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ABSTRACT
The number of clinical trials that include a binary biomarker in design and analysis has risen due to the advent of personalised 
medicine. This presents challenges for medical decision makers because a drug may confer a stronger effect in the biomarker 
positive group, and so be approved either in this subgroup alone or in the all-comer population. We develop and evaluate Bayesian 
methods that can be used to assess this. All our methods are based on the same statistical model for the observed data but we 
propose different prior specifications to express differing degrees of knowledge about the extent to which the treatment may be 
more effective in one subgroup than the other. We illustrate our methods using some real examples. We also show how our meth-
odology is useful when designing trials where the size of the biomarker negative subgroup is to be determined. We conclude that 
our Bayesian framework is a natural tool for making decisions, for example, whether to recommend using the treatment in the 
biomarker negative subgroup where the treatment is less likely to be efficacious, or determining the number of biomarker positive 
and negative patients to include when designing a trial.

1   |   Introduction

Subgroup analyses are important in clinical trials because treat-
ment efficacy may vary within a population. Here, our main 
focus lies in the situation where we have a binary biomarker 
that determines subgroup membership. Biomarkers may be 
prognostic (associated with the clinical outcome independently 
of treatment) or predictive (interact with treatment) [1]. Here, 
we focus on biomarkers that are plausibly predictive, so that the 
treatment efficacy is thought to differ for patients with different 
biomarker statuses. In general, biomarker measurements may 
be binary, ordinal or continuous, but here we assume they are 
binary. This is commonly the case, either naturally or after the 
dichotomisation of continuous biomarkers. Loss of information 
is associated with the simplifications gained by dichotomisation 
of continuous variables [2] but this remains a common and prag-
matic way to include biomarkers in both statistical modelling 
and clinical decision-making.

Clinical trials that include a binary biomarker, in design 
and analysis, are becoming more common due to the advent 
of personalised medicine. Other data structures can also be 
used to define two disjoint subgroups, such as age (adults and 
children [3]), disease severity [4] and cancer stage [5]. We will 
consider any such situation where efficacy may be larger in 
one subgroup than in the complement, for which our meth-
ods are equally applicable. As explained by Ballarini et al. [6], 
subgroup analyses are routinely performed in clinical trials to 
investigate whether treatment effects are homogeneous across 
the trial population. They illustrate a variety of visualisation 
techniques for this purpose. The International Council for 
Harmonisation (ICH) E17 guideline on General principles for 
planning and design of Multi-Regional Clinical Trials [7] em-
phasises the importance of subgroup analyses, stating that in 
addition to investigating any regional or pooled subpopulation 
differences, other subgroup analyses will usually also be of in-
terest. The European Medicines Agency (EMA) [8] Guideline 
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on the investigation of subgroups in confirmatory clinical trials 
also emphasises the importance of subgroup analyses and ac-
centuates the relevance of our methodology for the pharma-
ceutical industry.

The regulatory world of pharmaceutical statistics is dominated 
by the frequentist (or classical) approach. Here, a primary con-
cern is whether estimated treatment effects achieve statistical 
significance, in each biomarker subgroup separately and also 
the trial population as a whole. Edgar et al. [1] focus on this type 
of problem. We, however, focus on Bayesian methods that are 
common in Health Technology Assessments following the reg-
ulatory phase of drug development and are a natural tool to aid 
medical decision-making. This is because posterior distributions 
resulting from Bayesian analyses facilitate embedding statisti-
cal estimation within a probabilistic decision analysis. Although 
our Bayesian methodology is especially suitable for Health 
Technology Assessments, it also facilitates making decisions 
about the design of future trials where the size of the biomarker 
negative subgroup is to be determined, given the available prior 
information. We illustrate this using our second example below. 
These observations indicate that our methods may be most suit-
able at the design, and early phase, of clinical trial development, 
and also much later at the post regulatory phase. We return to 
this issue in the discussion.

There are several other potential benefits of using Bayesian 
methods [9], for example by including prior information preci-
sion may be increased so that uncertainty in medical decision-
making is reduced. Bayesian analyses may also be particularly 
valuable in  situations where data are sparse, for example, be-
cause the disease or the event is rare, because relevant prior in-
formation can then be used to supplement analyses where little 
information would otherwise be available. Bayesian methods 
could also possibly be used for regulatory decisions on market 
authorisation, if regulatory authorities were willing to consider 
a range of reasonable priors, perhaps informed by previous 
trials or independent experts. Tidwell et al. [10] reviewed MD 
Anderson Cancer Center clinical trials and found that 283 out of 
1020 (28%) had Bayesian components.

We extend the statistical model of Edgar et al. [1], by supple-
menting it with a variety of candidate prior distributions, and 
illustrate our methods using some examples. Our main aims 
are to complement their approach with Bayesian methods, to 
explore the use of a variety of informative prior distributions 
that may be motivated by other trial information, explicitly 
show concretely how relatively simple Bayesian methods can 
be useful in real applications and how they can also be use-
ful for trial design. The use of informative priors for subgroup 
analysis and their application for trial design are especially 
novel features of our work. Sensitivity to prior distribution as-
sumptions is a potential source of concern when performing 
Bayesian analyses [11]. The approach advocated here is to ex-
plore the implications of using different priors so that their im-
pact can be assessed. Our proposals for prior distributions are 
by no means exhaustive, and we encourage the consideration 
of other possibilities. We provide computing codes that are 
intended to be easily modifiable for this purpose. Alternative 
Bayesian approaches for assessing treatment effect efficacy in 

subgroups include model averaging [12] and dynamic borrow-
ing [13].

Our approach is also similar to that of Jones et al. [14], where 
we focus on the simpler situation where there are only two mu-
tually exclusive subgroups. We instead explore the implications 
of a variety of different prior distributions for the difference in 
the treatment efficacy in these two patient groups. Prior dis-
tributions can be used to reflect our beliefs about the extent to 
which the treatment may be more effective in one subgroup, 
relative to the other. Edgar et al. [1] compared the conditional 
power of different testing rules for inferring efficacy in the bio-
marker negative subgroup given statistical significance in the 
entire study population. This is a crucially important consider-
ation for the frequentist testing methods commonly used at the 
regulatory phase. The repeated sampling properties of Bayesian 
methods are also often of interest [15–17]. Exploration of the 
implications of sequential testing procedures using Bayesian 
models with different prior specifications could usefully ex-
tend the work of Edgar et al. [1]. Taking advantage of the sam-
pling properties of Bayesian methods, we could quantify the 
consequences of different testing procedures, whilst taking 
into account our prior beliefs about the likely treatment effects 
in each subgroup. Such an investigation could be performed by 
restricting the MCMC iterations to those that are statistically 
significant, in a frequentist sense and in the entire population, 
and then calculating conditional powers as the proportions 
of iterations that also achieve this type of statistical signifi-
cance in the biomarker negative population. In this paper, we 
use our Bayesian models to inform standard frequentist anal-
yses in Section  5, where we consider designing a new trial. 
Alternatively, a fully Bayesian sequential testing approach 
might be possible, but we know from Lindley's paradox that 
Bayesian and frequentist approaches to hypothesis testing can 
give notably different results, depending on the prior distribu-
tions. A fully Bayesian extension of the conditional powers of 
Edgar et al. [1] would therefore be expected to be very sensitive 
to the prior specification because the additional challenges pre-
sented by subgroup analysis are likely to exacerbate the issues 
exemplified by Lindley's paradox.

The rest of the paper is set out as follows. In Section 2, we de-
velop our Bayesian modelling framework, where we present 
both our model for the data and also some possibilities for prior 
distributions. In Section 3, we describe the numerical methods 
used and the targets for inference required for decision-making. 
In Section 4, we illustrate our methods using two examples and 
we make some recommendations for those who may consider 
using our proposals for their subgroup analyses. In Section  5, 
we show how our methodology can be used at the trial design 
stage, where the size of each biomarker group is determined. We 
conclude in Section 6 with a discussion.

2   |   Modelling Framework

Following Edgar et al. [1], we assume that there are two mutu-
ally exclusive subgroups, B and C. We also define A = B ∪ C to 
be the entire study population. Edgar et al. used B− and B+ to 
denote the two subgroups, where B+ is the biomarker positive 
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subgroup (for which the treatment is thought to be more effec-
tive). However, to allow more flexibility, we do not distinguish 
between the two subgroups in this way. Hence, we allow either 
subgroup B or C to be the biomarker positive subgroup.

We define the estimands of interest to be �B and �C in the two 
subgroup populations. For example, �B could be the log hazard 
ratio, log odds ratio or mean difference comparing the active 
treatment to the (active or placebo) control, in the B popula-
tion. We assume that estimators of these effects are available 
from a new trial, either because they can be calculated using 
individual-level data or because they can be ascertained from 
published information. We may also have informative histori-
cal data, or information available from subject matter experts, to 
provide informative prior distributions. We assume that, using a 
normal approximation,

where the covariance matrix in Equation (1) is treated as fixed 
and known (estimates of these variance components can be used 
in this approximation provided that the trial is not small). In 
some instances �̂B and �̂C will be, conditionally on 

(
�B,�C

)
, in-

dependent so that Cov
(
�̂B, �̂C

)
= 0 in model (1). We can use the 

modelling framework of Edgar et al. [1] to justify model (1). A 
generalised linear model with linear predictor

is used to model the subgroup differences, for patient i, 
i = 1, ⋯ N, where Ti = 0, 1 for control and active treatments, 
Si = 0, 1 is an indicator for subgroup B and Xi is a vector of ad-
ditional baseline covariates. Then, �B = �1 + �, and �C = �1, 
and analogous identities also apply to their estimators. The use 
of a normal approximation for these estimators then provides 
model (1). If no additional baseline covariates are included in the 
model, so that �Xi = 0, then ̂�B and ̂�C are conditionally indepen-
dent [1]. In the context of time-to-event data, �̂B and �̂C will be 
conditionally independent if survival modelling is performed on 
each subgroup separately because different patients then con-
tribute to these two subgroup estimates. Hence, we adopt model 
(1) as our framework, with the understanding that in some in-
stances it will also be possible to assume Cov

(
�̂B, �̂C

)
= 0. We 

explain why �̂B and �̂C are conditionally independent, if �Xi = 0 , 
in Appendix  A. Other models could be used to obtain �̂B and 
�̂C and in our numerical examples, these estimates were taken 
from published results from Cox models. Bayesian methods 
could also be used to estimate subgroup treatment effects, and 
so obtain �̂B and �̂C and their covariance matrix, in model (1).

We use � = �B − �C to describe the difference between the 
treatment effects in the two subgroups using a single parame-
ter. This parameter is of direct inferential interest, for example, 
� = 0 means that the treatment is equally effective in the two 
subgroups (i.e. there is no treatment by subgroup interaction). 
If negative values of �B and �C indicate treatment benefit in the 
two subgroups, as is for the case in the examples in Section 4, 
𝛿 < 0 indicates that the treatment benefit is greatest in the B 
population.

We now have three linearly dependent parameters in our model 
�B, �C and �. However, we need only define a joint prior distri-
bution for two of these parameters, because distributions (both 
prior and posterior) for the third are then obtained via the identity 
� = �B − �C. We propose some joint prior distributions for 

(
�C, �

)
 

immediately below. The use of a prior distribution for � allows the 
possibility of shrinkage, where the subgroup-specific effects �B 
and �C may be shrunk towards their mean. Our methods, and in 
particular when using vague priors, are closely related to standard 
Bayesian regression models. However, our implementations en-
able us to enforce � = �B − �C in our modelling and are intended 
to be easily modifiable so that others can also use them. The close 
connection between our Bayesian methods, and those imple-
mented in standard software, is an advantage of our proposals.

2.1   |   Prior Distributions

In most models we will use independent prior distributions for 
�C and �. This keeps the modelling as simple as possible and 
invokes a prior association between �C and �B, via the identity 
� = �B − �C, where Cov

(
�B,�C

)
= Cov

(
�C + �,�C

)
= Var

(
�C

)
. 

This positive prior association reflects the notion that if the treat-
ment is beneficial in the B population, then it is also more likely 
to be beneficial in the C population. An alternative is to use in-
dependent prior distributions for �B and �C, so that no shrinkage 
is conferred by the prior.

We will use the vague (weakly informative) prior �C ∼ N(0,100) 
in most analyses, where we assume that the prior variance of 
100 is large compared to Var

(
�̂C

)
 in Equation (1). By using this 

vague prior we allow the likelihood to dominate, so that the vast 
majority of the information for �C will come from the data. In 
practice, we will often have prior knowledge about the likely 
treatment effect in one sub-population, for example, from early 
phase trials or real-world data, and we will illustrate this possi-
bility in our first real example below. We will consider a variety 
of prior distributions for �, some of which are highly informa-
tive, to incorporate prior knowledge about the difference in effi-
cacy between the two groups.

2.1.1   |   Normal Prior Distribution for �

The simplest possibility is to assume the conjugate prior dis-
tribution � ∼ N

(
a, b2

)
, where a and b are fixed constants. This 

invokes a prior distribution of �B ∼ N
(
a, 100 + b2

)
 for the treat-

ment effect in the B population. By taking a = 0 and b = 10, 
we use the same vague prior for � that was proposed for �C. If 
a = b = 0 then we make the strong assumption of an equivalent 
treatment effect in populations B and C, because if � = 0, then 
�B = �C. Unless b = 0, one consequence of assuming indepen-
dent priors for �C and � is that the prior variance of �B is then 
greater than the prior variance of �C. This is of little concern in 
practice if sufficiently uninformative priors are used.

We can also consider a ≠ 0, and other values of b, to explore 
the implications of using prior knowledge about the extent to 
which the treatment efficacy might be thought to be greater, 
or less, in the B population. For example, if negative �B and �C 

(1)

(
�̂B

�̂C

)
∣

(
�B

�C

)
∼ N

((
�B

�C

)
,

(
Var

(
�̂B

)
Cov

(
�̂B, �̂C

)

Cov
(
�̂B, �̂C

)
Var

(
�̂C

)

))

(2)�i = �0 + �1Ti + �2Si + �Xi + �SiTi
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indicate treatment benefit in the two subgroups then we could 
take a < 0 to reflect the prior belief that the treatment is more 
effective in the B population. We could also use smaller values 
of b to reflect our confidence in this. Another possibility is 
to truncate or censor � to be the magnitude or sign thought 
plausible, but this is likely to be considered too informative 
in certain contexts. We will illustrate this idea using our two 
examples below. The posterior distributions of �, �B and �C can 
be derived algebraically, as shown in Appendix B, and can be 
compared to their prior distributions to assess how the data 
have updated our prior beliefs.

2.1.2   |   Discrete Prior Distribution for �

It may be difficult to express prior beliefs as a continuous dis-
tribution. Another option is to assume a discrete distribution 
for the possible values of �. Using a discrete distribution allows 
more flexibility in choice of shape of the distribution of beliefs. 
To implement this type of prior, we introduce a categorical ran-
dom variable M. We assign a prior probability pj that M belongs 
to the jth category, j = 1, ⋯ J, and we also assign a value dj to 
each category. We then define � = dM, so that the implied prior 
distribution for � is discrete, taking values dj with probability pj. 
The dj and pj are fixed inputs to the analysis but � is a random 
variable (because M is random, and � = dM).

This type of prior is especially useful when eliciting infor-
mative prior distributions. For example, a discrete range of dj 
could be presented as candidate values of � to subject matter 
experts. The experts then assign a probability pj to each dj, 
reflecting their beliefs about the plausibility of these effects. 
Experts may find it easier to assign prior probabilities to a dis-
crete set of dj in this way than attempt to specify an informa-
tive continuous prior for �. By setting the dj to correspond to 
a representative quantity for a series of intervals, this type of 
prior can be elicited using the ‘chips and bins’ method. Bojke 
et  al. [18] found that this was the preferred method of prior 
elicitation for 65% of 72 participants, compared to an alter-
native approach that relied on specifying the quartiles of a 
distribution.

The prior and posterior distributions of M can be compared to 
assess how the data have updated the prior probabilities for each 
dj. Like its prior distribution, the posterior distribution of � will 
be discrete, taking values dj, j = 1, ⋯ J. Alternatively, and as 
recommended by Bojke et al. [18], a discrete prior distribution 
could be used to motivate one that is continuous, resulting in a 
continuous posterior distribution.

2.1.3   |   Spike and Slab Prior Distribution for �

Another possibility that we consider is the spike and slab 
prior [19]. Here, we define the prior distributions for the spike 
�0 ∼ N(0,0.0001) and the slab �1 ∼ N

(
0, �2

)
, where 𝜏2 > > 0.0001. 

If we defined � = �0, then we would have a prior expressing the 
strong belief that the treatment effect is the same in the B and 
C populations. If we instead defined � = �1 and � = b we would 
have the normal prior in Section 2.1.1. A hyper-prior on the prob-
ability that each prior model is ‘true’ completes the specification. 

The spike and slab prior therefore allows us to express uncer-
tainty about our prior model choice.

To implement this type of prior, we introduce a random variable 
P that can take values on [0,1]; a uniform prior distribution for 
P is an especially simple choice and we use this throughout. We 
let P be the probability of an event for a Bernoulli random vari-
able R, so that P(R = 1|P) = P and P(R = 0|P) = 1 − P. We then 
define � = �R, so that R = 0 and R = 1 indicate that the spike and 
slab priors are used for �, respectively. The posterior distribu-
tions of R and P can be compared with their priors to determine 
how they are updated by the data, and so assess the strength of 
evidence for the spike versus the slab.

By directly allowing for the possibility of (almost) equal efficacy 
in the two subgroups via the spike, this prior can be expected to 
dilute the posterior evidence that � ≠ 0, compared to the vague 
prior in Section 2.1.1. This is because there will then be support 
for the spike, increasing the posterior density at � = 0 compared 
to less informative choices of prior distributions. The spike and 
slab prior may therefore be used to indicate the strength of the 
evidence for a subgroup difference, rather than incorporate prior 
information. For example, if the slab is found to be preferred to 
the spike then we can conclude that there is evidence for such a 
difference.

In Appendix C, we show, in a simplified setting where only the 
estimate �̂ is used in analysis, that the posterior density of � is a 
weighted average of two posterior distributions where the spike 
(� ∼ N(0,0.0001)) and slab (� ∼ N

(
0, �2

)
) are used as the priors. 

We also show that the weight allocated to the slab tends towards 
zero as �2 → ∞. It is therefore important to use a plausible value 
of �2 in analysis and explore the sensitivity to this value. We il-
lustrate this numerically for our two examples below.

2.1.4   |   Joint Prior Distributions for �B and �C

It may sometimes be convenient to instead specify prior distri-
butions for �B and �C, for example, when prior information is 
available and used to justify informative priors for these two 
parameters. This invokes a prior for � = �B − �C. An intuitively 
appealing joint vague prior is to assume that �B and �C are bivar-
iate normal, centred at the origin, with the same large marginal 
variances (of 100, say) and with a correlation of 0.5. This implies 
the same vague marginal normal prior distributions for all three 
parameters �B, �C and �. Hence, this approach overcomes a po-
tential objection to the methodology described in Section 2.1.1, 
where the prior variance of �B is greater than that of �C. If all 
priors are intended to be vague, then they might reasonably be 
expected to have the same variance.

Another possibility is to use a discrete set of combinations of �B 
and �C to elicit informative prior distributions. For example, a 
discrete set of values of �C (say) could be presented to experts 
and a marginal prior distribution elicited. Then, a discrete set of 
values of �B could be presented and the conditional prior distri-
bution of �B, given each value of �C, could be elicited. This pro-
vides an informative discrete joint prior distribution for �B and 
�C, where the prior for � is implied by the identity � = �B − �C. 
This discrete joint prior should in general be used to motivate a 
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continuous bivariate prior. Determining which two of the three 
parameters to specify priors directly for is immaterial, provided 
that the same joint prior for 

(
�B,�C

)
 is used.

In Section 4.1.1, we will illustrate the use of a more complicated 
joint, correlated, prior for �B and �C. This is intended to demon-
strate how flexible our modelling can be.

3   |   Computation and Targets for Inference

We define the joint prior distribution for 
(
�C, �

)
 using the meth-

ods described in Sections 2.1.1–2.1.3, and the joint prior distri-
bution for 

(
�B,�C

)
 when using the methods in Section 2.1.4, so 

that the prior for the third parameter is defined via the identity 
� = �B − �C. We then use standard Bayesian methods to up-
date these prior distributions, via the likelihood from model 
(1), and so obtain the corresponding posterior distributions. 
The package R2jags was used to implement the Markov Chain 
Monte Carlo (MCMC) methods needed to evaluate these pos-
terior distributions and WinBUGS [20] version 14 was used to 
double-check the results. Two Markov chains with 50,000 iter-
ations per chain (with a thinning of 2), and burn-ins of 20,000 
iterations, were used throughout. The likelihood from model 
(1) is implemented using a multivariate normal distribution; 
in situations where Cov

(
�̂B, �̂C

)
= 0 in model (1), this can be 

evaluated more simply using two independent implementa-
tions of the univariate normal distribution. As explained in 
Section  2.1.1, for the normal prior for �, the posterior distri-
butions of all three model parameters can be derived algebra-
ically. For consistency across all priors, the same numerical 
methods were used throughout, but the algebraic results for 
the normal prior were used to check the corresponding nu-
merical results.

Three main targets for inference are the posterior distributions 
of �B, �C and �, where � is of primary interest because it quan-
tifies the difference in the treatment efficacy in the two sub-
groups. In the examples that follow, these will be summarised 
using posterior means, standard deviations and credible inter-
vals within this Bayesian framework. Further quantities are also 
potentially of inferential interest. For example, by conceptualis-
ing the entire study population A, where the proportion � are B 
patients, the posterior distribution of

could be another useful aid for decision-making. This type of 
estimand may be of particular interest when the sampling pro-
portion for the trial � differs in another target population. To 
target another population we simply replace � in Equation  (3) 
with the required proportion of B patients. The estimand �A, in-
terpreted as the treatment effect in population A, will be exact 
for some outcomes, for example, unadjusted mean differences. 
However, Equation  (3) is only an approximation for examples 
that like ours model estimated log hazard ratios. We propose 
using Equation (3) because it is so broadly applicable and simple 
to implement. However, for some types of outcome, alternative 
overall or pooled estimands combining those from subgroups 
B and C populations are available. For example, for binary out-
come data, pooling using Cochran–Mantel–Haenszel methods 

might be preferred. The relationship between the treatment 
effects in Equation  (3) only holds exactly for collapsible effect 
sizes. We return to this issue in the discussion.

Posterior distributions of other functions of �B, �C and � are 
evaluated by defining the quantity of interest and summarising 
the corresponding MCMC output. For example, indicators for 
�B, �C and � being positive or negative could be defined, so that 
the posterior probability that the treatment is effective in each 
population, and also the posterior probability that the treatment 
is more effective in the B population, may be calculated. We 
will introduce several further quantities of inferential interest 
in Section 5, where we examine how our methods may be used 
when designing a trial.

4   |   Examples

4.1   |   Example 1: The STAMPEDE Trial

Eligible patients for STAMPEDE had prostate cancer that was 
newly diagnosed and metastatic, node-positive or high-risk 
locally advanced. The aim was to test whether the addition of 
further treatments (abiraterone and prednisolone) to androgen-
deprivation therapy (ADT) improves overall survival (OS) if 
used in the first-line setting [5]. A total of 1917 patients under-
went randomisation, of whom 1002 (52%) had metastatic disease, 
and key subgroup analyses according to metastatic status were 
pre-specified [5]. The OS subgroup results re-examined here are 
shown in Figure 2A of James et al. [5], where estimated hazard 
ratios (and 95% confidence intervals) of 0.75 (0.48, 1.18) and 0.61 
(0.49, 0.75) are reported for the non-metastatic (subgroup B) and 
metastatic (subgroup C) patients, respectively (both favouring 
combination therapy compared to ADT alone). A p-value for the 
interaction (evidence of a subgroup effect) of 0.37 is also reported 
[5]. Although there is not a statistically significant difference 
between the treatment effects in the two subgroups, the result 
for the metastatic subgroup is statistically significant at conven-
tional thresholds whereas those for the non-metastatic subgroup 
are not.

We use this information to explore this subgroup analysis 
from a Bayesian perspective. We compute estimated log haz-
ard ratios for the two subgroups, �̂B = log(0.75) ≈ − 0.288 and 
�̂C = log(0.61) ≈ − 0.494, and their corresponding standard 
errors (whose squared values are Var

(
�̂B

)
 and Var

(
�̂C

)
 in 

model 1), as the ratio of the length of the confidence intervals 
on the logarithm scale and 2 × 1.96. We assume that �̂B and �̂C 
are conditionally independent, so that in model (1) we have 
Cov

(
�̂B, �̂C

)
= 0. Note that this does not imply that the posterior 

correlation between �B and �C is zero.

We apply our vague normal prior distribution for � with a = 0 
and b = 10 where we also use the vague prior �C ∼ N(0,100) 
(Section  2.1.1). In the web Supporting Information, we apply 
our discrete prior for � (Section 2.1.2) with d1 = −2.0, d2 = −1.9, 
d3 = −1.8, ⋯, d41 = 2.0 and pj = 1∕41 for j = 1, 2, ⋯ , 41. This dis-
crete prior places equal prior probability on each possible value 
� that are symmetric around 0, so this prior is also not intended 
to be informative within the range [ − 2, 2]. These results and 
codes are provided so that others may adapt them for use with 

(3)�A = ��B + (1 − �)�C
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6 of 16 Pharmaceutical Statistics, 2024

an informative discrete prior for �, for example, one elicited from 
experts.

We perform three types of analyses that use informative pri-
ors. Firstly, we apply the spike and slab prior as explained in 
Section 2.1.3, with three different values of � = 10, 1, 0.3. The 
first of these � corresponds to using a vague prior for the slab, 
and the second is not overly informative because it considers 
large values of � to be plausible. The final � = 0.3 instead con-
siders only more moderate values of � to be plausible. Note 
that � is the difference between log hazard ratios in the two 
subgroups, so that exp(�) is a ratio of hazard ratios. Over 95% 
of probability for this parameter in the slab prior lies in the 
interval (−0.6, 0.6), so that ratios of hazard ratios outside the 
interval (0.5, 2), say, are not given much support in this prior 
specification.

Secondly, we apply our vague normal prior distribution for � 
(Section 2.1.1) but for �C we apply informative prior distribu-
tions motivated by Ryan et al. [21]. Their trial concerned pa-
tients with metastatic prostate cancer (and hence we used this 
to inform �C). Here a hazard ratio for OS of 0.75, with a 95% 
confidence interval of (0.61, 0.93), is reported that compares 
patients receiving abiraterone and prednisone compared to 
those who receive placebo plus prednisone. Although there are 
differences in the treatment regimens, a key similarity is that 
abiraterone is the main active treatment in both trials, moti-
vating the use of information from Ryan et al. [21] in the prior 
specification. Transforming the point estimate of 0.75 and 
corresponding 95% confidence interval to the log hazard ratio 
scale, we obtain the informative prior �C ∼ N

(
−0.288, 0.1082

)
. 

Here, the prior variance of �C was calculated using the 95% 
confidence interval of (0.61, 0.93) and the same approach as 
when computing the variances of �̂B and �̂C. However, as ex-
plained by Lunn et al. [22], by using this prior directly we es-
sentially pool the information from Ryan et al. [21] with our 
data in the form of a meta-analysis. We may be reluctant to do 
this, because we may not consider data from other sources to 
have the same relevance. We, therefore, follow a suggestion 
in Section 5.3.2 of Lunn et al. [22] by using ‘power priors’ [23] 
to discount the prior information from Ryan et al. [21]. More 
specifically, we also use priors of �C ∼ N

(
−0.288, 0.1082 ∕k

)
, 

where k = 0.75, 0.5, 0.25. As the value of k ∈ (0, 1) decreases, we 
further down-weight the prior information from Ryan et  al. 
[21], and so move from a very informative prior for �C to a 
vague prior. Alternative prior specifications are available for 
this purpose [24] but power priors are especially simple and 
direct. As a third type of informative prior, we implemented 
our vague normal priors for �C and � where the prior �C was 
truncated to be less than −0.23, so that only hazard ratios less 
than 0.8 in subgroup C are considered plausible.

Finally, we also apply the vague bivariate normal distribution 
for �B and �C (Section 2.1.4). This analysis overcomes the con-
cern that our choice of vague priors in Section 2.1.1 implies a 
larger prior variance for �B than �C. This is unlikely to substan-
tially alter the results.

The posterior distributions of �B, �C and � are summarised in 
Figure  1. The results in Figure  1 are split into four sections, 

depending on whether a vague prior, the truncated prior for �C, 
an informative power prior, or the spike and slab prior was used. 
The parameter � = �B − �C represents the additional increase in 
the log hazard ratio due to treatment in the B population com-
pared to the C population (all else being equal); 𝛿 > 0 therefore 
indicates that the treatment effect is greater in the C population. 
The results for the vague priors are in good agreement with 
the frequentist point estimates and confidence intervals [5], as 
expected because these priors are not very informative. The 
results for the spike and slab prior distribution are sensitive to 
the value of � used [25] and for the large � = 10 the spike ap-
pears to dominate the slab as expected (see Section  2.1.3 and 
Appendix C). However the point estimates for moderate values 
of � = 1 and � = 0.3 are more similar, and together these results 
show the lack of evidence of a difference in treatment effect in 
the two subgroups from a Bayesian perspective. Comparing the 
results using the informative prior distribution for �C, to those 
using the vague normal prior in Table  1, we can see that this 
informative prior has considerable impact on �C. This has di-
rect consequences for the posterior mean of �, roughly halving 
its value. However, the two posterior distributions of �B are very 
similar. This is because the informative prior introduces infor-
mation relating to �C, rather than �B. As we decrease k, and so 
use the power prior to increasingly discount the prior informa-
tion, the results become more similar to those using vague pri-
ors, as expected. The truncation of �C to be less than −0.23 has 
little impact because there is not a great deal of support for �C to 
be greater than this.

Collectively, the results in Figure  1 summarise the conclu-
sions across a wide range of prior specifications. The overall 
impression is that there is strong evidence of a treatment ef-
fect in population C. However, the evidence is, at best, much 
weaker in population B. Despite this, there is no clear evidence 
of a difference between the treatment effects in the two patient 
populations. More information about the treatment efficacy 
in population B, and its difference across the two populations, 
would be valuable.

4.1.1   |   A Correlated Joint Prior Distribution for �B 
and �C

We now demonstrate how an informative bivariate normal dis-
tribution could be derived using expert elicitation. Thereafter, 
we extend this process to derive a novel bivariate prior that ac-
commodates additional concerns that might be expressed by 
clinicians.

To elicit a bivariate prior density for 
(
�B,�C

)
, we first specify a 

range of plausible effects sizes in population C, in this case, haz-
ard ratios of 0.5, 0.6, 0.7, 0.8, 0.9 and 1. Prior probabilities of the 
six values of �C, the corresponding log hazard ratios shown in 
Table 1, are then elicited from clinicians. Conditional on each 
value of �C, prior probabilities of the same six values of �B can 
then be elicited. For example, to obtain conditional prior proba-
bilities of �B given �C = log(1) = 0, we ask ‘If you knew that the 
drug truly has no efficacy in population C, what value would 
you give to the probability that the hazard ratio in population 
B is 0.5, 0.6, 0.7, 0.8, 0.9 or 1?’ Having determined suitable prior 
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probabilities P
(
�C

)
, and P

(
�B|�C

)
, the joint prior probabilities 

P
(
�B,�C

)
 shown in Table 1 were obtained by taking their prod-

uct. The joint prior distribution in Table 1 was not formally elic-
ited, but is based on informal discussions with clinicians and is 
used for illustrative purposes. The six discrete values of �B and 
�C were chosen to simplify the elicitation of prior distributions, 
as in the ‘chips and bins’ method [18] (Section 2.1.2). Holzhauer 

et al. [26] describe the SHELF extension method, in Section 3.3, 
that similarly elicits a marginal distribution for one variable 
and then a conditional distribution for a second variable, given 
the first.

In fact, clinicians' beliefs concerning these parameters were 
continuous and we start by estimating a bivariate normal prior 

FIGURE 1    |    Posterior means and credible intervals for Example 1 (Section 4.1). ‘Normal (vague)’ and ‘Joint (vague)’ are results using vague priors, 
Sections 2.1.1 and 2.1.4, respectively. ‘Normal truncated’ are results as in ‘Normal (vague)’ but where �C is truncated to be less than −0.23. ‘Normal 
(info)’ are results using the informative normal prior �C ∼ N

(
−0.288, 0.1082 ∕k

)
 with the value of k indicated; as k increases this prior becomes more 

informative. Finally, ‘Spike/Slab’ are results using the spike and slab prior, where � is the standard deviation used for the slab.

TABLE 1    |    Joint discrete prior for �B and �C in Example 1.

�B = log(0.5) �B = log(0.6) �B = log(0.7) �B = log(0.8) �B = log(0.9) �B = log(1.0)

�C = log(0.5) 0.0030 0.0025 0.0020 0.0015 0.0005 0.0005

�C = log(0.6) 0.0090 0.0315 0.0225 0.0135 0.0090 0.0045

�C = log(0.7) 0.0150 0.0300 0.1050 0.0900 0.0450 0.0150

�C = log(0.8) 0.0000 0.0175 0.0525 0.1400 0.1050 0.0350

�C = log(0.9) 0.0000 0.0000 0.0100 0.0400 0.0900 0.0600

�C = log(1.0) 0.0000 0.0000 0.0005 0.0020 0.0050 0.0425
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8 of 16 Pharmaceutical Statistics, 2024

density for 
(
�B,�C

)
 that is consistent with this grid of joint prob-

abilities, that is, that has the mean and covariance structure 
implied by Table 1. This prior resulted in a posterior means of 
−0.310, −0.402 and 0.092, with credible intervals of (−0.552, 
−0.063), (−0.564, −0.238) and (−0.151, 0.338), for �B, �C and �, 
respectively.

Suppose that clinicians were keen to explicitly represent the 
following concerns: harms due to treatment are considered 
unlikely (i.e. 𝜇B > 0 and 𝜇C > 0 are implausible), there is a non-
negligible probability that there is no treatment effect in either 
population (i.e. a point mass at 

(
�B,�C

)
= (0, 0) is considered 

plausible) and the mean and variance of the conditional prior 
for �B could depend on �C. To capture these concerns, we based 
our prior specification on a ‘right-rectified normal distribution’. 
This distribution was easily implemented in Bayesian software 
by initially defining Y ∼ N

(
�, �2

)
 as a normal random variable, 

and then the right-rectified normal distribution, Z ∼ RN
(
�, �2

)
, 

as min (0,Y). The right-rectified normal distribution is equiva-
lent to a normal distribution except that positive values are reset 
to zero.

Our novel prior has marginal distribution

where a and b > 0 are fixed constants, analogous to those for the 
bivariate normal. This prior distribution allows a point mass at 
�C = 0 of 1 − Φ((−a∕b)), where Φ( ⋅ ) is the standard normal cu-
mulative distribution function, reflecting the possibility that the 
treatment is not effective in population C. For the conditional 
prior distribution �B ∣ �C, we adopted a prior distribution of the 
form

where c, d > 0 and e are further fixed constants to be determined. 
We can then obtain the joint prior distribution of �B and �C as the 
product of the prior distributions in Equations (4) and (5). This 
novel prior specification is highly unusual but is closely related 
to a bivariate normal; if we instead use normal distributions in 

Equations (4) and (5), include an intercept in the mean of �B ∣ �C 
and set e = 0 in Equation (5), then this more conventional prior 
distribution is obtained.

Full details are provided in the codes in the web Supporting 
Information. Briefly, we define the set of six intervals on the 
real line.

and we take the Cartesian product S × S to split the �B,�C plane 
into 36 rectangular regions. We then calculated, approximately, 
the prior probability that 

(
�B,�C

)
 lies in each of these 36 regions. 

This was achieved by computing the products of the prior prob-
abilities that �C lies in each member of s ∈ S from model (4), and 
the conditional probability that �B lies in each s given �C from 
model (5), where the values of �C in Table 1 that lie within each 
s were used to approximate these conditional probabilities. The 
resulting probabilities that 

(
�B,�C

)
 lie in each of the 36 regions 

are functions of a, b, c, d and e and were interpreted as expected 
(Ei) probabilities under the prior specification. The probabilities 
shown in Table 1 are the corresponding observed probabilities 
(Oi). We numerically minimised the sum of squared residuals, ∑

i

�
Oi−Ei

�2, to determine suitable values for the five fixed con-
stants to use in analysis.

This resulted in a = − 0.252, b = 0.131, c = 0.816, d = 0.054 and 
e = − 0.045. Using this prior specification provided posterior 
means of −0.307, −0.391 and 0.084, with credible intervals of 
(−0.570, −0.056), (−0.552, −0.232) and (−0.159, 0.336), for �B, 
�C and �, respectively. In Figure 2, we show the joint prior and 
posterior distribution of 

(
�̂B, �̂C

)
, where these distributions 

were obtained by applying kernel density estimation to the 
MCMC iterations. The joint prior distribution was calculated 
by refraining from providing the estimated subgroup treat-
ment effects to update it. The main implications of using this 
prior distribution, compared to a vague prior, are that we now 
infer a smaller treatment effect in population C and a smaller 
difference � between the treatment effects in the two patient 

(4)�C ∼ RN
(
a, b2

)
,

(5)�B ∣ �C ∼ RN
(
c�C, max

(
d2 + e�C, 0

))

S={(−∞, log(0.55)), (log(0.55), log(0.65)), (log(0.65), log(0.75)),

(log(0.75), log(0.85)), (log(0.85), log(0.95)
]
, (log(0.95),∞)}

FIGURE 2    |    The joint prior (left) and posterior (right) distribution of 
(
�B,�C

)
 using a novel prior based on the right rectified normal distribution 

(Section 4.1.1), obtained by applying kernel density estimation to the MCMC iterations.
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9 of 16

populations. However, the most important observation is that 
our approach can readily accommodate bespoke and non-
standard prior specifications. We return to this issue in the 
discussion.

4.2   |   Example 2: The METEOR Trial

The METEOR trial [27] evaluated the effect of Cabozantinib 
compared to Everolimus on progression-free and OS in patients 
with advanced or metastatic renal cell cancer (RCC) that has 
progressed after prior VEGFR tyrosine kinase inhibitor therapy. 
Given that it is known that bone metastases are associated with 
increased morbidity in patients with RCC, efficacy and safety 
were analysed for subgroups defined by bone metastasis status 
at baseline. Of all the 658 patients randomly assigned, 142 (22%) 
belonged to a pre-specified subgroup having bone metastasis.

Escudier et al. [27] provide the OS by subgroup results in their 
Figure 3, where the estimated hazard ratio is reported as 0.54 (95% 
confidence interval, 0.34–0.84) in patients with bone metastases 
(subgroup B) and 0.71 (95% confidence interval, 0.55–0.91) in 

those without bone metastases (subgroup C). After log transfor-
mation, �̂B = log(0.54) ≈ − 0.616 and �̂C = log(0.71) ≈ − 0.342. 
We apply our Bayesian approach to re-evaluate the treatment 
effects for both subgroups in the way described in more detail 
for our first example in Section 4.1 when implementing the two 
vague, and spike and slab, and ‘truncated �C′ priors.

We also use an informative prior distribution for � = �B − �C 
derived from Choueiri et al. [28]. As in the first example there 
are differences in the treatment regimens, but a key similar-
ity is that cabozantinib is an active treatment in both trials. 
Choueiri et al. [28] showed that Nivolumab plus Cabozantinib 
had significant benefits over sunitinib with respect to 
progression-free survival and OS in both subgroups (with 
and without bone metastases) of patients with RCC. The OS 
hazard ratios are 0.54 (95% confidence interval, 0.32–0.92) for 
patients with bone metastases (B) and 0.61 (95% confidence 
interval, 0.41–0.89) for patients without bone metastases (C). 
The prior distribution � ∼ N

(
−0.122,0.3342

)
 was obtained by 

taking the difference between these two estimated hazard 
ratios on the log scale and assuming that they are indepen-
dent. As in the first example, we also use ‘power priors’, of the 

FIGURE 3    |    Posterior means and credible intervals for Example 2 (Section 4.2). ‘Normal (vague)’ and ‘Joint (vague)’ are results using vague priors, 
Sections 2.1.1 and 2.1.4, respectively. ‘Normal truncated’ are results as in ‘Normal (vague)’ but where �C is truncated to be less than −0.23. ‘Normal 
(info)’ are results using the informative normal prior � ∼ N

(
−0.122,0.3342 ∕k

)
 with the value of k indicated; as k increases this prior becomes more 

informative. Finally, ‘Spike/Slab’ are results using the spike and slab prior, where � is the standard deviation used for the slab.
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10 of 16 Pharmaceutical Statistics, 2024

form � ∼ N
(
−0.122,0.3342 ∕k

)
 with k = 0.75, 0.5, 0.25, to down-

weight this prior information.

We summarise the posterior distributions of �B, �C and � in 
Figure 3. The results for the vague priors are in good agreement 
with the frequentist point estimates and confidence intervals 
[27], as expected. Comparing the results using the informative 
prior for � to those using the vague prior, we can see that this 
informative prior has considerable impact on �. The posterior 
mean of � lies between the mean of its informative prior distri-
bution and its posterior mean when instead using vague priors. 
The posterior means of �B and �C are both affected by the infor-
mative prior for �, but this is greatest for �B because there is less 
data available for this subgroup. The truncation of �C to be less 
than −0.23 has little impact, for similar reasons as in the first 
example. The observations for the spike and slab prior and the 
power priors are also similar to those from the first example.

The overall impression from Figure 3 is that there is evidence 
of a treatment effect in both patient populations. There is no 
evidence that the treatment effect is greater in population B. 
However, further information would be valuable in order to es-
timate the difference between the subgroup treatment effects 
with greater precision.

4.3   |   Recommendations

We have implemented two different ways to specify vague 
(weakly informative) prior distributions. We propose always 
beginning with an analysis that uses this type of prior, where 
we should check that parameter estimates are consistent with 
frequentist results.

The possibility of exploring the impact of using external infor-
mation should then be considered, where informative normal 
distributions are a convenient way to incorporate this additional 
information. Methods that discount the influence of candidate 
informative prior distributions should be used, for example, we 
have used power priors for this purpose. This enables us to un-
derstand the implications of making use of external information 
but treating it as less relevant. Further modifications can be eas-
ily incorporated with minor changes to the MCMC code. For ex-
ample, priors that are truncated, multimodal or allow for other 
complex dependencies can be included to reflect clinicians' con-
cerns or opinions.

In practice, a joint prior distribution can be difficult to elicit. We 
recommend using established prior elicitation methods [18, 26] 
to elicit a marginal prior for treatment effect in the patient group 
with the most established information base. A prior distribution 
for the treatment effect in other patient group, or the relative 
difference between the treatment effects in the two groups, can 
then be elicited conditional on this marginal prior. Alternatively, 
other methods for allowing for associations between the mar-
ginal prior distributions may be used [26]. Although it may be 
useful to use a discrete prior for elicitation, the resulting joint 
prior should be transformed into a continuous joint prior to en-
sure continuous posterior distributions and results from discrete 
priors could be used to help us understand the implications of 

this transformation. Defending informative prior distributions 
will be especially important in  situations where they provide 
qualitatively different results to vague priors. This defence may 
prove challenging if the analysis is criticised by stakeholders 
who do not find the informative priors plausible.

We recommend that the spike and slab prior distribution should 
rarely be used for estimation. Only under exceptional circum-
stances, for example, when there is a strong prior belief that the 
treatment effect could be identical across the two populations, 
might this prior distribution be used for this purpose. It is, at 
best, very difficult to provide a concrete example of such a sit-
uation. Furthermore, the variance of the slab would need to be 
very judiciously selected and results can be expected to be sen-
sitive to this.

5   |   Designing a New Trial

Bayesian methods may be especially useful in the context of de-
signing a new trial, where the numbers of recruited biomarker 
positive and negative patients are to be determined. To illustrate 
this we explore the case where a trial similar to that of Escudier 
et  al. [27], our second example above, is to be performed. A 
key aspect of trial design is determining the probability of trial 
success (achieving statistical significance with the intended 
directional effect). We extend our Bayesian modelling from 
Section  4.2 where the informative prior � ∼ N

(
−0.122, 0.3342

)
 

was applied to the Escudier et al. [27] data. The approach ad-
opted below allows us to directly, and explicitly, use prior in-
formation when designing a trial. It also allows us to compute 
posterior predictive distributions. However, it is only intended 
to be illustrative and we leave the assessment of its performance, 
relative to other methods and ideas, as further work. It is not 
essential to use information from another trial but if such infor-
mation is available, it can be valuable in helping us make well 
informed decisions.

For illustrative purposes, suppose that such a trial with 900 pa-
tients and 1:1 randomisation is proposed where, like Escudier 
et al. [27], the concurrent evaluation of patients with and with-
out bone metastases is to be performed. We suppose that fol-
low-up is intended to be for 2 years, the outcome of interest is 
OS, and there is doubt concerning whether to recruit 300 (1/3 
of patients), 450 (1/2 of patients) or 600 (2/3 of patients) from 
subgroup B (with bone metastases). We therefore wish to better 
understand the implications of this decision. To apply our meth-
ods to address this, further information from Escudier et  al. 
[27] will be used. From Figure  3 of Escudier et  al., we expect 
a 60% event rate within the study period in the active arm for 
population B and a 80% event rate in the corresponding control 
arm. Similarly, we expect a 50% event rate in the active arm for 
population C and a 70% event rate in control group C. We pre-
dict the number of events (deaths) in each biomarker and treat-
ment group combination as the products of patient numbers and 
event rates.

An example of this prediction, suppose that we decide to 
recruit 600 (2/3 of patients) from subgroup B. We then pre-
dict 600 × 1∕2 × 0.6 + 600 × 1∕2 × 0.8 = 420 events in the 
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corresponding subgroup analysis, where the halves in these 
products are due to 1:1 randomisation between treatments 
within each subgroup (i.e. stratified randomisation). Similarly, 
we predict 300 × 1∕2 × 0.5 + 300 × 1∕2 × 0.7 = 180 events in 
the analysis for subgroup C, and so 420 + 180 = 600 events in 
the analysis for all patients. We then approximate the variance 
of the log hazard ratio for treatment resulting from Cox pro-
portional hazard regressions, for the two subgroup analyses 
(�2

B
 and �2

C
) and the analysis for all patients (�2

A
), as 4 divided 

by the predicted number of events in each analysis (Parmar 
et al. [29], their Equation 8).

We model the estimated log hazard ratios for the two sub-
groups B and C in the new trial as �̂B,new ∼ N

(
�B, �

2
B

)
 and 

�̂C,new ∼ N
(
�C, �

2
C

)
, where �2

B
 and �2

C
 are computed using the pre-

dicted number of events described in the preceding paragraph. 
We add �̂B,new and �̂C,new as quantities to be monitored when 
implementing the MCMC described in Section 3 and interpret 
them as predictions of the estimated log hazard ratios in the new 
trial that incorporate our prior beliefs and all uncertainty.

We also require a model for the estimated log hazard ratio 
�̂A,new in the entire new study population A = B ∪ C, for which 
we use �̂A,new = ��̂B,new + (1 − �)�̂C,new. As before, � is the pro-
portion of B patients. The quantity �A = ��B + (1 − �)�C, from 
Equation (3) and discussed in Section 3, is therefore now applied 
to the corresponding estimates in the new study.

For trial design, we are usually interested in whether the new trial 
produces, in a frequentist sense, statistically significant results, 

both within subgroups and in its entire population. For this, we 
calculate test statistics for the new trial as ZB,new = �̂B,new ∕�B, 
ZC,new = �̂C,new ∕�C and ZA,new = �̂A,new ∕�A. For example, if these 
test statistics are less than −1.96, then they are statistically sig-
nificant, with the intended directional effect, at the 5% level 
when using a two-sided hypothesis test. By exploring the impli-
cations of changing key design parameters for the trial's power 
(e.g. the overall sample size, proportion of patients recruited to 
each subgroup, hypothesis testing strategy) an examination of 
the joint predictive distribution of 

(
ZB,new,ZC,new,ZA,new

)
 can in-

form key aspects of trial design.

In Figure  4, we show some illustrative results where the 
informative prior � ∼ N

(
−0.122,0.3342

)
 was applied to the 

Escudier et al. [27] data. Here, we show the posterior predic-
tive distributions of 

(
ZB,new,ZC,new,ZA,new

)
 and the probabilities 

that these are less than −1.96, that is, the posterior Bayesian 
Predictive Powers. This power in subgroup B (where the es-
timated treatment effect is largest; see Figure  3) increases 
as the proportion � of patients recruited from population B 
increases. Furthermore, this power for the A = B ∪ C popu-
lation also increases slightly as � increases (although this is 
as high as around 97% even with � = 1∕3), also as expected 
because treatment efficacy is estimated to be greatest in the B 
population. However, increased power in the A and B popula-
tions achieved by increasing � from 1/3 to 1/2 is not improved 
much further by using � as large as 2/3, for which the power 
to detect an effect in the C population is as low as around 63%. 
These results indicate that, if achieving statistical significance 
in subgroup C is of importance, then it would be unwise to 

FIGURE 4    |    Posterior predictive distributions and Bayesian Predictive Powers (BPP) for the all-comer population A (first column), population B 
(second column) and population C (third column) where 1/3 (first row), 1/2 (second row) and 2/3 (third row) of patients are sampled from population B.
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sample too small a proportion of patients from this popula-
tion. This is because the large value of � = 2∕3 is very notably 
detrimental for achieving statistical significance in the C pop-
ulation whilst providing very little improvement in power in 
the other two populations of interest.

A complication is that different hierarchical hypothesis test-
ing strategies are available to adjust for repeated testing in 
biomarker-defined subgroups and the overall population 
[30, 31]. In order to be able to accommodate a particular sequen-
tial hypothesis testing strategy, we suggest examining the joint 
predictive distribution of 

(
ZB,new,ZC,new,ZA,new

)
 more carefully. 

For example, if the hypothesis testing procedure is to test in 
subgroup B, only if there is a statistically significant result in 
A, we would then calculate the probability that ZB,new is statis-
tically significant conditional on this result. This probability is 
estimated from the proportion of times ZB,new is less than the 
appropriate critical value in the sample of MCMC iterations for 
which ZA,new is statistically significant.

6   |   Discussion

We have extended a recently published frequentist approach 
that explored biomarker subgroup analysis [1]. By incorporat-
ing prior distributions, and so adopting a Bayesian approach, 
the methodology proposed here is more versatile but it also 
makes more assumptions via the priors. Using prior informa-
tion on the relationship between subgroups adds value to the 
assessment of subgroup differences, both in terms of design 
and analysis of such trials. This is because we can then per-
form statistical analyses, and so make decisions, that reflect 
our current understanding of the predictive value of biomark-
ers. In Section  4.1.1 we illustrated how to elicit an informa-
tive bivariate normal distribution for �B and �C, and how to 
extend this to incorporate additional concerns of clinicians. 
These concerns include the possibility of no treatment effect 
in both populations and the potential dependence of the pa-
rameters in the prior distribution of �B on �C. This novel, and 
unusual, joint prior distribution serves to illustrate that our 
Bayesian methods are able to incorporate both conventional 
and bespoke priors.

It is almost always of interest to compare Bayesian results to 
those from frequentist analyses, so that the impact of incorpo-
rating prior information can be better understood. Similarly 
comparing decisions for trial design, based on our methods 
to those from a frequentist viewpoint, will also be of interest, 
for similar reasons. Despite the advantages of Bayesian meth-
ods, use of priors remains controversial. Sensitivity analysis, 
either formal or informal that considers a range of possible 
prior specifications, will usually be desirable. An advantage 
of our approach is that it provides a framework, in which a 
wide variety of statistical analyses can be embedded, and so 
provides a conceptual basis for sensitivity analysis. If there 
is key prior information on a different scale, for example for 
the overall hazard ratio or relative hazard ratio between the 
two groups, then this can be transformed for inclusion in the 
statistical analysis within the MCMC. We have illustrated the 
use of informative prior distributions, motivated by similar 
trials, in our examples. Investigating the circumstances where 

markedly different conclusions are reached using different 
types of statistical analyses, either empirically or via simula-
tion studies, would be a useful next step.

Our proposed approach may be especially useful when tran-
sitioning from one phase of clinical research to the next, so 
that key strategic decisions can be based on all available in-
formation. In particular, it may be helpful when designing 
trials at later phases, as illustrated using our second example 
in Section 5. These methods may be used with other overall 
treatment effects and alternatives to our approximation for �A 
may perform better in some instances. Our models can also be 
useful to quantify the probability of trial success, and so com-
municate the risks of particular decisions, to different stake-
holders. Bayesian methods may also be valuable in situations 
where data are sparse, so that frequentist analysis that does 
not incorporate prior information will be subject to consider-
able uncertainty. However, issues relating to prior sensitivity 
become more pressing, because the priors may then dominate 
the analysis, and the importance of an assessment of this sen-
sitivity increases.

There are clear differences between how regulatory agencies 
and reimbursers typically assess data. Regulators generally 
require sponsors to pre-specify the analysis and to minimise 
the assumptions made. They ask for strong frequentist con-
trol of the Type 1 Error and the multiple testing generalisation 
thereof, the family-wise error rate (FWER). This complicates 
the use of our proposals in Section  5 when designing a new 
trial. There is, however, greater variability in the standpoints 
of different reimbursers than among regulatory agencies. 
Reimbursers generally take into account costs, as well as ben-
efits and risks. In many cases, even if a drug is approved in a 
wider population, it may only be deemed cost-effective in a 
subgroup. Assuming that safety is not a concern, the posterior 
efficacies in populations B and C may justify the existing price 
of the drug, if it is already marketed for other indications, 
or motivate a price proposed for the first launch. In health 
technology assessment, more focus is typically placed on es-
timation and decision-making, and Bayesian methodology is 
commonly used. The framework described in this article can 
therefore be of most direct use for reimbursers.

When statistical methods that allow the possibility of shrink-
ing subgroup effects, to their mean, are applied in a regula-
tory setting, we suggest that it is reasonable to keep the overall 
perspective as close as possible to a standard regulatory pre-
specification, that uses a frequentist paradigm. Here we would 
first establish that the drug has efficacy, for example, showing 
statistical significance in the all-comer or biomarker positive 
population. With placebo control, it is then usually biologically 
obvious, or at least very likely, that the null hypothesis for the 
biomarker negative population is incorrect; that is, that there is 
at least some efficacy of the drug in this population. Focus can 
then shift to estimation, and weighing benefits versus risks, for 
each subpopulation. Thus we also suggest that formal frequen-
tist, or Bayesian, testing is not then a necessity in the biomarker 
negative population.

The EMA [8] Guideline on the investigation of subgroups in con-
firmatory clinical trials recommends that subgroup categories 
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should be carefully considered at the planning stage and that 
factors defining subgroups of the target population may be put 
in three categories. The first category is where there is a strong 
reason to expect differences in treatment efficacy. The meth-
odology in this paper is meant to be in spirit of this guidance. 
When using our framework, the sponsor identifies two disjoint 
subgroups that are expected to have unequal efficacy, to the ex-
tent that it is unclear whether the drug, even if it shows clear 
efficacy on average compared to control, should be approved 
in the full population or only in the biomarker positive sub-
population [32, 33]. In the situation where it is not feasible to 
generate enough data to make independent decisions for both 
subgroups, it has been common that the sponsor tests both the 
null hypothesis of no efficacy in all-comers and the null hy-
pothesis of no efficacy in the biomarker positive subpopulation. 
When these hypotheses are tested simultaneously (rather than 
hierarchically), the test proposed by Spiessens and Debois [34] 
can increase the power, while strongly controlling the FWER. 
A complication with this analysis, however, is that a statistically 
significant efficacy in the entire study population can be con-
sistent with detrimental efficacy in the biomarker negative pop-
ulation. Regulators should therefore also assess the efficacy in 
the biomarker negative population. Our methodology explicitly 
facilitates this, using a pre-specified prior that reflects biologic 
plausibility and previous data. As the EMA [8] states ‘Credibility 
depends on … a priori definition, the biologic plausibility … and 
replication’.

Our methods have used some statistical approximations. For ex-
ample, we have used conventional normal approximations for 
distributions of the subgroup estimators, such as log hazard ra-
tios, with estimation using MCMC. We have also proposed using 
a weighted average of the subgroup treatment effects to define 
an overall treatment effect that applies to the total patient popu-
lation. This will be exact in some situations, for example, where 
the treatment effects are unadjusted mean differences. However, 
in our applications, we have modelled log hazard ratios, where 
the population level treatment is not simply a weighted average 
of subgroup treatment effects. This is because the hazard ratio 
is not collapsible. We are, however, content to use the proposed 
weighted average as an approximation in our modelling. Future 
work may explore how often this type of approximation is used 
and when it is adequate. Our position is that this is a reasonable, 
and widely applicable, approximation that will be adequate for 
the majority of applications. However, further work is planned 
to investigate this issue in detail and some preliminary mathe-
matical work to understand this has already been undertaken. 
In practice, it is difficult to propose a more accurate result that is 
so widely applicable and simple to implement. With independent 
normal priors for two of the three linearly dependent parameters 
(�B, �C and �), analytic solutions can be derived for the posterior. 
By using a variety of different prior specifications, the results 
can range from effectively pooling the B and C groups to essen-
tially treating them as unrelated.

Generalising our methods to incorporate more than two sub-
groups is an obvious next step. If there are many disjoint 
subgroups, then a hierarchical structure that assumes ex-
changeability, as sometimes proposed in the context of multi-
centre trials or random-effects meta-analysis, may be a feasible 

approach depending on the clinical setting. However if there are 
several, but not many, subgroups then variance components in 
hierarchical models are hard to identify. Informative priors may 
therefore be usefully employed in such instances but satisfacto-
rily generalising our methods, to incorporate a third biomarker 
subgroup for example, may be challenging. Generalising all our 
prior distributions to incorporate several overlapping subgroups 
may also be difficult.

To summarise, we have shown how Bayesian methods may be 
useful in the design and analysis of trials that include a binary 
biomarker. We have implemented several different forms of 
prior distributions, for which computing codes are available in 
the Supporting Information. Some of the priors we have consid-
ered are informative, and motivated by similar trials, illustrating 
how information from other data sources can be incorporated in 
practice. We hope that our work will encourage others to explore 
the use of Bayesian methods for biomarker stratified trials.
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Appendix A

We assume that there no additional baseline covariates are included in 
model (2), so that �Xi = 0. Hence, this model becomes

To establish (conditional, on the model parameters) independence 
between the two subgroup estimates of treatment effect, we re-
parameterise �4 = �0 + �2, and define �B = �1 + �, and �C = �1 as in 
Section 2, so that this linear predictor is equivalent to

We can now see that subjects with Si = 1, and so those from subgroup 
B, contribute terms to the likelihood that include �4 and �B. Similarly 
subjects with Si = 0, and so those from subgroup C, contribute terms to 
the likelihood that include �0 and �C. Hence, the likelihood factorises, 
where different sets of patients contribute to the estimation of �B and �C , 
so that �̂B and �̂C are conditionally independent.

This conditional independence of ̂�B and ̂�C can be established explicitly 
for the linear regression model Yi = �0 + �1Ti + �2Si + �SiTi + �i, where 
�i ∼ N

(
0, �2

)
 and the proportion of patients in each subgroup B, s, is the 

same across treatment groups. The Gram matrix is then

where n is the total number of subjects and t  is the total number of 
treated patients 

(
Ti = 1

)
. We now write 1∕D = (n − t)(1 − s), so that

This matrix inverse is most easily established by 
checking that XTX

(
XTX

)−1
= I and 

(
XTX

)−1
XTX = I , 

where I is the 4 × 4 identity matrix. Hence, Cov
(
�̂B, �̂C

)

=Cov
(
�̂1+ �̂, �̂1

)
=Var

(
�̂1

)
+Cov

(
�̂, �̂1

)
=�2(Dn∕t−Dn∕t)=0 , 

implying (conditional) independence under the normality assumptions 
made by the linear regression model.

Appendix B

Let �̂ and Σl be the estimate (the vector on the left hand side) and the 
covariance matrix in model (1), respectively. The prior distributions for 
�C ∼ N(0,100) and � ∼ N

(
a, b2

)
 are assumed to be independent. This im-

plies a joint prior distribution for �B = �C + � and �C of

Let �p and Σp be the prior mean and covariance matrix in (6), respec-
tively. Then, the joint posterior distribution of 

(
�B,�C

)
 is

The posterior distributions of �B and �C are then given as the marginal 
distributions from Equation (7). The posterior distribution of � is simply 
the implied normal distribution of the linear combination �B − �C from 
Equation (7).

Appendix C

The probability density function of a mixture model is

where p is the probability of model one (M1) and f
(
�|M1

)
 and f

(
�|M2

)
 

are the probability density functions of � under model 1, and model 2 
(M2), respectively. In this appendix, we derive the posterior distribu-
tions of p and � under the spike and slab prior, that is a special case of 
model (8).

For our spike and slab prior, we assume the prior specification p ∼ U(0, 1) , 
f
(
�|M1

)
= �−1

1
�
((
� − �1

)
∕�1

)
 and f

(
�|M2

)
= �−1

2
�
((
� − �2

)
∕�2

)
 , 

where U(0, 1) denotes the continuous uniform distribution from zero 
to one, and �(. ) is the standard normal probability density function. In 
Section 2.1.3, we assumed that �1 = �2 = 0, and used particular values 
for �1 and �2, but we will derive results more generally where these four 
parameters may take other values. The joint prior density of p and � is 
therefore

for 0 < p < 1 and � ∈ ℝ. We assume that we observe the estimate 
�̂ ∼ N

(
�, �2

)
, so that the joint posterior distribution of p and � is

We now expand the terms in the exponents, complete the square and 
simplify, to express the posterior distribution in Equation (9) as

where �
(
. ;�, v2

)
 is the probability density function of a normal distri-

bution with mean � and variance v2 and ci = �
(
�̂; �i, �

2 + �2
i

)
. Note that 

the normal densities in Equation (10) are the usual posteriors where the 
prior distributions are of the form � ∼ N

(
�i, �

2
i

)
 and the observed data 

is �̂ ∼ N
(
�, �2

)
.

Integrating out � from Equarion (10) gives the marginal posterior dis-
tribution of p

By integrating Equation (11) over the interval (0, 1), we can evaluate the 
constant of proportionality required for the posterior probability density 
function to integrate to unity as 2∕

(
c1 + c2

)
. Hence, we can express the 

marginal posterior density of p in Equation (11) as

�i = �0 + �1Ti + �2Si + �SiTi.

�i =
(
�0 + �CTi

)(
1 − Si

)
+
(
�4 + �BTi

)
Si.

XTX =

⎡
⎢
⎢
⎢
⎢
⎢⎣

n t ns ts

t t ts ts

ns ts ns ts

ts ts ts ts

⎤
⎥
⎥
⎥
⎥
⎥⎦

�
XTX

�−1
=

⎡
⎢
⎢
⎢
⎢
⎢⎣

D −D −D D

−D Dn∕t D −Dn∕t

−D D D∕s −D∕s

D −Dn∕t −D∕s nD∕ts

⎤
⎥
⎥
⎥
⎥
⎥⎦

(6)

(
�B

�C

)
∼ N

((
a

0

)
,

(
b2+100, 100

100, 100

))
.

(7)

(
�B

�C

)
∼ N

((
Σ−1
p +Σ−1

l

)−1(
Σ−1
p �p + Σ−1

l
�̂
)
,
(
Σ−1
p +Σ−1

l

)−1
)
.

(8)pf
(
�|M1

)
+ (1 − p)f

(
�|M2

)
,

f(p, �) =
p

√
2��1

exp

�
−

�
�−�1

�2

2�2
1

�
+

1 − p
√
2��2

exp

�
−

�
�−�2

�2

2�2
2

�

(9)

f
�
p, �� �̂

�
∝

p

2���1
exp

⎛
⎜
⎜
⎜
⎝

−

�
�̂−�

�2

2�2
−

�
�−�1

�2

2�2
1

⎞
⎟
⎟
⎟
⎠

+
1−p

2���2
exp

⎛
⎜
⎜
⎜
⎝

−

�
�̂−�

�2

2�2
−

�
�−�2

�2

2�2
2

⎞
⎟
⎟
⎟
⎠

(10)

f
(
p, �| �̂

)
∝ pc1�

(
�;

�2
1
�̂ + �2�1

�2
1
+ �2

,
�2�2

1

�2
1
+ �2

)
+ (1 − p)c2�

(
�;

�2
2
�̂ + �2�2

�2
2
+ �2

,
�2�2

2

�2
2
+ �2

)

(11)f
(
p| �̂

)
∝ c1p + (1 − p)c2,
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Also using the constant of proportionality 2∕
(
c1 + c2

)
, and integrating 

out p, from Equation (10) gives

Noting again that that the normal densities in Equation  (12) are the 
posteriors where the prior distributions are simply the spike or the slab 
priors, we can interpret this expression as a weighted average of the pos-
terior distributions of � under models M1 and M2, where the weights are 
c1 and c2, respectively. The weights are functions of the data �̂ and the 
means and variances of the spike and slab priors.

Let model 1 be the slab. We, therefore, have a weight of �
(
�̂; �1, �

2 + �2
1

)
 

allocated to the posterior of the slab. As �1 → ∞ c1 → 0, so that a very 
diffuse prior for the slab will inevitably result in an analysis that is tan-
tamount to assuming the spike with probability one, and no interaction 
between treatment and subgroup. It is therefore necessary to use a plau-
sible value for �2

1
. Note that we have treated the variance components, �2

1
 

and �2
2
, as fixed and known. If prior distributions were instead specified 

then we would need to marginalise over them.

f
(
p| �̂

)
=
2
(
c1p + (1 − p)c2

)

c1 + c2

(12)
f
(
�| �̂

)
=

c1�

(
�;

�2
1
�̂ + �2�1

�2
1
+ �2

,
�2�2

1

�2
1
+ �2

)
+ c2�

(
�;

�2
2
�̂ + �2�2

�2
2
+ �2

,
�2�2

2

�2
2
+ �2

)

c1 + c2
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