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Abstract

Accurately estimating the effective reproduction number (Rt) of a circulating pathogen is a

fundamental challenge in the study of infectious disease. The fields of epidemiology and

pathogen phylodynamics both share this goal, but to date, methodologies and data

employed by each remain largely distinct. Here we present EpiFusion: a joint approach that

can be used to harness the complementary strengths of each field to improve estimation of

outbreak dynamics for large and poorly sampled epidemics, such as arboviral or respiratory

virus outbreaks, and validate it for retrospective analysis. We propose a model of Rt that

estimates outbreak trajectories conditional upon both phylodynamic (time-scaled trees esti-

mated from genetic sequences) and epidemiological (case incidence) data. We simulate

stochastic outbreak trajectories that are weighted according to epidemiological and phylody-

namic observation models and fit using particle Markov Chain Monte Carlo. To assess per-

formance, we test EpiFusion on simulated outbreaks in which transmission and/or

surveillance rapidly changes and find that using EpiFusion to combine epidemiological and

phylodynamic data maintains accuracy and increases certainty in trajectory and Rt esti-

mates, compared to when each data type is used alone. We benchmark EpiFusion’s perfor-

mance against existing methods to estimate Rt and demonstrate advances in speed and

accuracy. Importantly, our approach scales efficiently with dataset size. Finally, we apply

our model to estimate Rt during the 2014 Ebola outbreak in Sierra Leone. EpiFusion is

designed to accommodate future extensions that will improve its utility, such as explicitly

modelling population structure, accommodations for phylogenetic uncertainty, and the abil-

ity to weight the contributions of genomic or case incidence to the inference.
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Author summary

Understanding infectious disease spread is fundamental to protecting public health, but

can be challenging as disease spread is a phenomenon that cannot be directly observed.

So, epidemiologists use data in conjunction with mathematical models to estimate disease

dynamics. Often, combinations of different models and data can be used to answer the

same questions–for example ‘traditional’ epidemiology commonly uses case incidence

data (the number of people who have tested positive for a disease during a certain time

period) whereas phylodynamic models use pathogen genomic sequence data and our

knowledge of the way their genomes evolve to model disease population dynamics. Each

of these approaches have strengths and limitations, and data of each type can be sparse or

biased, particularly during rapidly developing outbreaks or in countries with poor patho-

gen surveillance. An increasing number of approaches attempt to fix this problem by

incorporating diverse concepts and data types together in their models. We aim to con-

tribute to this movement by introducing EpiFusion, a modelling framework that improves

the efficiency and precision at which we can monitor important changes in pathogen

transmission (specifically, in the effective reproduction number). EpiFusion uses particle

filtering to simulate epidemic trajectories over time and weight their likelihood according

to both case incidence data and a phylogenetic tree using separate observation models,

resulting in the inference of trajectories in agreement with both sets of data. Improve-

ments in our ability to accurately and confidently model pathogen spread help us to

respond to infectious disease outbreaks and improve public health.

Introduction

The effective reproduction number (Rt) is a helpful epidemiological parameter for characteris-

ing disease transmission. Rt refers to the time-varying average number of secondary infections

resulting from a primary infected individual and can vary due to factors such as population

immunity, human behaviour, or changes in pathogen infectiousness. Retrospective modelling

of how Rt varies over the course of an outbreak allows for evaluation of policy and intervention

efficacy [1–4], and quantifying how different factors contribute to Rt can inform outbreak pre-

paredness planning by providing the basis for modelling spread under different scenarios [5].

Classical epidemiology [3] and phylodynamics [4] often aim to infer Rt but use distinct meth-

odologies and data to achieve this goal. Both fields face similar but non-overlapping obstacles

in terms of data availability, reliability, and bias [6–9]. We investigate an approach to estimate

Rt that reduces this uncertainty through linking principles of phylodynamic and epidemiologi-

cal modelling using particle Markov Chain Monte Carlo (pMCMC) [10] which is scalable to

large datasets.

Phylodynamic approaches allow estimation of the genealogical history of genome-

sequenced sampled viruses and can therefore inform about disease spread that occurred prior

to the first identified case. Phylogenetic trees frequently capture unusual population dynamics

[11] that are not normally detectable using case data alone, such as long-range virus lineage

movements, importations or growth in the dominance of specific variants. However, a central

challenge for phylodynamics is that genomic data sampling density can be low or spatiotempo-

rally biased relative to infection occurrence [12]. Furthermore, Rt has thus far been commonly

estimated as a piecewise constant function that rarely has sufficient temporal resolution to be

useful for public health decision making [13], with some exceptions [14].
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Conversely, epidemiological models of Rt use case data that are often more spatiotemporally

consistently sampled than genomic data, and usually have greater flexibility than phylody-

namic models to accommodate additional information such as climatic or human movement

data [15–18]. However, case data can be easily biased by changes in case definitions or report-

ing practices [7,19] which can cause artificial fluctuations in Rt estimates. Disease dynamics

can only be examined once individuals with infections are detected, which may not occur until

long after a pathogen starts to spread (whereas phylogenetic tree data can be used to recon-

struct past pathogen dynamics prior to the sampling date of the earliest genome). Further-

more, viruses that can cause similar clinical symptoms (such as Zika, chikungunya and dengue

viruses [20,21]) can be easily misreported where specific molecular or serological testing is not

conducted. This can result in the inferred Rt capturing the average population dynamics of

multiple cocirculating pathogens, which is then less useful to inform disease-specific control

measures such as vaccination programs [22–24].

As a result of these limitations and strengths, phylodynamic and epidemiological

approaches may vary in their effectiveness at different stages of an outbreak [12]. Approaches

that combine principles and data from both phylodynamic and epidemiological models could

improve our ability to estimate Rt, by taking advantage of the complementary strengths of

each field.

Early attempts to use both phylodynamics and epidemiology to estimate disease dynamics

typically employed a ‘corroborate or contradict’ strategy, where methods and data native to

each field were used separately to address the same research question [25–27]. Alternatively,

methods from each field have sometimes been used to address different research questions in

the same study [28]. Recently, attempts have been made to develop joint inference approaches

that use both phylodynamic (dated genomic sequence) and epidemiological (case incidence)

data as input to a single model [29–34]. Many of these attempts have built on the principle of

the particle filter [10]. Particle filtering is a sequential Monte Carlo approach that aims to

approximate the posterior distribution of a state variable in a stochastic process (in this case,

an epidemic trajectory). Particles move through a hidden Markov Model (the process model)

and are weighted by their likelihood according to the data (the observation model). They can

then be resampled according to their weights, resulting in the propagation of particles with

estimated states consistent with the data under an observation model. The use of particle filter-

ing is arguably the most straight-forward method to directly link epidemiological and phylody-

namic models, as the resampling of particles through time allows the genealogical and

epidemiological data to jointly influence the particle states during the state-simulation process.

Particle filtering is well established for use with epidemiological case incidence data, and

there are many existing implementations of particle filtering in epidemiological modelling

[35,36]. More recently, appropriate particle filtering approaches have been developed that can

use genealogies obtained from sequence data. Rasmussen et. al first proposed a joint inference

approach consisting of a common process model and separate observation models for a gene-

alogy and case incidence data [30]. This methodology was later extended to allow fitting of epi-

demiological models that incorporate simple population structure [31], and was also used as

the basis of an approach for inferring transmission heterogeneity [37]. These models were all

reliant on coalescent-based phylodynamic methods and assumed independence between case

incidence and events in the phylogenetic tree [38]. In 2019 Vaughan et. al proposed a method

‘EpiInf’, that enable the use of birth-death phylodynamic methods within a particle filter to

infer epidemic trajectories through time [32]. EpiInf derived a phylodynamic likelihood that

explicitly models case incidence data as ‘unsequenced observations’ within the phylodynamic

observation model as ‘events’ on the tree, thus overcoming the independence assumption

made in earlier approaches. However, this latter approach quickly becomes intractable as the

PLOS COMPUTATIONAL BIOLOGY Joint epidemiological and phylodynamic inference of epidemic trajectories

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012528 November 11, 2024 3 / 28

https://doi.org/10.1371/journal.pcbi.1012528


number of sequences or cases increases (even when using a tau-leaping approximation [39]).

It also greatly limits the possible complexity that could be obtained using a separate epidemio-

logical observation model, which could feasibly incorporate diverse data sources (e.g. climate

or human movement data). Conversely TimTam, proposed by Zarebski et al. in 2022 [29,40],

is a (non-particle filtering) birth-death phylogenetic approach that can integrate case incidence

and genomic sequence data in a computationally tractable way by approximation of the birth-

death observation model density [41,42], while also eliminating the assumption of indepen-

dence between tree and occurrence events. However, while it is possible to infer prevalence at

user-specified times and Rt in piecewise constant intervals, it is not practical to infer continu-

ous (here we use the term ‘continuous’ to refer to a fine grid size of a single day) epidemic tra-

jectories with this model, which limits its ability to detect transmission fluctuations at a higher

temporal resolution.

We develop a new approach, EpiFusion, that extends existing implementations that employ

particle filtering or pMCMC [30,32] to reconstruct epidemic trajectories using case incidence

and a phylogenetic tree either individually or together, while making the assumption that the

tree and case trajectory are independent of each other. Our proposed approach improves on

the limitations of previous methods by (i) introducing a birth-death based phylodynamic like-

lihood to a dual observation model structure (ii) making improvements in computational effi-

ciency and (iii) allowing epidemic trajectories to be inferred in greater temporal resolution.

Methods

Theory

We adopt an overall structure based on the ‘common process model–dual observation model’

structure (Fig 1) used by Rasmussen et. al [30] and validated by many particle filtering methods

outside of the context of infectious disease [43,44]. The data inputs (‘observations’ in Fig 1) to

this model are case incidence, a time-scaled phylogenetic tree constructed from virus genomic

sequences, or both data types together. The hidden particle states are the true number of indi-

viduals infected ‘I’ and any particle specific parameters.

Process model. We use the term ‘process model’ to define how particle states are incre-

mented between resampling steps in the particle filter. n particles model the number of

infected individuals (I) in discrete daily intervals driven by a process model that assumes inde-

pendent Poisson-distributed infection and recovery counts (Eq 1).

It ¼ It� 1 þ PoisðbtIt� 1Þ � PoisðgtIt� 1Þ ð1Þ

We have implemented this daily discretisation rather than modelling each infection trajec-

tory event individually in completely continuous time to improve computational efficiency.

Transmission dynamics are captured by modelling the change in the infection rate β and/or

recovery rate γ over time (see Table 1B legend). Rt can be derived from the process model

using the formula Rt ¼
bt
gt

.

Observation models. At each resampling step, the particle states are evaluated against epi-

demiological and phylogenetic data using individual ‘observation models’; that is, models that

define the weights (ω) of each particle state according to each dataset.

The provided epidemiological data ct, represents the number of reported cases with symp-

tom onset between regular intervals. As the particle infection trajectory is simulated through

time, it ‘emits’ daily positive cases ρt at a rate Itφt. These positive cases are summed for the days

in the interval between case incidence observations. When t is a day with observed data, then

this total can be evaluated against the total summed emitted cases in the corresponding
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interval ρinterval (Table 1C), using the epidemiological observation model (Eq 2). This is not

needed when case incidence is provided in daily intervals, in which case ρt can be directly com-

pared to ct. Examples of the fit of ρinterval to corresponding case incidence data points in prac-

tice are available in S1 Fig. This process gives the ‘epidemiological weight’ of the particle given

the case incidence data (ωct, Eq 2). Currently users may choose between a Poisson probability

density function (Eq 2A) and a negative binomial probability density function (Eq 2Bb) with

an overdispersion parameter k for the epidemiological weight. Here we use a Poisson model as

there is no overdispersion in the simulated datasets used for validation.

oc
t ¼ P ctjIinterval;φinterval

� �
¼
rinterval

ct � e� rinterval
ct!

ð2AÞ

oc
t ¼ P ctjIinterval;φinterval; k

� �
¼

rinterval � ect
ðkþ rintervalÞeðkþctÞ

ð2BÞ

The particle weight given the phylodynamic data (a one-day segment of a time-scaled phy-

logenetic tree; gt) is a daily discretisation of that which was derived by Vaughan et. al for EpiInf

[32] (Eq 3). This is the sum (in log space) of the probabilities of the observed events (number

of observed infections of new individuals bt; number of sampling events st) on the tree segment

and the exponentially distributed waiting times for events that were not observed (infections

with rate βtIt−1 and genomic samplings of infected individuals with rate ψIt−1).

og
t ¼ exp btlog

2bt
It � 1

� �

þ stlogct � ðctIt� 1 þ btIt� 1Þ

� �

ð3Þ

We implement an importance sampling strategy to prevent trajectory events that are

impossible given the tree structure, for example recovery events that result in fewer individuals

being infected than there are lineages in the tree (S1 Text).
During resampling, the particles are weighted (ωt) by the product of their phylodynamic

and epidemiological weights (Eq 4), thus facilitating the propagation of particles that are

Fig 1. EpiFusion particle filter structure, with the particle states per unit time (green outlined boxes) driven by the parameters of the process model, evaluated

at resampling steps by epidemiological and phylodynamic observation models against case incidence and phylogenetic tree segments respectively per unit time

(orange and purple circles). All models in this manuscript use daily time units.

https://doi.org/10.1371/journal.pcbi.1012528.g001
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consistent with both the phylogenetic and epidemiological data.

ot ¼ o
c
to

g
t ð4Þ

Fitting with MCMC. Following completion of the particle filter, the overall likelihood of

each estimated trajectory across the whole outbreak consists of the product of the average par-

ticle weights at each resampling step (Eq 5). This is therefore the likelihood of a particle trajec-

tory sampled from the surviving particles given the epidemiological and phylogenetic data,

and the parameter set of the particle filter θ which can be concurrently fit using MCMC.

P trajjg; c; yð Þ ¼
YT

Pn
oc

to
g
t

n
ð5Þ

Table 1. A. Explanation of the data points used by EpiFusion; B. the key parameters of the EpiFusion particle fil-

ter. Gamma, phi and psi are fit by MCMC, either as constant values over time or in epochs by either fixing or fitting

change times and interval values. Beta must vary over time and can either be fit using (i) a random walk within the par-

ticle filter, (ii) linear splines within the particle filter, (iii) MCMC fitting in epochs by fixing or fitting change times and

interval values, or (iv) MCMC fitting the parameters of a logistic function which defines beta over time; C. Other key

terms in the EpiFusion particle filtering algorithm, in order of appearance in the text.

A. Model Data

Name Symbol Details
Case Incidence Data ct Number of new observed disease cases with symptom onset in the interval

between the previous case incidence data point. Each observation is

associated with a single day (t) but represents the aggregation of cases

between the last case incidence data point and day t
Phylogenetic Tree Segment gt A daily segment of a phylogenetic tree. Key attributes of each segment are

the number of lineages over time, number of birth events, and number of

sampling events. The tree can be provided to EpiFusion in its original form,

and the segments gt are generated by the program itself.

B. Key Model Parameters

Name Symbol Details
Beta β The daily rate at which each infected person causes new infections. Must

vary over time.

Gamma γ The daily rate at which each infected person becomes uninfectious. Can

vary over time.

Phi φ The daily rate at which each infected person is sampled as a ‘case’ for case

incidence data. Can vary over time.

Psi ψ The daily rate at which each infected person results in a sequenced

pathogen sample. Can vary over time.

C. Other terms

Name Symbol Details
Modelled daily case

incidence

ρt The modelled number of individuals who are identified as cases with

symptom onset on a given day t. Given by multiplying the number infected

at time t by the sampling rate at time t: Itφt
Modelled case incidence over

an interval

ρinterval A sum of ρt over a time interval that can be compared to observed case

incidence over the same time interval by the epidemiological observation

model.

Number of birth events bt Number of birth (branching) events in a tree segment gt
Number of sampling events st Number of sampling events (tree leaves) in a tree segment gt
Number of lineages lt Number of lineages (branches) in the tree at the beginning of tree segment

gt
Number of particles n The number of particles used in the particle filter

Particle weight ωt The particle weight at time t

https://doi.org/10.1371/journal.pcbi.1012528.t001

PLOS COMPUTATIONAL BIOLOGY Joint epidemiological and phylodynamic inference of epidemic trajectories

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012528 November 11, 2024 6 / 28

https://doi.org/10.1371/journal.pcbi.1012528.t001
https://doi.org/10.1371/journal.pcbi.1012528


This model is fit using Metropolis-Hastings MCMC sampling, deriving posterior samples

of the number of infected individuals over time, and the rates β,γ,φ and ψ. Options are avail-

able for defining and fitting time-varying rates for the latter four parameters both within the

particle filter, and by MCMC (Table 1B legend).

Implementation and distribution

We include details of the implementation of the EpiFusion algorithms in S2 Text, including

pseudocode for the MCMC and particle filtering algorithms. The EpiFusion model is distrib-

uted as a Java program and the model source code, executable files, tutorials, example parame-

ter files and guidance on usage are available at the GitHub repository, https://github.com/

ciarajudge/EpiFusion, under the GNU General Public License. The program takes an XML file

as input, which contains the data and parameters for the model. The user does not need to

define any compartmental model (i.e. SIR, SEIR etc), but parameterisation of rates β,γ,φ and ψ
is necessary with a selection of options available to users for priors or to allow discrete step-

changes in these rates at specific times during the outbreak (e.g., corresponding to known

dates of changes in public health surveillance strategies). Code used for the models and plots

in this manuscript are housed at the GitHub repository https://github.com/ciarajudge/

EpiFusion_PublicationRepo.

Model validation and testing

We validated and tested the performance of EpiFusion using five different approaches:: (i)
comparison of the EpiFusion phylodynamic likelihood to the BEAST2 BDSky phylodynamic

likelihood to validate our novel likelihood calculation (ii) large scale (i.e., many replicates) sim-

ulation based calibration [33,45], (iii) scenario testing, (iv) noise testing, and (v) benchmarking

of accuracy against existing models.

Simulated datasets. The latter four phases involved the use of simulated epidemic data-

sets with SIR transmission dynamics that were generated using ReMASTER [46]. ReMASTER

produces the true trajectories over time of each population compartment (S, I and R), identi-

fied cases over time (which we aggregated into weekly case incidence), and a phylogenetic tree

of all identified cases under the epidemiological sampling rate, which we downsampled to give

a simulated phylogeny of sequenced samples with a smaller sampling rate (Fig 2). Details of

the simulated datasets used in this manuscript are provided in the Supplementary Information

(S1 and S2 Tables and S2–S4 Figs).
Likelihood comparison. To validate our daily approximation of the phylodynamic likeli-

hood we compared the EpiFusion likelihoods to those computed with the BEAST2 [47] pack-

age BDSky (13). We examined the effect on the likelihood of varying the parameters β,γ, and ψ
in turn around their true values with all other parameter values fixed to the truth. We repeated

this on a range of simulated datasets with varying true values of each parameter. To evaluate

the estimation of the infection or birth rate parameter (β), we used datasets generated under a

constant-rate birth-death process in ReMASTER [46].

Simulation based calibration. To assess calibration of our MCMC algorithm, we defined

distributions of the EpiFusion model parameters β,γ,φ and ψ and simulated 500 unique epi-

demics using parameter combinations drawn randomly from these distributions. We then fit

EpiFusion models with priors equal to the original distributions from which the parameters

were drawn, and analysed the ability of EpiFusion to recapture the true parameter values

within Highest Posterior Density (HPD) intervals of increasing credible mass. A perfectly cali-

brated MCMC algorithm should result in 5% of models capturing the true parameter in their

0.05 HPD intervals, 10% of models capturing the true parameter in their 0.10 HPD intervals,
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etc. The β parameter varies over time in both our model and the simulated data (i.e. it is mod-

elled as βt), as opposed to consisting of one fixed value per simulation. Thus, to calculate cover-

age at a given value of credible mass alpha for the β parameter, we took the average proportion

of the true βt trajectory that falls within the inferred HPD interval across all replicates.

Scenario testing. We examined the ability of EpiFusion to reconstruct infection and Rt

trajectories under a range of epidemic scenarios. The parameters under which each of these

scenario datasets were simulated are included in the Supplementary Information (S2 Table).
To assess the advantage of combining phylodynamic and epidemiological data in this frame-

work, models using solely the phylogenetic tree or case incidence data were compared to using

a combination of both (S3 and S4 Tables). The three scenarios examined were: (i) the introduc-

tion of a novel pathogen into an immune naïve population with time-constant sampling, (ii)
an introduction scenario with a step-change in sampling when the outbreak is ‘discovered’,

and (iii) a step-change in transmission of an endemic pathogen that has previously circulated

at stable levels. We assessed model performance according to a selection of metrics and

Fig 2. Example ReMASTER epidemic simulation and resulting data used for the EpiFusion program (specifically, according to the “Baseline Scenario”

described in the section “Scenario Testing”). (a) True number of people infectedover time, from which (b) weekly reported case incidence counts and a (c)

phylogenetic tree of simulated samples were derived based on given sampling rates. Plots of the other simulated datasets are provided in S2–S4 Figs.

https://doi.org/10.1371/journal.pcbi.1012528.g002
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probabilistic scoring rules (Table 2). Further details on the performance metrics used and how

they were calculated are included in the Supplementary Information (S5 Table).
Noise testing. We then tested model robustness to noise, by testing scenarios with

increasing transmission or observation noise and examining the effect on the inferred Rt con-

tinuous ranked probability score. Here we use the term transmission noise to mean fluctua-

tions in Rt, and observation noise to mean fluctuations in the case and sequence sampling rate.

We achieved increasing noise in the ReMASTER simulations by replacing constant transmis-

sion or sampling rates with a time series of rates drawn from Gaussian distributions with

increasing standard deviations (S2 Table).
Benchmarking against existing approaches. For the three scenarios outlined in ‘Scenario

Testing’, we benchmarked the combined EpiFusion model against existing packages EpiNow2

[48], BDSky [13] and TimTam [29,40] which are respectively among the most commonly used

tools for estimating R(t) from epidemiological, phylodynamic, and both data types. The

BDSky and TimTam models are usually provided with a sequence alignment as input data and

subsequently infer phylogenetic trees. Here, we instead directly provided these models with

the same fixed tree as was provided to EpiFusion (i.e., a phylogeny down-sampled from the

tips in the simulated true transmission tree). This removed phylogenetic uncertainty to allow a

fairer comparison of the model performances. Full model specifications are in the Supplemen-

tary Information (S3 Text). As the BDSky and TimTam models require specification of inter-

vals in which to infer R(t), uniform intervals of 5 or 10 days were provided. It was necessary to

use different specifications of Rt intervals for the TimTam and BDSky approaches across dif-

ferent scenarios due to a particular sensitivity in TimTam to the interval change times, where

placing the intervals at certain points resulted in highly impractical estimates.

Ebola virus disease in Sierra Leone

Finally we used an EpiFusion combined model with a negative binomial epidemiological

observation model to infer Rt over the course of the 2014 Ebola virus outbreak in Sierra Leone.

We obtained case count data from Fang et. al [49] and a maximum clade credibility tree gener-

ated from a BEAST Coalescent Skygrid analysis with an uncorrelated lognormal relaxed clock

from the Github repository associated with Dellicour et. al [50]. The tree contained samples

from Sierra Leone, Guinea and Liberia, so we selected a monophyletic clade of 980 Sierra

Leone sequences (S5 Fig). We aggregated the case count data (total 8358 confirmed cases) into

Table 2. Statistics used to evaluate model performance under scenarios 1, 2, and 3 for analyses using case incidence only (epi), phylogenetic tree only (phylo), and

both data sources combined (combo). The best or joint-best result for each statistic for each scenario is highlighted in bold. Trajectory RMSE: root-mean-squared error.

Calibrated Trajectory Coverage: proportion of true trajectory that falls within the 95% HPD, scaled by 0.95. Scaled HPD Width: mean width of the 95% highest posterior

density interval, scaled by the true value. Continuous Ranked Probability Score: mean CRPS across the trajectory time series. Brier Score: Classification accuracy for trans-

mission phase (Rt) being above or below 1. Further details on the calculation of these statistics are included in the Supplementary Information (S5 Table).

Baseline Scenario Sampling Step-Change Transmission Step-Change
Evaluation Metric Epi Phylo Combo Epi Phylo Combo Epi Phylo Combo

Infection Trajectory RMSE 43.2 329.8 41.3 372.7 137.1 185.3 196.07 171.19 131.41

Infection Trajectory Coverage 1.05 1.05 1.04 0.93 0.97 1 1.01 0.95 1.05

Scaled Infection Trajectory HPD Width 1.94 1.41 1.13 1.07 1.26 0.96 1.03 1.24 0.84

Rt Trajectory RMSE 0.333 0.356 0.217 0.299 0.343 0.222 0.291 0.349 0.266

Rt Trajectory Coverage 1.02 1.05 1.05 1.05 1.05 1.05 1.03 1.04 1.04

Scaled Rt Trajectory HPD Width 1.52 1.55 1.66 1.46 1.55 1.66 1.16 1.56 1.49

Continuous Ranked Probability Score 88.19 162.91 41.04 265.92 158.68 182.95 109.25 114.23 83.44

Rt Continuous Ranked Probability Score 0.188 0.196 0.129 0.181 0.183 0.123 0.158 0.199 0.15

Brier Score–Transmission Phase 0.034 0.042 0.011 0.031 0.032 0.019 0.105 0.101 0.109

https://doi.org/10.1371/journal.pcbi.1012528.t002
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weekly incidence to reduce any observation noise introduced by weekly periodicity in report-

ing rates (S6 Fig), and used a combined EpiFusion model to estimate national Rt from March

2014 to August 2015 (78 weeks). We fit β as a series of linear splines (see Table 1B legend), and

γ as a constant value over time. The model was run using 6 chains of 10,000 MCMC samples

with 300 particles each.

Results

Testing on simulated data

Likelihood comparison. Our comparison of the phylodynamic likelihood calculated by

EpiFusion with that calculated in BDSky shows good agreement between the two approaches

(Fig 3), though the stochastic and approximate nature of the EpiFusion likelihood means that

the values are not identical. The EpiFusion likelihood curves are also less smooth due to the

stochastic nature of the algorithm. As the parameter values get further from the truth for the β
and γ parameters, the EpiFusion likelihood drops sharply due to the parameter values implying

highly unlikely or even impossible trajectories. More extensive likelihood comparisons are

available in the Supplementary information (S7 Fig).
Simulation based calibration. In Fig 4 we show the results of the simulation-based cali-

bration of the combined EpiFusion model. Fig 4A shows the proportion of replicates (or ‘cov-

erage’) that recover the true parameter with increasing credible interval mass (‘alpha’). We

note that coverage increases with increasing credible interval mass, however slight under-cov-

erage is observed, particularly for the γ parameter. This is also demonstrated in Fig 4B, where

the model appears to have limited ability to estimate the γ parameter. However, the model

does appear to recapture the true values of the sampling parameters φ and ψ, with only slight

underestimation for larger true values. The model was generally able to accurately infer the

values of β over time.

Scenario testing. Next we evaluated how well EpiFusion could reconstruct trajectories of

infections and Rt corresponding to simulated outbreaks reflecting three common epidemio-

logical scenarios: (i) the introduction of a novel pathogen into an immune naïve population

with time-constant sampling, (ii) an introduction scenario with a step-change in sampling

when the outbreak is ‘discovered’, and (iii) a step-change in transmission of an endemic

Fig 3. Comparison of median log likelihoods generated by EpiFusion (green) and a birth-death skyline model implemented in the BEAST2 (50) package

BDSky (14) for the parameters β,γ and ψ. The true value of the parameter is marked by the blue vertical line.

https://doi.org/10.1371/journal.pcbi.1012528.g003
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pathogen. We compared the performance of EpiFusion using as input solely case incidence

data, solely a phylogenetic tree, and using both datasets combined. The metrics by which mod-

els are compared and their statistics are summarised for a single realisation of each scenario in

Table 2.

We first considered a scenario in which a novel pathogen enters an immune naïve popula-

tion with constant sampling: the ‘baseline scenario’. Here, each approach successfully captured

the true epidemic and Rt trajectories within the 95% HPD intervals (Figs 5 and 6), however the

tree only approach underperformed compared to the case incidence only and combined

approaches according to the metrics that we chose for evaluation (Table 2). The combined

approach was most successful in estimating the true infection trajectory (Infection Trajectory

RMSE: 41.3) compared to tree only and case incidence only models (329.8, 43.2) (see Tables 2

and S5 for a description of the statistics). These improvements in infection trajectory estima-

tion are accompanied by a reduction in the width of the scaled HPD intervals (1.13 vs 1.41 and

1.94), a positive result indicating increased confidence, provided that coverage and accuracy is

maintained (as is observed here). The Continuous Ranked Probability Score (CRPS) was used

to evaluate the probability of the true infection or Rt trajectory given the posterior infection or

Rt trajectories from each model, where a lower value equates to a more accurate result. Here

the combined approach also performed best for both infection and Rt trajectories (41.04 vs

88.19 and 162.91 for infection trajectories and 0.129 vs 0.188 and 0.196 for Rt trajectories).

Fig 4. (a) Proportion of replicates that capture the true value of the parameter within their HPD intervals (y-axis) of increasing credible mass alpha (x-axis), for

the parameters: β infection parameter (green), γ recovery parameter (blue), φ case sampling rate (yellow) and ψ sequence sampling rate (orange). For the

infection rate parameter β (which varies over time), the y-axis reflects the average proportion of the β trajectory captured in the HPD interval across all

replicates (b) Mean inferred value and 95% HPD interval of the parameter (y-axis) plotted against the true value of the parameter (x-axis). For the infection

parameter β, a subset of 1000 values of βt is shown for clarity in the plot as β varied over time in the simulations and models, so each replicate resulted in the

inference of many βt values. For both graphs the grey dotted line indicates the ‘perfect’ result: perfect calibration for (a) and perfect agreement between true and

inferred parameters for (b).

https://doi.org/10.1371/journal.pcbi.1012528.g004

PLOS COMPUTATIONAL BIOLOGY Joint epidemiological and phylodynamic inference of epidemic trajectories

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012528 November 11, 2024 11 / 28

https://doi.org/10.1371/journal.pcbi.1012528.g004
https://doi.org/10.1371/journal.pcbi.1012528


Each of the approaches demonstrated a slight propensity to over-cover the infection and Rt

trajectories (calibrated trajectory coverages> 1). The combined approach led to a decrease in Rt

trajectory RMSE (0.217 vs 0.333 and 0.356). We also used the Brier score (mean squared error

between the probabilistic prediction and the true outcome) to evaluate each approach based on

Fig 5. Inferred mean infection count trajectories from EpiFusion using only case incidence (orange), only the phylogenetic tree (purple) and both data types

combined (green) (columns) for the three scenarios tested (rows). The true number infected over time is represented by the black line. 95%, 80% and 66%

highest posterior density intervals are represented by increasingly dark shaded regions. Times of step-changes are marked by the vertical dotted lines for the

step-change in sampling and transmission scenarios: a 10-fold increase in case and genomic sequence sampling rates on day 35 for the ‘Sampling’ step-change

scenario, and a 3-fold increase in transmission rate on day 100 for the ‘Transmission’ step-change scenario.

https://doi.org/10.1371/journal.pcbi.1012528.g005
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its ability to predict transmission phase, i.e. correctly estimating if Rt is above or below 1, where a

lower Brier score indicates improved performance. We find each approach to be adept at classify-

ing Rt as above or below 1, however the combined approach (0.011) leads to a marked improve-

ment compared to the case incidence only or tree only approaches (0.034, 0.042).

Fig 6. Inferred Rt from EpiFusion using only case incidence (orange), only the phylogenetic tree (purple) and both data types combined (green) for the three

scenarios tested (rows). True Rt is represented by the solid black line. 95%, 80% and 66% highest posterior density intervals are represented by increasingly dark

shaded regions. Times of step-changes are marked by vertical dotted lines: a 10-fold increase in case and genomic sequence sampling rates on day 35 for the

‘Sampling’ step-change scenario, and a 3-fold increase in transmission rate on day 100 for the ‘Transmission’ step-change scenario. An Rt of 1 is marked by the

dashed horizontal line. The true Rt fluctuates at the end of the sampling step-change scenario due to very low prevalence as the outbreak ends.

https://doi.org/10.1371/journal.pcbi.1012528.g006
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The second scenario consisted of a simulated outbreak with similar transmission dynamics

to the introduction scenario but for which levels of both genomic and case sampling are low

during the initial period of spread until more widespread surveillance is introduced (thus lead-

ing to a step-wise increase in sampling density). This was characterised in the data simulation

by a spontaneous 10-fold increase of the case and genomic sequence sampling rates on day 35

of the simulation (S2 Table). Here, the date of this step-change is provided as a fixed parameter

to the model under the assumption that it would be known to health authorities, but fixing this

parameter is not strictly necessary to run the model as it can be co-inferred with MCMC by

providing the model with an expected number of step-changes in sampling rates. The sam-

pling rates before and after the step-change are inferred as parameters of the MCMC.

For this analysis, all three approaches successfully infer the Rt trajectories (Fig 6), but

slightly overestimate the peak of the infection trajectories, with the case incidence only

approach being the least accurate. This is further reflected in the performance metrics

(Table 2), where the case incidence only approach performs the best for only one metric, scaled

Rt trajectory HPD width. The combined approach demonstrates optimal scaled coverage of

the true infection trajectory (1), while at the same time reducing the HPD interval width (0.96
vs 1.07, 1.26) in comparison to individual approaches (Fig 5). The combined approach also led

to the best Rt trajectory CRPS results (0.123 vs 0.181 and 0.183) by a wide margin and led to a

reduction of almost 50% in the Brier score (0.019 vs 0.031 and 0.032). The tree only approach

demonstrated more advantages in this scenario than in the other scenarios, resulting in the

best infection trajectory RMSE and CRPS (137.09 and 159.68, respectively).

The final scenario examined was a scenario in which a step-change in transmission was

simulated, such as when a pathogen experiencing endemic transmission undergoes a rapid

increase in transmission, but where sampling parameters remain constant. Specifically, we

simulated an outbreak scenario where the transmission rate was increased 3-fold on day 100 of

the simulation (S2 Table). For this analysis, the date of the transmission increase was inferred

as a parameter of the MCMC (it is possible to fit any number of rate step-changes with EpiFu-

sion; it is not currently possible to infer the number of step changes). All three analyses broadly

captured the epidemic trajectories (Fig 5), with the case incidence only approach demonstrat-

ing better coverage (1.01, vs 0.95, 1.05), however the combined approach resulted in the lowest

trajectory RMSE (131.41 vs 196.07 and 171.19) and CRPS (83.44 vs 109.25 and 114.23). The

combined approach also resulted in a slightly improved CRPS (0.15 vs 0.16 and 0.20), along

with improved Rt RMSE (0.266, vs 0.291 and 0.349). The Brier score for this scenario is the

only instance across all metrics and scenarios where the combined approach did not result in

an improvement or perform equally to one or both individual approaches. However, the dif-

ference between all three approaches for this metric is marginal (0.105, 0.101, 0.109 for case

incidence only, tree only and combined approaches, respectively).

Noise testing. Next we examined the performance of the three approaches on scenarios

with increasing observation and transmission noise, and summarise the results by examining

how the Rt RMSE, CRPS, and Brier Score changes (Fig 7). Rt trajectory fits for these scenarios

are included in the Supplementary Information (S8 and S9 Figs). The tree only approach

appears most robust to observation noise. Each metric sees a decrease in performance with

increasing noise, with the exception of the Brier Score, which improves with increasing trans-

mission noise.

Benchmarking against existing approaches. We compared the performance of the Epi-

Fusion combined model against existing Rt inference methods (Fig 8) on the simulated data-

sets from the scenario testing section. We used (i) EpiNow2 [48], (ii) a Birth-Death Skyline

Serially Sampled model implemented in BEAST2 (BDSky) [13], and (iii) TimTam [29,40]

implemented in BEAST2 to represent commonly used approaches for estimating R(t) from
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Fig 7. Rt trajectory RMSE, CRPS and Brier Score (y-axes) for case incidence only (orange), tree only (purple) and combined (green) EpiFusion approaches on

scenarios with increasing noise (x-axes). For each of these metrics, a value closer to 0 reflects a better score. Noise is quantified as the standard deviation divided

by the mean of the distribution from which the transmission or sampling rates were drawn. The general trend is shown by linear regression lines of the

corresponding colour.

https://doi.org/10.1371/journal.pcbi.1012528.g007

PLOS COMPUTATIONAL BIOLOGY Joint epidemiological and phylodynamic inference of epidemic trajectories

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012528 November 11, 2024 15 / 28

https://doi.org/10.1371/journal.pcbi.1012528.g007
https://doi.org/10.1371/journal.pcbi.1012528


only molecular data, case incidence data, and both data types. Further information on model

specifications is included in the Supplementary Information (S3 Text).
Rt posteriors were obtained from each pre-existing tool for all three scenarios and com-

pared to the combined EpiFusion approach. The strengths and weaknesses of the different

models are apparent when examining their performance under selected scoring criteria

(Table 3).

Fig 8. Estimated mean Rt and 95% HPD intervals for the three validation scenarios from EpiFusion (green), EpiNow2 (blue), BDSky (red) and TimTam

(yellow).

https://doi.org/10.1371/journal.pcbi.1012528.g008
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Each model captured the general trend of transmission for all three scenarios, with some

weaknesses. Using EpiFusion resulted in improved Rt RMSE for all three scenarios. EpiFusion

also led to substantially improved Brier scores compared to other methods for the introduction

and sampling scenarios. For the sampling and transmission scenarios, EpiFusion resulted in

improved Rt CRPS by a large margin, and the best coverage by a smaller margin. Notably Epi-

Fusion never produced the worst performance under any scenario and metric combination.

EpiNow2 performed well in the introduction scenario, yielding the best Rt CRPS, however the

model somewhat struggled with identifying the sharp fluctuations in transmission in the third

scenario, especially the initial step-change in transmission, possibly due to the smoothing

influence of the Gaussian process. For the sampling scenario it was not possible to parameter-

ise the large and sudden step-change in sampling in the EpiNow2 model. This is reflected by

the underperformance of EpiNow2 in this scenario, where the sharp increase in case incidence

due to increased sampling is instead interpreted by the model as sustained transmission of Rt

> 1 (Fig 8). The BDSky approach systematically overestimated Rt towards the end of the time

series, a problem which interestingly also affected the EpiFusion tree only model fits (Fig 6).

However, the model generally demonstrated good coverage of the true Rt, despite inferring the

parameter in piecewise constant intervals. Conversely, TimTam struggled with slight overesti-

mation of Rt at the beginning of the time series.

Ebola virus disease in Sierra Leone

Finally, we demonstrated the use of an EpiFusion combined model on real data by retrospec-

tively inferring the Rt of Ebola virus in Sierra Leone from March 2014 to August 2015 (Fig 9).

The root of the tree was in March 2014, approximately two months prior to the first observed

epidemiological case, allowing us to model the early dynamics of the outbreak. The EpiFusion

analysis was completed within 9 hours on a MacBook Air M3 PC with an 8 core CPU. We

expect that the long duration of the time series (>1.5 years) influenced the runtime.

We estimate the initial Rt during the first week of the study time series to be 1.33 (with lower

and upper 0.95 HPDs of 1.04 and 1.61 respectively). Fig 9C shows that the Rt trajectory inferred

by EpiFusion is in agreement with other estimates in the literature [47,51–53] including a birth-

death phylodynamic approach implemented by Alizon et. al [52], and epidemiological models

used by Towers et. al [51] and the WHO Ebola Response Team [53]. The average daily reproduc-

tive number by Wiratsudakul et. al [54] for the first year of the outbreak was comparable to our

estimate over the same time period (1.03 vs 1.08), with the estimates in this paper also mirroring

the small uptick in Rt we observe in early 2015. However, EpiFusion infers a slightly later time

period for the decrease of Rt below 1.0 (13th October, 0.95 HPD 18th September– 5th November)

than some other studies (Althaus et. al ‘late July’ [55], Nishiura et. al, ‘late August’ [56]).

The trajectory also aligns well with key dates [49] during the outbreak, particularly the

three day nationwide quarantine on September 19th 2014 [57] which is followed by a sharp

drop in the inferred Rt of our model.

Table 3. Model Benchmarking.

Introduction Scenario Sampling Step-Change Transmission Step-Change
EpiFusion EpiNow2 BDSky TimTam EpiFusion EpiNow2 BDSky TimTam EpiFusion EpiNow2 BDSky TimTam

Rt RMSE 0.22 0.22 0.91 1.17 0.22 0.58 0.86 1.38 0.37 0.54 0.92 0.74

Rt CRPS 0.13 0.11 0.4 0.72 0.12 0.28 0.45 0.542 0.15 0.42 0.45 0.76

Brier Score 0.011 0.145 0.178 0.226 0.109 0.236 0.237 0.227 0.109 0.417 0.103 0.143

Rt Coverage 1.05 1.05 1.04 0.57 1.05 0.55 0.89 0.94 1.02 0.82 0.66 0.61

https://doi.org/10.1371/journal.pcbi.1012528.t003
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Fig 9. (a) Phylogenetic tree of Ebola virus sequences in Sierra Leone consisting of a subclade of the MCC tree obtained from Dellicour et. al

[50], with tips coloured by region at a 1st administrative unit level. (b) Weekly case incidence of Ebola virus disease in Sierra Leone obtained

from Fang et. al [49], stratified by region. (c) Inferred median effective reproduction number (solid line) of Ebola virus disease in Sierra

Leone from an EpiFusion combined model. 95%, 80% and 66% highest posterior density intervals are represented by increasingly dark

shaded regions. Two key dates in the epidemic are labelled: (i) Declaration of a national state of emergency on August 6th 2014, and (ii)

national three day quarantine beginning on September 19th 2014.

https://doi.org/10.1371/journal.pcbi.1012528.g009
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Discussion

We outline EpiFusion, a computationally tractable and flexible infrastructure for the combina-

tion of phylogenetic and epidemiological data to estimate infection and Rt trajectories. EpiFu-

sion fills a gap in current modelling approaches at the intersection between the fields of

phylodynamics and epidemiology (Table 4). We show that by combining data types with Epi-

Fusion it is often possible to improve the accuracy of Rt or infection trajectory estimates com-

pared to using only phylogenetic or epidemiological data alone.

Through extensive simulations we found the EpiFusion model to be adept at recapturing

the case incidence and genomic sampling parameters φ and ψ. The model was less able to

accurately recapture the γ recovery parameter, but this can often reliably be obtained from

empirical literature [57,58], and thus could be informed in practice with a strong prior. Given

that the EpiFusion process model simulates epidemic trajectories according to the balance of

the infection and recovery parameters β and γ, we suspect the flexible specification of time-

varying β disincentivises accurate inference of the γ parameter. However, while we would

expect β to also be biased in the opposite direction to γ under this hypothesis, Fig 4B indicates

that the model is capable of accurately inferring the true value of β over time and the time-

varying nature of β in the model and simulated data made it difficult to fully characterise any

bias in the parameter. Nevertheless, although the model does not consistently recover the γ
parameter, it does reliably reconstruct infection and Rt trajectories over time (Figs 5, 6 and
S10). Future development of EpiFusion will aim to improve coverage of epidemiological

parameters.

When testing the ability of EpiFusion to recover changes in Rt in different epidemiological

scenarios (Scenario Testing section) the ‘baseline scenario’ aimed to represent a situation such

as the emergence of a novel pathogen [59] or the expansion of an existing pathogen into a new

ecological niche [60]. All three EpiFusion approaches (case incidence only, tree only, com-

bined) were able to accurately reconstruct the epidemic trajectories of the simple, single epi-

demic peak, with the combined approach resulting in the best result for seven of the nine

performance metrics tested. While the outbreak lasted 100 days, the inference using the phylo-

genetic tree is truncated at day 69 of the simulation as this is the date of the last sampling event

on the tree. An advantage of the combined model is therefore that the trajectories can be

jointly inferred up until the last sampling event on the tree, but after this point R(t) can still be

estimated using any additional case incidence data only (as is often the case in real-time out-

break response, where recent case incidence data usually precedes new genomic sequences).

Conversely, where the most recent common ancestor of viruses sampled is phylogenetically

estimated prior to the first observed case (as in the Ebola example we show here (Fig 9), it is

possible to infer R(t) for earlier time points than possible for case incidence only approaches.

Table 4. Comparison of the key characteristics of EpiFusion compared to the tools and literature referred to in this manuscript. Rasmussen’11 denotes Rasmussen

et. al (2011), which was referenced in the introduction. However, the model is not distributed for use as a software or program, so we were unable to assess its computa-

tional efficiency (*). (BD–birth death).

Qualitative Comparison to Other Tools or Models

Uses Case Incidence Uses Phylogenetic Tree Infers Phylogenetic Trees Infers Continuous Trajectories Scalable to Large Datasets BD Theory
EpiFusion ✔ ✔ ✔ ✔ ✔
EpiNow2 ✔ ✔ ✔
EpiInf ✔ ✔ ✔ ✔ ✔
TimTam ✔ ✔ ✔ ✔ ✔
BDSky ✔ ✔ ✔ ✔
Rasmussen ‘11 ✔ ✔ ✔ *
https://doi.org/10.1371/journal.pcbi.1012528.t004
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We subsequently considered more complex scenarios in which the sampling or transmis-

sion rates change over time in a more realistic way. Such changes are widely acknowledged to

complicate the estimation of Rt. This allowed us to examine how combining phylodynamic

and epidemiological models and data could improve our ability to accurately estimate Rt

under such challenging scenarios. The rationale for the step-change in sampling scenario was

to emulate the transition of a disease from passive to active surveillance, perhaps due to the

declaration of a Public Health Emergency of International Concern (PHEIC), resulting in a

lack of data from the early stages of an outbreak and a lack of comparability in case numbers

before and after detection is scaled up. This also applies for novel pathogens that do not have

established means of clinical diagnoses or reporting, or where testing is initially limited. For

example, during the Zika virus epidemic in Brazil in 2016, case detection rates rose sharply fol-

lowing the implementation of widespread PCR testing [61], compared to the beginning of the

outbreak. The tree only approach demonstrated more advantages during this scenario than in

the other scenarios tested, which is likely due to the additional information captured by birth

events in the tree even when sampling was low. Notably the combined approach led to

improved Rt continuous ranked probability scores, the probabilistic scoring rule we chose for

model comparison. For both the baseline and sampling scenario the combined model greatly

outperformed the individual approaches according to the Brier score metric, leading to ~4 fold

and ~2 fold decreases in the baseline and sampling scenarios, respectively. This indicates that

the combined approach may benefit estimation of whether an epidemic is growing or declin-

ing, which is a useful public health indicator to be able to evaluate with certainty [62,63].

The step change in transmission scenario was used to mimic a sudden increase in transmis-

sion, such as a change in human behaviour (e.g. school holidays end, non-pharmaceutical

intervention ceases), or a change in the intrinsic transmissibility of a pathogen (e.g. a new vari-

ant [64]). The phylogenetic tree simulated from ReMASTER is more applicable to the former,

in that all ‘active’ lineages at the time of the step-change undergo an equal increase in transmis-

sion which is not what would be observed in the case of a new, more transmissible variant.

Currently, EpiFusion does not attempt to infer lineage specific transmission rates, but any

future incorporation of lineage specific analyses will require this to be considered. Among the

three approaches, the tree only approach detected the earliest uptick in the Rt trajectory due to

the step-change in transmission rate (Fig 6) by a small margin, but all three approaches indi-

cated the increase in a timely manner (within 1 day). The combined approach confidently

inferred the time and magnitude of the increase of transmission, in both the infection and Rt

trajectories (Figs 5 and 6). This approach also led to the best RMSE and CRPS scores for the

infection and Rt trajectories, and a comparable Brier score to the individual approaches.

Overall, the combined-model tended to reduce uncertainty compared to case-only and phy-

logenetic-only approaches, as observed by narrowing of the HPD intervals of the infection tra-

jectories, while maintaining coverage (Table 2). For all three of the main scenarios, the

combined approach led to the best Rt CRPS and Rt trajectory RMSE, and it consistently out-

performed one or both of the individual approaches according to our other metrics. There

may be some circumstances, however, where either the pure epidemiological or phylodynamic

approaches are preferable, such as if one dataset is suspected to be highly biased or incomplete.

This points to the benefit of the versatility of the EpiFusion program; while we emphasise the

combined inference abilities of EpiFusion, it is possible to run analyses using either case inci-

dence or the phylogenetic tree alone. Furthermore, the program is sufficiently fast for users to

test tree only, incidence only, and combined approaches in a reasonable timeframe. It is also

theoretically possible to specify the weight of each dataset’s contribution to the inference,

allowing further customisation of the combined approach. Going forward, we aim to charac-

terise the implementation and effect of data weighting more thoroughly.
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In Fig 7 we explore the effect of increasing transmission and observation noise on the ability

of the EpiFusion models to accurately infer Rt. Currently we do not explicitly model observa-

tion noise in the EpiFusion algorithm, however the tree only approach appears particularly

robust to even high levels of observation noise. This is possibly due to the extra information

provided by branching events in the tree providing a smoothing effect despite noisy sampling

rates, and further indicates the possible benefit using phylogenetic data rather than solely case

incidence data when estimating Rt. Interestingly, the Brier Score saw an improvement for all

three approaches with increasing transmission noise. We believe that the increased transmis-

sion noise resulted in more extreme fluctuations in the Rt which provided more signal for the

models to distinguish whether Rt was less than or greater than 1.0 (S8 Fig).
By benchmarking of EpiFusion’s combined model against existing approaches we show

that the model can achieve comparable or improved results compared to established epidemio-

logical or phylodynamic tools. For many of the performance metrics used, the difference in

scores between all models was marginal, however, EpiFusion led to improved Rt RMSE in all

scenarios compared all other models (Table 3). EpiNow2 proved difficult to parameterise for

some scenarios, so it is also possible that an improved parameterisation of the model would

result in better estimates. For example, it was not possible to parameterise a step-change in

sampling rate in the EpiNow2 model, and the method consequently underperformed in the

step-change in sampling scenario.

Finally we examined the performance of EpiFusion using data on the 2014 Ebola outbreak

in Sierra Leone. The fact that the most recent common ancestor (MRCA) of the viral phylog-

eny (March 2014) occurs approximately two months prior to the first sampled case of Ebola in

the region (May 2014) allowed modelling of R(t) from an earlier time point than would have

been possible using case incidence data alone. We found the model to be sensitive to the sam-

pling parameterisation due to temporal bias in the sampling of genomic sequences compared

to the case data, i.e. large fluctuations in the genomic sampling rate of cases over time would

sometimes result in particle depletion (a steep drop in the number of particles inferring ‘possi-

ble’ trajectories) between particle resampling steps a higher rejection rate of the MCMC algo-

rithm. For this reason, it was necessary to run the model for a larger number of MCMC steps

than necessary using simulated data in order to improve the effective sample sizes of model

parameters. Similarly, we found that it was necessary to run the particle filter with a greater

number of particles to avoid this particle depletion, which also contributed to a slightly longer

runtime than the other analyses in this paper. Despite these two caveats we found that R(t)

inferred from EpiFusion for this outbreak was similar to that previously obtained in the litera-

ture [50,54,55].

Our approach retains some limitations and necessitates some assumptions that provide

opportunity for future improvements. As with many models of this type, the model may

underperform or exhibit convergence issues if provided with especially biased case incidence

or phylogenetic tree data, for example in the early stages of an emerging outbreak where misdi-

agnosis as other conditions may be common and reported cases may comprise of a combina-

tion of autochthonous and imported cases. Thus we advise potential users to exercise

discretion in when considering their data inputs. Unlike other phylodynamic approaches such

as TimTam, EpiFusion does not estimate phylogenies alongside trajectories, and instead takes

single phylogenetic trees as inputs. We aim to better account for phylogenetic uncertainty in

the future. However, the computational trade-off of not performing tree inference means that

our method may be appropriate for use in rapidly unfolding outbreaks once it has been further

validated in a real-time setting, as it is highly scalable to inclusion of trees with thousands of

tips. Although not yet optimised for high performance computing or able to take advantage of

a GPU, the runtime of EpiFusion generally scales linearly with both tree and epidemic size

PLOS COMPUTATIONAL BIOLOGY Joint epidemiological and phylodynamic inference of epidemic trajectories

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012528 November 11, 2024 21 / 28

https://doi.org/10.1371/journal.pcbi.1012528


(S11 Fig), making it suitable to analyse very large datasets, which may become more relevant

due to the sharp increase in genomic sequencing during the recent COVID-19 pandemic. The

model is therefore currently best suited as a post-hoc tool using an MCC tree generated with

BEAST [50], or a time-scaled maximum-likelihood phylogeny such as that which can be gen-

erated using NextStrain [65].

The lightweight composition of this model provides the opportunity for the future intro-

duction of additional complexity without overtly increasing computational load. This includes

the introduction of population structure or vector population dynamics. The separation of the

phylogenetic and epidemiological observation models in EpiFusion also lays the foundation

for the combination mathematical epidemiological models that previously would have been

too complex to integrate into the phylodynamic likelihood with phylogenetic data to jointly

model epidemic trajectories.

In conclusion, we propose EpiFusion as a new addition to the small, but growing, number

of tools that integrate phylodynamics and epidemiology for the modelling of infectious disease.

EpiFusion builds upon the foundation laid by its predecessors to make improvements in

computational efficiency, temporal resolution and flexibility.

Supporting information

S1 Text. Information on the importance sampling implementation used within EpiFusion.

(DOCX)

S2 Text. Pseudocode for the two key EpiFusion algorithms: (1) the MCMC algorithm and

(2) the particle filtering algorithm.

(DOCX)

S3 Text. Details on the model parameterisation for the benchmarking section, where exist-

ing Rt modelling methods were used.

(DOCX)

S1 Fig. The fit of the simulated incidence from the EpiFusion model weekly incidence data

as explained in the methods section. The black dots represent case incidence data points ct,
which are compared to ρinterval by the epidemiological observation model. We save the ρinterval
values from the model to facilitate examination of this fit. The coloured lines show the mean

ρinterval values and the shaded regions show HPD intervals of increasing credible mass. Here

we show the results of this fit for the combined and case incidence-only approaches in the Sce-

nario Testing section (the tree-only models do not have an epidemiological observation model

so this fitting does not take place).

(TIFF)

S2 Fig. True infection trajectories, case incidence data, and phylogenetic trees for the step

change in sampling (a, b, c) and transmission scenarios (d, e, f) in the Scenario Testing section.

(TIFF)

S3 Fig. True infection trajectories, case incidence data, and phylogenetic trees for simu-

lated outbreaks with increasing transmission noise. Transmission noise was simulated in

ReMASTER by varying the transmission rate at regular intervals drawn from a Poisson distri-

bution with rate 6 days.

(TIFF)

S4 Fig. True infection trajectories, case incidence data, and phylogenetic trees for simu-

lated outbreaks with increasing observation noise. Observation noise was simulated in
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ReMASTER by varying the sampling rate at intervals of 7 days.

(TIFF)

S5 Fig. Publicly available existing MCC tree of Ebola sequences from 2014 obtained from

Dellicour et. al (53). The highlighted clade consisting of predominantly Sierra Leone

sequences was subsampled for our analysis, and the small Guinea subclades and singleton

nodes that represent repeated exports from Sierra Leone were removed. The origin of the

highlighted clade was March 20th 2014, which preceded the first case data in Sierra Leone. We

therefore modelled the outbreak from this date until the date of the last sampled sequence in

the clade (August 4th 2015).

(TIFF)

S6 Fig. Weekly confirmed and suspected cases of Ebola in Sierra Leone during the period

of investigation obtained from Fang et. al. The first confirmed case was on May 18th 2014,

two months after the root of the MCC tree that we used and the beginning of the time period

we modelled. For our model, we fit to confirmed cases, but used the suspected cases to help

inform our sampling rate priors by indicating what proportion of the true number of infec-

tions were being sampled as cases.

(TIFF)

S7 Fig. Comparison of EpiFusion and BDSky likelihoods on the same datasets for varying val-

ues of (a) beta, (b) gamma and (c) psi around the true values (marked by the blue vertical line).

The stochastic and approximate nature of the EpiFusion likelihood means the values are not

identical, though they do show good agreement in awarding the true value with the highest

likelihood. As the model values of each parameter become further from the true value, the Epi-

Fusion likelihood shows a tendency to drop sharply due to the parameters values implying

very unlikely or impossible trajectories. The EpiFusion models appear to demonstrate a mar-

ginal overestimation of the sampling parameter psi here, however this was not seen in the sim-

ulation based calibration.

(TIFF)

S8 Fig. Rt trajectory fits for EpiFusion models on datasets with increasing transmission noise.

The true Rt (black line) fluctuates in intervals of ~ 6 days. The row labels (right) indicate the

noise level (see Methods ‘Noise Testing’ for more information).

(TIFF)

S9 Fig. Rt trajectory fits for EpiFusion models on datasets with increasing observation

noise. The real Rt (black line) is smooth with increasing uncertainty in the fits introduced by

noisy data, where the sampling rate changed every 7 days. The row labels (right) indicate the

noise level (see Methods ‘Noise Testing’ for more information).

(TIFF)

S10 Fig. Trajectory fits for a random sample of 60 of the 500 models fitted in the Simula-

tion Based Calibration section. The true trajectory is marked by the black line, with the mean

inferred trajectory represented by the green line and the HPD intervals indicated by shaded

green regions.

(TIFF)

S11 Fig. (a, b, c) Runtime statistics for EpiFusion models with increasing tree size, outbreak

size (peak number of individuals infected), and outbreak length (days) using data from the

Simulation Based Calibration. Runtime scales linearly with tree size. Runtimes represent the

time taken (in minutes) to generate 2000 MCMC samples from EpiFusion on a Macbook Air
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M3 8-core CPU. EpiFusion has not yet been configured to run on a GPU. (d) Boxplots of the

number of effective samples from the posterior generated per minute for the four key EpiFu-

sion particle MCMC variables. Only the initial value of the infection rate beta is shown as beta

is fitted as a changing variable over time within the particle filter. According to these times, to

yield over 100 effective samples from the posterior for each variable will take approximately 25

minutes.

(TIFF)

S1 Table. Summary of the 500 replicate outbreaks modelled (with varying parameters) for

the Simulated Based Calibration section. We show characteristics of the datasets: the median

epidemic peak (max number of individuals infected at one time); number of cases; and tree

size. Next we show ‘scaled deviated from truth‘for gamma, phi and psi parameters. This is cal-

culated as the difference between the model mean and the true value of the parameter, scaled

by the true value of the parameter. Finally we show runtime in minutes to generate 2000

MCMC samples.

(XLSX)

S2 Table. . ReMASTER parameters for outbreak simulations for the Scenario Testing sec-

tion. The ‘Main Scenarios’ include the Baseline, Sampling and Transmission. Here constant

rates were used for each reaction. In the ‘sampling’ scenario, the rate of sampling was increased

10-fold on day 35. In the transmission scenario, the rate of transmission was increased 3-fold

on day 100. For the noise scenarios, either transmission or sampling rates were changed at reg-

ular intervals (intervals drawn from a Poisson distribution with rate 6 for the transmission

noise, and every 7 days for the observation noise). We added increased noise by drawing inter-

val rate values from distributions with increasing standard deviations.

(XLSX)

S3 Table. EpiFusion model parameter priors for each model in the Scenario and Noise

Testing section. For the Noise Testing section, the same priors were used for all models.

(XLSX)

S4 Table. EpiFusion model results by parameter for each model in the Scenario Testing

section.

(XLSX)

S5 Table. Calculation methods for metrics used to assess model performance.

(XLSX)
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