
Epidemics 47 (2024) 100765

Available online 27 March 2024
1755-4365/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Characterising information gains and losses when collecting multiple 
epidemic model outputs 

Katharine Sherratt a,*, Ajitesh Srivastava b, Kylie Ainslie c,d, David E. Singh e, Aymar Cublier e, 
Maria Cristina Marinescu f, Jesus Carretero e, Alberto Cascajo Garcia e, Nicolas Franco g, 
Lander Willem h, Steven Abrams h,i, Christel Faes i, Philippe Beutels h, Niel Hens h,i, 
Sebastian Müller j, Billy Charlton j, Ricardo Ewert j, Sydney Paltra j, Christian Rakow j, 
Jakob Rehmann j, Tim Conrad k, Christof Schütte k, Kai Nagel j, Sam Abbott a, Rok Grah l, 
Rene Niehus l, Bastian Prasse l, Frank Sandmann l, Sebastian Funk a 

a London School of Hygiene & Tropical Medicine, London, UK 
b University of Southern California, Los Angeles, USA 
c Dutch National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands 
d School of Public Health, University of Hong Kong, Hong Kong Special Administrative Region 
e Universidad Carlos III de Madrid, Madrid, Spain 
f Barcelona Supercomputing Center, Barcelona, Spain 
g University of Namur, Namur, Belgium 
h University of Antwerp, Antwerp, Belgium 
i UHasselt, Hasselt, Belgium 
j Technische Universität Berlin, Berlin, Germany 
k Zuse Institute Berlin (ZIB), Berlin, Germany 
l ECDC, Stockholm, Sweden   

A R T I C L E  I N F O   

Keywords: 
Information 
Scenarios 
Uncertainty 
Aggregation 
Modelling 

A B S T R A C T   

Background: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evi
dence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations 
may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. 
We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic 
quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain 
information from a single cross-sectional collection of model results. 
Methods: We compared projections from the European COVID-19 Scenario Modelling Hub. Five teams modelled 
incidence in Belgium, the Netherlands, and Spain. We compared July 2022 projections by incidence, peaks, and 
cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles 
from a median across each model’s quantiles, or a linear opinion pool. We measured the predictive accuracy of 
individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially 
against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying 
observed data. 
Results: By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories 
contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, 
but not models’ quantile intervals. Ensembles weighted by performance typically retained the range of plausible 
incidence over time, and in some cases narrowed this by excluding some epidemic shapes. 
Conclusions: We observed several information gains from collecting modelled trajectories rather than quantile 
distributions, including potential for continuously updated information from a single model collection. The value 
of information gains and losses may vary with each collaborative effort’s aims, depending on the needs of 
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projection users. Understanding the differing information potential of methods to collect model projections can 
support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts.   

1. Background 

During outbreaks of infectious disease, it is critical to account for the 
uncertainty of future disease incidence in order for public health 
decision-makers to fully evaluate risk (Zelner et al., 2021; Li et al., 
2017). Infectious disease modellers use a variety of approaches to meet 
this demand for information. A common challenge is the representation 
of multiple sources of uncertainty, both within each model as well as 
across separate model projections (McCabe et al., 2021; Swallow et al., 
2022). In recognising this challenge, infectious disease modelling has 
seen an increasing emphasis on both probabilistic modelling methods, 
together with collaborative approaches to modelling (Bracher et al., 
2021a; Reich et al., 2022). 

Probabilistic infectious disease models can address the challenge of 
uncertainty by simulating the complex and changing real-world process 
of disease transmission. Modellers must handle stochasticity in trans
mission dynamics, often using observed data to estimate model pa
rameters and latent trajectories that are themselves uncertain. Each such 
model can generate any number of simulated trajectories, and modellers 
choose at what point to conclude there are sufficient iterations to reach a 
stable distribution of possible outcomes. The output of these simulations 
can then be summarised to calculate quantities of interest, such as 
weekly incidence of infections or cases. 

When creating models to characterise the future, modellers have 
often drawn a distinction in the meaning of uncertainty between forecast 
compared to scenario projections (Lipsitch et al., 2011). Forecasts are 
predictions of future epidemic trajectories, and the probabilities 
assigned to different outcomes quantify the belief of the forecaster that 
these may or may not happen. In addition to potential fundamental 
limits to predictability, forecasts are usually reliable for, at best, a few 
generations of transmission (Sherratt et al., 2023) because of unmod
elled factors affecting future transmission such as behavioural or policy 
changes, heterogeneity in transmission risk, or the emergence of new 
variants of different transmissibility or severity. 

In contrast, scenarios are projections attuned to a particular context 
by being conditioned on specific factors whose futures may not be 
quantitatively predictable, such as options for policy interventions 
(Runge et al., 2023; Rhodes et al., 2020). Probabilities of future out
comes as stated by scenario models should be interpreted as valid only 
under the specific circumstances given by the scenario but not other
wise, without specifying any probability of the scenario itself occurring. 
Because of this difference, forecasts can be evaluated by confronting 
them with future data as it becomes available, while this evaluation is 
more challenging for scenarios where predictive performance will al
ways depend on a combination of adequacy of the chosen assumptions 
(e.g. on pathogen biology, human behaviour and government policy), 
with adequacy of the model in reflecting these assumptions. 

Infectious disease modelling collaborations aim to bring together 
models that project the future using diverse methods (Reich et al., 
2022). Each collaboration sets a clearly defined target for projections, 
communicates this target to multiple independent modellers, and col
lects model results in a standardised format. This standardisation allows 
for a like-for-like comparison of varying modelling methods’ results and 
accompanying uncertainty. Ensemble methods can then combine results 
across models. Typically, this creates a more comprehensive and robust 
projection (Ray et al., 2020) or reflection of expert judgement (Shea 
et al., 2020). 

Formal, large-scale modelling collaborations have, so far, been used 
for influenza, Ebola, Zika, dengue fever, and COVID-19 (Reich et al., 
2022). In the case of COVID-19, a number of policy-facing research 
groups have set up collaborations to collate forecasts and scenarios 

(Borchering, 2021; Cramer et al., 2021; Funk et al., 2020; Sherratt et al., 
2023), and there is a substantial effort towards expanding the practice of 
ensemble projections of infectious disease spread and burden. Ongoing 
work evaluating these efforts has focused on assessing the output of past 
and current ensemble modelling projects. This has included evaluating 
differing performance among individual models (Viboud et al., 2018; 
Bracher et al., 2021b; Cramer et al., 2022), and a variety of methods for 
creating ensembles from multiple models (Howerton et al., 2023; Ray 
et al., 2020; Sherratt et al., 2023; Taylor and Taylor, 2021). 

The standardised format in which model projections are collected is 
key to meeting such projects’ aims of comparing information from 
multiple models. The most common approach to this is to collect 
descriptive statistics from each model at each given time step. In this 
format, each modeller submits values across a pre-specified set of 
quantiles in order to represent uncertainty in their projection. The 
benefits of this system include that it should accurately represent an 
underlying distribution of outcomes while being storage-efficient 
(Genest, 1992), it is not restricted to probabilistic models producing 
simulations, and it allows for quantitative evaluation against observed 
data (Bracher et al., 2021a). Various methods for subsequent combina
tion from quantiles depend on the view taken of uncertainty between 
and across model projections (Howerton et al., 2023). 

However, using quantile intervals separately across each time step 
may lose information pertinent to epidemic decision making. As a 
quantile representation provides a summary across trajectories at each 
time step, it has no theoretical continuity through the time-series. This 
does not permit aggregation over time to calculate cumulative totals or 
means, and may misrepresent time-series characteristics including 
epidemic peak size or timing (Juul et al., 2021). Whilst some of these can 
be remedied by also collating quantiles of cumulative quantities, these 
still lose some of the temporal information contained in the full joint 
probability distribution across all future time points. 

An alternative method of collecting output from multiple probabi
listic models is to collect the individual simulated trajectories produced 
by each modeller. Each simulated trajectory comprises a single value for 
each time step, with modellers contributing some number of these tra
jectories. Each trajectory retains its own time-series characteristics, and 
these can therefore be summarised across different models. Collecting 
trajectories also creates potential for the analysis and combination of 
each trajectory independently from the originating model’s total output. 
One option could include comparing each trajectory to observed data as 
it becomes available, even after the time of collecting model outputs. 
This would enable creating an ensemble projection that is conditioned 
on the observed accuracy of each individual trajectory. As further 
observed data become available, this ensemble could be updated to 
create a single combined projection that continuously reflects the 
changing performance of each trajectory. This would act similarly to 
methods of particle filtering in continuously conditioning on past 
behaviour. 

We aim to explore aspects of information gains and losses from these 
two methods of collecting multiple model results. We contrast collecting 
a set of simulated trajectories, against collecting a summary at quantile 
intervals of those trajectories. We use the setting of the European 
COVID-19 Scenario Hub, where the use of quantile summaries was 
replaced in mid-2022 by collecting trajectories. These trajectories 
represent random samples from the collection of all possible trajectories 
of each model consistent with a given scenario and the data available up 
to the time at which the simulation was generated. 

In this work, we assess the impact of the collection method when 
seeking information about policy-relevant epidemic characteristics, 
including cumulative totals, timing of peaks, and the extent of 
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uncertainty across multiple models. We then explore the information 
gained by the ability to compare modelled epidemic trajectories to 
observed data as this becomes available over time. We use this to create 
a multi-model ensemble which weights across all available trajectories 
by their past accuracy. This demonstrates the potential to continuously 
gain information from only a single cross-sectional collection of model 
results. Understanding the potential sources of information gains and 
losses when collecting multiple model projections may support 
improving the accuracy, reliability, and communication of collaborative 
infectious disease modelling efforts. 

2. Methods 

2.1. Study setting 

In this work we use projections from Round 2 of the European 
COVID-19 Scenario Modelling Hub (Taylor and Taylor, 2021). The Eu
ropean COVID-19 Scenario Hub was launched in March 2022 to reflect 
demand for the ECDC to support longer term European policy planning. 
It used the existing US Scenario Hub (Borchering, 2021) as a basis for 
Hub infrastructure and methods. Modelling teams were recruited by 
word of mouth to join a series of collaborative workshops, approxi
mately fortnightly from March through June 2022. In these sessions 
both policy-focussed colleagues from the ECDC and modelling-focussed 
researchers co-developed a set of four scenarios. Each scenario repre
sented a combination of two possible epidemiological and policy 
changes that could impact the incidence of COVID-19 across Europe in 
the medium term. 

Teams were asked to project the incidence of COVID-19 infections, 
cases, deaths, and hospitalisations in 32 European countries over the 
next year. To facilitate comparison across models, we identified and 
agreed a common set of key assumptions and parameters to be used by 
all models in each scenario as well as standard data sets to which to 
compare the model outputs where available. Modellers uploaded pro
jections to a Github repository, and we summarised results across 
models, with a focus on targets with three or more different models. 
Over 2022 this process was repeated four times to explore a variety of 
different scenarios. In total nine separate teams submitted projections, 
with six teams contributing to each round. 

Over June 2022 (Round 2), we specified four scenarios (A-D) as: an 
autumn second booster campaign among the population aged over 60 
(scenarios A/C), or over 18 (scenarios B/D); and future vaccine effec
tiveness as ‘optimistic’ (equivalent to the effectiveness as of a booster 
vaccine against the Delta SARS-CoV-2 variant; scenarios A/B); or 
‘pessimistic’ (as against variants Omicron BA.4/BA.5/BA.2.75; sce
narios C/D). Modellers were asked to start their projections from 24th 
July 2022, meaning that even if data were available beyond this date 
they were not to inform calibration of the model. Modellers were asked 
to submit up to 100 simulations, each reflecting a trajectory of weekly 
incidence of reported cases and deaths over time for a given projection 
target. Modellers were informed that data presented on the Johns 
Hopkins University dashboard was to be used for future comparison to 
data (Dong et al., 2020). In practice some of the models were not cali
brated to reported cases and therefore used symptomatic cases as a 
proxy (see model details in Supplement). Simulations were to represent 
random samples from the distribution of simulation trajectories 
consistent with the given scenario that each modelling team produced. 
We have published full scenario details including shared parameters, all 
teams’ projections, and summary results online (European COVID-19 
Scenario Hub). 

This work specifically focuses on contrasting the sampled simulated 
trajectories with their representation in time-specific quantiles. We 
collected raw data in the form of up to 100 trajectories from each model 
for each projection target. We used these data to retrospectively create a 
marginal fixed-time quantile representation of results from each model 
and target. Following the current submission procedure across COVID- 

19 Modelling Hubs for an individual model, we calculated a median 
and 22 further quantiles for each week using the values of the trajec
tories in that week, separately for each scenario. We processed all data in 
R with code available online (Sherratt and Funk, 2024). 

2.2. Characterising potential information gains and losses 

First we considered information about key epidemic characteristics. 
At the time the projections were in production, discussion with the ECDC 
modelling team led to an interest in: estimates of incidence over time; 
cumulative values over different periods; and number of distinct peaks, 
size, and timing of peak incidence over the projection period. 

When projections were available, we estimated these characteristics 
from the simulated trajectories. We summed incidence over time to 
produce a cumulative total from each trajectory. We assessed the size of 
the expected burden of each target relative to a known threshold by 
comparing the cumulative projected total to the cumulative total of the 
preceding year. We identified peaks in each simulated trajectory as the 
local maxima in a sliding window of five weeks, using the ggpmisc R 
package (Aphalo, 2023). We chose a sliding window of five weeks to 
capture each distinct peak while avoiding detecting noise in each tra
jectory. We summarised across the individual peaks detected in each 
trajectory using quantiles at each weekly time-step, to produce a range 
indicating possible peak timing and maximum values across all trajec
tories. We produced a real-time report of this summary at the time that 
projections became available in July 2022. 

In further retrospective analysis, we compared the use of a standard 
unweighted ensemble to express uncertainty across multiple models in 
the two representations. We created an ensemble projection from first 
combining all individual simulated trajectories with equal weight for 
each scenario, location, and outcome target. Next, we took model- 
specific quantiles from each model’s distribution of trajectories at 
each time point, for each scenario, location, and outcome target. We 
used each set of quantiles to create linear opinion pool ensembles (LOP), 
which use linear extrapolation between the given quantiles to estimate 
the cumulative distribution function in order to then randomly sample 
trajectories to aggregate, again with equal weight; and a quantile- 
average ensemble, which takes the median across the different 
models’ values at each quantile and time step. The LOP and quantile- 
average ensembles have both been used to produce ensemble pro
jections across multiple epidemiological forecasts (Howerton et al., 
2023; Ray et al., 2020; Sherratt et al., 2023). To assess the difference in 
uncertainty across the two ensembles, we compared the mean of the 
values at each quantile across all time points, outcomes and scenarios. 

Lastly, we evaluated the performance of each simulated trajectory 
against proximity to observed data, and used this to weight an ensemble 
of trajectories (as above). To measure performance, we calculated the 
mean absolute error (MAE) for each trajectory, where the MAE is the 
average of the difference from observed data across all available time 
points for a single projection. We created a weighted ensemble from all 
trajectories for a country (not further separating by scenario or model) 
using the inverse MAE for each trajectory as a weight. To calculate 
weighted quantiles we used a Harrell Davis weighted estimator (Harrell 
and Davis, 1982) from the cNORM R package (v3.0.2) (Lenhard et al., 
2018). As above, we calculated 23 quantiles including the median to 
express uncertainty. 

We repeated this process to create a sequence of ensembles with 
changing weights over time. We created the first weighted ensemble 
after 4 weeks of observed data, and then created consecutive ensembles 
with weights re-calculated weekly to use up to the maximum available 
29 weeks of observed data (to 11 March 2023). This showed varying 
lengths of projections repeatedly conditioned on simulated trajectories’ 
performance against increasing data over time. 

We evaluated the predictive performance of these sequences of 
weighted ensembles. We transformed forecasts and observed data to a 
logarithmic scale, as this allows a more consistent evaluation across 
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varying magnitudes and better reflects the exponential nature of 
epidemic processes (Bosse et al., 2023). We then calculated the weighted 
interval score for each forecast, as a quantitative performance measure 
that evaluates across both the accuracy and the dispersion of probabi
listic forecasts (Bracher et al., 2021a). In the same way we evaluated the 
unweighted ensemble of trajectories described above, and used this as a 
relative baseline with which to compare the effect of weighting indi
vidual trajectories on ensemble performance. 

3. Results 

A total of six modelling teams contributed projections for various 
targets to the European COVID-19 Scenario Hub in Round 2. Here we 
focus on multi-model comparison and include only projection targets 
with three contributing models. These targets included 52 weeks’ case 
and death incidence for the Netherlands and Belgium, and 41 weeks’ 
case incidence for Spain. 

Five teams contributed projections for these targets. Three teams 
used compartmental models, one an agent-based model, and one a 
machine learning method (see Supplement). Four models generated 100 
simulated trajectories, and one 96 trajectories (implying a slightly 
smaller weight to this model in trajectory-based aggregates). In total, we 
consider 294,816 data points from 5920 trajectories, where each data 
point is the estimated weekly incidence in a simulated trajectory of an 
outcome in a target country and scenario over up to one year (Fig. 1.i). 

Aggregating across simulated trajectories from multiple models 

allowed access to information about various epidemic characteristics. 
These included cumulative totals, and peak size and timings (see 
contemporaneous report reproduced in the Supplement). By summa
rising across the peaks of each individual trajectory, we were able to 
create an estimate of uncertainty around the size and timing of peaks for 
each target. We were also able to summarise cumulative outcomes. For 
example, across all 5920 trajectories for all targets and scenarios, 10% 
saw a cumulative total exceeding the preceding year. These epidemic 
characteristics could not be meaningfully estimated from the same re
sults summarised into quantiles. 

We compared information loss in the aggregation of simulated tra
jectories into ensemble projections (Fig. 1). We compared an ensemble 
taken from all trajectories (Fig. 1.ii) with a linear opinion pool (not 
shown), and the quantile-average ensemble (Fig. 1.iii). We noted that a 
linear opinion pool ensemble produces near-identical results to taking 
an ensemble directly from trajectories. Across all projection targets, we 
observed substantially increased uncertainty in an ensemble that 
aggregated either directly from trajectories, or via linear opinion pool, 
compared to a quantile-average ensemble. This represented the wider 
variety of epidemic shapes projected by different models. For example, 
the credible interval of projections for Spain included high autumn- 
winter incidence, while for Belgium gave greater credibility to multi
ple peaks of incidence. These were not observed in the interval pro
jections of an ensemble derived from models’ quantiles. 

We quantified the range of uncertainty between each ensemble by 
comparing the mean of values at each quantile across all time points and 

Fig. 1. Projections of incidence per 100,000 population, by country (row) and aggregation method (column) showing median, 50%, and 99% probabilistic intervals 
(increasingly shaded ribbons), for each scenario, using: i) no ensemble method (100 simulated trajectories per model, or 96 in case of one of the models); ii) quantile 
intervals of the distribution across all simulated trajectories; ii; a median across each model’s projections at a given quantile interval. We do not show the linear 
opinion pool ensemble here as results are near-identical to the ensemble drawn directly from trajectories (ii)). Scenarios included: an autumn second booster vaccine 
campaign among population aged 18+ (scenarios B & D) or 60+ (scenarios A & C); where vaccine effectiveness is ‘optimistic’ (effectiveness as of a booster vaccine 
against Delta; scenarios A & B) or ‘pessimistic’ (as against BA.4/BA.5/BA.2.75; scenarios C & D). See Supplement for further detail on individual models’ trajectories. 
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scenarios (supplementary figure 1A). All ensembles produced similar 
values around the centre of the distribution, with no noticeable differ
ence between the median values of each projection. However, across all 
five targets we observed that an ensemble based on either simulated 
trajectories, or an LOP ensemble, produced sharply increasing uncer
tainty between the 90–98% intervals. For example, at the upper 98% 
probability interval, ensemble projections for cases in Spain averaged 
nearly six times higher incidence when drawn directly from trajectories 
compared to when drawn from a median of three models’ quantiles 
(respectively averaging 1016 and 173 weekly new cases per 100,000 
population). 

We then considered an ensemble of individual trajectories each 
weighted against a sequentially increasing amount of observed data 
(Fig. 2). We note that models used a variety of methods and may have 
been calibrated to alternative data sources (see Supplement). In com
parison to the unweighted ensemble (shown in grey), we observed 
reduced uncertainty across weighted ensemble projections. Compared 
to conditioning on data up to 16 weeks before, adding 8 weeks of 

additional data in weighting case projections reduced the upper 98% 
bound of uncertainty by at least 5% and up to 30% on average (sup
plementary figure 1B). The accuracy-weighted contribution of each 
trajectory to an ensemble varied substantially between models and 
targets, and over time. For example, in Spain each trajectory’s weight 
remained stable after mid December 2022, reflecting the data by 
effectively downweighting those trajectories projecting sustained high 
incidence over winter (see Fig. 1i). 

We used this information to create consecutive weekly ensembles, 
with weights updating as increasing observed data became available to 
measure trajectories’ accuracies. In the combined (weighted interval) 
score, forecasts using weighted trajectories generally performed simi
larly to the unweighted equivalent, with a median relative WIS among 
the weighted ensembles of 0.99 (IQR: 0.89–1.05; supplementary figure 
2). 

When using the full 31 weeks of available data, a weighted ensemble 
performance improved compared to projections made without weight
ing on accuracy (with a median relative WIS across targets of 0.77 

Fig. 2. Ensemble forecasts of incidence by target, using no weighting (grey ribbon), or 4, 8, and 16 weeks ahead of available data, with available data increasing 
weekly over time (coloured ribbons); showing 50% and 99% credible intervals. Each simulated trajectory started from 30 July 2022 and was weighted using its 
inverse mean absolute error against available data. We used at least 4 and up to 31 weeks of this observed accuracy data. 
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compared to the baseline of 1). However, this improvement was not 
linearly correlated with increasing data, and the relationship varied by 
target (Fig. 3). Weighted forecasts that used only a few data points of 
trajectories’ accuracy performed similarly or poorly compared to the 
unweighted ensemble. 

However, among three targets, using more accuracy data gave a 
stable or consistently improved performance (after 10 weeks for cases in 
Belgium and 17 weeks for cases and deaths in the Netherlands). This was 
also true of cases in Spain, with worse performance compared to the 
unweighted ensemble when using up to 9 weeks of data, and improving 
and then better relative performance after 17 weeks of data, until per
formance worsened once more after 27 weeks of accuracy data. In 
contrast, forecasts of deaths in Belgium were better with fewer weeks of 
accuracy data, and weighting with between 14 and 26 weeks’ data 
produced a worse performance than the unweighted ensemble of 
trajectories. 

4. Discussion 

A significant part of the value of collaborative infectious disease 
modelling projects comes from the standardisation of model output 
across varying numbers of model teams, methods, and simulations. We 
compared two methods of collecting information from multiple models’ 
projections of an epidemic. We took three scenario models for each of 
five projection targets, and contrasted collecting a sample of up to 100 
simulated trajectories against collecting quantile intervals of those tra
jectories at each time step. 

We found that collecting simulated trajectories enabled analysis of 
trajectory shapes, peaks, and cumulative total burden. We observed that 
trajectories contained a right-skewed probabilistic distribution, which 
meant that ensembles either directly from trajectories, or using a linear 
opinion pool method, increasingly diverged from the quantile-average 
ensemble in projecting the outer upper limit of the probabilistic distri
bution. We also found that collecting trajectories could be used to create 

a competitively performing ensemble based on continuous predictive 
performance. 

The common practice of collecting a standardised set of quantile 
intervals has several advantages. Firstly, combining across a set of 
quantiles should accurately represent the underlying distribution 
(Genest, 1992), and we observed that the linear opinion pool (based on a 
combination of quantiles) produced a near-identical ensemble as that 
created directly from combining individual trajectories. This suggests 
that the LOP ensemble may be the best choice for reflecting the widest 
range of uncertainty in settings where model results are only collected in 
quantiles, while noting that in order to create a LOP ensemble quantiles 
of cumulative rather than incident quantities need to be collected 
(Howerton et al., 2023). Furthermore, our results suggest little infor
mation about uncertainty is lost when using quantile outputs to compare 
the central estimates from different models. This is a useful validation 
for collecting multiple model results in any format when the purpose is 
short-term situational awareness. 

Further advantages include where collecting quantile outputs also 
allows for a broader range of modelling methods, including quantile 
regression, that directly create quantile outputs rather than a joint dis
tribution over time. Additionally, a single set of quantiles can be held in 
comma-separated value (csv) files of easily manageable size, requiring 
minimal technical knowledge of big data storage solutions or processing. 
This has been important in the past given a lack of readily available skills 
or investment in software for emergency outbreak settings. However this 
argument weakens with mounting evidence that this type of under- 
resourcing hampers outbreak response (Sherratt et al., 2024; Rivers 
et al., 2020). 

An alternative method for multiple model collection is directly col
lecting models’ trajectories, with the advantage of retaining each tra
jectory’s time-dependence. We observed greater availability and 
flexibility of accessing information from this method in contrast to 
collecting quantile distributions. This was evident when comparing the 
tails of multiple distributions in a quantile-average ensemble, assessing 

Fig. 3. Predictive performance of weighted ensembles by projection target. Weighted ensembles were created using a weighted median, where the weight of each 
trajectory was determined by its previous accuracy in predicting between 0 and 31 weeks of observed data (x axis). The performance of each ensemble is measured by 
the weighted interval score (WIS); a lower WIS score indicates better performance of the weighted ensemble than the simple unweighted median ensemble of all 
trajectories (reference line at 1). 
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the number of projected waves or the risk of crossing a specific threshold 
such as the burden in the preceding year, or in reevaluating projections 
against reported data. These analyses could also be conducted after 
collecting model outputs, making the method of collecting trajectories 
more flexible to the needs of one or multiple end-users. In particular 
these areas of information are more likely to be relevant to longer term 
preparedness and mitigation. As a result, we suggest the impact of in
formation gains and losses from model collection may differ depending 
on the aim of a multi-model comparison. 

Our findings comparing quantile with trajectory model outputs are 
compatible with ongoing work addressing issues from the loss of 
epidemic shape. From point forecasts, recent forecasting work has 
created an ensemble from multiple point forecasts in terms of similarity 
to canonical curve shapes (Srivastava et al., 2022). From probabilistic 
models it is also possible to create an ensemble of many trajectories 
using the centrality of each curve as a weight in a curve boxplot (Juul 
et al., 2021). 

We have also demonstrated the potential for unique information 
gains when collecting simulated trajectories by assessing their perfor
mance against observed data. By conditioning the weight of each tra
jectory in an ensemble on subsequently observed data, we were able to 
create an ensemble that excluded entire trajectories, or epidemic curves, 
based on dependence to unrealised events. This typically either matched 
or reduced the uncertainty of an unweighted equivalent ensemble, and 
in some settings performed better overall than the unweighted 
equivalent. 

This suggests an additional way in which collaborative modelling 
efforts can respond to changing outbreak dynamics and policy needs. 
For our setting, model results had originally been created based on a set 
of four scenarios relevant to policy decisions to be made in spring/ 
summer 2022. However, given the complex dynamics of disease trans
mission, no predefined future scenario is likely to accurately predict 
eventual reality. Among four scenarios with deliberately contrasting 
assumptions, most of these assumptions will be disproven by observa
tion over time. Meanwhile, when scenario modelling outputs are 
collected as quantiles at each time-point, they lose their time- 
dependence and thus cannot be interpreted except in the light of an 
increasingly obsolete scenario context. 

By focussing on individual model simulations in this work, we were 
able to abstract away from the context in which model results were 
created. We weighed each trajectory using only its past accuracy against 
observed data, regardless of the modelling technique, original scenario, 
or parameter values from which it arose. From this we created an 
ensemble that did not reflect any particular scenario assumptions, but 
only the time-varying accuracy of each trajectory. This meant we were 
able to continue to use trajectories in an ongoing evaluation, increasing 
the useful life of the results from a single cross-sectional collection of 
multiple model output. 

This could be particularly useful when repeated rounds of model 
collection are time-intensive or computationally expensive, such as for 
individual-based models, or where personnel resources are constrained 
such as in an ongoing outbreak with potentially many competing pri
orities. Whilst beyond the scope of this work, future work in this area 
could also investigate model weights in order to rank trajectories from 
each scenario by proximity to observed trajectories and potentially 
interpret this as proximity of the given scenario assumptions to reality. 

We highlight several important limitations to our comparison of in
formation gains and losses between methods of collecting model output. 
In the first part of this work, we represent an analysis of trajectories that 
reflects our work in real-time response to the needs of policy decision- 
making. We did not consider alternative approaches to time-series 
analysis that would likely make the analysis of trajectories more 
robust, for example in calculations of peaks or wave durations. 

In our comparison to quantile distributions, our method of collecting 
simulated trajectories was not specifically designed for this comparative 
purpose, and as a result our findings are difficult to interpret. In this 

work we did not attempt to characterise how many samples might be 
sufficient to appropriately represent a probabilistic distribution in 
comparison to a quantile representation. For example, in some cases the 
collated trajectories were already subsampled from model runs con
ducted by individual teams. In contrast, in a situation with low sampling 
sizes of trajectories from each model, a quantile representation might 
provide a more stable representation. 

We suggest that further work should characterise and standardise 
sampling techniques for model simulations in multi-model comparisons. 
Future study designs could focus on collating multiple representations 
(e.g. time-sliced quantiles and trajectories) from contributing teams 
directly for comparison, or collate arbitrary numbers of feasible simu
lated trajectories and re-weigh according to the number of simulations. 
Our work also demonstrates the importance of investing in and devel
oping capacity to store and use simulation outputs rather than fixed- 
time quantile probabilities for well founded intercomparison model
ling projects. 

To conclude, we observed several information gains from collecting 
modelled trajectories rather than summarised quantile distributions. We 
highlight the potential to create continuous new information from a 
single collection of model output. Working from combined simulations 
offers the opportunity to explore creating ensembles by the shape of 
epidemic curve that can be updated over time, and for more detailed 
quantitative evaluations against observed data, such as in projected 
peaks or cumulative totals. We believe our findings apply whether 
projections are conditioned on the context of the present (as in fore
casts), or on schematic futures (as in scenarios). However, the value of 
different information gains and losses may vary with the aims of each 
collaborative effort, depending on the requirements and flexibility 
required by projection users. Understanding potential information gains 
and losses when collecting model projections can support the accuracy, 
reliability, sustainability, and communication of collaborative infectious 
disease modelling efforts. 
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