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ABSTRACT. Maize water stress from rainfall variability is a key challenge in producing rain-fed
maize farming, especially in water-scarce regions, such as southern Africa. Hence,
quantifying maize foliar water content variations throughout the phenological
stages is valuable in detecting smallholder maize moisture stress and supporting
agricultural decision-making. The emergence of unmanned aerial vehicles (UAVs)
equipped with multispectral sensors offers a unique opportunity for robust and
rapid monitoring of maize foliar water content and stress. The combination of near-
real-time spatially explicit information acquired using UAV imagery with physiologi-
cal indicators, such as equivalent water thickness (EWT) and fuel moisture content
(FMC), provides viable options for detecting and quantifying maize foliar water con-
tent and moisture stress in smallholder farming systems. Therefore, we evaluated
the utility of UAV-based multispectral datasets and random forest regression in
quantifying maize EWT and FMC throughout the maize phenological growth cycle.
Results showed that EWT and FMC could be determined using the near-infrared
and red-edge wavelengths to a relative root mean square error of 2.27% and 1%,
respectively. Specifically, the spectra acquired during the early reproductive growth
stages between silking and milk stages demonstrated a high sensitivity to the varia-
tion in maize moisture content. These findings serve as a fundamental step toward
creating an early maize moisture stress detection and warning system and contrib-
ute to climate change adaptation and resilience of smallholder maize farming.
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1 Introduction
Maize (Zea mays L.) is an important and eminent food security crop that also serves as a valuable
source of animal fodder, bio-energy, and raw industrial material.1,2 However, due to rainfall scar-
city and variability, maize moisture stress is a serious abiotic threat to maize production.1,3

Subsequently, water deficit negatively impacts maize productivity and impairs crop growth and
development, significantly reducing yield.1,4 Sah et al.2 reported that yield loss could vary from
30% to 90% depending on the crop stage and the degree and duration of water deficit stress. The
stages of maize susceptible to water deficit stress are the vegetative, silking (flowering), and early
stages (grain filling),4 where yield loss may be as high as 25%, 50%, and 21%, respectively.2 The
most obvious cause of yield losses as a result of water deficit stress is the loss of or suppressed
phenotypic expression and could manifest as a reduction in the canopy size, green-leaf duration,
plant height, leaf number, early leaf senescence, and asynchronized flowering.1,2,4 However,
before many of these phenotypic responses are expressed, water deficit would have caused irre-
versible damage to crop physiological processes.5 Early detection of physiological damage or
disruption can be key to developing adaptive strategies for increasing smallholder maize resil-
ience to water stress.

The most widely used physiological indicators of maize foliar moisture content are equiv-
alent water thickness (EWT) and fuel moisture content (FMC).3,6–8 EWT is a leaf water status
metric defined as the ratio between the quantity of water and leaf area.8 Zhang and Zhou9 noted
that EWT is closely associated with plant biochemical processes, such as photosynthesis, plant
metabolism, and crop evapotranspiration; hence it is a suitable indicator of moisture stress. FMC
is defined as the proportion of water to dry matter7 and has been widely used for plant water
stress, drought monitoring, and as a measure of ignition and fire propagation potential.3,7,10

Studies by Ndlovu et al.3 and Zhang and Zhou9 demonstrated the performance of EWT and
FMC as valuable indicators of the maize water content in smallholder farming systems.
Therefore, quantifying maize leaf EWT and FMC can provide valuable information for the early
detection of maize moisture stress and monitoring of maize physiology throughout the growth
period to inform small-scale agricultural decision-making.

Conventionally, maize EWTand FMC variations rely on direct measurements and the visual
assessment of maize physiology conducted by trained experts.11 However, these methods are
extremely time-consuming, tedious, subject to human error, and cannot sufficiently reflect spatial
and temporal variability in maize moisture status.6,12,13 Furthermore, field data collection requires
continuous measurements throughout the maize growth cycle, making implementation margin-
ally feasible.11,14 Consequently, there is a need for methods that can provide spatially explicit
datasets with a high temporal ability to monitor changes in smallholder maize leaf moisture
content throughout the growth period.

Recent advances in technology, particularly unmanned aerial vehicles (UAVs), have
heralded a new era in remote sensing, mapping, and data analytics within precision
agriculture.15–20 Using lightweight multispectral sensors mounted on UAVs offers great possibil-
ities for continuous near-real-time crop monitoring at a farm level.11 UAVs are unique because
they can provide high-quality remotely sensed data at unprecedented spatial, spectral, and tem-
poral resolutions.3,15 In addition, UAVs mounted with sensors capture imagery at low altitudes.
They can hover over areas of interest, making them a desirable tool for monitoring changes in
maize moisture content at different phenological stages.21

Furthermore, UAVs provide a cost-effective option to obtain frequent imagery at an ultra-
high spatial resolution, often in centimeters, which is necessary for monitoring crop physiology
at a plot level.18,20,22 For example, in a comparative study between UAV-based data and satellite
imagery, Matese et al.23 confirmed that UAV-derived datasets can detect even the most subtle
variations in crop physiological characteristics, a challenge even for high-resolution satellite
imagery such as RapidEye. A study by Tang et al.17 demonstrated the value of UAV-derived
multispectral data in predicting maize evapotranspiration with an R2 of 0.81 and RMSE of
0.95 mm∕day. Nonetheless, the ability of UAV imagery to adequately discriminate maize foliar
moisture content variability across the growing stages remains untested. Therefore, the potential
application of UAVs equipped with multispectral sensors in characterizing smallholder maize
moisture status at different growth stages still requires investigation.
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Since the moisture content in leaf tissue is a critical determinant of crop survival, accurately
monitoring crop water status using spectral reflectance measurements has been a key objective in
environmental research.24 The rationality of estimating maize moisture content stems from the
fact that literature confirms the existence of a strong relationship between foliar water concen-
tration and spectral absorption at specific near-infrared (NIR) and the shortwave infrared wave-
lengths of the electromagnetic spectrum.25 For instance, water molecules in leaf tissue produce
maximum absorption features along the NIR (750 to 1300 nm) section of the spectrum due to a
decrease in leaf reflectance.24,26,27 Furthermore, there are secondary effects of water absorption in
the visible region of the electromagnetic spectrum (blue, green, and red) which are influenced by
internal leaf structure and water transmissivity.6,25 This makes these sections of the spectrum
sensitive to changes in water content and, therefore, a plausible proxy for crop water stress detec-
tion. To enhance the spectral characteristics of crop leaf reflectance, several studies have dem-
onstrated the utilization of empirical models and vegetation indices (VIs) to predict crop moisture
content.24,28 For example, studies have reported that the normalized difference water index
(NDWI) is a water content-sensitive index that can be used to predict crop moisture throughout
the growth stages.29–32 Krishna et al. 27 noted that even though the normalized difference
vegetation index (NDVI) is optimal for crop chlorophyll content estimations, the index is highly
correlated to the plant water status; hence it is also a valuable predictor of maize moisture content.
Therefore, with the understanding of crop leaf reflectance across the electromagnetic spectrum,
UAV-derived spectral datasets provide a viable approach to quantifying intra-species moisture
content variability of smallholder maize crops throughout the growth cycle.

The use of machine learning algorithms, such as the random forest (RF), support vector
machines (SVM), and multiple linear regression, has have been proven to be instrumental in
characterizing crop characteristics.33 RF has proven to be a valuable regression model and is
known for its efficiency in handling outliers, its ability to account for non-linear relationships
between multiple variables, and its capacity to produce credible results, even with a small dataset,
as was the case in this study.34,35 The RF algorithm has high computational efficiency in process-
ing non-parametric and high dimensional data while being sensitive to overfitting.35–37 The
success of the RF regression model has been well-documented in recent literature.38,39 A
comparative study by Lee et al.40 assessed the performance of SVM, multiple linear regressions,
and RF algorithms in predicting the canopy nitrogen content of maize. It concluded that the RF
yielded the highest prediction accuracies. Again, Shao et al.37 also found the RF model to out-
perform traditional regression techniques in estimating the biophysical characteristics of wheat
crops. In a similar study, Ndlovu et al.3 evaluated the performance of five machine learning tech-
niques, namely RF, SVM, decision trees, artificial neural networks, and partial least squares
regression, in estimating maize EWT and FMC of smallholder farming systems. In that study,
it was established that the RF algorithm outperformed all the other algorithms in optimally pre-
dicting maize leaf moisture content parameters.

Considering that limited studies have evaluated the feasibility of using UAV-based proximal
remotely sensed data in accurately monitoring maize foliar moisture content across all pheno-
logical stages,9 there is a need to assess the value of UAV-derived data in mapping crop moisture
content variability. This study, therefore, sought to evaluate the utility of UAV-derived multispec-
tral imagery in estimating the spatio-temporal variability of smallholder maize leaf EWT and
FMC across the maize growing stages.

2 Materials and Methods

2.1 Study Site Description
This study was conducted in Swayimane (29.51667°S, 30.68333°E), uMshwati Municipality,
KwaZulu-Natal, South Africa (Fig. 1). The study area has a sub-tropical climate, with an average
annual rainfall between 600 and 1200 mm and an average air temperature between 12°C and
24°C.41 Swayimane is located at 886 m above sea level and has a relatively flat topography.
The soil in the area is classified as deep and dark clay loam soils, which indicates high organic
matter and soil fertility. The land in Swayimane is predominantly used for commercial and small-
scale subsistence agriculture, with the cultivation of several crops, including taro, sweet potatoes,
spinach, beans, sugarcane, and maize. The area is situated within the moist midlands mist belt
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bioclimatic region prone to berg winds, extreme clouds, flash floods, seasonal hail, and occa-
sional drought. The area has been identified as a climate change hot spot.42 Climate projections of
the area indicate an increase in temperature and unpredictable variations in annual precipitation
resulting in an increased risk of climate-driven events, including an increase in drought.

2.2 Experimental Plot and Crop Management Description
Figure 2 shows the biophysical condition of maize at the various phenological growth stages.
(Description of growth stages is available in Table 1.) The experimental plot was 50 m long and
30 m wide and was located on a gentle slope. Maize crops were sown on February 8, 2021, and
corn kernels were harvested on May 17, 2021. Cow urea and manure were manually spread in the
experimental field before sowing as a source of nutrients to fertilize the soil. A combination of
manual hand weeding and herbicide application was conducted when the maize crops were
21 days old. The experimental plot relied primarily on precipitation as a source of water supply.
The study plots were not irrigated nor applied fertilizer during the growing season. Table 2
presents the bioclimatic conditions of the study plot during the maize growing period, derived
from an automatic weather station located ∼860 m from the experimental plot.

2.3 Field Survey and Measurements of Maize Moisture Content
Field measurements were conducted on March 18 (V8-V10), March 31 (V14-Vt), April 12 (R1-
R2), April 28 (R2-R3), and May 14 (R3-R4) in 2021. Prior to the field survey, the boundary of
the experimental plot was digitized in the Google Earth Pro domain. The digitized polygon was
imported into ArcGIS and used to generate sampling points. A stratified random sampling pro-
cedure was used to generate 65 random sampling points within the experimental plot.43 This
method is optimal for acquiring an unbiased representative sample of the experimental maize
plot.43,44 ATrimble handheld GPS with a sub-meter accuracy was used to navigate to these sam-
pling points at each stage of the maize growth period. The third fully developed maize leaf from
the top of the stalk was sampled at each sample point. Literature states that to obtain reliable
maize physiological measurements, fully developed leaf samples should be taken from the top of
the canopy as there is maximum reflectance of light energy.45,46

Fig. 1 Location of the study area in Swayimane, South Africa.
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Table 1 Description of maize growth stages.

Growth stage Description

V8–V10 Maize crop is in the mid-vegetation stage of ear initiation and early cob development

V14–Vt Tassel at growth point begins to develop rapidly until visible

R1–R2 Early reproductive stages where silks are developing. These growth stages exhibit
high sensitivity to water deficit

R2–R3 Kernel development

R3–R4 Grain filling. Nutrients are transported to cob

Fig. 2 Field and maize crop conditions at (a) Pre-sowing, (b) V8–V10, (c) V14–Vt, (d) R1–R2,
(e) R2–R3, and (f) R3–R4 of the growth stages.

Table 2 Bioclimatic condition of maize across the phenological growth period.

Bioclimatic variable V8–V10 V14–Vt R1–R2 R2–R3 R3–R4

Total rainfall (mm) 2.4 0.8 0 0 0

Minimum air temperature (°C) 17.19 15.08 19.74 15 12.62

Maximum air temperature (°C) 23.77 22.8 31.91 30.52 27.32

Maximum wind speed (m/s) 3.76 5.09 4.07 4.14 3.76

Total solar irradiance 1040 1043 734.1 767.9 643.2

Maximum atmospheric pressure (mbar) 918 922 926 921 1012

Minimum relative humidity (%) 67.77 67.13 28.95 16 32.93
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Meanwhile, sampling young crops can lead to plant stress, which can ultimately cease crop
growth.45,47 In this regard, maize leaf sampling was not conducted during the emergence stages,
specifically from germination to the fifth leaf collar growth stage. Crop moisture content mea-
surements were conducted under near-cloud-free conditions between 12:00 noon and 14:00 as
this is the most optimal photosynthetic period of the day with radiation at maximum.48 A portable
leaf area meter (LI-3000C) with 1 mm2 resolution was used to measure the leaf area (A) of
sampled leaves. A calibrated scale was used to obtain the fresh weight (FW) of maize leaf sam-
ples, which were then dried in an oven at 70°C until a constant dry weight (DW) was reached
(�48 h). The leaf equivalent water thickness (EWTleaf in gm−2) and fuel moisture content
(FMCleaf in %) were then computed using the FW, DW, and A of maize leaves based on the
equation:

EQ-TARGET;temp:intralink-;e001;114;603EWTleaf ¼ FW − DW

A
Units∶ gm−2; (1)

EQ-TARGET;temp:intralink-;e002;114;554FMCleaf ¼ FW − DW

DW
× 100 Units∶%; (2)

where FW is the fresh weight, DW is the dry weight, and A is the leaf area. The computed
EWTleaf and FMCleaf were recorded in an excel spreadsheet against the coordinate of each sam-
pling point, which was later converted into a point map in ArcMap version 10.3.1. It must be
noted that at the beginning of the growing season, we only targeted fully developed and expanded
leaves where the leaf collar was visible. That created a bit of randomness in the sampling.
Significant deviations from the sampled plants occurred after the area experienced a hailstorm,
on April 23, 2021, which damaged maize leaves. As a result, we sampled other maize plants that
still had intact leaves. Sampling the undamaged maize plants resulted in different sampling points
in the plot at different stages.

2.4 UAV Platform, Imagery Acquisition, and Processing
The Altum MicaSense multispectral camera mounted on a DJI Matrice 300 series UAV platform
was used to obtain images of the study site at the five phenological growth stages (Fig. 3). The
main advantage of this UAV platform is its ability to acquire imagery over a range of environ-
mental conditions at high speed (one image captured per second) and to provide imagery with
high geolocational accuracy. The UAV platform is equipped with a downwelling light sensor
(DLS 2), which improves the reflectance calibration and the georeferencing of the images.
The MicaSense sensor consists of six spectral bands that capture spectral reflectance in the blue
(475 nm), green (560 nm), red (668 nm), red-edge (717 nm), NIR (840 nm), and thermal
(8–14 nm) regions of the electromagnetic spectrum3 [Fig. 3(b)]. The boundary of the experimen-
tal plot was generated around the plot in the Google Earth Pro domain, as described in Sec. 2.3.
The polygon was imported into the UAV’s handheld console as a Keyhole Markup Language file
format to generate the navigation flight plan. The flight was then carried out by a certified remote
pilot at a flight height of 100 m, a ground sampling distance of 9.6 cm (81 cm for the thermal
camera), and an 80% image overlap.

Fig. 3 (a) UAV imaging platform and (b) MicaSense multispectral camera used in this study.

Ndlovu et al.: Use of unmanned aerial vehicle-derived multi-spectral data. . .

Journal of Applied Remote Sensing 014520-6 Jan–Mar 2024 • Vol. 18(1)



Before and after each drone flight, the MicaSense camera was calibrated using the
MicaSense Altum calibrated reflectance panel. This was conducted by acquiring an image of
the calibration panel at ambient atmospheric and solar radiation conditions. These images were
imported along with the other captured images used into Pix4D Fields photogrammetry software
(Pix4 Fields) for pre-processing. Thereafter, radiometric corrections were conducted on the cap-
tured images using both the before and after flight images of the calibration panel. The calibra-
tion panel has a white balance card with reflectance properties across the electromagnetic
spectrum and was used as the target for the radiometric calibration of the images. This allows
the Pix4D software to correct the reflectance of the images to account for the dominant atmos-
pheric conditions at the time of image acquisition.41

The raw multispectral data, consisting of ∼3400 images per flight, were mosaicked to form a
single image of the study area using Pix4D Fields. Pix4D Fields were then used in conjunction
with the calibration images based on the map function to calculate reflectance as described in
Ref. 49. A total of five ground control points were acquired, one at each corner of the exper-
imental plot and a point at the location of the weather station situated at the center of the maize
field. The image was thereafter georeferenced in QGIS 3.4.0 to optimize geolocation accuracy
using the five ground control points to an RMSE less than half a pixel (3 cm).

2.5 Selection of Vegetation Indices
The six pre-processed spectral bands, acquired using the Mica sense’s six spectral channels, were
used to estimate maize EWTleaf and FMCleaf These bands were also used to compute VIs used to
estimate maize moisture indicators in a GIS environment. Studies have confirmed the ability of
VIs computed from the combination of the visible and NIR channels of the electromagnetic
spectrum to detect subtle variations in vegetation water characteristics.24,25 Based on existing
literature, 10 moisture content-related VIs were computed based on their correlation with maize
moisture content indicators. Table 3 illustrates the equations used to compute VI for estimating
maize moisture content. After computing the VIs, the sampling points were overlaid with all the
spectral variables (spectral bands and VIs) to extract the spectral signatures used for the statistical
analysis.

2.6 Model Development and Statistical Analysis
Regression models provide a reliable and efficient method for performing complex and multi-
dimensional environmental data analysis that would naturally be time-consuming to observe.57 In
this study, the RF regression algorithm was used to predict maize leaf moisture content indicators
(EWTleaf and FMCleaf ) at different phenological growth stages of maize crops because of its
simplicity and robustness.10

The RF ensemble is a machine-learning technique that uses bootstrap aggregation and
binary recursive partitioning to construct several independent trees using a random subset derived

Table 3 Selected VIs used for maize moisture content estimations.

Vegetation index Equation References

NDWI (Green − NIR/green + NIR) 50

NDVI (NIR − red/NIR + red) 51

NGRDI (Green − red/green + red) 52

NDRE (NIR − rededge/NIR + rededge) 53

NDVIrededge (Rededge − red/rededge + red) 53

CIgreen ((NIR/green) −1) 54

CIrededge ((NIR/rededge) −1) 9

SR (NIR/red) 55

OSAVI [(NIR − red)/ (NIR + red + 0.16)] × (1 + 0.16) 56

Ndlovu et al.: Use of unmanned aerial vehicle-derived multi-spectral data. . .

Journal of Applied Remote Sensing 014520-7 Jan–Mar 2024 • Vol. 18(1)



from the training data.57 The robustness of RF originates from the capacity of the algorithm to use
bootstrap aggregation to build regression trees that are grown to their maximum sizes, which are
then used to allocate an input variable (spectral bands and VIs) to a response variable (EWTleaf or
FMCleaf) using unweighted averaging.58 In addition, the out-of-bag samples, which have been
excluded from the bootstrap aggregation, are used by the RF ensemble to evaluate the generated
regression model.59 However, a common challenge with regression models is multicollinearity
which results from a high level of correlation between two or more predictor variables.60 Using
only the most suitable predictor variables in building regression models56 is advisable. Variable
importance selection was adopted to resolve potential collinearity and select the best and
the fewest predictor variables for the RF model. RF can compute Gini impurity scores used
to identify predictor variables most influential in prediction.10 Therefore, a high Gini impurity
score identifies the most important predictor variable. The best predictor variables were then used
to develop the final RF model of maize moisture content at each growth stage. Subsequently,
RF was used in this study because of its ability to identify and select optimal predictor spectral
features while circumventing inherent autocorrelations.61,62 Furthermore, it has a bootstrap
mechanism that makes it applicable regardless of the sample sizes and does not require any data
assumptions.63 The optimal hyperparameter values for the prediction of maize water content in
the study was determined to be an Ntree equal to 500 and anMtry of 11 after numerous iterations.

Before the analysis, the data were randomly split into training data (70%) and validation data
(30%). The former was used to develop the regression model, and the latter to evaluate the mod-
el’s predictive performance. In developing the UAV remotely sensed-based EWTleaf or FMCleaf

models, the relative performance of spectral bands was evaluated to that of VIs. Subsequently,
the combined optimal prediction bands and VIs were used to model the spatial variability of
EWTleaf or FMCleaf across different phenological stages of maize crops.

2.7 Model Validation
The prediction accuracy of the derived RF models was assessed based on the coefficient of
determination (R2), the root mean square error (RMSE), and the relative root mean square error
(rRMSE). The optimal model for estimating maize moisture content indicators at different phe-
nological stages was determined based on the highest R2 and the lowest RMSE and rRMSE:

Fig. 4 Flowchart of methodology implemented in this study.
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EQ-TARGET;temp:intralink-;e003;117;736RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðpredicted − actualÞ2

n

r
; (3)

EQ-TARGET;temp:intralink-;e004;117;693rRMSE ¼ RMSE

MeanðactualÞ × 100; (4)

where predicted is the modeled variable and actual is the field-measured variable. Lastly, a map
illustrating the spatial and temporal distribution of the predicted maize EWTleaf or FMCleaf at
every growth stage was generated using the optimal predictor variable derived from the optimal
regression model on ArcMap version 10.3.1 software. The RMSE and the rRMSE were calcu-
lated based on the above equations. A systematic flow diagram of the methodology implemented
in this study is presented in Fig. 4.

3 Results

3.1 Estimating Maize EWTleaf and FMCleaf Throughout the Maize Growing
Stages

In general, UAV bands resulted in relatively lower model accuracies at all maize growth stages
(Table 4) in relation to VIs. For example, when estimating EWTleaf , UAV bands exhibited the
lowest accuracy at the V14-Vt and R1-R2 growth stages, yielding an RMSE of 47.58 gm−2 and
R2 of 0.53, and RMSE of 13.13 gm−2 and R2 of 0.59, respectively. Similarly, in estimating maize
FMCleaf , the lowest RMSEs were obtained when using UAV bands at the R1-R2, R2-R3, and
R3-R4 maize growth stage with RMSE of 1.13 gm−2 and R2 of 0.59, RMSE of 11.05 gm−2, and
R2 of 0.53, and RMSE of 3.05 gm−2 and R2 of 0.57, respectively.

The use of VIs improved model accuracies of maize EWTleaf and FMCleaf . For example, the
EWTleaf model slightly improved by a magnitude of 6.43 from an RMSE of 47.58 to 41.15 gm−2

at the V14-Vt maize growth stage. Again, in estimating FMCleaf , using VIs improved the model
accuracy from 11.05 to 7.94 gm−2 at the R2-R3 growth stage.

3.2 Estimation of Maize EWTleaf Using the RF-Selected Spectral Variables
Throughout the Stages

During the early vegetation growth stages, maize EWTleaf at the V8-V10 phenological stage was
predicted to have an RMSE of 13.03 gm−2 and R2 of 0.69 (Fig. 5). The top-most influential
predictor variables in estimating EWTleaf at this stage were NDVIrededge, thermal, rededge,

Table 4 Estimation accuracies of EWTleaf and FMCleaf derived using UAV bands in relation to
the VIs.

Maize growth stage Predictor variables

EWTleaf FMCleaf

R2 RMSE rRMSE R2 RMSE rRMSE

V8–V10 UAV bands 0.52 14.38 4.89 0.42 2.22 2.69

VIs 0.6 14.98 4.91 0.44 2.35 2.85

V14–Vt UAV bands 0.53 47.58 23.01 0.52 1.93 1.98

VIs 0.7 41.15 19.9 0.56 2.15 2.76

R1–R2 UAV bands 0.59 13.13 6.46 0.59 1.13 1.34

VIs 0.78 11.17 5.5 0.76 0.9 1.09

R2–R3 UAV bands 0.63 16.71 17.73 0.53 11.05 26.72

VIs 0.7 37.21 50.67 0.73 7.94 18.71

R3–R4 UAV bands 0.58 24.49 18.71 0.57 3.05 4.47

VIs 0.66 40.39 32.95 0.67 2.68 3.94
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Fig. 5 Relationship between the predicted and observed maize EWTleaf (right) and the variable
importance scores (left) at (a) V8–V10, (b) V14–Vt, (c) R1–R2, (d) R2–R3, and (e) R3–R4 phe-
nological growth stages and the model’s variable importance scores of the optimal spectral
predictors.
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NGRDI, CIrededge, NDVI, OSAVI, NDRE, NIR, red, NDWI, CIgreen and SR, in order of impor-
tance [Fig. 5(a)]. The V14-Vt exhibited the poorest prediction accuracy of maize EWTleaf during
the vegetative stages (RMSE ¼ 23.99 gm−2 and R2 of 0.76) using NDVI, CIrededge, red-edge,
NDRE, NDWI, CIgreen, NIR, thermal, blue, NDVIrededge, NGRDI, green, and red, in descending
order of importance [Fig. 5(b)]. The most optimal maize growth stage for estimating EWTleaf was
observed in the early reproductive R1-R2 growth stage, which yielded the highest model accu-
racy across all phenological stages (RMSE of 5.31 gm−2 and R2 of 0.88) based on NDVIrededge,
rededge, NIR, NDVI, NDRE, NGRDI, blue, CIrededge, NDWI, and CIgreen, red, thermal, and
green, in order of importance [Fig. 5(c)]. Hereafter, a decrease in EWTleaf model accuracy was
observed in all later stages of maize growth. For example, the estimation accuracy of EWTleaf

decreased by 4.97 gm−2 to an RMSE of 10.28 gm−2 in the R2-R3 maize growth stage, compared
to 5.31 gm−2 from the R1-R2 stage. Nonetheless, an R2 of 0.89 was attained from predicting
maize EWTleaf during the R2-R3 growth stage. The influential predictor variables on that model
included NDVI, NIR, NDWI, CIgreen, NDVIrededge, red, CIrededge, NDRE, and NGRDI, accord-
ingly [Fig. 5(d)]. Furthermore, the maize EWTleaf model accuracy depreciated at the R3-R4
growth stage yielding an RMSE of 12.66 gm−2 and R2 of 0.77. The influential spectral predictors
from this model were NDVI, NIR, NDWI, CIgreen, NDVIrededge, and red, CIrededge, NDRE, and
NGRDI, in order of descending importance [Fig. 5(e)].

3.3 Estimation of Maize FMCleaf Using the RF-Selected Spectral Variables
Throughout the Growing Stages

The estimation of maize FMCleaf at the V8-V10 growth stage yielded a moderate RMSE of
1.13%. However, it exhibited a low R2 of 0.66 based on NDVI, NDVIrededge, thermal, red,
SR, rededge, NGRDI, green, NDWI, NIR, NDRE, OSAVI, CIrededge, CIgreen, and blue, in order
of importance [Fig. 6(a)]. Meanwhile, at the V14-Vt growth stage, the estimation of maize
FMCleaf yielded an RMSE = 1.44% and an optimal R2 ¼ 0.73. The most suitable predictor var-
iables included NDRE, rededge, CIgreen, NIR, NDWI, CIrededge, NDVI, NDVIrededge, thermal,
green, blue, NGRDI, and red, in order of decreasing importance [Fig. 6(b)].

Meanwhile, the maize FMCleaf prediction accuracy significantly increased in the early repro-
ductive stages of the maize growing stages. For example, the R1-R2 maize growth stage yielded
an RMSE of 0.88% and an R2 of 0.87 using NDVI, rededge, NDVIrededge, NIR, NDRE, CIrededge,
blue, NGRDI, and red, in order of importance [Fig. 6(c)]. The optimal phenological growth stage
for optimally estimating maize FMCleaf was the R2-R3 growth stage, which yielded the highest
model accuracy with an RMSE = 0.45% and R2 of 0.76. This optimal maize FMCleaf model was
derived based on the NDRE, NIR, NDWI, CIrededge, NDVIrededge, rededge, CIgreen, blue, thermal,
NDVI, red, and green predictor variables [Fig. 6(d)].

Whereas the later reproductive growth stages demonstrated the lowest FMCleaf prediction
accuracies. Maize FMCleaf at the R3-R4 growth stage yielded the poorest prediction accuracy
with an RMSE of 1.54% and R2 of 0.72. Finally, the most optimal variables that were selected in
estimating maize FMCleaf at this growth stage were NDVIrededge, CIrededge, NDRE, NDWI,
CIgreen, NDVI, red, green, NIR, NGRDI, red-edge, thermal, and blue, in order of importance
[Fig. 6(e)].

3.4 Comparing the Performance of Foliar Maize Moisture Content Indicators
(EWTleaf and FMCleaf) across the Growing Stages

When comparing the performance of EWTleaf and FMCleaf , the results illustrate that the predic-
tion accuracy of maize EWTleaf and FMCleaf varies for each phenological growth stage. For
example, the maize FMCleaf outperformed EWTleaf with an rRMSE of 1.38% as opposed to
an rRMSE of 4.79% [Figs. 5 and 6(a)]. Similarly, the prediction accuracy of maize FMCleaf

(rRMSE = 1.88%) was significantly higher than that of maize EWTleaf (13.29%) by a magnitude
of 11.41% [Figs. 5 and 6(b)]. Again, at the R1-R2 maize growth stage, EWTleaf exhibited an
rRMSE of 2.72%, while FMCleaf of maize had a higher prediction accuracy with rRMSE of
1.08% [Figs. 5 and 6(c)]. Similarly, model accuracies for predicting maize FMCleaf were margin-
ally higher than EWTleaf at the R2-R3 growth stage, with an rRMSE ¼ 1% and 3.13%,
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Fig. 6 Relationship between the predicted and observed maize FMCleaf (right) and variable
importance scores (left) at (a) V8–V10, (b) V14–Vt, (c) R1–R2, (d) R2–R3, and (e) R3–R4 phe-
nological growth stages and the model’s variable importance scores of the optimal spectral
predictors.

Ndlovu et al.: Use of unmanned aerial vehicle-derived multi-spectral data. . .

Journal of Applied Remote Sensing 014520-12 Jan–Mar 2024 • Vol. 18(1)



respectively. Nonetheless, EWTleaf at this stage produced the highest R2 of 0.89 compared to
FMCleaf , which yielded an R2 of 0.76 [Figs. 5 and 6(d)]. Finally, FMCleaf produced an rRMSE of
1.91% at the R3-R4 maize growth stage, compared to the rRMSE of 3.79% exhibited by the
maize EWTleaf model [Figs. 5 and 6(e)].

3.5 Spatial Variability of EWTleaf and FMCleaf across the Growing Stages
It was observed that maize EWTleaf and FMCleaf were higher in the eastern region and decreased
toward the western section of the experimental maize plot (Figs. 7 and 8). The EWTleaf illustrated
an increase in maize foliar moisture from the V8-V10 growth stage to the V14-Vt growth stage,
where EWTleaf was at its highest. Thereafter, there was a slight decrease in maize foliar EWTleaf

Fig. 7 Spatial distribution of modeled maize EWTleaf across the growing stages.

Fig. 8 Spatial distribution of modeled maize FMCleaf across the growing stages.
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in the early reproductive growth stage (R1-R2). However, the late reproductive stages (R2-R4)
illustrated a lower EWTleaf yet a uniform distribution of maize foliar EWTleaf throughout the
experimental plot (Fig. 7). Figure 8 demonstrated a high FMCleaf during the V8-V10 growth
stage, followed by a significant decrease in FMCleaf during the V10-Vt growth stage.
Thereafter, there was a progressive increase in maize foliar FMCleaf during the early reproductive
stage (R1-R2). Subsequently, there was again a decrease in maize foliar FMCleaf during the late
reproductive stages of maize (Fig. 8).

3.6 Descriptive Statistics and Temporal Variation in EWTleaf and FMCleaf
during the Maize Growth Stages

As expected, there was a variation in maize EWTleaf and FMCleaf measured across the maize
phenological stages (Fig. 9). Both maize EWTleaf and FMCleaf displayed a decreasing trend
in moisture content as the growing stages progressed. The lowest mean EWTleaf were
observed at the late reproductive stages of maize development, particularly during the R2-R3
stage (96.45� 62.15 gm−2), while the highest EWTleaf was at the V8-V10 growth stages
(274.45� 43.25 gm−2) (Table 5). The R2-R3 growth stage had the lowest mean FMCleaf

(48.59� 14.66%), while the greatest mean FMCleaf was observed at the R1-R2 maize growth
stage (84.48� 2.23%) (Table 5). The results of a Kolmogorov–Smirnov normality test indicated

Fig. 9 Temporal variation of maize EWTleaf and FMCleaf during the maize growing stages.

Table 5 Descriptive statistics of EWTleaf and FMCleaf at the different phenological stages.

Maize growth
stage Variable Range (min-max) Mean Median Std. CV % SEM

V8–V10 EWT (gm−2) 169.35 to 462.73 274.45 270.47 43.25 15.76 5.45

FMC (%) 73.72 to 90.91 81.72 81.63 2.32 2.84 0.29

V14–Vt EWT (gm−2) 154.76 to 329.33 228.57 229.13 49.67 21.73 6.26

FMC (%) 69.93 to 86.05 79.17 79.01 2.89 3.65 0.36

R1–R2 EWT (gm−2) 159.86 to 249.66 209.38 211.34 17 8.12 2.14

FMC (%) 77.78 to 91.59 84.48 84.23 2.73 3.24 0.34

R2–R3 EWT (gm−2) 11.66 to 448.71 9672.48 91.9 62.15 64.41 7.83

FMC (%) 8.11 to 85.98 48.59 50 14.66 30.18 1.85

R3–R4 EWT (gm−2) 25.33 to 360.21 135.7 121.01 62.66 46.17 7.89

FMC (%) 59.52 to 82.14 69.72 69.77 4.04 5.79 0.51

SEM is the standard error of mean, Std. is the standard deviation, and CV is the coefficient of variation.
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that the distribution of the measured maize EWTleaf and FMCleaf did not significantly deviate
from a normal distribution curve; hence a Pearson correlation was conducted to examine the
relationship between maize EWTleaf , FMCleaf , and rainfall. Based on the Pearson correlation
test, there was a statistically significant correlation between maize EWTleaf and rainfall
(R2 ¼ 0.97, p > 0.01). Similarly, a correlation test between maize FMCleaf and rainfall indicated
a statistically significant R2 of 0.77 (p > 0.01).

4 Discussion
The emergence of UAV-derived data with high spatial and temporal resolutions presents a valu-
able tool for monitoring maize moisture content variability throughout the growing stages.11

Reliable determination of spatio-temporal variations in maize moisture is necessary for the early
detection of moisture stress and identification of moisture-sensitive growth stages, necessary for
the development of precision agricultural management practices, especially at a farm scale.4,30,64

4.1 Estimation of Maize Foliar Moisture Indicators Using UAV-Derived
Spectral Reflectance

Results of this study showed that optimal estimation of EWTleaf can be obtained between the
silking–blister (R1-R2) growth stage of maize (R2 ¼ 0.88, RMSE ¼ 5.31 gm−2, and rRMSE =
2.72%) while for FMCleaf was the blister to milk (R2-R3) stage with an R2 ¼ 0.76 and RMSE ¼
0.45% (rRMSE = 1%) based on the red and NIR spectral variables. Literature confirms that the
early reproductive growth stages are best suited for detecting physiological characteristics, such
as leaf moisture content, using proximal remote sensing techniques.65–67 This is because the
transmittance spectra of the fully developed leaves and the canopy have minimal effects on the
soil background and represent the maximum reflectance of leaf properties at that stage.65,66

Furthermore, Prudnikova et al.65 argued that estimating crop physiology at the early seedling
and emergence vegetative growth stages is not optimum because sparse vegetation cover
increases the interference of open soil surface reflectance, reducing prediction accuracy.

The findings of this study illustrate that VIs were the most optimal predictors of maize mois-
ture content indicators compared to raw UAV-multispectral bands. These findings are not sur-
prising since a large and growing body of literature has proven that the use of VIs derived from
water-sensitive sections of the electromagnetic spectrum improves prediction accuracies and
outperforms conventional bands in estimating crop moisture content indicators.3,10,24,30,67

The results in this study demonstrated that VIs derived from the NIR and rededge wavebands
of the electromagnetic spectrum were the most sensitive spectral variable to maize foliar moisture
indicators that RF selected. Specifically, the estimation of maize EWTleaf was greatly influenced
by NDVIrededge, rededge, NIR, and NDVI. The influence of NIR-based indices stems from the
fact that this section of the electromagnetic spectrum is highly correlated to the quantity of water
in leaf cells.24 Literature confirms that the variation in leaf reflectance of turgid vegetation along
the NIR wavelength, as a result of the changes in water transmissivity, and internal leaf structure,
can be used to quantify crop moisture content and detect plants that are in a state of water
deficit.6,25 In addition, the sensitivity of the rededge band in maize moisture prediction can
be explained by the fact that it is closely related to leaf chlorophyll composition, similar to the
effect of nitrogen variation. When crops are experiencing moisture stress, as is the case with a
decrease in plant nitrogen, there are declines in crop biological and physiochemical character-
istics and processes, such as photosynthesis, foliar pigmentation, and leaf area, which are directly
linked to leaf water status.10,68 A reduction in moisture content results in the deceleration of the
photosynthetic activity, which reduces the chlorophyll concentrations as the leaf halts its stomatal
activities while losing turgidity and pigment.30,69 These transitions are then detected from the red
edge spectrum, which tends to shift toward the long-wavelength section. 3,10,67,70–72

The impact of foliar moisture reduction and stress is spectrally similar to the impact of nitro-
gen reduction in terms of how they both impact photosynthesis, the foliar pigments and discolor-
ation of the leaves, and overall plant productivity, which is sensitive to the rededge section of the
electromagnetic spectrum.73,74 This is not surprising because the macronutrient, N, is a solute
taken in by plants from the soil as a solution in the solvent, water. Furthermore, both of them are
major plant nutrition elements that are simultaneously required to optimize photosynthesis and
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green pigment generation, which is then detected and monitored using the rededge and NIR
spectrums widely proven in the literature.73–75 This study’s results agree with Liu et al.,76 who
found that the changes in the vegetation moisture content were spectrally discernible in the NIR
spectral reflectance section. In a similar study, Zhang and Zhou30 combined the NIR and rededge
bands to form the NDRE, which became the most sensitive index to variations in maize moisture
content (R2 ¼ 0.75). Furthermore, the results of this study concur with Sow et al.,77 who used
NDWI to predict vegetation FMC to an optimal accuracy of R2 ¼ 0.85.

Finally, the results of this study also revealed that chlorophyll-based indices, such as CIgreen
and CIrededge, were important predictors of maize foliar moisture content as they were among the
most influential spectral variables on V14–Vt and R3–R4 stages when estimating maize EWTleaf

and FMCleaf . Again, this can be explained by the positive correlation between leaf chlorophyll
content and water status, as prolonged moisture stress ultimately reduces chlorophyll pigmen-
tation of maize leaves, thus changing leaf absorbance and reflectance characteristics.3,67,69

In a similar study, Zhang et al.67 concluded CIgreen and CIrededge are among the most influential
predictors of maize EWT and FMC as they are highly sensitive to crop canopy water variation.
Despite the apparent limitations of NDVI, as stated in the literature,28,78 this index was an impor-
tant predictor of maize moisture indicators in this study. This is explained by the fact that the
NDVI is an effective indicator of leaf photosynthetic capacity, which is correlated to leaf green-
ness and water status.3,26

The results of this study concur with those of Wang et al.64 They successfully used NDVI to
monitor maize water variability using a seasonal NDVI time series analysis. Easterday et al.68

noted that the NDVI could discriminate variations in vegetation moisture stress and accurately
predict leaf water content to an R2 of 0.89. In addition, it was observed that there was significant
variability in the importance scores of the predictor variables across the growing season (Figs. 6
and 7). This could be attributed to the variations in the interaction between the incident energy
and the maize crop biochemical and physical variations as a function of moisture variability at
different growth stages. Moisture regulates plant productivity and biomass accumulation. The
leave and accumulated biomass interact differently with different sections of the electromagnetic
spectrum facilitating the variation in the most optimal spectral features selected as well as the
magnitude of their influence in various models. As aforementioned, most of these selected opti-
mal spectral features (Figs. 5 and 7) were derived from the NIR and rededge spectrums.

4.2 Comparison of EWTleaf and FMCleaf as Indicators of Maize Foliar Moisture
Content

The findings of this study illustrate that maize foliar EWTleaf and FMCleaf vary at each pheno-
logical stage across the growing stages. The variations between these two maize foliar moisture
indicators can be explained by the fact that EWTleaf quantifies moisture content as a function of
leaf area and FMCleaf computes moisture content as the proportion of water to dry matter.8,79

Literature confirms that leaf area is an essential characteristic of moisture content, as a decrease
in leaf area could indicate crop moisture stress.79,80 This is because there is a leaf transpiration
reduction when crops are moisture stressed, as crops reduce their leaf area to sustain moisture
levels.67,81 Furthermore, the variations in EWTleaf and FMCleaf models can be explained by the
relationship between crop health and moisture content.30 The variability of crop moisture content
is largely influenced by crop health, which affects leaf physiochemical characteristics that will, as
a result, reflect differently along various spectral regions of the electromagnetic spectrum.6,9,24

UAVs are fast becoming a key component of precision agriculture as they provide oppor-
tunities for mainstreaming climate-smart agricultural practices into smallholder farming systems
for improved crop health monitoring and water resource management. Understanding the spatio-
temporal variation in maize moisture can support smallholder agricultural decision-making to
facilitate the development of crop-specific management plans to increase production and resil-
ience while reducing the susceptibility of these resources stricken cropping systems to future
impacts of climate variability. Specifically, information on foliar moisture variability could
inform farmers of the need to supplement rainfed systems with irrigation water to optimize crop
production. Furthermore, the methods used in this study could be adapted to monitor other crops’
moisture content within smallholder farming systems. Future studies should assess maize
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moisture variability across various climates and evaluate the influence of other agronomical
factors, such as soil structure and topographic effects, on leaf moisture status.

5 Conclusion
This study sought to test the utility of UAV-based multispectral data in estimating leaf EWT and
FMC of smallholder maize crops across the growing stages. The results showed that the UAV-
derived multispectral data could be useful in quantifying maize moisture variability at a high
spatial and temporal resolution. Therefore, it can be concluded that:

• UAV-derived multispectral data can optimally characterize maize EWT (R2 ¼ 0.88,
RMSE ¼ 5.31 gm−2, and rRMSE ¼ 2.72%) and FMC (R2 ¼ 0.76, RMSE ¼ 0.45%, and
rRMSE ¼ 1%) variations using spectral variables from the NIR and red-edge wavelengths
of the electromagnetic spectrum, which demonstrated great sensitivity to the variation in
maize moisture content;

• The phases between silking and milk reproductive growth stage are the most optimal
growth stages for predicting maize moisture content using UAV-derived data.

This study demonstrates the potential of UAV-based proximal remote sensing techniques in
providing near-real-time and spatially explicit information on maize moisture variability across
the growing stages. Finally, this study will allow for optimizing marginalized communities’ agri-
cultural productivity to improve their livelihoods in light of climate change, thus enhancing food
and nutrition security.
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