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Abstract 

Background  Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the criti‑
cal role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health 
intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler produc‑
tion cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control 
group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essen‑
tial oils, and reduction of ionophore use.

Results  Using a binning strategy, 84 (≥ 75% completeness, ≤ 5% contamination) metagenome-assembled genomes 
(MAGs) from 118 caecal samples were recovered and annotated for their metabolic potential. The majority of these 
(n = 52, 61%) had a differential response across all cohorts and are associated with the performance parameter — 
European poultry efficiency factor (EPEF). The control group exhibited the highest EPEF, followed closely by the cohort 
where probiotics are used in conjunction with vaccination. The use of probiotics B, a commercial Bacillus strain-based 
formulation, was determined to contribute to the superior performance of birds. GHI supplementation generally 
affected the abundance of microbial enzymes relating to carbohydrate and protein digestion and metabolic path‑
ways relating to energy, nucleotide synthesis, short-chain fatty acid synthesis, and drug-transport systems. These shifts 
are hypothesised to differentiate performance among groups and cycles, highlighting the beneficial role of several 
bacteria, including Rikenella microfusus and UBA7160 species.

Conclusions  All GHIs are shown to be effective methods for gut microbial modulation, with varying influences 
on MAG diversity, composition, and microbial functions. These metagenomic insights greatly enhance our under‑
standing of microbiota-related metabolic pathways, enabling us to devise strategies against enteric pathogens 
related to poultry products and presenting new opportunities to improve overall poultry performance and health.
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Background
The gastrointestinal tract of chickens harbours a complex 
and dynamic microbial community collectively known as 
the gut microbiota. This microbiota, along with its cor-
responding genetic material, forms the gut microbiome, 
which is recognised for its significance in both health and 
metabolism in its host [1]. The majority of the microbi-
ome consists of a diverse set of bacteria which can be 
classified as either commensal, pathogenic, or beneficial 
to the host, of which a variety of factors, such as genet-
ics, age, environment, diet, and administration of feed 
additives, can influence their occurrence and interac-
tions [1–4]. Interestingly, these same factors have also 
been established to directly impact the overall health 
and performance of poultry [5–7], indicating a possible 
link between gut microbiota composition and bird per-
formance. For example, a study identified 24 bacterial 
species to be differentially abundant between broilers 
with high and low feed conversion ratios (FCR) [8]. Fur-
thermore, in our previous work, we demonstrated that 
extrinsic parameters, including stocking density, per-
centage of protein and energy in the diet, and omega-3 
supplementation, can modulate key microbiome mem-
bers involved in nutrition and metabolism, subsequently 
affecting growth and feed efficiency in the host [9].

Due to this accumulating evidence supporting the 
importance of gut health in poultry performance, there 
has been a significant rise in interest in the modulation 
of gut microbiota for improved animal health, produc-
tivity, and food safety [10]. Historically, growth promot-
ers have been utilised for enhanced feed efficiency while 
also decreasing illness and death rates from both overt 
and hidden diseases [11]. These drugs are purported to 
achieve these benefits by altering the gut microbiota, 
resulting in decreased nutrient utilisation by microbes, 
increased absorption of nutrients through thinned host 
gut walls, and reduction in inflammatory stress [11–13]. 
Ionophores are growth promoters that have been safely 
used as the approved and standard intervention to main-
tain gut health in poultry in the last decades, especially 
for the effective prevention of economically important 
diseases such as coccidiosis and necrotic enteritis [14–
16]. Currently, a myriad of new gut health interventions 
(GHIs) with similar effects have emerged for further 
improvement of bird health and performance, which 
can be generally represented by the European poultry 
efficiency factor (EPEF), a metric that integrates per-
formance information on weight gain, feed conversion, 
and mortality [17, 18]. GHIs include but are not lim-
ited to prebiotics, probiotics, phytogenic substances, 
organic acids, essential oils, and enzymes [19]. Each 
of these GHIs has its mechanism of action and corre-
sponding effects on chickens. Descriptions of these GHIs 

have been detailed previously in recent reviews [20, 21]. 
Options are further expanded by the combinatory use of 
multiple GHIs throughout a single production cycle for 
their potential synergistic effects [22, 23]. However, there 
is limited information on their effects on the gut microbi-
ome in poultry.

Research investigating the influence of GHIs has pri-
marily involved the use of metataxonomic sequenc-
ing of the microbiota through amplification of the 16S 
rRNA gene marker [24]. This approach has proved 
ground-breaking for our understanding of gut health. 
For instance, Robinson et al. [25] documented increases 
in alpha-diversity evenness and suppression of certain 
microbial members of the Firmicutes phylum in the gut 
of birds administered with ionophores such as salino-
mycin and monensin. Probiotics, on the other hand, 
were observed to enhance the level of Tenericutes mem-
bers and activate various energy-related pathways in the 
broiler caeca [26]. However, taxa identification of less 
abundant and unknown species, as well as the character-
ising of metabolic capacity (functional profiles) of indi-
vidual gut microorganisms, remains challenging [24, 27, 
28]. By contrast, with shotgun sequencing (which involves 
indiscriminate sequencing of all random DNA seg-
ments within a sample), a higher resolution of microbial 
genomes enables these features to be identified, allowing 
a deeper understanding of the relevant metabolic func-
tions of each gut microorganism [28]. For example, Chen 
et al. (2023) [29] used shotgun metagenomics to elucidate 
the role of gut microbiota in fat regulation in chickens, 
uncovering differences in carbohydrate-active enzymes 
(CAZymes) and functional metabolic modules between 
chickens with high and low abdominal fat. Building on 
this concept, an exploration of the metagenome of chick-
ens given various GHIs can reveal functional insights 
into the microbial breakdown of carbohydrates, protein, 
and other macromolecules in the gut. This, in turn, could 
enhance our understanding of nutrient absorption pro-
cesses in broilers, supporting the optimisation of current 
feed management strategies. Therefore, this study aims 
to characterise how GHIs impact bird performance, the 
gut microbiome, and its role in feed metabolism through 
shotgun metagenomic sequencing in comparison to the 
standard use of ionophores.

Methods
Ethics statement
Poultry farm management and industry plant pro-
cessing activities were conducted following Pilgrim’s 
Europe Ltd. (formerly Moy Park Ltd.) standard oper-
ating protocols, which are compliant with UK animal 
handling laws and regulations  [30, 31]. As part of the 
standard commercial practices of the company, all birds 
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were subjected to electrical stunning before slaughter 
and subsequent carcass processing [32].

Experimental design and sampling
Three broiler production cycles (C0, C1, C2) were 
implemented in an automated commercial poultry 
house, which was described previously by Hanna et al. 
[33] between June and November 2022. In each cycle, 
a total of 18,000 Ross-308 mix-sexed broilers were 
raised for 40 days and were provided with a four-stage 
standard commercial diet regimen based on Aviagen 
specifications for Ross broilers [34]. This was com-
posed of a starter diet (S, 0–11  days), a grower diet 
(G, 11–23  days), a finisher diet (F, 23–31  days), and a 
withdrawal diet (W, 32  days until clearing at day 40). 
Birds were distributed into 6 groups (1 control, 5 GHI 
groups), wherein each group was allocated to 6 pens 
containing 500 birds each, maintaining a stocking 

density not exceeding 38 kg/m2. For our control group, 
we administered ionophores, which is a safe and legally 
accepted method for the control of coccidiosis [15, 
16]. For our treatment groups, we adapted different 
gut health strategies, which involved a combination of 
GHIs; this was designed to optimise and maximise the 
differences in gut health and performance as based on 
the study of Granstad et al. [22]. GHI treatment groups 
for C0 and C1 included the following: T2 — coccidi-
osis vaccine (V); T3 — V + Bacillus strain probiotics 
A (PA); T4 — V + PA + reduced crude protein (− 1%) 
in G/F/W diets; T5 — V + PA + essential oil; and T6 — 
V + PA + ionophore in F diet. Birds in C2 had a similar 
treatment design with two differences: a different GHI 
— Bacillus strain probiotics B (PB) was utilised instead 
of PA in T2 to T5, and essential oils in T5 were replaced 
by prebiotics (Illustrated in Fig. 1). Birds were provided 
ad  libitum access to feed and water. We followed the 

Fig. 1  Overview of study design. C, production cycle; S, starter; G, grower; F, finisher; W, withdrawal; PA, probiotic A; PB, probiotic B; IP, ionophore; V, 
coccidiosis vaccine
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experimental set-up of pens and bird management pro-
tocols as described previously [33]. A 10-day downtime 
was maintained between cycles, during which a rigor-
ous cleaning of the house was performed, involving 
complete litter removal and fumigation.

At the end of the production cycle (day 40), intact 
paired caeca of 10 randomly selected broilers from each 
treatment group of C1 (n = 60) and C2 (n = 60) were 
collected within 5–10  min of the slaughtering process 
in a Pilgrim’s Europe Ltd. industry plant  (Fig.  1). Cae-
cal samples were obtained through an aseptic incision 
from the rest of the GIT and were transferred into ster-
ile 50-ml tubes and stored in a polystyrene container 
with ice packs. All specimens were immediately sent to 
the laboratory for storage at − 80  °C until used for DNA 
extraction.

DNA extraction, library preparation, and shotgun 
metagenomic sequencing
Microbial DNA was extracted from caecal content using 
the QIAamp® PowerFecal Pro DNA Kit (Qiagen, Ger-
many) according to the manufacturer’s instructions. For 
each sample, 200–250  µg of caecal content was asepti-
cally collected from a randomly selected caecal pouch. 
The caecal content and 800  µl of lysis buffer were then 
added to a bead-beating tube and vortexed at maximum 
speed for 10  min. After centrifugation, the supernatant 
was transferred to a clean tube, mixed with solutions for 
inhibitor removal and DNA binding, and then loaded 
onto spin columns. Each column was washed twice to 
remove non-DNA contaminants, eluted in 100 µl of elu-
tion buffer, and centrifuged to collect purified DNA, 
which was then stored at − 20 °C. Initial DNA concentra-
tion was also measured using NanoDrop ND-1000 (Nan-
oDrop Technologies, Inc., Wilmington, USA).

Sequencing libraries were generated using a modified 
Illumina DNA Prep tagmentation approach (Illumina, 
Inc., Cambridge, UK) described previously [35]. Tagmen-
tation was performed as follows: a master mix composed 
of 0.5-µl bead linked transposomes, 0.5-µl tagmentation 
buffer, and 4-µl nuclease-free distilled water was cre-
ated for each sample (2 µl), placed in a 96-well plate, and 
run on a thermocycler at 55 °C for 15 min. Another PCR 
master mix using the KAPA2G Fast HotStart PCR Kit 
(Sigma-Aldrich, Gillingham, UK) was then generated and 
transferred into a 96-well plate, to which 5 µl of P7 and 
P7 of Nextera XT Index Kit v2 index primers (Illumina, 
Cambridge, UK) and 7  µl of the previous tagmentation 
reaction were added. The plate was run on the thermocy-
cler with conditions: 72 °C for 3 min, 95 °C for 1 min, 14 
cycles of 95 °C for 10 s, 55 °C for 20 s, and 72 °C for 3 min. 

Quality control of multiplex barcoding was performed on 
a D5000 ScreenTape using the Agilent Tapestation 4200 
(Agilent, Waldbronn, Germany). Next, barcoded librar-
ies were quantified on a Qubit 3.0 instrument (Invitro-
gen, Paisley, UK), pooled in equivalent concentrations in 
a tube, and washed with 0.5–0.7X solid-phase reversible 
immobilisation KAPA Pure Beads (Roche, Wilmington, 
USA). To calculate the final pool molarity, the pooled 
library was quantified using Qubit 3.0 and on a D5000 
High Sensitivity ScreenTape. After library qualification, 
the library was sequenced using the NovaSeq 6000 Sys-
tem, paired-end 150 bp (Illumina, Cambridge, UK).

Bird performance and health monitoring
The performance parameters included bird weight (BW, 
kg of body weight), average daily gain (ADG, grams feed 
per day), corrected feed conversion ratio (FCR) at 2-kg 
BW, and total mortality in % (MT). These measurements 
were taken as mean average per pen at clearing day (day 
40), which were conducted in line with typical industrial 
practices. Contact dermatitis measures, which included 
footpad dermatitis (FPD), lesion scores (FPDS), FPD 
prevalence (%, FPDP), and hock burn (HB) lesion scores 
(HBS) and prevalence (%,  HBP), were also taken before 
slaughter as conducted previously [5, 33]. To estimate 
overall health and performance, the European produc-
tion efficiency factor (EPEF) was calculated as previously 
described [36].

Bioinformatic analysis
Recovery of metagenomic‑assembled genomes (MAGs)
A total of 120 metagenomic samples were processed — 
from which adapter-trimmed reads from two lanes were 
generated by the sequencing centre. Reads were merged 
and subjected to quality trimming using Sickle v1.200 
[37]. Trimming involved removing reads where the aver-
age phred was below 20 and retaining paired-end reads 
with a post-trimming length exceeding 50 bp. Two sam-
ples (1 from T3 and 1 from T4 in C2) were excluded due 
to non-recovery of reads, resulting in a total of 118 sam-
ples which generated 2,588,938,595 reads. Forward and 
reverse reads were then aggregated and subjected to col-
lective assembly using MEGAHIT [38]. Assembly param-
eters used were –k-list 27,47,67,87 –kmin-1pass -m 0.95 
–min-contig-len 1000. This gave us a total of 1,276,325 
contigs, a total of 3,101,580,806 bases (bp), a maximum 
of 403,439 bp, an average length of 2430 bp, and an N50 
score of 2724 bp. Assemblies were then subjected to bin-
ning via the MetaWRAP pipeline [39], wherein three 
algorithms, namely MetaBAT  2 [40], MaxBin [41], and 
CONCOCT [42], were utilised. Bins from each of the 
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algorithms were consolidated using the MetaWRAP 
framework, resulting in a total of 308 bins. For the esti-
mation of completion (COM) and contamination (CON) 
metrics of each MAG, CheckM was used on all bins [43]. 
We retained bins with more than 75% and less than 5% 
contamination to give a final set of 84 MAGs. The sum-
mary statistics of these MAGs are provided in Supple-
ment File 1.

Taxonomic and functional annotation
For metabolic function and taxonomic assessment of 
each MAG, the METABOLIC pipeline was employed 
[44]. Within its framework, the taxonomic classification 
of bins was incorporated using GTDB-Tk [45], while 
functional annotations were recovered using Kyoto Ency-
clopedia of Genes and Genomes (KEGG) for metabolic 
function modules and submodules [46], dbCAN2 for 
carbohydrate-active enzymes (CAZymes) [47], custom 
hidden Markov model databases for nutrient cycles [48], 
and MEROPS for proteases [49]. To obtain taxonomic 
and functional coverages per sample, read coverages 
(proportion of each bin per sample) were multiplied with 
each feature coverage (returned from METABOLIC). 
From this, we derived the sample-wise abundance tables: 
dbCAn2 (n = 118 samples × 117 CAZyme IDs), KEGG 
modules (n = 118 samples × 251 module IDs), KEGG 
submodules (n = 118 samples × 964 submodule IDs), and 
MEROPS (n = 118 samples × 108 peptidases).

Phylogenetic tree generation
To construct a phylogenetic tree of MAGs, we used 
GToTree [50], which involves the detection of single-copy 
genes (SCGs) in MAGs and multisequence alignment. 
Specifically, we used the bacteria and archaea HMM set, 
which covers 25 SCGs. MAGs that had very few hits for 
these SCG were removed, resulting in a phylogeny recov-
ery for a total of 65 MAGs. For assessment of the nov-
elty of MAGs, the Genome Tree Toolkit was utilised [51], 
wherein phylogenetic gain (PG) for each MAG against 
other MAGs in the tree was estimated.

Statistical analyses
All tests were performed in R [52]. The normality of data 
was assessed using the Shapiro–Wilk test [53]. To deter-
mine significant differences between treatment groups, 
we employed analysis of variance (ANOVA) and pair-
wise t-test with Bonferroni correction for normally dis-
tributed data while Kruskal–Wallis  Rank Sum testing 
and post hoc Dunn testing with Bonferroni correction 
(p < 0.05) for non-normal-distributed data [52]. For per-
formance data, when significant p-values (p < 0.05) were 

obtained in ANOVA, statistical groupings were evaluated 
using the Duncan’s multiple range test (DMRT) through 
the agricolae package [54].

To evaluate the individual effects of GHIs across the 
three cycles, we performed a generalised linear model 
analysis via the penalised maximum likelihood method 
using the glmnet package [55]. We applied the least abso-
lute shrinkage and selection operator (LASSO) model, 
with alpha set to 1 and tenfold cross-validation. This 
approach helped prevent overfitting caused by multicol-
linearity and sparse covariates (such as vaccination and 
probiotic use in our study) while identifying the best pre-
dictors of the outcome of interest. The model is repre-
sented as follows: 

minimise N
i=1 yi − β0 −

p
j=1xijβj

2
+ �

p
j=1 βj   , 

where N  : the number of observations, p : the number of 
predictors, yi : the outcome variable for the i-th observa-
tion, xij : the value of the j-th predictor for the i-th obser-
vation, β0 : intercept term, βj : the coefficients for each 
predictor, and � : the regularisation parameter controlling 
the strength of the penalty term [56]. This model indi-
cates that the penalty term forces some of the beta coeffi-
cients to go to zero when their corresponding predictors 
are not significant. For our model, we included the fol-
lowing as predictors: ionophore  (all stages) as “yes” or 
“no”; ionophore (finisher only) as “yes” or “no”; vaccina-
tion: “yes” or “no”; probiotic A: “yes” or “no”; probiotic B: 
“yes” or “no”; essential oil: “yes” or “no”; reduced crude 
protein (− 1%): “yes” or “no”; and prebiotic: “yes” or “no”, 
wherein “no” was used as a reference for all covariates. 
For outcome variables, we used the parameters 40-day 
ADG, 40-day BW, EPEF, corrected 2-kg FCR (2-kg FCR), 
FPDP (%), HBP (%), and total MT (%).

For microbial diversity assessment, different functions 
of the vegan package [57] were employed. For alpha 
diversity, we estimated richness (R) (using the rarefy 
function), Shannon entropy (H) and Simpson (Si) (using 
the diversity function), Fisher alpha (FA) (using the fisher.
alpha function), and Pielou’s evenness (PE) (using the 
specnumber (S) function for formula: PE = H

log(S) ). After 
confirming their normal distribution, ANOVA was then 
employed to determine significant differences between 
treatment groups [52]. For beta diversity, we employed 
Bray–Curtis dissimilarity index analysis using the vegdist 
function of the vegan package, followed by principal 
component analysis using the R base function cmdscale 
[52, 57]. The separation between treatment groups and 
between cycles was tested with permutational analysis of 
variance (PERMANOVA) through the vegan command 
adonis [57].
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To find the relationship between the individual MAGs 
and each treatment group (C1 and C2 performed sepa-
rately) as well as the relationship between individual 
MAGs and performance parameters — EPEF and 
MT, we employed a generalised linear latent variable 
model (GLLVM) regression analysis as described pre-
viously [58]. In this model, the mean abundances (for 
the i-th sample and j-th MAG) were regressed against 
sources of variation ( xi , treatment groups or perfor-
mance/health traits) by incorporating latent variables 
ui (which are confounders and not observed) as follows: 
g
(

µij

)

= ηij = αi + β0j + xTi βj + uTi θj , where βj are 
covariate-specific coefficients which, if significant, aid 
in understanding the role of the MAG with respect to 
that covariate. Note that the 95% confidence intervals 
of these coefficients were generated, and where they 
crossed the 0 boundary, they were deemed insignificant. 
We conducted this GLLVM analysis through the gllvm 
package, where we specified the use of the negative 
binomial distribution and the variational approximation 
method [59].

For comparison of grouped features between treat-
ment groups, sample-wise abundance tables were ini-
tially subjected to normalisation by total sum scaling 
(TSS) (number of reads for each MAG divided by total 
of reads per sample) and subsequently via centralised 
log ratio (CLR) method using the logratio.transfo func-
tion (log-ratio transformation) of the mixOmics package 
[60]. Meanwhile, for individual feature statistical com-
parison between treatment groups, sample-wise abun-
dance tables were subjected to differential expression 
analysis using the DESeq2 package with default settings 
(test: negative binomial Wald test, type of fitting of dis-
persions to the mean intensity: parametric, with p < 0.05) 
[61]. Individual CAZyme function categorisation was 
adapted from dbCAN2 annotated substrate information 
[47] and ontology of MetaCyc database [62], with supple-
menting information from the CAZy database [63] and 
CAZypedia [64]. KEGG orthology (KO) codes used for 
enzyme mapping of production pathways of short-chain 
fatty acids (SCFA): acetate, butyrate, and propionate were 
adapted from previous metagenomic studies [65, 66]. 
Identified KO codes were then matched to KEGG sub-
modules using the KEGG database [46].

For visualisation, ggplot2 was used for the generation 
of plots (line graphs, bar plots, boxplots, Sankey plots) 
[67], while ComplexHeatMap was utilised for heatmap 
clustering (we used Euclidean clustering) [68]. For map-
ping a phylogenetic tree, we utilised the packages ape 
and ggtree for manipulation and layering of other MAG 
features: guanosine-cytosine (GC) content, novelty (PG), 
and quality score (computed using formula: COM — 
5 × CON) [69, 70].

Results
Administration of different GHIs impacted overall bird 
performance
Growth performance is one of the most important indi-
cators of nutrition and health in poultry. As shown in 
Table 1, significant differences between treatment groups 
were only observed in FCR, EPEF, and HB measures 
(ANOVA, p < 0.05). Estimation of corrected FCR of C0 
and C2 had shown T1 to have the best FCR. EPEF was 
observed to be highest in T1, followed by T3, but was 
not significant in C0 and C1. Across all cycles, the per-
formance of C2 can be considered superior as EPEF, BW, 
and ADG of C2 are observed to be higher than C0 and 
C1 (ANOVA, p < 0.05, Table  2). However, C2 also dem-
onstrated the highest values in HB scores and prevalence 
(ANOVA, p < 0.05, Table 2). From this, T1 and T2 were 
observed to have the lowest HB metrics, while T4 exhib-
ited the highest (ANOVA, p < 0.05, Table 1).

To evaluate the overall effects of the individual GHI 
components across the three cycles, we employed 
LASSO regression. As shown in Table  3, all GHI com-
ponents were revealed to be significant predictors of at 
least one of the performance parameters. Notably, EPEF 
was largely influenced by all variables, while MT was 
not associated with any. Analysis showed that ionophore 
administration at all stages can largely increase EPEF 
but slightly decrease FCR. Meanwhile, the opposite was 
demonstrated by the administration of ionophores only 
during the finisher stage. Vaccination was shown to 
have only a slight negative effect on EPEF, while the use 
of probiotic A was shown to negatively affect almost all 
parameters. In contrast, the use of probiotic B was gen-
erally associated with positive changes with respect to 
all parameters, apart from FCR and MT. The remaining 
predictors were shown to have large negative impacts on 
EPEF but a very low positive impact on FCR.

Administration of different GHIs resulted in shifts 
in microbial community structure and diversity
The sequencing analysis of 118 caecal samples yielded 
a total of 2.6 B reads, from which a total of 84 MAGs 
with greater than 75% completeness and less than 5% 
contamination were recovered. Specifically, 83 of these 
MAGs are detected in C1, while 78 are present in C2. 
All included MAGs were identified as bacterial species, 
which represent seven unique phyla, with Firmicutes_A 
as the most common designated phylum among all sam-
ples (Figs. 2 and 3, Supplement File 2). This was followed 
by Firmicutes and Bacteroidota, while MAGs belonging 
to Proteobacteria were not present in any of the groups 
in C2 (Fig.  2a). The global microbiota abundance was 
dominated by MAGs distributed across 57 identified 
genera, accounting for 96% of the population. Among 
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Table 1  Performance and health parameters of birds across treatment groups grouped according to cycles

Cycle 0 (C0), Cycle 1 (C1), and Cycle 2 (C2) (N = 108 pens, 36 pens/cycle). Performance parameters taken as mean per pen: Bird weight (BW) - in kilograms, average 
daily gain (ADG) — grams per day, feed conversion ratio (FCR), total mortality (MT) - %, European production efficiency factor (EPEF), footpad dermatitis score (FPDS) 
and prevalence (FPDP) - %, and hock burn score (HBS) and prevalence (HBP) - %. Significant differences between treatment groups (ANOVA, p < 0.05). Different letters 
denote significant differences using DMRT grouping (p < 0.05). SEM standard error of the mean, MSE error mean sum of squares, F-stat (ANOVA F-statistic)

T1 T2 T3 T4 T5 T6 SEM MSE F-stat p-val

C0

  BW 2.435 2.405 2.436 2.397 2.383 2.376 0.011 0.005 0.819 0.546

  FCR 1.368b 1.393ab 1.389ab 1.418a 1.410a 1.412a 0.005 0.001 2.891 0.030
  ADG 60.876 60.118 60.902 59.933 59.580 59.410 0.282 2.949 0.819 0.546

  MT 3.500 2.867 3.133 3.167 3.033 3.167 1.249 1.249 0.209 0.956

  EPEF 406.007 398.163 402.015 389.479 390.510 388.676 2.662 244.196 1.312 0.285

  FPDS 0.027 0.020 0.027 0.010 0.007 0.010 0.003 0.000 1.440 0.239

  FPDP 2.667 2.000 2.667 1.000 0.667 1.000 0.314 3.333 1.440 0.239

  HBS 0.010 0.013 0.007 0.000 0.007 0.003 0.002 0.000 1.200 0.333

  HBP 1.000 1.333 0.667 0.000 0.667 0.333 0.178 1.111 1.200 0.333

C1

  BW 2.417 2.418 2.439 2.412 2.378 2.436 0.0101 0.004 0.731 0.606

  FCR 1.425 1.426 1.415 1.447 1.436 1.426 0.004 0.001 1.146 0.358

  ADG 58.945 58.967 59.480 58.832 58.009 59.419 0.248 2.300 0.731 0.606

  MT 1.767 2.200 2.600 2.867 1.833 2.433 0.128 0.501 2.250 0.075

  EPEF 383.464 383.409 386.183 371.883 377.150 381.341 2.150 167.042 0.975 0.449

  FPDS 0.020 0.010 0.043 0.020 0.017 0.027 0.004 0.001 0.516 0.762

  FPDP 1.667 1.000 3.333 2.000 1.333 2.000 0.308 3.556 0.725 0.610

  HBS 0.030 0.027 0.033 0.037 0.023 0.023 0.005 0.001 0.973 0.450

  HBP 2.000 2.000 2.667 2.667 2.000 1.667 0.312 3.533 0.962 0.456

C2

  BW 2.648 2.625 2.629 2.603 2.586 2.597 0.013 0.006 0.540 0.744

  FCR 1.398d 1.428bc 1.417c 1.459a 1.442a 1.442ab 0.004 0.000 17.473  < 0.001
  ADG 64.591 64.026 64.120 63.477 63.062 63.338 0.307 3.633 0.540 0.744

  MT 2.000 2.567 2.900 2.033 2.800 2.367 1.011 0.166 0.857 0.521

  EPEF 429.986a 412.178bc 416.671ab 401.411c 399.630c 403.987bc 2.557 141.778 5.617 <0.001
  FPDS 0.230 0.243 0.213 0.260 0.263 0.260 0.012 0.006 0.401 0.844

  FPDP 17.333 17.667 16.667 19.333 19.333 19.000 0.945 36.222 0.218 0.952

  HBS 0.153b 0.153b 0.200ab 0.243a 0.190ab 0.210ab 0.009 0.002 3.214 0.019
  HBP 13.000b 12.000b 15.333ab 17.667a 14.000ab 15.667ab 0.562 9.133 2.727 0.038

Table 2  Performance and health parameters of birds across cycles

Cycle 0 (C0), Cycle 1 (C1), and Cycle 2 (C2) (N = 108 pens, 36 pens/cycle). Performance parameters taken as mean per pen: Bird weight (BW) - in kilograms, average 
daily gain (ADG) — grams per day, feed conversion ratio (FCR), total mortality (MT) - %, European production efficiency factor (EPEF), footpad dermatitis score (FPDS) 
and prevalence (FPDP) - %, and hock burn score (HBS) and prevalence (HBP) - %. Significant differences between treatment groups (ANOVA, p < 0.05). Different letters 
denote significant differences using DMRT grouping (p < 0.05). MSE, error mean sum of squares; F-stat (ANOVA F-statistic)

C0 C1 C2 MSE F-stat p-val

BW 2.405b ± 0.011 2.417b ± 0.01 2.615a ± 0.013 0.005 106.555  < 0.001

FCR 1.399b ± 0.005 1.429a ± 0.004 1.390b ± 0.005 0.001 19.345  < 0.001

ADG 60.136b ± 0.282 58.942c ± 0.248 63.769a ± 0.307 2.826 80.499  < 0.001

MT 3.144a ± 0.175 2.283b ± 0.128 2.444b ± 0.166 0.896 8.420  < 0.001

EPEF 395.808b ± 2.662 380.572c ± 2.15 410.644a ± 2.557 218.944 37.176  < 0.001

FPDS 0.017b ± 0.003 0.023b ± 0.004 0.245a ± 0.012 0.002 282.571  < 0.001

FPDP 1.667b ± 0.314 1.889b ± 0.308 18.222a ± 0.945 13.046 248.782  < 0.001

HBS 0.007c ± 0.002 0.029b ± 0.005 0.192a ± 0.009 0.001 283.873  < 0.001

HBP 0.667c ± 0.178 2.167b ± 0.312 14.611a ± 0.562 5.348 394.411  < 0.001
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these, we identified Lactobacillus as the predominant 
genus, while its member, Lactobacillus crispatus, was the 
most common species. However, predominant MAGs at 

genus and species levels were observed to vary largely 
across treatments and cycles (Fig.  2, Supplement File 
2). For instance, Ruminococcus_G was observed to have 

Table 3  LASSO regression of performance and health parameters of broilers across all cycles

LASSO regression against sources of variability where the GHI individual components are coded as 1/0, corresponding to “yes”/ “no”. The model assumes an L1 penalty 
term, which forces the beta coefficient of insignificant predictors to become zero. Significant negative and positive beta coefficients indicate a decrease and increase 
in performance parameters, respectively. Average daily gain (ADG) — grams per day, bird weight (BW) - in kilogram, European production efficiency factor (EPEF), feed 
conversion ratio (FCR), footpad dermatitis prevalence (FPDP) - %, hock burn prevalence (HBP) - %, mortality (MT) - %

Predictors Performance parameters

ADG BW EPEF FCR FPDP HBP MT

(Intercept) 61.207 2.489 397.937 1.400 7.354 5.294 2.624

Ionophore (All stages): yes 0.000 0.000 8.517  − 0.019 0.000 0.000 0.000

Ionophore (Finisher only): yes 0.000 0.000  − 10.152 0.019 0.000 0.000 0.000

Vaccinated: Yes 0.000 0.000  − 0.002 0.000 0.000 0.000 0.000

Probiotic A: Yes  − 1.438  − 0.069  − 3.313 0.000  − 5.481  − 3.651 0.000

Probiotic B: Yes 1.931 0.099 17.376  − 0.018 10.534 9.644 0.000

1% reduced crude protein: Yes 0.000 0.000  − 13.893 0.034 0.000 0.000 0.000

Essential oil: Yes  − 0.427  − 0.017  − 10.748 0.022 0.000 0.000 0.000

Prebiotic: Yes 0.000 0.000  − 15.617 0.024 0.000 0.000 0.000

Fig. 2  Sample-wise distribution of 84 MAGs recovered from C1 (n = 60) and C2 (n = 58). Proportions at a phylum, b genus (genera with < 2% 
prevalence grouped into “Others”), and c species levels (species with < 1% prevalence grouped into “Others”), ranked from most dominant to least 
and grouped per treatment/cycle. The plot also shows d Firmicutes-Bacteroidota ratio, grouped per cycle and treatment, with significant differences 
based on Kruskal–Wallis (p < 0.05) and pairwise Dunn testing with Bonferroni correction (p < 0.001)
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the highest proportion in T1 and T3; Anaerobutyricum 
in T2, T5, and T6; and Alistipes for T6, while Lactoba-
cillus was consistently highest in proportion among C2 
treatment groups. We also assessed Firmicutes-Bacte-
roidetes ratio of each treatment group, where we consid-
ered Firmicutes as the sum of Firmicutes, Firmicutes_A, 
and Firmicutes_B counts. Comparative analysis of the 
F/B ratio revealed significant differences between treat-
ment groups in C1 only, wherein T5 is observed to have a 
higher ratio than T4 (Fig. 2d). Approximately, 77% of the 

MAGs (n = 65) contained SCGs for phylogenetic map-
ping, showing four major groupings which were domi-
nated by Firmicutes_A species (Fig.  3a). Among these 
MAGs, bin.108 (CAG-267 sp001917135) was revealed as 
the most novel species (Fig. 3b).

Next, we hypothesised that GHI groups may influence 
microbial community diversity, which we then estimated 
using various alpha- and beta-diversity metrics. In C1, 
microbial communities of T3 samples were found to 
be richer and possessed a more even distribution than 

Fig. 3  Phylogeny and taxonomic diversity of MAGs recovered from C1 (n = 60) and C2 (n = 58). a A phylogenetic tree of 65 MAGs recovered 
via GToTree using 25 bacterial and archaeal specific single copy genes. The tree also features G-C content, quality index (genome completion — 
5 × genome contamination), and novelty (represented by phylogenetic gain (PG) values calculated using the GTDB-Toolkit). b Ten most novel MAGs 
(indicated by high PG). Finally, alpha diversity (c) is represented by Fisher alpha, Pielou’s evenness, rarefied richness, and Shannon and Simpson 
index, with ANOVA significance: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*). d Beta diversity is represented by PCoA plot of Bray–Curtis indices, 
with PERMANOVA (p < 0.001)
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other groups (T1, T2, T4, and T6), as indicated by sig-
nificantly higher FA, R, and PE values. Meanwhile, in C2, 
the majority of alpha-diversity metrics of T5 and T6 were 
significantly elevated compared to T1 and T3 (Fig.  3c). 
The principal components (PC1 and PC2) of our PCoA 
plot on Bray–Curtis estimates explained a considerable 
portion of the variance (14.5% and 11.1%, respectively), 
from which a discernible separation (PERMANOVA, 
p < 0.001, R2 = 10.9%) between C1 and C2 groups was 
observed. While separation between treatment groups 
is not distinct, significant differences between all treat-
ment groups were identified (PERMANOVA, p < 0.001, 
R2 = 17%). Clustering reveals a slight separation of T2 and 
T3 (in C1) from the other groups, while T1, T4, and T6 
(in C2) are separated from the rest (Fig. 3d).

Metagenomic‑assembled genome composition 
is associated with the administration of different GHIs 
and broiler performance
To further understand the individual influence of GHI 
groups on microbiome and performance, we conducted 

a GLLVM regression analysis of each of the 84 MAGs 
(using T1 as the reference predictor). A total of 43 and 
38 MAGs (59 for both) were observed to have a signifi-
cant association with GHI groups in C1 and C2, respec-
tively (Fig. 4, Supplement File 1). For C1, the majority of 
these MAGs (n = 41/43, 95%) exhibited a negative asso-
ciation with GHI administration, denoting a decrease in 
abundance compared to T1. From this, T3 (21/43, 49%) 
had the greatest number of decreased MAGs, followed 
by T2 (20/43, 47%) and T6 (19/43, 44%). Meanwhile, 7 
(7/43, 16%) MAGs were observed to be positively associ-
ated with GHI administration in C1, from which 5 MAGs 
(5/43, 12%) increased in T4. Notable MAGs to consist-
ently change across groups in C1 were those belong-
ing to Bacteroidales (bin.291 Alistipes megaguti, bin.34 
Alistipes communis, bin.294 Alistipes  sp900290115, 
bin.234 Barnesiella viscericola), as well as bin.99 (Limosi-
lactobacillus) and bin.74 (CAG-110). Bin.34 (A. com-
munis) was also observed to have the lowest GLLVM 
coefficient, followed by bin.92 (g_UBA7160) and bin.4 
(f_Gastrophilaceae). In addition, all Cyanobacteria 

Fig. 4  Taxonomic classification and differential analysis of 84 MAGs recovered from C1 (n = 60) and C2 (n = 58). a A Sankey plot illustrating 
the classification of the bacterial species at various taxonomic ranks. The figure also includes general linear latent variable model (GLLVM) results 
showing the association of MAGs with b treatment groups (with C1 and C2 done separately) and c performance and health parameters — EPEF 
(European performance efficiency factor) and MT (total mortality). Coef, GLLVM coefficients in blue (< 0) or red (> 0), representing negative 
or positive coefficients (or decrease or increase) for each MAG against GHI treatments (T2, T3, T4, T5, T6) as predictors in comparison to T1 
(reference). Coefficients in white indicate insignificance (no association), while grey indicates that the MAG was not recovered in that treatment 
group
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MAGs were observed to show a negative association with 
GHI groups.

Among the 38 MAGs identified as associated with C2 
groups, 15 (39%) were positively associated with MAGs, 
while 25 (66%) MAGs were negatively associated. The T5 
group had the highest count (n = 8/38, 21%) of positively 
associated MAGs, while T6 had the highest number of 
negatively associated MAGs (n = 15/38, 39%). Bin.74 
(g_CAG-110) was observed to be dynamic across all GHI 
groups, as well as having the highest coefficient among 
all MAGs in C2, while bin.208 (UMGS1688 sp90054085) 
was shown to have the strongest negative association 
(Fig. 4b).

For performance, we considered metrics EPEF and 
MT to represent overall broiler health and performance 
(EPEF was highly correlated with the other measured 
performance parameters), as shown in Fig. 4c. Our analy-
sis revealed that EPEF was positively associated with 40 
MAGs and negatively associated with 33 MAGs, while 
MT was associated with only 30 MAGs (10-positive and 
20-negative associated MAGs). Bin.137 (Rikenella micro-
fusus) was noted to have the highest GLLVM coefficient 
against EPEF, followed by bin.92 (g_UBA7160) and bin.58 
(Butyricicoccus). Bin.234 (B. viscericola) was observed to 
have the strongest negative association with EPEF but 
also the strongest positive association with MT (Fig. 4c, 
Supplement file 1). Interestingly, at least one of the Lac-
tobacillaceae MAGs (bin.258 Lactobacillus gallinarum, 
bin.99 Limosilactobacillus, bin.152 Ligilactobacillus, 
bin.125 L. crispatus, bin.267 Limosilactobacillus salivar-
ius, bin.120 Lactobacillus johnsonii) were negatively asso-
ciated across the GHI groups in both cycles (except for 
T4) but were also seen to have positive association with 
EPEF. This finding indicates that increased levels of Lac-
tobacillaceae MAGs in GHIs may contribute to greater 
EPEF values, but they were reduced in the GHI groups 
compared to T1. Similar patterns were also seen for other 
MAGs, such as bin.34 (A. communis), bin.137 (R. micro-
fusus), bin.65 (CAG-302;s__), and bin.84 (UBA3818;s__). 
Furthermore, numerous MAGs enriched in GHI groups 
but negatively associated with EPEF were also identified 
(Cyanobacteria MAGs, bin.200: UMGS1993;s__, bin.279: 
f_DTU072;g__;s__ in C2) which signifies that elevated 
levels of these MAGs can contribute to decreased levels 
of EPEF.

Administration of different GHIs resulted in shifts 
in metabolic functions
Since significant differences in MAGs were observed 
across treatments, we then investigated the impact 
of GHIs on metabolic functions. Genes encoding for 
enzymes, including CAZymes and proteases, are impor-
tant for the metabolism and reproduction of microbial 

species. Hence, they may also play crucial roles in the 
nutrition and digestive physiology of chickens. As seen in 
Fig. 4, we detected a total of 128 CAZymes belonging to 
two major families — glycoside hydrolase (GH) and poly-
saccharide lyase (PL), with the former being more domi-
nant. Both CAZyme families were significantly different 
in abundance across C1 treatment groups, revealing T5 
to have the highest GH abundance but also the lowest PL 
abundance (p < 0.05, ANOVA) (Fig. 5a). Meanwhile, there 
were no significant differences between groups within 
C2, but they have a relatively higher overall CAZyme 
abundance than C1 groups. Furthermore, clustering 
analysis exhibited the separation of T4 and T5 from the 
other groups in C1 and T5 in C2 (Fig. 5c).

The most common enzyme across all treatments was 
observed to be GH013, which was detected in 27 bac-
terial families in our study. A total of 24 enzymes were 
noted to have significantly different abundances between 
T1 and GHI groups T4 and T5 (C1) (Wald test, p < 0.05, 
Fig.  5c). For T4, 8 enzymes with activity against pectin 
were significantly lower than T1, while 9 enzymes with 
activity against starch/sugars and other carbohydrates 
were significantly higher. Similarly, 15 enzymes with 
activity against pectin and hemicellulose are down-
regulated in T5; these same enzymes were observed 
to be consistently present in the family Bacteroidaceae 
(Fig. 5e). In C2, only GH15 was observed as significantly 
differentiated (upregulated in T2, T3, and T5), which has 
the capacity for sugars/starch digestion.

The differential abundance of proteases across treat-
ments was also investigated in this study. A total of 108 
protease families distributed across 9 protease types were 
detected in our samples (Fig. 6). Metallo peptidases were 
detected as the most common and most diverse protease 
catalytic type, with the M38 family being the most domi-
nant across 47 metallo families. Other detected cata-
lytic types included inhibitors and threonine peptidases, 
which were both significantly different in abundance in 
C1, where threonine abundance was specifically observed 
to be significantly lower in T4 compared to T1 (Dunn 
test with Bonferroni correction, p < 0.05). In C2, abun-
dances of cysteine peptidases were markedly disparate 
(Kruskal-Wallis test, p < 0.05), with T4 having the high-
est value among all groups but although insignificant. At 
the family level, divergent clustering of T4 and T5 from 
other groups was seen in C1; in contrast, for C2, T1 and 
T4 were seen to be more similar in abundance than the 
other groups. Across all treatment groups, C38 (cysteine) 
was consistently the most abundant peptidase, followed 
by M38 and S33. However, diminished levels of M28X 
were evident in T4 and T5, while elevated levels of M93 
and M28A were observed in T4 in C1. Notably, all these 
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differentiated families were present in the Bacteroidaceae 
family (Fig. 6d).

Gut microorganisms engage in complex metabolic 
interactions, potentially involving various production 
of metabolites that modulate host physiology. Based on 

our analysis, we determined that GHI administration 
also had an impact on other KEGG modules, includ-
ing various transport and transporter systems, amino 
acid metabolism, and nucleic acid metabolism path-
ways (Fig.  7). Significantly varied abundances across 

Fig. 5  Carbohydrate-active enzymes (CAZyme) gene abundance recovered from C1 (n = 60) and C2 (n = 58). a Comparison of total glycoside 
hydrolase (GH) and polysaccharide lyase (PL) abundances across treatment groups and cycles, based on ANOVA and post hoc pairwise t-testing 
with Bonferroni correction. b CAZyme IDs grouped according to substrate based on the dbCAN2 and MetaCyc databases). c Mean normalised 
abundance of CAZyme gene IDs across treatment groups and cycles. Red and blue colour of heatmap cells indicates high and low abundance, 
respectively. IDs in bold and underlined indicate significant increase or decrease in abundance compared to T1 based on Wald test (DESeq2). 
Number of MAGs containing CAZyme genes, grouped according to d phylum and e family taxonomic ranks. Normalisation method: total sum 
scaling and centralised log ratio (TSS + CLR). Significance: p < 0.0001 (****), p < 0.001 (***), p < 0.01 (**), p < 0.05 (*). White and red significance indicate 
a decrease and increase of MAGs in treatments T2 to T6 compared to T1, respectively
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treatment groups in 25 and 12 different KEGG func-
tion module categories were observed in C1 and C2, 
respectively  (p < 0.05, Kruskal-Wallis test) (Fig.  7a). 
Heatmap clustering also exhibited the divergence of 
T5 from the other groups in C1, while both T5 and T6 

have partitioned from the others in C2. However, com-
pared to T1, abundance in GHI groups was significantly 
downregulated in four module categories, namely 
phosphotransferase system  (PTS) and ATP synthesis 
in C2–T6, serine and threonine metabolism in C2–T5, 
and co-factor and vitamin metabolism in C1–T5, while 
methane metabolism function is upregulated in C1–T3. 

Fig. 6  Mean normalised abundance of proteases across treatment groups and cycles. a Mean abundance of individual protease families (MEROPS 
ID) grouped according to protease type following MEROPS database [49]. MEROPS protease ID in bold and underlined indicates a significant 
difference in abundance compared to T1, based on the Wald test (using DESeq2). b Mean abundance of total protease grouped according 
to family across groups and cycles, and statistical differences were based on Kruskal-Wallis test and post hoc pairwise Dunn testing with Bonferroni 
correction. Number of MAGs with protease gene grouped according to taxonomic ranks c phylum and d family. Normalisation method: total 
sum scaling and centralised log ratio (TSS + CLR). Significance: p < 0.0001 (****), p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), white and red significance 
indicates decrease and increase of MAGs in GHI treatments (T2, T3, T4, T5, T6) compared to T1, respectively
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Furthermore, differential analysis (T1 as reference) of 
individual modules revealed a decreased abundance 
of antibiotic-related transport systems in GHI groups 
C1–T6 (M00747) and C2–T3 (M00817, M00708) and 
an increase of organic compound biosynthesis and 
transport and regulatory system modules in C1–T4 
(M00020, M00364, M00365), C2–T6 (M00213), and 
C2–T5 (M00521) (Fig. 7b).

Administration of different GHIs can impact short‑chain 
fatty acid production pathways
Due to the known relevance of metabolic pathways 
involved in the production of short-fatty acids (SCFA), 
including acetate, butyrate, and propionate, on gut health, 
we also explored the effects of GHI on SCFA production. 
As shown in Fig.  8, the majority of KEGG submodules 
related to SCFA production were present in our samples 
(excluding M00377 + 02). We also identified MAGs to 
have complete sets of modules for the acetyl-CoA path-
way (48 out of 84 MAGs) and butyrate pathways (bin.145: 

Bacillales;f__;g__;s__). However, none of our MAGs pos-
sessed complete sets of submodules for Wood-Ljungdahl 
and propionate pathways. Bin.92 (UBA7160;s__) and 
bin.215 (Blautia_A sp002159835) have the highest num-
ber of submodules (n = 5) for acetate production, while 
the MAGs bin.91 (Bacteroides fragilis) and bin.234 (B. 
viscericola) have all of the propionate-related submodules 
except for M00173 + 03 — a submodule for pyruvate carbox-
ylase (pyc) (Fig. 8a). Across our treatment groups, 11 out of 
the included 19 SCFA submodules were significantly varied, 
wherein propionate submodules were observed as mostly 
affected. From this, post hoc pairwise comparison revealed a 
single elevation of M00377 + 03 in C1–T5 (Fig. 8b). Further-
more, distinct separation of T5 in C1 and distancing of 
T1 and T6 from other groups in C2 were observed.

MAGs associated with better performance have a higher 
capacity for nutrient digestion and metabolism
Based on the above analysis, we explored the gene abun-
dance of several metagenomic features (which were 

Fig. 7  KEGG metabolic module abundances across treatment and cycles. Mean normalised abundance of a KEGG module categories 
and respective p-values based on Kruskal-Wallis testing and b selected KEGG modules across treatment groups and cycles (C1 and C2). The red 
and blue colour of heatmap cells indicates high and low abundance, respectively. KEGG category and module IDs in bold and underlined indicate 
significant differences in abundance compared to T1 based on post hoc pairwise Dunn testing with Bonferroni correction and DESeq2, respectively. 
Normalisation method: total sum scaling and centralised log ratio (TSS + CLR). Significance: p < 0.0001 (****), p < 0.001 (***), p < 0.01 (**), p < 0.05 (*). 
Significance in white and red indicates a decrease and increase of MAGs in GHI treatments (T2, T3, T4, T5, T6) compared to T1, respectively
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selected based on statistical significance among treat-
ment groups) of 52 MAGs that were revealed to be 
associated with both EPEF and composition in GHI 
groups (Fig. 9). Clustering analysis showed that MAGs 
with a positive association with EPEF (EPEF +) have 
an overall higher number of genes encoding for the 
various significant metabolic features. Specifically, 
the EPEF + group demonstrated higher genes in the 
PTS module, butyrate and propionate SCFA module, 
while similar abundance in CAZymes and proteases 
between the two EPEF groups can be seen. However, it 
is interesting to point out that R. microfusus, the MAG 
with the highest GLLVM coefficient for EPEF, do not 
possess any genes for PTS and butyrate production 
modules.

Discussion
The microbial community structure of the gut has been 
proven crucial in both host health and performance [1, 8]. 
As such, supplementation of feed additives to diets and 
administration of other health interventions have become 
common approaches to modulate intestinal microbial 
communities and ensure the ideal growth and health of 
broilers [71]. Previously, we reported alterations in the 
chicken gut microbiome in response to various produc-
tion systems using 16S rRNA sequencing. Our findings 
revealed that the inclusion of omega-3 in feed can result 
in an increase in bacterial genera associated with short-
chain fatty acid (SCFA) production and affect levels of 
pathogenic bacteria, including Campylobacter levels, 
through competitive exclusion [9]. Due to the increasing 

Fig. 8  Metagenomic abundance of elements of short-chain fatty acids (SCFA) pathways. a Selected MAGs containing the most complete SCFA 
submodules. Blue and white colour indicates the presence and absence of element, respectively. b Heatmap of normalised abundances of SCFA 
enzyme corresponding module IDs across treatment groups and cycles (C1 and C2), with significance based on Kruskal-Wallis test (p < 0.05 
in blue). TSS + CLR, total sum scaling and centralised log ratio. The red and blue colour of heatmap cells indicates high and low abundance, 
respectively. c SCFA pathways showing KEGG orthology (KO) codes and enzyme names (in red). Submodule and significance in red: significant 
increase based on pairwise Dunn test with Bonferroni correction (p < 0.05). Submodules in blue: not detected in the metagenome dataset 
in this study. Enzyme names in black: no matching submodule ID in the KEGG database [46]. Enzymes are listed as follows: fdhA, formate 
dehydrogenase alpha subunit; fdhB, formate dehydrogenase beta subunit; fhs, formate tetrahydrofolate ligase; foID, methylenetetrahydrofolate 
dehydrogenase; MTHFR, methylenetetrahydrofolate reductase; acsE, 5-methyltetrahydrofolate corrinoid/iron sulphur protein methyltransferase; 
acsB, acetyl-CoA synthase; pta, phosphate acetyltransferase; ackA, acetate kinase;por, pyruvate ferredoxin oxidoreductase; atoB, acetyl-CoA 
C-acetyltransferase; hbd, 3-hydroxybutyryl-CoA dehydrogenase; croR, 3-hydroxybutyryl-CoA dehydratase; bcd, butyryl-CoA dehydrogenase; 
ptb, phosphate butyryltransferase; pyc, pyruvate carboxylase; buk, butyrate kinase; mdh, malate dehydrogenase; fum, fumarate hydratase; sdhA, 
succinate dehydrogenase; sucD, succinyl-CoA synthetase alpha subunit; sucD, succinyl-CoA synthetase beta subunit; aarC, succinyl-CoA:acetate 
CoA-transferase; MUTAB, methylmalonyl-CoA mutase alpha and beta; mcmA1, methylmalonyl-CoA mutase, N-terminal domain; mcmA2, 
methylmalonyl-CoA mutase, C-terminal domain; mmdA, methylmalonyl-CoA decarboxylase subunit alpha; MCEE epi, methylmalonyl-CoA/
ethylmalonyl-CoA epimerase; pccA, propionyl-CoA carboxylase alpha chain; pccB, propionyl-CoA carboxylase beta chain; pct, propionate 
CoA-transferase
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demand for poultry meat worldwide [72], there is a need 
to optimise gut health for improved feed efficiency and 
overall health of broilers. Therefore, we designed modi-
fied gut health schemes across three broiler production 
cycles and assessed their influence on the caecal microbi-
ome using metagenomic shotgun sequencing. Herein, we 
employed the assembly of 84 high-quality MAGs recov-
ered from 118 caecal samples and analysis of the meta-
bolic function capacity of the MAGs and association with 
performance parameters and health.

The administration of ionophores and GHIs in this 
study, as reported in previous research, can significantly 
impact performance through gut modulation in broil-
ers, though the specific effects may vary across studies 
[73, 74]. For instance, Zhang et al. [75] reported a signifi-
cant increase in EPEF, ADG, and BW and a decrease in 
FCR in birds administered with Bacillus subtilis probiot-
ics compared to the negative control group. In contrast, 
other studies involving the use of other Bacillus-based 
probiotics in broilers generally reported insignificant 
improvement in the same performance metrics [76, 77]. 
Within our study, we also observed variations across the 
three cycles, where C2 groups demonstrated the best 

performance. Since probiotic B was revealed to have the 
highest positive impact on EPEF, we posit that the effi-
cacy of probiotic B may be a contributing factor to the 
comparatively superior performance observed in cycle 
2 compared to the other cycles provided with probiotic 
A. These findings further underscore the importance of 
strain-specific effects and dosage considerations when 
implementing probiotic interventions in poultry sys-
tems, as reported before [78, 79]. However, cycle varia-
tions within the same production system have also been 
reported previously and are hypothesised to occur due 
to variations in climate, management, and fluctuations in 
the microbiota of day-old chicks as affected by hatchery-
to-farm transfer [80]. Furthermore, some differences in 
MAG composition between C1 and C2 brought upon 
by differences in the GHIs used may contribute to the 
disparities in performance. For instance, R. microfusus 
(bin.137), positively associated with EPEF but absent in 
C1, has been identified for its potential probiotic effects, 
attributed to its role in producing short-chain carbox-
ylic acids, which contribute to maintaining cell structure 
integrity [81]. Conversely, Alistipes spp. (bin.291, bin.294) 
and Phocaeicola vulgatus (bin.96), all observed to be 

Fig. 9  Overview of significant metagenomic features of 52 MAGs associated with EPEF and GHIs. EPEF, European poultry efficiency factor; GH, 
glycoside hydrolase; GHI, gut health interventions; GLLVM, generalised latent linear variable model; MAG, metagenome-assembled genomes; SCFA, 
short-chain fatty acids; PL, polysaccharide lyase
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negatively associated with EPEF and present in only C1, 
have also been implicated in human health issues such 
as cancer, cardiovascular disorders, and inflammatory-
related diseases [82, 83]. Another noteworthy MAG is 
B. viscericola (bin.234), previously reported as an effi-
cient coloniser of chicken caeca [84] but here observed as 
negatively correlated with EPEF but positively correlated 
with MT and absent in C2.

Comparison of groups has also revealed substantial dif-
ferences in microbial diversity and composition between 
GHI groups and the control (T1). Specifically, our analysis 
revealed that T1 and T3 had better overall performance 
but exhibited lower alpha diversity than other groups (in 
C2). According to Coyte et  al. [85], high alpha diversity 
in the gut microbiome tends to destabilise microbiome 
communities, potentially leading to decreased ecological 
stability, which is the ability to return to a natural state 
after a perturbation. Unstable gut microbial communities 
are then less likely to maintain beneficial symbiotic rela-
tionships and may be more susceptible to disturbances or 
shifts that could impact the host’s health and productiv-
ity. With this, the moderate microbial diversity shown in 
T1 and T3 may indicate a more balanced and stable gut, 
thereby becoming supportive of optimal performance. 
Furthermore, these discrepancies can be explained by 
MAGs in association with performance that were differ-
entiated among groups. MAGs belonging to Lactobacil-
laceae (bin.258 L. gallinarum, bin.99 Limosilactobacillus, 
bin.125 L. crispatus, bin.120 L. johnsonii), Butyricicoc-
caceae (bin.58, bin.110 Butyricicoccus spp.), Rumino-
coccaceae (bin.292 Gemmiger), and Lachnospiraceae 
(bin.81 Enterocloster sp900547035, bin.24 Fusicateni-
bacter), which are families known for their beneficial 
roles in gut health such as SCFA production, gut integ-
rity promotion, and protection against pathogens such 
as Salmonella spp. [86–91], were identified as beneficial 
for performance but were decreased in different GHI 
groups in comparison to T1. Meanwhile, MAGs includ-
ing bin.254 CAG-631 sp900762575, bin.200 UMGS1994, 
bin.83 Romboutsia, and bin.74 CAG-110 were enriched 
in GHI groups but are negatively associated with EPEF. 
Similarly, an increase in Romboutsia has also been noted 
in broilers given B. subtilis and a coccidiosis vaccine [92] 
and has been reported to also negatively impact the per-
formance of breeder broilers [93].

The standard diet of broilers usually consists of approx-
imately 70% carbohydrates, encompassing starch, oligo-
saccharides, and non-starch polysaccharides (NSP) like 
cellulose, hemicellulose, and pectin [94]. These NSPs 
remain undigested by the host, serving as substrates for 
the gut microbiome. Consequently, gut microorgan-
isms possess a diverse range of genes encoding enzymes 
known as CAZymes, which facilitate the breakdown and 

metabolism of these polysaccharides [95]. CAZymes are 
categorised into families, including polysaccharide lyases 
(PL) and glycoside hydrolases (GH), based on sequence 
similarities, although members within the same family 
may exhibit different substrate specificities [95]. In our 
study, we observed a preference of gut microbiota in T4 
for “other glucans” and “other glycans” and depletion 
of pectin bacterial specialists in T4 and T5 of C1. Since 
the availability of readily accessible growth substrates 
diminishes as they pass through the gastrointestinal 
tract [96], we hypothesise that due to the limited avail-
ability of protein (amino acids) in T4, more preferred 
substrates such as starch and pectin have been digested 
in the upper intestines, leaving caecal microbiota to use 
other glycans as substrate. Meanwhile, depletion in T5 
may be explained by the reduction of Bacteroidia bacteria 
(in T5), similarly reported by Ding et al. [97], which are 
microorganisms shown here to digest pectin.

Digestion of protein available in the diet is also of great 
importance for the optimisation of gut health [98]. How-
ever, there is limited information on its association with 
gut microbial functions in poultry. Previous research 
has shown that approximately 20% of crude protein 
(CP) taken in by broilers goes undigested due to insuf-
ficient concentrations of endogenous proteinases in the 
host [96, 99]. Consequently, undigested proteins (or ileal 
bypass protein), which are fermented by gut microbiota 
in the hindgut (caeca), can encourage increased growth 
of Clostridium perfringens and production of detrimen-
tal metabolites, including ammonia, indoles, and phenols 
[96]. Hence, we included the reduction of CP as one of 
our gut health approaches in our study (as represented 
by T4). Nonetheless, this group was shown to have sig-
nificantly lower overall performance. Since restriction of 
CP might have resulted in a decrease of threonine [100, 
101], the observed deficiency of threonine proteases in 
T4 may have affected threonine intestinal absorption by 
the host. A large proportion of host dietary threonine, 
known as the second (or third) limiting amino acid in 
broilers, is predominantly used by the host to produce 
mucin, an important glycoprotein that preserves the 
integrity of intestinal mucosa and function (Qaisrani 
et al., 2018). With this, it is hypothesised that there could 
be impaired intestinal permeability in T4 broilers, which 
may have then contributed to overall poorer nutrient 
absorption, thereby affecting growth and performance. 
In addition, T4 in C1 has also been revealed to have dif-
ferentially abundant genes for metalloproteases, a family 
of peptidases previously linked to overactivity in patients 
with irritable bowel syndrome [102, 103] Meanwhile, 
the elevated levels of HB metrics in T4 of C2 were unex-
pected given that reduction of CP in diets has commonly 
been associated with lower incidence of footpad lesions 
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and better litter quality [104, 105]. However, significances 
in abundance among C2 groups were determined for 
cysteine proteases, which are proteases renowned for 
their involvement in virulence and their ability to induce 
inflammatory responses, including atopic dermatitis in 
humans [106, 107]. It is interesting to note that C2 groups 
have both higher cysteine peptidases and HB levels than 
C1 groups (especially C01A), also indicating a possible 
link between cysteine levels and HB occurrence.

The gut microorganisms participate in the metabo-
lism and uptake of numerous nutrients and play crucial 
roles in preserving the integrity of the intestinal barrier, 
regulating the immune system, and protecting against 
pathogen colonisation [2]. In this study, we primar-
ily identified the differentiation of metabolic functions 
involved in energy production, nucleotide metabo-
lism, and drug transport-related pathways among treat-
ment groups. This is in line with previous research that 
has shown the following: (1) Probiotic supplementation 
in broilers can affect vitamin biosynthesis and other 
energy-related metabolic activities [26]; (2) caecal micro-
bial changes due to probiotics can affect emissions such 
as nitrogen or ammonia [108]; (3) antimicrobials can 
disrupt the nucleotide pool of bacterial cells, resulting 
in increased nucleotide biosynthesis and elevated cen-
tral carbon metabolism [109]; and (4) by influencing 
the expression of microbial enzymes involved in path-
ways linked to nucleotide, amino acid, carbohydrate, 
and energy metabolism, antimicrobials could potentially 
steer metabolic flow, regulating bacterial proliferation or 
generating metabolites that affect the host [110]. Specifi-
cally, we observed a reduction of the phosphotransferase 
system, cofactor and vitamin metabolism, and serine and 
threonine modules in several GHI groups (T5 and T6) 
compared to T1, which are pathways involved in nutri-
ent absorption and defence against infection in the host 
[111–113]. An increase in a module on methane metabo-
lism was also detected in T3 of C1, which was also simi-
larly reported in other studies involving probiotic use 
in chickens [114, 115]. This was only attributed to one 
KEGG module (M00345), which was detected in bin.92 
UBA7160 (Lachnospiraceae). We also observed a relative 
decrease in drug transport-related modules in several 
GHI groups, namely bacitracin, lantibiotic, and PatAB 
transport systems. Further research is needed to confirm 
whether this can be explained by the similarity in phar-
macological mechanisms of ionophores to bacitracin and 
lantibiotics, both of which are antimicrobials that also 
prevent cell wall synthesis and mainly act on gram-pos-
itive bacteria [116, 117].

SCFA, metabolites synthesised by caecal gut micro-
organisms from the breakdown of dietary fibre, play 
vital roles in improving metabolism facilitating nutrient 

digestion and absorption, thereby promoting optimal 
health, growth, and well-being in poultry [2]. From our 
analysis, we generally observed gene differentiation 
of SCFA modules among our treatments, wherein T5 
was observed to have relatively higher gene abundance 
among other groups, especially in acetate production. 
We speculate this can be due to the effect of essential oils 
given in T5, which coincides with the increase of acetic 
and butyric acids in the caecum of broilers given dietary 
oregano aqueous extracts [118]. This finding, however, 
does not confirm if the abundance of SCFAs produced by 
gut microbes is optimal for gut health and performance 
in broilers since exorbitant amounts of SCFAs may acti-
vate the gut microbiota-brain-cell axis response, result-
ing in either enteritis or other metabolic syndromes 
[119]. Furthermore, greater amounts of propionate and 
butyrate acids were previously detected in birds with 
low feed efficiency than those with high feed efficiency 
[120]. Nonetheless, a higher number of EPEF + MAGs 
were shown to possess at least one KEGG module associ-
ated with SCFA production, compared to EPEF-MAGs, 
potentially indicating a contribution of SCFA production 
capacity of caecal gut microbiota to broiler performance.

Our study boasts several strengths, including the com-
mercial farm set-up representing real-life poultry indus-
trial farming, the utilisation of shotgun metagenomic 
sequencing data, and thorough assessments of perfor-
mance characteristics. These aspects empowered us to 
delve into the intricate composition and functions of gut 
microbiota concerning GHI administration with meticu-
lous resolution and effective control of potential con-
founding factors. As our sampling was limited to a single 
genetic line of chickens and confined to a caecal micro-
bial study at one time point, we missed the opportunity 
to observe the effects of GHI on early development and 
its potential links to temporal and spatial shifts of the 
chicken gut microbiome. For instance, a previous study 
by Gao et al. [121] demonstrated that maturation of gut 
microbiota is promoted by probiotic administration 
while delayed by antibiotic use, highlighting the impor-
tance of broiler age in the use of supplements. Additional 
study into other gut compartments, timepoints, and 
other metagenomic features is therefore warranted. This 
includes a deeper investigation of other gut microorgan-
isms, such as bacteriophages and fungi, and of other rele-
vant microbial elements, including CRISPR-Cas systems, 
resistance, stress genes, and virulence genes. In addition, 
the future application of a multi-omics approach involv-
ing proteomics, meta-transcriptomics, and metabolomics 
may confirm several of our hypotheses and uncover other 
areas we are not able to explore. Nevertheless, we believe 
our research represents a novel and comprehensive 
comparative investigation of the metagenomic changes 
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between the administration of ionophores and GHIs in 
broilers.

Conclusion
Metagenomics has provided valuable insights into the 
bacterial populations in the chicken caeca, revealing dif-
ferences in composition, diversity, and metabolic func-
tion influenced by various gut health strategies. This 
approach has also enabled us to explore the structure of 
the gut bacterial community in relation to key perfor-
mance-related metadata. We identified several MAGs, 
such as R. microfusus, UBA 7160 species, and Lactobacil-
lus species, as beneficial organisms due to their positive 
association with EPEF and higher capacity for metabolic 
functions. Such information will enhance our under-
standing of the highly complex relationship between gut 
microbes and optimal performance. It will also enable us 
to devise effective interventions and control strategies 
against enteric pathogens, which are important members 
of the poultry gut microbiome.

Among the gut health strategies investigated in this 
study, we observed that the use of probiotics B in a flock, 
as observed in C2, enables better bird performance. Spe-
cifically, supplementation of probiotics B in conjunction 
with vaccination is observed as the best GHI strategy, 
resulting in a similar performance to the control. How-
ever, we still observe the ionophore group to have the 
best performance, which is hypothesised to be due to 
their ability to moderate microbial diversity, resulting 
in more efficient capture of nutrients by the gut micro-
biota and, subsequently, by the host. Nonetheless, our 
results demonstrate supplementation of GHIs as an effec-
tive method for broiler gut modulation, with evidence 
of having various influences on both MAG composition 
and nutrient utilisation-related metabolic functions. Our 
data also suggests that excessive administration of GHIs 
may not be beneficial for performance, highlighting the 
importance of careful selection of GHI type and GHI 
combinations. These results significantly enhance our 
comprehension of microbiota-related metabolic path-
ways, offering new avenues to improve overall perfor-
mance and poultry health.
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