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A B S T R A C T

Mitigation of climate change remains a central focus of the European Union (EU). Under its 2030 Climate Target 
Plan, the European Commission proposes to raise the EU’s ambition in this area, targeting a reduction in 
greenhouse gas emissions (GHG) of at least 55 % below 1990 levels by 2030. In Ireland, the proportion of GHG 
emissions from the agricultural sector is high compared to other developed countries, contributing 38.1 % of 
total economy-wide GHG emissions. The extent to which mitigation measures reduce GHG emissions at the farm 
level has received limited attention, especially the implications of farm-level heterogeneity on the optimal policy 
design for emission reduction. Using EU Farm Accountancy Data Network data for the Republic of Ireland in 
2020, this study uses Marginal Abatement Cost Curve (MACC) analysis to assess a suite of GHG mitigation 
measures and accounts for interaction and heterogeneous effects across five different farm system types. The 
result of the study shows that reducing crude protein in animal diets is the most cost-effective measure for all 
farm systems. Liming and substitution to protected urea fertilisers are also cost-effective measures for all farm 
systems. However, some measures fluctuate between cost-intensive and cost-saving depending on the farm 
system type. The findings show that no two farm-level MACC curves are the same, thus farm heterogeneity needs 
to be accounted for efficient policy design.

1. Introduction

Globally, climatic change continues at pace because of GHG emis-
sions into the atmosphere. These changes manifest in the form of 
increased temperature, alterations in rainfall durations and intensities, 
and increased heat and sunshine duration, as well as other climate 
parameter alterations. The changes in these climate parameters may 
lead to reduced crop and livestock production while also affecting both 
animal and human health (Darwin, 2004; El-Sayed and Kamel, 2020). In 
the Republic of Ireland (henceforth called Ireland), these alterations in 
climate are expected to reduce forage and grass production and changes 
in grazing patterns with associated impacts on livestock production 
(Holden and Brereton, 2002; Ljungqvist et al., 2021). Climate change 
impacts in Ireland have also led to more weather shocks in the form of 
droughts, floods and extreme snowfall events (DCCAE., 2019).

The agricultural sector is a significant contributor to GHG emissions 
globally. Moreover, the proportion of agriculture’s contribution to 
global GHG emissions has continued to increase from about 12 % of 

global emissions in 2012 (Hosonuma et al., 2012; Tubiello et al., 2015) 
to 17 % in 2018 (FAO., 2020) and 20 % in 2019 and 2020 (Ahmed et al., 
2020; FAO., 2021, 2022). In the European Union (EU), agriculture ac-
counts for approximately 10 % of the total GHG emissions (EEA, 2019). 
However, in 2022, the agricultural sector accounted for over 38 % of 
national GHG emissions in Ireland, and this sector was the single largest 
contributor to GHG emissions economy-wide (EPA, 2022; 2023).

Under the Paris Agreement, the agricultural sector is required to 
reduce its GHG emissions in line with national level targets for Ireland. 
The agreement posits that the EU has a 55 % reduction target for GHG 
emissions in 2030 relative to a 1990 baseline (DCCAE, 2023). Individual 
EU Member State targets have also been established as part of the Plan. 
For Ireland, this implies a 51 % reduction level in GHG emissions 
compared to 2018 to be achieved by 2030 (EPA, 2022; DCCAE, 2023). 
The Climate Action and Low Carbon Development Act set down a 25 % 
emissions sectoral reduction target for agriculture, which implies a 
reduction in emissions from 22 mega tonnes of carbon dioxide equiva-
lence (Mt CO2e) in 2018 to 17.25 Mt CO2e by 2030 (DCCAE, 2021, 
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2023).
Reducing GHG emissions would also contribute to achieving sus-

tainable food production, which is the central aim of many national and 
global communities. This is also a central aim of the EU Farm to Fork 
Strategy, which seeks to ensure sustainable food production and con-
sumption, food security, avoid food losses and wastage and to ensure the 
efficient movement of food along the value chain system (EU., 2020). 
Thus, to ensure sustainable food production across the different farm 
systems, there is a need to critically assess the optimal abatement of 
these GHG emissions across different farm types while trying to mini-
mise any adverse impacts on food production.

The literature on the cost-effectiveness of GHG mitigation options in 
agriculture focuses on both methodological approaches and the evalu-
ation of specific measures. One study by Moran et al. (2011) addressed 
the challenges of constructing a "bottom-up" marginal abatement cost 
curve (MACC) for GHG emissions from UK agriculture. Their findings 
suggested that a substantial amount of GHG emissions (5.38 Mt CO2e) 
could be mitigated by implementing cost-beneficial, cost-neutral, and 
cost-effective measures.

Building on this, Eory et al. (2018a) emphasised the importance of 
addressing interactions between mitigation measures, which could 
affect their cost-effectiveness. In a related study, Eory et al. (2018b) 
examined the significance of incorporating uncertainties when con-
structing bottom-up GHG MACCs for individual and combined mea-
sures. Their results highlighted that while many measures are 
cost-effective under certain scenarios, others may become too costly 
under different circumstances. This attention to interaction effects and 
uncertainty in MACCs has influenced the design of subsequent studies, 
including the present study, which adopts a similar bottom-up approach 
while considering the interactions between mitigation measures.

Pexas et al. (2020) applied a bottom-up approach to assess the 
marginal abatement costs of mitigation measures in European pig pro-
duction systems. Their findings identified slurry removal as a key miti-
gation measure and showed that the cost-effectiveness of abatement 
measures varied significantly depending on whether measures were 
assessed individually or in combination. Their analysis also reinforced 
the importance of considering interaction effects between measures 
under different scenarios, further contributing to understanding 
cost-benefit variability in agricultural GHG mitigation.

In the context of Irish agriculture, Schulte and Donnellan (2012); 
O’Brien et al. (2014); Lanigan et al. (2018), and Lanigan et al. (2023)
produced MACCs that evaluated GHG emissions and mitigation mea-
sures at a national level using a top-down approach. For example, 
Schulte and Donnellan (2012) employed both the Life Cycle Assessment 
(LCA) and the Intergovernmental Panel on Climate Change for National 
Inventories (IPCC–NI) methodologies to assess the abatement potential 
of Irish agriculture. Their results demonstrated a 0.7 Mt CO2e difference 
in abatement potential between the two methods, with significant 
variation in the rankings of mitigation measures depending on the 
methodology used.

O’Brien et al. (2014) further explored these differences, highlighting 
the challenges of recommending mitigation measures to farmers when 
the LCA and IPCC–NI methodologies offer contradictory cost- 
effectiveness assessments. Lanigan et al. (2018) extended this work by 
using the FAPRI-IRELAND model to project future agricultural activity 
and assess 27 abatement measures across various sectors, including 
agriculture, land-use, and energy. This progression of research demon-
strates the increasing complexity and importance of understanding in-
teractions, uncertainties, and methodological differences in evaluating 
GHG mitigation options in agriculture. This body of literature empha-
sises the value of bottom-up approaches to GHG MACC construction 
while accounting for interactions between mitigation measures and 
uncertainties.

While several studies exist on the abatement of GHG emissions in 
Ireland and the global community at an aggregate scale, very few studies 
(Jones et al., 2015) have considered assessing the importance of farm 

heterogeneity and interactions amongst abatement measures. This study 
hypothesises that a “one type fits all” approach to assessing MACC is not 
optimal for policy design.

Thus, this study contributes to the research gap by assessing the 
abatement potential and cost-effectiveness of a suite of GHG mitigation 
measures using the Marginal Abatement Cost Curve (MACC) based 
methodology at a farm scale across a sample of 812 farms. The effect of 
mitigation measures across the sample will be assessed for heterogeneity 
of impact. Finally, the effect of interactions between the mitigation 
measures will also be assessed.

The structure of this article is as follows: Section 2 outlines the 
methodology used in the analysis. Section 3 presents the results, fol-
lowed by a discussion of the findings in Section 4. Finally some con-
clusions and policy recommendations are provided in Section 5.

2. Methodology

The Intergovernmental Panel on Climate Change (IPCC) methodol-
ogy is the standard approach used to estimate GHG emissions at a na-
tional scale. The approach calculates the GHG emissions as those 
emanating from the production, consumption and exportation of goods 
from the geographical location of a country but does not account for 
those emissions that occur during the production of imported inputs 
(O’Brien et al., 2014).1 Based on the nature and availability of data, this 
study adopts the IPCC approach in calculating the total GHG emissions 
from each Irish farm in the EU Farm Accountancy Data Network (FADN) 
sample.

The IPCC framework identifies ten categories of activity that 
contribute to agricultural GHG emissions. These include enteric 
fermentation, manure management, rice cultivation, agricultural soils, 
prescribed burning of savannahs, field burning of agricultural residues, 
liming, urea application, other carbon-containing fertilisers and others 
(EPA., 2021). This study focused on mitigation measures which impact 
four major categories applicable to Irish agriculture at the farm scale. 
These include manure management, agricultural soils, liming and urea 
application.

2.1. Data

Emissions are estimated from farm-level data using the IPCC-based 
national inventory accounting methodology (as implemented by the 
Environmental Protection Agency in Ireland) (Duffy et al., 2022). Re-
sults across the relevant categories (i.e. manure management, agricul-
tural soils, liming and urea application) are estimated by multiplying the 
farm’s activity data with the relevant emission factor for each activity 
shown in Eq. (1) below. 

Total GHG =
∑n

i=1
(AiE) (1) 

where A is a vector of activities for farm i and E is the corresponding 
vector of emission factors.

Data on emission factors were obtained from the Irish National In-
ventory Report (EPA, 2020) and farm-level activity data were obtained 
from the Teagasc (Irish Agricultural and Food Development Authority) 
National Farm Survey (NFS) 2020 dataset. The NFS is part of the EU 
FADN and collects data on a randomly selected nationally representative 
sample of farms (N = 812), which are population-weighted to represent 
93,244 farms in the national population for 2020. Data is collected by a 
team of trained farm recorders who collect data on a range of farm and 

1 An alternative to the IPCC approach is the Lifecycle Approach (LCA), this 
approach considers all of the GHG emissions from the raw materials, through 
the value chain to final disposal (ISO, 2006). The study restricted to using IPCC 
due to data availability.
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economic activities (Teagasc, 2017). In this study, farms are categorised 
as dairy, cattle, sheep, tillage and mixed livestock based on EU FADN 
typologies. However, it is noteworthy that the farm types only represent 
the dominant enterprise and that these farms can have multiple enter-
prises. Table A1 in the appendix presents the farm system classification 
details and profile of farms that fall within these typologies.

2.2. Bottom-up marginal abatement cost curve (MACC) methodology

The MACC methodology involves estimating the cost and abatement 
potential of a mitigation measure relative to a baseline (business as 
usual). The cost of the measure is divided by the abatement potential 
(AP) to obtain the cost-effectiveness (CE) of implementing a mitigation 
measure (Moran et al., 2011; Schwarz et al., 2013; Dequiedt and Moran, 
2015; Lanigan et al., 2015; Lanigan et al., 2018). Following Moran et al. 
(2008) and Bockel et al. (2012), the following methodological steps are 
followed to develop a bottom-up MACC for the assessment of mitigation 
measures at the farm scale: 

i. Select the abatement options to appraise. 
The abatement options used in this study were based on those 

proven to be effective in Ireland. These measures were selected 
and adopted from the previous work of Lanigan et al. (2018) and 
Buckley et al. (2020). However, unlike the aforementioned 
studies, this study focused on measures that can be assessed at the 
farm level.

ii. Identify the baseline level of emissions on a farm. 
Using the IPCC framework and NFS 2020 data, the total base-

line GHG emissions for individual farms were calculated as 
shown in Eq. (1).

iii. Assess the abatement potential (AP) from the implementation of a 
mitigation measure, taking account of the adoption rate. 

The abatement potential was estimated based on the assump-
tions and adoption rate, as explained in Table A2 in the appendix. 
The equation for estimating the abatement potential is also pre-
sented in Eq. (2)

iv. Identify and quantify the costs and benefits. 
The general equation for estimating the costs and benefits of 

the abatement measures is presented in Eq. (3). Specifically, the 
formulas for estimating each measure’s costs and benefits are 
detailed in the supplementary material.

v. Calculate the ‘stand-alone’ Cost-effectiveness (CE) of each mea-
sure (i.e. if measures do not interact) to generate ‘stand-alone’ 
MACCS;

Estimation of the abatement potential (Eq. (2)), cost (Eq. (3)) and 
cost-effectiveness (Eq. (4)) are detailed below: 

AP = AR ∗ ρ ∗ E (2) 

where AP is the abatement potential, AR is the adoption rate (percentage 
of farms adopting the measure), E is the emission factor, ρ is the land 
area or the number of livestock units (over and above the baseline land 
area or animal numbers) that the measure could be applied to in the 
given time period. The cost of abatement (versus the baseline) (CA) at a 
given discount factor (D) is defined as: 

CA =
(
Costwith mitigation − Costbaseline

)
∗ D (3) 

The stand-alone cost-effectiveness (CE) measured as € per tCO2e 
abated is: 

(4)

Firstly, the estimation of abatement potential, cost, and cost- 
effectiveness of each mitigation measure is made on a stand-alone 
basis. However, some measures may interact; hence, the quantity of 

mitigation may be less than the abatement from each individual mea-
sure added together (Webb et al., 2005). This analysis examines the 
effect of these interactions and generates estimates for the total abate-
ment, cost and cost-effectiveness in a holistic interactive scenario where 
all measures are enacted simultaneously, in addition to considering each 
measure in isolation. Mitigation measures are assumed to be imple-
mented in sequence where the first measure to be implemented is not 
affected by any of the other mitigation measures. The first mitigation 
measure reduces the baseline level of emissions; this reduced level of 
emissions is then the subject of the second mitigation measure, and so 
on. For each stage of measure implementation, the baseline level of 
emissions is reduced based on the previous stage. Since emissions are 
based on multiplicative factors, this avoids double counting of impacts. 
This combined abatement potential is represented as follows: 

CAP = Baseline − baseline ∗ (1 − %reduction1) ∗ (1 − %reduction2)

∗ ...…. ∗ ((1 − %reductionk))

(5) 

Where CAP = combined abatement potential 

Baseline = GHG emissions at baseline 

baseline=new baseline level at each stage of the manure management 
framework to which each of the abatement measures is applied to. 

%reductionk = Emission reduction from the kth mitigation measures.

2.2.1. Rationale for the selection of abatement measures
Following Lanigan et al. (2018), the abatement measures considered 

in this study include: 

1. Protected Urea: The use of nitrogen fertilisers to achieve increased 
crop and livestock production is quite popular in Europe. Calcium 
ammonium nitrate (CAN) fertiliser dominates all other nitrogen 
fertilisers in Western Europe (Tzemi and Breen, 2019). However, the 
use of CAN fertiliser contributes higher levels of atmospheric N2O 
compared to urea fertiliser. The replacement of CAN-based fertilisers 
with protected urea has been reported to reduce N2O emissions and 
also reduce cost (Harty et al., 2016). The rationale behind using 
protected urea, which is in the form of urea fertiliser treated with 
N-(n‑butyl) thiophosphoric triamide (NBPT) is evidenced by past 
studies that found that protected urea resulted in lower GHG emis-
sions (Abalos et al., 2012; Nkwonta et al., 2021; Bobrowski et al., 
2021; Krol et al., 2020) and increased nitrogen uptake by plants.

2. Liming: The application of lime on acidic soils (characteristics of 
most of the Irish soils) increases soil pH and contributes to the plant’s 
absorption of nutrients, minimises the spread of plant diseases, forms 
better soil moisture, soil structure and aeration for plants (Nadeem 
et al., 2020). Controversies exist on the implication of liming on GHG 
emissions. Some studies have indicated that liming reduces the need 
for inorganic fertilisers and consequently N2O emissions 
(García-Marco et al., 2016; Lanigan et al., 2018; Barton et al., 2013). 
However, liming increases the direct emissions of CO2 
(Kunhikrishnan et al., 2016). The net effect of the measure, hence, 
needs to be assessed. The application of lime was ranked as one of the 
most effective abatement measures for both Irish (Lanigan et al., 
2018) and Scottish agriculture (Eory et al., 2021) at an aggregate 
level.

3. Clover: Extensive literature (Spink et al., 2019; Eory et al., 2021) 
exists on using clover as a mitigation strategy for GHG emissions. The 
importance of using clover as an abatement practice can be attrib-
uted to its natural fixation of nitrogen, which reduces the need for 
chemical fertilisation, thus reducing emissions from chemical fertil-
iser (Yan et al., 2013; Buckley et al., 2020; Harris and Ratnieks, 
2021). Spink et al. (2019) affirmed that an inverse relationship exists 
between GHG emissions and biologically fixed nitrogen from the use 
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of white clover. On the other hand, Yan et al. (2013) reported that 
the use of white clover reduces N2O and CO2 but has no effect on CH4 
emissions.

4. Low Emission Slurry Spreading (LESS): Historically, the most 
common method of applying liquid-based animal manure (slurry) 
across Ireland is a splash plate at the back of a slurry spreader. This 
method broadcasts the slurry over a wide area. Alternative applica-
tion methods exist under the broad label of Low Emission Slurry 
Spreading techniques (LESS). LESS consists of the use of slurry in-
jection, trailing hose and trailing shoe equipment. These techniques 
reduce ammonia (NH3) emissions (an indirect greenhouse gas) 
compared to the use of a splash plate. Thus, the reduction in NH3 
leads to an indirect reduction in N2O emissions during slurry 
spreading (Lanigan et al., 2018). The use of the LESS method as a 
mitigation option is an accepted mitigation practice across devel-
oped countries (Wagner et al., 2017).

5. Covering of Slurry Stores: Some studies have applied the use of 
slurry covers to abate ammonia emissions; they reported that the 
covering of slurry led to a significant reduction of NH3 emissions 
(Zhang et al., 2019; Buckley et al., 2020) and GHG emissions (Amon 
et al., 2006; Eory et al., 2021). NH3 reduction at the slurry storage 
stage leads to higher nitrogen retention in the farm system, thereby 
reducing the need for chemical nitrogen fertilizer to maintain a given 
level of agricultural production. The use of covered stores will also 
reduce the emission of CH4 emissions (Amon et al., 2006; Kupper 
et al., 2020)

6. Slurry Amendments: GHG emissions during slurry storage can 
potentially be mitigated by adding slurry amendments (Kavanagh 
et al., 2019). These amendments may include alum, ferric acid, sul-
phuric acid or other acids. Kupper et al. (2020) argued that previous 
works of slurry amendment led to a reduction of CH4 during storage 
and an increase in N2O emissions, while Lanigan et al. (2018) posited 
that the use of slurry amendment led to a reduction in both CH4 and 
N2O emissions.

7. Crude protein in diets: The effect of optimisation of crude protein 
in dairy and pig diets is evidenced by Sajeev et al. (2018a) and 
Buckley et al. (2020). Reducing excess crude protein (or actual de-
mand) in diets works by lowering the proportion of N in urine and 
that excreted thus leading to a reduction in NH3 and N2O emissions 
among other nitrogen emissions (Chadwick et al., 2011; Külling 
et al., 2002; Abbasi et al., 2018).

2.3. Cluster analysis

This was used to identify and understand the inherent heterogeneity 
between and within farm systems based on abatement potential and 
cost-effectiveness of measures. First, hierarchical cluster analysis based 
on Ward and squared Euclidean method was used to select the optimal 
number of clusters. Ward’s method was chosen to allow for minimum 
variance within clusters (Köbrich et al., 2003; Gelasakis et al., 2012; 
Gelasakis et al., 2017). The optimal number of clusters was selected 
based on the elbow rule of the agglomeration schedule (Ward Jr, 1963). 
The number of clusters derived from the agglomeration schedule of the 
hierarchical cluster was then used in the K-means cluster to group farms 
into different clusters (Gelasakis et al., 2017; Gelasakis et al., 2012). 
Following this, the cost-effectiveness and abatement potential within 
specific clusters will be presented, and descriptive statistics for each 
cluster will be provided.

3. Results

This section presents the result with a focus on the farm-level GHG 
abatement potential of mitigation measures as well as costs, cost- 
effectiveness and MACC across the different farm systems.

3.1. Baseline scenario of farm-level GHG emissions

Table A3 in the appendix describes the baseline scenario of total 
farm-level GHG emissions across the 5 farm system types in the baseline 
year (2020). Table A3 shows that enteric fermentation accounts for the 
majority (65 %) of GHG emissions across all farms, followed by agri-
cultural soils (23 %) and manure management (10 %).

Dairy farms tend to have higher GHG emissions compared to other 
farm systems, about 4 times higher than the cattle, specialist sheep and 
tillage farms and about 2 times higher than the mixed livestock farm. 
Table 1 shows the baseline level of adoption across the measures 
examined. Results indicate that most of the farmers are already adopting 
covered stores with varying levels of uptake of the other abatement 
measures. The use of LESS and protected urea measures appear to be 
more popular amongst dairy farms compared to other farm systems.

According to NFS 2020 data, no farmers are currently using slurry 
amendments. Also, based on the DAFM survey conducted in 2019 and 
the report by Buckley et al. (2020); Shalloo et al. (2018); O’Brien et al. 
(2018), crude protein is being fed to livestock at a sub-optimal level of 
about 17 % among farmers on average.

3.2. Farm-level GHG abatement potential

Table 2 reports the GHG mitigation potential of each individual 
measure examined across the 5 different farm systems. It is important to 
understand the abatement potential of each measure in order to assess 
their respective contributions to GHG emissions reductions within 
various farm systems. On an average all-farm basis, implementation of a 
grass-clover sward has the highest abatement potential of 12 tCO2e 
followed by the slurry amendments (11 tCO2e) and then substitution to 
protected urea (8 tCO2e). The abatement potential for clover is about 12 
times that of the LESS measure (1 tCO2e). For ‘all farms’, clover and 
slurry amendments account for about 65 % of the total abatement 
potential.

The ranking of abatement measures differs by farm system. For 
example, the highest level of mitigation on specialist dairy farms was 
associated with slurry amendments, clover and protected urea (28, 26 
and 20 tonnes of CO2e respectively). For mixed livestock farms, the same 
measures ranked in the top three but in a different order namely clover, 
slurry amendments and protected urea. This was a similar result for 
livestock farms (cattle and sheep) but with a different order of magni-
tude compared to specialist dairy and mixed livestock farms. For 
specialist tillage farms the fertiliser measures and slurry amendments 
had by far the most mitigation potential of between 3 and 6 tonnes of 
CO2e.

When accounting for the interaction effects the total combined GHG 
abatement potential is lower than the sum of the individual measures as 
seen in Table 2.

3.3. Cost of farm-level abatement

Table 3 outlines the average net cost of implementing the different 
mitigation measures across the different farm systems. As outlined in 
Appendix 1 some mitigation measures lead to more nitrogen recovery / 
higher use efficiency, where this is the case a reduction in chemical N is 
assumed on foot of this efficiency gain. Hence, as seen in Table 3 a 
significant number of the mitigation measures are cost-saving (negative 
sign) on average across each farm system e.g. protected urea, liming, 
and reduction in crude protein. Others are cost-intensive across all farm 
systems e.g. LESS, slurry amendments, and covering of slurry stores. 
Clover on average can be either cost intensive or saving depending on 
the farm system. However, the order of magnitude of the cost varies 
substantially across the different systems as seen in Table 3.
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3.4. Cost effectiveness of mitigation measures

Table 4 presents average cost-effectiveness results (measured in 
euros per tonne of carbon dioxide equivalence € t− 1CO2e abated) for 
each measure across each farm system type. A negative sign (-) implies a 
win-win scenario for the farmer, that is, the mitigation option reduces 

GHG emissions and saves money for the farmers, while a positive sign 
(+) implies a win-lose scenario where an option despite reducing GHG 
emissions has some net costs attached to its implementation.

The cost-effectiveness across the all-farm average ranges from -€386 
t− 1CO2e to €98 t− 1CO2e with the reduction in crude protein indicated as 
the most cost-effective measure (-€386 t− 1CO2e), followed by the liming 
measure (-€135 t− 1CO2e) and protected urea (-€15 t− 1CO2e). Addi-
tionally, on an all-farm basis, all fertiliser measures (that is, liming, 
clover and protected urea) are cost-savings, whereas all of the bovine 
measures (except the reduction in crude protein) are cost-intensive.

The cost-effective ranking order is similar across the different farm 
system types, namely, reduction in crude protein, liming and substitu-
tion to protected urea fertiliser (except specialist tillage farms). LESS and 
slurry amendments (except for specialist dairying) indicate the lowest 
cost-effectiveness for GHG mitigation across the different farm systems. 
Clover is the only measure where the sign differs by farm system, it is 
cost-saving for Specialist Dairy and Cattle farms but cost-intensive for 
the rest.

The result of the CE analysis in Table 4 showed that the combination 
of abatement measures in reducing GHG emissions doesn’t necessarily 
lead to lower costs. Combining all the abatement measures leads to a 
cost-beneficial scenario for only the dairy and tillage farms.

3.5. Marginal abatement cost curve

Table 4 above outlined the cost-effectiveness of mitigation per tonne 
of CO2e abated. However, whether it is cost-effective to adopt a 

Table 1 
Baseline Adoption of Abatement Measures by Farm Type.

Abatement measures Specialist 
Dairy

Cattle Specialist 
sheep

Specialist 
Tillage

Mixed 
Livestock

All farms

1. % of fertiliser applied as Protected Urea 16 % 3 % 8 % 2 % 3 % 6 %
2. % of soils at optimum pH 54 % 50 % 50 % 78 % 66 % 53 %
3. Grass clover swards 0 %a 0 %a 0 %a 0 %a 0 %a 0 %a

4. % of slurry applied by Low emissions slurry spreading (LESS) 
equipment

50 % 15 % 9 % 17 % 25 % 20 %

5. Use of Slurry amendments 0 % 0 % 0 % 0 % 0 % 0 %
6. % of farmers at the optimum level of crude protein in dairy cow diet 0 % 0 % 0 % 0 % 0 % 0 %
7. % of slurry stores that are covered 85 % 93 % 95 % 91 % 98 % 92 %

Source: Authors Computation of 2020 NFS and assumptions data. a Own assumption.

Table 2 
Farm-level GHG Abatement Potentials

Abatement potential (tonnes CO2 equivalent) per farm Specialist Dairy Cattle Specialist sheep Specialist Tillage Mixed Livestock All farms

1. Protected Urea 20 4 4 3 11 8
2. Liming 8 2 1 4 5 3
3. Clover 26 10 9 5 20 12
4. Low emissions slurry spreading (LESS) 2 1 0 0 2 1
5. Slurry amendments 28 8 6 6 18 11
6. Reduction in crude protein 1 0 0 0 1 0
7. Covering of slurry stores 0 0 0 0 0 0
Sum (1 to 7) 86 25 20 33 57 35
* Combined Measure – when accounting for interactions 78 17 12 32 46 28

Table 3 
Cost of Implementing Abatement Measures per Farm.

Cost per farm (€) Specialist Dairy Cattle Specialist sheep Specialist Tillage Mixed Livestock All farms

1. Protected Urea -€538 -€51 -€58 -€156 -€170 -€142
2. Liming -€1337 -€399 -€337 -€517 -€687 -€558
3. Clover -€1550 -€102 €137 €166 -€466 -€291
4. LESS €127 €102 €68 €33 €202 €98
5. Slurry amendments €1410 €767 €460 €394 €1527 €813
6.Reduction in crude protein -€745 -€106 -€60 -€68 -€386 -€207
7. Covering of slurry stores €8 €1 €0 €0 €2 €2
Combined cost -€6255 -€758 -€1074 -€1956 -€2633 -€1840

Table 4 
GHG Farm-level Cost-effectiveness across Different Farm Typologies.

Cost-effectiveness 
GHG (€ per tonne 
CO2e abated)

Dairy 
(€)

Cattle 
(€)

Sheep 
(€)

Tillage 
(€)

Mixed 
(€)

All 
(€)

1. Protected Urea - 69 -13 -21 229 -15 -15
2. Liming -200 -119 -140 -120 -77 -135
3. Clover -77 -9 162 61 5 12
4. Low emissions 

slurry spreading 
(LESS)

56 113 112 39 114 98

5. Slurry 
amendments

52 98 64 40 115 81

6. Reduction in 
crude protein

-750 -332 -298 -173 -447 -386

7. Covering of slurry 
stores

62 48 32 13 4 45

*Combined 
Measure – when 
accounting for 
interactions

-53 72 78 -37 73 44

Source: Authors’ Computation of 2020 NFS and NIR data.

O.R. Ogunpaimo et al.                                                                                                                                                                                                                         Environmental Challenges 18 (2025) 101070 

5 



mitigation measure depends on the shadow price of carbon. The price of 
carbon was set at €48.50 t− 1CO2e following the information provided by 
the Ireland Revenue Services (IRS., 2022). Fig. 1 (a-f) below present 
results by farm system in MACC diagrammatical form, where the width 

of the bar represents the abatement potential of a mitigation measure 
and the height of the bar represents the cost of the measure (where 
anything below 0 is cost-saving and anything above this is cost 
intensive).

Fig. 1. Diagram showing the MACC Curves for Different Farm Systems.
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It is clear that some mitigation measures are very cost-effective (e.g. 
crude protein) but do not deliver a lot of GHG mitigation, while other 
measures such as slurry amendments or clover have the potential to 
deliver more significant quantities of GHG mitigation but depending on 
the farm system they can be cost-saving or cost-intensive. On an average 
farm systems basis (that is, presenting the result across the different farm 
systems), no two systems have the same ranking of the measures. While 
some measures are cost-saving (crude protein, liming and protected 
urea) or cost-intensive (slurry amendments and LESS) across all farm 
systems, the relative abatement potential and costs differ. Clover is the 
one measure that moves from cost-saving (Specialist dairying, Cattle and 
mixed livestock) to cost-intensive (sheep and tillage). At a shadow car-
bon price of €48.50 t− 1CO2e, the majority of measures are cost-effective 
on an average farm systems basis except for slurry amendments, clover 
and LESS depending on the farm system.

Results indicate that depending on the farm system, some measures 
have lower abatement potentials but may be cost saving. For instance, 
for the dairy and cattle farms, the GHG abatement potentials for liming 
is 8 tCO2e and 2 tCO2e per farm, while for slurry amendments it is 28 
tCO2e and 8 tCO2e per farm respectively. However, liming has a benefit 
(negative cost) compared to slurry amendments, which have a net total 
farm cost of €1410 and €767. This is because liming leads to higher 
chemical nitrogen savings, significantly reducing the need for fertiliser 
application and resulting in overall net benefits, unlike slurry amend-
ments. This explanation also applies to the clover measure which is cost- 
intensive in the sheep farm despite having a large abatement potential 
for GHG emissions.

For tillage farms, protected urea is cost-intensive as against the other 
farm types mainly because the benefits of protected urea on arable land 
is not as great as on grassland. and as such the replacement of CAN for 
protected urea on the arable land is cost-intensive. It is noteworthy that 
the results of the analysis were obtained as a farm average and not an 
aggregate average. That is, the figure indicated in Table 4 was obtained 
as an average of the ratio of individuals farm cost of abatement and 
abatement potential and not a ratio of the average cost of abatement and 
average abatement potential.

Results presented in Fig. 1 (a-f) present results on an average farm 
system basis. In contrast, Fig. 2 (a-e) presents the distribution of results 
within each farm system type. Results in Fig. 2 clearly illustrate the 
heterogeneous effect within a farm system. Across nearly all farm sys-
tems, there are farms that are cost-intensive (above the origin) or cost- 
saving (below the origin) for an individual measure. This clearly dem-
onstrates that different mitigation measures are more cost-effective 
across some individual farms within the same farm system types as 
well as across farm systems.

3.6. Sensitivity analysis and uncertainties

Systematic sensitivity analysis was conducted to assess the cost of 
abatement and the cost-effectiveness of various measures based on a 50 
% fluctuation in chemical fertiliser prices. As shown in Table B3 of the 
supplementary material, for most abatement measures (excluding crude 
protein and protected urea), a 50 % increase in fertiliser prices, 
assuming constant abatement potential, resulted in lower costs (>30 % 
for most of the measures in the all farm). In comparison, a 50 % decrease 
in fertiliser prices (Table B4) led to higher costs (>29 % for most of the 
measures in the all farm).

The cost-effectiveness of the measures responded differently to 
changes in fertiliser prices across various farm systems. For most mea-
sures, an increase in fertiliser price led to reduced cost-effectiveness 
(Table B5), while a price decrease (Table B6) improved cost- 
effectiveness. However, the degree of this response varied across the 
different farm systems.

A sensitivity analysis of the adoption rates of mitigation measures 
was also undertaken. This sensitivity analysis was based on assuming 
adoption rates at 50 % and 75 % (as opposed to 100 %). Results 

(presented in Table B7) indicate that at a 50 % adoption rate, the pro-
portionate decrease in the abatement potential varies from as low as 0 % 
for covered stores to as high as 75 % for the white clover. Similarly, at a 
75 % (Tables B10) adoption rate, the abatement potentials were reduced 
by approximately 0 % for covered stores to as high as 44 % for the white 
clover option.

The ranking of measures remains generally consistent regarding cost- 
effectiveness across different adoption rates, with one notable excep-
tion: the white clover measure. At 50 % and 75 % adoption rates (see 
Tables B9 and B12), this measure is cost-effective for dairy farms but 
remains cost-prohibitive for other farm types.

The absence of specific emission factors for varying soils across 
different locations limits the ability to assess regional heterogeneity 
accurately. Nonetheless, this study addresses uncertainties around costs 
and abatement potential across different locations, based on NFS region 
identifiers. As shown in Table B13 in the supplementary material, farms 
in the Mid-East region demonstrate a higher reduction in GHG emissions 
through the use of protected urea (12 tCO₂e), clover (13 tCO₂e), and 
slurry amendments (12 tCO₂e). While cost-effectiveness remains fairly 
consistent across regions, notable heterogeneity emerges in the appli-
cation of clover and liming. In Table B15, liming shows a positive cost 
effect in the Mid-East, whereas clover is cost-positive in the South-West 
and West regions.

3.7. Cluster analysis

To explore the within and across farm system heterogeneity a cluster 
analysis was employed to investigate if more homogeneous groups of 
farms can be identified which may assist in targeting mitigation mea-
sures. Following a hierarchical cluster approach revealed an ideal 
cluster number of 5 (see Table A2 in the appendix) based on the cost- 
effectiveness and abatement potential. The K-mean cluster analysis 
was then used to allocate farms into the 5 clusters based on abatement 
potentials and cost-effectiveness, this is required to identify the cluster 
of farms that has higher abatement potentials and thus contribute more 
to GHG emissions.

Table 5 presents the result of the cluster analysis. The farms in 
clusters 3, 4 and 2 are responsible for the majority of the abatement 
potential respectively on an average farm basis. Conversely, clusters 1 
and 5 indicate lower mitigation potential on an average farm basis but 
each of these clusters has a significant number of farms within so on an 
aggregate basis their collective abatement potential is the highest and 
third highest of all the clusters. Clusters 1 and 5 tend to be associated 
more with livestock systems (cattle and sheep rearing). Cluster 2 has the 
second-highest average farm and aggregate abatement potential of all 
the clusters and tends to comprise of dairy-orientated farms.

Cluster 1 has a low abatement potential of 15 tCO2e compared to 
other categories, with a total cost-effectiveness of -€109 and an average 
cost of €10. For cluster 1 the result indicate that although low in miti-
gation potential the use of protected measures is cost-saving, conversely, 
the use of clover and slurry amendments can significantly reduce GHG 
emissions in this cluster, they are very cost-intensive to implement.

Cluster 3, consisting mostly of dairy farms and has the highest 
average abatement potential of 196 tCO2e. Fertiliser measures, 
including slurry amendments, contribute significantly to this high po-
tential. Similar to Cluster 2, all fertiliser measures in Cluster 3 are cost- 
saving to implement.

Cluster 4, comprising mainly of tillage farms and some dairy farms, 
has the second highest average abatement potential of 110 tCO2e. Fer-
tiliser measures, including slurry amendments and LESS, significantly 
contribute to this high potential, with the fertiliser measures being at 
cost-effective to implement.

The cost of implementing the abatement measure is shown in 
Table 5, with significant disparities evident across the different clusters. 
As indicated, an overall benefit is accrued with the use of abatement 
measures with values ranging from as low as €10 in cluster 1 to €4815 in 
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Fig. 2. Diagram showing Farm-level MAC distribution across different farm systemIn Cluster 2, the average farm level abatement potential is 98 tCO2e, primarily due 
to fertiliser measures and the use of slurry amendments. These fertiliser measures are well-suited for farms in Cluster 2, as they not only contribute significantly to 
GHG reduction but are also cost-effective to implement within this cluster of farms.
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cluster 3. The higher the average farm abatement potential the higher 
the average cost and cost-effectiveness. It is cost-beneficial to implement 
the abatement measures across the clusters as shown in Table 5; how-
ever, the order of magnitude of the cost-effectiveness varies 
significantly.

4. Discussions

This study set out to test the hypothesises that a ‘one-size-fits-all’ 
approach to the proposition of GHG mitigation measures across farms is 
sub-optimal due to farm-level heterogeneity as well as the effect of 
mitigation measure interactions and to explore this heterogeneity. Re-
sults here indicate that efficient policy design dictates that ideally, 
mitigation measures should be farm specific or at least farm typology 
orientated. A one-size fits all approach could overestimate or underes-
timate the abatement potentials and cost-effectiveness for some farm 
systems and could in turn lead to a fallacious recommendation for these 
farm systems.

4.1. Findings related to mitigation measures

The study revealed that dairy farm systems has higher baseline 
emissions compared to the other farm systems. This is due to the higher 

stocking rate on dairy farms compared to the other farm systems which 
results in higher enteric fermentation (CH4) and chemical nitrogen 
based emissions (N2O) from this system (EPA, 2022).

This study also finds that reducing crude protein in diets is the most 
cost-beneficial option for reducing GHG emissions, this argument is 
supported by Sajeev et al. (2018b); Sajeev et al. (2018a) and Huhtanen 
and Huuskonen (2020). The findings of this study are in line with other 
studies (Chojnacka et al., 2021; Abbasi et al., 2018; Kidane et al., 2018) 
which found that the reduction of crude protein in diets reduces GHG 
emissions by reducing direct emissions of N2O from managed soils. This 
is manifest through the reduction in organic nitrogen generated via 
urine and animal dung deposited at grazing and through reduced N2O 
directly and indirectly from manure management.

While the crude protein in diets is the most cost-effective measure in 
this study as it actually saves farmers money while simultaneously 
reducing GHG emissions, the measure does not deliver the same level of 
GHG reduction compared to other measures, which are less cost- 
effective.

Results here support that of other research on the importance of 
substitution of CAN fertiliser for protected urea fertiliser in reducing 
GHG emissions which is in line with previous works (e.g. (Krol et al., 
2020) Martins et al. (2017) and Tzemi and Breen (2019)). Across the five 
farm systems, the use of protected urea serves as a cost-beneficial 
measure and thus may be attractive to the farmers as it saves cost, 
similarly, the measure has a moderate to high abatement potential 
across the different farm systems and thus can act as an important 
strategy for absolute GHG reduction.

In Lanigan et al. (2018), the use of protected urea was ranked as a 
cost-effective (win-lose) measure as against our study where it is mainly 
a cost-beneficial measure (win-win) measure, the difference in our re-
sults is attributable to the baseline assumptions. In addition, this study 
also used more recent farm level activity data as well as updated data on 
emission factors compared to Lanigan et al. (2018).

The use of clover as an abatement strategy lowers N2O emissions 
through the reduction of inorganic fertilisers which is consistent with 
the findings of previous studies (Yan et al., 2013; Herron et al., 2021; 
Schils et al., 2005). It is an important GHG abatement strategy for dairy, 
cattle and mixed livestock farms as it is cost-beneficial to implement.

In addition, the clover measure has a high abatement potential un-
like the reduction of crude protein in diets thus a conscious policy design 
towards emission reduction could focus on the clover measure while 
putting the heterogeneity around farm systems into perspective. Similar 
to the protected urea measure, the difference in the abatement potential 
of clover in this study compared to Lanigan et al. (2018) is attributed to 
the difference in the underlying baseline assumption in that all grassland 
areas are reseeded with clover farms as against 15–25 % of grassland 
area.

In line with other studies, liming was found to reduce GHG emissions 
(Hénault et al., 2019; García-Marco et al., 2016; Lanigan et al., 2018) by 
lowering both direct and indirect N2O emissions. It may however also 
increase GHG emissions through CO2 emissions associated with carbon 
mineralisation (Goulding, 2016; Kunhikrishnan et al., 2016; Wang et al., 
2021; Lanigan et al., 2018). As with clover, it is important to note that 
GHG reduction here is mainly associated with reduced requirement for 
chemical N-based fertilisers.

Thus, a balance between the reduction in N2O emissions and an in-
crease in CO2 emissions on the farm will determine whether liming leads 
to the abatement of GHG emissions. In the case of this study, the 
reduction of N2O emissions far outweighs that of the increased CO2 
emissions across the different farm systems. In addition, the adoption of 
this strategy leads to a win-win situation where it not only reduces the 
overall GHG emissions but also saves the farmer some money, hence this 
is an important strategy in the abatement of GHG emissions (Eory et al., 
2021).

The LESS measure reduces GHG emissions by lowering the N2O 
emissions from atmospheric depositions and runoff. The result obtained 

Table 5 
Result of the K-means Cluster Analysis.

Cluster Number of 
Case

1 2 3 4 5 Total

Abatement potentials of each Cluster (tCO2e)
Protected Urea 3 23 51 65 9 8
Liming 0 10 19 14 5 3
Clover 5 32 58 11 16 12
LESS 0 2 3 1 1 1
Slurry amendments 5 30 63 19 12 11
Crude protein 0 1 2 1 0 0
Covered 0 0 0 0 0 0
Average potential 

abatement 
(tCO2e)

13 98 196 110 44 35

Aggregate of 
Cluster (‘000 
tCO2e)

713 992 352 108 1077 3229

Cost & Cost-effectiveness of measures for each Cluster
Average cost (€) -10 -2649 -4815 -2380 -1227 -741
Protected Urea -15 -17 -16 -15 -14 -15
Liming -105 -182 -163 -131 -180 -135
Clover 62 -76 -77 36 -58 12
LESS 108 75 43 50 91 98
Slurry amendments 86 66 58 51 80 81
Crude protein -301 -649 -844 -488 -430 -386
Covered 56 25 59 -7 28 45
Total C.E (€ 

t− 1CO2e)
-109 -759 -940 -503 -484 -300

Distribution of Farms in each cluster
Unweighted 

Frequency
325 167 50 14 239 795

Weighted 
Frequency

54,880 10,120 1798 981 24,486 92,264

Percent 59.5 11 1.9 1.1 26.5 100
Farm size (ha) 30 78 131 137 46 43
Total livestock unit 

(LU)
28 148 285 101 67 57

Stocking rate (LU/ 
ha)

1 2 2 1 2 1

Area of Grassland 24.50 72.13 122.77 40.54 40.59 36.08
Area of Arable 1.67 3.74 4.86 92.13 2.90 3.25
The composition of Farm systems in each Cluster (%)
Specialist Dairying 6 44 11 2 37 100
Cattle Farms 71 4 0 0 25 100
Specialist Sheep 73 5 0 0 22 100
Specialist Tillage 64 4 0 9 23 100
Mixed Livestock 40 20 4 2 34 100
All farm 59 11 2 1 27 100
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from this study showed that the LESS measure reduces GHG emissions 
across most farm systems. However, the impact of LESS in reducing GHG 
emissions is not as profound as for NH3 emissions (Ogunpaimo et al., 
2024). The finding of this study on LESS supports the result of Wagner 
et al. (2015) Lanigan et al. (2018), and Eory et al. (2021) but disagrees 
with some studies (et al., 2011; Bourdin et al., 2014). The latter studies 
argued that the implementation of LESS measures leads to increased 
N2O emissions. The findings of this study also disagree with the result of 
Wagner et al. (2015), that reported that the use of covered stores led to 
increases in N2O emissions, the difference in the result may be attributed 
to the type of manure storage techniques used in the study. The use of 
covered stores resulted in low abatement potentials across the different 
farm systems and this may be attributed to the already high adoption 
rate at the baseline.

The use of slurry amendments is an important strategy for reducing 
GHG emissions (Kavanagh et al., 2019). In this study, the use of slurry 
amendments indicated the highest level of GHG mitigation of all the 
manure management options (that is vs LESS, covered stores and slurry 
amendments) and records the highest abatement potential for the dairy 
farm system. The use of slurry amendments reduces GHG emissions by 
reducing CH4 emissions and indirect emissions of N2O. This result fol-
lows closely the report of Lanigan et al. (2018) on the ranking of the 
abatement measure, however, in our study, slurry amendments are 
cost-ineffective as opposed to Kavanagh et al. (2019). A difference in the 
baseline assumption and the type of slurry amendments used, carbon 
price and scale of analysis could be responsible for the divergent results 
obtained from the studies. The use of slurry amendments may be a very 
attractive option for the few farms with high abatement potential.

Consistent with other studies (Chojnacka et al., 2021; Krol et al., 
2020) results here indicate that some mitigation measures are shown to 
be cost-saving on average across all farm systems (protected urea, lim-
ing, and reduction in crude protein) while others are on average cost 
intensive (LESS, slurry amendments, covering of slurry stores). Clover 
was the only mitigation measure that moved from cost intensive to 
cost-saving depending on farm system type (on average). 
Cost-effectiveness criteria are important for efficient policy design and 
all except a few of the measures (slurry amendments, LESS and clover) 
across some farm systems (cattle, sheep and mixed livestock) are below 
the shadow price of carbon (on average).

However, in a MACC framework, absolute cost-effectiveness is not 
the only criterion that must be assessed. Results indicate that some 
mitigation measures are highly cost-effective (e.g. crude protein) but do 
not deliver a lot of absolute GHG mitigation. While other measures such 
as slurry amendments or clover have the potential to deliver more sig-
nificant quantities of GHG mitigation but depending on the farm system, 
they can be cost-intensive or cost-saving.

Based on the result of the baseline adoption of abatement measures, 
increased farmers’ awareness of the use of these measures in reducing 
GHG emissions is necessary. Farmers need to be educated and involved 
in the implementation of these measures especially clover, liming and 
protected urea in reducing emissions especially when the implementa-
tion of these measures may result in a monetary benefit to the farmer.

4.2. Farm heterogeneity

While some consistent trends were observed at a farm systems level, 
significant within-system heterogeneity was found to exist. Within each 
farm system type the distribution of results for each mitigation measure 
ranged from cost intensive to cost saving for each individual measure. 
Indicating that some mitigation measures are more cost-effective on 
individual farms within the same farm system. Customising policies for 
individual farms could pose significant challenges due to potential cost 
constraints, making farm system analysis a practical compromise be-
tween broader aggregate or national-level assessments and detailed 
individual-level analyses. Albeit the literature on GHG MACC is vast, 
those investigating the presence of heterogeneity across similar farm 

types are limited. One such study conducted by Jones et al. (2015) on 
sheep farms buttressed the importance of assessing the presence of 
heterogeneity across farms.

Similarly, Krimly et al. (2016) support the finding that different farm 
biophysical conditions affect the optimality of GHG emission reduction. 
Tang et al. (2021) also highlighted the importance of considering farm 
heterogeneity when assessing and recommending GHG measures. De 
Cara and Jayet (2000) pointed out that the effectiveness of measures 
across farm types differ, in their study, with arable farms better-off due 
to reduced abatement cost as against the livestock farmers. In Ireland, 
although the study worked on NH3 abatement Ogunpaimo et al. (2024)
argued in favour of assessing farm heterogeneity, the study concluded 
that the absence of farm-heterogeneity in MACC construction could lead 
to sub-optimal levels of emission reductions.

Due to the presence of heterogeneity, variations exist in the abate-
ment potential, cost-effectiveness and MACC across and within different 
farm systems. For instance, the impact of protected urea in reducing 
GHG emissions was evident more on the dairy, tillage and mixed live-
stock farms compared to the other farm systems. Similarly, the ranking 
of the protected urea measure changed across the different farm system 
MACCs which typically supports the presence of farm-system hetero-
geneity. As a farmer or policy maker, it is important to take farm het-
erogeneity into consideration as it ensures the optimal level of emission 
reduction and or cost saving.

The application of lime is another cost-beneficial measure across the 
five farm system types and has a relatively moderate level of abatement 
potential. However, the level of abatement potential varies across the 
different farm systems due to farm-level heterogeneity. Also, the ranking 
of the clover measure varies between cost-beneficial to a cost-effective 
measure depend on the farm system. The abatement potential of crude 
protein reduction in diets is highest on dairy and mixed livestock but 
almost negligible for cattle, sheep and tillage farms. The difference in the 
results across the farm systems is attributable to the presence of farm 
system heterogeneity.

Similar to the heterogeneity issue addressed in this study, the dis-
parities in the result revealed by the different studies (For instance 
Bourdin et al., 2014 and Lanigan et al. 2018 ) may be due to the presence 
of heterogeneity (farm system, location, economic) or other reasons 
such as differences in underlying assumptions. In this study, farm system 
heterogeneity for the clover measure is more evident in the ranking of 
the measure, the clover measure fluctuated from being a cost-beneficial 
measure (Lanigan et al. 2018; Eory et al., 2021) to being a 
cost-prohibited measure depending on the farm system mainly due to 
their varying activity levels on farms.

It is evident that across the different farm system types there exist 
variations in the mitigation measures’ abatement potential, abatement 
cost and cost-effectiveness. This reflects the presence of heterogeneity 
across the different farm systems. To further support the inherent het-
erogeneity present amongst farms a cluster analysis was undertaken to 
try and account for across and within farm system heterogeneity to 
explore if more homogenous groups of farmers exist which in the 
absence of individual farm level assessment could aid policy design.

Results indicate five cluster types, two clusters indicated smaller 
average farm level mitigation potential but each contained a large 
number of farmers so aggregate potential was significant. Two other 
clusters indicated higher levels of average farm level mitigation poten-
tial but each had a smaller number of farms within the cluster. Given the 
scale of the challenge facing the agricultural sector, cost-effective 
measures will have to be promoted for adoption across all farm system 
types starting with the most cost-effective that will deliver the most 
abatement.

In the case of combining measures to account for interactions, 
various studies (Kesicki and Ekins, 2012; Eory et al., 2018a, 2018b; 
Kesicki and Strachan, 2011; Fellmann et al., 2021) have shown the 
importance of interactions in MACC analysis. This may be evident in the 
form of complementary and conflicting measures in reducing GHG 
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emissions. If all measures were implemented across all farm systems 
simultaneously, results indicate that the combination of impacts is only 
cost-beneficial for two farm systems (Dairy and Mixed Livestock). This 
motivates taking a more tailored policy approach. It should also be 
noted that interaction effects between the measures indicate a lower 
level of overall abatement compared to the sum of the impacts of each 
individual measure.

It is noteworthy that certain limitations are inherent in this study. 
One of which is that farmer behavioural change in response to measures 
was not considered. Secondly, spatial heterogeneity was not accounted 
for since different biophysical conditions of farms may influence the 
measures’ effectiveness of GHG mitigation. In addition, the total GHG 
abatement potential realisable across the different locations may vary 
(Cui et al., 2022). It is also noteworthy that other abatement measures 
that have been proven to reduce GHG emissions such as improved ge-
netics were not considered in this study due to lack of available data at a 
farm scale. It should also be noted that the measures examined here just 
explored impacts on GHG emissions, some of the measures could also 
have synergistic or antagonist implications for other environmental di-
mensions such as ammonia or water quality.

5. Conclusion

This study affirmed that the suite of mitigation measures assessed in 
this study are effective in reducing GHG emissions at the farm level. 
Nevertheless, the cost-effectiveness of these measures varies, ranging 
from being cost-saving to being cost-intensive contingent on the specific 
farm system or individual farm under consideration. The results reveal a 
clear interdependence among the mitigation measures in reducing GHG 
emissions. However, it’s important to note that the combination of these 
measures in terms of interactions doesn’t automatically guarantee a 
cost-effective resolution, as farms exhibited distinct behaviours in 
response. As such, policy design should be tailored towards the specific 
characteristics of each farm system and farmers should be encouraged to 
adopt those measure that are at least cost-effective in their 
implementation.

Although it is the rule of thumb to implement the measures that 
ranked first in the MACC curve (most cost-effective), this may not yield a 
desirable result from the perspective of the policy maker concerned with 
the absolute level of GHG reduction. For these policy makers, measures 
that are cost-effective but with high abatement potential such as liming, 
clover, protected urea and slurry amendments are important. Also where 
policy makers have difficulty in implementing individual farm-level 
policies for emission reduction which may be expensive, adopting a 
farm-system approach offers a more targeted method for MACC analysis 
compared to broader national or sectoral approaches.

The study’s cost-effectiveness analysis is also just based on a single 
time point. An analysis of cost-effectiveness trends over time could help 
policymakers develop more sustainable, long-term emission reduction 
strategies and is an avenue for future research.
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