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During the COVID-19 pandemic, heterologous vaccination strategies were employed to alleviate the 
strain on vaccine supplies. The Thailand Ministry of Health adopted these strategies using vector, 
inactivated, and mRNA vaccines. However, this approach has introduced challenges for SARS-CoV-2 
sero-epidemiology studies. Our study analysed 647 samples from healthcare workers who received 
CoronaVac, ChAdOx1 nCoV-19, and BNT162b2 vaccines. The serological profile encompassed 
responses to various SARS-CoV-2 variants and vectors, measuring IgG, IgM, and IgA isotypes, 
alongside IgG avidity assays. The results demonstrated that heterologous CoronaVac/ChAdOx1 nCoV-
19 schedules elicited significantly stronger antibody responses compared to homologous schedules 
(IgG: 1.2-fold, IgM: 10.9-fold, IgA: 3.1-fold increase). Additionally, a heterologous BNT162b2 boost 
at 4-weeks post-initial vaccination showed greater antibody levels than a ChAdOx1 nCoV-19 boost 
(IgG: 1.1-fold, IgM: slight decrease, IgA: 1.5-fold increase). Using a combination of three analytes, 
IgG against wild-type Spike trimer, nucleoprotein and Omicron receptor binding domains, enabled 
the clustering of responses within a statistical Gaussian mixture model that successfully discriminates 
between breakthrough infections and vaccination types (F-score = 0.82). The development of statistical 
models to predict breakthrough infections can improve serological surveillance. Overall, our study 
underscores the necessity for vaccine (re-)development and the creation of serological tools to monitor 
vaccine performance.
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The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, prompted an unprecedented 
surge in biomedical research yielding seven vaccines that were approved by the Thailand Food and Drug 
Thailand Administration (FDA), amongst other global counterparts, before the end of year 2022. Throughout 
2020, numerous vaccine candidate frontrunners emerged employing a range of technologies, namely using 
mRNA (mRNA-1273 and BNT162b2)1,2, adenovirus vector (ChAdOx1  nCoV-19,  Sputnik)3,4, and whole 
inactivated virus (CoronaVac) platforms5. To relieve strain on overstretched vaccine supply chains, governments 
worldwide authorised the trial of heterologous primary and boost vaccine programmes, a practice which 
was validated by preliminary studies6, and later confirmed by large, well-controlled clinical trials7. In turn, to 
reduce the surge in SARS-CoV-2 morbidity, particularly amongst healthcare workers in Bangkok, in July 2021, 
Thailand FDA approved the use of heterologous primary and boost CoronaVac (Sinovac Biotech) / ChAdOx1 
nCoV-19 (AstraZeneca, University of Oxford) vaccination and later CoronaVac / BNT162b2 (BioNTech, Pfizer) 
programmes (Figure S1).

Prior to the COVID-19 pandemic, the use of a heterologous regimen to enhance immunogenicity was 
trialled as an Ebola virus control strategy to enhance the longevity of immunity in regions where a reactive 
ring-fence strategy was not feasible8,9. Current research regarding heterologous primary/boost SARS-CoV-2 
vaccine regimen emphasises its safety7,8,10. Heterologous vaccination schedules involving vectored (ChAdOx1 
nCoV-19/Ad26.COV2.S), inactivated (CoronaVac/Covaxin) and mRNA vaccine (BNT162b2/mRNA-1273) 
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platforms often yielded enhanced antibody responses when compared with homologous inactivated or vectored 
schedules10,11. Moreover, cellular responses were found to be enhanced in heterologous recipients compared 
with that of homologous vectored and mRNA vaccines12,13. Fewer studies have covered heterologous primary 
regimens with inactivated vaccines but, those which have reported findings, suggest diminished responses 
compared with homologous vectored or mRNA platforms10. Moreover, the protection elicited by wild-type 
SARS-CoV-2 vaccines is reduced in the context of Omicron variant infections14,15. Therefore, the analysis of 
mixed vaccine regimens may yield insights into the control of future variants.

Studies on vaccine uptake and population immunity throughout the COVID-19 pandemic played a central 
role in control efforts16. Seroprevalence surveys were used to understand the prevalence of disease by detecting 
host antibody responses. The same analyses were used to understand the prevalence of immunisation within 
a community, guiding future control efforts for vulnerable populations. The differentiation of vaccine-specific 
responses as opposed to natural SARS-CoV-2 or breakthrough infections was straightforward, largely due to 
the presence of responses specific to other (non-spike) structural and non-structural components of the SARS-
CoV-2 virus, for example, the nucleoprotein, enabling a differential analysis17. However, those immunised with 
an inactivated virus platform will harbour all viral immunogens, confounding assays that would otherwise 
have differentiated vaccination from infection. The ability to model host antibody responses in the setting of 
heterologous vaccination and breakthrough infection yields greater insights into the efficacy and longevity and 
of vaccination responses in each population, facilitating the allocation of resources where they are most needed. 
This strategy has been applied previously for monitoring measles, mumps and rubella immunity18 and human 
papillomavirus19, with other studies offering insights into heterogeneity of responses to vaccination within a 
population20.

Blood-based measurements (e.g., cell counts, antibody or antigen detection) can be utilised to classify 
immunological status into categories such as positive, intermediate, and negative21,22. A popular method for 
this classification is Gaussian Mixture Models (GMMs), a probabilistic approach that clusters data by modelling 
it as a mixture of multiple normally distributed components, each representing a distinct subgroup. Recent 
applications of GMMs include classifying long COVID-19 severity based on persistent symptoms23 and 
predicting new COVID-19 case trends across various countries and time periods24. In this study, GMMs will be 
used to cluster individuals by their antibody profiles in response to different vaccination regimens, enabling us 
to identify distinct immunological patterns and better understand the diversity of immune responses elicited by 
these regimens.

Here, we report the findings of an investigation of antibody profiles after prime and boost with homologous 
and heterologous vaccination regimens in a Thai population. Through using a customised multiplex microsphere 
assay for spike, nucleoprotein and viral vector antigens, IgG, IgM, IgA and IgG-avidity responses, the antibody 
dynamics across a cohort of 415 healthcare workers are described. Using the complex dataset, a GMM was 
developed to classify the vaccine and infection status of participants.

Results
Description of vaccine recipients in the study population
All participants (n = 415) were volunteers from vaccination centres linked to the Thailand Ministry of Public 
Health (MOPH) in Bangkok. The dataset was built through a convenience sampling strategy of healthcare 
professionals, whose primary role is in research and development rather than routine clinical care. Moreover, 
their vaccination schedule aligns with the general population, as they are not prioritised like frontline healthcare 
workers. Consequently, their risk of infection is comparable to that of the general public. The cohort consisted 
predominantly of female participants (309/415, 74.5%) with a median age of 40 years (range: 31–49 years). All 
participants self-reported no prior COVID-19 infection (Table 1). Participants were divided into five groups 
based on their homologous and heterologous prime-boost vaccination regimens: (AA) two doses of AstraZeneca 
(ChAdOx1 nCoV-19) as a homologous regimen (n = 64); (SA) a heterologous regimen of Sinovac (CoronaVac) 
followed by AstraZeneca (n = 81); (SS) two doses of Sinovac (n = 270); (SSA) two doses of Sinovac followed by a 
third (booster) dose of AstraZeneca (n = 163); and (SSP) two doses of Sinovac followed by a third (booster) dose 
of Pfizer (BNT162b2) (n = 68) (Fig. 1).

The interval between the two primary doses varied based on the manufacturer’s recommendations: 11 weeks 
for the AA group, 3 weeks for the SS group, and variable intervals for the SA group, in accordance with vaccine 
mixing guidelines. After completing the primary vaccination series (two doses), blood samples were collected 
at timepoints designed to capture the peak of antibody responses, as reported in the literature19,20. Specifically, 
sampling occurred at 4 weeks for AA, at 2, 4, and 12 weeks for SA, and between 4 and 36 weeks for SS. For 
participants receiving a booster dose, samples were collected at 4 and 12 weeks for SSA and at 2 and 4 weeks for 
SSP. Overall, the dataset consisted of 1,037 samples from 415 participants, distributed across the five vaccination 
groups collected from various timepoints (Fig. 1).

The age distributions across the groups were broadly similar, with median ages: AA: 46.0 years (IQR: 33.8–
61.0), SA: 43.0 years (IQR: 37.0–49.0), SS: 39.0 years (IQR: 32.0–51.0), SSA: 42.0 years (IQR: 32.0–49.0), and SSP: 
32.0 years (IQR: 26.5–36.0) (Table 1). However, across primary vaccine groups, there were differences (Kruskal 
Wallis p < 10–5), with the SS group having a marginally lower median age compared to SA and AA (Wilcoxon 
p < 0.007), leading to the SSP group being the youngest (median age: SSP 32.0 vs. SSA 42.0; Wilcoxon p < 10–5), 
which may influence vaccine response and immune profiles. The proportion of female participants also varied 
by group (range: 53.1% (SA) to 86.8% (SSP)) (Table 1).
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Profiling isotype-specific responses in homologous and heterologous prime vaccination 
recipients
Antibody responses were profiled using a multiplex microsphere assay targeting six antigens: five SARS-CoV-2 
variant-specific structural proteins and one vaccine vector-derived antigen. The assessed antigens included 
the Spike trimer (wildtype; WT), Receptor binding domain (RBD, WT), RBD (Delta variant), RBD (Omicron 
variant), Nucleoprotein (WT), and chimpanzee adenovirus (vaccine vector) (Table S1). Each antigen was 
evaluated for three antibody isotypes (IgG, IgM, and IgA), and IgG avidity was measured to assess antibody 
binding strength. To compare antibody profiles across different prime vaccination regimens, we selected a cohort 
of samples from recipients of homologous (AA, SS) and heterologous (SA) prime vaccinations. All samples were 
collected within the same time frame, between 3.5 and 8.5 weeks post-vaccination, as this interval provided the 
most overlap across the three vaccination groups. In addition, we included antibody responses for 64 negative 
controls who represent a pre-COVID and non-COVID vaccinated group (NEG; see Materials and Methods).

Across all SARS-CoV-2 antigens, primary vaccination groups (AA, SA, SS) observed a significant IgG median 
fluorescence intensity (MFI) increase over naïve individuals (NEG) (p =  < 0.0001), except for one comparison 
(Nucleoprotein—WT: NEG 157 vs. AA 166; p = 0.044) (Table S2 (IgG)). Using GMM models applied to IgG data 
for each antigen (see Materials and Methods), we established cut-offs to classify samples into low, intermediate, 
and high reactivity categories (Fig. 2). We observed that most naïve samples clustered within the ‘low reactivity’ 
group (93%). Recipients of the heterologous (SA) regimen exhibited a significant increase in IgG, IgM and 
IgA levels against the trimeric SARS-CoV-2 spike antigen and the RBD WT and Delta antigens over that of 
the homologous (AA and SS) recipients (p =  < 0.0001; IgG MFI: Trimer SS:1811, AA:5174, SA:6725; WT RBD 
SS:3287, AA:6178, SA:9261; Delta RBD SS:1575, AA:3730, SA:9261; Table S2). All vaccinated groups reported 
significantly greater anti-Omicron RBD IgG over the naïve individuals (p =  < 0.0001; IgG MFI: Omicron RBD 
SS:68, AA:255, SA:286, NEG:31) although, responses to RBD Omicron variant were reduced significantly by 
at least ten-fold when compared with responses to other RBD variant antigens, despite like-for-like coupling 
conditions (Table S1). Both the AA and SA groups exhibited a significantly increased IgG response to the RBD 
omicron variant when compared to the SS group (p =  < 0.0001; median MFI: Omicron RBD SS:68, AA:255, 
SA:286).

Fig. 1. Graphical summary of sample collection across groups consisting of Sinovac CoronaVac (S), 
AstraZeneca ChAdOx1 nCoV-19 (A) or Pfizer BNT162b2 (P) vaccinations. For the AA group (homologous 
AstraZeneca), blood samples were collected 4 weeks after the second dose (n = 64). In the SA group 
(heterologous of Sinovac followed by AstraZeneca), samples were obtained at 2 weeks (n = 81), 4 weeks (n = 80), 
and 12 weeks (n = 80) post-vaccination. The SS group (homologous Sinovac) had samples collected over a 
range of 4 to 36 weeks (n = 270). After receiving two doses, some of SS, participants received booster doses; the 
SSA group (boost with AstraZeneca) had samples collected at 4 weeks (n = 163) and 12 weeks (n = 163), while 
the SSP group (boost with Pfizer) had samples taken at 2 weeks (n = 68) and 4 weeks (n = 68).
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As there were some potential differences in age between the primary vaccine groups, we assessed any effects 
on MFI levels. While no significant correlations (p < 0.05) were found between IgM or IgA MFI levels and age 
across all antigens, a weak negative correlation (R = −0.13, p < 0.01) was observed between IgG levels specific to 
SARS-CoV-2 antigens and age (Figure S2). An analysis using age-matched groups confirmed the same trends in 
antibody responses observed (results not shown). The interval time between primary and completion doses was 

Fig. 2. Pan-isotype profile of antibody responses to homologous and heterologous vaccination. IgG, IgM IgA 
and IgG avidity MFI after second homologous or heterologous vaccination with AstraZeneca ChAdOx1 nCoV-
19 and ChAdOx1 nCoV-19 (AA) (n = 64), Sinovac CoronaVac and AstraZeneca ChAdOx1 nCoV-19 (SA) 
(n = 81), and Sinovac CoronaVac and CoronaVac (SS) (n = 270). Negative controls – unvaccinated individuals, 
samples collected prior to 2019 (NEG) (n = 64). Samples were collected 3.5 to 8.5 weeks after second primary 
vaccination. MFI was adjusted to account for batch effects. Wilcoxon signed-rank test was applied as a measure 
of significance (* p < 0.05; ** p < 0.01; ***p < 0.001; ****p < 0.0001). The seropositivity thresholds (high, low) are 
based on fitting for each antigen a Gaussian mixture model (GMM) to classify the MFI levels into three groups 
(negative/low, intermediate, and high).
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fixed as part of the respective vaccination protocols. In addition, we fitted multivariate linear regression models 
on (log10) MFI with age, gender and interval time between prime and complete dose, across vaccine groups and 
antigens (Table S3). This analysis confirmed the analysis above (Table S2), demonstrating that recipients of the 
heterologous (SA) regimen showed a significant increase in IgG, IgM, and IgA levels against the trimeric SARS-
CoV-2 spike antigen, as well as the RBD WT and Delta antigens, compared to recipients of the homologous (AA 
and SS) regimens. Furthermore, both the AA and SA groups exhibited a significantly stronger IgG response to 
the RBD Omicron variant relative to the SS group (Table S3).

Temporal dynamics of antibody responses to heterologous boost
Participants who were previously administered the homologous SS primary regimen were vaccinated with either 
AstraZeneca ChAdOx1 nCoV-19 (SSA, N = 164) or Pfizer BNT162b2 (SSP, N = 68) as a heterologous boost, 
36 weeks after completion of the primary regimen. Paired samples were collected at three time-points reflective 
of the maturation period of the vaccine response (SSA: w(eek)0, 4, and 12; SSP: w0, 2, and 4). Four weeks 
following heterologous boost, across both SSA and SSP regimen, an average 9.8- or 16.8-fold MFI increase in IgG 
MFI, respectively, was observed across all SARS-CoV-2 antigens excluding the N protein antigen (p =  < 0.0001; 
median IgG MFI: Trimer SSA w0: 1811, w4: 5174, SSP w0: 1811, w4: 5174; Omicron RBD SSA w0: 1811, w4: 
5174, SSP w0: 1811, w4: 5174), an average 5.3- or 8.1- fold boost for IgA MFI (p =  < 0.0001; median IgA MFI: 
Trimer SSA w0: 25, w4: 263, SSP w0: 28, w4: 956), with a diminished IgM 1.7- or 2.0-fold boost increase observed 
(p < 0.0001; median IgG MFI: Trimer SSA w0: 85, w4: 191, SSP w0: 1811, w4: 5174; Omicron RBD SSA w0: 1811, 
w4: 5174; SSP w0: 1811, w4: 5174) (Table S4). At the 4-week time-point (w4), across the spike antigens and their 
derivatives, including the Delta and Omicron RBD, an average of 78% (SSA) and 98% (SSP) of samples exceeded 
the IgG ‘GMM high’ cut-off (Fig. 2). Notably, anti-Omicron RBD was at its highest median level recorded across 
the entire cohort 2 weeks after heterologous boost with BNT162b2. When compared to the SSA group at four 
weeks, the SSP group showed significantly greater levels  (p < 0.0001; median IgG Omicron RBD: SSA w4 1383, 
w12 613; SSP w2 3777, w4 2889). However, in both SSA and SSP regimens, anti-Omicron RBD IgG exhibited the 
sharpest decline (Omicron RBD IgG decline SSA: w4–w12 56%, SSP w2–w4 23%), when compared to the other 
spike variant antigens (average decline SSA w4–w12 13%, SSP w2–w4 0%). Similar trends were found when 
considering fold-changes over time using geometric means (Table S5).

There was a higher fold increase of IgA over the baseline (w0) when compared to IgM across all spike-derived 
antigens, including Omicron RBD (average fold increase: SSA IgM: 1.7, IgA: 5.3; SSP IgM: 2.5, IgA:18.2) (Figure 
S3) (Table S4). Across all spike antigens, both IgA and IgM began to decline after the 4-week (SSA) and 2-week 
(SSP) timepoints (average decline from previous timepoint; SSA IgA:70%, IgM:53%; SSP IgA:47%, IgM:84%) 
(Figure S3) (Table S4). At the 4-week timepoint, the SSP regimen consistently yielded a significantly greater 
IgA response when compared to SSA (p < 0.01; median IgA MFI: Trimer SSA w4:267, SSP w4:413; Delta RBD 
SSA w4:113 SSP w4:273; Omicron RBD SSA w4:21, SSP w4:30), while no significant difference was observed 
between vaccine regimen and IgM MFI (p < 0.05; median IgM MFI: Trimer SSA w4:191, SSP w4:173; Delta RBD 
SSA w4:163 SSP w4:111; Omicron RBD SSA w4:41, SSP w4:40) (Figure S3) (Table S4). To confirm the results at 
week 4, we fitted multivariate linear regression models on (log10) MFI with age, gender and interval time, and 
vaccine booster groups (SSP vs. SSA), across antigens (Table S6). This analysis confirmed that the higher MFI 
observed in the SSP groups for certain antigens across IgA and IgG isotypes, as well as the broader variations 
in antibody levels, are primarily driven by the differences in vaccine regimens rather than demographic factors 
such as age or gender among the groups.

Anti-SARS-CoV-2 IgG avidity in homologous/heterologous prime and boost recipients
IgG avidity was measured as a part of the Luminex multiplex assay. The avidity index metric represents the MFI 
of IgG that remains bound to the antigen following dissociation of weakly bound immunoglobulins. Therefore, 
the naive pre-COVID control samples (NEG) were removed from the analysis as any, albeit infrequent, non-
specific interactions would yield incoherent avidity indices. IgG avidity responses to the trimeric SARS-CoV-2 
spike antigen,  as well as the RBD wild-type (WT-RBD) and Delta variants, were significantly higher in the 
homologous AA regimen compared to the homologous SS group. The SA group exhibited intermediate avidity, 
higher than SS and lower than AA (p < 0.001; median avidity indices: Trimer SS: 11, AA: 47, SA: 19; WT RBD 
SS: 13, AA:66, SA:23 and Delta RBD SS:7, AA:40, SA:11). Interestingly, the SS regimen exhibited a significantly 
greater Omicron RBD avidity index over that of the SA regimen (p < 0.0001; median avidity indices: Omicron 
RBD SS:25, SA:12), with no significant difference in IgG avidity between SS and AA groups (p > 0.05; median 
avidity indices: Omicron RBD SS: 25, AA: 21).

Across heterologous boost recipients, a consistent pattern of significant IgG avidity index decline after the 
second timepoint (w2) was observed (p < 0.0001; median avidity indices: Trimer SSA w4:90, w12:55; SSP w2:118, 
w4:102; WT-RBD SSA w4:114, w12:71; SSP w2:123, w4:108; Delta RBD SSA w4:70 w12:71; SSP w2:115, w4:94) 
(Figure S3) (Table S5). Omicron RBD responses were not consistent with this pattern, exhibiting instead, a 
decline across all three respective timepoints, more pronounced in the SSA group than SSP (p < 0.05; median 
avidity indices: Omicron RBD SSA w0: 28: w4:22, w12:18; SSP w0:28: w2:28, w4:24) (Figure S3) (Table S4). 
Anti-Omicron IgG bore the greatest avidity of any analyte at the w0 timepoint, reflecting the significant increase 
in homologous prime avidity observed previously (Fig. 1) (Table S4).

Longevity of antibody responses to inactivated vaccine nucleoprotein antigen
SARS-CoV-2 nucleoprotein (N) seroconversion occurs when recipients are vaccinated with an inactivated whole-
virus platform, or natural infection. All participants were screened for anti-N IgG, IgM and IgA antibodies and 
for IgG avidity. IgG responses were significantly greater in regimens featuring the CoronaVac whole inactivated 
virus platform, SS and SA (p < 0.0001; median MFI: Nucleoprotein SS:1767, AA:166, SA:398) (Fig. 2). Despite 
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some weakly significant indifferences, anti-N IgM indicated no increase over the naïve negative (NEG) 
population (n = 64; p < 0.05; IgM median MFI: Nucleoprotein SS:183, AA:135, SA:134, NEG:184) as was the case 
for IgA (p > 0.05; IgA median MFI: Nucleoprotein SS:53, AA:40, SA:46, NEG:48). Across the 12-week sampling 
period for the SSA heterologous boost population, a significant decline of anti-N IgG was observed (p =  < 0.0001; 
IgG median MFI: Nucleoprotein SSA w0:1350, w4:855 w12:691). In the SSP group, a less pronounced but still 
significant decline was observed over four weeks   (p < 0.05; IgG median MFI: Nucleoprotein SSP w0:1631, 
w4:1155). No significant difference was observed for anti-N IgG in SSP/SSA at the 4-week timepoint (p > 0.05; 
IgG Median MFI: Nucleoprotein SSA w4:855, SSP w4:1155) (Fig. 3).

The analysis of anti-N IgG levels in CoronaVac recipients (double dose, SS group, n = 730) over a 28-week 
window post vaccination revealed a waning response. Seroconversion rates decrease from 84% at 8 weeks to 60% 
at 16 weeks and further to 49% at 24 weeks, with over 66% below the ‘low reactivity’ threshold after 28 weeks. 
In the vaccine mixing group with a single dose of CoronaVac and ChAdOx1 nCoV-19 (SA group, n = 241), 
seroconversion starts at 28% at week 8 and decreases over the 28-week period). Linear regression analysis of the 
anti-N IgG MFI level as a function of time since the last CoronaVac vaccination (Figure S4) indicates a steady 
decrease in anti-N levels over time for both SS and SA groups (SS: correlation efficient R = -0.25, p < 0.0005; SA: 
R = -0.13, p = 0.037).

Profiling antibody responses to Y25 Chimpanzee adenovirus vector recipient
A synthetic construct, coding for a truncated portion of the Y25 Chimpanzee adenovirus surface hexon protein, 
was included in the panel to detect host responses to the ChAdOx vector. IgG responses were significantly higher 
in participants vaccinated with the ChAdOx vector (AA and SA) (p < 0.001; median MFI: Chimpanzee adenovirus 
SS:55, AA:115, SA:72). However, this trend was not observed for IgM and IgA isotypes. A significant increase in 
anti-hexon IgG and IgA levels was observed from week 0 to week 12 in the SSA (ChAdOx) heterologous boost 
cohort (p < 0.001; IgG median MFI: Chimpanzee adenovirus (hexon) SSA w0: 65, w12: 90). In contrast,  no such 
increase was detected in the SSP (BNT162b2) regimen (p > 0.05).

Modelling antigen responses to characterise immunised and infected populations
In this study, we incorporated antibody data from an additional cohort of vaccine breakthrough infections 
(“Positive”, n = 281). To support serological surveillance within the context of inactivated vaccination platforms, 
we leveraged multi-isotype antibody profile data (log10 MFI) and applied Gaussian Mixture Models (GMMs) 
to cluster individuals into 4 or 5 distinct groups (“components”). These clusters were then compared against 
five predefined groups: Pre-COVID (NEG), AA/SA, SS, Vaccine Breakthrough (Positive), and Booster SSA/
SSP. For certain analyses, the Positive and Booster groups were merged, resulting in four primary categories. 
An iterative approach was employed to optimise the GMMs, identifying the most informative antigen-isotype 
feature combinations (2-, 3-, or 4-dimensional) for distinguishing the 4 or 5 components or clusters (Table S7).

A two-dimensional GMM model incorporating the Spike Trimer (IgG) and Nucleoprotein antigen (IgG) 
achieved the highest precision and recall, with an overall F-score of 0.88 (Table S7; Fig. 4). The Pre-COVID group 

Fig. 3. IgG significantly increases in homologous CoronaVac recipients after heterologous boost with 
ChAdOx1 nCoV-19 and BNT162b2. The IgG panel against the Spike trimer, receptor-binding domain 
(RBD), nucleoprotein and chimpanzee adenovirus are displayed in both SSA (n = 163) (top) and SSP (n = 68) 
(middle) regimens together with the level of antibodies in both groups at 4 weeks (bottom). *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001. The seropositivity thresholds (high, negative) were determined by 
fitting a Gaussian mixture model (GMM) to the MFI levels for each antigen, classifying them into three groups 
(negative/low, intermediate, and high).
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(NEG, n = 64) was classified with perfect accuracy (F-score = 1), while the homologous CoronaVac group (SS, 
n = 270) also showed high accuracy (F-score = 0.93). In contrast, the homologous ChAdOx1 nCoV-19 primary 
recipient group (SA/AA) had lower classification performance (F-score = 0.71), as did the positive/booster 
groups (F-score = 0.86). Misclassifications were most frequent between the positive and booster groups, with 34 
out of 42 cases (81.0%) incorrectly assigned. Extending the GMM model to include a fifth component (number 
of Gaussian components = 5) did not improve overall accuracy (F-score = 0.78; Table S7). However, adding a 
third feature—RBD Omicron IgG—enhanced the F-score of the five-component model by approximately 5% 
(F-score = 0.82; Fig. 4, Table S7). Despite this improvement, the accuracy for the booster (F-score = 0.70) and 
positive (F-score = 0.70) groups remained low. Overall, the GMM models indicate that the four-component 
approach provides better predictive accuracy than models with five clusters (Table S7).

Discussion
The application of heterologous SARS-CoV-2 vaccination during the COVID-19 pandemic was initially driven 
by necessity, but outcomes have proven favourable, with numerous peer-reviewed studies validating their use 
and efficacy. In our study, we profiled a cohort of recipients of both homologous and heterologous primary 
and booster vaccines, examining the diversity and strength of antibody responses across inactivated, vectored, 
and mRNA platforms. Additionally, paired analyses investigated the dynamics of different heterologous booster 
regimens. We developed and tested a robust model that accurately classifies immune responses and infers 
vaccination and infection history using only three IgG metrics per sample.

The cohort represents a convenience sample of healthcare staff involved in research and development 
roles, whose vaccination schedules align with those of the general population. Their risk of infection is likely 
comparable to that of the broader public. Analyses grouping the cohort by three homologous and heterologous 
primary vaccine regimens indicated the heterologous CoronaVac/ChAdOx1 nCoV-19 (SA) schedule yielded 
significantly stronger IgG, IgM and IgA responses when compared to homologous recipients (SS and AA). High 

Fig. 4. Finite Gaussian mixture modelling (GMM) to identify clusters (components) using combinations 
of antigen and isotype responses (dimensions), with the overlayed colours indicating actual vaccine groups 
(Negative/Pre-COVID (n = 64); SS (n = 270); AZ = SA (n = 81) or AA (n = 64); Positive = convalescent / vaccine 
breakthrough (n = 281); Boost = SSA (n = 163) or SSP (n = 68). (Top) 2D model (WT SARS-CoV-2 spike timer, 
WT nucleoprotein IgG) with 4 components (F-score = 0.88); the ellipses are the estimated covariances, centred 
on the mean for each component. (Bottom) 3D model (WT SARS-CoV-2 spike timer, WT nucleoprotein IgG, 
RBD Omicron IgG) with five components (F-score = 0.82).
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levels of anti-SARS-CoV-2 antibodies and their avidity across IgG, IgM and IgA enhance protective immunity. 
High immunoglobulin avidity indicates affinity maturation and effective neutralisation, highlighting the critical 
role of isotype interplay and avidity maturation in establishing strong immune defence25,26. A review of 48 SARS-
CoV-2 vaccination studies, 12 of which covered schedules with heterologous inactivated/vectored platforms, 
found that in all cases CoronaVac/ChAdOx1 nCoV-19 heterologous primary vaccination resulted in an average 
5.6-fold increase in antibody response over that of homologous inactivated regimens, with no coherent trend 
observed in the six examples of heterologous priming as opposed to homologous vectored regimens (i.e. AA vs. 
SA)9. Our analyses indicate that the heterologous CoronaVac/ChAdOx1 regimen outperformed the homologous 
regimens, generating significantly higher levels of IgG, IgA and IgM against WT and Delta spike antigens. 
Research scrutinising the nature of enhanced heterologous inactivated/vector priming in mice found higher 
antibody and cell-mediated immune responses compared to a homologous vaccination, driven by enhanced 
innate activation, resulting in a more mature memory and plasma B-cell response. Moreover, moderate IgA 
enhancement was noted in heterologous recipients, which was observed here through a 2.5- to 4.3-fold increase 
in IgA over homologous regimens27. Previous studies have detected antibodies against chimpanzee adenovirus 
in human sera from sub-Saharan Africa, the United States, and Thailand28. Further, the Hexon antigen of 
chimpanzee adenovirus shares genetic similarity with human adenovirus species HuAds, ChAd24, and RhAd53, 
potentially leading to cross-reactivity in antibody tests between these viruses29.

Reactivity to the Omicron RBD antigen after priming and heterologous boost with vaccines designed against 
the wild-type variant of SARS-CoV-2 was reduced significantly across all analytes when compared to the RBD 
WT and Delta variant antigens, consistent with previous studies30,31. The increase in anti-Omicron IgG after 
boosting has been described previously32. However, the lack of IgM or IgA response when compared to both WT 
and Delta highlight the effects of Omicron evasion. Unlike the overall yield of IgG, IgA and IgM, the avidity of the 
heterologous IgG response was reduced when compared to the homologous vectored AA group. However, the 
homologous inactivated SS group yielded the responses with the lowest avidity indices. Although homologous 
vaccination might be expected to produce a matured response through consistent B-cell activation, this does 
not appear to hold true for the CoronaVac vaccine. Contrary to this expectation, previous reports have shown 
greater avidity in SS vaccination compared to homologous BNT162b233  regimens. Addtionally, heterologous 
ChAdOx1/BNT162b2 regimens have demonstrated higher avidity responses than homologous BNT162b2/
BNT162b234,35 regimens.

The detection of anti-RBD levels and their avidity correlates strongly with the neutralizing capacity of the 
immune response against SARS-CoV-2. A systematic review and meta-analysis indicated that heterologous 
vaccination regimens, particularly combinations of CoronaVac (CV) and ChAdOx1 (ChAd), yield greater anti-
RBD IgG and neutralizing antibodies against wild-type and delta variants compared to homologous regimens 
of either vaccine alone29. Our study aligns with this, having observed higher RBD antibody levels and avidity in 
the heterologous prime vaccination group (SA group), suggesting a more robust immune response compared 
to homologous approaches. Additionally, studies on homologous and heterologous booster doses—using 
BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), or Ad26.COV2.S (Johnson & Johnson-Janssen)—show 
significant increases in binding antibodies and neutralizing antibodies against SARS-CoV-2 pseudoviruses36. 
The increases in antibody levels following heterologous boosting are generally comparable to or greater than 
those after homologous boosting36, highlighting the enhanced immunogenicity associated with both booster 
vaccinations and heterologous vaccination strategies, suggesting they may confer additional protective benefits 
against SARS-CoV-2.

Across heterologous boost groups, paired samples were collected over a 4- and 12-week period. A comparison 
at the 4-week time point indicated that the SSP group (CoronaVac/CoronaVac/BNT162b2) had a significantly 
greater IgG and IgA response to all SARS-CoV-2 antigens, including the Omicron RBD, over that of the SSA 
group (CoronaVac/CoronaVac/ChAdOx1). A similar study in Bangkok on healthcare workers presented 
comparable findings, noting also, that SSA antibodies demonstrated a steeper decline after 12  days37. Host 
immune responses to viral-vectored vaccine platforms have been extensively studied, particularly in the context 
of human adenoviral vectors38. Memory responses elicited by natural adenovirus infections can hinder payload 
delivery through vector neutralisation and cytotoxicity, reducing vaccine efficacy39. Our observation of lower 
antibody responses to SARS-CoV-2 in viral-vectored vaccine platforms compared to mRNA vaccine platforms 
highlights a notable difference in antibody responses between the two vaccine platforms, implying a potential 
variation in vaccine efficacy.

Understanding the dynamics of anti-N IgG waning, specifically in the context of inactivated vaccine platform 
recipients, is key to applying sero-epidemiological tools in SARS-CoV-2 infection control. Numerous examples 
of studies leveraging anti-N responses in differentiating vaccinated individuals from natural or breakthrough 
infections are present in the literature40,41. However, the same anti-N antibodies indicative of infection are also 
reared against components of inactivated platforms, which confound these inferences. Our findings demonstrate 
that, while heterologous primary immunisation with a CoronaVac/ChAdOx1 rears a diminished response, a 
homologous CoronaVac/ CoronaVac schedule yields a strong anti-N response, comparable to that of natural or 
breakthrough infection, which takes ~ 20 weeks to wane.

Developing a robust method to distinguish host vaccine responses from infection in high-transmission 
settings with heterologous vaccination regimens is crucial for SARS-CoV-2 surveillance. Such a tool could 
complement serosurveys of the general population or biobank samples, providing valuable insights into high-
risk communities (e.g., care homes) and broader immunisation patterns. This approach would enable a deeper 
understanding of transmission dynamics and host immunity, guiding strategic decisions around booster 
administration and control measures. Our preliminary model, which utilises a combination of three analytes—
IgG against wild-type Spike trimer, nucleoprotein, and Omicron RBD—shows promise in clustering responses 
to accurately classify individuals as negative/unvaccinated, inactivated vaccine recipients, vectored vaccine 
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recipients, boosted vaccine recipients, or convalescent individuals. With these classifications, and further 
refinements as more data become available, this approach could offer more detailed assessments of population 
immunity than commercial SARS-CoV-2 serology platforms currently allow. The model could be enhanced 
by incorporating additional features, such as convalescence duration, breakthrough infection and vaccination 
history, or host factors like age, to improve predictive accuracy. Nevertheless, even in its current form, the 
model illustrates how multidimensional serological data can enhance analytical capabilities and deepen our 
understanding of immunity and transmission. The most frequent misclassifications occurred between the 
positive/boost and ChAdOx1 primary/boost clusters, reflecting the common heterogeneity in host responses 
to infections of varying severities42,43. Breakthrough or natural infections often elicit antibody responses similar 
to those observed in vaccinated individuals. Depending on the application, the more accurate four-component 
model may be preferable when distinguishing between booster and natural infection responses is unnecessary. 
Although more complex classification methods, such as XGBoost models with additional features, were 
evaluated, they produced similar results to the GMM-based approach. The GMM, which required only three 
analytes, demonstrated comparable performance while remaining simpler to implement. This highlights the 
potential of straightforward yet effective models, though further methodological research in this area is ongoing.

Overall, our results demonstrate the advantages of implementing a heterologous regimen, specifically 
using CoronaVac/ChAdOx1 nCoV-19 schedules. We observed a significant enhancement in antibody levels 
with a heterologous boost administered four weeks post-initial vaccination. Additionally, our data successfully 
discriminated between breakthrough infections and various vaccination types. This facilitated the development 
of a model that can support future serological surveillance and provide valuable insights into virus circulation 
dynamics in environments with multiple vaccination regimens44.

Materials and methods
Vaccine mixing and matching cohort
A cohort of 415 healthy individuals was randomly selected from vaccination centres across the Thai Ministry of 
Public Health (MOPH) during the vaccine programme rollout. Whole blood samples were collected across four 
months from 29/06/21 to 23/10/21 throughout vaccine deployment (Figure S1). The timing of sample collection 
across the 5 groups was informed by manufacturer’s guidance: (i) homologous primary CoronaVac (SS; n = 270, 
3–18  weeks), homologous ChAdOx1 nCoV-19 (AA; n = 64, 2–5  weeks), and heterologous CoronaVac and 
ChAdOx1 nCoV-19 (SA; n = 81, 2–14  weeks). Groups receiving a boost after homologous CoronaVac had 
collections at three intervals: (iv) CoronaVac/CoronaVac + ChAdOx1 nCoV-19 (SSA, n = 164, 0, 4 and 12 weeks) 
and (v) CoronaVac/CoronaVac + BNT162b2 (SSP, n = 68, 0, 2 and 4 weeks) (Fig. 1). Whole blood specimens 
were collected from each individual and stored in EDTA containers. Plasma was obtained by centrifugation at 
3000 × g for 10 minutes at room temperature. Prior to serological testing, all plasma samples were aliquoted into 
cryogenic vials and stored at −80 °C to prevent multiple freeze–thaw cycles. Participants were surveyed at the 
time of collection, yielding metadata for each sample, which included age, gender, and history of vaccination 
and COVID-19. The study was approved by the research ethics committee, Department of Medical Sciences, 
Thailand Ministry of Public Health (EC15/2564). All methods were performed in accordance with the relevant 
guidelines and regulations. Informed consent was obtained from all subjects involved in the study.

Pre-COVID and vaccine breakthrough cohorts
A breakthrough infection modelling cohort comprised a randomly selected group of 281 individuals who 
experienced a 4-week convalescent period. These individuals were specifically identified as part of a Thailand 
MOPH study of vaccine breakthrough infection, having been vaccinated but subsequently infected with the 
Omicron strain of the virus between January 2022 and March 2022. Following a confirmed positive result 
through RT-PCR, samples were collected four weeks post-infection. These are also referred to as a convalescent 
group. Further, we had blood samples and data from 44 female healthy controls collected as part of a Thailand 
MOPH pregnancy and disease study in 2016, as well as from 20 healthy female and male MOPH staff in 2018. 
These samples (n = 64) were confirmed as COVID negative via ELISA, and used as an internal controls and 
represent a pre-COVID and non-COVID vaccinated group. Whole blood specimens were gathered from each 
participant with the same procedure as mentioned above.

Expression of Y25 recombinant hexon protein
The amino acid sequence for the Y25 chimpanzee adenovirus hexon protein was sourced from GenBank 
(Accession: AEW43620.1) and analysed for sequence identity with human-infecting adenovirus species. The 
amino acid sequence was re-codonised for expression in Escherichia coli and synthesised as a dsDNA construct. 
The Y25 chimpanzee adenovirus antigen [amino acids 129–313] was expressed as a GST fusion in a pGEX-4T-2 
vector and affinity purified using glutathione resin (Thermo: PI25236) as per the manufacturer’s instructions.

Antigen coupling
Six recombinant antigens were coupled to respective Luminex MagPlex® beads (Luminex Corporation: MC100XX), 
as described previously45. Briefly, all magnetic beads were first treated in an N-hydroxysulfosuccinimide (NHS) 
(Thermo: 24510) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (Thermo: 77149) 
activation solution. Coupling concentrations were determined by calculating a binding curve EC50 following 
a titration against pooled immune sera for respective antigens. Antigen orthologues were coupled at the same 
concentrations to permit direct comparison (Table S1). The coupled beads were counted for quality control 
using a haemocytometer and their concentration normalised. The antigen panel (Table S1) was chosen to 
capture a range of SARS-CoV-2 responses, including trimeric and receptor-binding domain (RBD) antigens to 
specific variants (Wuhan, Delta, and Omicron) with the addition of a Y25 chimpanzee adenovirus hexon antigen 
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to capture potential responses to the adenovirus vaccine vector. The SARS-CoV-2 structural protein antigens 
include the RBD (Receptor Binding Protein), a full trimeric spike with stabilising mutations, and a wild-type 
nucleocapsid (N) protein.

Luminex assay procedure
Titration, coupling and multiplex analysis of serological samples was performed as described previously46. In 
798 µl of Buffer B (Table S8), 2 µl of each sample were diluted at 1 in 400 dilution ratios, a concentration previously 
determined to fit the dynamic range of the assay. Similarly, positive and negative control sera were used, including 
convalescent plasma (NIBSC 20/B5570, NIBSC, United Kingdom) from positive individuals,  samples from 
Thai individuals within the cohort who tested positive,  tand a negative panel comprising 64 blood samples 
from healthy individuals in Thailand collected prior to the COVID-19 pandemic. All specimens were aliquoted 
and stored at −80 °C until use. When preparing beads for detection, all coupled beads were pooled and mixed 
thoroughly in Buffer A. A total of 50 µl per bead was added into each well of a 96 well flat bottom plate (Bio-Plex 
Pro, Biorad 171025001) before magnetising and washing with 100 µl PBST. A total of 50 µl of each sample or 
control sera was used. Plates were shaken at 600 RPM for 90 minutes at room temperature in the dark. Following 
incubation, a 100 µL washing step was repeated three times and 50 µl of PE-conjugated anti-human IgG, IgM 
or IgA antibody (BioLegend, Switzerland), diluted in buffer A at a 1 in 5000 ratio, was added and incubated for 
90 minutes with shaking at 600 RPM at room temperature in the dark. Plates were washed three times. Then, 
50 µl buffer A was added and incubated at 600 RPM in the dark for 30 minutes at room temperature. After 
washing with 100 µl PBS for three times, the 96 well plates were read on the Luminex 200 bioanalyser.

Antigen panel and assay setup
To profile IgG, IgA and IgM antibody responses to SARS-CoV-2 immunisation and pre-existing responses, a 
multiplex microsphere assay panel was constructed, consisting of SARS-CoV-2 RBD (Wuhan-Hu-1 (WT-RBD), 
B.1.617.2 (Delta) and B.1.1.529 (Omicron) antigens, Nucleoprotein (WT-N) and a stabilised trimeric Spike 
(WT-Spike). The antigens were manufactured by the Native Antigen Company. Finally, a novel recombinant Y25 
chimpanzee hexon protein antigen (purity 70%) was incorporated into the assay panel to detect antibodies reared 
against the ChAdOx1 nCoV-19 vaccine vector. In addition to the three isotypes screened, a further IgG avidity 
assay was performed. The IgG avidity assay was performed in parallel with the standard IgG assay. Samples 
were plated in duplicate wells for both IgG and IgG avidity measurements. After the initial incubation with the 
sample, an additional step was introduced for the IgG avidity assay. Specifically, following sample incubation, 
50 µL of 2 M guanidine hydrochloride (GuHCl) was added to one set of wells and incubated for 15 minutes at 
room temperature to disrupt weak antibody-antigen binding. After incubation, wells were washed with PBST, 
and the PE-conjugated anti-human IgG antibody (BioLegend) was added as described above. The IgG avidity 
was calculated by determining the ratio of mean fluorescence intensity (MFI) in the GuHCl-treated wells to the 
MFI of untreated IgG wells, providing a measure of antibody binding strength.

Data processing and analysis
For the quality control of Luminex data, Levey-Jennings analysis was performed, derived from the half maximal 
effective concentration (EC50) obtained from a 4-parameter logistic model built on the titration of positive 
control standards on every plate. Each plate was assessed for inter-batch variability. Any plate outside of a two-
standard deviation (SD) threshold was repeated. The minimum bead count for a sample to pass quality control 
was 30. All mean fluorescence intensity (MFI) measurements with a bead count less than 30 were excluded 
from the analysis. The EC50 for each analyte was used to normalise the MFI measurements of each antigen 
across all plates. Metadata for each sample was combined with the adjusted MFI values for each isotype and the 
avidity index data using R statistical software (4.2.0)47. Plots were constructed using R ggplot2 (3.4.2)48, Python 
matplotlib49, and Seaborn50.

Gaussian mixture modelling of vaccine responses
After quality control, Gaussian mixture models (GMMs) were constructed using sklearn software51 to identify 
the most informative data points for predicting vaccine regimens. These models were built for each antigen and 
isotype, including avidity indices. For each combination of antigen and isotype, this process led to two MFI 
thresholds (negative/low, high) allowing the partitioning of values into negative/low, medium/intermediate, and 
high reactivity groups (Figure S5).

Gradient boosted trees (GBTs) were implemented on the MFI data to predict five groups: pre-COVID 
(“Negative”, n = 64), convalescent individuals (“Positive”, n = 281), AstraZeneca (AZ) ChAdOx1 primary group 
(AA/SA; n = 145), Sinovac CoronaVac (SS) primary (n = 270), and those with AZ/Pfizer booster vaccines (SSP/
SSA; n = 231). The implementation of GBTs was carried out using the XGBClassifier tool51, and allowed for 
the ranking of the importance of the isotype and antigen combinations, leading to the identification of the 
Spike Trimer WT (IgG), RBD Omicron (IgG), RBD WT (IgG Avidity), Spike Trimer WT (IgG Avidity), RBD 
Delta (IgM), RBD Delta (IgM), and Nucleoprotein WT (IgG) combinations as being the strongest predictors (all 
importance statistics > 0.04). This set of 7 variables is consistent with other analyses presented. GMM models 
were then fitted to combinations of these seven these variables (or features), specifying models consisting of 3 
to 6 components (or clusters to be defined, each with an estimated mean and covariance). The configurations 
were evaluated using F-score calculations, along with the Akaike information criterion (AIC) and the Bayesian 
information criterion (BIC). The highest scoring models were then built and trained using an 80:20 training to 
test split. Comparison of an individual’s allocated GMM cluster with their actual group (e.g., Negative, AA/SA) 
allowed for an estimation of misclassification errors.
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Data availability
The raw mean fluorescence intensity (MFI) data of each sample is available. All scripts for data analysis are avail-
able on GitHub (https://github.com/dan-ward-bio/COVID_immunology).

Received: 8 August 2024; Accepted: 23 December 2024
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