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ABSTRACT
The ICH E9(R1) Addendum (International Council for Harmonization 2019) suggests treatment- policy as one of several strat-
egies for addressing intercurrent events such as treatment withdrawal when defining an estimand. This strategy requires the 
monitoring of patients and collection of primary outcome data following termination of randomised treatment. However, when 
patients withdraw from a study early before completion this creates true missing data complicating the analysis. One possible 
way forward uses multiple imputation to replace the missing data based on a model for outcome on-  and off- treatment prior to 
study withdrawal, often referred to as retrieved dropout multiple imputation. This article introduces a novel approach to parame-
terising this imputation model so that those parameters which may be difficult to estimate have mildly informative Bayesian pri-
ors applied during the imputation stage. A core reference- based model is combined with a retrieved dropout compliance model, 
using both on-  and off- treatment data, to form an extended model for the purposes of imputation. This alleviates the problem of 
specifying a complex set of analysis rules to accommodate situations where parameters which influence the estimated value are 
not estimable, or are poorly estimated leading to unrealistically large standard errors in the resulting analysis. We refer to this 
new approach as retrieved dropout reference- base centred multiple imputation.

1   |   Introduction

In pivotal clinical trials with longitudinal follow- up, it is now 
common practice to attempt to collect full outcome data after 
the withdrawal of randomised treatment up until the nom-
inal end of study. This allows the study to readily adopt a 
treatment- policy strategy for handling treatment withdrawal, 
to target the effect of the randomised treatment regardless of 
any treatment non- adherence [1]. As discussed by Wang et al. 
[2], for regulatory decision making a treatment policy strategy 
is most often utilised in order to estimate how well a treatment 

will work in clinical practice. This follows the intention- to- 
treat (ITT) principle. Henceforth, we denote the intercurrent 
event of randomised treatment withdrawal as deviation fol-
lowing Carpenter, Roger and Kenward [3]. If all post- deviation 
data are collected estimation of an estimand using a treatment 
policy strategy will be straight forward; standard analytical 
methods (e.g., ANCOVA) can be applied to the observed data. 
However, after deviation, collection of complete data is often 
problematic. It is common for as many as half of those patients 
to have incomplete outcome data relevant to the estimand 
variable and summary measure. This may be by design, where 
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less invasive monitoring is subsequently implemented, or due 
to a failure to implement observation despite best efforts, or 
because the patient withdraws further consent. Thus, most 
often, estimation requires appropriate assumptions for the 
unobserved post- deviation data, which critically should align 
with the treatment policy strategy (i.e., reflect what actually 
happens to outcomes after treatment deviation). Fletcher et al. 
[4] on behalf of the EFSPI Estimand Implementation Working 
Group (EIWG) suggest that ‘there is little statistical literature 
concerning the unbiased estimation of estimands using the 
treatment policy strategy, and this is an area requiring signifi-
cantly more focus and attention’.

There are typically two main pathways for deviating trial pa-
tients; either progress to a pre- specified follow- on treatment (or 
no- treatment) and continue to be observed, or immediately leave 
the study with no further participation. There is also an import-
ant intermediate pathway where a patient leaves the study early 
while on the follow- on treatment, generating partially observed 
off- treatment data as discussed later. Usually, the follow- on treat-
ment will be the same for each arm, as otherwise this distinction 
becomes an essential part of the treatment comparison. This 
shared follow- on treatment regime may be the same or similar 
to practice in the placebo or reference arm, suggesting that those 
who discontinue in the placebo arm will experience little or no 
change in outcome, although they will be aware that they are off 
treatment while still being unaware which treatment they had 
previously been having. But on the other hand, the follow- on 
treatment may be less prescriptive than on- treatment reference 
including scope for rescue. This aspect of the trial protocol is just 
as important when modelling off- treatment outcomes as when 
interpreting the treatment- policy estimand. When understood, 
it allows the generation of realistic models for unobserved out-
comes during the follow- on period.

Three main ways forward have been proposed for handling 
partially observed post- deviation data in a longitudinal trial set-
ting when adopting a treatment- policy strategy, mostly based on 
multiple imputation. First to ignore compliance status and treat 
the data as a simple missing- at- random (MAR) missing data 
problem with the intercurrent event status ignored. However, 
this approach as we expand further on below is not fully aligned 
with a treatment- policy strategy. Second, to use reference- based 
imputation (RBI) and assume the deviators behave like those 
observed in a specified reference group of the trial (typically 
placebo/control) [3]. A similar approach that borrows data from 
elsewhere in the trial is return- to- baseline imputation whereby 
imputation is based on the patient's own baseline observation as 
mean. These approaches often ignore any off- treatment data in 
the imputation stage and then merge any observed off- treatment 
data back in. Wolbers et al. [5] discuss ways to integrate off- 
treatment data from the reference arm into the imputation stage. 
Third, model the observed off- treatment and on- treatment data 
in a combined model and then impute the missing data based on 
this estimated model. Different variants of this latter approach, 
often referred to as retrieved drop out multiple imputation, use 
either imputation at final visit only, or a repeated measures 
based imputation across all visits, with the added complexity of 
differing choices for the repeated measures means model. These 
three ways forward and their variants are discussed in more de-
tail in the following sections.

Approaches based around RBI disregard potential information 
about the outcomes off- treatment during imputation and also 
make strong assumptions that may not always be consistent with 
trial experience in the active arm after treatment withdrawal. 
Retrieved drop out approaches based on modelling outcome 
after treatment withdrawal may be impractical because param-
eters are, or may be, poorly estimated due to limited observed 
off- treatment data post- deviation [2, 6]. Also, it may be difficult 
to pre- specify an appropriate off- treatment model that reflects 
the complexities while allowing the parameters to be reasonably 
well estimated.

In this article, we propose a novel multiple imputation approach 
that draws its influences from these two disparate approaches. 
The idea is to have a simple core model very similar to those 
used in RBI. There the parameters for the off- treatment period 
are borrowed from those for the reference arm, usually placebo. 
This core model is then extended with a series of additional 
parameters so that the extended model is equivalent to the re-
trieved dropout type of model used for modelling off- treatment 
outcomes as previously described. The extended model is fit-
ted using a Bayesian framework with typically uninformative 
priors for the core model and mildly informative priors for 
the additional parameters. In this way when there is little ob-
served off- treatment data the subsequent imputed data will be-
have somewhat similar to RBI but with some slight increase in 
variation representing uncertainty about the RBI assumption. 
Indeed, some will see this as an improvement over RBI with its 
total acceptance for the RBI's assumptions. On the other hand, 
when there is a large proportion of observed off- treatment data 
available this will over power the mild priors and the imputation 
will behave like the chosen off- treatment model. We refer to this 
new approach as retrieved dropout reference- base centred mul-
tiple imputation.

This general concept can be applied to different kinds of out-
come data including binary, counts, time- to- event as well as 
general quantitative outcomes. For simplicity of description, in 
this paper we focus on the case of a classic repeated measures 
multivariate normal model, with two treatment arms and pos-
sible baseline measurements to be treated as covariates. The 
concept of using mildly informative priors for a subset of pa-
rameters as a safety net should they be poorly supported by the 
actual data, could similarly be used to handle different intercur-
rent events using a treatment policy strategy, such as temporary 
treatment interruptions or rescue medication. However, choice 
of parameterisation and possible dependence between param-
eters in the prior would need careful specification influenced 
by clinical expertise and we focus on treatment withdrawal (de-
noted deviation) throughout.

In Section 2, we describe two motivating trial data sets, which 
have identical data where observed as well as the same level 
of off- treatment data post- deviation, but with missingness dis-
tributed differently between arms. The goal is to address an 
estimand using a treatment policy strategy to handle treatment 
deviation, but one data set is problematic while the other is 
not. We then review the current methods to handling partially 
observed treatment withdrawal data in the context of estima-
tion for a treatment policy strategy in more detail in Section 3. 
Our novel retrieved dropout reference- base centred multiple 

 15391612, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2416 by L

ondon School O
f H

ygiene &
 T

ropical M
edicine, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 of 22

imputation approach, which builds upon the current methods, 
is described in full in Section 4. In Section 5, we apply our new 
method and existing methods to the two example data sets and 
finish with a discussion in Section 6.

2   |   Example Data Sets

To illustrate our approach, we explore two publicly available 
example data sets based on real underlying data from an anti- 
depression trial, originally conducted by Goldstein et al. [7], 
with the addition of simulated partial off- treatment data. The 
trial's primary outcome is change from baseline in Hamilton 
17- item rating scale for depression (HAMD17) which was mea-
sured at baseline, 1, 2, 4, 6 and 8 weeks. Mallinckrodt et al. ex-
tracted the on- treatment data from the original trial including a 
placebo group and an active group randomly chosen from three 
non- placebo arms: two doses of an experimental medication and 
also a medication approved at the time [8]. Data for the final 
visit, Week 8, which was the original primary endpoint were 
not included and have never been made publicly available. For 
the purpose of this analysis the Week 6 endpoint and comple-
tion status define the estimand of interest. Completion rates 
(on- treatment) were 76% (64/84) for active and 74% (65/88) for 
placebo and the profile of visit- wise mean changes for patients 
who completed the trial versus those who discontinued early are 
summarised in fig. 1 of Mallinckrodt et al. [8]. Michael O'Kelly 
and Sylvia Li extended this data set with simulated off- treatment 
data while exploring the properties of differing analysis meth-
ods and made available template SAS code through the Drug in-
formation Association Scientific Working Group on Estimands 
and Missing Data (SWGEMD) [9]. Deposited with the templates 
and freely available for download are the two data sets chosen to 
illustrate the methods at work and also to indicate the problems 
that occur when parameters in the model are non- estimable [9].

For both data sets, the estimand of interest is the mean differ-
ence in the change in HAMD17 at Week 6 (Visit 4) among the 
eligible trial population with depression for active treatment 
versus placebo regardless of whether all treatment was received 
(treatment policy). Four patients had baseline less than 7, while 
77 were in the mild range (7– 17), 73 in the moderate range (18– 
24) and 18 severe (over 24). HAMD17 scores are expected to 
fall over the 6 weeks, indicating improvement, even in the pla-
cebo arm. The final column for placebo in Tables 2 and 3 shows 
means for those who complete the trial on- treatment, with a 
reduction in mean of about one unit per visit. A larger drop of 
about 2 units per visit is seen for the completers in the active arm. 

On- treatment data are fully observed and both data sets have 
the same number of on- treatment patients at each visit in each 
arm. Off treatment data were simulated using a model estimated 
from the control group data only, conditional on a patient's base-
line attributes (baseline score and a pooled- site indicator) and 
also their observed on- treatment post- baseline outcomes. The 
extent of missing off- treatment data is summarised in Table 1 
with all patients on treatment at the first visit. In these data sets 
all patients who deviate either stop follow- up immediately or 
continue to the end of the study period with complete observed 
off- treatment data. The first labelled converging by the original 
authors is called covered here to indicate that it contains data 
which ‘cover’ all subgroups defined by the data generation mod-
els. As shall be later demonstrated this data set works well with 
all the multiple imputation approaches explored in this article. 
The second labelled nonconverging by the original authors and 
called perforated here has no observations after deviation for 
any of the six patients in the active arm who deviate at Week 2. 
This results in non- estimable parameters for some of the mod-
els discussed later. The perforated data set has the missingness 
arranged in such a way as to generate a hole in the data. Since 
the on- treatment data in both data sets are based on the same 
original underlying data set, similar but not identical results are 
to be expected. Tables  2 and 3 summarise the means by visit 
for each combination of treatment, deviation visit and presence 
of off- treatment observation in the two data sets. In essence to 
estimate the treatment- policy estimand the blank cells in the 
Visit 4 row need to be filled out and then the difference in means 
taken across columns for placebo, and then active, weighted by 
the count row.

3   |   Current Methods

In this section, we now review in more detail the three main 
approaches proposed to date for estimating an estimand with a 
treatment policy strategy for handling deviation with missing 
post- deviation data.

3.1   |   Ignoring Compliance

The first approach assumes all outcomes are MAR (i.e., can be 
predicted based upon modelled covariates and observed out-
comes) ignoring whether a patient is on-  or off- treatment. As the 
majority, if not all, of the missing data is off- treatment, imputa-
tion using a combination of on- treatment and off- treatment data 
by ignoring compliance is likely to be biased. Guizzaro et al. [10] 

TABLE 1    |    Summary of on- treatment, observed off- treatment and unobserved off- treatment frequencies by visit in example data sets.

Covered Perforated

Placebo Active Placebo Active

Visit On Off- Obs Off- Miss On Off- Obs Off- Miss On Off- Obs Off- Miss On Off- Obs Off- Miss

1 88 0 0 84 0 0 88 0 0 84 0 0

2 81 3 4 78 4 2 81 5 2 78 0 6

3 76 7 5 73 5 6 76 9 3 73 4 7

4 65 12 11 64 10 10 65 12 11 64 10 10
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used causal inference methods to indicate the importance of 
including an indicator for compliance in the imputation model 
when a treatment policy strategy is implemented and the inter-
current event of discontinuing treatment is not MAR.

Despite its inherent failings this MAR approach has been im-
plemented using a classic MMRM analysis either by maximum 
likelihood or multiple imputation using Rubin's rules for infer-
ence [9, 11- 13]. Since there is an incoherence in modelling off- 
treatment data based on a mixture of on-  and off- treatment data 
for a treatment policy strategy it is generally unacceptable [14]. 
It should only be used in situations where very few missing data 
are expected to avoid deviating from meaningful estimation. 
However, there is no consensus on what constitutes very few. 
This use of on- treatment data to estimate off- treatment experi-
ence will be especially problematic when off- treatment patient 
care allows wider treatment options such as novel treatments. 
The remaining approaches incorporate the compliance aspect in 
a series of different ways.

3.2   |   Reference- Based Multiple Imputation

The second broad approach imputes all post- deviation data 
using a reference- based multiple imputation (RBI) method 
such as jump- to- reference (J2R), ignoring some [5] or all of the 
off- treatment data and then, where available, replaces imputed 
values with actual observed measurements [3]. The underlying 
model for reference- based multiple imputation of a continu-
ous outcome is the standard repeated measures multivariate 
normal model including the treatment by time interaction, 
along with other covariates, which may or may not be crossed 
with time, and an unstructured covariance matrix that may be 
shared or separate for each arm. For imputation, a model is 
constructed for each pattern of deviation using the parameters 
based upon the underlying fitted multivariate normal model. 
How the construction is performed defines the different ref-
erence based methods. Multiple imputations are then drawn 
following the Bayesian paradigm. As in standard MAR MI, post 
imputation each imputed data set is analysed with the sub-
stantive analysis model of interest and results combined using 
Rubin's rules.

J2R imputation forms the imputation model using the same 
mean profile up to deviation as observed for the randomised 
arm, but post deviation the profile jumps to the estimated pro-
file for the reference arm. Other reference- based approaches 
include copy increments in reference (CIR) which forms the 
imputation model using the same mean profile up to devia-
tion as observed for the randomised arm, but post deviation 
the profile tracks parallel to the pattern for a specified refer-
ence arm. It is also possible to implement different reference 
based assumptions for different individuals in the same trial 
based on reason for deviation. Polverejan and Dragalin [11] 
used CIR reflecting their interest in a long term degenerative 
disease where the effect of treatment will remain and there is 
no bounce back to untreated values as in J2R. This they label 
CIR in contrast to an analysis where the reference- based as-
sumption varied by type of deviation (labelled BY_REASON) 
where copy reference (CR, which uses the mean profile from 
the reference arm throughout) is used for AEs, J2R for loss 

of efficacy and CIR is used for the ‘other’ category. Both the 
EIWG [12] and Wang and Hu [15] use J2R as the RBI method 
when evaluating methods to target a treatment policy esti-
mand, and there are now examples of this method being used 
in practice [16].

A variant of this method, referred to as the ‘return to base-
line approach’ [2], assumes there is no placebo effect and any 
intervention effect will be washed out after deviation. Data 
are multiply imputed based on the mean baseline values [17]. 
This approach washes out any drug effect after treatment de-
viation while assuming any post- deviation treatment prevents 
further deterioration from baseline. This can be viewed as a 
particular type of reference based multiple imputation where 
the reference is now the baseline mean. This contrasts with 
the baseline observation carried forward (BOCF) approach 
where the baseline observation is simply carried forward; this 
latter approach is not recommended since it underestimates 
within patient variability of the measurements at different 
time points [18]. Others have suggested imputing based on the 
patients baseline observation plus some random variation [2], 
but this has shown to result in biased mean when the missing-
ness depends on observed baseline and/or post- baseline inter-
mediate outcomes and the variance of imputed values can be 
much larger than the variance of the baseline values [18].

A more simplistic reference- based approach termed the ‘wash-
out method’ by Wang et al. [2] excludes intermediate measure-
ments in the imputation model. An imputation model is built 
based on placebo/reference completers only and the missing 
observations for those in the active arm at the primary end-
point are directly imputed without imputing any intermediate 
values. For patients in the placebo/reference arm the MAR as-
sumption is accepted and intermediate outcomes are included 
in the imputation model. As described by Wang et al. [2] this 
approach washes out the experimental treatment effect (TE) 
in those who dropout after treatment deviation in the exper-
imental/active treatment group. As Wang et al. [2] suggest 
as an aside in their appendix ‘the washout approach can be 
thought as a simplified version of the J2R approach without 
considering the intermediate measurements from any arms in 
the imputation’.

3.3   |   Retrieved Dropout Multiple Imputation

Here prediction after deviation relies directly on the observed 
data from those who deviate. A basis for such an approach is 
that prediction after deviation should rely only on observed 
data from those who deviate. The imputation model is either 
univariate predicting outcome at last visit, or uses a repeated 
measures model based on all visits involving compliance sta-
tus in some form. Guizzaro et al. [10] indicate that their sim-
ulation ‘results suggest that at least in a “Missing at Random” 
setting, all studied estimation methods increase their perfor-
mance when a variable representing compliance is used’. This 
important result was the purpose of their study rather than to 
compare their wide range of different methods that included 
three disparate forms of multiple imputation (predictive mean 
matching [PMM], classification and regression tree [CART] 
and Schafer's linear regression), inverse probability weighting 

 15391612, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2416 by L

ondon School O
f H

ygiene &
 T

ropical M
edicine, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 22 Pharmaceutical Statistics, 2024

and maximum likelihood using auxiliary variables. The ap-
proaches discussed in this section fall within the Schafer's lin-
ear regression method.

3.3.1   |   Retrieved Dropout Compliance Model— Last 
Visit Only

Wang and Hu [15] propose a novel approach using multiple im-
putation of the outcome variable at final visit imputed for those 
who terminate prior to final visit without imputing earlier miss-
ing data. This imputation uses a regression for final outcome on 
patient's baseline and their last on- treatment value, stratified by 
randomised treatment and the visit number of last on- treatment 
visit. Intermediate outcome measurements either before or after 
the last on- treatment visit are ignored, as well as ignoring those 
who complete on treatment.

An alternative approach, (the fourth approach in the SWGEMD 
templates  [9], labelled A4) also imputes missing values at the 
final visit ignoring those who complete the trial on treatment. 
It assumes that the change in outcome from time of discontin-
uation of treatment to end of scheduled follow- up is MAR in 
patients who discontinue study treatment, conditioning only 
on baseline, last on- treatment outcome, and the length of time 
on study treatment. The time on study treatment is considered 
continuous and the relationship between time on study treat-
ment and outcome is considered linear. This is then similar to 
Wang and Hu [15] but rather than stratify by treatment and off- 
treatment visit number they regress on the numeric value of the 
visit (stratified by treatment only). This reduces the number of 
required parameters in the regression.

Focusing on imputation at the final visit alleviates the need for 
imputing intermediate missing values, but requires regressing 
on data that is certainly observed, such as the outcome at or just 
before deviation irrespective of when during the trial deviation 
occurred. This approach obviously suits those studies where 
after treatment withdrawal outcome is only measured at the 
final nominal visit. Also, the details of the imputation process 
are likely to be less contentious. But the strong assumption of 
linearity between outcome and time on study may not always 
be appropriate. Further, when intermediate off- treatment data 
are extensive, such as in long term diabetes studies, there will 
presumably be some loss of information in discarding the inter-
mediate data.

3.3.2   |   Retrieved Dropout Compliance Model— 
Repeated Measures

Here the outcome is modelled across all visits accounting for 
compliance using all the observed data and some form of re-
peated measures model.

The simplest approach is to fit a MMRM model under MAR 
(see Section 3.1) and add a single indicator variable that denotes 
whether the patient discontinues treatment before the end of 
trial or not. Polverejan and Dragalin [11] denote this MAR_DC 
and also do the same ignoring the patients who complete de-
noted RD_SUBSET. The indicator variable On– Off(Patient) is 
defined at the patient level and denotes discontinuation of treat-
ment at any time before the final visit.

At the other extreme, the most complex repeated measures model 
effectively stratifies by both treatment arm and the index of the 
last visit on treatment and imputes within each stratum com-
bination [2]. The second approach in the SWGEMD templates 
(labelled A2) does something very similar but while stratifying 
by treatment it does not cross baseline with treatment. Instead, 
it uses a sequential regression with baseline and an interaction 
between treatment and index of last visit on treatment. In the 
former purest form of complete stratification by arm, the study 
completers who are still on- treatment are irrelevant in the impu-
tation process as they form their own stratum with no missing ob-
servations; here their data does not inform the imputation of the 
unobserved off- treatment data. This pure approach is MI3 from 
EIWG [12] and M4 in Roger [13] (see Table 4). As implemented 
by SWGEMD (A2) the completers have impact on estimated 
baseline regression coefficients. All the implementations effec-
tively use a single covariance matrix with no attempt to fit sep-
arate covariance matrices either by arm or, by before- deviation 
versus after- deviation as in Carpenter, Roger and Kenward [3]. 
Both these models have the property that means differ depend-
ing upon whether the patient deviates or not at later visits.

If there are J visits in the later A2 model, then potentially J2 pa-
rameters are introduced into the model, J for each regression, 
although in the purest form many of these have no influence 
in the imputation process. For large J this can be problematic. 
An adapted version of their second approach, A2a, is proposed 
within the SWGEMD code  [9] where each regression only de-
pends on ‘last visit’ number up to the current one with all those 
reaching this far on treatment pooled in one level (see Table 4). 

TABLE 4    |    Compliance based models, using retrieved dropout data, for handling partially observed data after treatment withdrawal.

Currenta Historicb Full- Patternc

E
[

Ytj
]

 = �tj for j ≤ k E
[

Ytj
]

= �tj for j ≤ k E
[

Ytj
]

= � tkj for all j, k

E
[

Ytj
]

= �tj for j > k E
[

Ytj
]

= � tkj for j > k

�tj is the mean at visit j for the 
stratum defined by treatment t 
and being off treatment at visit k

� tkj is the mean at visit j for the stratum 
defined by treatment t and the last- 

on- treatment visit k (history)

� tkj is the mean at visit j for the 
stratum defined by treatment t and 

the last- on- treatment visit k (history)

Note: For a continuous outcome Yij measured for patient i at times j = 1, … , J , where k is the last observation time prior to treatment discontinuation (i.e., 
deviation) and �t,j is the mean for treatment arm t  at time j.
aReferred to as A3 by SWGEMD [9], M12 by EIWG [12], M2 by Roger [13] and rd_trt and rd_trt_dcreason by Polverejan and Dragalin [11].
bReferred to as A2a by SWGEMD [9] and M3 by Roger [13].
cReferred to as A2 by SWGEMD [9], M13 by EIWG [12] and M4 by Roger [13].
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This is equivalent to the M3 method in Roger [13]. Effectively the 
strata or factor levels are defined by pooling all those patients who 
are on treatment at this visit. Indeed, if baseline were absent from 
the model crossed with treatment, then this pooling would have 
no impact on the subsequent imputation. Whether pooled or not 
the series of factors are nested within each other from regression 
to regression allowing sequential regressions to be based on ei-
ther previous observed or residual outcomes. This A2a approach 
we will call the historic compliance model as it accounts fully for 
the compliance history so far as a whole, in contrast to the A2 
approach described previously which we refer to as full- pattern.

All the same, the final regression will potentially have J strata 
and some of these may be very small with little outcome data 
observed at final visit. Whenever the strata size are small (i.e., 
few individuals with the specific deviation pattern) or study com-
pletion rate is low, sharing information between strata should 
improve precision at the potential expense of introducing bias.

A simpler approach, uses an on/off treatment indicator at each 
visit within each arm but unlike the first approach this indicator 
changes value from visit to visit and hence from regression to re-
gression [19]. This means that the model at each visit is not nested 
within the model at subsequent visits as the variable for on/off 
treatment changes from visit to visit. This is the third approach 
labelled A3 in the SWGEMD templates [9] (see Table 4). It is sim-
ilar to proposed methods RD_TRT and RD_TRT_DCREASON 
discussed in Polverejan and Dragalin [11], MI2 form EIWG [12] 
and M2 in Roger [13]. In order to fit this model as a sequence 
of regressions each regression in the sequence needs to regress 
on previous residuals rather than on previous observed outcome 
values. For example, in the SWGEMD SAS code this is done 
using an intermediate call to the MIXED procedure between 
calls to the MI procedure, or using the MISTEP macro from the 
DIA missing data website [9]. The simplifying assumption in this 
model is that the marginal impact of being off treatment at the 
current visit is the same whether or not you were off treatment at 
previous visits. We refer to this A3 approach as the current com-
pliance model as it accounts for whether or not the patient is 
currently on treatment.

A relatively large reduction in number of parameters can also 
be achieved by regressing on the quantitative length of time on 
treatment rather than handling deviation visit as a multilevel 
factor. This is implemented in the SMWEG A4 template code, 
which is discussed in the above section [9].

In general, it has been shown that analyses ignoring compliance 
(i.e., on/off treatment status in any form) can introduce substan-
tial bias and can sometimes underestimate variability [6, 19, 20]. 
While retrieved dropout compliance MI models can successfully 
reduce or correct the bias, they inevitably lead to increases in 
variance which can be substantial if most (i.e., ≥ 50%) post- 
deviation data is missing [6].

4   |   Retrieved Dropout Reference- Base Centred 
Multiple Imputation

We now describe our novel approach which combines a core 
reference- based model with a compliance model using retrieved 

dropout data to form an extended model for the purposes of im-
putation. Assume a total of N patients are randomised to two 
treatment groups, reference and active. They are observed at 
baseline and J subsequent visits, with interest in the outcome 
at the final visit J. Let Yi =

(

Yi1, … ,YiJ
)

 denote the longitudi-
nal vector of continuous outcome values for the ith patient and 
Ti denote randomised arm taking values 0 for reference and 1 
for active. For simplicity, assume there are no interim missing 
data and all patients are observed at baseline and up to visit Di , 
the last observation time prior to treatment discontinuation for 
patient i, known as deviation here. This is set to final visit J for 
those completing on- treatment. Patients who withdraw from 
treatment and also leave before the end of the study having 
no final visit outcome measure, have their final visit observed 
within the study at visit Si, which is set to J for those complet-
ing study. Patients halt study treatment when leaving the study 
and so Si ≥ Di for all patients. Outcome values off- treatment 
are assumed to be available between visits 

(

Di + 1
)

 and Si in-
clusive for the ith patient but missing after Si. This set will be 
null when deviation and study withdrawal concur (Di = Si). The 
on- treatment model conditional on remaining on treatment has 
mean outcome E

[

Yij|Di ≥ j,Ti = t
]

= �tj.

Two RBI methods are commonly used and offer possible core 
models [3]. First J2R is defined as

while CIR is defined as

J2R is suited to a treatment that is expected to have only short 
term effect and where the response would return to that of the 
reference after treatment withdrawal. On the other hand, CIR 
is more appropriate for a treatment where the improvement 
obtained from treatment up to time of deviation will continue, 
but further improvement relative to reference is unlikely. An 
intermediate profile where an explicit assumption is made 
about how the maintained effect of treatment after discontin-
uation relates to the effect of treatment before discontinuation 
using the approach of White, Joseph and Best [21] may alter-
natively be used for the core mean model, or another shape 
based on the reference arm experience. Three other potential 
core models are last mean carried forward (LMCF), where 
the mean stays the same as the last on- treatment mean for a 
patient, and return to baseline (RTB) where the off- treatment 
mean is the baseline mean within arm or across both arms, or 
MAR where the means are simply E

[

Yij|Ti = t
]

= �tj. The core 
model could also include a fixed ‘delta’ depending on visit or 
number of visits since deviation as demonstrated in one of the 
later examples below. It is important that the choice of core 
model is based on clinical experience and plausibility, rather 
than mathematical simplicity.

Note how the on- treatment parameters �tj can be estimated 
from on- treatment data and the means for the off- treatment 
period via the core model (RBI or other) conditional upon 

(1)

E
[

Yij|Di=k,Ti= t
]

=𝜇tj for j≤k

=𝜇0j for j>k

(2)
E
[

Yij|Di=k,Ti= t
]

=𝜇tj for j≤k

=
(

𝜇0j+𝜇tk−𝜇0k

)

for j>k
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the history (on/off treatment pattern so far). When data are 
available for the off- treatment period it is possible to fit a more 
complex model for this period (for j > k) by also using one of 
the suggested compliance models. This we call the extended 
model. The idea is to centre the extended model on the core 
model by simply subtracting off the projected means from the 
core model. Then if the core model is a good description, the 
extra deviation part (difference between compliance model 
and core model) will be small in value. When we expect holes 
in the data one way forward to make the compliance model, 
hence deviation parameter, estimable is to use a mildly in-
formative zero- centred prior for the extension parameters. 
However, the core model, which may condition on the history 
(on/off treatment pattern so far) such as with CIR, needs to 
be nested within the compliance model otherwise it will dis-
tort the resulting compliance model. That is when sufficient 
off- treatment data are available and the prior is made totally 
uninformative the compliance model ought to be recovered 
as a special case. Examples where nesting does not hold are 
discussed in the following section.

There is some choice for the compliance part of the extended 
model with the saturated compliance model adding a treatment 
by history by visit interaction in the off- treatment period.

where � tkj is the mean at visit j for the stratum defined by treat-
ment t and the last- on- treatment visit k (history). This is the 
historic compliance model, Pattern * Treatment * Visit, and is 
preferred in this context to the full- pattern compliance model, 
Subject_Pattern * Treatment * Visit, where Subject_Pattern is de-
clared at the subject level and reflects the compliance throughout 
the trial. In contrast the Pattern only reflects the compliance so 
far. There are P + 1 levels for both Pattern and Subject_Pattern, 
the visit number of the last visit on treatment, the difference is 
that Pattern is set to the current Visit number while on treat-
ment, so that Pattern * Visit has potentially P∗(P + 1)∕2 levels 
while Subject_Pattern * Visit has potentially the full P∗(P + 1) 
levels.

Formally, the proposed approach is to re- parameterise this ex-
tended model by including an additional offset term determined 
by a reference- based model for the post deviation means. No 
additional parameters are needed as the reference based mean 
involves parameters � from the on- treatment observations, and 
these parameters concur with those for the extended model. 
What changes is the interpretation of the parameters in the 
extended model. These are now deviations from the reference- 
based mean rather than from a global mean of zero. For in-
stance, when J2R is used as reference- based core the extended 
model becomes

Then a mildly informative zero- centred prior is applied to 
the parameters �∗ while retaining an uninformative prior 
for � (the parameters from the core model). Note how in 

Equation (4), the same parameters � are shared between the 
on and off- treatment periods by the J2R RBI model. There is 
no aliasing of parameters between � and �∗ as �0j for j > k is 
inherently estimated by the data where j < k in other patients. 
When data are not available for the off- treatment period then 
in expectation this reduces to the J2R reference based impu-
tation as the �∗ priors have zero mean. This complex extended 
model would suit any other core model such as CIR equally 
well. When off- treatment data are available then �∗ becomes 
estimable and in the Bayesian model some very small amount 
of information will be fed back into � as �∗ has a mildly infor-
mative prior. However, this is not an issue as the model is only 
being used to impute missing data in the off- treatment region. 
Any intermediate missing values prior to deviation are treated 
as MAR.

Less flexible options for the extended model could be chosen 
based on experience with modelling retrieved dropout. An al-
ternative simple choice is to replace the parameters � tkj by �tj and 
�∗
tkj

 by �∗
tj
 in the same way as the current compliance model based 

on On– Off(Visit) * Treatment * Visit where On– Off(Visit) is a 
visit level indicator for whether the patient is on or off treatment.

Here �∗
tj
 is the mean at visit j for the stratum defined by treat-

ment t and the impact of being off- treatment on the expected 
outcome is the same however long the patient has been off- 
treatment. Note how Off(Visit) * Visit has only 2P potential lev-
els. Replacing the interaction in the full- history model by two 
main effects is another option. Linearisation of � or �∗, rather 
than using a distinct mean for each visit (in a similar way to A4 
in SWGEMD [9]), is a further possible simplification but nei-
ther is explored here.

4.1   |   Illustration in a Simple Setting

We now illustrate our proposal, and show how it relates to the 
methods described in Section  3, using a simple two- arm trial 
setting with no baseline measurement and a single outcome in-
dicated generally by Y. As above, subscript 0 is used to denote 
reference arm and subscript 1 is used to denote active arm.

Suppose a proportion p1 have experienced deviation and ceased 
treatment before outcome measurement in the active arm. These 
experience off- treatment behaviour. Of those off- treatment, 
q1 are not observed for their outcome. So of all patients in the 
active arm, the proportion p1q1 are not observed off- treatment 
while p1

(

1 − q1
)

 are off- treatment but observed, and 
(

1 − p1
)

 
are observed on- treatment. All patients on- treatment are ob-
served. The outcome is ymiss,1 for those not observed, yoff,1 for 
those observed off- treatment and yon,1 for those observed on- 
treatment in the active arm. This forms three groups indexed 
by j =miss, off, on. The ymiss,1 values are never known. In the 
reference arm we assume for this illustration all individuals 
are observed on reference treatment. In Appendix  2 (and in 
Section 4.3.1), additional treatment deviation and missingness 
in the reference arm is explored.

(3)
E
[

Yij|Di=k,Ti= t
]

=𝜇tj for j≤k

= 𝛾 tkj for j>k

(4)
E
[

Yij|Di=k,Ti= t
]

=𝜇tj for j≤k

=𝜇0j+𝛾
∗
tkj

for j>k

(5)
E
[

Yij|Di=k,Ti= t
]

=𝜇tj for j≤k

=𝛼tj=𝜇0j+𝛼
∗
tj for j>k
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We assume the outcome is distributed Normally with mean �1 
with variance �2 in the active arm and distributed Normally 
with mean �0 with variance �2 in the reference arm. In the active 
arm patients are indexed within group by i = 1, … ,nj,1 where 
nj,1 is the total number observed in group j. Note that nj,1 is not 
fixed but varies at random across repeat trials.

The TE contrast of interest is,

the difference in expected value in each arm.

Patients are assumed independent, so that in the active arm 
conditional on which of the three groups a subject falls into, 
their outcome is sampled from a normal distribution with 
mean that depends on the treatment arm and whether the 
subject is observed and on-  or off- treatment. That is condi-
tional on the number observed/deviating there are four means 
�miss,1,�off,1,�on,1,�0 and without further constraint �miss,1 
is not in practice estimable. An obvious simple compliance 
model in this setting sets �miss,1 = �off,1 for active where the 
off- treatment mean is the same whether observed or not, as-
suming generally MAR for the missing process (note in this 
simple example MAR and MCAR are equivalent as no addi-
tional variables, e.g., baseline covariates or observed previous 
outcome are being conditioned upon). Then we can estimate 
all four means as long as the patient counts for each mean are 
greater than zero. And we can estimate the contrast TEReal as 
long as count noff,1 > 0 whenever nmiss,1 > 0. Under this MAR 
assumption,

A RBI J2R model uses �miss,1 = �off,1 = �0 instead, using the 
reference arm on- treatment mean for the off- treatment mean 
in the active arm, and does not in general require noff,1 > 0 un-
less nmiss,1 > 0.

The novel reference- base centred proposal re- expresses a 
compliance model for the active arm in the following way, 
�miss,1 = �off,1 = �0 + �1. This is equivalent to the compliance 
model using MAR for the missingness process. When �1 is 
fixed at zero then this is the J2R RBI model. If noff,1 = 0 while 
nmiss,1 > 0 then it is the parameter �1 which cannot be estimated. 
But, by applying multiple imputation and using a mild informa-
tive zero- centred prior for �1 the four means can all be estimated, 
leading to an estimate for the required treatment contrast as 
long as non,1 > 0.

4.2   |   Generic Method

To summarise, the generic algorithm of the proposed retrieved 
dropout reference- base centred multiple imputation approach is 
as follows,

1. Choose (i) a required retrieved dropout compliance model 
(for example, historic or control) and (ii) a core reference- 
based model (e.g., J2R/CIR/LMCF) and check this is nested 
in the selected compliance model.

2. Parameterise the compliance model for the means using two 
sets of parameters, the first representing the core RBI model 
and the second involving additional parameters that com-
plete the compliance model. When the additional parame-
ters are all set to zero the subsequent model is identical to the 
RBI core model.

3. Fit this as a Bayesian repeated measures multivariate normal 
model, taking all observed data, including treatment and the 
indicators required for the chosen compliance model with 
an unstructured covariance matrix (which could be grouped 
by treatment arm if required by the compliance model). Any 
baseline covariates could also be added as required. Use un-
informative priors for the core mean and covariance matrix 
parameters. Use informative priors for the additional mean 
parameters (see Section 4.3).

4. Take a random draw from the posterior for all parameters.

5. As in standard MI, for each patient who deviates and has 
missing data before the end of the study, use the parameter 
values drawn in Step 4 to predict their missed values based 
on that patients' conditional distribution of post- deviation 
data given their pre- deviation data. Use these imputed out-
comes to form a complete data set.

6. Repeat Steps 4 and 5 K times, resulting in K imputed data 
sets.

7. Fit the model of interest to each imputed data set. This will 
usually be a univariate model to estimate the estimand of 
interest, such as ANCOVA.

8. Merge the results across imputed data sets using Rubin's 
rules (1987) for final inference.

Appendix 1 shows how to implement this general approach in 
SAS using the BGLIMM procedure. The MCMC algorithm im-
plemented by BGLIMM does the above Steps 4 and 5 readily in 
one step, as the imputations are synonymous with the estimated 
missing data parameters. This relies on the fact that the parame-
ter estimation and the imputation models are identical.

4.3   |   Choice of Prior

The variance chosen for the prior for the additional deviation 
parameters will alter results, varying the underlying assump-
tions between the RBI core and the full compliance model as 
extremes, and therefore needs to be carefully considered.

We consider three potential routes for choosing the prior's 
variance for the additional deviation parameters. First, get 
experts together and illicit how far they expect the underly-
ing compliance model might diverge from the chosen core 
model. Second, express the prior in terms of the effective 
number of patients being added into the data to modify the 
likelihood in this way, for example one or two extra patients 
worth of data who follow the core model exactly may be rea-
sonable. Note that these extra subjects do not impact on the 
core model parameters, only on the additional parameters 
reflecting how far the compliance model may deviate from 
the core model. Following this second route, one proposal 
is to use the residual variance of the outcome at final visit 

TEReal =
[(

1 − p1
)

�on, 1 + p1
(

1 − q1
)

�off, 1 + p1q1�miss, 1
]

−
[

�0

]

TEReal =
[(

1 − p1
)

�on, 1 + p1�off, 1
]

−
[

�0

]
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from a simple MMRM model of on- treatment data as a basis. 
Assuming that each of the additional parameters represents a 
deviation in predicted outcome between the core model and 
the more flexible compliance model, then a zero mean prior 
with this variance is roughly equivalent to providing one extra 
patient- visit worth of additional likelihood into the posterior. 
Alternatively, one might use the normal or full range of the 
outcome as a simple starting point, for example, the square 
of one sixth of the range as variance. Third, use simulation to 
quantify the impact of the priors under differing amounts of 
deviation and missingness in the two arms designed around a 
compliance model based on previous experience. Then choose 
suitable priors that match the objectives of the trial in terms 
of; controlling uncertainty from potentially missed data, overt 
control of variation (SE for contrast) through informative pri-
ors, and unreasonably strong use of assumptions inherent in 
the core model. In practice we expect researchers would use a 
combination of these approaches.

4.3.1   |   Investigating the Impact of the Choice 
of Variance for the Prior

In order to investigate the impact of the choice of variance, or 
precision, for the prior here we analytically examine the ex-
pected bias and root mean square error (RMSE) for the proposed 
retrieved dropout reference- base centred multiple imputation 
method, for different variance values. Investigation is con-
ducted for a two arm trial setting with 100 patients in each arm, 
no baseline measurement and a single outcome, but now with 
treatment deviation and missingness in both treatment arms. 
Appendix 2 shows how the bias and RMSE were generated using 
analytic results conditional on the numbers in each arm deviat-
ing and the number of those with missing data. Then numerical 
integration was used to average these over the different patterns 

of deviation and missingness. The combined retrieved dropout 
reference- base centred multiple imputation model examined 
is, �miss,0 = �off,0 = �on,0 + �0 and �miss,1 = �off,1 = �on,0 + �1 (see 
Appendix  2), which corresponds to using J2R/CR/CIR as the 
core model (in this simple setting J2R/CR/CIR equivalent) and 
for the compliance model using MAR for the missingness pro-
cess. Four different treatment deviation and missingness set-
tings are considered as follows,

1. 40% deviation in both arms with 50% missingness condi-
tional on deviation (Figures 1– 3).

2. 40% deviation in active arm and 20% deviation in placebo 
arm and with 50% missingness conditional in both arms 
(Figure 4).

3. 20% deviation in both arms with 90% missingness condi-
tional on deviation (Figure 5).

4. 5% deviation in both arms with 50% missingness conditional 
on deviation (Figure 6).

For setting 1 (40% deviation in both arms with 50% missing-
ness), we additionally explored this with 60 patients, then 
200 patients per arm. In each setting, we plot the bias and the 
RMSE for the treatment estimate against the precision of the 
prior relative to that for the residual variance of the outcome. 
This is done for four different underlying data generation 
mechanisms which was achieved by considering data with 
different values for the four means (�off,0,�on,0,�off,1,�on,1) and 
the two associated gamma parameters (�0 and �1) for each 
treatment arm (i.e., assuming data with different departures 
between the core and compliance model, values described 
below). It is not necessary to simulate data but rather derive 
exact results conditional on pattern of deviation and missing-
ness and numerically summarise these across the patterns, as 

FIGURE 1    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 100 per arm with 
40% deviation and 50% missing data in both arms for different dispersion of prior and differing data generation models.
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explained in Appendix 2. The residual variance is set to 1 in 
the generated data so the precision of the prior can be seen 
as the number of new data points that are effectively being 
added over and above an uninformative prior. Specifically, we 
explored each of the following four data generation scenar-
ios, based on different configurations of means for the data 
distribution (as shown in Figures  1– 6 using separate line 
styles). The graphs show exact results (no simulation error 

and based on an infinite number of imputations) estimated 
at over 30 values for the precision of Prior, with a smoothed 
line drawn through the points, First, no TE at all and devia-
tion completely at random, where all four means are set to a 
nominal value of 1 (�off,0 = 1,�on,0 = 1,�off,1 = 1,�on,1 = 1 ) and 
�0 = 0, �1 = 0, labelled No effect DCAR. Second, again similar 
outcomes between the arms but here the on- treatment value 
is 2 (�off,0 = 1,�on,0 = 2,�off,1 = 1,�on,1 = 2), indicating that the 

FIGURE 2    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 200 per arm 
with 40% deviation and 50% missing data in both arms for different dispersion of prior and differing data generation models.

FIGURE 3    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 60 per arm with 
40% deviation and 50% missing data in both arms for different dispersion of prior and differing data generation models.
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deviating subjects are scoring less than those on treatment 
with �0 = − 1, �1 = − 1, labelled No effect DNAR. Third, a J2R 
setting where both off- treatment and reference on- treatment 
means remain at one, while only the on- treatment active 
mean increases to 2 (�off,0 = 1,�on,0 = 1,�off,1 = 1,�on,1 = 2)  
where �0 = 0, �1 = 0, labelled J2R. Fourth a deviation com-
pletely at random scenario where on and off treatment means 
are the same with in each arm with value 1 for reference 

and 2 for active (�off,0 = 1,�on,0 = 1,�off,1 = 2,�on,1 = 2) and 
�0 = − 1, �1 = − 1, labelled Effect DCAR.

In the first setting with 100 patients in each arm and a treatment 
deviation rate of 40% and a missingness rate of 50% conditional 
upon having deviated, in both arms, then 20 subjects are ex-
pected in each arm who have observed off- treatment data (20 
subjects missing off treatment- data). In this setting a retrieved 

FIGURE 4    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 100 per arm 
with deviation of 20% in reference and 40% in active, and 50% missing data in both arms for different dispersion of prior and differing data generation 
models.

FIGURE 5    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 100 per arm with 
20% deviation and 90% missing data in both arms for different dispersion of prior and differing data generation models.
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dropout compliance model will be easy to fit and the prior should 
have little impact on both bias and RMSE. We see in Figure 1 the 
treatment estimate is unbiased irrespective of the prior for three 
of the scenarios (J2R, No effect DCAR, No Effect DNAR). This 
is the same for smaller and larger sample sizes (see Figures  2 
and 3). For Effect DCAR, the non- zero gamma values in the 
data generating model conflict with the prior, generating an in-
crease in bias as the prior gains precision. This illustrates how 
when the core model is wrong strong priors can induce signif-
icant bias. The other scenario with non- zero gamma, No effect 
DNAR, has zero bias due to the symmetry of the two arms, rather 
than the appropriateness of the core model as for J2R and No 
effect DCAR. This is clear in Figure 4 where the deviation rate is 
changed from 40% to 20% in the reference arm (remaining at 40% 
in the active arm). With sufficient off- treatment data to estimate 
the compliance model and with a relative precision of one for the 
prior (Figures  1– 4), the proposed retrieved dropout reference- 
base centred multiple imputation method has little impact on 
bias and RMSE, even with a badly chosen core model when the 
data is Effect DCAR. Overall, with 20% to 40% deviation and 
50% missing data, when we can trust the core model (i.e., where 
gamma is zero), then the precision has little impact. If the core 
model is not true then the prior variance may want to be more 
conservative so not to introduce bias.

When the amount of observed off- treatment data is small then 
we expect the prior to have more impact. Figure 5 shows the un-
likely situation where the deviation rate is 20% but 90% of these 
are missing. In this scenario the impact of the precision of the 
prior on the mean square error is larger for all scenarios. The 
bias under Effect DCAR is larger and interestingly does not get 
close to zero for small prior precision. Here the impact of perfo-
rated data is becoming apparent. It is this setting where choice 
of prior becomes important and needs to be based on the plausi-
bility of the core model.

Figure 6 has a lower deviation rate of 5% in both arms, with 50% 
missing data conditional on deviation. Here we see that when 
the precision of the prior compared to the residual variance is 
increased above 1, there is an impact on both the bias and RMSE, 
but the absolute size of the effect is small as there is little missing 
data. This illustrates how difficulties only occur when the pro-
portion deviating is large and also the proportion of these with 
missing data is also large.

5   |   Application to Example Data Sets

When there is sufficient data within patient strata defined by 
treatment and deviation visit (pattern) then it is relatively easy 
to define a compliance based multiple imputation procedure 
within strata that yields a robust estimator of treatment compar-
ison at final outcome. Of course, assumptions about the miss-
ingness process conditional upon pattern will remain, a topic 
that is left until the discussion section. The historic and current 
choices for the compliance model offer less robust approaches 
which can be used with less extensive off- treatment data.

The perforated data set from SWGEMD demonstrates the prob-
lems that can occur when exclusively using a compliance based 
modelling approach. Here with only four visits, seven patients on 
placebo and six on active deviate between first and second visits. 
While five out the seven are observed on placebo, none of the six 
on active are observed (Table 1). This means that the parameters 
�112, �113 and �114 for the historic approach and �12 for the cur-
rent approach are not estimable. However, these parameters are 
in general required for imputation of unobserved values. Rather 
than supply informative priors for these parameters directly, we 
proposed above that an extended model should be re- expressed, 
as an appropriate RBI core model with extra deviation parame-
ters, which are the difference between the required compliance 

FIGURE 6    |    Bias and root mean squared error (RMSE) for retrieved dropout reference- base centred multiple imputation with n = 100 per arm 
with 5% deviation and 50% missing data in both arms for different dispersion of prior and differing data generation models.
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model and the selected core RBI model. Then mildly informative 
priors for these deviation parameters are applied which centre on 
zero. Here we focus on historic and current as suitable choices for 
the compliance model used in the extended model. The later re-
quires an assumption that having come off treatment the expected 
outcome is the same however long ago the deviation occurred. For 
the RBI core model, we use J2R and CIR as realistic options.

For the antidepressant trial example data, we may expect those 
on placebo who stop treatment at a specific visit and subsequent 
follow- up to possibly

• Fair worse than the placebo mean as they stopped because 
they are severely depressed, or

• Fair better than the placebo mean as they have improved 
and see no purpose in remaining in the study, or

• Fair about the same, as the off treatment policy in the trial is 
the same as the placebo on- treatment policy.

For the first two the effect may be controlled by regressing on 
baseline HAMD17 and previous outcome. That is by condition-
ing on previous depression state the future residuals may be sim-
ply MAR. A similar picture may hold for the active arm with the 
additional consideration of the withdrawal of a potentially active 
therapy. So some intermediate position between J2R and CIR 
may be a reasonable choice for the core model. As an example of 
using a fixed delta as core we show results for an MAR + 2 core 
where the placebo arm is MAR while the active arm is MAR with 
2 units added for each extra visit following deviation, represent-
ing a rather pessimistic core.

Using the Wilkinson– Rogers model formulae notation [22], 
there are two main terms in the model, one for the core model 
and one for the deviations. Assume the following variables de-
fined at the patient- visit level; factor Trt is treatment as ran-
domised (two levels here), quantitative indicator OffT with 0 for 
on- treatment and 1 for off- treatment, factor Pattern has value 
which is the current visit number while on treatment and the 
index of last on- treatment visit (deviation) when not, factor J2R 
has as- randomised treatment level when on treatment and the 
reference treatment level when off treatment. For more com-
plex cores such as CIR (or LMCF), it is necessary to declare an 
array of treatment- by- visit quantitative variables TrtbyVis [2, 4] 
reflecting for instance Equation  (2) and then regress on these 
(see Appendix 1 for more detail). Neither of CIR, or (MAR + � ) 
is nested with the current compliance model and both require 
use of the fuller historic extended model, as indicated by blank 
entries in Table 4.

The core part of the model is merely J2R * Visit for J2R or TrtbyVis1- 
TrtbyVis8 for CIR. The deviations are OffT * Trt * Visit * Pattern 
for historic or OffT * Trt * Visit for current. Then any baseline co-
variates such as Baseline can be added as required, such as in 
this complete model

Note here how both second and third terms are regressions on 
a quantitative variable, OffT or Baseline. Importantly when a 
patient is still on treatment OffT is zero and the model reduces to 

J2R * Visit + Baseline * Visit * Trt. This requires that OffT is not 
treated as a factor (not on the CLASS statement in SAS).

Using the SAS procedure proc BGLIMM this Bayesian model 
can be implemented directly allowing for missing data. In the 
discussion we consider alternatives to using SAS proc BGLIMM 
for implementation. The repeated measures multivariate Normal 
is specified through the REPEATED statement usually using an 
unstructured covariance matrix which could be grouped by treat-
ment arm if required. As long as conjugate priors are used, as 
here, the procedure uses direct sampling resulting in very little 
serial correlation in the sampled parameters. However, to take 
advantage of the proposal, mildly informative priors need to be 
attached to the �∗ or �∗ parameters. The names automatically 
allocated to the deviation parameters by the SAS procedure are 
long and include the variable name and associated value for 
each element of associated term, for instance ‘OffT * Trt 1 * visit 
2 * Pattern 1’. The example code attached to this paper demon-
strates how this can be accomplished most easily. Numeric factor 
values make this easier, but care must be taken as SAS names can 
be no longer than 32 characters. Three template sets of SAS code 
that generate the results in Table 5 for the covered data set using 
a variance of 40 for the priors and the three approaches, J2R- 
historic, J2R- current and CIR- historic are available directly [23] 
or from SWGEMD [24]. They are based on pure SAS code and do 
not include external macro calls, allowing easy validation using 
standard one- off validation protocols for user- written SAS code.

Rather than build the imputed data set in a separate stage, we 
note that the required values have already been calculated as 
part of the MCMC process as the estimated missing data pa-
rameters. The BGLIMM procedure makes these available as a 
sample from their posterior distribution. These are merged back 
with the original data to form the imputed data sets, one based 
on each sample from the posterior. This is not necessary and a 
separate prediction stage could be used.

Using the residual variance of the outcome at final visit from 
a simple MMRM model of on- treatment data (as described in 
Section 4.3), for the example data sets used here we chose the 
variance to be 40. This value could alternatively be chosen during 
trial design based on previous experience and written into the 
protocol or analysis plan. Here we show results for these two 
data sets with the variance for prior changing through 1, 10, 40, 
160 and 1000 for each of a range of choices for model alongside 
results using classic J2R RBI using proc BGLIMM (with or with-
out observed off- treatment data added) and the standard historic 
and current compliance models without re- parameterisation 
using three differing computational methods (proc MI, MISTEP 
macro or proc BGLIMM). For the perforated data set the latter 
three computational routes give different answers based on how 
they cope with the non- estimable parameters. For the SWGEMD 
proc MI route any non- estimable parameter value is set to zero 
in the imputation stage. In the MISTEP macro it effectively re-
moves any affected patient- visit combination by setting the im-
puted value to missing. For the BGLIMM route using MCMC 
and Bayesian parameters to represent missing values, we use 
non- informative priors for all parameters. This should be the 
most robust route. We used 10,000 imputations which leads to 
an approximate Monte Carlo SE of 0.002 for treatment differ-
ence, while our results are presented to 2 decimal places. For 

J2R∗Visit + OffT∗Trt∗Visit∗Pattern + Baseline∗Visit∗Trt
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all multiple imputation methods, results were combined across 
imputed data sets for inference using Rubin's rules.

The imputation model has visit- by- baseline added in every case. 
The analysis is ANCOVA based on the change in HAMD17 at Visit 
6 with randomised treatment and baseline as the only covariates.

5.1   |   Results

The results are summarised in Table  5. The left side uses the 
covered data set where all parameters in the historic and current 

models can be estimated, while the right uses the perforated data 
set where difficulties in model fitting occur. The top two rows 
show the simplest approach using the RBI method J2R using on- 
treatment data, either on its own or with observed off- treatment 
data added back in.

When J2R MI is implemented for the covered data set, adding 
the observed off- treatment data back to replace the imputed 
J2R data when available changes the estimated mean difference 
from 2.18 to 2.28 and reduces the standard error from 1.13 to 
1.05 as expected. This reflects how the ongoing treatment dif-
ference is partially maintained after deviation in the observed, 

TABLE 5    |    Mean treatment policy difference and SE using MI for two similar data sets using differing methods.

Method Covered Perforated

Reference- based MI Mean SE Mean SE Mean SE Mean SE

J2R only 2.18 1.13 2.17 1.13

J2R + observed Off- treatment data 2.28 1.05 2.39 1.05

Compliance- based MI Historic Current Historic Current

Outcomes missing for patient- visits 
with non- estimable imputation 
parametersa

2.32 1.10 2.34 1.07 2.45a 1.08a 2.74a 1.05a

Non- estimable imputation 
parameters set to zerob

2.32 1.10 2.34 1.07 2.44b 1.10b 2.39b 1.06b

Priors for non- estimable imputation 
parameters using Bayesian MVN 
modelc

2.31 1.10 2.35 1.06 2.75c 2.39c 2.52c 1.05c

J2R with historic and current extensions with varying prior variance

Var = 1 2.28 1.05 2.29 1.05 2.38 1.04 2.42 1.04

Var = 10 2.31 1.06 2.33 1.06 2.40 1.08 2.49 1.05

Var = 40 2.32 1.08 2.35 1.06 2.41 1.16 2.51 1.05

Var = 160 2.32 1.09 2.36 1.06 2.44 1.45 2.52 1.05

Var = 1000 2.32 1.10 2.36 1.06 2.63 2.80 2.52 1.05

CIR with historic extension with varying prior variance

Var = 1 2.41 1.04 2.42 1.04

Var = 10 2.39 1.06 2.41 1.08

Var = 40 2.36 1.08 2.41 1.16

Var = 160 2.34 1.09 2.44 1.45

Var = 1000 2.32 1.10 2.63 2.79

MAR + 2 with historic extension with varying prior variance

Var = 1 2.53 1.06 2.43 1.07

Var = 10 2.44 1.07 2.31 1.09

Var = 40 2.38 1.08 2.24 1.17

Var = 160 2.34 1.09 3.24 1.48

Var = 1000 2.33 1.10 2.43 2.81
aThose patient visits which cannot be imputed are removed. Implemented using %MISTEP macro in SAS.
bIn SAS Proc MI sets un- estimable parameters to zero before imputing.
cPrior N(0, 1000) used for all fixed effects as some parameters non- estimable, implemented using Proc BGLIMM in SAS.
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which contrasts with J2R where it is assumed the TE immedi-
ately disappears following deviation.

For the perforated data set the pattern in SE is similar but the 
mean difference increases by a larger factor from 2.17 with 
J2R MI only to 2.39 with J2R MI and observed off treatment 
data. This is because the placebo arm has more off- treatment 
observed data and less observed on- treatment data in the active 
arm (Table 1), which increases the overall treatment- policy dif-
ference compared to the covered data set.

For the compliance based MI analysis, as we expect, when all 
parameters in the historic and current compliance models are 
estimable the differing computational routes deliver the same 
result. For the compliance based MI analysis using the covered 
data set the simpler current model gives a smaller SE of 1.07 (or 
1.06) compared to the fuller historic at 1.10 with a small change 
in mean from 2.34 (or 2.35) to 2.32 (or 2.31) when all parame-
ters are estimated. For the perforated data set all three compu-
tational methods have to take evasive steps for both the simpler 
current and the historic model. The stepwise approaches that 
either do not impute missing outcomes for patient- visits with 
non- estimable imputation parameters or set non- estimable im-
putation parameters to zero fair worst as they need to impute 
at the intermediate Visit 2 where the non- estimable parame-
ter is required. The former approach replaces any patient- visit 
combinations which cannot be imputed by missing values ef-
fectively removing the patient from the analysis, and the mean 
becomes biased while the SE gets smaller showing how off- 
treatment patients increase variability in the outcome variable 
for the merged treatment- policy data set. That is those on and 
those off treatment at final visit are inherently different and 
reducing the number in the smaller subgroup decreases the 
variance in the merged set. The second procedure effectively 
sets the non- estimable �12 to zero and carries on including the 
patient in the analysis imputing as if they had complied. This is 
safe as it allows the imputation to proceed to subsequent visits 
with a full set of patients. But it makes an inherent assump-
tion while most likely underestimating the SE as it ignores 
the lack of compliance. The same picture applies to the third 
computational approach where all fixed effect parameters are 
given a broad prior with variance of 1000, with the SE increas-
ing in the historic case where the non- estimable parameter �124 
is required directly for imputation at the final visit. Diagnosis 
of worm plots from the non- estimable parameters indicates 
roaming during MCMC. For the simpler current model the 
third computational approach results (implemented using proc 
BGLIMM) are valid and match the later results using the rec-
ommended route.

The extended core model using J2R as core with differing 
variances for priors behaves well with both data sets. In the 
extreme with unit variance it behaves like J2R RBI with  
added on- treatment data, while with larger prior variance 
for the deviations it behaves like the associated off- treatment 
model historic or current. With the perforated data set the  
SE goes up as the variance goes up for J2R + historic, but re-
mains stable for J2R + current. With large variance for prior 
J2R + historic becomes unstable just like the historic compli-
ance model.

The CIR core model is only nested within the full historic com-
pliance model and should not be used with the current compli-
ance model. This is because the impact of having deviated under 
CIR depends upon the visit at which the patient deviated. Only 
results using the historic approach are presented. Using CIR 
rather than J2R as core model is expected to increase the esti-
mated treatment difference as the TE from the deviation visit is 
carried forward. With the covered data set this is evident when 
a stronger prior is used such as unit variance. With our recom-
mended mild prior variance of 40, the increase with CIR is 2.36 
compared to 2.32 for J2R. For the perforated data set it should 
be remembered that large variances for the priors will lead to 
problems with the MCMC chain and so only variances 1– 160 are 
of interest. With prior variance of 1000 the SE is large while the 
non- estimable parameter roams in the MCMC chain. Using the 
recommended variance for prior of 40 the results for CIR + his-
toric model are very similar to those for J2R + historic.

When the core model is MAR with a delta of +2 for each sub-
sequent visit after deviation, the mean treatment difference is 
2.38, which is larger than for either J2R or CIR. This reflects a 
strong deleterious impact of withdrawal of active treatment in 
the core model.

6   |   Discussion

In this article we have considered the analysis of clinical tri-
als with quantitative longitudinal outcome data, where not all 
patients remain on treatment and complete follow- up to the 
end of the study and a treatment policy strategy is of interest 
for addressing treatment withdrawal. Retrieved dropout mul-
tiple imputation using off- treatment data (also referred to as 
compliance- based multiple imputation) has been recommended 
for estimation in this setting. However, a perforated data struc-
ture may render such imputation methods infeasible since im-
putation model parameters may be inestimable. With several 
follow- up time points a perforated data structure becomes in-
creasingly likely. We have proposed a novel imputation model 
parameterisation for retrieved dropout multiple imputation, 
centred on a core reference- based model, which can be imple-
mented with limited observed off- treatment data.

In previous work others have proposed the use of retrieved 
drop out multiple imputation methods as preferable in this set-
ting and where not possible, due to convergence issues, revert-
ing to simpler multiple imputation methods such as the RTB 
method or the washout method [2] or reference- based multi-
ple imputation [3]. Our method improves upon the latter fall- 
back approaches by utilising partially observed off- treatment 
data combined with a reference- based model. Appealingly 
a single non- adaptive analysis plan can be presented when 
rates of retrieved off- treatment data are unknown. This may 
be preferred to an adaptive analysis approach dependent on 
the realised data structure, which may be sub- optimal. Any 
adaptive analysis that switches from a retrieved dropout com-
pliance model to an RBI model will involve an effective step 
even when using off- treatment reference arm data in the pa-
rameter estimation stage [5]. In contrast the proposed method 
will smoothly transition between the two approaches as the 
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off- treatment parameters get less well estimated. Both ap-
proaches require a unique aspect of the analysis strategy to be 
predefined. For an adaptive analysis plan, it is the rules, while 
for the proposed approach it is the priors' variances for the 
additional parameters.

It has previously been shown that reference- based multiple im-
putation using Rubin's rules provides approximately information 
anchored inference [25]. That is, Rubin's variance estimator for 
the TE ensures that the loss of information due to missing data is 
approximately the same as analysis under the MAR assumption 
for a broad range of commonly used reference- based alternatives. 
It has also been shown that delta- based multiple imputation with 
a fixed delta is information anchored; but when an additional 
prior is incorporated on delta the variance of the MI TE, estimated 
using Rubin's rules, will incorporate the additional variance 
on delta (because the variation in delta increases the between- 
imputation variance) [25]. Since the proposed method consists of 
a reference based model plus some additional model parameters 
with a prior mean of zero and specified variance, it can be in-
ferred that when there is little observed off- treatment data and 
the imputation behaves similar to reference- based multiple impu-
tation, the variance estimator for the TE will be approximately in-
formation anchored with an additional increase in variance, that 
is, additional loss of information that is dependent on the prior 
variance assumed for the extended model parameter. When there 
is a large proportion of observed off treatment data the imputation 
will behave like the chosen- off- treatment compliance model, and 
the variance estimator for the TE will behave more similarly to 
that seen in retrieved dropout multiple imputation. Thus, there 
will be some bias- variance trade off, dependent on the amount 
of observed off- treatment data. Our results in Table 5 show how 
increasing the prior variance for the extended model increases the 
variance for the estimated TE by a small amount. It has also pre-
viously been shown using Rubin's variance estimate in reference- 
based multiple imputation overestimates the empirical repeated 
sampling variance of the reference based TE [25]. This leads to 
type I error being controlled at levels below 5% under the null. A 
more extensive simulation study is now required to further ex-
plore the properties of Rubin's variance estimate, type I error in 
this setting and the bias variance trade off with different choices 
for the prior variance and is now the focus of further work.

Our initial analytical investigations here showed when we can 
trust the core model (i.e., where gamma is zero), then the preci-
sion of the prior's variance has little impact on bias and RMSE. 
If the core model is not believed to be true then the prior vari-
ance may want to be more conservative so not to introduce bias, 
and when the amount of observed off- treatment data is small 
then we expect the prior variance to have more impact. However 
generally with little missing data the impact of the prior vari-
ance will be small. More extensive simulation studies should 
investigate the methods performance under different conditions 
including for differing amounts of off- treatment data when the 
reference- based assumption is or is not correct and the impact 
of different priors and trial sample sizes. Simulation studies are 
also required to compare the proposed approach to the estab-
lished ones of reference- based multiple imputation and retrieved 
drop out multiple imputation under such different conditions to 
fully understand the individual settings in which each method 
has preferred performance.

If the deviation process is not at random, then it is still possi-
ble by using off- treatment data to make an unbiased estimate 
of the treatment policy estimand. However, if the missingness 
mechanism is not MAR then other approaches are needed to 
generate the missed data. The main driver for such MNAR data 
could be that those who immediately leave the study are in some 
way different from those remaining. By conditioning on proxies 
for these factors the MAR approximation should improve. The 
MAR assumption at trial withdrawal can be made more likely by 
including covariates that tell us about treatment deviation (e.g., 
reason for withdrawal) or by stratifying the compliance model 
by treatment. Or a delta- based multiple imputation approach 
may be useful. Here delta is applied following trial withdrawal 
rather than in the core model which handles post- deviation 
irregularity.

We have used an open access part computer generated data set to 
demonstrate how to implement the proposed method and enable 
readers to replicate. As such it is important not to draw conclu-
sions from the data about the types of pattern that can be expected 
in terms of treatment withdrawal and/or study withdrawal. It is 
important that therapeutic areas make publicly available sum-
mary data on the ability to collect such off- treatment data and 
the likely trajectories for those who do not comply.

In these example data sets all those patients who come off 
treatment either immediately stop further observation or are 
observed right to the end of the study. There are no patients 
with some but only some of their follow- on data available. 
Patients who have some but not all post- deviation data will 
have imputation conditioned on both their on- treatment and 
their off- treatment data. This will generate more complex sce-
narios than those faced in our two examples. For the current 
approach the fact that the �12 parameter is not estimable is un-
important in our examples as it is not actually used for impu-
tation. Patients who need imputation at the final visit have no 
off- treatment data and so knowing the mean at Visit 2 is not 
needed. However, if there were patients who deviate and have 
only some off- treatment data then knowing the value for �12 
would be potentially important. The basic idea of providing 
a mildly informative prior for the deviations from a core RBI 
model should be even more useful in the more realistic setting 
of partial off- treatment data within patient.

For the example data sets we explored J2R, CIR and MAR + 2 
as core models. As noted in Section  4 other models can 
be used for the core model. We also explored the historic 
(OffT * Trt * Visit * Pattern) and current (OffT * Trt * Visit) com-
pliance models for the example data sets. One is not restricted 
to these choices. For example, as suggested by a reviewer of this 
paper one could also consider a compliance model with a term 
‘OffT * J2R * Visit * Pattern’ instead of ‘OffT * Trt * Visit * Pattern’ 
(i.e., pooling data across arms in the off- treatment period). This 
would change the resulting compliance model so there is no TE 
after deviation, so both arms have same off- treatment means, 
but this is different from reference on- treatment mean at that 
visit. This might be particularly useful for studies of symptom-
atic treatments with a very short- lived effect.

We have assumed there are no interim missing data although 
we can reasonably expect to experience such issues in practice. 
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Both on- treatment and off- treatment intermediate missing data 
could be handled with MAR Multiple Imputation. This is au-
tomatic in the associated BGLIMM code when the response is 
set to a missing value. When data are missing for other rea-
sons beyond the intercurrent events handled by use of treat-
ment policy estimand, such as death, other strategies may be 
needed. Multiple imputation under other scenarios may allow a 
joined- up approach to the disparate types of intercurrent event. 
Where all subsequent patient data is missing while on treat-
ment, such as when analysis is performed before every patient 
completes the full study period, it may be necessary to impute 
treatment withdrawal events using logistic regression alongside 
imputation of outcome using an alternating stepwise approach. 
Otherwise, bias may be introduced by a lack of treatment with-
drawals being identified.

We have assumed independence of the priors for the deviations. 
If there are several visits within a study, we may expect the devi-
ations to be in the same direction at adjacent visits. So one might 
want to build in some positive correlation between adjacent de-
viations within treatment. This can be done within the code we 
propose, by adding extra correlation rows to the priors data set. 
A correlation as large as 0.5 might be suitable, but we have not 
explored this yet.

Rather than using BGLIMM, the historic approach can be imple-
mented in a stepwise way visit by visit using standard Bayesian 
univariate regression. Such software is generally available and 
can also be programmed oneself as the required priors are all con-
jugate leading to direct sampling rather than involving complex 
MCMC algorithms. One advantage of the marginal BGLIMM ap-
proach is that it can automatically handle intermediate missing 
values under MAR. An advantage of a sequential implementation 
is that the RBI idea of switching covariance matrix at deviation 
[3] could be implemented by stratifying at each visit the regres-
sion on previous observed values by whether the observed value 
was— or off- treatment. For the current approach the Bayesian 
univariate regressions need to be based on previous residuals. 
Other than BGLIMM, the only SAS Bayesian regression proce-
dure which allows user- specified priors is GENMOD. However, 
the BY statement in this procedure currently uses the same seed 
for each BY group, so messy macro looping is required. Also, the 
imputed values are not directly available as in BGLIMM.

A similar approach could be used for other types of outcome. 
Both RBI [26] and compliance [14] models have been proposed 
for recurrent events based on an extended Negative Binomial, 
allowing RBI to be nested within the compliance model. Roger 
et al. [14] suggest two computational routes, the second of these 
a gamma- Poisson log- linear model across multiple periods of 
patient- specific fixed length could be implemented in BGLIMM 
making this an easily programmable option. A binary outcome 
could be handled in a similar fashion. For time- to- event out-
comes Atkinson et al. [27] and Jin [28] both propose RBI models 
in a proportional hazards setting before imputation. These could 
be used in this way, nesting RBI within a selection model. But 
easy computational routes are not readily available. However, 
interpretation of information borrowed between arms is com-
plicated by the differing populations at risk due to ongoing pa-
tient selection, a commonly stated limitation of the proportional 

hazards approach. A nested approach based on a restricted 
mean survival time (RMST) regression model might be possible, 
but this area is not well explored.

As alluded to in the introduction, the proposed approach 
could similarly be used to handle missing data following dif-
ferent types of intercurrent events using a treatment policy 
strategy, such as temporary treatment interruptions or use of 
rescue medications. Such events could require more complex 
modelling scenarios than those explored within this manu-
script requiring careful model parametrisation, also depen-
dent on whether those patients who temporarily interrupt 
treatment (or use rescue medication) either immediately stop 
all further observation or have any subsequent off-  and/or on- 
treatment follow- up. This would be interesting to explore in 
further work.

Overall, we have illustrated how Multiple imputation provides 
a computationally practical method for inference in this frame-
work. We propose that a core reference- based model is combined 
with a retrieved dropout compliance model, using both on-  and 
off- treatment data to form an extended model for imputation. 
SAS code has been provided to readily enable implementation of 
the proposed method.
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Appendix 1

This appendix shows how to implement this approach in SAS and gen-
erate an Imputation data set, ImputedData.

• Generate a vertical data set InputData with the required variables.

 It is assumed that the data set is in vertical format (One patient- 
visit per record) already indexed by patient identification, Patient, 
and visit number Visit. Also that there are two linked variables, 
variable OffT taking values 0 or 1, where 1 indicates the patient 
has come off treatment and LastVis which is the visit index of the 
patient's last on- treatment visit. The LastVis value relates to the 
patient and has the same value for all records within a patient, 
while the OffT is a numeric indicator variable which varies from 
visit to visit following the definition.

if Visit > LastVis then OffT = 1; else 
OffT = 0;

 The variable Pattern is a derived factor also defined at the visit 
level taking the current visit index while still on treatment and 
remaining at the index value of the last visit on- treatment for 
that and all remaining visits.

if Visit > Lastvis then Pattern = Lastvis; 
else Pattern = Visit;

 Also the variable Trt holds the treatment levels, 0 and 1 here, 
and J2R is a factor holding the treatment level while on treatment 
and the reference level 0 while off treatment.

if Trt = 0 then J2R = 0; else if visit<=Last-
vis then J2R = 1; else J2R = 0;

 15391612, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2416 by L

ondon School O
f H

ygiene &
 T

ropical M
edicine, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s43441-022-00402-3
https://doi.org/10.1007/s43441-022-00402-3
https://doi.org/10.1002/pst.2234
https://doi.org/10.1002/pst.2234
https://doi.org/10.1080/19466315.2013.848822
https://doi.org/10.1080/19466315.2013.848822
https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data#dia-missing-data
https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data#dia-missing-data
https://doi.org/10.1080/19466315.2020.1736141
https://doi.org/10.1080/19466315.2020.1736141
https://doi.org/10.1080/19466315.2019.1689845
https://baselbiometrics.github.io/home/docs/talks/20221208/2_EIWG-Estimation-Tom-Drury-FINAL.pdf
https://baselbiometrics.github.io/home/docs/talks/20221208/2_EIWG-Estimation-Tom-Drury-FINAL.pdf
https://baselbiometrics.github.io/home/docs/talks/20221208/2_EIWG-Estimation-Tom-Drury-FINAL.pdf
https://lshtm.sharepoint.com/sites/MissingDataPublicFiles/Shared
https://lshtm.sharepoint.com/sites/MissingDataPublicFiles/Shared
https://doi.org/10.1002/pst.1910
https://doi.org/10.1186/s12874-022-01509-9
https://doi.org/10.1186/s12874-021-01261-6
https://doi.org/10.1002/hec.3963
https://doi.org/10.1002/pst.2191
https://doi.org/10.1080/19466315.2022.2116476
https://doi.org/10.1080/10543406.2019.1684308
https://doi.org/10.1080/10543406.2019.1684308
https://lshtm.sharepoint.com/sites/MissingDataPublicFiles/Shared
https://lshtm.sharepoint.com/sites/MissingDataPublicFiles/Shared
https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data#dia-missing-data
https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data#dia-missing-data
https://doi.org/10.1111/rssa.12423
https://doi.org/10.1002/pst.1624
https://doi.org/10.1002/pst.1624
https://doi.org/10.1002/pst.1954
https://doi.org/10.1016/j.cct.2023.107401


20 of 22 Pharmaceutical Statistics, 2024

• Here we fit the Bayesian model with Change as the outcome 
variable and baseline covariate Basval using J2R + historic as 
method. One thousand samples are created with a thinning of 
5. Include the plots = trace option to see diagnostic plots for the 
MCMC process.

proc bglimm data = InputData seed = 21 outpost =  
MyPosterior nmc = 5000 thin = 5; 
* plots = trace;
class Patient Trt Visit J2R Pattern;
model Change = OffT * Trt * Visit * Pattern 
J2R * Visit Basval * Visit/noint CPRIOR = NORMAL
(Input = MyPriors);
repeated Visit/subject = Patient type = un;
run;

 If a ‘delta’ approach is required for the core model then this can 
implement using the OFFSET option on the model statement, 
along with a variable holding the required delta values. But be-
ware that the BGLIMM procedure may need a Hot Fix for this 
to give correct values. A workaround for this when using the 
identity link is to subtract the offset from the response variable 
before running BGLIMM and then add it back to the imputed 
values.

• The priors for the parameters in the term OffT * Trt * Visit * Pattern 
need to have been set in the data set MyPriors, and running the 
BGLIMM procedure as above without the CPRIOR = option will 
provide their names. Then code like this can be used to set the 
zero mean and variance at 40 thus.

options validvarname = any;
Data Mypriors;
length _Type_ $4;
%macro dummy();
%do i = 0%to 1; %do j = 1%to 4; %do k = 1%to &j;
“OffT * Trt &i. * visit &j. * Pattern &k” n = 0;
%end; %end; %end;
_Type_ = “Mean”; output;
%do i = 0%to 1; %do j = 1%to 4; %do k = 1%to &j; 
‘OffT * Trt &i. * visit &j. * Pattern &k’ n = 40;
%end; %end; %end;
%mend dummy; %dummy;
_Type_ = ‘Var’; output.
run;

 The validvarname option is required so that the variable names 
can include the spaces required by BGLIMM. The dummy macro 
is required to generate the names as the SAS language does not 
allow macro do loops within open code.

• Then the 1000 sampled posterior values for the missing data are 
merged back with the original data to create 1000 imputed data 
sets. This can be done using the %BGI macro from the DIA 
website or if required use code generated by the %BGI macro as 
template code to directly carry out a transpose of the MyPosterior 
data set and then merge it back into the original data set. The 
required call to the macro is

%BGI(Data = InputData, Post = MyPosterior, 
Out = ImputedData, Response = Change);

• For other core models it is necessary to set up a treatment by visit 
array TrtbyVis in the InputData data set to specify the required 
RBI method. First declare the array and zero the elements.

array TrtbyVis [2,4];
do t = 1 to 2; do v = 1 to 4;
TrtbyVis[t,v] = 0;
end; end;

 then for CIR use, …

if Trt = 0 then TrtbyVis[Trt + 1,Visit] = 1;
else if Visit<=Lastvis then 
TrtbyVis[Trt + 1, Visit] = 1;
else do;
TrtbyVis[1,Visit] = 1;
TrtbyVis[Trt + 1, Lastvis] = 1;
TrtbyVis[1,Lastvis] = −1;
end;

 or for LMCF use …

if Visit<=Lastvis then 
TrtbyVis[Trt + 1,Visit] = 1;
else TrtbyVis[Trt + 1,Lastvis] = 1.

 and one could do J2R this way thus …

if Trt = 0 then TrtbyVis[Trt + 1,Visit] = 1;
else if Visit<=Lastvis then 
TrtbyVis[Trt + 1,Visit] = 1;
else TrtbyVis[1,Visit] = 1;
end;

 and finally replace J2R by TrtbyVis1- 8 in the model statement.

model Change = Offt * Trt * visit * Pattern 
TrtbyVis1-TrtbyVis8 Basval * Visit/noint.

Appendix 2

In this appendix, we extend the simple illustration introduced in 
Section 4.1, by allowing for withdrawal and missingness in the refer-
ence arm as well as the active arm. The simplicity of the illustration 
allows direct calculation of the impact of the priors in the Bayesian 
modelling stage of the multiple imputation. But the setting is complex 
enough to help identify the impact of mildly or strongly informative 
priors. The notation is the same but with the addition of rates p0 and 
q0 for withdrawal and missingness in the reference arm and count nj,0 
and population mean �j,0 for j = miss, off, on, rather than just n0 and �0 . 
The number in each arm, N0 =

(

nmiss,0 + noff,0 + non,0
)

 for reference and 
N1 =

(

nmiss,1 + noff,1 + non,1
)

 for active, are fixed throughout. The con-
trast of interest is

the difference in expected value for each arm.

Fixed Withdrawal and Missingness

There are several layers of random process described and the means and 
variances E[ ] and V ( ) are subscripted to indicate the layer:

• Y, for observed data, usually used conditional on the numbers of 
on, off and missing patients in each arm.

• Post, for Bayesian posterior conditional upon observed data.

• Imp, for summation across imputations which are assumed infinite 
in number, while also sampling from the posterior.

Outside these there is the withdrawal and missingness processes sum-
marised by p0, q0, p1 and q1. In the next section, this later layer is handled 
by direct enumeration. This section assumes the numbers withdrawing 
and missing in the two arms is fixed.

This is a very simple model for compliance allowing for missing data 
while off- treatment with three states, on- treatment, off- treatment and 
lost- to- follow- up with a single observation and no baseline informa-
tion. Patients are assumed independent, so that conditional on which 

TEReal=
[(

1−p1
)

�on,1+p1
(

1−q1
)

�off,1+p1q1�miss,1
]

−
[(

1−p0
)

�on,0+p0
(

1−q0
)

�off,0+p0q0�miss,0
]
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of the three groups a subject falls into his outcome is sampled from 
a normal distribution with mean that depends on the treatment arm 
and whether the subject is observed and on or off treatment. That is 
conditional on the number observed/withdrawn there are six means 
�miss,0,�off,0,�on,0,�miss,1,�off,1,�on,1, and without further constraint 
�miss,0 and �miss,1 are not estimable. An obvious simple compliance 
model in this setting sets �miss,0 = �off,0 and �miss,1 = �off,1 where off- 
treatment mean is the same whether observed or not, assuming MAR 
for the missingness process. Then we can estimate all six means as 
long as the counts noff,0 and noff,1 are greater than zero whenever the 
nmiss,0 or nmiss,1 for the same arm is greater than zero. Under this MAR 
assumption

A RBI J2R model uses �miss,1 = �off,1 = �miss,0 = �off,0 = �on,0 instead, 
using the reference arm on- treatment as mean for the off- treatment 
means in both arms. The purpose of this appendix is to investigate the 
idea of re- expressing the previous compliance model in the following 
way, �miss,0 = �off,0 = �on,0 + �0 and �miss,1 = �off,1 = �on,0 + �1. This is 
equivalent to the compliance model using MAR for the missingness 
process. When both gamma parameters �0 and �1 are fixed at zero then 
this is the J2R RBI model. If noff,0 = 0 while nmiss,0 > 0 then the param-
eter �0 cannot be estimated, while if noff,1 = 0 while nmiss,1 > 0 then the 
parameter �1 cannot be estimated. By applying a mild informative prior 
for �0 and �1 the six means can all be estimated as long as number ob-
served on treatment in both arms non,0 and non,1 are greater than zero, 
a very reasonable assumption, leading to an estimate for the required 
contrast.

The missing data problem is often handled using a multiple imputation 
approach as detailed in Section 4.2. Rather than jump into an extensive 
simulation activity at the patient level we explore an analytic approach. 
First we consider the Bayesian model fit, conditional on a single set of 
observed data, six counts n =

(

nmiss,0,noff,0,non,0,nmiss,1,noff,1,non,1
)

 as-
sumed fixed at this stage, four observed means yoff,0, yon,0, yoff,1 and yon,1,  
and four observed sum of squares about the mean soff,0, son,0, soff,1 and 
son,1 all random. We assume independent normal priors for �on,0 , �on,1,  
�0 and �1 with zero means and variances �2 ∕�0, �2 ∕�1, �2 ∕�0 and 
�2 ∕�1 (precision �0 ∕�

2, �1 ∕�
2, �0 ∕�2 and �1 ∕�2), and uninformative 

inverse chi- square prior for �2. We will set �0 and �1 to zero as uninfor-
mative while exploring different values of �0 and �1. Such priors give no 
information about the treatment means on treatment but some about the 
likely off treatment means compared to those on treatment. Note that �2 
is not known in advance and this specification is saying that the prior is 
being defined relative to the unknown residual variance which will be 
estimated from the data. The technical advantage here is it allows the 
term to cancel in the definition of the posterior distribution. In practice 
it has the attribute that if the trial has unexpectedly less precision, larger 
residual, then the prior is down weighted while if the trial is more precise 
than expected the precision of the prior is automatically increased.

We stack the four observed means into a single observed vector 
Y =

[

yoff,0, yon,0, yoff,1, yon,1
]T and stack the four parameters as param-

eter vector � =
[

�on,0, �0,�on,1, �1
]T. Transpose of vectors and matri-

ces are indicated by suffix capital T. The four means and four sums of 
squares summarise the data completely conditional upon the number in 
each group. The mean is

where

Other core/compliance model combinations will define different matri-
ces X. The observations Yi are independent, so Y is multivariate normal 
with variance– covariance �2� where inverse of � is

The prior for � is normal with zero mean and variance– covariance Ψ�2 
where inverse of Ψ is

The posterior for � conditional upon �2 is normal with mean

which does not involve the value of �2 and variance

where A =
(

XT�−1X+Ψ−1
)−1 and B = XT�−1. The mar-

ginal posterior distribution for �2 is inverse chi- square with 
E
[

�2
]

=
(

soff,0 + son,0 + soff,1 + son,1
)

∕� and � degrees of freedom, where 
� =

(

noff,0 + non,0 + noff,1 + non,1 − 4
)

.

At this stage set �0 = �1 = 0 making the well estimated parameters 
�on,0 and �on,1 have flat priors. This is not required, but makes discus-
sion simpler. We need to invert the matrix A which is possible as long 
as both �0 and �1 and also non,1 but not necessarily non,0 are greater than 
zero. The value changes from simulated data set to data set, but does not 
change from imputation to imputation, as the counts n are fixed across 
imputations.

At each imputation a draw is made from the joint posterior and compo-
nents of ymiss,0 and ymiss,1 imputed. These imputed missing values will 
be normal with means

and

Note how each is a weighted mean across the four observed values Y 
and is just the observed means off treatment when both �0 and �1 are 
zero.

Their variance and covariance involves the covariance matrix of the 
posterior of � and the variance associated with individual imputations 
involving �2.

and is undefined when non,1 is zero.

TEReal=
[(

1−p1
)

�on,1+p1�off,1
]

−
[(

1−p0
)

�on,0+p0�off,0
]

EY [Y |n] = X�

X =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 0

1 0 0 0

1 0 0 1

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

and XT =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

�
−1 =

⎡

⎢

⎢

⎢

⎢

⎣

noff,0 0 0 0

0 non,0 0 0

0 0 noff,1 0

0 0 0 non,1

⎤

⎥

⎥

⎥

⎥

⎦

Ψ−1 =

⎡

⎢

⎢

⎢

⎢

⎣

�0 0 0 0

0 �0 0 0

0 0 �1 0

0 0 0 �1

⎤

⎥

⎥

⎥

⎥

⎦

EPost
[

�| �
2
]

=
(

XT�−1X+Ψ−1
)−1

XT�−1Y = ABY

VPost
(

�| �
2
)

= �
2
(

XT�−1X+Ψ−1
)−1

= �
2A

EImp
[

ymiss,0
]

=EPost
[

�on,0+�0

]

=[1,1,0,0]ABY

EImp
[

ymiss,1
]

=EPost
[

�on,0+�1

]

=[1,0,0,1]ABY

VImp

[

ymiss,0

ymiss,1

]

=

[

1 1 0 0

1 0 0 1

]

A

[

1 1 0 0

1 0 0 1

]T

�
2

+

[

�
2∕nmiss,0 0

0 �
2∕nmiss,1

]
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Then we can derive the mean across imputations for the estimated treat-
ment difference T based on imputed values, which is our MI based esti-
mate for the contrast of interest, denoted by T̃.

which is a weighted sum of the four observed means Y with weights 
W(n).

It is possible to derive similar exact averages for other statistics condi-
tional upon the pattern of deviation and missingness (the values of n). 
Two important examples are the variance of the treatment difference 
in imputed data across imputations and the average across imputations 
of the estimated variance of the treatment difference estimate. These 
are components of Rubin's estimate of variance. They and subsequent 
derived statistics can be averaged across the deviation/missingness 
pattern in a similar way to that used for the estimate itself in the next 
section. In this way the choice of prior can be explored on other aspects 
of the inference process in future. In contrast properties such as the 
bootstrap estimator cannot be handled in this way as the resampling 
modifies the deviation/missingness pattern in the resampled data.

The Simulation Level

All the material so far is conditional upon the observed vector Y. Now we 
consider the long term properties across the distribution of Y using nu-
merical integration. Once you have decided on N0,N1,�0 and �1 then as 
long as you know the random n =

(

nmiss,0,noff,0,non,0,nmiss,1,noff,1,non,1
)

 
then the weights W(n) =

(

w1,w2,w3,w4
)

 in Equation (6) are known and 
fixed. So we can explore the properties of the estimator by using numer-
ical integration over the possible values for n using values based on the 
withdrawal and missing parameters p0, p1, q0 and q1, using postulated 
means �̃. This means that taking expectations over the distribution of 
the observed data we simply replace the elements in Y by the vector of 
simulation means for the data �̃ =

(

�̃off,0, �̃on,0, �̃off,1, �̃on,1
)T to obtain 

the simulation mean for T̃ based on Equation (6).

where

The case non,0 = noff,0 = 0 or non,1 = noff,1 = 0 where all data in an arm 
is missing needs special attention even though the probability may be 
very small as we use complete enumeration rather than Monte- Carlo 
simulation. We ignore the possibilities and reallocate the probability. 
If the ignored probability is not trivial then bias will be apparent when 
unexpected.

The actual simulation mean difference is then

allowing the calculation of bias.

More interesting will be the mean squared error of T̃.

EY

�

�

T̃−TEReal

�2
�

=
∑

n

P[n]EY

�

�

T̃−TEReal

�2

�n

�

=
∑

n

P[n]EY

�

�

W(n)TY −TEReal
�2
�n
�

=
∑

n

P[n]
�

VY (W(n)TY �n)

+ (TEReal−EY [W(n)TY �n])2
�

=
∑

n

P[n]
�

W(n)T�W(n)�2+
�

TEReal
�2

−2TERealEY [W(n)TY �n]+
�

EY [W(n)TY �n]
�2
�

=
∑

n

P[n]
�

W(n)T�W(n)
�

�2+
∑

n

P[n]
�

W(n)T �̃
�2

+
�

TEReal
�2
−2

�

TEReal
�

EY

�

T̃
�

T̃ =EImp[T]=
(

nmiss,1EImp
[

ymiss,1
]

+noff,1Y3+non,1Y4
)

∕N1−
(

nmiss,0EImp
[

ymiss,0
]

−noff,0Y1−non,0Y2
)

∕N0

(6)

T̃ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

−noff,0∕N0

−non,0∕N0

noff,1∕N1

non,1∕N1

⎤

⎥

⎥

⎥

⎥

⎦

T

+

⎡

⎢

⎢

⎢

⎢

⎣

−nmiss,0∕N0+nmiss,1∕N1

−nmiss,0∕N0

0

nmiss,1∕N1

⎤

⎥

⎥

⎥

⎥

⎦

T

AB

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Y=W(n)TY

EY

[

T̃
]

=
∑

n

P[n]EY

[

T̃|n
]

=
∑

n

P[n]EY
[

W(n)TY |n
]

=
∑

n

P[n]
[

W(n)T �̃
]

P[n]=
N0!

(

1−p0
)non,0

(

p0
(

1−q0
))noff,0

(

p0q0
)nmiss,0

nmiss,0!noff,0!non,0!

N1!
(

1−p1
)non,1

(

p1
(

1−q1
))noff,1

(

p1q1
)nmiss,1

nmiss,1!noff,1!non,1!

TEReal=
[(

1−p1
)

�̃on,1+p1�̃miss,1
]

−
[(

1−p0
)

�̃on,0+p0�̃miss,0
]
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