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SUMMARY 51 

Infections with the parasitic protozoan Trypanosoma cruzi cause Chagas disease, 52 

which results in serious cardiac and/or digestive pathology in 30-40% of individuals. 53 

However, symptomatic disease can take decades to become apparent, and there is a 54 

broad spectrum of possible outcomes. The complex and long-term nature of this 55 

infection places a major constraint on the scope for experimental studies in humans. 56 

Accordingly, predictive animal models have been a mainstay of Chagas disease 57 

research. The resulting data have made major contributions to our understanding of 58 

parasite biology, immune responses and disease pathogenesis, and have provided a 59 

platform that informs and facilitates the global drug discovery effort. Here, we provide 60 

an overview of available animal models, and illustrate how they have had a key impact 61 

across the field.  62 

 63 
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INTRODUCTION 76 

Chagas disease results from infection with the parasitic protozoan Trypanosoma cruzi 77 

and is a significant public health problem across much of Latin America, with an 78 

estimated 6-7 million people infected (1). In addition, the disease has begun to take 79 

on an increasingly global perspective, with an additional 0.5 million infected individuals 80 

now resident outside endemic regions, particularly in the US and Europe (2, 3). In the 81 

immediate future, there is little prospect of a useable vaccine against T. cruzi infection, 82 

the current drugs have limited efficacy, and the mechanisms of disease pathogenesis 83 

are poorly understood. Research progress in these areas has been limited by the long-84 

term nature of the infection, the range and complicated features of disease pathology, 85 

and the wide genetic diversity of the parasite. 86 

 87 

T. cruzi is a member of the Kinetoplastida (family Trypanosomatidae), a group of 88 

flagellated protozoa that also includes Trypanosoma brucei subsp. and Leishmania 89 

spp., parasites that cause African trypanosomiasis and leishmaniasis, respectively. 90 

The T. cruzi species has been sub-divided into six major genetic lineages, or Discrete 91 

Typing Units (DTUs TcI-TcVI) (4, 5), with a seventh, the bat-derived TcBat, that has 92 

more recently been described (6). TcI and TcII are thought to represent long-93 

established ancestral lineages, with TcV and TcVI proposed to be hybrids derived from 94 

TcII and TcIII. There have been reports of associations between DTUs and traits such 95 

as host-preference, drug-susceptibility and disease pathology. However, definitive 96 

evidence that provides a molecular basis for the proposed associations remains 97 

elusive. A recent review (5) is recommended for a comprehensive update on T. cruzi 98 

population biology. 99 

 100 
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T. cruzi is an obligate intracellular parasite, has an extremely wide host range, and is 101 

able to infect most, if not all mammals (Table 1). In endemic regions, transmission is 102 

primarily vector-mediated via hematophagous triatomine bugs (7). They deposit 103 

faeces contaminated with non-replicating metacyclic trypomastigote forms of the 104 

parasite onto the skin whilst taking a blood meal. Infection occurs when parasites are 105 

then rubbed or scratched into the wound in response to irritation, or transferred to sites 106 

where they can cross mucous membranes, such as the eye. Other important routes 107 

of infection include congenital transmission, the oral route through consumption of 108 

parasite contaminated food or drink, and medical interventions such as blood 109 

transfusion or organ transplantation (8 - 11). Upon infection, the flagellated metacyclic 110 

trypomastigotes invade host cells, escape from the parasitophorous vacuole and 111 

differentiate into the ovoid amastigote intracellular stage that is characterised by a 112 

considerably reduced flagellum length (Fig. 1). Amastigotes then replicate in the 113 

cytoplasm by binary fission in an asynchronous manner (12). In some host cell types, 114 

such as myocytes, parasite numbers can rise to beyond 1000, although a few hundred 115 

is more typical (13). This is followed by differentiation into non-replicative bloodstream 116 

form trypomastigotes, rupture of the host cell and release of these flagellated 117 

infectious forms into the bloodstream or interstitial spaces (Fig. 1). Parasite 118 

propagation is then enabled by infection of other host cells or by uptake in a triatomine 119 

blood meal, where the parasite undergoes a further round of differentiation into the 120 

insect-form epimastigote stage, that is flagellated and replicative.  121 

 122 

Human infections with T. cruzi are usually life-long (14). The initial acute stage is 123 

characterised by a patent parasitemia, and typically the infection manifests as a mild, 124 

non-specific, febrile-like illness, although in many cases it can be asymptomatic. As a 125 
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result, the majority of those infected are unaware of their status. On occasions, the 126 

acute stage disease can be more serious, especially in children, leading to 127 

encephalopathy or myocarditis, sometimes with fatal consequences (15, 16). The 128 

acute stage usually resolves within 6-8 weeks. This is accompanied by immune-129 

mediated reduction of the parasite burden and entry into an asymptomatic disease 130 

phase, that in 60-70% of those infected, lasts for their life-time. The remainder of 131 

infected individuals develop progressive cardiac and/or digestive pathology over a 132 

period of years, with a broad spectrum of outcomes (17, 18). Chronic T. cruzi infection 133 

is a leading cause of cardiomyopathy in many areas of Latin America and constitutes 134 

the main public health burden associated with the disease (19, 20). The digestive 135 

pathology, which includes megaoesophagus and megacolon, can also result in severe 136 

morbidity, with surgery and palliative care being the only options to alleviate symptoms 137 

(21, 22). 138 

 139 

The nitroheterocyclic agents benznidazole and nifurtimox are the drugs currently used 140 

to treat T. cruzi infections (23 - 25). However, both have important limitations, 141 

particularly against infections in adults that have progressed to the chronic stage. Cure 142 

rates are sub-optimal (typically 50-80%), and toxicity, combined with long 143 

administration periods (2-3 months), has a negative impact on the ability of patients to 144 

complete the course of treatment (26 - 28). It is also difficult to monitor treatment 145 

efficacy. Highly sensitive PCR methods to detect residual infection are confounded by 146 

the intermittent nature of bloodstream parasites, which are often confined to rare 147 

infection foci in deep tissue, and there is a lack of robust biomarkers for sterile cure 148 

(25). These factors have acted as a constraint on clinical trials, since they necessitate 149 

long follow-up periods to confirm curative outcomes and the subsequent impact on 150 
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preventing or alleviating symptoms. In addition, features of parasite biology, such as 151 

a possible role for dormancy or quiescence, could also have a role in recrudescence 152 

(29 - 31). Nevertheless, drug development consortia, which bring together big pharma 153 

with the not-for-profit and academic sectors, have had successes in advancing lead 154 

anti-parasitic compounds into pre-clinical testing (32, 33). As we describe in this 155 

review, predictive animal models have had a crucial role in driving progress in this and 156 

other areas of Chagas disease research. 157 

 158 

 159 

T. CRUZI: A HIGHLY PROMISCUOUS PARASITE 160 

Naturally-acquired infections with T. cruzi have been reported in at least 150 161 

mammalian species (34), and the consensus is that most, if not all mammals, are 162 

susceptible (Table 1). Infected animals are ubiquitous throughout South and Central 163 

America, Mexico and the Southern USA (35 - 40). In the latter area, infections amongst 164 

wild life have been detected from the East Coast to the West (41), and infection rates 165 

of 10 - 50% are commonly reported (42 - 45). The potential for infected pets and 166 

domestic livestock to act as a parasite reservoir (Table 1) is frequently highlighted as 167 

a potential threat to public health. Surveys in countries such as Brazil, Argentina, 168 

Colombia and the USA (46 - 49) show that dogs often harbour parasites and develop 169 

symptoms of Chagas disease similar to those in humans. For example, infected 170 

working dogs (US border control) can display serious Chagasic cardiac pathology (50, 171 

51). Although spill-over of T. cruzi infection from domestic animals to humans is widely 172 

considered an issue of concern, evidence suggests that geographical and 173 

epidemiological context are critical factors that determine the extent of this risk (40, 52 174 

- 54). In the Southern USA for example, although T. cruzi infections of triatome vectors 175 
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are widely reported, autochthonous human cases are rare. House construction 176 

methods and other structural barriers reduce the opportunities for home colonisation 177 

[55].   178 

 179 

In addition to mammals, infections of other vertebrate groups have occasionally been 180 

reported (Table 1). Short term infection in chickens following parasite inoculation has 181 

been observed, but these are transient, and this has led to the hypothesis that birds 182 

are largely refractory to prolonged natural infection, possibly as a result of higher 183 

ambient body temperature (41oC) and/or innate immune responses (56, 57). However, 184 

more recently, examination of an American barn owl (a road-kill victim in Mexico) has 185 

revealed T. cruzi infection in multiple organs and tissues (58). More research is 186 

therefore required to establish the species range and epidemiological significance of 187 

avian infections. There have also been reports of both naturally acquired and 188 

experimental infections in lizards (59, 60), although how widespread T. cruzi infections 189 

are within natural populations remains to be determined. Finally, experimental 190 

infections of zebra fish larvae have led to the suggestion that this host could serve as 191 

a model to investigate T. cruzi motility in vivo (61). The transparent nature of larvae 192 

has allowed parasite dissemination to a variety of organs and tissues to be imaged 193 

over an extended period (7 days post-infection). However, wider utilisation of the zebra 194 

fish model will be restricted by the apparent inability of the parasite to transition through 195 

its intracellular life-cycle in this background (Fig. 1).   196 

 197 

Because of the transient and often asymptomatic/non-specific nature of symptoms in 198 

humans, there are few data on the tissue distribution of parasites during the acute 199 

phase of the disease. In experimental mammalian infections, T. cruzi is pan-tropic 200 
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during the acute stage, and unusually amongst eukaryotic protozoan parasites, seems 201 

capable of invading and proliferating in any nucleated cell. In mice, for example, 202 

although the initial distribution profile can be influenced by the parasite strain or 203 

inoculation route (62 - 65), infections then disseminate rapidly such that parasites 204 

become readily detectable in the bloodstream and widely distributed in organs and 205 

tissues (66 - 69). This can be clearly demonstrated by in vivo and ex vivo 206 

bioluminescence imaging (see below for further details), which has revealed that acute 207 

stage infections are characterised by a high parasite burden in the skin, and in all 208 

major internal organs (Fig. 2). When infections transition to the chronic stage, immune-209 

mediated mechanisms reduce parasite numbers by up to 1,000-fold (70 - 72). They 210 

become restricted predominantly to a smaller number of sites, commonly the GI tract, 211 

skin and skeletal muscle, depending on the mouse:parasite combination (65, 70, 73). 212 

Persistence in the chronic stage reflects tissue-specific immune tolerance rather than 213 

tropism on the part of the parasite (65). In hamsters, which are amenable to in vivo 214 

and ex vivo imaging, parasites are also broadly disseminated during the acute stage, 215 

with the skin being a major site of infection (74).     216 

 217 

 218 

OVERVIEW OF ANIMAL MODELS USED IN CHAGAS DISEASE RESEARCH 219 

Non-human primates 220 

In Chagas disease research, mice, dogs, rats, hamsters and non-human primates 221 

(NHPs) are the most widely used animal models (Table 1). Of these, NHPs represent 222 

a small fraction of the total, reflecting access, cost factors, ethical issues, and their 223 

inappropriateness for high-throughput studies. Experimental T. cruzi infections of 224 

capuchin monkeys (Cebus apella) were described more than 30 years ago (75, 76), 225 
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however since then, reports of direct inoculation of NHPs with parasites have been 226 

rare. With the exception of vaccine protection studies (77), most recent experimental 227 

work has utilised baboons (Papio hamadryas) or cynomolgus macaques (Macaca 228 

fascicularis) that acquired natural infections from wild triatomine bugs within 229 

enclosures at primate research centres (78 - 81). Analysis of both experimental and 230 

naturally acquired infections indicates that disease progression and immune 231 

responses in these models have many similarities to the situation in humans. 232 

Macaques with naturally acquired infections have also been used in drug testing 233 

studies, such as those that led to the identification of an orally administered 234 

benzoxaborole as a candidate anti-T. cruzi drug (82). Although their close evolutionary 235 

relationship to humans offers advantages across a number of research areas, 236 

including congenital transmission (83), for the reasons outlined above, it is unlikely 237 

that NHP use in Chagas disease research will expand significantly in the foreseeable 238 

future. 239 

 240 

Mice and other rodents 241 

Mice have a long history as an animal model in experimental Chagas disease research 242 

(84 - 86), and are by far the most commonly used species. They offer many 243 

advantages. These include the availability of in-bred strains and transgenic models 244 

that display a wide range of susceptibility to infection (Table 2), and a spectrum of 245 

disease pathology that overlaps with that in humans (87 - 91). In addition, mice are 246 

cost-effective, easy to maintain, amenable to high-throughput experimentation, and 247 

there is a plethora of well-validated experimental reagents. Accordingly, murine 248 

models have played the central role in dissecting the immune response, exploring the 249 

mechanisms that underpin disease pathogenesis, and as integral components of the 250 
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drug development pipeline. The infection profile in mice mirrors that in humans, with 251 

an initial acute stage where parasites are readily detectable in the bloodstream 252 

(peaking 10 - 30 days post-infection, depending on the model), followed by transition 253 

to the life-long chronic phase in which bloodstream parasites are detectable only 254 

intermittently. With some mouse:parasite strain combinations, death is a common 255 

outcome (92, 93), from either acute myocarditis, cardiomyopathy or encephalopathy, 256 

pathologies that can also be fatal in human infections. Therefore, mice display a 257 

spectrum of disease severity that often overlaps with that observed in humans, making 258 

them valuable experimental models for studying Chagas disease pathology.   259 

 260 

A major drawback of most animal models, including mice, is that during the chronic 261 

stage of Chagas disease, it has been difficult to monitor the progression of infection, 262 

even using PCR-based methodologies. This is due to the transient low level 263 

parasitemia and the sequestration of rare infection foci within deep tissue sites. These 264 

technical limitations have been partially overcome by the development of in vivo 265 

bioluminescence imaging techniques applicable to murine infections (63, 65, 70, 94 - 266 

96). Using T. cruzi genetically modified to express a codon-optimised, red-shifted 267 

luciferase (emission max. 617 nm) (97, 98), it has been possible to image infections 268 

throughout the chronic stage, in real-time, using non-invasive approaches (65, 70). 269 

Two factors are responsible for the enhanced imaging properties of red-shifted 270 

luciferase; first, there is a reduced propensity of light towards the red-end of the visible 271 

spectrum to undergo scatter, resulting in improved tissue penetration; second, red light 272 

is less subject to absorbance within tissue, where haemoglobin is the principal 273 

chromophore. One limitation of bioluminescence imaging is that it is not readily 274 

applicable to visualising infections at a cellular level, for example, by using fixed tissue 275 
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sections or tissue clearing approaches. This arises because enzyme-mediated 276 

oxidation of the luciferin substrate, which results in light emission, is ATP-dependent. 277 

This limitation has now been overcome by linking fluorescent reporter genes in-frame 278 

with the gene encoding red-shifted luciferase, such that parasites express a fusion 279 

protein that is both bioluminescent and fluorescent (Fig. 3A) (99). Because 280 

fluorescence is an intrinsic property of the molecule, this has enabled infections to be 281 

imaged at single-cell resolution in tissue sections after bioluminescence-guided 282 

sampling (Fig. 2B, Fig. 3B, C, D) (73, 100). 283 

 284 

In addition to mice, other rodent species, particularly hamsters and rats, have been 285 

used as models to explore aspects of disease pathogenesis, although fewer studies 286 

have been reported. This may reflect the reduced availability of commercially available 287 

reagents, or the decreased experimental flexibility achievable with these larger 288 

rodents. Nevertheless, hamsters are amenable to bioluminescence imaging (74), and 289 

have proven useful for studying cardiac disease (101 - 103). Intriguingly, Syrian 290 

hamsters (Mesocricetus auratus) infected with the T. cruzi CL Brener strain (DTU 291 

TcVI) do not develop reproducible chronic cardiac pathology, but do display hindlimb 292 

muscle hypertonia and a gait dysfunction similar to spastic diplegia (74). Rats have 293 

similarly been utilised across the spectrum of Chagas disease research, including as 294 

models for congenital transmission (104, 105) and immune responses to infection (106 295 

- 108).  296 

 297 

Canine models 298 

Canine experimental models have also been widely used, particularly in the area of 299 

chemotherapy (109, 110). Studies have included attempts to optimise dosing 300 
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regimens with the front-line drug benznidazole (111, 112), the testing of novel lead 301 

compounds (113, 114), and assessment of combination therapy (115). Animals with 302 

both experimental and naturally acquired infections have been utilised in these 303 

experiments. In the case of vaccine research, canines have been the subject of 304 

several studies (116 - 119), although evidence for sterile protection remains elusive. 305 

The well-reported susceptibility of dogs to T. cruzi infection and the associated 306 

pathology has resulted in them becoming useful models for studies on basic 307 

immunology (120 - 123), disease pathogenesis (124, 125) and symptom alleviation 308 

strategies (126). In Chagas disease research, other species are less commonly 309 

utilised in an experimental context, at least in a systematic manner.  310 

 311 

 312 

THE ROLE OF ANIMAL MODELS IN DISSECTING THE IMMUNE RESPONSE TO 313 

T. CRUZI INFECTION 314 

Chagas disease pathology is predominantly immune-driven, with a chronic 315 

inflammatory aetiology leading to tissue damage, cardiac fibrosis, and neuronal 316 

destruction. The type of immune response depends on the phase of infection and the 317 

life cycle stage of the parasite. During the initial infection, neutrophils and 318 

macrophages are recruited to the bite-site, as the first responders. Parasites at this 319 

stage are metacyclic trypomastigotes (Fig. 1), pre-adapted for migration from the 320 

insect hindgut into the mammalian host. They are complement-resistant due to the 321 

expression of numerous complement regulatory proteins (for review, see ref #127). 322 

During the first few days, monocytes, macrophages and neutrophils constitute the 323 

greatest number of infected cells (128). Highly motile non-replicative extracellular 324 

bloodstream trypomastigotes, generated during the first infection cycle (Fig. 1), then 325 
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play the key role in systemic parasite dissemination, provoking an antibody response 326 

from B cells. At this stage, the parasite also engenders a polyclonal, antigen-327 

independent B-cell response through the release of mitogenic factors (128 - 131). In 328 

addition, trypomastigotes are exposed to other humoral immune factors, such as 329 

complement components, against which they employ multiple resistance mechanisms 330 

(127). The replicating intracellular amastigotes (Fig. 1) generate a T cell response in 331 

which CD8+ cytotoxic T cells are critical for parasite control. However, this response 332 

occurs more slowly against T. cruzi than against other microbial infections (128). As 333 

with many pathogens that have evolved to cause chronic infections, T. cruzi deploys 334 

a variety of mechanisms to evade or downregulate the immune response (71). In 335 

addition, with the widely disseminated nature of the infection, organ-specific and 336 

tissue-resident immune mechanisms then come into play. 337 

 338 

Immunity and pathology are inextricably linked during T. cruzi infection, whether 339 

cardiac, digestive or both (see below). However, in humans, the decades-long 340 

progression from infection to overt clinical disease complicates detailed understanding 341 

of the interplay between host and parasite. Therefore, experimental animals that 342 

display faster progression to symptomatic disease, and which offer options to 343 

standardise or vary multiple parameters, play a vital role in studies focussed on 344 

immune-pathology. Mice are by far the most commonly used animal in this area of 345 

research. Their small size makes them the model of choice for in vivo and ex vivo 346 

imaging (Fig. 2 and 3). It also allows experiments to be scaled up, statistically powered, 347 

and rapidly repeated, as required.  Limitations in these areas have been a criticism of 348 

some studies in which larger mammals are used as the infection model. The murine 349 

immune system has been widely studied and is genetically tractable, with many 350 
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immunological null mutants and conditional mutants available to researchers (Table 351 

2). The number of tools and reagents available to interrogate the immune response, 352 

such as monoclonal antibodies, is more comprehensive than for any other animal. 353 

Mice can also exhibit both digestive and cardiac Chagas disease (for example, 100, 354 

132), although models that develop late-stage GI tract megasyndromes have yet to be 355 

established. Here, we illustrate examples, amongst many, which highlight how mouse 356 

models have been key to dissecting the nature of the immune response to T. cruzi 357 

infection. 358 

 359 

The role of innate immunity 360 

Infected myeloid cells are thought to traffic T. cruzi from the parasite contaminated 361 

bite-site, around the host. Deletion of the signalling lymphocytic activation molecule 1 362 

(Slamf1) receptor on macrophages reduces both the number of amastigote nests, and 363 

the number of parasites per nest, in the hearts of acutely infected mice. Consequently 364 

Slamf1-/- mice do not normally succumb to a lethal challenge infection with the virulent 365 

TcY (DTU TcII) strain, whereas wild type mice die (133). Absence of Slamf1 renders 366 

macrophages and dendritic cells less able to support parasite replication, and it has 367 

been inferred that this results in fewer parasites being trafficked to the heart, explaining 368 

the resistance to acute myocarditis (133). Further research has identified strain-369 

specific differences in infection outcomes in the Slamf1 null background; some 370 

parasite strains behave similarly to TcY, with reduced virulence, whereas infections 371 

with other strains, such as TcVFRA (DTU TcVI), result in decreased macrophage 372 

NADPH oxidase activity and a higher parasite burden (134). These studies 373 

demonstrate the extent to which T. cruzi genetic variation is an important factor that 374 

adds complexity to Chagas disease research, and highlight how the flexibility of murine 375 



16 
 

models allows these types of differential response to infection to be captured. In terms 376 

of wider T. cruzi tissue dissemination, the relative contributions of bloodstream 377 

trypomastigotes versus the trafficking of infected myeloid cells has yet to be addressed 378 

in experimental models, particularly during the chronic phase. At this stage of the 379 

infection, bloodstream trypomastigotes are rare, but dynamic spatio-temporal changes 380 

in the location of infection foci is a characteristic feature (70). The recent development 381 

of dual reporter parasites (Fig. 3) will allow the application of new approaches to this 382 

question (99).  383 

 384 

Acquired immunity 385 

Murine models have been central to analysis of acquired immunity against T. cruzi 386 

infection, and have made major contributions to identifying the roles, and assessing 387 

the interplay, of B cells, CD4+ Th1 cells, Th17 cells, and most crucially, CD8+ cytotoxic 388 

T cells. For example, B cells function in the maintenance of the antigen specific CD8+ 389 

T cell response during murine infections, and B cell depletion results in a contraction 390 

of the CD8+ T cell population (135). The remaining T. cruzi-specific CD8+ T cells 391 

exhibit decreased effector function and a higher degree of apoptosis. However, the 392 

CD8+ T cell response in B cell-depleted mice can be rescued by administration of IL-393 

17A. Consistent with this, IL-17 receptor null mutant mice display a similar phenotype 394 

to B cell depleted-mice. Earlier work had demonstrated that T. cruzi infection triggers 395 

the development of an IL-17 secreting B cell population, where parasite trans-sialidase 396 

mediated sialylation of CD45 (a surface protein common to all white blood cells) 397 

activates signalling via the protein kinases Src and Btk, to promote IL-17 production 398 

(136). As vindication of the translatability of findings on the complex interplay of this 399 

arm of the acquired immune response in mouse models, this pathway also functions 400 
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in human B cells in vitro. This study highlights the co-ordination required between B 401 

and cytotoxic T lymphocytes, the two main adaptive effector cell types involved in long-402 

term control of T. cruzi infections. 403 

   404 

Studies in mice have also revealed a multitude of mechanisms which have evolved in 405 

T. cruzi that delay or disrupt the generation of a functional parasite antigen-specific 406 

response. One of these is the secretion of proteins that act as B cell mitogens in a T 407 

cell-independent, non-antigen specific manner. Three parasite proteins have been 408 

shown to have this property in murine infection models; proline racemase, malate 409 

dehydrogenase and trans-sialidase (129 - 131). This immune evasion strategy delays 410 

the generation of an effective, high-titre antibody response, allowing trypomastigotes 411 

to disseminate through the host during the acute phase of infection. 412 

 413 

Murine infection models have been crucial in establishing the major role of CD8+ 414 

cytotoxic T cells in bringing the parasite burden under control during the acute stage 415 

of infection, and continually suppressing their numbers during the chronic phase. Their 416 

importance reflects the cytosolic niche of T. cruzi across a wide range of nucleated 417 

cell types – only T cells which can recognise antigen presented in the context of MHC 418 

class I can eliminate pathogens of this type. The CD8+ T cell antigen specificity in 419 

mice is remarkably skewed towards immunodominant members of the parasite trans-420 

sialidase gene superfamily (137). Generation of this dominant T-cell response is 421 

independent of CD4+ T cell help for priming. However, the magnitude of the CD8+ 422 

response is significantly decreased in the absence of CD4+ T cell help, and the 423 

parasite burden cannot then be controlled (138). Given the extensive variability of the 424 

trans-sialidase superfamily (139), both within and between strains, this may explain 425 
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the reduced level of immune protection against heterologous challenge in drug-cured 426 

infection models (140), compared with the levels that are achievable with a 427 

homologous strain challenge. 428 

 429 

One of the strengths of mice as an experimental model is the availability of a vast 430 

range of transgenic strains which can be exploited to more precisely characterise 431 

immunological phenomena (Table 2). For example, T. cruzi infections of mice with 432 

genetically engineered tolerance to the two most immunodominant trans-sialidase 433 

epitopes demonstrated that this skewed T cell response does not impede the 434 

effectiveness of the immune response. The tolerized mice behaved similarly in their 435 

ability to control infections and to generate T. cruzi-specific memory T cells (141). This 436 

immunodominance phenomenon has been demonstrated in T cells from human 437 

patients, albeit to a lesser extent (137).   438 

 439 

Although CD8+ T cells play the major effector role in systemic control of T. cruzi 440 

infection, the possibility that other tissue-specific determinants are also involved can 441 

be explored using mouse models. For example, myocytes display lower levels of MHC 442 

I expression than many other tissues and increasing MHC I levels, by muscle-specific 443 

inducible expression, can enhance CD8+ T cell mediated control of infection. 444 

However, this effect is short-lived and the parasite-specific T cells then develop an 445 

exhausted phenotype, with parasite replication then increasing rapidly (142). CD8+ T 446 

cell-depletion in mice also results in expansion of the parasite burden in skeletal 447 

muscle, while the level in the gut remains constrained, suggesting that other immune 448 

effectors, or cell populations, are involved in control of parasites in the GI tissue niche 449 

(13). Tissue-specific elements in the immune control of parasite numbers, such as 450 
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decreased MHC I expression, may explain the life-long persistence of the parasite and 451 

its survival in specific reservoir niches. Addressing these issues in humans, is 452 

experimentally complex, and animal models have therefore been the main focus of 453 

research in this area. 454 

 455 

In humans, the reactivation of acute symptoms of Chagas disease in 456 

immunosuppressed patients with low CD4+ T cell counts, particularly those with 457 

HIV/AIDS, demonstrates that this T cell type plays an important role in controlling the 458 

infection (143).  A type I pro-inflammatory response is required to initiate control of 459 

infection, and CD4+ Th1 cells play a significant role in controlling both systemic and 460 

mucosal infection (144, 145). In murine footpad infection models, during the initial 461 

stages of infection, the IFN-γ required for parasite control is produced primarily through 462 

infiltrating CD4+ Th1 cells, rather than NK cells (128). In this model, CD4+ T cells 463 

contribute more to the initial control of the nascent infection than CD8+ T cells. Mice 464 

lacking CD4+ T cells are less able to control the initial parasite growth than mice 465 

lacking CD8+ cells. However, both T cell populations are required for long-term 466 

control, as has been demonstrated by infections carried out in mice lacking expression 467 

of MHC class I, MHC class II, or both (146). Furthermore, CD4+ T cell help is 468 

necessary for the antigen specific CD8+ T cell population to reach its maximal level 469 

(138).  470 

 471 

As indicated above, IL-17A plays an important role in orchestrating protection against 472 

T. cruzi infection. IL-17 is secreted by many immune cell types, including B cells and 473 

γδ T cells. Adoptive transfer experiments using trans-sialidase-specific in vitro derived 474 

Th1 and Th17 cells, into RAG-/- immunodeficient mice, showed that a combination of 475 
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Th17 and CD8+ T cells provides greater protection against lethal challenge than the 476 

transfer of Th1 and CD8+ T cells. CD8+ cells alone do not provide significant control 477 

of infection. These experiments indicate a significant role for Th17 cells in driving the 478 

protective cytotoxic CD8+ T cell response, and that complete protection could be 479 

generated in the absence of Th1 T cell help (147). In contrast to B cells, the role of 480 

Th17 cells in CD8+ T cell help was independent of IL-17A production, and was instead 481 

dependent on IL-21, a cytokine not produced in significant quantities by Th1 cells. 482 

(147). 483 

 484 

The role of non-murine models in exploring the immune response 485 

Other animal models have been utilised less extensively, and at a less detailed level, 486 

to explore the immune response to T. cruzi infection. In the case of canines, as with 487 

other non-murine models, the reduced availability of tools and reagents, the limitations 488 

of current genetic modification procedures, and the lack of defined in-bred strains have 489 

rendered them less suitable. The examples below illustrate some of the difficulties 490 

associated with the use of canines as experimental models. A positive correlation was 491 

found between levels of IgG1 antibodies and myocarditis in dogs, in both the acute 492 

and chronic phase (125, 148). In contrast, a separate study (149) found a negative 493 

correlation between IgG1 levels and cardiomegaly in chronic phase infections. These 494 

studies employed experimentally infected mongrel dogs (148), naturally infected stray 495 

dogs (125) and experimentally infected beagles (149). Therefore, compared to 496 

experiments with mouse models, in canine studies, the control of variables such as 497 

host and parasite genetics, environment and co-infections are intrinsic issues that are 498 

more difficult to control, and can confound comparisons between different studies. 499 

However, dogs are important in the context of Chagas disease - they act as a reservoir 500 
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of infection and live in close proximity to humans. Further research on how they 501 

respond to infections is therefore epidemiologically relevant and justified.    502 

 503 

Immune responses have been also been studied in naturally infected macaques, 504 

where the infecting parasite strains are wild isolates, rather than well-characterised 505 

laboratory strains. To add complexity, naturally infected animals can often be infected 506 

with multiple T. cruzi strains, and possibly other pathogens. Nevertheless, such 507 

studies have value. In one example, 15 chronically infected macaques were divided 508 

into three groups based on pathology - asymptomatic, mild or moderate Chagasic 509 

cardiomyopathy (150). There were some differences between the three populations, 510 

such as higher levels of circulating granzyme A+ NK cells and CD8+ T cells in the 511 

symptomatic versus asymptomatic populations. The asymptomatic population 512 

displayed a higher level of circulating and splenic monocytes, NK, and NKT cells than 513 

the non-infected control animals. In contrast, those with symptomatic cardiomyopathy 514 

(mild or moderate) exhibited a high degree of pro-inflammatory responses composed 515 

of activated CD8+ T cells and B cells, with increased levels of TNF-α and IFN-γ. These 516 

findings echo some of the results obtained from human Chagas patients at various 517 

stages of the disease, suggesting that immune driven pathogenesis in the macaque 518 

has similarities with the process in humans. 519 

 520 

In another study, in which macaques had been naturally infected with parasites from 521 

two different DTUs (TcI and TcIV), T effector memory cell (CD28- CD95+) levels were 522 

higher than in uninfected controls. In addition, the infected cohorts had higher 523 

proportions of fully differentiated memory (CD45RA- CD27- CD28-) CD8+ T cells. This 524 

was also the case for the CD4+ memory T cell population (81). However, there was 525 
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no correlation between the immune response, disease status, and the parasite DTU. 526 

Although there was a correlation between antibody levels and parasitemia, this did not 527 

extend to cellular immunity or disease status. NHPs offer advantages for studying the 528 

immune response, based on their closer evolutionary link to humans, but mice seem 529 

likely to continue being the predominant animal models for exploring this aspect of 530 

Chagas disease. The research flexibility that they offer allows more expansive and 531 

tightly controlled studies to be undertaken, with an enhanced scope for downstream 532 

confirmational experiments.   533 

 534 

 535 

WHY DOES CHRONIC T. CRUZI INFECTION RESULT IN HEART DISEASE? 536 

Chronic cardiac abnormalities are the most common manifestation of T. cruzi infection 537 

(17-20), although there is a wide range of disease outcomes, and it can take decades 538 

for symptoms to become apparent. Human experimental research in this area is 539 

largely limited to observational studies and a small number of clinical trials (27, 151-540 

153). In humans, cardiac complications range from minor myocardial issues, through 541 

to arrhythmias, sudden organ failure and death (19-20). Identifying the triggers of 542 

pathology and the determinants of disease progression and severity have been key 543 

research questions. Earlier studies had suggested that progressive Chagasic heart 544 

disease is an autoimmune-driven process that could continue, even in the absence of 545 

parasites, through involvement of autoreactive antibodies and T cells (154 - 158). It is 546 

widely considered that this hypothesis had a negative impact on both anti-parasitic 547 

drug development and vaccine design strategies. However, a critical role for 548 

autoimmunity has now been largely discounted, with animal experimentation having 549 

been crucial in reaching this conclusion. Studies using neonatal heart transplants in 550 
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mice demonstrated that on-going cardiac infection is a pre-requisite for tissue damage 551 

(159). Autoimmune phenomena that do develop in murine infections subside when 552 

parasites are cleared by drug treatment (19). Curative benznidazole treatment during 553 

the acute stage of murine infections prevents the development of cardiac pathology, 554 

whereas if treatment is postponed, the beneficial effects are reduced, since irreversible 555 

damage has occurred in the interim (Fig. 4) (132). Early treatment of infected mice 556 

with other experimental trypanocidal agents (160), or with vaccine-based therapy, 557 

produced a similar trend in terms of an ability to block chronic disease progression 558 

(161). In dogs, comparable outcomes were achieved following benznidazole 559 

treatment, even when sterile cure was not achieved (162, 163). Collectively, these 560 

studies have important implications for public health policy - they suggest that early 561 

treatment of T. cruzi infections will be crucial to maximise the likelihood of preventing 562 

progressive cardiac pathology. The translational value of this inference was confirmed 563 

by the results of the BENEFIT clinical trial, which revealed that benznidazole treatment 564 

of patients with advanced Chagas cardiomyopathy is delivered too late to alleviate the 565 

disease (27). 566 

 567 

During chronic stage T. cruzi infections, the parasite load in mice is extremely low, 568 

although in vivo imaging studies show that the remaining infection foci are 569 

metabolically active and highly dynamic in space and time (65, 70). The gut and skin, 570 

and in some strains, skeletal muscle, appear to provide immunologically permissive 571 

niches that permit long-term maintenance of the infection (Fig. 5). Our hypothesis is 572 

that these tissues act as reservoirs with potential for intermittent trafficking of 573 

parasites, or parasite-infected cells, to other sites such as the heart (164). Detectable 574 

cardiac infections in mice are intermittent, and their frequency is dependent on the 575 
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mouse:parasite strain combination (65, 132 ). For example, in BALB/c mice chronically 576 

infected with the T. cruzi CL Brener strain, analysis reveals that <10% of animals have 577 

detectable cardiac infection at any one time, whereas in C3H/HeN mice infected with 578 

T. cruzi JR (DTU TcI) parasites, cardiac infections exceed 80% (Fig. 5A) (65). 579 

Significant cardiac fibrosis can be detected in both these models, although it is more 580 

severe in the latter. A possible explanation for these observations is that episodic re-581 

infections of the heart are seeded from more long-term permissive tissues sites, at a 582 

low frequency in the BALB/c mouse, and a higher frequency in the C3H/HeN mouse. 583 

As this is a process that occurs for the life-time of the infected individual, the resulting 584 

cardiac-localised inflammatory immune responses, including interferon--induced 585 

nitric oxide, would then continuously eliminate the parasites, but give rise to collateral 586 

tissue damage (164). The cumulative nature of cardiac pathology can be explained by 587 

the fact that heart muscle has a low regenerative capacity (165), and the tissue repair 588 

involves fibro-fatty replacement to compensate for the loss of cardiomyocytes.  589 

 590 

In humans, assessment of parasite tissue distribution during the chronic asymptomatic 591 

stage is a major technical challenge, and most investigative research has focussed on 592 

material derived from autopsies, or from patients undergoing heart transplants. 593 

However, such “end-point” analysis of parasite location may not be representative of 594 

earlier phases of disease development, such as those occurring in on-going 595 

asymptomatic infections, the period during which immune-mediated tissue damage is 596 

accumulating. The frequent inability to detect infection foci in post-mortem histological 597 

sections from patients with chronic heart disease (166-170), which was originally taken 598 

as evidence for an autoimmune aetiology (171), can now be viewed as a consequence 599 

of intermittent transient cardiac infections. This type of mechanism could provide an 600 
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explanation for the variable nature of symptomatic pathology, whereby timing and 601 

severity are influenced by the impact of host and parasite genetics and a range of 602 

environmental factors. Animal models, particularly murine, provide an accessible 603 

platform that will allow these issues to be experimentally addressed.  604 

 605 

 606 

ANIMAL MODELS FOR DIGESTIVE CHAGAS DISEASE (DCD)       607 

While there have been encouraging advances in understanding the pathogenesis of 608 

cardiac Chagas disease, progress on DCD has been more limited. Anti-parasitic 609 

chemotherapy is not recommended for T. cruzi-positive individuals who display 610 

digestive symptoms, but retain normal cardiac function (14,172). Reasons include the 611 

lack of systematic clinical trials to assess treatment efficacy in this context, and the 612 

absence of pre-clinical animal studies to justify treatment and inform study design. 613 

Therapeutic options for DCD are instead focussed on palliative measures, such as 614 

dietary changes and surgery to remove the affected bowel region (14, 173 - 175), with 615 

considerable risk of mortality when surgical intervention is used against late-stage 616 

disease (176). To date, there have been no clinical trials to investigate the 617 

effectiveness of the front-line drug benznidazole, or other therapeutic agents, 618 

specifically against DCD.  619 

 620 

Human DCD clinically presents as dilation and dysfunction of the gastrointestinal (GI) 621 

tract, which causes symptoms such as abdominal pain, achalasia, constipation and 622 

faecaloma (173, 174). In severe cases, progressive organ dilatation can develop into 623 

megasyndromes, typically affecting the colon or the oesophagus. Dilation stems from 624 

the degeneration of enteric neurons, a process that leads to dysperistalsis and smooth 625 
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muscle hypertrophy. Early theories of DCD pathogenesis, based on human autopsy 626 

studies, suggested that pathology stemmed from irreversible neuron losses that 627 

occurred during the initial acute stage of infection, which only became apparent years 628 

later, after being ‘unmasked’ by subsequent age-related denervation (177 - 179). This 629 

hypothesis was supported by an inability to regularly detect gut-resident parasites in 630 

chronic disease patients.  However, studies have since repeatedly detected T. cruzi 631 

DNA, antigen and inflammatory infiltrates in post-mortem and biopsy samples from 632 

human DCD cases (180 - 184), suggesting that chronic parasite persistence could 633 

have a role in pathogenesis. By inference, anti-parasitic drug treatment may have 634 

potential benefits in terms of limiting disease progression. However, as set out above 635 

for cardiac disease, interpretation of data from advanced and terminal stages of the 636 

disease has many caveats in terms of the underlying mechanisms of pathogenesis, 637 

and how these relate to the temporal or spatial distribution of infection. 638 

 639 

Given the long-term, multifactorial nature of DCD, studying the cause-and-effect 640 

relationships between infection, host response and tissue pathology can only be 641 

achieved, realistically, using experimental animal models. There is no well-established 642 

model of advanced digestive megasyndromes, although enlargement of parts of the 643 

GI tract has been reported in some observational studies of experimentally infected 644 

mice (185), rats (186), rabbits (187), hamsters (188) and macaques (189). 645 

Nevertheless, seminal studies conducted in Brazil in the 1960s showed the possibility 646 

of reproducing histopathological aspects of human DCD in rats and mice (190 - 193). 647 

The first major mechanistic insight, namely that much of the collateral nervous tissue 648 

damage was dependent on the production of reactive nitrogen species, as part of the 649 

anti-parasitic inflammatory response, was first suggested from studies using a nitric 650 
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oxide synthase (NOS) inhibitor in a Wistar rat model (194), findings that were 651 

subsequently confirmed by studies using transgenic mice (195). 652 

 653 

The most commonly reported animal model of DCD is based on T. cruzi Y strain 654 

infection of outbred Swiss mice, which exhibit significant acute denervation and 655 

delayed intestinal transit (196 - 200). One drawback of this model is related to the high 656 

virulence of the TcY strain - in order to study the chronic phase, sub-curative 657 

benznidazole treatment is typically given to elongate the life-span of infected mice. 658 

Nevertheless, the data show that in chronic T. cruzi infection, there is decreased 659 

intestinal motility and an impaired neuronal cholinergic response, providing further 660 

insight into enteric nervous system dysfunction in experimental DCD. Other murine 661 

models have been used to investigate key questions related to disease progression; 662 

for example, why do only a relatively small subset of infected people go on to develop 663 

DCD? In this context, it is intriguing that deletion of the nucleotide-binding 664 

oligomerization domain-containing protein 2 (NOD2) gene, which encodes an 665 

intracellular pathogen sensing protein, results in chronic dysperistalsis in normally 666 

DCD-resistant C57BL/6 mice infected with the T. cruzi RN25 (DTU TcII) strain (201). 667 

Experiments such as this further highlight the potential of transgenic mouse models to 668 

identify host determinants of clinical outcomes. 669 

 670 

As outlined above, bioluminescence imaging and PCR studies of chronically infected 671 

mice have demonstrated that the GI tract serves as a major long-term reservoir site of 672 

T. cruzi infection, particularly the stomach and large intestine (13, 70, 100, 202 - 206), 673 

and that this is reproducible across diverse mouse:parasite strain combinations. These 674 

observations have underpinned the development of a robust model for DCD that 675 
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involves C3H/HeN mice infected with the T. cruzi JR strain (100, 206). This 676 

combination recapitulates several of the key clinical manifestations, including a 677 

significantly delayed GI transit linked to localised persistence of the parasite, and 678 

associated lesions in enteric neurons within the wall of the large intestine (Fig. 6). 679 

Interestingly, the extent of this transit delay varies considerably between different 680 

mouse:parasite strain combinations, indicating that both host and pathogen genetics 681 

are determinants of pathology, which may be reflective of disease diversity in humans.  682 

 683 

With the development of these mouse models, and as our understanding of DCD 684 

continues to evolve, it has become possible to experimentally interrogate whether 685 

curative drug treatment can prevent the onset of DCD, or mitigate its severity. 686 

Additionally, the models provide a framework to explore the underlying mechanisms 687 

of neuronal denervation. Curative benznidazole treatment, initiated towards the end of 688 

the acute stage was found to reverse DCD, restoring normal GI transit time, in 689 

association with a significant recovery of myenteric neuron density in the colon (206). 690 

Non-curative treatment, which initially reduced the parasite burden close to 691 

background levels led to transient alleviation of DCD, but this was then followed by 692 

gradual relapse of the residual infection and an eventual return of symptoms. Analyses  693 

of host gene expression in colon tissue following curative treatment showed that the 694 

observed functional recovery and regeneration of the enteric nervous system were 695 

linked to resolution of chronic inflammation, and a transition to a tissue proliferative 696 

repair response by neuronal tissue. This included the upregulation of multiple enteric 697 

nervous system related genes (206). Therefore, animal studies indicate that acute 698 

denervation does not fully account for the development of chronic disease symptoms, 699 

challenging the previous consensus on the nature of DCD aetiology (177, 178). 700 
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Furthermore, they provide an experimental rationale for timely therapeutic 701 

intervention, targeted at the parasite, as a means of preventing or slowing the 702 

development of symptomatic DCD. 703 

 704 

The potential of organoids 705 

It is clear that comprehensive approaches combining advanced molecular techniques 706 

and robust animal models are essential to unravel the complex interplay between 707 

different stages of T. cruzi infection and enteric neuropathy. Recent reports have also 708 

uncovered new levels of interconnection between the gut immune and nervous 709 

systems (207 - 209), which were previously unrecognised. As alluded to above, 710 

current insights into the complex neuro-immune interactions triggered by T. cruzi, and 711 

their effects on health and infection, are mostly based on animal models. Although 712 

animal models are essential to advance pre-clinical in vivo studies, there could be 713 

differences between human and rodent biological systems that are not sufficiently 714 

captured by experimental models. To bridge this gap, the development of advanced 715 

ex vivo technologies derived from human cells will be a key step. These technologies 716 

should closely mimic tissue-like physiological processes, be more accessible, 717 

reproducible and scalable to allow the effective study of biological processes.  718 

 719 

The development of 3D tissue cultures known as organoids, derived from stem cells, 720 

has significantly transformed biomedical research by offering an alternative to animal 721 

models. The creation of 'mini-guts' from pluripotent stem cells, which were among the 722 

first organoids capable of forming a gut epithelial layer (210), marked a significant 723 

advancement in the field. Currently, human intestinal organoids can be developed 724 

from human embryonic and induced pluripotent stem cells which replicate the intricate 725 
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architecture of the human intestine (211, 212). The field has further advanced by 726 

integrating a functional enteric nervous system into the human intestinal organoids 727 

(213, 214). Such technologies will have enormous potential in the field of T. cruzi 728 

infection biology. For example, in the case of drug development, only a small number 729 

of agents that are effective in 2D human cell culture, prove to be curative when moved 730 

to in vivo testing, highlighting the need for a platform that bridges in vitro cell culture 731 

and animal models. Currently, most researchers employ human intestinal organoids 732 

in their most basic form, consisting solely of the gut epithelium (215 - 218). More 733 

recently, this approach has been applied to modelling T. cruzi infection using mouse 734 

gut epithelial organoids (219). However, the simplicity of these systems restricts their 735 

ability to explore more complex questions in infection biology. To effectively utilise gut 736 

organoid technology for studying neuro-immune cross-talk, such as that involved in 737 

interactions with T. cruzi, it will be crucial to develop innovative approaches that 738 

encompass both the immune and enteric nervous systems. The field has moved 739 

towards developing this integrated approach (220 - 223), particularly in the context of 740 

enteric bacterial, viral and parasitic GI tract pathogens, including helminths and 741 

Cryptosporidia (224 - 226). Applications of these next-generation human intestinal 742 

organoids will overcome current limitations, provide a new system for drug testing, and 743 

compliment data generated through animal experimentation. 744 

 745 

 746 

THE ROLE OF ANIMAL MODELS IN DRUG DEVELOPMENT 747 

The limited effectiveness and toxicity of the current front-line drugs, benznidazole and 748 

nifurtimox (25, 227, 228), have been major drivers of the global effort to produce 749 

improved therapeutics for T. cruzi infections. Mice have been the most frequently used 750 
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animal model in the drug development field, where iterative approaches and high-751 

throughput experimental capacity are crucial. The translational value of drug efficacy 752 

data obtained using murine models is supported by a number of observations. In both 753 

humans and mice, benznidazole and nifurtimox treatment can result in sterile cure (26 754 

- 28, 111, 229), whereas the azole drug posaconazole fails to produce regular curative 755 

outcomes (26, 230). Also, murine infection profiles and the nature of disease pathology 756 

display many similarities to that observed in humans (65, 70). Technical advances, 757 

such as the development of highly sensitive in vivo bioluminescence imaging 758 

procedures (98), have further enhanced the utility of murine models in drug testing. 759 

With the availability of bioluminescent strains that encompass the wide spectrum of 760 

parasite genetic and phenotypic diversity (231), there is now the means to ensure that 761 

lead compounds have in vivo activity that covers the T. cruzi species, prior to being 762 

progressed into clinical trials.  763 

 764 

With T. cruzi infections, a pressing issue associated with drug efficacy testing, in both 765 

humans and animal models, is the confirmation of sterile cure. As mentioned above, 766 

the extremely low parasite burden during chronic stage infections, the intermittent 767 

nature of parasitemia, and the sequestration of rare infection foci in deep tissue sites 768 

are problematic issues, that can lead to false-cure diagnoses. In clinical trials, this has 769 

necessitated long-term follow-up using PCR-based diagnostic approaches, which 770 

have cut-off points that vary between different studies (26 - 28, 232). Similar 771 

challenges are also associated with animal models. For example, microscopic 772 

detection of bloodstream parasites is infrequent during the chronic stage (233), and 773 

PCR methodologies, even at a tissue level, are subject to variable read-outs (111, 774 

230).  775 
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 776 

Highly sensitive in vivo bioluminescence imaging has been a valuable addition to the 777 

drug testing pipeline (229, 230). It provides a capacity for real time non-invasive 778 

monitoring of infection and is a scalable procedure. The process can also be adapted 779 

to optimise the detection of parasites that survive treatment (Fig. 7). To achieve this, 780 

three weeks following the cessation of treatment, mice are typically 781 

immunosuppressed using cyclophosphamide to promote the outgrowth of parasite 782 

persisters. At the final stage, organs and tissues can be removed and examined by ex 783 

vivo imaging (Fig. 7B), a procedure where the limit of detection is <12 parasites (73). 784 

Two recent reports serve to illustrate where bioluminescence imaging has played an 785 

integral role in progressing promising treatments towards clinical testing. First, a new 786 

class of cyanotriazole compounds that selectively inhibit the parasite topoisomerase 787 

II was shown to rapidly cure T. cruzi infections (32). Second, a series of 788 

pyrrolopyrimidines that inhibit T. cruzi cytochrome b were found to cure infections 789 

when administered in combination with low sub-efficacious doses of benznidazole 790 

(33). End-point ex vivo imaging can also add value to the process of compound 791 

assessment. Using parasites that express bioluminescent:fluorescent fusion proteins, 792 

infections can be imaged at single cell resolution (73, 99). With non-curative 793 

treatments, this allows residual parasites to be localised to specific organs or tissue 794 

sites, to determine if non-equitable drug distribution could be a factor in 795 

recrudescence. The immunosuppression step is omitted in this case, to avoid 796 

perturbing parasite distribution. At an experimental level, other approaches such as 797 

incorporation of the thymidine analogue EdU into parasite DNA, can also be used to 798 

assess the replicative status T. cruzi amastigotes that have survived in vivo drug 799 

treatment (234).     800 
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 801 

In addition to in vivo testing of compound efficacy, mice are often the model of choice 802 

for initial assessment of pharmacokinetic properties, toxicity, compound distribution 803 

and half-life (235 - 238). However, differential compound metabolism between mice 804 

and humans could be a significant factor in reducing the cross-species translational 805 

value of drug efficacy data. A recent innovative approach to circumventing this 806 

problem has involved the generation of transgenic mice in which several of the genes 807 

encoding members of the drug-metabolising cytochrome P450 superfamily (239) have 808 

been replaced with their human equivalents. These “humanised” mice should increase 809 

the predictive power of in vivo pre-clinical testing and enhance the relevance of 810 

pharmacokinetic studies. 811 

 812 

Other animal models are less commonly used in the drug development pipeline. As 813 

mentioned above, macaques that were naturally infected with T. cruzi played an 814 

important role in characterising the curative potential of a class of benzoxaboroles 815 

(82), and canine models have often been used to explore drug efficacy, with treatment 816 

of both naturally acquired and experimental infections (109 - 115). However, given the 817 

logistics and financial costs associated with research using larger mammals, and the 818 

reduced experimental flexibility, it is difficult to foresee a situation where they replace 819 

mice as the default model for routine in vivo testing of compound efficacy. 820 

Nevertheless, these other animal models have potential for contributing significantly 821 

to our understanding of disease pathogenesis (51, 101, 120, 121, 123 - 126) and the 822 

role of anti-parasitic drug treatment in blocking the progression of chronic disease 823 

pathology (114, 120).  824 

 825 
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 826 

CONCLUDING REMARKS 827 

The most important questions in Chagas disease research are: (i) What are the drivers 828 

of pathology, and can we intervene to block disease progression? (ii) Can we develop 829 

new anti-parasitic drugs with improved efficacy and reduced toxicity? Predictive animal 830 

models have had a central role in the fundamental research required to address these 831 

issues, and are integral components of the drug development pipeline. These studies 832 

have provided new insights into the triggers of both cardiac and digestive pathology, 833 

enabled the immune response to be explored at exquisite detail, and helped advance 834 

new therapeutics into the pre-clinical phase. Although the extensive host range of the 835 

T. cruzi parasite provides a wide variety of experimental options, mice remain by far 836 

the most commonly used animal models. Flexibility and convenience are major 837 

factors, together with on-going improvements in imaging technology, and the 838 

availability of in-bred strains and transgenic lines.   839 

 840 
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Figure 1. Mammalian stages of the Trypanosoma cruzi life-cycle. Flagellated 1928 

metacyclic trypomastigotes are transmitted by triatomine bugs and infect mammalian 1929 

cells where they differentiate into replicative amastigotes that divide by binary fission. 1930 

After 4-7 days, the parasites transform into the non-replicative bloodstream form 1931 

trypomastigote stage, escape from the host cell, and continue to propagate the 1932 

infection. In the example shown, MA104 cells (an African Green monkey foetal kidney 1933 

cell line) were infected with T. cruzi CL Brener parasites (DTU TcVI) expressing 1934 

mScarlet fluorescence (red). mScarlet is co-expressed with luciferase as part of a 1935 

bioluminescence:fluorescence fusion protein reporter encoded by an engineered gene 1936 

stably integrated into a ribosomal RNA expression site (99). DNA (host and parasite) 1937 

is stained with Hoechst (blue). White scale bars = 10 M. The metacyclic 1938 

trypomastigote (left) has been enlarged for visual effect. 1939 

 1940 

 1941 

Figure 2. Using bioluminescent/fluorescent imaging to monitor murine acute 1942 

stage Trypanosoma cruzi infections. BALB/c mice were infected with the T. cruzi 1943 

(CL Brener strain) that had been genetically modified to express a fusion protein that 1944 

is both bioluminescent and fluorescent (see Fig. 3) (99). (A) Ex vivo bioluminescence 1945 

imaging reveals the widespread dissemination of T. cruzi in mouse tissue and organs 1946 

at the peak of the acute stage of infection (day 14). (B) Fluorescence imaging of 1947 

various tissue sections obtained from acutely infected mice (the cardiac muscle and 1948 

bladder images are from reference 234). With the exception of skeletal muscle, host 1949 

cell DNA is pseudo-coloured red (DAPI), and parasites are green (or yellow when 1950 

imaged on a red background). In the skeletal muscle image, DNA is stained blue (also 1951 
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DAPI), with actin stained in red (mouse mAb; Thermo Fisher MA5-12542), giving the 1952 

typical striated pattern. Scale bars = 20 m 1953 

 1954 

Figure 3. Single cell resolution imaging of a chronic Trypanosoma cruzi 1955 

infection focus in the mouse colon. (A) Organisation of the 1956 

bioluminescent:fluorescent fusion gene, following integration into a T. cruzi ribosomal 1957 

locus (99). The red-shifted (R-S) luciferase, linker (black), and mNeonGreen 1958 

(mNeonG) sequences are indicated. (B) Ex vivo bioluminescence image of an external 1959 

colonic wall layer from a chronically infected CH3/HeN mouse imaged using the IVIS 1960 

Spectrum system (Caliper Life Science). (C) Detection of fluorescent parasites in the 1961 

tissue using a Zeiss LSM880 confocal microscope (Ex506 nm, Em517 nm) after 1962 

bioluminescence-guided imaging. (D) Serial z-stack sections of the tissue 1963 

encompassing the infected cell can be used to generate a 3-D image, with parasite 1964 

numbers then determined on the basis of DNA staining (DAPI, blue). White arrows 1965 

indicate each parasite (adapted from 73).  1966 

 1967 

 1968 

Figure 4. The development of cardiac fibrosis in Trypanosoma cruzi infected 1969 

mice can be blocked when curative benznidazole treatment is initiated in the 1970 

acute stage, but not the chronic stage. BALB/c mice infected with T. cruzi (CL 1971 

Brener strain) were subject to curative benznidazole treatment (20 days, 100 mg/kg). 1972 

(A) Quantification of collagen content (Masson’s trichome stain) in cardiac sections as 1973 

a marker of fibrosis. Data are from mice where treatment was initiated 14, 22, 66 or 1974 

100 days post-infection (132), and the cardiac tissue then harvested 169 days post-1975 

infection. (B) Micrographs highlighting the extent of cardiac fibrosis (collagen 1976 
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deposition – blue) in control mice, and infected mice where benznidazole treatment 1977 

was initiated 22 or 110 days post-infection.  1978 

 1979 

Figure 5. Tissue distribution of Trypanosoma cruzi during chronic murine 1980 

infections revealed by ex vivo bioluminescence imaging. BALB/c mice were 1981 

infected with T. cruzi CL Brener (DTU TcVI), and C3H/HeN mice were infected with T. 1982 

cruzi JR (DTU TcI), as indicated. (A,B) When infections had progressed to the chronic 1983 

stage (>100 days), tissues and organs were arranged as shown and examined by ex 1984 

vivo bioluminescence imaging (73). (C) Ex vivo imaging of skin, fur side down and with 1985 

adipose tissue removed. Upper image; BALB/c, Tc CL Brener. Lower image; 1986 

C3H/HeN, Tc JR. Parasite strains express a red-shifted luciferase gene that was 1987 

integrated into a T. cruzi ribosomal locus (70).   1988 

 1989 

 1990 

Figure 6. Visualising the impact of T. cruzi infection on enteric neurons. (A) 1991 

Compressed z-stack fluorescence image of a colon tissue whole-mount from a 1992 

C3H/HeN mouse 42 days post-infection (DPI) with a green fluorescent T. cruzi JR 1993 

reporter strain. Expanded panels (right) show 4 m sliced single z-stack images of 1994 

parasites (green) in close proximity to nerves (red; anti- Tuj1) in the region highlighted 1995 

by the white arrow. Host cell DNA, grey. (B) Compressed z-stack whole-mount 1996 

immunofluorescence images of colon tissue neuronal cell bodies in the myenteric 1997 

nerve plexus of a C3H/HeN mouse 336 DPI with T. cruzi JR (anti-Hu; magenta). The 1998 

diffuse cell morphology (lower image) illustrates the progressive deterioration of the 1999 

enteric nervous system during chronic stage DCD. 2000 

 2001 
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 2002 

Figure 7. Investigating Chagas disease drug efficacy using bioluminescence 2003 

imaging. (A) BALB/c mice chronically infected with T. cruzi CL Brener were treated 2004 

orally with 30 mg/kg benznidazole (BNZ) for either 5 or 20 days. Ventral and dorsal in 2005 

vivo images of 2 mice per drug regimen are shown. 117 days post-infection (DPI), both 2006 

mice that were treated for 5 days were designated as non-cured, and euthanised 2007 

(yellow dots). Mice given with the longer dosing regimen, were further treated with 2008 

cyclophosphamide (injected with 200 mg/kg on 136, 140 and 144 DPI) to promote the 2009 

outgrowth of any remaining parasites.  (B) Ex vivo images of organs and tissues from 2010 

the mice treated with benznidazole for 20 days (176 DPI). Mice that are 2011 

bioluminescence negative by both in vivo and ex vivo imaging are designated as 2012 

cured. 2013 
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      Table 1. The wide host range of Trypanosoma cruzi1 

 
Footnotes:  
1This table is illustrative of the wide range of species where infection with T. cruzi has been reported, not a 

comprehensive list.  

 

 

 

 

 

 

 

 

 

Host species Reported type of infection Common research uses Ref. 

Macaque Natural (primate research centre) Drugs, vaccines, immunopathology 78, 82 

Spider/howler 
monkeys 

Natural (field acquired)                              - 240 

Chimpanzee Natural (primate research centre) - 241 

Tamarin Natural (field acquired and zoo) - 242, 243 

Mouse Various, including experimental Most widely used experimental model 100, 244 

Rat Various, including experimental General experimental model 245, 246 

Hamster Experimental General experimental model 74, 102 

Bat Natural (field acquired) - 6, 247 

Opossum Natural (field acquired) - 42, 248 

Raccoon Natural (field acquired) - 249, 250 

Horse Natural (domesticated environment) - 46, 251 

Cattle Natural (domesticated environment) - 252, 253 

Sheep Natural (domesticated environment) - 46, 254 

Pigs Natural (domesticated environment) - 255 

Dog Various, including experimental Drugs, vaccines, immunopathology 115, 256 

Fox Natural (field acquired) - 257, 258 

Cat Various - 259, 260 

Armadillo Natural (field acquired) - 248, 261 

Lama Natural (domesticated environment) - 262 

Sloth Natural (field acquired) - 263 

Lizard Natural (field acquired and 
experimental) 

- 59, 60 

Owl Natural (field acquired) - 58 

Zebrafish Experimental - 61 



     Table 2. Examples of transgenic null mutant mouse strains used to explore the impact of Trypanosoma cruzi infection 

Target  
gene 

Cell types 
involved 

Phenotype during infection with T. cruzi Ref. 

Slamf1 myeloid cells - 
macrophages, 
dendritic  

Survive lethal challenge, strain-specific reduced parasite replication in macrophages 
and dendritic cells, reduced parasite infiltration into heart, reduced NADPH oxidase 2 
activity in infected macrophages 

133, 134 

TLR-2 myeloid cells - 
macrophages, 
dendritic  

No significant effect on parasite burden, proinflammatory cytokine production 
unaffected 

264 

TLR-9 myeloid cells - 
macrophages, 
dendritic  

Enhanced parasitemia, impaired IFN-γ response 265 

TLR-2/ 
TLR-9 

myeloid cells - 
macrophages, 
dendritic  

Enhanced parasitemia over TLR9 null alone, increased mortality in acute infection. 
Mortality not as great as with the MYD88 null mutant, impaired IFN-γ response 

265 

MYD-88 myeloid cells - 
macrophages, 
dendritic  

Enhanced parasitemia, increased mortality in acute infection, decreased production of 
IFN-γ, IL-12., TNF-α and reactive nitrogen species 

264 

IFN-γ NK, CD4+ T, CD8+ 
T cells 

Enhanced parasitemia, increased and rapid mortality in acute infection, 266 

IL-1R macrophages, 
monocytes, 
dendritic cell 
subsets 

Enhanced parasitemia, prevention of bradycardia, no effect on other arrhythmias 267 

IL-4 Th2 T cells,  Decreased parasitemia, lower mortality, reduced anti-trypanosome IgG1 266 

IL-6 widely expressed Enhanced parasitemia, increased mortality, reduced splenocyte recall response, no 
impact on IFN-γ secretion 

268 

IL-10 monocytes, Th2 T 
cells, Tregs 

Enhanced parasitemia, increased morbidity, decrease in CD8+ T cell response and 
IFN-γ production, 

269 

IL-12  myeloid cells Enhanced parasitemia, increased and rapid mortality in acute stage infection, impaired 
IFN-γ response 

266, 270  

IL-17A Th17, CD8+ T, 
γδT, NK cells, 
neutrophils 

Enhanced parasitemia, increased mortality, increased tissue damage, decreased 
activation of effector functions in immune cells 

271 



IL-17RA widely expressed Increased mortality without enhanced parasitemia, reduced neutrophil recruitment, 
increased inflammatory tissue damage, 

272 

IL-18 widely expressed No significant difference to wild type (Tulahuen or Y strain). Mice infected with 
Colombian strain showed reduced myocarditis in chronic stage 

270, 273 

CCR-5 widely expressed  Increased parasitemia and cardiac parasitism in the acute stage, and reduced survival. 
Directs migration of macrophages and T cells to the heart. Not essential for maintaining 
inflammation in the heart during chronic infection 

274 

P47phox phagocytic cells  Increased mortality, increased iNOS expression, increased pro-inflammatory cytokine 
production, impaired activation of CD8+ T cells 

275 

Inducible  
NO synthase  

widely expressed No impact on the extent of infection, but enhanced expression of TNF- IL-1, and 
MIP-1α 

276 

MicroRNA-
155 

hematopoietic 
cells 

Increased mortality, increased cardiac parasite burden, decreased pro-inflammatory 
cytokine production. Decreased CD8+, NK and NK-T cell populations. 

277 

5-
lipoxygenase 

widely expressed, 
but not by T cells 

Transiently increases parasitemia, and enhances survival rate. Reduced cardiac 
inflammation, collagen deposition, and migration of CD4+, CD8+, and IFN-γ-producer 
cells 

278 

STAT-1 most abundant in 
lymphoid tissues 

Increased parasitemia and parasite tissue load, reduced survival rate. Higher systemic 
levels of IFN-γ, IL-10 and IL-17 

279 
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Figure 1. Mammalian stages of the Trypanosoma cruzi life-cycle. Flagellated metacyclic trypomastigotes are transmitted by triatomine bugs and infect mammalian cells

where they differentiate into replicative amastigotes that divide by binary fission. After 4-7 days, the parasites transform into the non-replicative bloodstream form

trypomastigote stage, escape from the host cell, and continue to propagate the infection. In the example shown, MA104 cells (an African Green monkey foetal kidney cell

line) were infected with T. cruzi CL Brener parasites (DTU TcVI) expressing mScarlet fluorescence (red). mScarlet is co-expressed with luciferase as part of a

bioluminescence:fluorescence fusion protein reporter encoded by an engineered gene stably integrated into a ribosomal RNA expression site (99). DNA (host and parasite)

is stained with Hoechst (blue). White scale bars = 10 mM. The metacyclic trypomastigote (left) has been enlarged for visual effect.
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Figure 2. Using bioluminescent/fluorescent imaging to monitor murine acute stage Trypanosoma cruzi infections. BALB/c mice were infected with the T.

cruzi (CL Brener strain) that had been genetically modified to express a fusion protein that is both bioluminescent and fluorescent (see Fig. 3) (99). (A) Ex vivo

bioluminescence imaging reveals the widespread dissemination of T. cruzi in mouse tissue and organs at the peak of the acute stage of infection (day 14). (B)

Fluorescence imaging of various tissue sections obtained from acutely infected mice. With the exception of skeletal muscle, host cell DNA is pseudo-coloured red

(DAPI), and parasites are green (or yellow when imaged on a red background). In the skeletal muscle image, DNA is stained blue (also DAPI), with actin stained in

red (mouse mAb; Thermo Fisher MA5-12542), giving the typical striated pattern. Scale bars = 20 mm
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Figure 3. Single cell resolution imaging of a chronic Trypanosoma cruzi infection focus in the mouse colon. (A) Organisation of the

bioluminescent:fluorescent fusion gene, following integration into a T. cruzi ribosomal locus (99). The red-shifted (R-S) luciferase, linker (black), and

mNeonGreen (mNeonG) sequences are indicated. (B) Ex vivo bioluminescence image of an external colonic wall layer from a chronically infected

CH3/HeN mouse imaged using the IVIS Spectrum system (Caliper Life Science). (C) Detection of fluorescent parasites in the tissue using a Zeiss

LSM880 confocal microscope (Ex506 nm, Em517 nm) after bioluminescence-guided imaging. (D) Serial z-stack sections of the tissue encompassing

the infected cell can be used to generate a 3-D image, with parasite numbers then determined on the basis of DNA staining (DAPI, blue). White arrows
indicate each parasite (adapted from 73).
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Figure 4. The development of cardiac fibrosis in Trypanosoma cruzi infected mice can be blocked when curative benznidazole

treatment is initiated in the acute stage, but not the chronic stage. BALB/c mice infected with T. cruzi (CL Brener strain) were

subject to curative benznidazole treatment (20 days, 100 mg/kg). (A) Quantification of collagen content (Masson’s trichome stain) in

cardiac sections as a marker of fibrosis. Data are from mice where treatment was initiated 14, 22, 66 or 100 days post-infection (132),

and the cardiac tissue then harvested 169 days post-infection. (B) Micrographs highlighting the extent of cardiac fibrosis (collagen
deposition – blue) in control mice, and infected mice where benznidazole treatment was initiated 22 or 110 days post-infection.
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Figure 5. Tissue distribution of Trypanosoma cruzi during chronic murine infections revealed by ex vivo bioluminescence

imaging. BALB/c mice were infected with T. cruzi CL Brener (DTU VI), and C3H/HeN mice were infected with T. cruzi JR (DTU I), as

indicated. (A,B) When infections had progressed to the chronic stage (>100 days), tissues and organs were arranged as shown and

examined by ex vivo bioluminescence imaging (73). (C) Ex vivo imaging of skin, fur side down and with adipose tissue removed.

Upper image; BALB/c, Tc CL Brener. Lower image; C3H/HeN, Tc JR. Parasite strains express a red-shifted luciferase gene that was
integrated into a T. cruzi ribosomal locus (70).
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Figure 6. Visualising the impact of T. cruzi infection on enteric neurons. (A) Compressed z-stack fluorescence image of a colon

tissue whole-mount from a C3H/HeN mouse 42 days post-infection (DPI) with a green fluorescent T. cruzi JR reporter strain.

Expanded panels (right) show 4 mm sliced single z-stack images of parasites (green) in close proximity to nerves (red; anti- Tuj1) in

the region highlighted by the white arrow. Host cell DNA, grey. (B) Compressed z-stack whole-mount immunofluorescence images of

colon tissue neuronal cell bodies in the myenteric nerve plexus of a C3H/HeN mouse 336 DPI with T. cruzi JR (anti-Hu; magenta).

The diffuse cell morphology (lower image) illustrates the progressive deterioration of the enteric nervous system during chronic stage
DCD.
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Figure 7. Investigating Chagas disease drug efficacy using bioluminescence imaging. (A) BALB/c mice chronically infected with T. cruzi CL Brener were treated

orally with 30 mg/kg benznidazole (BNZ) for either 5 or 20 days. Ventral and dorsal in vivo images of 2 mice per drug regimen are shown. 117 days post-infection (DPI),

both mice that were treated for 5 days were designated as non-cured, and euthanised (yellow dots). Mice given with the longer dosing regimen, were further treated with

cyclophosphamide (injected with 200 mg/kg on 136, 140 and 144 DPI) to promote the outgrowth of any remaining parasites. (B) Ex vivo images of organs and tissues
from the mice treated with benznidazole for 20 days (176 DPI). Mice that are bioluminescence negative by both in vivo and ex vivo imaging are designated as cured.


