were included in the validation cohort of Lowlaavar
et al. models.

Indicator All patients Survived Died

Population N = 10,782 10,212/10,782 (94.7%) 570/10,782 (5.3%)

Gender (female) 4508/10,782 (41.8%) 4245/4508 (94.2%) 263/4508 (5.8%)

Age (months) median (IQR) 24 (14−42) 24 (14−42) 22.5 (11−38)

HIV diagnosis 75/10,782 (0.7%) 63/75 (84%) 12/75 (16%)

Abnormal BCS 1199/10,782 (11.1%) 963/1199 (80.3%) 236/1199 (19.7%)

WAZ −0.5 (−1.5 to 0) −0.5 (−1.5 to 0) −1 (−2 to 0)

MUAC 14.3 (13.5−15) 14.3 (13.6−15) 14 (13.1−14.8)

Note: Abnormal BCS defined as BSC of <5.

Abbreviations: BSC, Blantyre coma score; MUAC, mid‐upper arm circumference; WAZ, weight for age Z‐score.

TABLE 4 Comparing predictors used in RISC‐Malawi model in derivation and validation datasets.

Predictor
Variable in model derivation
dataset

Variable equivalent in external
validation dataset

N in the derivation
dataset

N in the validation
dataset

Oxygen saturation Normal Oxygen saturation 93%−100% 10,586 (64.3%) 16,897 (33.3%)

Moderate hypoxemia
(90%−92%)

Oxygen saturation 90%−92% 1382 (8.4%) 3875 (7.6%)

Severe hypoxemia Oxygen saturation <90% 2094 (12.7%) 8949 (17.7%)

Missing oxygen saturation 2413 (14.7%) 20,947 (41.3%)

Malnutrition Normal MUAC >13.5 cm 4557 (27.7%) 15,234 (30.1%)

Moderately malnourished MUAC (11.5−13.5 cm) 3382 (20.5%) 8699 (17.2%)

Severely malnourished MUAC <11.5 cm 991 (6.0%) 3042 (6.0%)

Missing MUAC data 7545 (45.8%) 25,232 (49.8%)

Wheeze Wheezing = yes Wheezing = yes 4117 (25.0%) 6666 (13.2%)

Wheezing = no Wheezing = no 8767 (53.2%) 42,701 (84.3%)

Missing wheezing data Missing data 3591 (21.8%) 1302 (2.6%)

Unconsciousness Unconscious = yes Painful responsive or unresponsive in the

disability scale of AVPU (Alert, Verbal,
Painful responsive, unresponsive)

608 (3.7%) 3221 (6.4%)

Unconscious = no Alert or verbal response based on the
disability scale of AVPU

12,529 (76.1%) 45,915 (90.6)

Missing data 3338 (20.3%) 1533 (3.0%)

Abbreviations: MUAC, mid‐upper arm circumference; RISC, respiratory index of severity in children.
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was 0.73 (95% CI: 0.67−0.80), and the calibration intercept was 0.39

(95% CI: 0.31−0.48) as shown in Figure 5.

3.2 | Sensitivity analyses

As a sensitivity analysis, we varied the criteria of determining

pneumonia diagnosis in the validation cohort of RISC‐Malawi such

that instead of using danger signs (central cyanosis, grunting,

indrawing, stridor, inability to drink, AVPU, and convulsion) as used

in the original study to define pneumonia, we used clinical admission

diagnosis of pneumonia. All other eligibility criteria remained

unchanged, resulting in a sample size of 56,045 with a pneumonia

case fatality rate of 7.6%. Evaluation of the RISC‐Malawi model

performance in the sensitivity analyses dataset suggested a reduced

performance compared to what was seen in the primary analyses, as

shown in the Supporting Information: Figure 2.

We also undertook a sensitivity analysis of the Lowlavaar models

using patients from all hospitals (n = 20) instead of the six hospitals as

used in the main analyses. However, the abnormal BCS was defined

using AVPU scores which is a disability scale such that patients who

were at “V” during the clinical assessment by a physician were

classified as having abnormal Blantyre scale. Those who met the

eligibility criteria were 86,784 patients and in‐hospital mortality was

4.7% (n = 4045). Patients with abnormal BCS were 2023 (2.3%) out of

which 268 (13.5%) died. Performance of the Lowlavaar models in the

sensitivity analyses dataset were lower as compared to the main

analyses as shown in the Supporting Information: Figure 3.

4 | DISCUSSION

4.1 | Summary of findings

The first step towards wider clinical application of clinical prediction

rules is to validate existing prognostic models to identify children at

risk of deterioration in diverse settings. In this study, we externally

validated four predictive models initially developed by two studies to

identify children at an increased risk of in‐hospital mortality in low‐

resource settings.25,26

Using a diverse population of children admitted to 20 hospitals

from 2014 to December 2021, we performed an external validation to

assess these four prognostic scores' discriminatory ability and

calibration levels. All models had fair discriminatory values (AUC:

0.70−0.79). However, they all underestimated the mortality (calibra-

tion intercept >0), leading to the misclassification of patients at an

TABLE 5 Comparing predictors used in Lowlavaal et al. model in derivation and validation datasets.

Predictor
Variable in model derivation
dataset

Variable equivalent in external
validation dataset

N in the derivation
dataset

N in the validation
dataset

Blantyre coma score Abnormal Blantyre coma score
(score <5)

Verbal response based on the
disability scale of AVPU

Not provided 2023 (2.3%)

Missing data Not provided 103 (1.0%)

HIV diagnosis Positive HIV diagnosis Positive HIV diagnosis 66 (5.1%) 850 (1.0%)

Weight for age
z‐score (WAZ)

Severely stunted (WAZ < −3) Weight for age z‐score < −3 206 (15.9%) 481 (4.5%)

Underweight (WAZ < −2) Weight for age z‐score < −2 372 (28.6%) 2649 (24.7%)

Missing data No provided 45 (0.4%)

Mid‐upper arm
circumference

MUAC < 125mm MUAC < 125mm 187 (14.5%) 898 (8.8%)

MUAC < 115mm MUAC < 115mm 94 (7.3%) 292 (2.8%)

Missing data No provided 531 (4.9%)

Abbreviation: MUAC, mid‐upper arm circumference.

F IGURE 4 Performance of the RISC‐
Malawi model in an external validation
dataset. The figures show calibration curves
and other model performance metrics. CL
denotes confidence limits (95%); RCS denotes
restricted cubic splines.
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increased risk of deterioration. These model performance measures

were even lower when they were validated using the sensitivity

analyses datasets where we varied the definitions of abnormal

BCS and pneumonia from how it was defined in the original study by

Lowlavaar et al. and Hooli et al. for RISC‐Malawi, respectively. This

demonstrates the value addition of explaining predictors as used in

the model derivation study.

The suboptimal performance of these models in the CIN data

sets may be due to having more diverse patient populations and

different case‐mix. Although we attempted to ensure that the

patients' characteristics in the validation and derivation cohort were

as similar as possible, we observed that the cohort we used to

validate the RISC‐Malawi model had a higher pneumonia case fatality

rate (8.7%) than the original patient group (3.2%). Despite this

difference, the discriminatory ability of the RISC‐Malawi in the

validation cohort had an AUC 0.77 (95% CI: 0.77−0.78), which was

nearly similar to that observed in the model derivation cohort 0.79

(95% CI: 0.76−0.82).

While the calibration intercepts of all models we externally

validated suggested underestimation of the risk of mortality in

their predictions, calibration slopes of the same models illustrated

that these predictions were too extreme, especially for the

Lowlaavar et al. models whose calibration slopes were all <1. On

the other hand, predictions of the risk of pneumonia‐related

mortality by the RISC‐Malawi model were too low, as judged by

the calibration slope of >1. The result may be partly explained by

the inclusion of more physical examination variables as prognos-

tic factors, which could make a model underperform in an

external dataset because of the variations in interobserver

agreement, which is more common in physical examination

findings.42,43 It is encouraged to include prognostic factors that

do not have interobserver variations, such as blood lactate and

other biomarkers, including C‐reactive protein, procalcitonin, and

so forth, in the settings where these tests are available. However,

while such biomarkers might have better prognostic values and

are attractive to be included in the predictive models, they may

not be readily available in limited‐resource settings and are costly

to undertake.

In literature, the RISC‐Malawi model has been subjected to

external validation in a diverse cohort of hospitalized children from

the WHO's study group whose study patients were pooled from 10

studies on pediatric pneumonia from different countries.44 In this

cohort, there were 17,864 who met the eligibility criteria with a

pneumonia case fatality ratio of 4.9%. The RISC‐Malawi score in that

validation study had a fair discriminatory value (AUC = 0.75, 95%

CI = 0.74−0.77), which was not significantly different from what was

obtained in our validation study even though our validation cohort

had a higher pneumonia case fatality ratio of 8.7% (Table 2).

Furthermore, since calibration statistics were not reported, we could

not determine how RISC‐Malawi's calibration measures in the

validation study compares with what was obtained in the current

study. To our knowledge, Lowlaavar et al. models have not been

externally validated in any setting.

4.2 | Limitations

While the CIN database is a rich source of data routinely collected

from several hospitals over a long period and hence suitable for

model development and validation, by design, these data were not

meant for such purposes. Instead, the CIN was an essential initial step

in efforts to understand and improve care in Kenyan hospitals. This

led to missing data in variables of interest for many children, resulting

in multiply imputing the data, a computationally prohibitive task.

However, the CIN dataset had a substantial adequate sample size

required for external validation studies.45

Lastly, even though we attempted to make the validation

population as similar as possible to that used in the derivation of

the models we externally validated, we didn't exclude children who

carried more than one diagnosis concomitantly, which could explain

the reason why the validation case mortality rate is twice to that of

the derivation cohort.

F IGURE 5 Performance of the Lowlaavar et al. (2016) models in an external validation dataset where abnormal Blantyre coma score (BCS)
was defined as BCS < 5. The first panel to the left is the calibration curves of the primary model (model I), the panel in the middle are the
calibration curves for model II, and the last panel to the right are the calibration curves of model III. CL denotes confidence limits (95%); RCS
denotes restricted cubic splines.
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4.3 | Fulfilled knowledge gaps and what to be
done next

In the literature, it is more common to find model development

studies than validation ones. Hence, many models risk not being

utilized in clinical practice because they are yet to be externally

validated using a diverse population as expected, thus becoming

wasted research efforts. When evaluating a model for risk stratifica-

tion, researchers should utilize preexisting knowledge and, if

available, validate and update an existing model within a similar

setting instead of building a new model from scratch with all the

drawbacks of overfitting and lack of reproducibility. In this study, we

have subjected four models to an external validation study to

determine their clinical utility. In the ideal case of perfect validity

where scores have AUC ≥ 0.8, calibration intercept = 0, and calibra-

tion slope = 1, the model could be recommended for clinical

applications. However, if the model deviates from the ideal case,

then there is evidence of miscalibration and model recalibration

should be performed.46,47 Our findings have suggested that the

four models have significant miscalibration and hence underscores

the necessity of recalibration as a next step. Recalibration is done

by adjusting the intercept and slope of the logistic regression

equation to match the observed proportion of outcomes in the

external dataset. This involves fitting a new logistic regression

model with the predicted probabilities from the original model and

the observed outcomes in the external dataset. The intercept and

slope are then adjusted to align the predicted probabilities with the

observed outcomes.

4.4 | Conclusions

Even though prognostic models underperform when subjected to

different populations from the original population used in its

derivation, none of the models externally validated in this current

study displayed an outstanding discriminatory value of AUC ≥0.8

without under/overestimating the risk based on the calibration

statistics. Consequently, these models may not be applied

confidently in settings other than those in which they were

developed. Based on our findings, recalibrating these models, or

further developing prognostic models with greater sensitivity and

specificity to identify children at risk of in‐hospital mortality may

be warranted.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.
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