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ABSTRACT
Background: During the pandemic, there was concern that underascertainment of COVID-19 outcomes may impact treatment 
effect estimation in pharmacoepidemiologic studies. We assessed the impact of outcome misclassification on the association be-
tween inhaled corticosteroids (ICS) and COVID-19 hospitalisation and death in the United Kingdom during the first pandemic 
wave using probabilistic bias analysis (PBA).
Methods: Using data from the Clinical Practice Research Datalink Aurum, we defined a cohort with chronic obstructive pulmo-
nary disease (COPD) on 1 March 2020. We compared the risk of COVID-19 hospitalisation and death among users of ICS/long-
acting β-agonist (LABA) and users of LABA/LAMA using inverse probability of treatment weighted (IPTW) logistic regression. 
We used PBA to assess the impact of non-differential outcome misclassification. We assigned beta distributions to sensitivity and 
specificity and sampled from these 100 000 times for summary-level and 10 000 times for record-level PBA. Using these values, 
we simulated outcomes and applied IPTW logistic regression to adjust for confounding and misclassification. Sensitivity analyses 
excluded ICS + LABA + LAMA (triple therapy) users.
Results: Among 161 411 patients with COPD, ICS users had increased odds of COVID-19 hospitalisations and death compared 
with LABA/LAMA users (OR for COVID-19 hospitalisation 1.59 (95% CI 1.31–1.92); OR for COVID-19 death 1.63 (95% CI 1.26–
2.11)). After IPTW and exclusion of people using triple therapy, ORs moved towards the null. All implementations of QBA, both 
record- and summary-level PBA, modestly shifted the ORs away from the null and increased uncertainty.
Conclusions: We observed increased risks of COVID-19 hospitalisation and death among ICS users compared to LABA/
LAMA users. Outcome misclassification was unlikely to change the conclusions of the study, but confounding by indication 
remains a concern.

1   |   Introduction

At the beginning of the pandemic, many pharmacoepide-
miologic studies were conducted to investigate the effects of 

existing medications on COVID-19 outcomes. These stud-
ies  may have been affected by biases, leading to potentially 
differing results compared to randomised controlled trials 
(RCTs).
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The role of confounding was considered in detail in these stud-
ies [1–4], but the potential role of misclassification received less 
attention. Outcome misclassification is likely to have occurred 
during the early use of new International Classification of 
Disease 10th revision (ICD-10) codes denoting COVID-19 di-
agnoses [5, 6]. In particular, there was concern that COVID-19 
mortality would be underestimated when considering official 
reports of COVID-19 deaths alongside excess all-cause mortal-
ity [6]. Inhaled corticosteroids (ICS), anti-inflammatory drugs 
widely used to treat COPD [7], were one of the medications 
investigated as potential treatments for COVID-19 due to their 
immunosuppressant effects [8, 9], which could have different 
consequences at different stages of infection [10]. Observational 
studies found inconsistent results, but RCTs subsequently found 
a protective effect of one inhaled ICS, budesonide, on severe 
COVID-19 outcomes [11, 12].

This study assesses the potential impact of outcome misclas-
sification in an analysis of ICS/LABA (long-acting β-agonist) 
use compared with LABA/LAMA (long-acting muscarinic an-
tagonist) use on the risk of COVID-19 hospitalisation or death 
during the first wave of COVID-19 in the United Kingdom 
(March–August 2020), using three different methods of quanti-
tative bias analysis (QBA).

2   |   Methods

The study protocol was registered on ENCEPP EU PAS (Register 
Number: 47885), and we completed the RECORD-PE checklist 
(Table S1) [13].

2.1   |   Study Design

2.1.1   |   Data Source

This study used routinely collected data from primary care in 
the United Kingdom in the Clinical Practice Research Datalink 
(CPRD) Aurum. CPRD Aurum includes data on 41 million 

patients (May 2022 build) from > 1300 general practices [14] and 
is representative of the English population [15].

CPRD Aurum was linked to Hospital Episode Statistics (HES) 
Admitted Patient Care (APC) and Office for National Statistics 
(ONS) Death Registry [15, 16]. HES APC holds information on 
all in-patient contacts at NHS hospitals in England [16, 17]. The 
ONS Death Registry contains information on deaths occur-
ring in England and Wales, including the cause of death docu-
mented using ICD-10 codes [17, 18]. Data were linked to Index 
of Multiple Deprivation (IMD), a postcode-level indicator of so-
cioeconomic status.

2.1.2   |   Study Population

We defined a cohort of people with COPD before 1 March 
2020 (i.e., the index date) based on a validated algorithm [19]. 
Patients had to be alive, aged ≥ 35, registered in CPRD Aurum 
on 1 March 2020 and have ≥ 12 months' continuous registra-
tion before the index date. In the main analysis, we excluded 
people with asthma within 3 years before the index date, leu-
kotriene receptor antagonist use within 4 months before the 
index date as this indicates asthma or other chronic respira-
tory disease at any point before the index date. Patients were 
followed up until death, deregistration or 31 August 2020, 
whichever came first. If death was registered in ONS, that 
date was considered the date of death. If death was missing 
in ONS but registered in CPRD, we used the date recorded in 
CPRD as the date of death. A study diagram [20] is provided 
in Figure S1.

2.1.2.1   |   Exposure.  Treatment episodes were esti-
mated based on the prescription issue date and information 
on the intended duration, prescribed amount and dosage 
(Method S1).

We used the derived exposure start and end dates to identify 
people using ICS/LABA or LABA/LAMA on the index date, ei-
ther as combined or separate inhalers. ICS/LABA was the expo-
sure of interest, and LABA/LAMA was the active comparator. 
People using ICS + LABA + LAMA (henceforth referred to as 
triple therapy) were included in the ICS/LABA group but were 
excluded in a sensitivity analysis.

2.1.2.2   |   Outcome.  The outcomes were (i) hospitalisation 
with a primary diagnosis code for COVID-19 in HES APC, 
and (ii) death with a code for COVID-19 as a cause of death any-
where on the death certificate in the ONS Death Registry. Diag-
nostic codes for COVID-19 were ICD-10 U07.1 and U07.2.

2.1.3   |   Covariates

Results were adjusted for the following baseline covari-
ates: age, gender, BMI (most recent and within the previ-
ous 10 years, categorised as underweight (< 18.5), normal 
(18.5–24.9), overweight (25–29.9) or obese (≥ 30)), smoking 
(current vs. former), ethnicity, cancer, diabetes, chronic kid-
ney disease, cardiovascular disease, hypertension, asthma 
(not within the past 3 years), immunosuppression, receipt of 

Summary

•	 COVID-19 outcomes may have been at risk of misclas-
sification early during the COVID-19 pandemic.

•	 No pharmacoepidemiological studies have evaluated 
the impact of such misclassification on their findings.

•	 We used several forms of quantitative bias analysis to 
adjust for outcome misclassification in an analysis of 
inhaled corticosteroids and COVID-19 hospitalisation 
and death.

•	 We found that all methods shifted effect estimates 
away from the null, albeit to a limited extent.

•	 This study provides reassurance that even relatively 
substantial outcome misclassification would not have 
changed the study conclusions and demonstrates how 
to correct for cause-specific outcome misclassification 
in epidemiological studies.
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influenza vaccine (past year), receipt of pneumococcal vac-
cine (past 5 years), IMD quintile and COPD exacerbation in 
the past year. COPD exacerbations were identified based on a 
validated algorithm [21].

2.2   |   Statistical Analyses

Cohort characteristics were summarised using descriptive sta-
tistics by exposure group. There were missing data for BMI, eth-
nicity and IMD. Missing BMI values were assumed to be normal 
BMI [22]. Missing ethnicity and IMD were considered separate 
categories.

We estimated propensity scores (PSs) and used inverse prob-
ability of treatment weighting (IPTW) to estimate the average 
treatment effect (ATE), adjusting for potential confounders. PSs 
were estimated using logistic regression, including the covari-
ates listed above. Weights were calculated as 1

ps
 (ICS) and 1

1−ps
 

(LABA/LAMA), where the PS is the probability of receiving ICS. 
Overlap of the PSs across treatment groups was assessed graphi-
cally and by summarising by treatment group. PSs were trimmed 
to the region of common support [23].

Logistic regression was used to estimate odds ratios (ORs) and 
95% confidence intervals (CIs). This was done to make estimates 
comparable across analyses, as simple bias analysis (SBA) and 
summary-level PBA are conducted based on 2 × 2 tables, gener-
ating relative risks or ORs as relative effect estimates. Although 
we anticipated this to have minimal impact on findings as the 
follow-up time was short and censoring was rare, we addition-
ally conducted Cox regression where possible (analyses without 
QBA and record-level PBA).

2.2.1   |   QBA

2.2.1.1   |   QBA for Outcome Misclassification.  We used 
SBA and PBA [24] to investigate the potential impact of out-
come misclassification using methods based on Fox et al. [25]. 
We used estimates of sensitivity and specificity as bias param-
eters to describe assumptions about the accuracy of COVID-19 
hospitalisation in HES and COVID-19 death in ONS. We 
expected that COVID-19 hospitalisations would have been 
ascertained with greater accuracy than COVID-19 deaths. 
For both outcomes, we assumed outcome misclassification 
was non-differential with respect to exposure, as hospitalisa-
tions and deaths would have been coded without exposure. 
This assumes exposure is not associated with characteristics 
that may predict outcome validity. This assumption was evalu-
ated in sensitivity analyses of differential misclassification. We 
assumed occurrences and dates recorded in HES and ONS to 
be correct and corrected only for misclassified causes of hos-
pitalisations and deaths. Therefore, correction for outcome 
misclassification was conducted only among people who were 
hospitalised or died of any cause. This involved conducting 
QBA steps among patients hospitalised or who died; patients 
without hospitalisation or death were subsequently included 
to calculate the effect estimates in the entire population. Code 
illustrating these steps is available on our GitHub repository 
(https://​github.​com/​bokern/​ics_​covid​ ).

Initially, we conducted SBA using available tools [26], using 
best estimates of sensitivity and specificity. We then performed 
summary- and record-level PBA using Monte Carlo sampling of 
bias parameter values from prespecified distributions for both 
outcomes, generating a point estimate and 95% simulation in-
terval (SI).

2.2.2   |   Bias Parameter Values and Distributions

2.2.2.1   |   Hospitalisations.  In the absence of evidence 
from the United Kingdom, values for sensitivity and specific-
ity of hospital diagnoses were based on validation studies from 
North America [27, 28] and bounds given by the data. Kadri 
et al. estimated a sensitivity = 98.0% and a specificity = 99.0% 
in US administrative data during April and May 2020 [27]. A 
validation study from Canada between March 2020 and Feb-
ruary 2021 estimated a sensitivity = 82.5% [28]. We therefore 
estimated that sensitivity would have a median of 0.90 and lie 
between 0.80 and 0.96 (Table  1). As only 5% of hospitalised 
patients had a COVID-19 hospitalisation, the proportion 
of false-positive COVID-19 hospitalisations could not exceed 
5%, so specificity was > 95%. We assigned parameter values to 
beta distributions based on the mean and variance of the target 
distributions [29]. For sensitivity, we parameterised a beta dis-
tribution with median = 0.90, 2.5th percentile = 0.80 and 97.5th 
percentile = 0.96 (α = 47.7, β = 5.5). For specificity, we used a 
beta distribution with median = 0.98, 2.5th percentile = 0.95, 
97.5th percentile = 0.999 (α = 1, β = 1, transformed to have a 
lower bound of 0.95). These distributions resulted in negative 
cell counts in the 2 × 2 table in 28% of iterations, indicating 
incompatibility with the data  [29]. As negative cell counts 
were driven by false positives, we subsequently increased 
the lower bound of the specificity distribution to 0.97 to obtain 
plausible results.

2.2.2.2   |   Deaths.  Data on excess deaths [31] and reported 
COVID-19 deaths in England and Wales [32] were used to 
inform estimates of sensitivity and specificity (Method S2). 
Assuming all excess deaths between 1 March 2020 and 7 May 
2020 were COVID-19 deaths, we estimated a sensitivity = 72.2% 
and specificity = 96.6% among those who died of any cause 
(Table  1). We assumed that sensitivity and specificity esti-
mates would lie within a 10% range of the point estimate, 
and parameterised a beta distribution for sensitivity with 
values median = 0.72, 2.5th percentile = 0.60 and 97.5th per-
centile = 0.83 (α = 39.6, β = 15.4). For specificity, we used a 
beta distribution with median = 0.96, 2.5th percentile = 0.91 
and 97.5th percentile = 0.99 (α = 91.2, β = 3.9). Graphs of bias 
parameter distributions are in Figures S6–S11.

2.2.2.3   |   QBA.  We constructed 2 × 2 exposure-outcome tables 
for the relevant population by restricting to people who were hos-
pitalised or died of any cause. Patients with multiple hospitalisa-
tions were counted as having a COVID-19 hospitalisation if any 
were recorded as due to COVID-19. If none were recorded as due 
to COVID-19, we only counted that patient once.

Using available tools [26], we applied the median of bias param-
eters (Se = 90.5% and Sp = 96.0% for COVID-19 hospitalisations; 
Se = 72.2% and Sp = 96.6% for COVID-19 deaths) to conduct SBA. 
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SBA results in a single point estimate, but no estimate of uncer-
tainty. Estimating the standard error from the adjusted 2 × 2 table 
would underestimate the true uncertainty as it would not reflect 
uncertainty introduced by the estimation of bias parameters and 
would therefore not be valid.

For summary-level PBA, we sampled from the specified 
distributions 100 000 times and applied the sampled val-
ues  to  correct the 2 × 2 tables. For record-level correc-
tion, we sampled from each distribution 10 000 times and 
corrected the  outcome for each individual record [25]. 
Initially,  sampled  sensitivity and specificity were applied to 
the 2 × 2  table exposure-outcome to estimate outcome prev-
alence in the exposure groups. From the estimated preva-
lences, sensitivity and specificity, we estimated positive and 
negative predictive values (PPV and NPV), which were again 
used to adjust the 2 × 2 table. For record-level PBA, we con-
ducted Bernoulli trials for each patient to simulate the out-
come, using the estimated PPV and NPV for each combination 
of exposure and observed outcome. This step is omitted in 
summary-level PBA.

After each iteration, we added back in patients without hospi-
talisations or deaths to conduct unweighted and IPT–weighted 
logistic regression, generating bias-adjusted ORs with 95% SIs. 
As patients could have multiple hospitalisations, we simulated 
potential outcome misclassification for each hospitalisation and 
selected the first one simulated as being due to COVID-19 to de-
termine the outcomes.

A full description of the methods, including equations, is pro-
vided in Methods S3–S5.

2.2.2.4   |   Sensitivity Analyses.  To improve comparability 
of the treatment groups, we excluded people using triple therapy 
as we expected they would be sicker than those using dual therapy. 
To assess the sensitivity of the results to individual values of bias 
parameters, we conducted summary-level PBA steps for individ-
ual values of sensitivity and specificity to generate the point esti-
mate with a 95% SI for both outcomes. For COVID-19 deaths, we 
additionally simulated outcome misclassification differential with 
respect to exposure by conducting the steps for summary-level PBA, 
but for individual values of sensitivity among the ICS and LABA/
LAMA groups with specificity set at 0.97. We conducted several 
other sensitivity analyses described in Method S6.

Data were managed using Stata Version 17.0 [33], and analysis 
was conducted using R (Version 4.3.3) [34]. Code lists and data 
management and analysis code are available on our GitHub re-
pository (https://​github.​com/​bokern/​ics_​covid​).

3   |   Results

3.1   |   Description of the Study Population

The cohort included 161 411 patients with COPD (Figure  S2). 
Of these, 56 059 (35.4%) were using ICS/LABA at baseline, and 
22 319 (13.81%) were using LABA/LAMA. Median follow-up 

TABLE 1    |    Decisions related to the implementation of quantitative bias analysis.

Hospitalisation Death

Bias parameters Sensitivity and specificity Sensitivity and specificity

Simple bias analysis

Values Se = 90.5%, Sp = 96.0% Se = 72.2%, Sp = 96.6%

Source/rationale Validation studies from the 
United States and Canada [27, 28, 

30]. Bounds given by data.

Data on excess deaths in the United 
Kingdom (March–May 2020) [31, 32]

Differential with respect to 
exposure status?

No No

Probabilistic bias analysis

Type of distribution Beta Beta

Values (distribution) Se ~ beta (47.7, 5.5)
1.  Sp = 0.95 + 0.05X, where X ~ beta (1, 1)
2.  Sp = 0.97 + 0.03X, where X ~ beta (1,1)

Se ~ beta (39.6, 15.4)
Sp ~ beta (91.2, 3.9)

Source/rationale Assumed that the Se would lie within 
ca. 10% on either side of the point 
estimate. Our data suggested that 
the Sp had a lower bound of 95%.

Assumed that Se would lie within ca. 
10% on either side of the point estimate, 

and that Sp would lie roughly 4% on 
either side of the point estimate.

Number of samples (summary 
level)

100 000 100 000

Number of samples (record level) 10 000 10 000

Correlations of distributions None None
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was 183 days. The proportion of patients censored for any reason 
was 6.5% for COVID-19 hospitalisations and 6.1% for COVID-19 
deaths (Table S2).

Cohorts were similar in all measured covariates apart from the 
proportion of people with a history of asthma and COPD exacer-
bations in the past year (Table 2). After IPT weighting, treatment 
groups were balanced on all covariates.

3.1.1   |   Association Between ICS and Clinical Outcomes

There were 662 COVID-19 hospitalisations and 366 COVID-19 
deaths (Table  3). In unadjusted models, ICS users were at in-
creased risk of all outcomes compared with LABA/LAMA users 
(OR for COVID-19 hospitalisation 1.59 (95% CI 1.31–1.92); OR for 
COVID-19 death 1.63 (95% CI 1.26–2.11)) (Figure 1). After IPTW, 
ORs shifted towards the null (OR for COVID-19 hospitalisation 
1.46 (95% CI 1.21–1.76); OR for COVID-19 death 1.42 (95% CI 
1.11–1.82)). We also observed an increased risk of all-cause death 
among ICS users (OR 1.38 (95% CI 1.26–1.52)), which attenuated 
towards the null after IPTW (OR 1.23 (95% CI (1.12–1.34))) (re-
sults not shown).

3.1.2   |   QBA Results for Hospitalisations

SBA resulted in an OR 1.75. Summary-level PBA shifted ORs 
away from the null (OR 2.20 (95% SI 1.45–7.38)). Record-level 
PBA with logistic regression gave a median OR of 1.88 (95% SI 
1.39–3.79) and an IPT–weighted OR of 1.74 (95% SI 1.27–3.56). 
No iterations were discarded due to negative cell counts.

3.1.3   |   QBA Results for Deaths

SBA for outcome misclassification of deaths gave an OR of 1.63. 
Summary-level PBA of deaths resulted in an OR 1.83 (95% SI 
1.35–3.28). Record-level PBA with logistic regression gave a 
median unweighted OR of 1.76 (95% SI 1.28–2.84) and IPT–
weighted OR of 1.55 (95% SI 1.10–2.55). 0.13% of iterations were 
discarded due to negative cell counts.

3.1.4   |   Analysis Excluding People Using Triple Therapy

Excluding people using triple therapy gave ORs 1.21 (95% CI 
0.93–1.56) for COVID-19 hospitalisations and 1.29 (95% CI 
0.92–1.81) for COVID-19 deaths (Figure 2). IPTW shifted the re-
sults towards the null (OR 1.19 (95% CI 0.92–1.53) for COVID-19 
hospitalisations, OR 1.24 (95% CI 0.88–1.74) for COVID-19 
deaths). Summary-level QBA for COVID-19 hospitalisations 
resulted in an OR of 1.44 (95% SI 0.95–4.00). Record-level PBA 
with subsequent logistic regression resulted in an unweighted 
OR of 1.88 (95% SI 0.82–2.17) and a IPT–weighted OR of 1.26 
(95% SI 0.78–2.10).

Summary-level QBA for COVID-19 deaths resulted in an OR of 
1.33 (95% SI 0.84–2.26). Record-level PBA with logistic regres-
sion resulted in an unweighted OR of 1.32 (95% SI 0.82–2.17) and 
an IPT–weighted OR of 1.26 (95% SI 0.78–2.10).

3.1.5   |   Sensitivity Analyses

Analyses applying individual values for sensitivity and specific-
ity showed that results were relatively insensitive to variations 
in sensitivity estimates, but small deviations from perfect spec-
ificity resulted in relatively marked shifts in the point estimate 
(e.g., for COVID-19 hospitalisation, with perfect sensitivity, a 
decrease in specificity from 0.99 to 0.98 changed the median OR 
from 1.93 to 2.79; Figures S36, S37).

Simulation of differential sensitivity for the outcome COVID-19 
deaths showed that results were relatively robust to different val-
ues of sensitivity in the two treatment groups (Figures S38, S39). 
Results of Cox regression models were very similar to logistic 
regression models (Figures S40, S41).

4   |   Discussion

Among ICS users, the risk of COVID-19 hospitalisation or death 
was higher than among LABA/LAMA users. Effect estimates 
attenuated towards the null after IPTW and after excluding 
people using triple therapy. This is likely explained by the fact 
that triple therapy users were in the ICS group and tend to 
have more severe COPD and comorbidities than LABA/LAMA 
users. Accounting for outcome misclassification using QBA 
shifted the effect estimates away from the null and increased 
the uncertainty around the point estimates, but did not change 
the conclusions of the analyses.

4.1   |   Comparison to Other Studies

Two previous studies used UK EHR data and the ONS Death 
Registry to investigate the same research question. The effect 
estimate in the OpenSAFELY study (aHR for COVID-19 death 
1.39 (1.10–1.76)) is very similar to ours, possibly due to simi-
larities in study design [1]. A study using QResearch [4] found 
a more modest risk of severe COVID-19 and COVID-19 death 
associated with ICS use, independent of underlying respira-
tory disease (COVID-19 hospitalisation aHR 1.13 (1.03–1.23); 
COVID-19 death aHR 1.15 (1.01–1.31)). Both studies addressed 
confounding as a potential source of bias and discussed po-
tential exposure misclassification. Several other studies 
investigated ICS and COVID-19 outcomes, but in different pop-
ulations, making results less comparable [2, 3, 35]. Despite con-
cerns about COVID-19 outcome misclassification, we are not 
aware of previous studies attempting to quantitatively correct 
for such misclassification.

4.2   |   Correcting for Potential Outcome 
Misclassification

All implementations of QBA shifted the effect estimates away 
from the null, in line with the heuristic that non-differential 
misclassification biases results towards the null. This suggests 
conventional estimates underestimate the association between 
ICS and severe COVID-19. However, our assessment adds con-
firmation that quantitatively accounting for plausible misclassifi-
cation would not have led to different conclusions. Additionally, 
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TABLE 2    |    Baseline demographic and clinical characteristics of patients in the cohort before and after inverse probability of treatment weighting.

Before weighting
After inverse probability of 

treatment weighting

ICS N = 56 059

LABA/
LAMA 

N = 22 319 SMD ICS N = 56 051

LABA/
LAMA 

N = 22 324 SMD

Age

Mean (SD) 71.3 (10.5) 70.8 (10.2) 0.0480 71.18 (10.46) 71.19 (10.30) −0.00170

Median (25%–75%) 71.7 (64.7–78.7) 71.7 (63.7–77.7) 71.67 (63.67–78.67) 71.67 
(64.67–78.67)

Gender

Male 29 830 (53%) 12 245 (55%) 30 094 (54%) 12 036 (54%)

Female 26 229 (47%) 10 074 (45%) 0.0166 25 957 (46%) 10 287 (46%) 0.00226

BMI

Underweight 
(< 18.5)

3142 (5.6%) 970 (4.3%) 0.0126 17 928 (32%) 7112 (32%) 0.000344

Normal (18.5–24.9) 18 163 (32%) 6926 (31%) 0.0136 2936 (5.2%) 1162 (5.2%) 0.00126

Overweight 
(25–29.9)

17 349 (31%) 7172 (32%) −0.0118 17 529 (31%) 6979 (31%) 9.41E-05

Obese (> = 30) 17 405 (31%) 7251 (32%) −0.0144 17 658 (32%) 7071 (32%) −0.00170

Ethnicity

White 49 390 (88%) 19 584 (88%) 0.00370 49 334 (88%) 19 648 (88%) 0.0

South Asian 742 (1.3%) 197 (0.9%) 0.00423 665 (1.2%) 280 (1.3%) −0.000678

Black 351 (0.6%) 130 (0.6%) 0.000438 345 (0.6%) 140 (0.6%) −9.71E-05

Mixed 142 (0.3%) 49 (0.2%) 0.000338 138 (0.2%) 61 (0.3%) −0.000276

Unknown 5434 (9.7%) 2359 (11%) −0.00870 5569 (9.9%) 2195 (9.8%) 0.00102

Smoking

Current smoking 22 763 (41%) 10 073 (45%) 23 489 (42%) 9335 (42%)

Former smoking 33 296 (59%) 12 246 (55%) 0.0452 32 562 (58%) 12 989 (58%) −0.000910

Index of multiple deprivation

1 7178 (13%) 3048 (14%) −0.00846 7310 (13%) 2891 (13%) 0.000934

2 9213 (16%) 3813 (17%) −0.00649 9321 (17%) 3730 (17%) −0.000787

3 9971 (18%) 4077 (18%) −0.00480 10 051 (18%) 4022 (18%) −0.000835

4 12 722 (23%) 5012 (22%) 0.00235 12 680 (23%) 5061 (23%) −0.000502

5 16 945 (30%) 6357 (28%) 0.0174 16 659 (30%) 6609 (30%) 0.00114

Missing 30 (< 0.1%) 12 (< 0.1%) −2.44E-06 29 (< 0.1%) 11 (< 0.1%) 5.40E-05

Diabetes 14 081 (25%) 5517 (25%) 0.00397 14 021 (25%) 5617 (25%) −0.00146

Hypertension 28 603 (51%) 11 319 (51%) 0.00311 28 563 (51%) 11 415 (51%) −0.00173

Cardiovascular 
disease

16 772 (30%) 6540 (29%) 0.00618 16 682 (30%) 6665 (30%) −0.000911

Cancer 10 543 (19%) 4416 (20%) −0.00974 10 697 (19%) 4270 (19%) −0.000435

Past asthma 15 346 (27%) 2665 (12%) 0.154 12 875 (23%) 5141 (23%) −0.000602

(Continues)
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the uncertainty around the point estimates increased in PBA 
because the SI takes into account more sources of random error 
than the conventional CI [29]. As expected, QBA methods that 
additionally allowed confounding control gave ORs closer to the 
null. In sensitivity analyses looking at differential misclassifica-
tion, we found that differential misclassification would have had 
to be substantial, with sensitivity of > 90% in the ICS group and 
< 60% in the LABA/LAMA group, to have concealed a protective 
association. We also found that even relatively small decreases 
in specificity resulted in substantial shifts in the effect estimate, 
while changes in sensitivity were less consequential.

The different forms of QBA used here [29, 36] have various 
strengths and limitations. SBA is easily implemented using avail-
able tools [37], but requires bias parameters to be known with rel-
ative certainty and does not estimate uncertainty of the results. 
PBA, while more analytically and computationally complex than 
SBA, offers several advantages, including the ability to incorpo-
rate uncertainty regarding the values of bias parameters. The SI 
generated during PBA incorporates systematic error arising from 
the modelled bias, error arising from the random nature of the 
misclassification process, uncertainty in the bias parameters and 
conventional random error. The 95% SI represents the 2.5th and 
97.5th percentiles of the effect estimate distribution generated by 
PBA. Although incorporating QBA usually decreases the preci-
sion of the results, this may more accurately reflect the true total 
uncertainty of the result compared to the CI of the conventional 
analysis that only accounts for random error and neglects sys-
tematic error [29].

Both SBA and summary-level PBA can be applied to a research-
er's own or another researcher's work but are limited in their 
analysis, as the calculation of the effect estimates is based on 2 
× 2 tables. Record-level PBA is more sophisticated, as each data 
row is corrected for misclassification. Therefore, the analyst has 
complete analytical flexibility and can simultaneously account 
for confounding or varying follow-up time. However, record-level 
PBA requires access to the full dataset and substantial computa-
tional power, which may limit its application in large datasets. 
All methods of QBA performed similarly in this case study, but 
ultimately, the choice of QBA method depends on the degree of 
concern about the severity and impact of outcome misclassifica-
tion, the analytical and computational resources available and 
the level of access to complete study data.

4.3   |   Strengths and Limitations

Strengths of this study include the size of CPRD Aurum and 
comprehensive capture of hospitalisations and deaths.

Due to the short follow-up, we could not use a new-user design 
and assumed that any effect of ICS on the outcomes was inde-
pendent of treatment history and length. Therefore, the study 
population is heterogeneous regarding disease stage and treat-
ment history. Covariates did not include symptoms of COPD or 
measures of lung function, which could have further controlled 
for confounding by disease severity. The analysis excluding 
triple therapy users may have been underpowered to detect in-
creased risks in the ICS users, but it suggests that their inclusion 
led to confounding, highlighting the trade-off between power 
and comparability of the treatment groups.

We did not conduct the analysis restricting to individual ICS due 
to low power. There may be differences in the effects of indi-
vidual ICS, as there was some evidence that budesonide had a 
protective effect on COVID-19 [11, 12], but this was not observed 
for ciclesonide or fluticasone [39–41].

Although outcome misclassification was thought to be the most 
impactful source of misclassification in this study, exposure 
misclassification may also have affected results. Previous work 

Before weighting
After inverse probability of 

treatment weighting

ICS N = 56 059

LABA/
LAMA 

N = 22 319 SMD ICS N = 56 051

LABA/
LAMA 

N = 22 324 SMD

Kidney impairment 16 724 (30%) 6738 (30%) −0.00352 16 800 (30%) 6758 (30%) −0.00300

Immunosuppression 665 (1.2%) 277 (1.2%) −0.000547 674 (1.2%) 268 (1.2%) 1.33E-06

Influenza vaccine 44 905 (80%) 17 962 (80%) −0.00373 44 954 (80%) 17 898 (80%) 0.000252

Pneumococcal 
vaccine

5985 (11%) 3237 (15%) −0.0382 6598 (12%) 2636 (12%) −0.000376

COPD exacerbation 
in past 12 months

22 809 (41%) 6222 (28%) 0.128 20 759 (37%) 8290 (37%) −0.00100

Abbreviations: BMI, body mass index; ICS, inhaled corticosteroid; LABA; long-acting β-agonist; SD, standard deviation; SMD; standardised mean difference.

TABLE 2    |    (Continued)

TABLE 3    |    Observed outcomes by treatment group.

ICS N = 56 059

LABA/
LAMA 

N = 22 319

COVID-19 
hospitalisation

529 (0.9%) 133 (0.6%)

COVID-19 death 294 (0.5%) 72 (0.3%)

All-cause mortality 1969 (3.5%) 574 (2.6%)
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shows a spike in prescriptions in the United Kingdom in March 
2020, meaning that estimated exposure durations may be less 
reliable than in non-pandemic times [38]. Additionally, this 
study did not capture in-hospital prescriptions.

Our approach to QBA required assumptions, which are untest-
able and likely imperfect. However, the alternative of not doing 
QBA assumes outcome sensitivity and specificity were both 
100%, which is a less plausible position.

We did not investigate potential misclassification varying by 
a confounder. A confounder that may have resulted in differ-
ential misclassification is care home residence, but this data is 
not available in the United Kingdom. Simulation of differen-
tial misclassification with respect to exposure indicated that 
outcome classification would have needed to be very differ-
ent in the exposure groups to change the study conclusions. 
Misclassification varying by a confounder would have had to be 
even more extreme to cause differential misclassification at the 
level of the exposure.

Early in the pandemic, treatments and the healthcare sys-
tem's response to COVID-19 were rapidly evolving, and it 

is likely that the accuracy of COVID-19 outcome recording 
changed over time. The values and distributions chosen in 
this analysis represent best estimates. For excess deaths, cho-
sen values  were based on the strong assumption that all ex-
cess deaths were COVID-19 deaths [31, 32]. Values for excess 
deaths were based on data from March to May 2020 [31], and 
sensitivity likely increased with time. For hospitalisations, es-
timates were based on validation studies in North America. 
While coding practices between countries and healthcare 
systems may differ, studies from the United Kingdom were 
not available, so these values were taken as the best available 
estimates.

5   |   Conclusions

We observed increased risks of COVID-19 hospitalisation and 
death among ICS users compared to LABA/LAMA users. 
However, taken together with the results of the analysis exclud-
ing triple therapy users, the observed risk increase may be at-
tributed to residual confounding, even after IPTW. QBA showed 
that accounting for plausible outcome misclassification would 
not have led to different study conclusions.

FIGURE 1    |    Forest plot of odds ratios and 95% confidence or simulation intervals for COVID-19 hospitalisations and deaths, comparing ICS/
LABA (± LAMA) users to LABA/LAMA users. Effect estimates > 1 indicate an increased risk in the ICS group. Conventional analysis refers to 
logistic regression without quantitative bias analysis. IPTW = inverse probability of treatment weighting; PBA = probabilistic bias analysis. *Simple 
bias analysis only results in a point estimate.

FIGURE 2    |    Forest plot of odds ratios and 95% confidence or simulation intervals for COVID-19 hospitalisations and deaths, comparing ICS/
LABA users to LABA/LAMA users, excluding triple therapy users. Effect estimates > 1 indicate an increased risk in the ICS group. Conventional 
analysis refers to logistic regression without quantitative bias analysis. IPTW = inverse probability of treatment weighting; PBA = probabilistic bias 
analysis. *Simple bias analysis only results in a point estimate.
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5.1   |   Plain Language Summary

During the COVID-19 pandemic, researchers were concerned 
that some COVID-19 cases might have been missed or misre-
corded, which could affect studies looking at how treatments 
worked. This study looked at whether errors in recording 
COVID-19 hospitalisations and deaths affected the results of 
studies investigating the link between inhaled corticosteroids 
(ICS) and COVID-19 outcomes in people with chronic obstruc-
tive pulmonary disease (COPD) in the United Kingdom. We 
wanted to see if people with COPD using ICS were more likely 
to be hospitalised or die from COVID-19, compared with people 
using other inhalers. We used a method called probabilistic bias 
analysis (PBA) to adjust for potential errors in how COVID-19 
hospitalisations and deaths were recorded. This method allows 
us to estimate how much incorrect or missing information might 
have changed our results. We found that people using ICS were 
more likely to be hospitalised or die from COVID-19 than those 
using other inhalers, but the results suggested that the impact 
of incorrect recording was small and did not change the overall 
findings. However, there are still some concerns that other fac-
tors, like the reason why people were prescribed certain medica-
tions, might have influenced the results.
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