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Abstract 

Background  The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being 
the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their 
potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An. paren-
sis, with observations of its densities in northwestern Tanzania.

Methods  Mosquitoes were collected in three villages in Misungwi district, northwestern Tanzania, using CDC light 
traps and battery-powered aspirators indoors and human-baited double net traps outdoors. Female Anopheles 
adults were morphologically sorted and identified by PCR, and a subset was tested by ELISA for vertebrate blood 
meal sources and Plasmodium sporozoite infections. Insecticide susceptibility was assessed using the WHO proto-
col (2nd edition, 2018). Unfed females were dissected to assess parity, gonotrophic status and insemination status, 
while blood-fed females were monitored for oviposition to estimate egg counts. The prevalence of An. parensis 
was generally < 24% across all sites, except in Ngaya village, where it unexpectedly constituted 84% of PCR-amplified 
An. funestus sensu lato. This species was present in both indoor and outdoor collections, yet the females exclusively 
fed on non-human vertebrates, with no human blood meals detected. Parity rates were approximately 49% for rest-
ing and 46% for host-seeking females, with slightly higher percentages of both parous and inseminated females 
in the dry season compared to the wet season. Most parous females had oviposited once or twice, with those 
in the dry season ovipositing significantly more eggs. The average wing length of female An. parensis was 2.93 mm, 
and there was no significant impact of body size on parity, fecundity or insemination. The An. parensis mosquitoes 
were fully susceptible to pyrethroids, carbamates, organophosphates and organochlorides.
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Background
Findings
Effective malaria control requires understanding key 
ecological aspects of dominant vector species, includ-
ing feeding and resting behaviours [1–3], which inform 
transmission dynamics and vector control strategies. 
Interventions like insecticide-treated bed nets (ITNs) 
and indoor residual spraying (IRS) target mosqui-
toes that bite humans indoors [4–6] but are less effec-
tive against species exhibiting behavioural plasticity, 
such as biting or resting outdoors [7–9]. The Anoph-
eles gambiae complex and An. funestus group domi-
nate malaria transmission in Africa [10, 11]. Anopheles 
funestus s.s., particularly in East and southern Africa, 
contributes significantly to transmission and exhibits 
high insecticide resistance [12–15]. Other members of 
the Anopheles funestus group, including An. parensis, 
An. rivulorum and An. leesoni, have also been impli-
cated in malaria transmission [16–21]. In Tanzania, An. 
parensis has been reported carrying Plasmodium falci-
parum sporozoites [16, 17, 21], highlighting the need 
for more research into its role in malaria transmission. 
Despite findings of malaria-infected sibling species, 
their biology and response to control interventions 
remain poorly understood, necessitating further stud-
ies on their ecological adaptations and roles in residual 
transmission. Morphometric traits, such as wing size, 
are critical indicators of mosquito fitness and ecologi-
cal adaptations, influencing survival, fecundity and dis-
persal potential [22–24]. Investigating whether these 
traits correlate with reproductive parameters, includ-
ing gonotrophic cycles, fecundity, parity and insemina-
tion status, provides insights into the life history and 
vectorial capacity of  An. parensis. These analyses are 
particularly relevant for understanding seasonal and 

habitat-specific variations that could influence the suc-
cess of vector control strategies.

We initially set out to investigate the insecticide resist-
ance profiles and genetic structure of An. funestus s.s. 
in different parts of Tanzania, targeting 13 regions with 
moderate-to-high malaria prevalence [25]. However, dur-
ing these initial surveys, we noted that while An. funes-
tus group from other sites were resistant to pyrethroids, 
those in one village in Misungwi district were fully sus-
ceptible (percentage mortality: 100%). Subsequent geno-
typing of a 10% subset of the samples used for insecticide 
susceptibility tests revealed that the mosquitoes were 
predominantly An. parensis rather than An. funestus 
s.s. (Additional file 1). We also detected two individuals 
infected with Plasmodium falciparum sporozoite in An. 
parensis populations from the same district in Tanzania 
[16]. These findings prompted a series of follow-up sur-
veys, including a comparative survey in other villages (i.e. 
Mwagimagi and Nyang’homango) in Misungwi district 
during the first half of 2022 (Fig. 1), which localized the 
high concentrations of An. parensis to Ngaya village in 
Misungwi district.

Mosquito sampling began in February 2022 but was 
halted because of early heavy rains. The sampling was 
resumed and completed in July 2022 (dry season) and 
January–April 2023 (wet season). Eight households in 
Ngaya village were selected, and sampling was con-
ducted over 23 days. Resting mosquitoes were collected 
inside houses using battery-powered Prokopack aspira-
tors (hereafter referred to as Prokopack) from 6 to 8 a.m., 
while host-seeking mosquitoes were sampled outside 
the same houses using miniaturized double-net traps 
(DN-Mini) from 6  p.m. to 6 a.m. Centers for Disease 
Control and Prevention (CDC) light traps [26] were also 
used to sample mosquitoes from 6 p.m. to 6 a.m. in the 

Results  The prevalence of An. parensis was generally < 24% across all sites, except in Ngaya village, where it unex-
pectedly constituted 84% of PCR-amplified An. funestus sensu lato. This species was present in both indoor and out-
door collections, yet the females exclusively fed on non-human vertebrates, with no human blood meals detected. 
Parity rates were approximately 49% for resting and 46% for host-seeking females, with slightly higher percent-
ages of both parous and inseminated females in the dry season compared to the wet season. Most parous females 
had oviposited once or twice, with those in the dry season ovipositing significantly more eggs. The average wing 
length of female An. parensis was 2.93 mm, and there was no significant impact of body size on parity, fecundity 
or insemination. The An. parensis mosquitoes were fully susceptible to pyrethroids, carbamates, organophosphates 
and organochlorides..

Conclusion  This study offers insights into the behaviours and insecticide susceptibility of An. parensis. Primarily 
feeding on non-human hosts, An. parensis is less significant in malaria transmission than more anthropophilic vectors. 
Unlike the pyrethroid-resistant An. funestus sensu stricto, An. parensis remains fully susceptible to public health insecti-
cides despite the use of insecticidal bed nets. These findings provide a foundation for future research and may inform 
control strategies targeting residual malaria transmission involving An. parensis.

Keywords  Anopheles parensis, Plasmodium spp, Malaria, Tanzania
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comparator villages exclusively. While the February 2022 
and June–July 2022 surveys were done only in Ngaya vil-
lage, the 2023 sampling was extended to cover three vil-
lages, Ngaya, Mwagimagi and Nyang’homango (Fig. 1).

Collected adult mosquitoes were killed by freezing and 
then sorted morphologically to species level and physi-
ologically as fed, unfed or gravid. Blood-fed females were 
stored in 1.5-ml centrifuge tubes with 80% ethanol for 
analysis of blood meal sources and the detection of P. 
falciparum infective sporozoites. Though this study was 
conducted in a single village with high densities of An. 

parensis, the An. funestus s.l. mosquitoes were tested by 
polymerase chain reaction (PCR) to identify and confirm 
sibling species [27]. Engorged An. funestus mosquitoes 
were tested using an antibody-sandwich enzyme-linked 
immunosorbent assay (ELISA) for host blood meal iden-
tification [28]. Additionally, a circumsporozoite enzyme-
linked immunosorbent assay (CSP-ELISA) was used to 
detect the presence of Plasmodium spp. sporozoites in 
the mosquito salivary glands [29].

The unfed An. parensis females, from both resting and 
host-seeking collections were dissected to examine their 

Fig. 1  Map showing the study sites in Misungwi district, northwestern Tanzania
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ovaries for parity using the Detinova method [30]. All 
parous females were further examined for the number 
of gonotrophic cycles using the Polovodova method [31, 
32]. The spermathecae of each female were also dissected 
and inspected under a microscope to assess insemination 
status. For fecundity assessment, blood-fed An. parensis 
females were placed individually in paper cups lined with 
wet filter paper at the bottom to encourage oviposition. 
A fine mesh was secured over the cups to prevent escape. 
After oviposition, the number of eggs laid by each female 
was counted and recorded. In addition to reproductive 
assessments, the body size of An. parensis was evaluated 
to investigate any correlations between body size and 
reproductive traits, such as parity, fecundity and insemi-
nation status.

Female mosquitoes that were not blood fed were used 
for baseline insecticide susceptibility bioassays follow-
ing WHO guidelines [33] with slight modifications as 
follows: Since we were unable to obtain enough of the 
required age-synchronized adults collected as larvae, 
we used adult collected mosquitoes. These mosquitoes 
were allowed to acclimatize in a local insectary in the 
study village for at least 8  h to eliminate any moribund 
or dead individuals before testing; controls were used to 
monitor excessive mortalities. Insecticides in four differ-
ent classes were tested at standard WHO recommended 
doses typically used for major malaria vectors, includ-
ing: pyrethroid type I (0.75% permethrin), pyrethroid 
type II (0.05% deltamethrin), carbamate (0.1% bendio-
carb), organophosphate (0.25% pirimiphos-methyl) and 
organochloride (4% DDT). Each test included six rep-
licates, including four with insecticide-impregnated 
papers and two with oil-impregnated papers as controls. 
Each replicate contained 20–25 live mosquitoes, totalling 
a minimum of 120 mosquitoes per assay per candidate 

insecticide. Mosquitoes were exposed to both insecti-
cide- and oil-impregnated papers for 1  h, with knock-
down times recorded at 10, 15, 20, 30, 40, 50 and 60 min. 
After exposure, mosquitoes were transferred to holding 
tubes, provided with a 10% glucose solution, and mortal-
ity was recorded after 24 h post exposure.

A total of 20,737 mosquitoes were collected indoors 
and outdoors over 60 trapping nights in three selected 
study villages. These included 4905 Anopheles gambiae 
s.l., 9474 An. funestus s.l., 2489 An. coustani, 38 An. phar-
oensis, 26 An. squamosus, 110 An. ziemanni, 2079 Culex 
spp., 1605 Mansonia spp. and 11 Coquillettidia spp. The 
entomological survey results for all study villages are 
shown in Table 1.

Analysis of the  An. funestus  group in all three vil-
lages revealed that the dominant species in Ngaya vil-
lage was  An. parensis, constituting 84% (1033/1230) of 
all PCR-amplified samples. In Mwagimagi village, the 
dominant member of the  An. funestus  group was  An. 
funestus  s.s., constituting 98.7% of all PCR-amplified 
samples, while  An. parensis accounted for only 1.3%. In 
Nyang’homango village,  An. funestus  s.s. was also the 
dominant species, making up 75.9% of all PCR-amplified 
samples. In Nyang’homango,  An. parensis  had a higher 
proportion compared to Mwagimagi, representing 23.4% 
of the samples. Subsequent analyses focused on N’gaya 
village because of the high densities of An. parensis. In 
Ngaya village, 3248 An. funestus s.l. females were col-
lected inside and outside homes over 23  days, with the 
majority (n = 1676) from host-seeking catches (Table 1).

A total of 257 out of 298 An. parensis mosquitoes 
from indoor resting collections were analysed, with 93% 
(n = 238) having fed on cattle, 2% (n = 6) on dogs and 1% 
(n = 2) on goats (Table 2). Additionally, 177 out of 735 An. 
parensis females collected while host-seeking outdoors 

Table 1  Mosquito species collected over 60 trap nights in three villages of Misungwi district, northwestern Tanzania

Ngaya Village Mwagimagi Village Nyang’homango Village

Species Indoor resting collections 
(Prokopack)

Outdoor host-seeking 
collections (DN-Mini)

Indoor host-seeking collections 
(CDC light trap)

Indoor host-seeking 
collections (CDC light 
trap)

Anopheles gambiae s.l. 702 (19.8%) 1694 (24.3%) 1796 (30.5%) 713 (16.4%)

An. funestus  s.l.572 (44.4%) 1676 (24.1%) 3592 (61.1%) 2634 (60.6%)

An. coustani 767 (21.6%) 1722 (24.7%) 0 (0%) 0 (0%)

An. pharoensis 14 (0.4%) 24 (0.3%) 0 (0%) 0 (0%)

An. squamosus 12 (0.3%) 14 (0.2%) 0 (0%) 0 (0%)

An. ziemanni 0 (0%) 110 (1.6%) 0 (0%) 0 (0%)

Culex spp. 207 (5.8%) 547 (7.9%) 483 (8.2%) 842 (19.4%)

Mansonia spp. 269 (7.6%) 1173 (16.8%) 9 (0.2%) 154 (3.5%)

Coquillettidia spp. 0 (0%) 8 (0.1%) 0 (0%) 3 (0.1%)

Totals 3,543 6,968 5,880 4,346
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were analysed, with most (60%, n = 107) feeding on cat-
tle and 2% (n = 4) on pigs. Over 30% of the outdoor host-
seeking An. parensis were non-reactive for all blood 
sources tested (Table  2). A subset of mosquitoes from 
resting collections (n = 463) and host-seeking collections 

(n = 767) were screened for Plasmodium spp., but none 
tested positive in this round. However, a previous survey 
had detected two infected samples from this same site 
[16].

Overall, 49% of An. parensis females collected resting 
indoors were parous compared to 46% among those col-
lected in double-net traps outdoors. The proportion of 
parous females was higher during the dry season than in 
the wet season, although this difference was not statisti-
cally significant (Additional file  2). Further examination 
revealed that most parous females had laid eggs once 
(85.1%) or twice (10.6%), with none having laid eggs more 
than three times (Fig. 2). It was also observed that more 
An. parensis were inseminated during the dry season 
than in the wet season, but this difference was not sta-
tistically significant (Additional file 3). Similarly, regard-
ing fecundity, those collected during the dry season laid 
more eggs (mean = 76.8, 95% CI  [67.6, 86]) than those 
collected during the wet season (p < 0.001). Moreover, 
An. parensis collected outdoors in double net traps laid 

Table 2  Sources of blood meals taken by Anopheles parensis 
mosquitoes from the indoor resting and outdoor host-seeking 
collections

Host type Indoor collections 
(Prokopack aspirators)

Outdoor 
Collections 
(DN-Mini Traps)

Human 0 0

Cattle 238 (93%) 107 (60%)

Pig 0 4 (2%)

Goat 2 (1%) 0

Dog 6 (2%) 0

Non-reactive 11 (4%) 66 (37%)

Total tested 257 177

Fig. 2  Relationship between wing sizes of wild-caught Anopheles parensis and (A) parity status, (B) gonotrophic cycles, (C) insemination status 
and (D) number of eggs oviposited in both wet and dry seasons
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significantly more eggs (mean = 72.5, 95% CI [63.6, 81.5]) 
than those collected resting indoors (p < 0.001) (Fig. 3).

The mean wing size for An. parensis females was 
2.93  mm (95% CI [2.91, 2.95]), slightly larger than the 
2.65  mm (95% CI [2.42, 2.89]) observed in An. funes-
tus s.s. mosquitoes in the same district (Odero et  al., 
unpublished data). There was no statistically significant 
difference in wing sizes related to gonotrophic cycles, 
fecundity, parity or insemination status (Fig. 2).

The  An. parensis  populations were fully susceptible 
to all tested insecticides, showing 100% mortality at the 
discriminating concentrations (Additional file 4). Knock-
down times varied among the insecticides,  reflecting 
their modes of action. Pyrethroids, known for their fast-
acting neurotoxic effects on sodium channels, achieved 
a 50% knockdown (KDT50) more quickly compared 
to other insecticides (Table  3) in both dry and wet sea-
sons. Similarly, they reached KDT95 in less time during 

the wet season compared to the dry season. DDT exhib-
ited a longer KDT50 compared to pyrethroids,  consist-
ent with its slower action through prolonged excitation 
of sodium channels. Additionally, Table  3 indicates that 
pirimiphos-methyl had longer KDT50 and KDT95 dur-
ing the dry season compared to the wet season, while the 
opposite was true for bendiocarb. The variations in KDT 
times underscore the functional differences between 
fast-acting (i.e. pyrethroids) and slower-acting (i.e. DDT, 
pirimiphos-methyl) insecticides, highlighting the influ-
ence of the insecticide’s mode of action on knockdown 
efficacy.  Although pyrethroids achieved a KDT50 in < 
2 min during the dry season, it took > 30  min to reach 
KDT95 (Table  3).  These seasonal differences in KDT50 
and KDT95 may reflect changes in mosquito physiology 
or behaviour during the wet and dry seasons, potentially 
influencing their susceptibility to insecticides.

Our findings provide important insights into the biol-
ogy, behaviour and insecticide susceptibility of An. 
parensis in Tanzania, which may also be relevant to other 
regions. While An. parensis rests indoors, its females pri-
marily feed outdoors on non-human hosts, indicating 
a limited role in malaria transmission in the absence of 
major vectors. High densities observed in outdoor host-
seeking collections suggest a preference for outdoor bit-
ing, warranting further investigation into indoor-outdoor 
interactions. Although rarely found carrying P. falcipa-
rum sporozoites, the prevalence of An. parensis high-
lights the need for broader control strategies, especially 
since it remains fully susceptible to public health insecti-
cides and has significant indoor resting populations. This 
raises questions about its survival despite the widespread 
use of insecticide-treated nets (ITNs) in the area.

Most An. parensis were found to feed on cattle, 
with some also feeding on dogs, pigs and goats, but 
none on humans, reflecting its zoophilic nature [34]. 
However, our findings suggest that An. parensis can 

Fig. 3  Number of eggs oviposited by wild-caught Anopheles 
parensis from both resting and host-seeking catches (representing 
mosquitoes initially captured during host-seeking attempts, 
regardless of their physiological status at the time of collection) 
in the dry (July) and wet (February) seasons

Table 3  Knockdown times of Anopheles parensis mosquitoes at discriminating concentrations in tests done in dry and wet seasons in 
Ngaya, northwestern Tanzania

Season Insecticide Class Dose KDT50 ± SE KDT95 ± SE

Dry season Bendiocarb Carbamate 0.1% 23.1 ± 5.2 32.9 ± 10.1

DDT Organochlorine 4% 21.1 ± 5.3 32.1 ± 11.0

Deltamethrin Pyrethroid 0.05% −5.0 ± 42.5 41.5 ± 31.1

Permethrin Pyrethroid 0.75% 1.8 ± 26.5 33.1 ± 22.4

Pirimiphos-methyl Organophosphate 0.25% 34.9 ± 8.5 57.3 ± 16.8

Wet season Bendiocarb Carbamate 0.1% 24.9 ± 5.6 35.7 ± 10.6

DDT Organochlorine 4% 33.0 ± 8.3 54.9 ± 16.3

Deltamethrin Pyrethroid 0.05% 10.0 ± 5.1 17.1 ± 7.4

Permethrin Pyrethroid 0.75% 6.3 ± 14.5 18.8 ± 11.9

Pirimiphos-methyl Organophosphate 0.25% 27.4 ± 6.3 40.6 ± 11.7
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opportunistically feed on both humans and animals 
depending on availability. Previous findings indicate 
that Plasmodium-infected An. parensis have been 
observed [16, 17, 35], supporting the notion of occa-
sional human bites. In Ngaya village, An. parensis pop-
ulations were fully susceptible to common insecticides, 
unlike the resistant An. funestus s.s. in Tanzania [25]. 
Despite this susceptibility, An. parensis persists in high 
densities in areas with widespread dual-active ITNs, 
raising questions about its survival indoors despite 
effective insecticide coverage. One possible explana-
tion could be its behavioural tendencies, such as out-
door resting or feeding, which might reduce exposure 
to insecticides. Alternatively, differences in insecticide 
pressure or genetic factors may play a role in maintain-
ing susceptibility. These aspects merit further investiga-
tion.Additionally, there was no significant difference in 
parity or insemination status of An. parensis between 
resting and host-seeking catches across seasons. How-
ever, more parous females were found in the dry season, 
indicating the species’ ability to endure dry conditions, 
similar to An. funestus [36]. Wing size did not vary with 
gonotrophic cycles, insemination status or parity. Nota-
bly, An. parensis from the dry season laid more eggs, 
suggesting seasonal differences in gonotrophic cycles 
[37, 38], possibly because of environmental stress 
prompting multiple blood meals per cycle [37–39].

Overall, this study underscores the biology and 
behaviour of An. parensis as a minor malaria vector 
in Tanzania. In the Misungwi district, it was the pre-
dominant species within the An. funestus group, even 
though malaria transmission is primarily driven by 
major vectors like An. funestus s.s. The species’ pref-
erence for outdoor biting and non-human hosts limits 
its transmission potential. Nevertheless, its full suscep-
tibility to common insecticides suggests that integrat-
ing indoor residual spraying (IRS) with ITNs could be 
an effective control strategy, especially given its indoor 
resting behaviour. Although  An. parensis  predomi-
nantly feeds on cattle, its occasional feeding on humans 
could facilitate the transfer of  P. falciparum, suggest-
ing its potential role as a bridge vector. These findings 
lay a solid foundation for future research and control 
strategies.
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