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Abstract: Monitoring water quality is crucial for understanding aquatic ecosystem health and changes
in physical, chemical, and microbial water quality standards. Water quality critically influences
industrial, agricultural, and domestic uses of water. Remote sensing techniques can monitor and
measure water quality parameters accurately and quantitatively. Earth observation satellites equipped
with optical and thermal sensors have proven effective in providing the temporal and spatial data
required for monitoring the water quality of inland water bodies. However, using satellite-derived
data are associated with coarse spatial resolution and thus are unsuitable for monitoring the water
quality of small inland water bodies. With the development of unmanned aerial vehicles (UAVs)
and artificial intelligence, there has been significant advancement in remotely sensed water quality
retrieval of small water bodies, which provides water for crop irrigation. This article presents the
application of remotely sensed data from UAVs to retrieve key water quality parameters such as
surface water temperature, total suspended solids (TSS), and Chromophoric dissolved organic matter
(CDOM) in inland water bodies. In particular, the review comprehensively analyses the potential
advancements in utilising drone technology along with machine learning algorithms, platform
type, sensor characteristics, statistical metrics, and validation techniques for monitoring these water
quality parameters. The study discusses the strengths, challenges, and limitations of using UAVs in
estimating water temperature, TSS, and CDOM in small water bodies. Finally, possible solutions and
remarks for retrieving water quality parameters using UAVs are provided. The review is important for
future development and research in water quality for agricultural production in small water bodies.

Keywords: unmanned aerial vehicles; water quality monitoring; TSS; CDOM; machine learning
algorithm; remote sensing

1. Introduction

Storage water bodies are vital to human and aquatic life since they support ecosystem
services that sustain water for agricultural irrigation, human and animal consumption,
industrial uses, and biodiversity conservation [1–6]. However, rapid population growth,
urbanisation, industrial and agricultural activities, and climate change have increasingly
threatened water quality in vulnerable regions such as Southern Africa [5,7].
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According to Mangadzea et al. [8] and Namugize et al. [9], aquatic ecosystems in
Southern Africa are stressed due to unsustainable land use—land cover changes, deforesta-
tion of catchments, pollution, contaminated runoff from mines and agricultural pesticides,
and inadequate catchment management and water laws. The demand for suitable water
resources has prompted efforts from policymakers, the public and researchers to monitor
and manage water quality in water bodies to ensure sustainable use [10] and to achieve the
targets of sustainable development goal 6 (SDG 6), which advocates for clean water and
sanitation for all by 2030 [11].

Traditional in situ water sampling and ground measurements are time-consuming,
costly and labour-intensive [12,13]. In contrast, satellite-based remote sensing provides
an alternative by integrating remotely sensed data acquired by multispectral and thermal
sensors for large-scale monitoring of spatial and temporal changes in water quality param-
eters in inland water bodies [14–17]. Different sensors on satellites measure the radiation
at various wavelengths reflected from the water surface. These reflections can be used
directly or indirectly to detect different water quality indicators. The optically active pa-
rameters, including total suspended solids (TSS), Chromophoric dissolved organic matter
(CDOM), temperature and chlorophyll-a, can be directly derived from remote sensing
reflection [5,18].

Conversely, non-optically active substances such as chemical oxygen demand, total
nitrogen, electrical conductivity, pH, metals, and Escherichia coli (E. coli), which have no
direct optical properties, can be derived using proxies or artificial intelligence [19,20].
The principle behind water quality remote-sensing inversion is first to build a model
using empirical data from water quality monitoring and corresponding data from remote
sensing images (forward modelling), then use the model to obtain the temporal and spatial
distribution of water quality parameters [21,22]. Although positive outcomes have been
achieved by estimating optically active parameters in small water bodies using Landsat [23],
MODIS [24], MERIS [25], and Sentinel satellites [26], limitations still arise. Coarse spatial
resolutions hinder the monitoring of small-scale water bodies, atmospheric interferences
such as the presence of clouds, long revisit times, and data accessibility limitations, which
have been mentioned in the literature as some of the challenges [14,27].

Unmanned aerial vehicles (UAVs) or drones have recently emerged as a viable solution,
providing ultra-high spatial resolution data suitable for capturing detailed information on
water quality parameters in small inland water bodies [6,28,29]. UAVs offer an advanced,
practical, and near-real-time method for monitoring water quality parameters [28,30,31].
Since drone technology is fairly recent, studies such as Cillero Castro et al. [14] have
utilised satellite data as a primary source of information and drone-based data as a form of
validation when monitoring water quality in a reservoir in Spain. The performance of both
platforms was evaluated, and there was an agreement when comparing the water quality
parameter results from both platforms.

While agriculture is the major use for water stored in small water bodies [3], this review
focuses on three major water quality indicators for water suitable for irrigation, considering
that they can be measured using remote sensing techniques. This study focuses on surface
water temperature, total suspended solids (TSS), and Chromophoric dissolved organic
matter (CDOM). Water temperature is the measure of the kinetic energy of water, expressed
as ◦C (degrees Celsius) and changes in water temperature stem from changing climates,
precipitation and evaporation [5,32]. In agriculture, varying water temperatures from
irrigated water sources lead to decreased crop yields since changing water temperatures
directly impact soil temperatures, specifically for sensitive crops during growing stages [33].
Meanwhile, total suspended solids (TSS) are fine particles suspended in water, including
bacteria, algae, mineral particles, and organic debris [34,35]. An increase in the TSS in
reservoirs stems from increased soil erosion and runoff containing organic and inorganic
pollutants flowing into the reservoir [34].

Consequently, significant amounts of suspended sediments can affect drip, centre
pivot, and ditch irrigation methods [10]. Chromophoric dissolved organic matter (CDOM)
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is a fundamental subsection of dissolved organic matter (DOM). It comprises a combination
of compounds, dissolved organic matter and nutrients stemming from polluted residen-
tial, agricultural and industrial runoff [36]. Zheng et al. [36] further, explain that CDOM
reduces light penetration and limits the production of beneficial nutrients needed for crop
growth. These parameters are crucial for assessing the physical, chemical, and microbial
degradation of water quality, especially for agricultural use. Furthermore, given the preva-
lent challenges of water scarcity in Southern Africa, farmers require timely information
on water quality to sustain agricultural production and avert hunger and poverty. This
emphasises that the suitability of water needs to be monitored regularly to meet irrigation
and environmental standards as well as human and animal consumption standards [30].
Subsequently, by utilising drone-derived high spatial resolution information, farmers can
make educated decisions about how to conduct their everyday activities and early warning
systems for timely intervention, leading to resilience building and enhancing productivity
and economic benefits [6,30].

Therefore, this study aims to systematically review the literature on the utility of
remotely sensed data for monitoring surface water temperature, TSS, and CDOM in small
inland water bodies, particularly at a farm scale. The objectives are to evaluate the progress,
challenges and opportunities associated with implementing and utilising UAV-based re-
mote sensing to monitor water quality. This review is organised into several key sections.
Following the introduction of Section 1, Section 2 focuses on the methodologies used to
analyse the existing literature critically. Section 3 focuses on the results from the literature
analysis, highlighting the progress made utilising drone-based remote sensing, spectral
indices and machine learning algorithms for monitoring the water quality of inland water
bodies. Finally, Section 4 synthesises the study’s results and provides insight into the
limitations, research gaps, and research directions for future work using UAV-based remote
sensing for water quality monitoring.

2. Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
approach and checklist were used to conduct a comprehensive literature search, reduce
reporting biases, and provide an in-depth systematic review [37]. The methodology was
split into three steps: the literature search, data extraction and analysis.

2.1. The Literature Search

The initial step of the literature search was to identify keywords, terms, and phrases
about the scope of the intended study [38,39]. These keywords and phrases, along with
Boolean operators such as “AND”, “OR”, and “NOT” to form search strings which retrieved
relevant publications were put into five search engines, namely, SCOPUS, Web of Science,
Google Scholar, IEEE Xplore, and Science Direct, and filtered to ensure the relevant literature
about the mapping and monitoring of water quality in inland water bodies was retained [39].
The Boolean operators aided in determining inclusive/exclusive criteria for each search
string, which were restricted to keywords, titles, and abstracts of the relevant literature.
The search covered the period from 1980 to 2023, and 702 articles were retained from the
five search engines (Table 1).
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Table 1. Search strings for this review are made from keywords and Boolean operators.

Search Engine Search Criterion Total Number of Articles

Web of Science

TS = (“unmanned aerial vehicles” OR “drones” OR “UAVs” OR “remote
sensing”) AND (“water quality monitoring” OR “inland water quality”)
AND (“water bodies” OR “dams” OR “rivers” OR “reservoirs”) AND

(“TSS” OR “suspended sediment” OR “temperature” OR “CDOM”) NOT
(“sea water” OR “coastal water”)

328

Google Scholar

(“unmanned aerial vehicles” OR “drones” OR “UAVs” OR “UAS”) AND
(“water quality monitoring” OR “water quality assessment” OR “inland
water quality”) AND (“dams” OR “reservoirs”) AND (“remote sensing”)

AND (“TSS” OR “CDOM” OR “temperature” OR “Chromophoric dissolved
organic matter” OR “suspended sediments”) AND (“machine learning

algorithms” OR “regression algorithms”) NOT (“coastal waters” OR
“ocean water”)

165

Scopus

(TITLE-ABS-KEY (“Unmanned aerial vehicles” OR “drones” OR “UAVs”
OR “UAS”) AND (“water quality monitoring” OR “water quality

assessment” OR “inland water quality”) AND (“water bodies” OR “dams”
OR “reservoirs” OR “rivers”) AND (“TSS” OR “suspended sediment” OR

“CDOM” OR “Chromophoric dissolved organic matter” OR “temperature”)
AND NOT (“coastal waters” OR “groundwater”)

136

Science Direct
((“unmanned aerial vehicles” OR “drones” OR ‘UAVs”) AND (“water

quality imaging” OR “monitoring”) AND (“TSS” OR “CDOM” OR
“temperature”) NOT (“seawater”))

57

IEEE Xplore

(“All Metadata “unmanned aerial vehicles OR “All Metadata “drones OR
“All Metadata “UAVs) AND (“All Metadata “water quality monitoring OR
“All Metadata “inland water quality) AND (“All Metadata “TSS OR “All
Metadata “CDOM OR “All Metadata “temperature) AND (“All Metadata

“remote sensing) NOT (“All Metadata”: ocean water)

16

Total number of Articles retained 702

All the retrieved literature was exported into Endnote for further screening processes.
The screening process was conducted in five stages. Firstly, 68 duplicates were removed
since similar search terms can result in the same papers appearing across multiple search
engines. The second step involved excluding 12 papers not written in English and 43 papers
not identified as journal articles (such as conference proceedings). Thirdly, the abstracts
of the remaining articles were read. A total of 282 papers which conducted predictive
modelling, observed coastal regions and those which did not fit the scope of the study were
excluded. Finally, 297 full-length articles were downloaded and exported into an Excel
spreadsheet for further screening. Upon the last stage of screening, the inclusion criteria
focused on selecting articles which:

1. Monitored any of the three specific parameters of TSS, CDOM, or temperature.
2. Involved in utilising unmanned aerial vehicles as a platform to aid remote sensing

techniques.

This resulted in 247 articles being excluded (Figure 1) since they focused solely on
satellite-based remote sensing, on monitoring other water quality parameters outside of the
specified parameters, or utilised UAVs for groundwater monitoring, and numerous articles
which utilised UAVs to collect water samples rather than a platform for remote sensing
sensors. After that, the final 50 articles were thoroughly read, and valuable characteristics
were extracted and recorded.



Drones 2024, 8, 733 5 of 21Drones 2024, 8, x FOR PEER REVIEW 5 of 22 
 

 
Figure 1. Selection of the studies considered in this review. 

2.2. Data Extraction 
During the data extraction process, the previously created spreadsheet was used to 

record bibliometric data such as author names, year of publication, title of article, abstract 
and keywords from each article, along with characteristics such as the study site or coun-
try, type of water body, scale of water body, water quality parameter, platform type, sen-
sor type, in situ validation techniques, algorithms or models, and statistical metrics used. 
This captured information highlighted the existing gaps, and the progress made when 
referring to the use of UAVs in water quality monitoring at a regional scale. 

2.3. Data Analysis 
Both quantitative and qualitative analyses were performed on the identified litera-

ture. A simple frequency analysis was performed for the quantitative assessment, while 
trend analysis was used to determine the qualitative characteristics of the literature. Ad-
ditionally, this method was carried out to evaluate the advancements of UAVs for moni-
toring water quality by statistically assessing the occurrence and co-occurrence of key 
terms using VOS viewer (version 1.6.20) software [38]. The VOS viewer software was 
adopted for text mining and displaying bibliometric maps of key terms relating to the use 
of drone technology for water quality monitoring [40]. Studies that have utilised the soft-
ware, such as Bangira [6], explain that it is advantageous in showcasing the current status 
of water quality research, developing trends, and most cited authors. It is useful for fore-
casting the future direction of disciplines and research themes. Once the screening and 
data extraction processes were complete, the articles’ titles, keywords and abstracts were 
imported into the VOS viewer programme to commence text mining. These results high-
lighted recurring key terms throughout the selected literature. 

Figure 1. Selection of the studies considered in this review.

2.2. Data Extraction

During the data extraction process, the previously created spreadsheet was used to
record bibliometric data such as author names, year of publication, title of article, abstract
and keywords from each article, along with characteristics such as the study site or country,
type of water body, scale of water body, water quality parameter, platform type, sensor
type, in situ validation techniques, algorithms or models, and statistical metrics used. This
captured information highlighted the existing gaps, and the progress made when referring
to the use of UAVs in water quality monitoring at a regional scale.

2.3. Data Analysis

Both quantitative and qualitative analyses were performed on the identified literature.
A simple frequency analysis was performed for the quantitative assessment, while trend
analysis was used to determine the qualitative characteristics of the literature. Additionally,
this method was carried out to evaluate the advancements of UAVs for monitoring water
quality by statistically assessing the occurrence and co-occurrence of key terms using VOS
viewer (version 1.6.20) software [38]. The VOS viewer software was adopted for text mining
and displaying bibliometric maps of key terms relating to the use of drone technology for
water quality monitoring [40]. Studies that have utilised the software, such as Bangira [6],
explain that it is advantageous in showcasing the current status of water quality research,
developing trends, and most cited authors. It is useful for forecasting the future direction
of disciplines and research themes. Once the screening and data extraction processes
were complete, the articles’ titles, keywords and abstracts were imported into the VOS
viewer programme to commence text mining. These results highlighted recurring key
terms throughout the selected literature.
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3. Results
3.1. Spatial Distribution of UAV-Based Literature for Water Quality Monitoring

The spatial distribution of the identified literature is depicted in Figure 2. More
research has been conducted in the USA, Latin America, Europe, and South-East Asia
compared to Africa and Southern Africa. The USA and China had the highest number of
12 UAV-based articles monitoring TSS, temperature, and CDOM. This was followed by
Brazil having four articles, Spain having three, India and South Korea having two, and
countries such as South Africa, Namibia, Zimbabwe, Malawi, The United Kingdom and
Chile having one article. Figure 2 also displays that the region of Southern Africa only
accounted for 6.3% of the selected literature compared to South Asia, which accounted for
50%, and North and South America, which accounted for 25% and 10.4%, respectively. It is
also apparent that no study in Africa’s West, North, and Central regions used UAV-based
remote sensing to monitor TSS, temperature, and CDOM in water sources.
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3.2. Keyword Analysis

Figure 3 highlights the important terms from the selected articles’ titles, keywords
and abstracts. Text mining was used to illustrate the evolution and direction of research,
and four clusters were evident. Looking at each cluster in depth, it is visible that the
keywords from cluster 1 are ‘parameter’, ‘Unmanned Aerial Vehicle’, ‘machine learning’
and ‘random forest’, which highlight what aspect of water quality is being measured, the
remote sensing platform used as well as the processes used to understand and interpret
UAV derived data. Cluster 2 highlights keywords such as ‘performance’, ‘water sample’,
‘lake’, ‘drone’, ‘UAV’, ‘RMSE’ (Root Mean Square Error), ‘USA’ and ‘temperature’. This
suggests linkages between the performance of drone technology and in situ data taken
from water samples. It also highlights the major drone technology advancements in the
United States of America compared to the rest of the world. Cluster 3 emphasises words
such as ‘sensor’, ‘reservoir’, ‘estimation’, ‘mapping’, ‘TSS’, ‘case study’ and ‘chlorophyll’,
suggesting links to water quality monitoring and highlighting the most optically active
water quality parameters which can be detected by remote sensing. Finally, cluster 4
highlights keywords like ‘water’, ‘sentinel’, ‘Landsat’, ‘correlation’, ‘total nitrogen’, ‘total
phosphorus’, ‘organic matter’ and ‘human activity’. This emphasised the use of satellite-
based remote sensing to determine water quality parameters. Satellite remote sensing
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terminology stems from studies that observed UAV and satellite-derived data to analyse
the selected water quality parameters. In such cases, UAV-based data were validated
against satellite data from Sentinel and Landsat.
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3.3. Progress of Remotely Sensed Water Quality Monitoring

Primarily, this review focused on using UAV-derived remotely sensed data to monitor
surface water temperature, TSS, and CDOM. However, several studies utilising satellite-
based remote sensing and comparing it with UAV-based remote sensing were selected, as
they highlighted valuable techniques regarding temperature, TSS, and CDOM. In these
studies, UAV-based data, in situ sampling, measurements, and laboratory analysis were
used to validate satellite data. Figure 4 illustrates that there has been much focus on the
mapping and modelling water quality using both remotely sensed satellite and UAV data,
with the number of studies steadily increasing. Although remote sensing techniques have
been popular since the 20th century and the selected range for this literature search was from
1980 to 2023, it is evident that there had only been a steep increase in published literature
utilising UAV data since 2012. Before this, remote sensing was primarily conducted via
satellites. When observing Figure 4, it is evident that Landsat 8 OLI has appeared more
frequently within the selected studies and accounted for 13% of the total selected studies
since UAV data were used for validation. For instance, a study by Xiao [41] to monitor TSS
across a lake utilised UAV-based data to calibrate satellite-based models directly. The results
of this study exclaimed that the UAV-based data improved the satellite-based models due
to the advances in spatial resolutions.
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Additionally, 2021 and 2023 accounted for the remaining studies using UAV and
satellite-based sensors such as Landsat 5, 7, and 9, ASTER, MODIS, MERIS, and Sentinel 2.
Alternately, Figure 4 highlights the significant increase in studies that ventured solely into
using UAV-based data for mapping and monitoring water quality parameters. From 2020
to 2023, it is evident that there has been a significant increase in UAV-based studies, with
47% of the selected studies being found in this period. Additionally, the average number of
UAV-based articles for these four years was eight articles per year.

Figure 5 illustrates the parameters detected using UAV-based remote sensing only
and the percentage they account for within the selected studies. Many studies focused on
more than one parameter in conjunction with temperature, TSS, and CDOM. For example,
Womber et al. [42] measured TSS with Turbidity and Secchi Disk Depth (SDD) in a large
lake in Ethiopia. The authors found that changes in TSS concentrations influence Turbidity
and SDD measurements, such that increased TSS resulted in increased turbidity in the
lake. Furthermore, since the main objective of this review focused on TSS, surface water
temperature and CDOM, these parameters appeared more frequently within the studies
(Figure 5). Figure 5 shows that turbidity accounted for 13.6%, chlorophyll was 12%,
temperature was 11.2%, TSS was 10.4%, CDOM was 4%, etc. These parameters occurred
more frequently in studies since they are said to be more ‘optically active’ than other water
quality parameters. This means their particles scatter more light, making them easily
detectable via UAV sensors [43]. Parameters that accounted for less than 4% of the total
studies were combined to form the ‘other’ category. These included salinity, total dissolved
solids, algae content, dissolved organic carbon, and Secchi Disk Depth, which comprised
10.4% combined. Temperature, TSS, and CDOM formed a combined total of 25.6% of the
selected literature.
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3.4. Characteristics of Sensors and UAV Platforms

Figure 6 shows that various UAV platform types have been utilised throughout the
years, including the DJI, the Octocopter, and the Sense fly eBee. The multicopter DJI UAV
platform was dominantly used and accounted for 76% of the selected studies. For example,
Lo [18] utilised a DJI drone to estimate the temperature in a lake in China. It has been a
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popular choice of platform since 2020. The reason for the dominance of the DJI platform is
that it is more compatible with many types of sensors and is better suited to surface water
resource mapping, according to Brito [44]. The DJI platforms are also more cost-effective,
and their taking-off and landing systems are advantageous. Conversely, the MD4-1000,
Sense fly eBee, Hexacopter, Octocopter, and 3DRSolo accounted for 4.8% individually.
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Regarding sensor types, it is apparent that multispectral sensors appeared more
frequently than thermal or hyperspectral sensors when characterising surface water tem-
perature, TSS and CDOM (Figure 7). The multispectral sensor is cost-effective compared
to the hyperspectral sensor and observes more multiple spectral bands than the thermal
sensor. Thus, they are widely used. The multispectral sensor captures imagery within the
visible spectrum, at red, green, and blue bands and outside of the visible spectrum at the
near-infrared, red-edge, and thermal infrared portions of the electromagnetic spectrum.
Furthermore, while water temperature can be monitored using thermal infrared bands,
CDOM uses blue and green bands, while TSS uses red and near-infrared bands, which
is further emphasised by Figure 7. Multispectral sensors were used to detect all three
water quality parameters; however, thermal sensors were used mainly to detect water
temperature and TSS. Multispectral and hyperspectral sensors were used for CDOM since
they fall within the blue and green bands of the electromagnetic spectrum, and for TSS,
they fall within the red and near-infrared bands.
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3.5. Spectral Indices Used for Estimating Surface Water Temperature, TSS and CDOM in Inland
Water Bodies Using Sensors Onboard UAVs

Studies have derived spectral indices algorithms using individual bands or multiple
bands to predict the concentration of TSS, CDOM, and water temperature in inland water
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bodies. The combination of spectral indices and machine learning algorithms has signifi-
cantly improved estimation and prediction models in estimating surface water temperature,
TSS, and CDOM in small water bodies [45]. Figure 8 shows indices commonly used to
retrieve biophysical information about a study site by differentiating landcover spectral val-
ues. For example, these spectral indices were used to delineate between a water body and
its surrounding vegetation, which influences the concentrations of TSS or CDOM within
the water body. Furthermore, it is evident in Figure 8 that NDVI and NDWI appeared in
most studies, accounting for 41.2% and 11.8%, respectively. These two indices were more
frequently utilised due to their common red and near-infrared wavebands [46].
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Table 2 presents indices for detecting TSS and CDOM in inland water bodies. These
spectral indices were used to quantify the concentration of TSS and CDOM and were
derived from reflected or absorbed wavelengths [45]. Spectral indices for TSS are typically
derived from wavelengths from the red and near-infrared portions of the electromagnetic
spectrum due to suspended particles reflecting scattered light. Spectral indices for CDOM
are derived from wavelengths in the visible and ultraviolet portions of the electromagnetic
spectrum due to light absorption [26,47]. Table 2 presents spectral indices found in the
literature and their R2 value. It is evident that for TSS, indices from Veronez et al. [48]
and Rahul [26] obtained the highest R2 values, indicating strong performances when
quantifying TSS concentrations, while Kutser et al. [49] and Fan [50] obtained the highest
R2 values when quantifying CDOM concentrations. These high R2 values can be attributed
to feature enhancement since variations in spectral bands highlight specific TSS and CDOM
characteristics [45].

Furthermore, these spectral indices, used to identify spectral changes and bands, can be
combined with machine learning algorithms to produce models for testing and validating
drone-derived data. A study conducted by Veronez et al. [48] made use of spectral indices,
utilising red and near-infrared portions of the electromagnetic spectrum as well as the
Artificial Neural Network machine learning algorithm to predict the correlation between
the indices and TSS and CDOM concentration values in an artificial lake. The results in
Table 2 were in agreement such that TSS × NDVI had an R2 value of 0.65, TSS × NDWI
had a value of 0.76, CDOM × NDVI had a value of 0.54, and CDOM × NDWI had a value
of 0.59. Additionally, it can be noted that in the literature, indices used to estimate surface
water temperature were scarce since only thermal bands are used, compared to TSS and
CDOM, which utilise a range of spectral bands.
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Table 2. Spectral indices utilised in the literature to characterise TSS and CDOM.

Water Quality
Parameter Formula R2 Characteristics of the

Study Area Author and Year

TSS

TSS = 45.4 × NDVI 2 + 43.1 × NDVI +
20.9

0.65 Small artificial lake in the
South of Brazil

Veronez et al. [48]

TSS = 68.7 × NDWI 2 − 111.2 × NDWI +
56.1

0.76

TSS =
151.2 + (384 × (RE)) + (173.9 ×

(
G
R

)
)

Where G is the green band (480–520 nm)
and R is the red band (640–680 nm)

0.60

Stream is located in
Alabama, USA

Larson [47]
Prior [51]

TSS = 142.7 − (53.8 ×
( R

RE
)
)

Where R is the red band (640–680 nm) and
RE is the red-edge band (730–740 nm)

0.60

TSS = 8133.15 − 11002.9 × B7
(B6+B8A)

Where B7 is 783 nm, B6 is 740 nm and B8A
is 865 nm

0.73 Lake situated in Tamil
Nadu, India Rahul [26]

CDOM

CDOM = 244.9 × NDVI 3 + 186.2 ×
NDVI2 + 7 × NDVI + 21.8

0.54
Small artificial lake in the

South of Brazil
Veronez et al. [48]

CDOM = 2119.5 × NDWI 3 + 4559.1 ×
NDWI2 − 2760.4 × NDWI + 603.6

0.59

aCDOM (420) = 5.20x−2.76

Where aCDOM (420) is the absorption of
CDOM at 420 nm

0.84 Lake located in Finland Kutser et al. [49]

CDOM = 0.89 × ρ700 nm
ρ450 nm − 0.15

Where ρ is the spectral reflectance at
wavelengths 700 nm and 450 nm

0.83 River, located in the USA Fan [50]

3.6. Machine Learning Algorithms

Machine learning algorithms offer great opportunities for assessing, classifying, and
predicting surface water temperature, TSS, and CDOM in water quality studies for small in-
land water bodies using remotely sensed data acquired by sensors onboard UAVs. Figure 9
shows that linear regression (LR), empirical methods, random forest classification (RF),
support vector machines (SVM), artificial neural networks (ANN), XGBoost, deep neural
networks (DNN), and gradient boost decision trees (GBDT) were the most used algorithms.
Linear regression appeared more frequently than other statistical methods in 27.5% of the
total articles.

The random forest and empirical methods appeared in 12.5% of the total articles. SVM
and ANN appeared in 11.25% and 10%, respectively, and each of the remaining algorithms,
such as IMP-MPP, LSTM, Semi-empirical, Semi-analytical, LASSO, GBDT, DNN, and XG
Boost, appeared in less than 7% of the total number of articles.

Fifty articles were chosen as case studies to identify further and explain algorithmic
trends. Although the selected articles provided valuable information about monitoring
surface water temperature, TSS and CDOM in small water bodies, not all of these articles
solely utilised drone remotely sensed data or stated the validation techniques used. Ap-
proximately 35% of the selected articles utilised satellite-based remote sensing and only
used drone-derived data as a validation technique. Moreover, 40% of the articles omitted
information about in situ data collection approaches, the statistical methods used, or root
mean square error (RMSE), resulting in the error assessment (R2) being considered only.
For this reason, these articles were excluded from the case studies (Table 3).



Drones 2024, 8, 733 12 of 21
Drones 2024, 8, x FOR PEER REVIEW 12 of 22 
 

 
Figure 9. Machine learning algorithms used to detect and map surface water temperature, TSS, and 
CDOM. (IMP-MPP = improved matching pixel by pixel; LSTM = Long Short-Term Memory; LASSO 
= Least Absolute Shrinkage and Selection Operator; GBDT = Gradient Boost Decision Trees; DNN = 
Deep Neural Networks; ANN = Artificial Neural Networks; SVM = Support Vector Machines; RF = 
Random Forest; LR = Linear Regression). 

The random forest and empirical methods appeared in 12.5% of the total articles. 
SVM and ANN appeared in 11.25% and 10%, respectively, and each of the remaining al-
gorithms, such as IMP-MPP, LSTM, Semi-empirical, Semi-analytical, LASSO, GBDT, 
DNN, and XG Boost, appeared in less than 7% of the total number of articles. 

Fifty articles were chosen as case studies to identify further and explain algorithmic 
trends. Although the selected articles provided valuable information about monitoring 
surface water temperature, TSS and CDOM in small water bodies, not all of these articles 
solely utilised drone remotely sensed data or stated the validation techniques used. Ap-
proximately 35% of the selected articles utilised satellite-based remote sensing and only 
used drone-derived data as a validation technique. Moreover, 40% of the articles omitted 
information about in situ data collection approaches, the statistical methods used, or root 
mean square error (RMSE), resulting in the error assessment (R2) being considered only. 
For this reason, these articles were excluded from the case studies (Table 3). 

Table 3. Case studies used to emphasise the statistical methods used for estimating temperature, 
TSS and CDOM from drone-derived data and their error assessment (R2). 

Title Location of 
the Study 

Parameter In Situ Data Col-
lection Technique 

Statistical Tech-
nique 

Fit Error 
Metric (R2) 

Author and 
Year 

Evaluation of surface water 
quality of Ukkadam Lake in 
Coimbatore using UAV and 
Sentinel-2 multispectral data 

India TSS Colorimeter Linear regression 0.86 Rahul [26] 

Evaluation of water quality 
based on UAV images and the 

IMP-MPP algorithm 
China TSS  

IMP-MPP algo-
rithm 0.825 Ying [52] 

Low-Cost Unmanned Aerial 
Multispectral Imagery for Silta-
tion Monitoring in Reservoirs 

Brazil TSS TriOS RAMSES 
spectroradiometer 

Empirical and 
semi-empirical 

models 
0.94 Olivetti [53] 

Figure 9. Machine learning algorithms used to detect and map surface water temperature, TSS,
and CDOM. (IMP-MPP = improved matching pixel by pixel; LSTM = Long Short-Term Memory;
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RF = Random Forest; LR = Linear Regression).

Table 3. Case studies used to emphasise the statistical methods used for estimating temperature, TSS
and CDOM from drone-derived data and their error assessment (R2).

Title Location of
the Study Parameter

In Situ Data
Collection
Technique

Statistical
Technique

Fit Error
Metric (R2) Author and Year

Evaluation of surface water
quality of Ukkadam Lake in
Coimbatore using UAV and
Sentinel-2 multispectral data

India TSS Colorimeter Linear regression 0.86 Rahul [26]

Evaluation of water quality
based on UAV images and the

IMP-MPP algorithm
China TSS IMP-MPP

algorithm 0.825 Ying [52]

Low-Cost Unmanned Aerial
Multispectral Imagery for

Siltation Monitoring in
Reservoirs

Brazil TSS TriOS RAMSES
spectroradiometer

Empirical and
semi-

empirical models
0.94 Olivetti [53]

A method for chlorophyll-a and
suspended solids prediction
through remote sensing and

machine learning

Brazil TSS APHA standard
weighing method RF 0.81 Silveira-

Kupssinskü [54]

Machine learning models
applied to TSS estimation in a
reservoir using a multispectral

sensor onboard to RPA

Brazil TSS APHA standard
weighing method SVM 0.869 Dias [55]

Proposal of a method to
determine the correlation

between total suspended solids
and dissolved organic matter in

water bodies from spectral
imaging and artificial

neural networks

Brazil TSS APHA standard
weighing method ANN 0.77 Vernonez [56]
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Table 3. Cont.

Title Location of
the Study Parameter

In Situ Data
Collection
Technique

Statistical
Technique

Fit Error
Metric (R2) Author and Year

Local algorithm for monitoring
total suspended sediments in

micro-watersheds using drone
and remote sensing applications.

Case study: Teusaca River, La
Calera, Columbia

Columbia TSS Sampling and lab
analysis Linear regression 0.887 Saenz, et al. [57]

Machine learning algorithm
inversion experiment and
pollution analysis of water

quality parameters in urban
small and medium-sized rivers

based on UAV
multispectral data

Korea TSS APHA standard
weighing method RF 0.635 Hou [22]

Inland waters suspended solids
concentration retrieval based on

PSO-LSSVM for UAV-borne
hyperspectral remote

sensing imagery

China TSS Sampling and lab
analysis SVM 0.96 Wei et al. [58]

Drone with a thermal infrared
camera provides high-resolution

georeferenced imagery of the
Waikite geothermal area,

New Zealand

New Zealand Temp Linear regression 0.98 Harvey et al. [59]

Monitoring Phytoplankton
Biomass and Surface

Temperatures of Small Inland
Lakes by Multispectral and

Thermal UAS imagery

USA Temp Multiprobe Linear regression 0.31 Bartel [60]

Medium-Sized Lake Water
Quality Parameters Retrieval

Using
Multispectral UAV Image and

Machine
Learning Algorithms: A Case

Study of the Yuandang
Lake, China

China Temp Multiprobe Gradient boosting 0.75 Lo [18]

Urban Land Surface
Temperature

Monitoring and Surface
Thermal Runoff Pollution

Evaluation Using UAV Thermal
Remote Sensing Technology

China Temp Thermometer Linear regression 0.83 Xu [61]

The impacts of environmental
variables

on water reflectance measured
using a

lightweight unmanned aerial
vehicle (UAV)- based
spectrometer system

Canada CDOM In situ sensor Linear regression 0.61 Zeng et al. [62]

UAV Multispectral Image-Based
Urban River Water Quality
Monitoring Using Stacked

Ensemble Machine Learning
Algorithms—A Case Study of

the Zhanghe River, China

China CDOM In situ sensor XGBoost 0.92 Xiao [28]

Remote sensing Estimation of
CDOM and DOC with the

Environmental implications for
Lake Khanka

China CDOM Spectrophotometer GBDT 0.95 Qiang, et al. [63]
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Table 3. Cont.

Title Location of
the Study Parameter

In Situ Data
Collection
Technique

Statistical
Technique

Fit Error
Metric (R2) Author and Year

Estimation of the
Biogeochemical and Physical
Properties of Lakes Based on
Remote Sensing and Artificial

Intelligence Applications

Estonia CDOM XGBoost 0.92 Toming, et al. [64]

Underwater Use of a
Hyperspectral Camera to
Estimate Optically Active

Substances in the Water Column
of Freshwater Lakes

Germany CDOM Fluorometer
Empirical and
semi-empirical

models
0.47 Seidel, et al. [65]

Estimation of Water Quality
Parameters

in Oligotrophic Coastal Waters
Using Uncrewed-Aerial-Vehicle-

Obtained Hyperspectral Data

Croatia CDOM Fluorometer Linear regression 0.92 Divi’c, et al. [66]

Autonomous learning of new
environments with a robotic

team employing Hyperspectral
Remote sensing, Comprehensive

in-situ sensing and
machine learning

USA CDOM In situ sensor Linear regression 0.97 Lary et al. [67]

Table 3 consists of case studies from various regions across the globe, emphasising
the statistical methods used for estimating each of the three water quality parameters
(temperature, TSS, and CDOM), as well as the in situ data collection technique used and
the error assessment (R2). For TSS, several studies were conducted in South America and
across Asia. They used the APHA standard weighing method to analyse water samples
taken in the field, colorimeters, and TriOS RAMSES for spectro-radiometric data. These
techniques were utilised as validation techniques. Alternately, these studies used varying
statistical methods and machine learning algorithms. For instance, a study by Wei et al. [58]
utilised the support vector machine algorithm to estimate TSS from hyperspectral UAV
imagery and produced an R2 value of 0.96. Similarly, the study by Olivetti [53] utilised
empirical and semi-empirical equations and models to estimate TSS from multispectral
UAV imagery, resulting in an R2 value of 0.94. Furthermore, Saenz et al. [57] used linear
regression to produce an R2 value of 0.887.

Studies on CDOM were conducted in North America, Europe, and Asia, where in situ
measurements were primarily taken using sensors, fluorometers, and a spectrophotometer.
Additionally, these studies utilised different statistical methods and algorithms such as
linear regression, XGBoost, gradient boost decision trees (GBDT) and empirical methods.
The studies compiled by Lary et al. [67], Divi’c et al. [66] and Zeng et al. [62] utilised linear
regression to estimate CDOM from UAV imagery and resulted in an R2 value of 0.97, 0.92,
and 0.61, respectively. Following this, other studies utilised gradient boost decision trees,
XGBoost, and empirical methods to estimate CDOM in water sources, producing values of
0.95, 0.92, and 0.92, respectively.

Finally, when looking at temperature, 50% of the studies took place in China and
utilised in situ thermometers and multiprobes. Additionally, most studies utilised linear
regression, resulting in the highest R2 value of 0.98, as seen in the study by Harvey et al. [59].
Furthermore, Table 3 highlights the statistical methods most used for TSS, CDOM, and
temperature estimation, which happens to be linear regression, emphasised in Figure 9.
This is due to linear regression being easier to understand and implement. Additionally,
this can be said for empirical methods that utilise spectral band rations and indices to
assess water quality parameters based on remotely sensed data from drones. Furthermore,
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Figure 10 was generated to assess the magnitude of performance of the most commonly
used algorithms and statistical methods from the case studies.
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Figure 10 highlights the average error assessment of machine learning algorithms,
their use for estimating TSS, CDOM, and surface water temperature, and how many articles
appeared. Linear regression was the most commonly used method, appearing in eight
articles and was used to estimate all three water quality parameters and obtained an
average error of assessment value of 0.8. This signifies a good correlation between the
drone-derived and in situ data, utilising linear regression for further estimation. XGBoost
obtained the highest average R2 from the case studies with a value of 0.92 and was used in
two articles for estimating CDOM. Alternately, SVM, ANN, and RF algorithms obtained
average R2 values of 0.91, 0.77, and 0.72, respectively, and these were used solely to estimate
TSS in the case studies. GBDT and empirical methods obtained average values of 0.85 and
0.71, respectively, and were utilised to estimate CDOM. Furthermore, all algorithms and
statistical methods obtained average error assessment values above 0.7. This indicates good
performance since values closer to 1 represent higher estimation accuracies.

4. Discussion
4.1. Progress in the Remote Sensing of Temperature, TSS and CDOM Using Drone Technologies

In recent years, UAV-based remote sensing has significantly monitored TSS, CDOM
and surface water temperature in small water bodies. However, when looking at the spatial
distribution of these efforts, it is evident that there has been much effort in the USA and
China (Figure 2) since the earliest drone technologies began in the 1850s in Europe, the USA,
and China [38]. These are considered “technologically advanced” nations compared to
many other regions, such as Africa, which lack the resources and skilled labour to conduct
such research. However, the use of drone technology has spread worldwide over the
past decade [38]. Furthermore, Sibanda et al. [38] emphasised that the utility of drone
technology in Southern Africa was still rudimentary; however, a few years later, there has
been significant progress illustrated by a sharp increase in the number of studies utilising
drone technology for TSS, water temperature and CDOM, specifically in South Africa,
Zimbabwe, and Namibia (Figure 2).

Over the past decades, satellite-based remote sensing has been the dominant and
conventional earth observation approach [68]. However, using UAVSs has recently been
demonstrated to be a more effective and reliable technique, especially when dealing with
small inland water bodies, since they offer fine-resolution data in near real-time. For
this reason, many identified sources in the literature compared satellite and drone-based
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techniques. These studies use drone-based data to validate satellite-based data for water
temperature, TSS, and CDOM. As depicted in Figure 4, UAVs appeared more frequently in
the literature since this review focused on the application of drone technologies. However,
numerous widely used satellite sensors also appeared in conjunction with UAVs. These
were predominantly Landsat, Sentinel 2 MSI, MODIS, and MERIS. When looking specif-
ically at satellite sensors, it is evident that Landsat 8 operational land instrument (OLI)
appeared in numerous studies compared to the other sensors (Figure 4). According to
Gholizadeh et al. [43], this is due to Landsat being the longest free-supplying mission of
remotely sensed data and being the best suited for identifying water quality parameters.
Furthermore, satellite sensors are prone to limitations such as cloud cover and lagged
return times. They produce coarser resolution images that are inadequate for water quality
monitoring in small inland dams [69].

Subsequently, the results from this review suggest that the most commonly used UAV
platform has been the DJI drone due to its compatibility and versatility (Figure 6). This
platform is relatively affordable, with supplies available globally and is user-friendly for
commercial UAV operations since it provides high-resolution images [70,71]. Along with
this platform, multispectral imaging sensors are the most appropriate for water quality
monitoring (Figure 7). However, the results indicated that several studies used hyperspec-
tral imaging sensors compared to multispectral sensors. This is because hyperspectral
sensors have hundreds of spectral bands compared to multispectral sensors’ 4–6 bands.
These multispectral bands are also narrower, allowing for increased sensitivity to water
quality parameters such as TSS, CDOM, and surface water temperature [72]. However,
hyperspectral is very costly and has a greater weight, thus requiring bigger UAV platforms.

Furthermore, remote sensing-based approaches for estimating temperature, as well as
TSS and CDOM, involve establishing relations between these parameters and the spectral
properties of remote sensing images. According to Adjovu [5], these main approaches
include empirical, analytical, semi-empirical, and artificial intelligence methods. Adjovu [5]
further explains each method, starting with empirical methods, which utilise linear statis-
tical relationships derived from measured remote sensing spectral properties and water
quality parameters. This simple and straightforward approach has been used to effectively
estimate and retrieve water quality data. Analytical methods involve using bio-optical and
transmission models to simulate how light is spread in water bodies and the relationship
between water quality parameters and their reflection. Since this method utilises models,
it is considered more complex than the empirical method. Semi-empirical methods are
a combination of empirical and analytical methods. In this method, the spectral charac-
teristics of the water quality parameters are known, and the appropriate combination of
wavebands is used as a correlate. The spectral radiance is recalculated to values above
the surface irradiance reflectance and then, through regression techniques, related to the
water quality parameters. Finally, artificial intelligence (AI) methods utilise an implicit
algorithm approach that differs from the three other approaches. AI applications capture
linear and nonlinear relationships compared with conventional statistical approaches and
are the most advanced and complex of the approaches [5].

Drawing from Table 3, a variety of algorithms/regression approaches were used in
the case studies to determine TSS, surface water temperature, and CDOM. Regarding
TSS, Support Vector Machines yielded the highest R2 value of 0.96, followed by empirical
and semi-empirical approaches, which yielded the second-highest R2 value of 0.94. For
Temperature, three of the four observed case studies utilised linear regression statistical
approaches, yielding the highest R2 values of 0.98. Furthermore, for CDOM, various
techniques were used, including XGBoost, gradient boost decision trees (GBDT), and
linear regression, which yielded the highest R2 of 0.97. Therefore, moving forward, these
techniques can be combined with spectral bands and indices to produce models for testing
and validating drone-derived data, which can be considered for use in further research.
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4.2. Limitations of Utilising Drone Technologies in Monitoring TSS, CDOM and Water
Temperature in Small Water Bodies

Although drone technologies have been proven beneficial for monitoring water tem-
perature, CDOM, and TSS, there are many limitations, specifically in Southern Africa. One
of the limitations is the cost of equipment. Although this technique is low-cost, acquiring a
licence, a suitable UAV platform, and various sensors can become costly, specifically when
limited funding is available [5]. Furthermore, these costs raise concerns about security, theft,
and damage to equipment, which lead to the limited use of drone technology. Additionally,
since the use of drone technology is still a novel approach for water quality monitoring
in Southern Africa, there is a lack of skilled and trained technicians who can operate the
drones over water bodies as well as a lack of trained professionals who can interpret the
collected data [5].

Further challenges include connectivity issues since many parts of Southern Africa
lack network coverage. Technical challenges include limited battery efficiency, flight ranges,
and limited altitudes of drones. Environmental challenges, such as the interference of
drone technology on wildlife and challenges due to weather sensitivity, such as heavy
rainfall periods experienced in Southern Africa during summer months, hinder drone
flights. Furthermore, aviation restrictions and privacy concerns limit where drones can
be flown.

4.3. Research Gaps

While drone-based remote sensing for monitoring inland water quality has made great
progress in recent years, numerous research gaps are still evident in the literature. The
first gap is the limited use of UAVs for monitoring water temperature, TSS, and CDOM
in Africa. The literature highlighted that parameters such as chlorophyll content, total
nitrogen and total phosphorus are more frequently monitored in small water bodies across
other world regions. At the same time, only a limited number of studies were performed in
Africa, particularly Southern Africa. This highlighted a gap which addresses the lack of
variation in drone-based remote sensing performs across diverse climatic zones, natural
disasters like droughts and water conditions such as turbidity, flow regimes, and vegetation
interference. Additionally, most studies focused on large lakes, rivers, and coastal regions,
with limited research on smaller inland water bodies such as reservoirs. Furthermore, there
were evident gaps surrounding the lack of field validation studies. Numerous studies
provided systematic reviews, overviews and reports regarding the advancements in drone
technology; however, there is a shortage of field validation studies or case studies that have
deployed drone technology to monitor water quality. This highlighted the underutilisation
of advanced sensors such as LiDAR and Worldview2-3 to capture detailed water quality
parameters and the lack of integration of in situ measurements coupled with remote
sensing to improve accuracy and reliability. The limitations of drone technology, such
as the cost, technical skills and regulatory challenges, limit real-time monitoring and
reporting for immediate decision making in water resource management. Subsequently,
this emphasises gaps regarding interdisciplinary and collaborative research approaches
with minimal exploration of how drone-based remote sensing could be beneficial and
accessible to farmers, local governments, and policymakers to generate actionable solutions
for water management and water quality monitoring on a farm scale.

4.4. Future Research Directions

Future research should enhance field validation techniques by building on the iden-
tified research gaps. Research is needed to create robust and standardised protocols for
validating drone-based data and to ensure consistency and accuracy for different appli-
cations and uses in various industries. Additionally, hybrid methods combining drone
data with satellite imagery (from Worldview or Sentinel) and in situ measurements can
produce a comprehensive, multiscale view of the studied water systems. Subsequently,
increased research is needed to monitor less mainstream water quality parameters such
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as TSS and CDOM since these parameters are of great importance in the agricultural
and industrial sectors. Additionally, understanding an array of water quality parameters
provides a comprehensive understanding of water quality. Future research is needed to
encourage interdisciplinary applications of drone-based remote sensing. This will enable
collaborations between drone-based data and hydrological and environmental modelling,
as well as water management and policy development. Long-term research is also needed
to assess the scalability, repeatability, and cost-effectiveness of using drone-based mon-
itoring that will aid in understanding real-time monitoring capabilities for emergencies
such as pollution events or management of resolving harmful algal blooms. Since there is
a lack of research conducted on small inland water bodies, future research is encouraged
across these water bodies since they play a great role in the development of the region they
occupy. These small water bodies are often utilised for agricultural and industrial purposes
or for domestic uses and further research in monitoring these water bodies could have
great socio-economic benefits. Lastly, increased research efforts in Africa would be highly
beneficial due to the continent’s unique climatic zones, addressing water quality challenges
and environmental sustainability. Increased research and use of drone technologies are also
beneficial for socio-economic efforts, aiding farmers with the management and production
of crop yields and for capacity building since communities will be leaning and applying
new skills.

5. Conclusions

This systematic review highlights the progress, advantages and disadvantages of
utilising sensors onboard UAVs to monitor surface water temperature, TSS and CDOM in
small inland water bodies. A comprehensive literature search was conducted by utilising
the PRISMA guidelines and through a transparent screening process, the literature was
critically assessed for relevance and quality. This identified the overall trend of publications
and the interlinkages between the characteristics of the sensors, techniques and validation
methods. The results indicated that while significant progress has been made globally, there
has also been an increase in progress made within Southern Africa. The findings suggest
that while the application of drone technologies in water quality monitoring is a fairly new
technique, there is strong agreement when utilised as a validation technique along with
satellite-based remote sensing. Throughout the case studies, linear regression appeared
as the most used statistical method, while all the average error assessment values (R2)
were above 0.7 for several other algorithms. This signified high accuracies for estimating
water temperature, TSS, and CDOM. Furthermore, this review synthesised the results and
emphasised the importance of progress in water quality monitoring through UAV remote
sensing techniques moving forward. Future research needs to account for the fact that
effective mapping of water temperature, TSS, and CDOM using UAVs is still rudimentary
and, therefore, more research is needed to overcome the limitations as mentioned earlier,
including the development of explicit methods and techniques and fusion of data from
many sources.
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