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A B S T R A C T   

Background: Perfluoroalkyl substances (PFAS) are widespread synthetic substances with various adverse health 
effects. A potential mechanism of toxicity for PFAS is via epigenetic changes, such as DNA methylation. However, 
few studies have evaluated associations between PFAS exposure and DNA methylation among adults, and data is 
especially scarce for women. Furthermore, exposure to environmental pollutants has been associated with 
epigenetic age acceleration, but no studies have yet evaluated whether PFAS is associated with epigenetic age 
acceleration. 
Objectives: To investigate whether exposure to PFAS is associated with alteration of DNA methylation and 
epigenetic age acceleration among women. 
Methods: In this observational pilot study, 59 women (aged 20–47 years at enrollment in 2014) from Ronneby, 
Sweden, an area with historically high PFAS exposure due to local drinking water contamination, were divided 
into three PFAS exposure groups (low, medium, and high). Genome-wide methylation of whole-blood DNA was 
analyzed using the Infinium MethylationEPIC BeadChip. Ingenuity Pathway Analysis was used for in silico 
functional assessment. Epigenetic age acceleration was derived from the DNA methylation data using Horvath’s 
epigenetic skin and blood clock. 
Results: 117 differentially methylated positions (q < 0.017) and one near-significantly differentially methylated 
region (S100A13, FWER = 0.020) were identified. In silico functional analyses suggested that genes with altered 
DNA methylation (q < 0.05) were annotated to cancer, endocrine system disorders, reproductive system disease, 
as well as pathways such as estrogen receptor signaling, cardiac hypertrophy signaling, PPARα/RXRα activation 
and telomerase signaling. No differences in epigenetic age acceleration between PFAS exposure groups were 
noted (p = 0.43). 
Conclusion: The data suggests that PFAS exposure alters DNA methylation in women highly exposed to PFAS from 
drinking water. The observed associations should be verified in larger cohorts, and it should also be further 
investigated whether these changes in methylation also underlie potential phenotypic changes and/or adverse 
health effects of PFAS.   

Abbreviations: AFFF, Aqueous film forming foam concentrate; BMI, Body mass index; DMP, differently methylated position; DMR, differently methylated region; 
FWER, Family-wise error rate; PCA, Principal component analysis; PFHxS, perfluorohexane sulfonic acid; PFOS, perfluorooctane sulfonic acid; PFOA, per-
fluorooctanoic acid; PFAS, perfluoroalkyl substances; POP, persistent organic pollutant. 
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1. Introduction 

Perfluoroalkyl substances (PFAS) are a group of man-made persistent 
organic pollutants (POPs). Drinking water contaminated by PFAS affects 
the general population worldwide (Banzhaf et al. 2017; Guelfo and 
Adamson 2018; Willach et al. 2016). Many countries have announced 
national action guidelines or regulations for PFAS levels in drinking 
water (Wilhelm et al. 2008, Drinking water inspectorate 2009, Livs-
medelsverket, 2016). However, PFAS already present in the environ-
ment are still potentially harmful because of environmental persistence, 
bioaccumulation and long half-life in human (EFSA 2020). 

Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid 
(PFOA) are two of the most widely studied PFAS. Several studies have 
linked PFOS and PFOA exposure to various adverse health effects, such 
as immunotoxicity, endocrine disrupting effects and metabolic effects 
(EFSA 2018). Recently, studies about perfluorohexane sulfonic acid 
(PFHxS) have emerged, since it is found in soil, water and a variety of 
biota in the vicinity of firefighting training areas following the historical 
use of aqueous film forming foam concentrate (AFFF) firefighting foam. 
Studies have shown similar effects of PFOA, PFOS and PFHxS on human 
health (EFSA 2020), however, the exact modes of PFAS toxicity are still 
not clear. Epigenetic changes, such as DNA methylation, have been 
proposed as a possible molecular mechanism underlying adverse health 
effects of pollutants (Baccarelli and Bollati. 2009). DNA methylation 
occurs predominantly on cytosines (C) that are followed by guanine (G) 
residues, referred to as CpG sites. By influencing the gene transcription, 
DNA methylation often precedes the development of measurable sub-
clinical effects or pathologies (Maunakea et al. 2010) and can therefore 
serve as a sensitive effect biomarker of environmental pollutants. 

The association between DNA methylation and aging is well estab-
lished (Johansson et al. 2013, Florath et al. 2014). Data from whole- 
genome DNA methylation arrays can be used to estimate the so-called 
epigenetic age across a broad spectrum of human tissues and cell 
types using an “epigenetic clock” based on a number of age-dependent 
CpG signatures (Horvath 2013; Horvath et al. 2018). Accelerated 
epigenetic aging, i.e., a discrepancy between the biological and chro-
nological age, measured in DNA from whole blood, correlates with 
increased mortality (Marioni et al. 2015a), and impaired physical and 
cognitive function (Marioni et al. 2015b). Additionally, previous studies 
have seen associations between POP exposure and epigenetic age ac-
celeration in DNA from whole blood (Curtis et al. 2019; Lind et al. 
2018). Thus, epigenetic age acceleration could also be a mechanism 
underlying adverse health effects of environmental pollutants. However, 
to the best of our knowledge, the effect of PFAS on epigenetic age ac-
celeration has not yet been investigated. 

Epidemiological studies regarding associations between PFOS and/ 
or PFOA exposure, and changes in DNA methylation patterns have 
comprised newborns from mother–child cohorts. These studies revealed 
associations of exposure with decreased global DNA methylation in the 
cord blood or umbilical cord serum (Guerrero-Preston et al. 2010; Liu 
et al., 2018a, 2018b), and with methylation changes in specific DNA 
methylation sites or regions in gene-specific whole genome analyses in 
cord blood (Kingsley et al. 2017; Leung et al. 2018; Miura et al. 2018). 
Few studies have evaluated associations between PFOS and/or PFOA 
exposure and changes in DNA methylation patterns among adults. One 
study evaluated LINE-1 methylation (a surrogate marker for global DNA 
methylation) in peripheral blood leukocytes among adults (Watkins 
et al. 2014) and found exposure to PFOS, but not PFOA, to be associated 
with increased LINE-1 methylation (no sex-stratified analyses were 
performed). One study, comprising men only, evaluated genome-wide 
DNA methylation in leukocytes upon PFAS exposure (van den Dungen 
et al. 2017). This study revealed associations between PFAS and specific 
DNA methylation regions, related to genes involved in e.g. carcinogen-
esis and the immune system. However, no study, to date, has evaluated 
genome-wide DNA methylation upon PFAS exposure in women. This is 
of importance, given that DNA methylation can be sex-specific 

(McCarthy et al. 2014) and age-specific (Day et al. 2013, Sikdar et al. 
2019) and that epidemiological studies have showed sex-specific asso-
ciations between PFAS and earlier menopause and lower estradiol levels 
(Knox et al. 2011), as well as higher thyroid hormones in adult women 
(Wen et al. 2013, Blake et al. 2018). Thus, further knowledge of how 
PFAS exposure is associated to DNA methylation in women’s blood is 
needed. 

In the current pilot study, we aimed to investigate whether PFAS 
exposure (measured in serum) is associated with alteration of DNA 
methylation in whole blood and epigenetic age acceleration, two po-
tential mechanisms of PFAS toxicity, in women. Furthermore, we per-
formed in silico analyses to identify potential biological functions 
associated with genes with altered DNA methylation. 

2. Materials and methods 

2.1. Study participants 

The study participants were a subset of the Ronneby Biomarker 
Cohort and its reference group from Karlshamn (Li et al. 2018). The 
Ronneby Biomarker Cohort comprises 3297 individuals from Ronneby, 
Sweden, where a third of households have been exposed to highly PFAS- 
contaminated drinking water from the mid-1980s until December 2013. 
Biomonitoring performed in June 2014, shortly after cessation of 
exposure, revealed very high serum levels of PFAS, which were domi-
nated by PFOS, PFHxS, and to a lesser extent, PFOA, in individuals living 
in the area with contaminated drinking water in Ronneby. The reference 
group was recruited in 2016 and comprises 226 individuals from Karl-
shamn, a nearby municipality with uncontaminated municipal drinking 
water supply and with similar socioeconomic status. Serum levels of 
PFAS in the reference group were very low and comparable with those of 
the Swedish general population (Li et al. 2018). 

The subset included in this study are 64 non-smoking and non- 
pregnant women aged 20–47 years at recruitment. These 64 women 
included all 53 women that were included in our previous study eval-
uating the association between PFAS exposure and microRNA expres-
sion in serum (Xu et al. 2020). The blood samples used for PFAS and 
DNA methylation analysis were taken in September 2017 for Ronneby 
participants, and in May 2016 for Karlshamn reference group, respec-
tively. The grouping of individuals into exposure groups were conducted 
in the same way as described by Xu et al. (2020). Briefly, the selection of 
individuals to be included in this study was based on their serum PFOS 
concentrations (measured prior to the selection of participants, Section 
2.2), allowing the division of participants into three exposure groups 
(low, medium and high exposure group, Table 1). Serum PFOS levels 
were used as a proxy for PFHxS, PFOA and sum of three PFAS because of 
the high correlation between each other (Spearman’s r > 0.8, p < 0.001 

Table 1 
Descriptive statistics [median (range)] for the study participants consisting of 59 
non-smoking and non-pregnant women.  

PFAS exposure group Low (n =
21) 

Medium (n =
20) 

High (n =
18) 

p- 
valuea 

Age (years) 36 (26–45) 37 (21–45) 39 (21–47) 0.95 
BMI (kg/m2) 24 (20–31) 23 (18–30) 24 (19–37) 0.30 
PFOS (ng/ml) 3 (0–11) 56 (16–112) 230 

(113–380) 
<0.001 

PFHxS (ng/ml) 1 (0–9) 43 (11–136) 200 
(96–371) 

<0.001 

PFOA (ng/ml) 2 (0–4) 2 (1–9) 10 (4–24) <0.001 
Sum of three PFAS 

(ng/ml) 
6 (2–22) 100 (30–257) 438 

(217–739) 
<0.001 

Abbreviations: BMI, body mass index; PFHxS, perfluorohexane sulfonic acid; 
PFOS, perfluorooctane sulfonic acid; PFOA, perfluorooctanoic acid; PFAS, per-
fluoroalkyl substances. 

a P-values from Kruskal-Wallis test in between-group comparisons for PFAS 
exposure group. 
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for all pairs). Additionally, the descriptive analysis of serum levels of 
PFOS, PFHxS, PFOA and sum of three PFAS confirmed our assumption of 
different levels of exposure in the three groups (Table 1). 

The low exposure group included 22 women from the reference 
group (PFOS range 0–11 ng/ml). The other 42 women from Ronneby 
Biomarker Cohort were grouped into medium (PFOS range 16–112 ng/ 
ml) and high (PFOS range 113–380 ng/ml) exposure groups. The mean 
age and body mass index (BMI) in the exposure groups were similar (p >
0.05 in between-group comparisons, Kruskal-Wallis test). Five subjects 
were excluded because of failure of the DNA methylation analysis (no 
data acquired from the DNA methylation array). Therefore, 59 women 
were included as participants in the study. 

All participants gave informed written consent. The study was 
approved by the Regional Ethical Review Board in Lund, Sweden 
(approved on date 22 April 2014; approval number 2014/4). 

2.2. Serum PFAS concentration analysis 

Venous blood samples were collected in 5-ml Becton Dickinson 
(Plymouth, UK) vacutainer tubes without gel. The serum was transferred 
to cryotubes and stored at –80 ◦C at a biobank in Lund (Sweden), and 
total non-isomer–specific PFHxS, PFOS, and PFOA levels were analyzed 
at the Department of Occupational and Environmental Medicine in Lund 
(Sweden). Serum PFAS concentrations were analyzed as described by Li 
et al. (2018). Briefly, after thawing and vortexing samples, the proteins 
were precipitated using acetonitrile by vigorous shaking for 30 min. The 
aliquots of 25 µL serum were added together with 75 µL of water and 
isotopically labeled internal standards for all compounds. The samples 
were then centrifuged, and 1 µL of the supernatant was analyzed using 
liquid chromatography (LC) (UFLCXR, SHIMADZU Corporation, Kyoto, 
Japan) connected to tandem mass spectrometry (MS/MS) (QTRAP 5500, 
AB Sciex, Foster City, CA, USA). In all batches, chemical blanks and 
three quality control (QC) samples, prepared in-house from serum 
spiked with different PFAS were included. Coefficients of variation of QC 
samples at 100 ng/mL were 6% for PFHxS and PFOS and 8% for PFOA. 
The limits of detection were 0.5 ng/mL for PFHxS and PFOS and 0.4 ng/ 
mL for PFOA. 

2.3. DNA methylation analysis 

The blood samples used for DNA methylation analysis were taken at 
the same time as the samples for PFAS analysis. DNA was extracted from 
the whole blood using Chemagic Maxiprep, (PerkinElmer, Rodgau, 
Germany). DNA quality was evaluated using a NanoDrop spectropho-
tometer (NanoDrop Products, Wilmington, DE), based on the 260 nm/ 
280 nm ratio (all samples had a ratio ~ 1.8 which is generally accepted 
as “pure” for DNA). Next, 500 μg DNA was bisulfite-treated using the EZ 
DNA Methylation kit (Zymo Research, Irvine, CA). DNA samples were 
randomized for distribution in a 96-well analysis plate. The entire 
bisulfite-treated DNA samples were used for the DNA methylation 
analysis. Genome-wide DNA methylation was determined at the Center 
for Translational Genomics (CTG), Lund University, Sweden, using the 
Infinium MethylationEPIC BeadChip (lllumina, San Diego, CA) for the 
analysis of approximately 850,000 specific markers of DNA methylation 
in the genome. All beadchips were from the same batch. Image pro-
cessing, background correction, quality control, filtering, and normali-
zation using the quantile normalization procedure were performed using 
the R package minfi (Fortin et al. 2017). Five samples failed the analyses 
for unknown reasons and data for the corresponding participants was 
excluded. The other (59) samples performed well (the detection p-value 
was below 0.01 for at least > 98% of CpGs). CpGs for which the 
detection p-value was above 0.01 in >20% of samples were removed. 
Probes with common single-nucleotide polymorphisms (according to 
the function dropLociWithSnps in minfi) and probes in the Y chromo-
some were removed. Overall, 831,681 probes were retained and 
analyzed. DNA methylation data were used to determine the proportion 

of different cell types (B cells, CD4+ T cells, CD8+ T cells, granulocytes, 
monocytes, and natural killer cells) from reference datasets for sorted 
samples using the function estimateCellCounts in minfi (Fortin et al. 
2017), as described by Houseman et al. (2012). These proportions were 
later evaluated as potential covariates in the statistical models (Section 
2.5). 

2.4. Epigenetic age acceleration analysis 

The epigenetic age was estimated using the epigenetic “skin and 
blood clock” based on 391 CpGs (Horvath et al. 2018). By regressing the 
estimated epigenetic age to the chronological age, the residual gives 
each person a value for the epigenetic age acceleration. A positive value 
of age acceleration indicates that the tissue ages faster than expected, i. 
e., indicates an accelerating epigenetic clock. 

2.5. Statistical analysis 

Principal component analysis (PCA) was performed to identify the 
technical and biological variables that influenced DNA methylation, 
which then was considered as covariates in linear models. The variables 
included in the PCA were age, BMI, use of antibiotics, slide (i.e., physical 
position in the analysis plate) and fractions of estimated cell counts (B 
cells, CD4+ T cells, CD8+ T cells, granulocytes, monocytes, and natural 
killer cells). The universally applicable singular value decomposition 
was employed for PCA. The PCA was used on DNA methylation values 
expressed as normalized M values. Univariate linear regression model 
analysis was then performed to determine the associations between the 
principal components, and technical and biological variables using the R 
package Swamp (Lauss et al. 2013, data not shown). Variables that were 
significantly associated (p < 0.05) with any of the first four principal 
components were adjusted for in the linear regression models described 
below. These variables were the technical variable “slide” and the esti-
mated fractions of CD4+ T cells, CD8+ T cells, and neutrophils. Since the 
determined neutrophil fractions were strongly correlated with CD4+ T 
cells and CD8+ T cells (rs > 0.6, p < 0.001), the model was only adjusted 
for slide, CD4+ T cells, and CD8+ T cells. 

Differentially methylated positions (DMPs) were evaluated by fitting 
a robust linear regression model to each CpG using the R package limma 
with adjustments as described above. Pair-wise comparisons between 
the three exposure groups were performed using a contrast matrix. The 
group with the lowest exposure was used as reference in all pair-wise 
comparisons. Empirical Bayes smoothing was applied to the standard 
errors. Further, p-values were adjusted for multiple comparisons for all 
CpGs by the Benjamini–Hochberg false discovery rate (FDR) method to 
obtain q-values. Additionally, Bonferroni correction was performed for 
three time’s pair-wise group comparisons, therefore a q-value of 0.050/ 
3 = 0.017 or lower was considered statistically significant. To test linear 
associations, a test of trend was done by performing a model where the 
exposure group was employed as a continuous variable. P-values were 
adjusted for multiple comparisons for all CpGs by the Benjami-
ni–Hochberg FDR method to obtain q-values. A q-value of 0.05 or lower 
was considered statistically significant in the trend test. 

Differentially methylated regions (DMRs) were evaluated using the 
bumphunter function in the R package minfi (Fortin et al. 2017), 
employing Beta-values. DMRs at least two CpGs long were included. 
Family-wise error rate (FWER), as implemented in the bumphunter 
function in minfi, was employed. FWER denotes the probability of 
making one or more false discoveries, or type I errors during multiple- 
hypothesis testing. A FWER-value of 0.017 or lower was considered 
statistically significant (since Bonferroni correction was performed for 
three time’s pair-wise group comparisons). 

The correlation between epigenetic age and chronological age were 
evaluated using Spearman correlation. The differences in epigenetic age 
acceleration between PFAS exposure groups were analyzed using one- 
way analysis of variance (ANOVA) with least significant difference 
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post hoc test using IBM SPSS (Version 25.0; IBM SPSS Statistics for 
Windows, NY). A p-value of 0.05 or lower was considered statistically 
significant. 

2.6. In silico functional analysis 

The software Ingenuity Pathway Analysis (IPA) (Ingenuity systems, 
Redwood City, CA) accesses large databases with detailed and struc-
tured findings derived from thousands of biological, chemical, and 
medical studies (Thomas and Bonchev 2010). Lists of CpGs based on q <
0.05 in the pair-wise comparisons and directions of their associations 
were uploaded into IPA. For the enrichment analyses, we did not use the 
more stringent criterion of employing q-values of 0.017 or lower, which 
was employed in the DMP analyses (Section 2.5) due to a too low 
number of DMPs included. However, we performed additional enrich-
ment analyses with a cut-off of q < 0.017 as a sensitivity analysis in 
addition to the main analyses with a cut-off of q < 0.05. The q-value cut- 
off of 0.017 obtained a too low number of genes that were potentially 
involved in certain canonical pathways, and thus no sufficient confident 
activity predictions across datasets (z-score) in IPA knowledge base 
could be calculated and the canonical pathways showed high p-values. 
Therefore, a criterion of q < 0.05 for being considered a DMP in the in 
silico analyses was used instead, in order to be able to conduct a wider 
analysis for canonical pathways, with more functional directions of the 
canonical pathways, thus strengthening our in silico analyses. 

DMPs with known gene symbols were mapped to the corresponding 
gene objects in the Ingenuity knowledge human database and analyzed 
for “canonical pathways” and “diseases and biological functions” 
(analyzed on 08252020). DMPs for all group comparisons together were 
analyzed as well as DMPs from each group comparison separately. Top 
pathways were identified by canonical pathway analysis based on two 
parameters: (1) ratio of the number of genes in the input list mapped to 
the pathway to the total number of genes mapped to the canonical 
pathway (from the IPA library of canonical pathways); and (2) p-value 
calculated using the Fisher’s exact test and determining the probability 
that the number of genes in the dataset and canonical pathway was 
consistent with the null hypothesis of no association between our list of 
genes and a certain canonical pathway. The overall activation or inhi-
bition state of a canonical pathway was predicted based on a z-score 
algorithm, where a z-score ≥ 1 indicates increased activation and z- 
score ≤ 1 indicates decreased activation. For disease and biological 
function analysis, the p-value was calculated using the right-tailed 
Fisher’s exact test. 

3. Results 

3.1. DMPs in different PFAS exposure group comparisons 

We first investigated whether PFAS exposure is associated with dif-
ferential methylation of specific positions in the genome. We used 
beadchips to analyze methylation patterns in whole-blood DNA isolated 
from individuals from low, medium, and high PFAS exposure groups. In 
the pair-wise comparisons, we identified 96 statistically significant 
DMPs (q < 0.017), comparing high and low exposure group samples; 11 
DMPs, comparing high and medium exposure group samples; and 12 
DMPs, comparing medium and low exposure group samples. Of these, 
117 DMPs were unique. A Venn diagram depicting the number of DMPs 
per group comparison and overlapping DMPs between group compari-
sons are shown in Supplemental Fig. S1. We noted that hypomethylation 
was more common than hypermethylation in the high vs. low exposure 
group comparison as well as in the trend test (61% of DMPs were 
hypomethylated for both analyses). No clear hyper or hypomethylation 
could be seen among DMPs in the other exposure group comparisons, 
although the number of DMPs were fairly low in those two exposure 
group comparisons. In the trend test, we identified 248 DMPs with 
statistically significant trends with increasing exposures (q < 0.05), i.e. 

constantly hyper- or hypomethylated with increased PFAS exposure. 
The statistically significant DMPs in each pair-wise comparison of 

exposure groups (top 10 DMPs for high vs. low exposure group com-
parison), as well as the top 10 DMPs in the trend test, are listed in 
Table 2. All statistically significant DMPs for high vs. low exposure 
group comparison are shown in Supplemental Table S1. Volcano plots 
showing the statistical significance (for DMPs with q < 0.017) versus 
magnitude of change (2^logFC) of the DMPs in the different exposure 
group comparisons are shown in Fig. 1. Three DMPs were statistically 
significant in more than one exposure group comparison: matrix met-
allopeptidase 17 gene (MMP17), xin actin binding repeat containing 2 
(XIRP2) and MET proto-oncogene, receptor tyrosine kinase (MET). 
MMP17 was statistically significant in high vs. low and medium vs. low 
exposure group comparisons. It showed the same magnitude of negative 
association with PFAS exposure in both comparisons, i.e. approximately 
18% hypomethylation with increased PFAS exposure, and thus MMP17 
did not show a significant trend along with increased PFAS levels (high 
vs. medium exposure group comparison: 2^logFC = 1.0, q = 1.0, trend 
test q = 0.18, Table 2). XIRP2 was statistically significant in high vs. low 
exposure and medium vs. low exposure group comparisons and showed 
approximately 16% hypermethylation with increased PFAS exposure in 
both group comparisons (Table 2, high vs low exposure group com-
parison: 2^logFC = 1.16, q = 0.010) as well as a significant trend (q =
0.046). For MET, the directions of associations in different exposure 
group comparisons were different. Namely, MET was hypomethylated 
when comparing high and medium exposure groups, but hyper-
methylated when comparing medium and low exposure groups (trend 
test q = 1.0). Additionally, one gene, PHD finger protein 21B gene 
(PHF21B), which was statistically significant in the high vs. low expo-
sure group comparison, also was of borderline significance (q = 0.026) 
in the high vs. medium exposure group comparison, and showed 
consistent hypomethylation with increasing PFAS exposure (trend test q 
= 0.024). 

The results of the trend test showed similar DMPs as the analysis for 
the high vs low exposure group comparison did. Of the 248 DMPs in the 
trend test, 80 (32%) had a q-value below 0.017, 217 (87.5%) had a q- 
value below 0.05, and 246 (99%) had a q-value below 0.1 in the high vs 
low exposure group comparison. The three top DMPs for the trend test 
were all among top-four in the high vs low exposure group comparison, 
situated in an intergenic region in chromosome 2 (cg03625947), 
protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) and 
Rho GTPase activating protein 15 (ARHGAP15). 

These observations indicated that the effect of PFAS exposure on 
DNA methylation might be gene- and dose-dependent. 

3.2. DMRs in different PFAS exposure groups comparisons 

We next investigated the associations between PFAS exposure and 
DMRs using the bumphunting method. We identified one DMR that was 
close to statistically significant, situated in the gene for S100 calcium 
binding protein A13 (S100A13), in the high vs. low exposure group 
comparison (FWER = 0.020). This DMR contained 15 CpGs and was 
negatively associated with PFAS exposure. This DMR was also among 
the top five DMRs in the high vs. medium exposure group comparison 
(FWER = 0.32) where it was negatively associated with PFAS exposure. 

3.3. In silico functional analysis 

We conducted in silico functional analyses to identify potential bio-
logical functions associated with the genes that harbored DMPs based on 
a q-value < 0.05 (N = 566 DMPs, of which 411 were annotated to known 
gene symbols, Supplemental Fig. S1). Top canonical pathways when 
considering all DMPs in each exposure group comparison together are 
shown in Fig. 2. Estrogen Receptor Signaling and cardiac hypertrophy 
signaling were the top significant canonical pathways (based on p-value 
from Fisher’s exact test). Other top categories of interest for PFAS, based 
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Table 2 
Differently methylated positions (ranked by q-value) determined in different exposure group comparisons and in the trend test.  

CpG Chr Positiona Gene Gene name 2^logFC (95% 
CI)b 

q-value Betac Trend testd β1 (95% CI) 
and q-value 

High vs. low exposure 
groupe         

cg03625947 2 11,983,898 NAf  0.80 (0.75, 
0.84) 

<0.001 0.38 − 0.17 (− 0.21, − 0.12), 
0.00005 

cg10469359 12 132,315,227 MMP17 Matrix metallopeptidase 17 0.81 (0.77, 
0.86) 

<0.001 0.04 − 0.12 (− 0.19, − 0.05), 
0.18 

cg26779265 6 150,082,547 PCMT1 Protein-L-isoaspartate (D-aspartate) O- 
methyltransferase 

0.82 (0.77, 
0.86) 

<0.001 0.25 − 0.15 (− 0.19, − 0.10), 
0.002 

cg06008724 22 45,403,507 PHF21B PHD finger protein 21B 0.49 (0.4, 
0.61) 

0.002 0.07 − 0.50 (− 0.69, − 0.31), 
0.024 

cg19925435 2 144,440,441 ARHGAP15 Rho GTPase activating protein 15 0.84 (0.8, 
0.88) 

0.002 0.24 − 0.13 (− 0.16, − 0.09), 
0.002 

cg23351738 6 31,589,926 SNORA38 Small nucleolar RNA, H/ACA box 38 1.38 (1.25, 
1.52) 

0.002 0.67 0.22 (0.13, 0.31), 0.053 

cg20584474 6 1,515,696 NA  1.25 (1.17, 
1.34) 

0.002 0.88 0.16 (0.10, 0.22), 0.013 

cg15998406 19 1,287,832 EFNA2 Ephrin A2 0.62 (0.53, 
0.72) 

0.002 0.25 − 0.33 (− 0.46, − 0.21), 
0.024 

cg24655066 2 242,449,352 STK25 Serine/threonine kinase 25 0.79 (0.74, 
0.85) 

0.002 0.90 − 0.17 (− 0.22, − 0.12), 
0.003 

cg01565037 10 74,715,059 PLA2G12B Phospholipase A2 group XIIB 0.87 (0.84, 
0.91) 

0.002 0.81 − 0.10 (− 0.13, − 0.06), 
0.012 

High vs. medium 
exposure group         

cg00613827 1 207,845,937 CR1L Complement C3b/C4b receptor 1 like 1.85 (1.54, 
2.23) 

0.009 0.09 0.14 (0.004, 0.28), 0.52 

cg27529004 2 237,490,808 ACKR3 Atypical chemokine receptor 3 0.87 (0.84, 
0.91) 

0.009 0.85 − 0.07 (− 0.11, − 0.03), 
0.17 

cg01577980 7 116,412,971 MET MET proto-oncogene, receptor tyrosine 
kinase 

0.78 (0.72, 
0.84) 

0.012 0.88 − 0.0003 (− 0.09, 0.09), 
1.00 

cg02328102 2 187,988,552 NA  0.82 (0.77, 
0.87) 

0.012 0.77 − 0.05 (− 0.11, 0.01), 0.61 

cg10155628 2 110,902,558 NPHP1 Nephrocystin 1 1.17 (1.11, 
1.23) 

0.012 0.76 0.10 (0.05, 0.15), 0.12 

cg03686366 16 84,733,035 USP10 Ubiquitin-specific peptidase 10 0.84 (0.79, 
0.89) 

0.016 0.13 − 0.06 (− 0.12, − 0.0003), 
0.50 

cg13236550 2 11,450,786 ROCK2 Rho-associated coiled-coil containing 
protein kinase 2 

1.19 (1.12, 
1.26) 

0.016 0.87 0.07 (0.01, 0.12), 0.39 

cg13425515 18 2,571,394 NDC80 NDC80, kinetochore complex 
component 

1.19 (1.12, 
1.26) 

0.016 0.05 0.01 (− 0.06, 0.08), 0.97 

cg19805775 7 82,164,117 NA  0.81 (0.75, 
0.87) 

0.016 0.63 − 0.01 (− 0.09, 0.06), 0.95 

cg09973148 2 37,899,355 CDC42EP3 CDC42 effector protein 3 1.27 (1.17, 
1.37) 

0.016 0.05 0.14 (0.04, 0.25), 0.34 

cg16620537 5 140,306,054 PCDHA7 protocadherin alpha 7 0.86 (0.82, 
0.91) 

0.017 0.04 − 0.05 (− 0.11, − 0.004), 
0.49 

Medium vs. low 
exposure group         

cg03314875 7 5,228,779 WIPI2 WD repeat domain, phosphoinositide 
interacting 2 

1.19 (1.13, 
1.26) 

0.004 0.83 0.08 (0.02, 0.13), 0.33 

cg08464140 7 5,197,343 NA  0.83 (0.79, 
0.88) 

0.004 0.70 − 0.06 (− 0.12, − 0.01), 
0.48 

cg10469359 12 132,315,227 MMP17 Matrix metallopeptidase 17 0.83 (0.78, 
0.88) 

0.004 0.04 − 0.12 (− 0.19, − 0.05), 
0.18 

cg13736369 3 46,775,569 NA  0.86 (0.83, 
0.9) 

0.004 0.90 − 0.05 (− 0.10, − 0.0002), 
0.54 

cg24655422 14 95,429,934 NA  0.88 (0.85, 
0.92) 

0.011 0.62 − 0.04 (− 0.08, 0.01), 0.63 

cg01577980 7 116,412,971 MET MET proto-oncogene, receptor tyrosine 
kinase 

1.27 (1.17, 
1.37) 

0.013 0.88 − 0.0003 (− 0.09, 0.09), 
1.00 

cg02631651 2 89,157,929 NA  0.80 (0.74, 
0.86) 

0.013 0.16 − 0.11 (− 0.18, − 0.04), 
0.27 

cg03350491 20 44,987,255 SLC35C2 Solute carrier family 35 member C2 0.88 (0.85, 
0.92) 

0.013 0.21 − 0.05 (− 0.10, − 0.01), 
0.37 

cg15575165 9 35,079,989 FANCG Fanconi anemia complementation 
group G 

0.68 (0.6, 
0.78) 

0.013 0.08 − 0.07 (− 0.19, 0.05), 0.77 

cg25025310 1 37,091,601 NA  1.18 (1.12, 
1.24) 

0.013 0.84 0.04 (− 0.01, 0.09), 0.61 

cg20362335 1 205,028,130 CNTN2 contactin 2 1.14 (1.11, 
1.19) 

0.014 0.74 0.074 (0.028–0.12), 0.22 

cg18495166 2 168,103,996 XIRP2 xin actin binding repeat containing 2 1.17 (1.11, 
1.23) 

0.017 0.69 0.11 (0.06, 0.15), 0.046 

Trend test         

(continued on next page) 
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on the literature, were Peroxisome proliferator-activated receptor 
alpha/Retinoid X receptor alpha (PPARα/RXRα) activation and telo-
merase signaling. Canonical pathway analyses for the three separate 
exposure group comparisons are shown in Supplemental Fig. S2. How-
ever, possibly due to the smaller number of DMPs included in the low vs. 
medium and high vs. medium exposure group comparisons, z-scores 
could not be calculated, meaning that no pattern of specific direction 
could be given for any pathway. In addition, there were few significant 
hits and the p-values were considerably weaker than in the analyses for 
the DMPs from the low vs. high exposure group comparison. For these 
two analyses, the HOTAIR regulatory pathway was the top hit. For the 
high vs. low exposure group comparison, z-scores could be calculated, 
and data were thus filtered for z-score, which was not possible to do for 
the other group comparisons. The top hits for the high vs. low exposure 
group comparison were similar to the top hits of the analysis for all 
DMPs. 

Top diseases and biological functions when considering all DMPs in 
each exposure group comparison together are shown in Fig. 3. Cancer, 
organismal injury and abnormalities, gastrointestinal disease, endocrine 
system disorders, and reproductive system disease were among the top 
hits. Top diseases and biological functions for the three separate group 
comparisons are shown in Supplemental Fig. S3. Cancer, organismal 
injury and abnormalities, and gastrointestinal disease were among the 
top hits all three group comparisons. 

We also performed a sensitivity analysis by including only DMPs 
based on q < 0.017 (data not shown), but then the z-scores for canonical 
pathway were not successfully calculated, neither for when considering 
exposure groups comparisons separately, nor for when considering all 
DMPs in each exposure group comparison together, meaning that no 
pattern of specific direction of could be given for any pathway. The 
reason for this may be a smaller number of genes included as well as a 
large shift in values of the most significant p-values in the canonical 
pathway analyses. For example, when including CpGs with q-values 
below 0.05 from all group comparisons, we observed the strongest sig-
nificance of enriched canonical pathways in the range from –log(p- 
value) < 4.52 with identified z-scores, while when including CpGs with 
q-values below 0.017 from all group comparisons, we observed the 

strongest association of an enriched canonical pathway in the range 
from –log(p-value) < 1.98 without any identified z-score (2.2-times 
stronger and reliable effects among the dataset with q < 0.05). Thus, we 
used q < 0.05 as cutoff in the in silico functional analysis. 

3.4. PFAS exposure and epigenetic age acceleration 

We investigated whether PFAS exposure is associated with epige-
netic age acceleration. We noted a high correlation between the epige-
netic age and chronological age in the study participants (rs = 0.94, p <
0.001). However, we did not observe statistically significant differences 
in epigenetic age acceleration between the different exposure groups (p 
= 0.43, ANOVA; p > 0.22 for all post-hoc comparisons; Supplemental 
Table S2). Therefore, our results do not provide evidence supporting an 
association between PFAS exposure and epigenetic age acceleration. 

4. Discussion 

In this pilot study, we investigated the association between PFAS 
exposure and DNA methylation in women with a PFAS exposure profile 
dominated by PFOS and PFHxS from drinking water. We found that 
PFAS exposure was associated with methylation of specific sites and 
regions. We noted that hypomethylation was more common than 
hypermethylation in the high vs. low exposure group comparison. In 
silico functional analyses suggested that genes with altered DNA 
methylation were related to pathways such as estrogen receptor 
signaling, cardiac hypertrophy signaling, telomerase signaling and 
PPARα/RXRα activation as well as diseases and biological functions such 
as cancer, endocrine system disorders and reproductive system disease. 
Contrary to our hypothesis, we did not note any association between 
PFAS exposure and epigenetic age acceleration. These observations 
suggest that DNA methylation may be a mechanism of PFAS toxicity, 
although future studies are needed to determine if PFAS-induced 
changes in DNA methylation mediate the association between PFAS 
exposure and adverse health outcomes. 

We detected statistically significant DMPs (among these, MMP17, 
XIRP2 and PHF21B were top hits in more than one exposure group 

Table 2 (continued ) 

CpG Chr Positiona Gene Gene name 2^logFC (95% 
CI)b 

q-value Betac Trend testd β1 (95% CI) 
and q-value 

cg03625947 2 11,983,898 NA     − 0.17 (− 0.21, − 0.12), 
0.00005 

cg26779265 6 150,082,547 PCMT1 Protein-L-isoaspartate (D-aspartate) O- 
methyltransferase    

− 0.15 (− 0.19, − 0.10), 
0.002 

cg19925435 2 144,440,441 ARHGAP15 Rho GTPase activating protein 15    − 0.13 (− 0.16, − 0.09), 
0.002 

cg24655066 2 242,449,352 STK25 Serine/threonine kinase 25    − 0.17 (− 0.22, − 0.12), 
0.003 

cg02138218 1 175,035,502 TNN tenascin N    (0.09 (0.06, 0.12), 0.003 
cg18148659 15 65,953,468 DENND4A DENN domain containing 4A    − 0.11 (− 0.14, − 0.07), 

0.003 
cg26219179 2 182,011,089 LOC101927156 long intergenic non-protein coding RNA 

1934    
0.08 (0.06, 0.11), 0.003 

cg16694239 1 160,179,710 PEA15 proliferation and apoptosis adaptor 
protein 15    

0.09 (0.06, 0.12), 0.003 

cg09157632 15 55,627,493 PIGB phosphatidylinositol glycan anchor 
biosynthesis class B    

− 0.09 (− 0.12, − 0.06), 
0.004 

cg06978145 20 30,754,792 TM9SF4 transmembrane 9 superfamily member 
4    

− 0.13 (− 0.17, − 0.09), 
0.006 

Abbreviations: Chr, chromosome; CI, confidence interval; q-value, False discovery rate (FDR)-adjusted p-value using the Benjamini-Hochberg method; FC, fold change. 
a Position according to the Bioconductor package IlluminaHumanMethylationEPICanno.ilm10b4.hg19. 
b 2^logFC, binary logarithmic fold change. LogFC denotes β1 from the following robust regression model: M− value = β1 × exposure group comparison + β2 × slide +

β3 × estimated fraction CD4+ T cells + β4 × estimated fraction CD8+ T cells. 
c Average methylation state, expressed as Beta-value, for all study participants, ranging from 0 to 1 (1 means fully methylated). 
d Regression coefficients (β1), 95% CI and q-values from trend test. β1 from the following robust regression model: M− value = β1 × exposure group (as a continuous 

variable) + β2 × slide + β3 × estimated fraction CD4 + T cells + β4 × estimated fraction CD8 + T cells. 
e The exposure group denoted last is the reference group. 
f NA, not annotated, i.e., the CpG is not present in any known gene. 
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Fig. 1. Volcano plots showing the q-value (for DMPs showing statistical significance, q < 0.017) versus magnitude of change (2^logFC) for the different exposure 
group comparisons. (A) High vs. low exposure group comparison; (B) high vs. medium exposure group comparison; and (C) medium vs. low exposure group 
comparison. The red line at the x-axis denotes the statistical significance (-log10(0.017)) and the red line at the y-axis denotes a 2^logFC of 1 (no change at either 
direction). For B) and C) each dot is labelled with corresponding CpG ID and gene name (the gene name is replaced with NA, when the CpG is not annotated to a 
gene). For A) each dot is labelled with corresponding gene name only, but when the CpG is not annotated to a gene, CpG ID is added instead. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Top canonical pathways determined by the Ingenuity Pathway Analysis (IPA) of genes with differently methylated positions (based on q < 0.050) in all group 
comparisons. X-axis, canonical pathways; primary y-axis (left, bar chart), the logarithm of p-value from the right-tailed Fisher’s exact test; secondary y-axis (right, 
line chart), ratio. The red and blue bars indicate predicted pathway activation or inhibition, respectively, calculated based on the z-score. The dashed line denoted 
“Threshold” indicates the –log10 for the significance p-value of 0.05. The ratio describes the number of genes from the list generated in the course of DMP analysis 
that map to the pathway to the total number of genes that map to the pathway (from the IPA library of canonical pathways). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Top diseases and biological functions revealed by the Ingenuity Pathway Analysis of genes with differently methylated positions (based on q < 0.050) in all 
group comparisons. X-axis, statistically significant diseases and biological functions based on the p-value of right-tailed Fisher’s exact test, reflecting the likelihood 
that the association between a set of genes in the dataset and a related biological function is significant. Y-axis, logarithm of Fisher’s exact test p-value. The dashed 
line denoted “Threshold” indicates the –log10 for the significance p-value of 0.05. 
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comparison and with the same directions in both group comparisons) 
and one near-statistically significant DMR (S100A13) in exposure group 
comparisons. MMP17 was associated with PFAS exposure in more than 
one exposure group comparison and was hypomethylated with 
increasing PFAS exposure. MMP17 is involved in the breakdown of 
extracellular matrix during normal physiological processes, such as 
embryonic development, reproduction, and tissue remodeling, as well as 
in disease processes, such as arthritis and metastasis (NCBI gene 
[accessed 3 June 2020], https://www.ncbi.nlm.nih.gov/gene/). XIRP2 
was hypermethylated with increasing PFAS exposure. It is strongly 
expressed in heart and has been associated with e.g. cardiac 
morphology, function, and disease (NCBI gene [accessed 3 June 2020]) 
(Wang et al. 2014). PHF21B, which appeared among top DMPs in two 
exposure group comparisons, is strongly expressed in the brain, and has 
been associated with major depressive disorder, modulation of stress 
response, and cancer (NCBI gene [accessed 3 June 2020]). 

The strongest associations between DNA methylation and PFAS 
exposure, according to q-value, were seen in the high vs. low exposure 
group comparison. The top DMPs in the high vs. low exposure group 
comparison were similar as the top DMPs in the trend test. Two top 
DMPs that were annotated to genes in both these analyses were PCMT1 
and ARHGAP15. PCMT1 catalyzes the methyl esterification of L-iso-
aspartyl and D-aspartyl residues in peptides and proteins that result from 
spontaneous decomposition of normal L-aspartyl and L-asparaginyl 
residues. It plays a role in the repair and/or degradation of damaged 
proteins (NCBI gene [accessed 21 August 2020]). ARHGAP15 is a RHO 
GTPase-activating protein (Seoh et al., 2003), which has been associated 
with different types of cancers, such as breast cancer and colorectal 
cancer (Pan et al. 2018, Takagi et al. 2018). 

The DMR analysis revealed that S100A13 was near-statistically 
significantly negatively associated with PFAS in the high vs. low expo-
sure group comparison. S100 proteins are localized in the cytoplasm and 
nucleus in many cells and are involved in the regulation of several 
cellular processes, such as cell cycle progression and differentiation (Cao 
et al. 2010). The S100A13 gene is widely expressed in various tissue 
types, and highly expressed in the thyroid gland (Ridinger et al. 2000). 
S100A13 has been suggested to influence the development and metas-
tasis of cancer, and previous studies have shown that S100A13 in-
fluences the prognosis of several different types of cancers, such as 
ovarian cancer (Tian et al. 2017), breast cancer (Chen et al. 2017) and 
thyroid cancer (Zhong et al. 2016). In the current study, DMPs were 
mainly identified while comparing the high exposure group with the low 
exposure group. This indicates that the threshold exposure for attaining 
an epigenetic effect may be fairly high. We saw a similar pattern in a 
previous study on the effect of PFAS and microRNA expression, 
including women from the same study population, in which alterations 
in serum microRNA levels were mainly seen when comparing the low 
and high exposure group samples (Xu et al. 2020). However, in the 
current study, samples of relatively few participants from each exposure 
group were analyzed, and the study may be underpowered. 

None of the identified top DMPs or DMRs were located in genes that 
have previously been associated with DNA methylation upon PFAS 
exposure among newborns or men (Kingsley et al. 2017; Leung et al. 
2018; Miura et al. 2018; van den Dungen et al. 2017). This may partly be 
explained by sex differences (El-Maarri et al. 2007; Liu et al. 2010) or 
that DNA methylation differ between newborns and adults (Day et al. 
2013, Sikdar et al. 2019). Additionally, the serum PFAS levels in the 
present study, especially PFOS and PFHxS, were much higher than in the 
other studies (e.g. the median PFOS in the high exposure group was 230 
ng/mL in the present study, compared to less than 10 ng/mL in the 
above studies). Possibly, the inconsistencies between studies may indi-
cate a dose-dependent pattern of differential methylation. 

In silico functional analysis suggested that the top canonical path-
ways for all DMPs (based on a cut-off of q < 0.05) were estrogen receptor 
signaling and cardiac hypertrophy signaling. Estrogen receptor 
signaling was also a top canonical pathway when comparing DMPs in 

the low vs. high exposure group comparison. Given that PFAS are known 
endocrine disrupting chemicals, the interaction of PFAS with the es-
trogen and/or androgen receptor could also be the underlying mecha-
nism of toxicity (Kjeldsen and Bonefeld-Jorgensen, 2013; Bonefeld- 
Jørgensen et al., 2014). Rosen et al. (2017) have suggested that some 
genes in PFAS-treated animals were probably up- or down-regulated due 
to suppression of transactivation of the constitutive activated receptor, 
estrogen receptor alpha, and/or PPARγ. Associations between PFOS or 
PFOA exposure and cardiovascular diseases have been noted in some 
studies (Donat-Vargas et al. 2019; Huang et al. 2018; Shankar et al. 
2012), but the epidemiological evidence is hitherto considered weak 
(EFSA 2018, EFSA 2020). 

The canonical pathway analysis also suggested PPARα/RXRα acti-
vation as an enriched pathway. Peroxisome proliferator-activated re-
ceptor alpha (PPARα) forms heterodimers with Retinoid X receptor 
alpha (RXRα) and modulates the function of many target genes (Qi et al. 
2000). PPARα is activated by endogenous ligands and evidence from in 
vivo and in vitro studies show that many PFAS act as ligands of PPARα in 
rodents and in human cells (Rosen et al. 2008; Vanden Heuvel et al. 
2006). In our previous study, involving the same cohort as that analyzed 
in the current study, we identified PPARα as a possible target gene of 
microRNAs downregulated in serum with increasing PFAS exposure (Xu 
et al. 2020). PPARα is highly expressed in the liver and plays a promi-
nent role in lipid regulation (Reddy & Hashimoto. 2001; Kersten and 
Stienstra. 2017). Given the fact that serum PFOS and PFOA have been 
associated with lipid metabolism (Sakr et al. 2007; Steenland et al. 
2009), the capacity of PFAS to transactivate PPARα may be an important 
intermediate step through regulating lipid metabolism in humans. 

Another of the top canonical pathways detected by the in silico 
analysis was telomerase signaling. Telomerase is the enzyme responsible 
for maintenance of telomere length. Telomere length is a marker of 
cellular aging, since telomeres are shortened with every cell division, 
eventually reaching a length that triggers cell senescence. Studies 
regarding PFAS exposure and leukocyte telomere length have given 
varied results; PFOS exposure was positively associated with telomere 
length in leukocytes among adults (Huang et al. 2019), negatively 
associated with telomere length in leukocytes among female newborns 
(no association in male newborns) (Liu et al., 2018a, 2018b), and no 
association was observed in leukocytes in a longitudinal study of 
childbearing women (Zota et al. 2018). 

In silico analysis also suggested enrichment of genes associated with 
health outcomes, such as cancer, gastrointestinal disease, endocrine 
system disorders, and reproductive system disease. PFAS are endocrine 
disruptors, and epidemiological studies have reported associations be-
tween PFAS exposure and cancer incidence (Barry et al. 2013; Mancini 
et al. 2020), and changes in thyroid function in pregnant women (Bal-
lesteros et al. 2017; Berg et al. 2015). However, the existing evidence 
from epidemiological studies is insufficient for making conclusions 
about PFAS carcinogenicity or toxicity in the endocrine system or 
reproductive system (EFSA 2018, EFSA 2020). 

We did not find any association between PFAS exposure and epige-
netic age acceleration in the current study. It could be due to the fact that 
epigenetic age was strongly correlated with chronological age, and thus, 
provided no additional information beyond the latter. Additionally, 
menopausal status has been suggested to be associated with both PFAS 
serum levels (because of reduced PFAS loss via menses) (Dhingra et al. 
2017; Ding et al. 2020; Ruark et al. 2017) and biological aging (because 
of estrogen deficiency) (Wilkinson and Hardman 2017). However, most 
likely, the menopausal status is not a confounder in the current study 
since the mean age for menopause in Sweden is approximately 50 years 
(Rödström et al. 2005) and the current study involved women repre-
senting a narrow age span of 20–47 years. Interestingly, one of the top 
canonical pathways detected by the in silico analysis, telomerase 
signaling (as mentioned above), is tightly connected to telomere length, 
another indicator of biological aging. It may therefore be plausible that 
PFAS exposure influence aging by affecting telomere length. However, 

Y. Xu et al.                                                                                                                                                                                                                                       

https://www.ncbi.nlm.nih.gov/gene/


Environment International 145 (2020) 106148

10

as discussed above, previous studies regarding PFAS exposure and 
leukocyte telomere length have given varied results and further studies 
are needed to evaluate how PFAS exposure is related to telomere length. 

This is a pilot study and thus limited by the small study size. How-
ever, its strength is a wide PFAS exposure range of the analyzed groups, 
ranging from the general population background levels to very high 
levels, especially for PFOS and PFHxS. For instance, the median levels of 
PFOS in the medium and high exposure group were more than ten-fold 
or even higher than that reported in other populations who also exposed 
through drinking water, mainly originated from industrial emissions 
(Frisbee et al. 2009; Hölzer et al. 2008; Ingelido et al. 2018). Considering 
the relatively small sample size in this with healthy general population, 
we did not aim to evaluate the possible associations between PFAS 
exposure, DNA methylation, and further phenotypic outcomes in vivo. 
Another limitation of the current study is the assessment of DNA 
methylation in the blood instead of specific tissues targeted by PFAS 
(such as the liver). Future studies with larger sample sizes are needed to 
validate the findings and to further investigate whether PFAS-associated 
changes in DNA methylation underlie potential phenotypic changes 
and/or adverse health effects of PFAS. 

Collectively, our pilot study in a female cohort indicates that PFAS 
exposure is associated with DNA methylation changes at specific sites, 
and modulation of DNA methylation may thus be a suggestive mecha-
nism of PFAS toxicity. Further studies coupling the PFAS-associated 
changes in DNA methylation to phenotypical effects of PFAS are 
needed to evaluate if DNA methylation as a mechanism of toxicity or if it 
is merely an effect of exposure. This study has also highlighted potential 
associations between PFAS exposure and methylation changes of genes 
associated with pathways such as estrogen receptor signaling, cardiac 
hypertrophy signaling, telomerase signaling and PPARα/RXRα activa-
tion pathways. 
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