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ABSTRACT

The ICH E9 addendum on estimands in clinical trials provides a framework for precisely defining the treatment effect that is to be estimated, but
says little about estimation methods. Here, we report analyses of a clinical trial in type 2 diabetes, targeting the effects of randomized treatment,
handling rescue treatment and discontinuation of randomized treatment using the so-called hypothetical strategy. We show how this can be esti-
mated using mixed models for repeated measures, multiple imputation, inverse probability of treatment weighting, G-formula, and G-estimation.
We describe their assumptions and practical details of their implementation using packages in R. We report the results of these analyses, broadly
finding similar estimates and standard errors across the estimators. We discuss various considerations relevant when choosing an estimation ap-
proach, including computational time, how to handle missing data, whether to include post intercurrent event data in the analysis, whether and

how to adjust for additional time-varying confounders, and whether and how to model different types of intercurrent event data separately.
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1 INTRODUCTION

Following the ICH E9 addendum, defining the treatment effect
of a clinical trial, also known as the “estimand”, includes iden-
tifying intercurrent events (ICEs) and strategies to deal with
them (ICH, 2019). Examples of ICE include treatment dis-
continuation, rescue medication use, death prior to measuring
the outcome, or any event that occurs after treatment initia-
tion that either affects the interpretation or the existence of the
outcome.

In diabetes trials, rescue medication for adequate glucose con-
trol should be available for ethical reasons because of the delete-
rious effect of elevated glucose levels. One option is to target the
treatment effect in a way that includes any effect that the addition
of rescue medication may have on the outcome. According to the
ICH E9 addendum, this would correspond to using a treatment
policy strategy to deal with this ICE. This strategy, however, leads
to an estimand that may mask (or, less commonly, exaggerate)
the effect of the study drug itself whenever there is differential
use of rescue medication between treatment arms (Holzhauer
et al,, 2015). In particular, if there is a higher rescue use in the
control compared to the active arm (and if the rescue is more
effective than the control arm medication alone), the treatment
policy estimand may understate the pharmacological benefits of
the active treatment. Estimating the treatment effect in the (hy-
pothetical) absence of rescue medication use can then be of in-

terest for certain stakeholders. In this case, the use of rescue med-
ication would be handled following a so-called hypothetical strat-
egy, targeting what would have been observed in the trial had res-
cue medication not been made available to patients (even if con-
trary to the fact). It is important to note, however, that this is just
one possible hypothetical estimand that one could contemplate
(Lipkovich et al., 2020).

In Section 2, a trial in type 2 diabetes patients is described as
a motivating example. The choice of statistical analysis in the
published analysis suggests that the primary estimand of interest
would have used a hypothetical strategy to deal with rescue med-
ication and treatment discontinuation. This estimand is the main
focus of this paper and our aim is to describe and illustrate how
different estimators can be applied in a real life scenario. Miss-
ing data methods are typically used to estimate such estimands,
because the hypothetical outcome values that would have en-
sued in the absence of the ICE are incomplete. These include
mixed-model repeated measures (MMRMs) and multiple impu-
tation (MI). Causal inference estimators, like G-formula, inverse
probability of treatment weighting (IPTW) and G-estimation,
have thus far been rarely used in clinical trials, presumably be-
cause they were mostly developed for observational rather than
randomized studies. In earlier work, we showed how causal in-
ference estimators can be used to estimate hypothetical esti-
mands, with the potential for improved statistical efficiency over
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FIGURE 1 Directed Acyclic Graph relating randomized treatment (A), baseline (Lo ) and time-varying covariates (L), occurrence of the ICE

at each visit (E;) and repeated measurements of the outcome (Y;).

estimates obtained using missing data methods (Olarte Parra
et al.,, 2022). Here, we demonstrate feasible ways to implement
the different estimators using existing statistical packages and
discuss how to tackle challenges encountered in real life settings
including missing data. We also describe and contrast the statis-
tical assumptions and properties of each estimator, and based on
this give recommendations for trial statisticians faced with the
decision of which to use.

2 MOTIVATING EXAMPLE

We analyzed data from a trial where type 2 diabetes pa-
tients on metformin monotherapy who had inadequate glycemic
control were randomized at baseline to additionally receive
dapagliflozin, dapagliflozin, and saxagliptin, or glimepiride
(Miiller-Wieland et al., 2018). Their HbAlc and fasting plasma
glucose were measured at baseline and then periodically to as-
sess their response. During the first 3 months, visits occurred
every 2 weeks and then every 12 weeks up to 52 weeks. The
main outcome of interest (Y) was change in HbAlc from base-
line to the final visit after 52 weeks of follow-up. Insulin was indi-
cated as rescue medication for patients with inadequate glycemic
control. Up to visit 9, rescue was considered if patients” fast-
ing plasma glucose (FPG) exceeded a visit specific threshold,
while at visits 10-12, rescue was considered if their HbAlc
exceeded a specified threshold. If patients exceeded the rele-
vant threshold they then had an extra visit and their FPG or
HbAlc value was measured again. Rescue was then initiated
if this value exceeded the threshold. Once rescue medication
was started, patients continued taking it for the remainder of
the study. There were no deaths observed during the study
period.

For simplicity, we will focus on the comparison of da-
pagliflozin and saxagliptin to glimepiride. We chose this com-
parison to illustrate the potential effect of an imbalance in
use of rescue medication, given that in the glimeperide arm
12.3% received rescue medication while in the dapagliflozin and
saxagliptin arm only 6.2% received it. Access to this trial data
were approved by the sponsor AstraZeneca and requested via the
platform Vivli (Vivli Data Request: 6764).

3 ESTIMAND AND IDENTIFIABILITY
ASSUMPTIONS

To precisely define our estimand of interest, we will introduce
some notation. Let A denote randomized treatment and E;. de-
note a binary indicator whether by visit k the patient had had an
ICE (of either type). Patients who started rescue or discontin-
ued treatment, remained on rescue or without study treatment
for the rest of the follow up. The overbar denotes the history
of a variable up to and including visit k (eg E;) or throughout
the entire follow-up (up to and including visit 9), for example
E. We let Yy denote HbA1c at baseline. Yka’e"’1 denotes the po-
tential outcome for change in HbAlc from baseline that would be
measured at visit k if we were to set treatment A = a and ICE
occurrence Er_; = &._;. We emphasize that such potential out-
comes are assumed to be well-defined for all patients, regardless
of their actual treatment assignment A and actual ICE occur-
rence up to visit k, E;, (Rubin, 1974). In particular, implicit in the
notation ;""" is that a given patient’s potential outcome does
not depend on the treatment (and in our setting, ICE values)
assigned to any other patients (no-interference) and that there
do not exist multiple (sub)versions of treatment that might give
rise to different outcomes (no-versions-of-treatment) (Rubin,
1980).
Our estimand of interest is then

E (Yluo=1,z=6 _ Ylaozo,é=6) ' (1)

In words, this is the effect (as a mean difference) on the change
in HbAlc measured at the final (10th) visit (Y;9) of dapagliflozin
and saxagliptin (A = 1) compared to glimeperide (A = 0) as
add-on medications, if rescue medication had not been made
available and patients had continued taking their assigned treat-
ment during the full follow-up (E = 0). The estimand is an ex-
ample of a controlled direct effect—it is the direct effect of ran-
domized treatment on outcome not mediated via the treatment’s
effect on the ICE, and where the mediator (the ICE) is con-
trolled at a specific level (here zero) (Hernan and Robins, 2024).

Figure 1 summarizes the assumed causal structure between
randomized treatment A, repeated measurements of outcome Y
and the occurence of the ICE in a simplified setting with 3 visits
after baseline. Ly denotes variables measured at baseline and L
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TABLE 1 Summary of the different estimators and their implementation in R.

Prior MI to handle
Method R package Data format missing data Post-ICE values Standard error
MMRM mmrm Long No No Likelihood-based
MI mice Wide Yes No Rubin’s rules
IPTW ipw Long Yes No Bootstrap
G-formula gfoRmula Long No Yes Bootstrap
G-formula via MI mice Wide Yes Yes Raghunathan’s formula
G-estimation None Wide Yes Yes Bootstrap

variables measured at each follow-up visit k. The choice of which
variables to include in Ly and L; should be made in order to ren-
der the following identifiability assumptions plausible:

(1) Consistency: for those randomized to arm a who do not
experience an ICE, their observed outcome is equal to
their potential outcome Y;o = Yladz=0_

(2) Sequential exchangeability: together with A and E;_,
Li and Y} are suflicient to control for confounding

between each E; and Yjo. Formally, YI%E=0J_E;<|A =
a,Li, Y, Er_; = Oforallkand fora = 0, 1.

(3) Positivity: if a participant is ICE-free up to visit k — 1,
there is a positive probability of again not having the
ICE at visit k, conditional on any possible combina-
tion of covariate (and past outcome) history and treat-
ment arm: P(E;, = 0|A = a, L = ik, Y. = V> Eiy =
0) > 0 for all k, for a = 0, 1 and for any (ik,yk) such
that the conditional covariate (and past outcome) den-
sity given treatment arm and “no ICE” is bounded
away from zero at (I, ¥, )- Note that assumptions such
asP(E,=1A=a, L =1,Y,=5,E_,=0)>0
are not required because we are only interested in ICE-
free potential outcomes.

We note that the consistency, no-interference and no-versions-
of-treatment assumptions together make up what Rubin termed
the Stable Unit Treatment Value Assumption (Rubin, 1980;
VanderWeele and Hernan, 2013). The above identifiability con-
ditions allow the estimand to be expressed as a function of the
observed data. However, unless all variables are discrete, statis-
tical inference requires use of additional statistical modelling as-
sumptions (Hernan and Robins, 2024), which we describe fur-
ther in Section 4 for each estimator.

Ideally, when defining such an estimand for a future trial, one
would consult with experts in the corresponding therapeutic
area at protocol stage to ensure the collection of variables such
that the identifiability conditions (specifically exchangeability
and positivity) will be plausibly satisfied. In our case of retro-
spective analysis of an already conducted trial, we instead nec-
essarily chose the variables to go into L and Ly based on what
was collected and thus available from the original trial, our sub-
ject matter knowledge, and the trial’s protocol.

We chose the baseline covariates Ly to consist of age, sex,
body mass index (BMI), systolic blood pressure, duration of di-
abetes and C-peptide (indicator of the production of insulin),

which were presented in Table 1 in the original trial publication.
In the version of the dataset to which we had access, age was
grouped into S-year categories, except for the first category that
included patients from 18 to 30 years (n = 10). We used the
mid-point of each category to create a variable that was treated
as a continuous variable in these analyses. When doing the pri-
mary analysis of a trial, this would not be necessary as the actual
age would be available; this approximation is only to facilitate
the analysis here. BMI was available only as 3 categories (nor-
mal weight, overweight and obesity) and thus was included as
categorical.

The time-varying covariates Li were chosen to be FPG and
kidney function (estimated glomerular filtration rate, eGFR).
As we explained in Section 2, rescue medication was indicated
according to FPG and HbAlc. We chose to include only their
scheduled measurements and not the additional measurements
taken in those patients whose planned measure exceeded the
threshold at the scheduled visit. This was decided to avoid
possible violations of the positivity assumption, and because
omission of these measurements would only violate the ex-
changeability assumption if they exerted a large direct effect
(ie, not through the effect on subsequent rescue initiation) on
the outcome, which seems unlikely. We also accounted for kid-
ney function via inclusion of eGFR because impairment can
lead to the discontinuation of these medications. As with other
baseline characteristics, including repeated measurements of
FPG and eGFR makes the exchangeability assumption more
plausible.

4 METHODS

In this section, we describe the different estimators used to esti-
mate the hypothetical estimand defined in Section 3. For each,
we describe and contrast their statistical assumptions and how
our variable and modeling choices were made to increase the
chances these assumptions were satisfied. We start by replicating
the original analysis with MMRM and then provide alternatives
that include MI, IPTW, G-formula, and G-estimation. We dis-
cuss variations of these approaches that include other relevant
variables besides the ones included in the original analysis. The
different methods and implementations are numbered sequen-
tially as they are being described to link them with their corre-
sponding result in Section 5. The more detailed step by step im-
plementation of each method and the corresponding software
and code used to implement them can be found in the online
Supplementary Material.
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4.1 Methods using only values before the ICE
4.1.1 Mixed-model repeated measures

The original paper publishing the trial results was based on
MMRM, which treats the unobserved no-ICE outcomes in
those patients who experienced an ICE as missing data. In gen-
eral, in line with recommendations of the ICH E9 addendum
(ICH, 2019), we should use in the analysis information from all
randomized patients. However, in the original trial, results were
based on the “full analysis set”, defined as the set of patients who
received atleast one dose of the treatment, had a baseline value of
HbAlc, and at least one follow-up measurement. We restricted
our analyses to this subset so that any differences in results from
those in the original paper are not due to a different choice of
patients used in the analysis. This same set of participants was
used for all the analyses we conducted. Only measurements of
the outcome (change in HbA1c) before rescue treatment or dis-
continuation were included. This means that for individuals who
had either ICE, we are settingY to missing at visits after the ICE
occurred, even if it was actually observed. The MMRM model
(Method 1) specifies fixed effects of treatment, visit, and their in-
teraction, baseline HbA1C and its interaction with visit, and an
unstructured residual error covariance matrix. The model thus
assumed

Yka,é=0 = o + oy ra —+ O(YO,kYO + € (2)

fork=1,...,K, with (¢1,...,ex)T ~N(0, ¥) and where
% denotes an arbitrary (unstructured) positive definite covari-
ance matrix. MMRMs maximize the observed data likelihood,
and provide valid inferences when the full data (here the hypo-
thetical no-ICE outcomes) model is correctly specified and the
unobserved no-ICE potential outcome data satisty the missing
at random (MAR) assumption. This MAR assumption, which
in the case of monotone missingness is the same as the sequen-
tial exchangeability assumption (Olarte Parra etal., 2022), is vio-
lated by the presence of the variables L which affect HbA1C and
the ICE but which are not used in the MMRM model. However,
the extent to which it is violated may be mitigated by the high
correlation between FPG and HbAlc (Holzhauer et al., 2015).
In principle, one could fit an extended MMRM model which in-
cludes the FPG measurements at each visit as part of the out-
come vector. However, this approach is not suitable whenever
the time-varying confounders are such that the resulting mul-
tivariate normal assumption would not be plausible (eg, if one
were binary). The MI approach we describe next offers a more
flexible and convenient approach to incorporate variables like
FPG which affect the outcome of interest and also ICE occur-
rence.

4.1.2 Multiple imputation

Using the same data as in the MMRM analysis and assuming
MAR, the no-ICE potential outcomes were imputed using ML
We used the M1 by chained equations (or fully conditional speci-
fication) approach to impute the missing no-ICE values (Method
2). The base imputation model for Y= assumed

qu,e'zo = Box + Baxa—+ Br, Yo + ﬂ{k’kaakkO +e. (3)

where Yf’kézo = (Yla’ézo, L Yka_’élzo, Yka_’;:o, el Ylg’ézo) de-
notes the vector of changes in HbA1c (under no-ICE) from base-
line except for visit k and €, ~ N(0, 0?). This is equivalent to
imputation from the joint multivariate model assumed in the
MMRM model (Hughes et al., 2014). We do not expect these re-
sults to be numerically identical to MMRM for reasons discussed
by Wang and Robins (1998) (eg, taking only a finite number of
imputations); however, for a large sample size and a large num-
ber of imputations, the differences are expected to be very small.
An advantage of MI compared to MMRM is that it allows the in-
clusion of a different set of variables in the imputation and anal-
ysis models. By including additional variables in the imputation
model, the MAR assumption can be rendered more plausible.
Thus, we also implemented other versions of MI that included
the baseline (Method 3) and time-varying variables (Method 4)
listed in Section 3 in the imputation models. As such, FPG and
eGFR were imputed using normal imputation models analogous
to Equation (3), and they served as covariates in the imputation
models for HbA1C.

4.1.3 Inverse probability of treatment weighting

MMRM and MI rely on models for the outcomes (and time-
varying confounders in the case of MI). For MI, correctly spec-
ifying all of these models may be particularly demanding with
multiple time-varying confounders. An alternative approach
which avoids this requirement is to instead model the ICE mech-
anism, which here corresponds to the missingness (in no-ICE
outcomes) mechanism, and then use inverse probability of treat-
ment/missingness weighting (IPTW, Method S). For this set-
ting, the time-varying “treatment” corresponds to the the occur-
rence of the ICE. The weights were estimated based on a pooled
logistic regression model assuming

P(Ek = 0|A7 YO! i’ks L07 Lkv Ek*l = 0)
= expit(yo + vaA + Yo + W
+ ¥ Vi1 + Y6, Gr—1), (4)

where Gj_; was the average HbAlc up to and including visit
k — 1. For those patients who did not experience an ICE
through the final follow-up, their weight was calculated as V' =
nf:l P(Ek:()‘AvYOw?klaLwafquk—IZO)'

are used in IPT'W for estimating parameters of marginal struc-
tural models, but here, where there is no such model, their use
would make no difference (the numerator term would be iden-
tical among all patients who are ICE free through to the final
follow-up visit). We chose to include HbAlc at the same visit
Yy, the previous one (Y;_;) and the average of the earlier ones
on the basis that this should constitute a parsimonious repre-
sentation of how past HbAlc may have affected the occurrence
of ICE. Since the trial was double-blind, in principle, we could
have omitted the randomized treatment A from the model. We
nonetheless included it since it is predictive of outcome if there
is a treatment effect (Brookhart et al., 2006). Below, we explain
further variations where additional covariates were included in
the logistic model to increase the plausibility that sequential ex-
changeability was satisfied.

Sometimes stabilized weights
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The weights for IPTW were estimated using the i pwtm func-
tion of the 1pw R package (van der Wal and Geskus, 2011). An
important issue to highlight is that the ipw package does not al-
low missing values. To overcome this, we imputed the missing
values before applying IPTW. As with MI, we have the flexibil-
ity to include additional covariates in the model for the weights
(Equation [4]) in order to make the sequential exchangeabil-
ity assumption more plausible. Thus, we additionally conducted
IPTW also including baseline covariates (Method 6) and time-
varying variables without interactions (Method 7).

It is worth highlighting that in MMRM or MI, which do not
use post-ICE data, there is no need and indeed one cannot dis-
tinguish between the types of ICE which occur in the models.
This is because, by definition, there is no information in the ob-
served data about how the type of ICE experienced by a patient
might predict their unobserved no-ICE outcome. In contrast, for
IPTW, as the ways covariates predict the occurrence of the 2 dif-
ferent ICE types may differ, an approach that distinguishes be-
tween the different ICE may be preferable. We could consider
having separate logistic models for each ICE and then using the
product of the probabilities of having each ICE to construct the
weights. However, this would imply that the events are indepen-
dent. Alternatively, we can construct the ICE variable as a factor
variable to indicate whether no ICE occurred (E; = 0), only res-
cue (E; = 1), only discontinuation (E; = 2) or both occurred
(Ex = 3) and use this to estimate the weights by specifying a
multinomial logistic regression model in the argument family of
the ipwtm function with all baseline and time-varying variables
as covariates (Method 8). Since the multinomial model only in-
cludes contributions up until a patient has non-zero ICE status
and there were no patients who in the same visit were both res-
cued and discontinued, in fact only the probabilities of E; = 1
and E; = 2 versus E, = 0 were modeled.

For this and the following methods that required the boot-
strap, we chose to draw 100 bootstrap samples, unless other-
wise specified. Often one would use alarger number of bootstrap
samples to minimize the Monte-Carlo error in the bootstrap es-
timate of variance. We chose a relatively small value here be-
cause the bootstrap variance estimates are themselves averaged
across the 100 imputed datasets to calculate the average within-
imputation variance.

Estimating the effect on each imputed dataset and bootstrap-
ping within each imputed dataset to obtain a within-imputation
variance estimate is computationally faster than bootstrapping
the observed dataset with missing values and then imputing
in each bootstrap sample (Schomaker and Heumann, 2018).
Moreover, Rubin’s variance estimator using bootstrapping to
estimate the within-imputation variance has previously been
shown to work well when combining MI with inverse probability
weighting (Leyrat et al., 2019).

4.2 Methods exploiting post-ICE values

An advantage of not using outcome values after the ICE occurs
is that it avoids the need to model the effect of the ICE on the
outcome. Nonetheless, to an increasing extent, trials continue to
collect information on patients after experiencing ICEs. We now
describe methods that can exploit such information, potentially
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increasing statistical efficiency, but at the expense of having to
make additional modeling assumptions.

4.2.1 Parametric G-formula

The G-formula (Method 9) by default makes use of measure-
ments taken after the ICE occurs, in contrast to the approaches
described previously. G-formula fits models for the time-varying
confounders L, outcomes Y, and the final outcome Y;,. It then
simulates potential outcomes based on these and the treatment
sequence of interest, which for the hypothetical estimand corre-
sponds to setting the ICE to 0 throughout. Our first G-formula
implementation did not use the time-varying confounders L,
while for the outcomes Y, it assumed a pooled model of the
form

Yk - 80 + 8AA + CSE_]Ekfl + 5ka + 8Y0Y0
+6&y Y1 + 6 ,Ge1 + €&, (%)

where €, ~ N(0, 0?) and W; denotes the number of weeks
since the patient experienced the ICE, or 0 if no ICE had oc-
curred by visit k or it had just occurred at visit k. We chose this, as
opposed to the number of visits since the ICE first occurred, be-
cause the time interval between visits varied, as explained in Sec-
tion 2. Our model specification thus allowed for an effect of hav-
ing earlier had an ICE, and this effect was allowed to depend on
how long since the ICE occurred. The terms Y;_; and Gj_; were
included as a parsimonious summary of how past HbA1C was
assumed to affect current HbAlc. Relaxing this assumption and
allowing independent effects of all past HbAlc values is more
readily implemented using the G-formula via MI method we de-
scribe in Section 4.2.2.

To render the sequential exchangeability assumption being
made more plausible, we also ran G-formula (Method 10) in-
cluding additional covariates in the HbAlc model (step 2) and
including FPG and GFR as time-varying confounders. Besides
randomized treatment, the ICE indicator, the W ICE variable,
current HbAlc, lagged HbAlc, and lagged average HbAlc, the
models for FPG, GFR, and HbAIc included the same baseline
and time-varying covariates for the previous methods listed in
Section 3. We also included a lagged value and lagged average
value of FPG and GFR in all the models. The final model using
the simulated data (step 3) was not modified that is, it only in-
cluded randomized treatment and baseline HbAlc as covariates
with simulated change in HbAIc at the last visit as response vari-
able. These G-formula implementations assume that the effect
of an ICE on subsequent outcomes is the same irrespective of
which type of ICE had occurred, which is likely false in reality. To
accommodate this, we also included an additional implementa-
tion where the ICE was a categorical variable indicating that the
ICE had not occurred (E; = 0), only rescue (E; = 1), only dis-
continuation (E; = 2) or both had occurred (E; = 3) (Method
11).

In contrast to the 1 pw package, the gfoRmula package can
be used with datasets with missing values. A single model is fit-
ted for each time-varying confounder to the pooled long-form
data. Any rows (measurements of a patient at a given visit) in
which a missing value occurs in the response or covariates in
these models are ignored by default by R’s regression model
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fitting functions. The resulting “complete case” fits yield valid
estimates provided missingness is independent of the response
variable, given the covariates. In general, this assumption does
not coincide with an MAR assumption, and indeed it may often
be deemed more plausible than MAR (White and Carlin, 2010).

4.2.2 G-formula via MI

An alternative approach to handling missing data when using G-
formula is to use MI to first impute missing data, then use G-
formula on each imputed dataset, pooling results using Rubin’s
rules. While this is possible, it is highly computationally inten-
sive, partly because of the use of bootstrapping to obtain within-
imputation variance estimates. To avoid this high computational
burden, we also implemented G-formula by using synthetic data
MI methods (Method 12), as proposed by Bartlett et al. (2023).
This involves using Bayesian MI methods to both impute miss-
ing data and simulate the potential outcomes of interest. Because
we used existing MI software to do this, which imputes data in
the wide form, our implementation assumed when imputing no-
ICE potential outcomes

Y=o+ AarA+ )%H,kb:k—l + Ay,.kYo
+Ay (Yer + &, (6)

where €, ~ N (0, 0?). Thus, this G-formula implementation fit-
ted separate models for HbA1lc at each visit, relaxing the assump-
tions of common effects across visits made in Equation (S) with
the gfoRmula package, and also allowing independent effects of
all past HbAlc values.

Analogous to G-formula, to render the sequential exchange-
ability assumption more plausible, we implemented a version of
G-formula via MI (Method 13) that included the baseline and
time-varying covariates listed for the previous methods in both
imputation models and another with all these covariates but cat-
egorical indicators of the ICE type (Method 14).

4.2.3 G-estimation

G-estimation (Method 15) is an alternative approach that has re-
cently been used for estimating hypothetical estimands (Lasch
and Guizzaro, 2022; Lasch et al., 2022). In this approach, out-
comes are sequentially adjusted to remove the effects of the me-
diator, which under certain assumptions permits estimation of
controlled direct effects, of which as noted earlier, the hypothet-
ical estimand is an example (Loh et al.,, 2020). The approach
is based on assuming a so-called structural nested mean model
(SNMM), which specifies the effect of the mediator (here the
ICE) being set to 1 at a given visit on the final outcome, set-
ting the mediator to 0 at all subsequent visits (Vansteelandt and
Sjolander, 2016). To define the SNMM we use, let M. denote the
binary indicator that the ICE occurs at (rather than by) visit k,
and let Y);" denote the final outcome setting randomized treat-
ment to a and M to 7. Let ¢; denote a length 9 vector whose en-
tries are 0 except the kth, which is 1. Then, our SNMM assumes
thatfork=1,...,9

E [Yl%ﬁzck - Y{:)’W:O |A =a, Mk*l = 67 YOv ?k717 Ek] = ka'

(7)

The parameter ;. captures the effect of having the ICE at visit k
compared to never having the ICE, among those ICE free before
visit k. It moreover assumes that this effect does not vary with the
earlier values of the time-varying confounders and outcome. Un-
der the assumed SNMM and the identification assumptions de-
scribed in Section 3, it can be shown that E(Y,5"=") = E(Y;o —

Zj Yi.Mi|A = a), from which the hypothetical estimand can

be estimated (Loh et al., 2020). The term Yo — lzz? VM
corresponds to an individual’s outcome with the effects of the
ICE removed, if they experienced the ICE. To estimate the pa-
rameters 1y, a series of regression models are fitted to the suc-
cessively adjusted outcomes. Thus, whereas G-formula requires
models for the time-varying confounders L, G-estimation of
SNMM requires models for these mediator adjusted outcomes.
As such, G-estimation of SNMM is arguably less demanding
from a model specification perspective, particularly when, as is
typically the case, L consists of multiple variables.

We also implemented a version of G-estimation where we in-
cluded additional baseline and time-varying covariates (Method
16) and one with all the covariates and the categorical version of
the ICE (Method 17).

Table 1 shows a summary of the different estimators with the
corresponding R package used, the data format required, how
missing data were handled, whether it included post-ICE values
and how the corresponding SEs were estimated.

S RESULTS

Table 2 summarizes the characteristics of the patients random-
ized to each treatment arm of the trial. There are fewer patients
than in the original trial publication because some of them with-
drew consent (n = 33). There were very few missing baseline
values, with many variables having complete information and the
rest having less than 0.5% missing per variable. It is worth not-
ing that most of the missing values occurred in the dapagliflozin
arm, that was not included in our analysis. Compared to the da-
pagliflozin + saxagliptin arm, there were more treatment dis-
continuations (n = 14, 4.6% vs. n = 7, 2.3%) and use of res-
cue medication (n = 37, 12.3% vs. n = 19, 6.2%) than in the
glimeperide arm.

Table 3 summarizes the numbers of missing outcomes per visit
in each arm. At each visit, there were more missing values in the
glimeperide arm than in the dapaglifloxin and saxagliptin arm.
Treating post-ICE values as missing increases missing outcome
values from 0.1%-5 to 3%-20% per visit. In visit 9, which has the
higher number of missing values, the missingness increases from
5% to 15% when outcome values after the ICE are deleted.

In Section 2, we noted that rescue medication at visits 1-8
was indicated according to the values of two measurements of
FPG, only the first of which is used in our analyses. The omis-
sion of the second measurement is expected to avoid positiv-
ity violations, although near-violations are still a concern. The
figure in the Supplementary Material shows a plot of the (first)
FPG values per visit with the colour indicating whether rescue
was initiated either at that visit, or an earlier visit. The threshold
(which changed between visits 6 and 7) used for the FPG mea-
surement is indicated by the black line, and the distribution of
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TABLE 2 Patient characteristics.
Variable Glimepiride Dapagliflozin 10mgand
Dapagliflozin 10mg  1mg/2mg/4mg  Saxagliptin Smg Overall
(N=299) (N=302) (N=305) (N=906)

Age (years), mean (SD) 56.9 (9.59) 58.2(8.43) 58.8 (7.98) 58.0 (8.71)
Sex, n (%)

Women 108 (36.1%) 98 (32.5%) 119 (39.0%) 325 (35.9%)

Men 191 (63.9%) 204 (67.5%) 186 (61.0%) 581 (64.1%)
Baseline body mass index (kg/m ?)

19 <x<25 9 (3.0%) 9 (3.0%) 20 (6.6%) 38 (4.2%)

25 <x <30 76 (25.4%) 83 (27.5%) 87 (28.5%) 246 (27.2%)

30 <x < 80 212 (70.9%) 210 (69.5%) 198 (64.9%) 620 (68.4%)

Missing, n (%) 2(0.7%) 0 (0%) 0 (0%) 2(0.2%)
Baseline systolic blood pressure (mmHg), mean (SD) 138 (14.4) 139 (13.0) 139 (14.0) 139 (13.8)

Missing, n (%) 1(0.3%) 0(0%) 0(0%) 1(0.1%)
Baseline waist circumference (cm), mean (SD) 111 (14.0) 112 (13.2) 109 (12.4) 111 (13.2)

Missing, n (%) 2 (0.7%) 3(1.0%) 2 (0.7%) 7 (0.8%)
Baseline hip circumference (cm), mean (SD) 113 (12.5) 112 (11.9) 111(11.4) 112 (11.9)

Missing, n (%) 4(1.3%) 2 (0.7%) 3 (1.0%) 9 (1.0%)
Years since first diagnose, mean (SD) 6.88 (5.24) 6.73 (5.14) 7.39 (5.95) 7.00 (5.46)

Missing, (%) 1(0.3%) 0 (0%) 0 (0%) 1(0.1%)
Baseline HbAlc (%), mean (SD) 8.29 (0.718) 8.31(0.753) 825 (0.661) 828 (0.711)

Missing, (%) 1(0.3%) 3(1.0%) 0 (0%) 4(0.4%)
Baseline FPG (mmol/L), mean (SD) 10.6 (2.31) 104 (2.11) 10.4 (1.99) 10.5 (2.14)
Baseline eGFR (MDRD, mL/min/1.73m2), mean (SD) 86.8 (18.8) 85.8 (17.5) 88.1(19.7) 86.9 (18.7)
Baseline C-Peptide (nmol/L), mean (SD) 0.925 (0.356) 0.936 (0.345) 0.920 (0.375) 0.927 (0.359)
Discontinuation of randomized treatment, n (%)

No 281 (94.0%) 288 (95.4%) 298 (97.7%) 867 (95.7%)

Yes 18 (6.0%) 14 (4.6%) 7(2.3%) 39 (4.3%)
Use of rescue medication, n (%)

No 254 (84.9%) 265 (87.7%) 286 (93.8%) 805 (88.9%)

Yes 45 (15.1%) 37 (12.3%) 19 (6.2%) 101 (11.1%)
TABLE 3 Number of missing HbAlc values by visit and treatment group.

Visit
Treatment group 1 2 3 4 S 6 7 8 9 10
Dapagliflozin and Saxagliptin S 2 S 7 S 10 7 7 14 4
Glimeperide 9 8 8 12 10 14 11 15 16 14
Setting post-ICE values to missing

Dapagliflozin and Saxagliptin 9 9 9 17 14 14 19 27 33 29
Glimeperide 15 16 15 22 16 19 29 49 58 SS

the red points both above and below the line reassures us that
positivity is not violated, at least for the FPG variable, where the
concern is greatest.

The results for the different estimators are presented in Ta-
ble 4. The estimates for the potential no-ICE outcome under
dapagliflozin + saxagliptin are consistent across all the different
variations of the methods, except for G-formula 10 and 11 that
are somewhat larger in magnitude. The estimates of the mean
potential no-ICE outcome under glimeperide have a greater vari-
ability across methods, compared to the variability of the esti-
mates for dapagliflozin + saxagliptin, with MMRM, G-formula
via MI and G-estimation yielding estimates of lower magnitude
compared to MI and IPTW. Here, G-formula 10 and 11 also
gave larger estimates. The treatment effect estimates range from
—0.071 to —0.189 across the different methods. Compared to
the treatment effect estimate from the original published anal-

ysis, these are consistently slightly smaller in magnitude, which
could be explained by the fact that the dataset contained 33 fewer
patients, as noted earlier.

For most methods, including additional covariates did not
have much impact on the estimates, either of the mean poten-
tial outcomes or the treatment effect. This indicates that the im-
pact of additional confounding due to these covariates was small.
For the G-formula, however, there does seem to be an impact
of including these additional covariates, particularly for the esti-
mates of the two mean potential outcomes. As it was only with
this method, it is unlikely due to confounding, and more likely
either due to the modeling choices made for the pooled mod-
els used in G-formula, or the different assumptions made by G-
formula regarding missing data, as described above.

Comparing methods that only use values before the ICE,
IPTW had slightly larger SE as expected. Including values
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TABLE 4 Potential outcome mean and treatment effect estimates under no rescue or discontinuation of randomized treatment using the different

estimators.
No Method Dapagliflozin and Treatment Computational
Saxagliptin, Glimeperide, effect, time (mins)
estimate (SE) estimate (SE) estimate (SE)
Using only values before the ICE
MMRM
Original published analysis —1.20 (0.05) —0.99 (0.05) —0.21 (0.07)

1 Replicating original analysis —1.230 (0.0430) —1.093 (0.0449) —0.137 1

(0.0621)
Multiple imputation

2 HbAlc and treatment —1.234 (0.0425) —1.115 (0.0443) —0.119 1
(0.0615)

3 + all baseline covariates —1.234(0.0421) —1.115 (0.0445) —0.119 1
(0.0611)

4 + all time-varying covariates —1.234(0.0420) —1.120 (0.0439) —0.114 4
(0.0604)

IPTW=

S HbAlc and treatment —1.249 (0.0430) —1.144 (0.0462) —0.105 19
(0.0630)

6 + all baseline covariates —1.247 (0.0437) —1.143 (0.0468) —0.104 32
(0.0638)

7 + all time-varying covariates —1.215(0.0521) —1.133 (0.0488) —0.082 35
(0.0717)

8 Separate ICE mechanisms —1.207 (0.0611) —1.136 (0.0493) —0.071 368
(0.0783)

Exploiting post-ICE values
G-formula

9 HbAlc and treatment —1.272(0.0412) —1.125 (0.0453) —0.147 241
(0.0600)

10 + all covariates —1.433 (0.0433) —1.246 (0.0465) —0.187 1506
(0.0627)

11 Separate ICE mechanisms —1.420 (0.0446) —1.231 (0.0477) —0.189 1561
(0.0629)

G-formula via MI

12 HbAlc and treatment —1.205 (0.0457) —1.062 (0.0533) —0.143 2
(0.0637)

13 + all covariates —1.238 (0.0501) —1.083 (0.0449) —0.155 6
(0.0690)

G-estimations

15 HbAlc and treatment —1.212 (0.0440) —1.065 (0.0531) —0.147 15
(0.0639)

16 + all covariates —1.206 (0.0445) —1.053 (0.0532) —0.153 25
(0.0658)

*These methods required a combination of MI and bootstrapping to deal with missing data and derive corresponding standard errors.

As described further in the text, estimation failed for methods 14 and 17.

post-ICE has the potential to improve the efficiency of estimates,
at the cost of having to make and rely on more modeling assump-
tions (Olarte Parra et al., 2022), but in these analyses the SEs of
G-formula, G-formula via MI and G-estimation were compara-
ble to those of the estimators which only used data up until the
ICE occurred. The treatment effect estimates were larger from
the methods that used post-ICE data, but we caution that there
is no reason such a systematic difference would be expected in
general. Such differences could be due to the modeling assump-
tions in the methods that used post-ICE data not being correct,
but such differences could also occur randomly as a result of the
post-ICE data estimators being more efficient. Allowing for dis-
tinct mechanisms for the two different ICEs in IPTW increased

the SE, as one would expect. For G-formula, allowing for sepa-
rate ICE mechanisms had relatively little impact on inferences.
For G-formula via MI (method 14) and G-estimation (method
17), MI of the missing data accounting for separate ICE mech-
anisms failed due to sparsity issues, and so estimates for these
could not be obtained. Similarly, for G-estimation (methods 15
and 16), in some bootstrap samples estimates of the coefficient
of the ICE whose effect was to be removed could not be esti-
mated, and in such cases we set ¥, =0.

In terms of computational time, MMRM and MI were much
faster than the other methods. This is because they handle in-
termittent missing data in the same process as estimating poten-
tial outcomes and they do not require bootstrapping to obtain
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estimates of the SE. IPTW and G-estimation were much slower
because they required handling missing data with MI as a first
step and also bootstrapping. Somewhat unexpectedly, the slow-
est method was G-formula even though we did not combine it
with MI to handle missing data. As explained before, the pack-
age fits a pooled model across visits so there are less models and
parameters to be estimated compared to those methods fitting
separate models per visit, such as MI or G-estimation. The com-
putational time was greatly improved when using the alternative
G-formula via MI that avoids the need for bootstrapping.

6 DISCUSSION

‘We have described different treatment effect estimators and their
statistical assumptions, to account for rescue medication use and
treatment discontinuation through the hypothetical strategyina
diabetes trial. Overall, estimated effects and standard errors were
quite similar across all the estimators considered. Although the
proportions of patients with an ICE in the trial were non-trivial,
from a missing data perspective the proportions of unobserved
no-ICE outcomes were small in both arms. As such, one can rea-
sonably anticipate that the different estimators will yield simi-
lar inferences, and that it will only be in trials with substantially
higher occurrence of ICE where materially different inferences
might be obtained.

A key decision in choosing an estimator is whether to use one
that exploits post-ICE data or not. Estimators that use such data
are generally more or, at least, as efficient as those that do not,
but only by making additional statistical assumptions regarding
the effects of ICEs on subsequent outcomes (Olarte Parra et al.,
2022). Since we do not anticipate material differences in infer-
ences between the estimators unless the proportions with an
ICE are quite large, we believe that generally it will be prefer-
able to estimate hypothetical estimands using estimators which
do not use post-ICE data. This recommendation is further rein-
forced by the various issues we encountered when using estima-
tors which use post-ICE data relating to missing data and spar-
sity. Presently trial analyses targeting a hypothetical estimand
to a large extent either use repeated measures models such as
MMRM or M], fitted using pre-ICE data only, whereas IPTW
is in our experience rarely used in this context. When there are
time-varying confounders that have effects on ICE occurrence
and the outcome these should be adjusted for,and MI and IPTW
both offer a route to doing this. Specifying the model for the ICE
occurrence in IPTW is arguably an easier task than modelling
the distributions of all time-varying confounders, as required by
MI. However, IPTW cannot readily accommodate missingness
in time-varying confounders, which occurs often in practice. As
such, we view MI as the most desirable approach for the trial’s
primary analysis, given its ability to adjust for time-varying con-
founders and handle missing data prior to the ICE.

An important component of the ICH E9 Addendum is to em-
phasize that trial analyses should include assessments of sensi-
tivity of results to estimator assumptions (ICH, 2019). If MI is
adopted, a natural approach to assess robustness to its modelling
assumptions is to compare results with those from IPT'W, which
relies instead on a model for the ICE occurrence. The other key
assumption to assess is the MAR/sequential exchangeability as-
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sumption. MI provides a flexible approach to assess sensitivity—
imputations of unobserved no-ICE outcomes made under MAR
can be successively adjusted, or parameters in the imputation
models varied, in a tipping point type analysis (O’Kelly and
Ratitch, 2014).

The different estimators considered can be applied using stan-
dard software. The package for IPTW is very flexible but cannot
accommodate missing values. This limitation of handling miss-
ing (intermittent) values can be overcome with MI combined
with bootstrapping which is computationally intensive. As al-
ready explained the gfoRmula package allows to use datasets
with missing values (under complete case type assumptions)
but still requires bootstrapping. An attractive alternative is G-
formula via MI that avoids bootstrapping and is much faster.
We recently developed a package to facilitate its implementation
(Bartlett et al., 2023).

For methods whose implementation in R use the dataset in
wide format (MI, G-formula via MI and G-estimation), sepa-
rate models are fitted at each visit. These models are more flex-
ible than those using the long form (IPTW and G-formula) be-
cause they allow for different covariate effects and intercept per
visit. The long form dataset implementations use a more parsi-
monious model which has the advantage of improved precision
but at the expense of potential bias due to model misspecifica-
tion. Thus, more complex model specifications are required to
achieve the same flexibility as the wide format implementations.
For example, in the G-formula model for HbAlc, we included
randomized treatment and earlier values of HbAlc (the value at
the previous visit and the average until the visit) as covariates.
An alternative would be to additionally include time or visit as
a categorical variable and its interaction with treatment to more
flexibly model the evolution of the treatment effects.

In some trials, it will often be the case that the ICE is a (near-
)deterministic function of the covariate history, because the ICE
corresponds to clinical decisions based on observations on the
patient. In such cases, inclusion of such covariates is crucial to en-
sure the sequential exchangeability assumption is satisfied. This,
however, leads to a (near-)violation of the positivity assumption.
In this context, IPTW estimators may have large variance, which
is alogical consequence of the lack of overlap in the correspond-
ing covariate’s distribution between patients with or without an
ICE. In contrast, estimators that model covariates and outcomes,
such as G-formula, MMRM, and MI, may be more stable be-
cause they extrapolate beyond the data based on the model as-
sumptions. Thus, in situations where positivity is violated, these
estimators may be preferable to IPTW, provided the modeling
assumptions and the extrapolation based on these is deemed rea-
sonable given subject matter knowledge.

When a hypothetical estimand is chosen, we have described
how estimation relies on variables which affect outcomes and the
ICE being used in the analysis. As such, at the design stage trials
targeting hypothetical estimands should identify such variables
and ensure as best as possible that they will be measured when
the trial is run. Moreover, trial designs and protocols could be
modified in order to avoid or minimize violation of the positiv-
ity assumption. For example, in the case of rescue treatment in
diabetes trials, rescue could be initiated probabilistically, rather
than as a deterministic function of biomarkers.

Gz0z Aenuer gz uo 1senb Aq £1$586///918eln/L/18/8|01118/SoL1aWOoIq/Wod dno-olwapeoe//:sdny wolj papeojumoq



10 e  Biometrics, 2025, Vol. 81, No. 1

In this paper, we considered the hypothetical estimand that
was targeted by the analysis performed from the original trial
publication. This corresponds to the effect had all patients re-
mained on randomized treatment without rescue throughout
follow-up. To drug sponsors and regulatory agencies it may be
of interest to isolate the sole effects of the study drugs, sepa-
rate from any effects of rescue treatment and discontinuation.
For other stakeholders, it may be less interesting, since in prac-
tice rescue would not be withheld if it were clinically indicated,
and because we would similarly not prevent discontinuation in
certain situations, such as if the patient experienced an adverse
event linked to the study drugs. They may moreover be some-
what ill-defined unless one can describe how the corresponding
hypothetical trial, where all discontinuations are prevented and
rescue is withheld, would be run.

If instead both rescue and discontinuation are handled using
the treatment policy strategy, outcomes may reflect what would
be realized in the presence of these possible events. Such an in-
terpretation requires, however, that rescue use and discontinua-
tion is reflective of what would be seen in routine practice. More-
over, interpretation of such effects is arguably difficult if the ICE
occurrence differed between arms. In cases such as the diabetes
trial considered here, aless eflicacious drug maylead to more res-
cue use, which leads to improved short term outcomes, but does
not provide along term viable treatment solution for the patient.
A treatment policy analysis would then suggest such a drug is
preferable, but only because its use led to more rescue treatment
being administered (Keene et al., 2021).

An alternative approach is to recognize the ICEs in the end-
point definition, by using the composite strategy. While this
may be straightforward for binary outcomes, it is more difficult
for continuous outcomes, like here, since there is no natural or
obvious value to assign if a patient has an ICE. An alternative
approach that may be attractive is to use a win ratio or “pro-
portion in favour of treatment” type approach (Buyse, 2010).
This requires explicit consideration of what combinations of
outcomes and ICEs constitute better responses, which must be
made with clinical input. While the resulting effect measure is
no longer on the original outcome variable scale, such estimands
avoid conception of hypotheticals and can properly recognize
that certain ICEs (eg, rescue treatment use) constitute “bad”
outcomes.

All of these considerations regarding choosing the strategy to
deal with a particular ICE resemble the considerations of the tar-
get trial emulation framework (Hernan and Robins, 2016). With
this framework, observational studies are analyzed to estimate
the treatment effect in an ideal trial. For trials, it may be uneth-
ical to randomly assign insulin as rescue for patients with high
glucose levels, but it is possible to imagine a hypothetical trial
where this could be the case. With such a target trial in mind, the
target estimand can be described.

‘We hope that these considerations of the suitability of a hypo-
thetical strategy to handle a particular ICE in a given context, the
step-by-step description of different available estimators and fur-
ther considerations of the implications of their different under-
lying assumptions are useful for planning, conducting and ana-
lyzing trials using the estimand framework.
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