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Abstract

Background

High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going

transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy

(ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to

compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were

virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody

reactivity to specific HIV targets and broad reactivity across the HIV genome was associated

with VL and controller status 1–2 years after infection.

Methods

Samples were obtained from participants who acquired HIV infection in a community-ran-

domized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071

PopART). Controller status was determined using VL and antiretroviral (ARV) drug data

obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000

copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both
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groups had no ARV drugs detected at either visit. VirScan testing was performed at the sec-

ond HIV-positive visit (1–2 years after HIV infection).

Results

The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten

clusters of homologous peptides that had high levels of antibody reactivity (three in gag,

three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides

(eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six

of the eight epitopes was associated with HIV controller status. Higher aggregate antibody

reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across

all epitopes) and across the HIV genome was also associated with lower VL and controller

status.

Conclusions

We identified HIV antibody targets associated with lower VL and HIV controller status 1–2

years after infection. Robust aggregate responses to these targets and broad antibody reac-

tivity across the HIV genome were also associated with lower VL and controller status.

These findings provide novel insights into the relationship between humoral immunity and

viral containment that could help inform the design of antibody-based approaches for reduc-

ing HIV VL.

Introduction

HIV viral load usually peaks near the time of seroconversion and decreases as HIV-specific

immune responses develop [1, 2]. Most people living with HIV (PWH) establish a viral load

set point shortly after infection that reflects the balance between ongoing viral replication and

immune clearance [1–6]. This set point is usually stable during chronic HIV infection but can

vary widely between persons [1, 2, 7]. Higher viral loads are associated with increased HIV-

related morbidity and mortality [8–15] and increased on-going transmission [12, 16, 17].

Effective antiretroviral treatment (ART) reduces HIV viral load to low levels, improving clini-

cal outcomes [18–23] and reducing transmission risk [24–28].

Some PWH can control viral replication in the absence of ART. These individuals are often

classified as elite or viremic controllers based on viral load measurements obtained at least one

year apart (elite controllers: <50 copies/mL, viremic controllers <2,000 copies/mL) [29–32].

Use of a cutoff of 2,000 copies/mL for viremic controllers was suggested by Pereye and col-

leagues in 2007 [29], based on studies that demonstrated that viral loads <1–2,000 copies/mL

were associated with slower disease progression and reduced HIV transmission [33–35]. HIV

control develops in the early stages of infection [30, 36, 37]; some controllers have fewer symp-

toms in early infection compared to non-controllers [36, 38, 39]. HIV control is also associated

with slower disease progression and reduced HIV-related mortality [30, 40]. The mechanisms

responsible for HIV control are poorly understood and appear to involve complex interactions

between viral and host factors [29, 32, 40]. Improved understanding of these mechanisms

could inform development of immune-based interventions for HIV prevention and treatment.

Most research on HIV control has focused on the role of cellular immunity [29, 32, 40]. A

role for humoral immunity in HIV control was generally dismissed following early studies that
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found lower titers of HIV-specific antibodies and neutralizing antibodies among controllers

[29, 41–46], consistent with findings in non-controllers that antibody responses are less robust

when PWH are virally suppressed on ART [47–50]. However, recent studies have identified

controllers who have higher levels of antibody dependent cellular cytotoxicity (ADCC) [51],

broadly neutralizing antibody (bNab) responses [52–54], and isotype diversity with associated

polyfunctionality [55–59]; more robust responses against broad targets in HIV gag have also

been observed in controllers [55, 60–62].

VirScan is a massively multiplexed assay that can be used to quantify antibody responses to

peptide targets across the HIV genome [47, 63]. In prior study that included longitudinal sam-

ples collected from 14 days to 8.7 years after HIV infection, we found that antibody breadth

(i.e., the number of unique epitopes targeted) increased early in infection and then declined or

stabilized. Persons who had a decline in antibody breadth 9 months to 2 years after were more

likely to start antiretroviral treatment (ART). In addition, a faster decline in antibody breadth

was associated with a shorter time to ART initiation [44].

In a subsequent study, we used VirScan to characterize the fine specificity of HIV antibody

responses in persons with established HIV infection [64]. That study identified seven clusters

of homologous peptides that represented the primary antibody targets in both viremic control-

lers and non-controllers who were not on ART [64]. The study also found that higher levels of

antibody reactivity to a target in gag p17 were associated with reduced plasma viral load [64].

The participants evaluated in that study had HIV infection of unknown duration. Because

antibody titer, avidity, and breadth vary in persons infected for different periods of time [2,

47], differences in infection duration among the study participants may have confounded the

results of that study.

In this report, we extended our prior work by characterizing antibody responses in a cohort

of PWH who were known to be infected for 1–2 years and explored whether specific patterns

of antibody reactivity were associated with low viral load and HIV control. This cohort

included viremic controllers and non-controllers who acquired HIV infection during the HIV

Prevention Trials Network (HPTN) 071 (PopART) trial [65]. This report used an unbiased

approach to identify peptides that are more frequently targeted in HIV controllers and persons

with lower viral loads. Findings from this study could support future research evaluating

whether specific HIV antibodies play a causative role in viral containment.

Methods

Source of samples

Samples and data were obtained from the HPTN 071 trial (NCT 019000977), which demon-

strated that universal delivery of a comprehensive HIV prevention package was associated

with lower HIV incidence [66]. Plasma samples were collected annually from >48,000 adult

participants from 21 communities in Zambia and South Africa [66] where most HIV infec-

tions are caused by subtype C HIV [67]. This report evaluated a subset of the 978 participants

who acquired HIV infection during the trial (seroconverters) [65] and had controller status

determined based on viral load and antiretroviral (ARV) drug testing [68]. Participants

included in this report had samples and data available from at least three consecutive annual

visits (one negative, two positive). Participants classified as controllers had viral loads <2,000

copies/mL with no ARV drugs detected at both HIV-positive visits; this method for identifying

controllers is consistent with methods used in prior studies [29, 31, 69]. Participants classified

as non-controllers had viral loads�2,000 copies/mL with no ARV drugs detected at both

HIV-positive visits. VirScan testing was performed using samples collected at the second HIV-

positive study visit (1–2 years after HIV acquisition). The analysis of HIV-1 VARscores
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included additional participants who were virally suppressed on antiretroviral therapy (ART;

viral loads <400 copies/mL with ARV drugs detected at both HIV-positive visits).

Laboratory methods

Laboratory testing was performed at the HPTN Laboratory Center (Johns Hopkins University,

Baltimore, MD). HIV viral load was measured with the RealTime HIV-1 Viral Load assay

(Abbott Molecular, Des Plaines, IL) using a validated dilution method (limit of quantification

[LOQ]: 400 copies/mL); a viral load value of 399 copies/mL was assigned for samples with no

RNA detected or RNA < LOQ. ARV drugs were detected using a qualitative assay that detects

22 drugs in five classes (limit of detection [LOD]: 2 ng/mL or 20 ng/mL, depending on the

drug) [70].

HIV antibody profiling was performed using the VirScan assay, as described previously [47,

63]. This assay uses phage display to quantify antibody binding to a library of overlapping pep-

tides spanning the expressed genomes of>200 viruses, including >3,300 HIV peptides repre-

senting multiple HIV subtypes and strains [47, 63]. In this assay, plasma is incubated with the

phage library and antibody-bound phage are immunocaptured using beads coated with pro-

tein A and protein G. Primers with sample-specific barcodes are used to amplify the peptide-

encoding DNA in immunocaptured phage; the amplified DNA is then sequenced to determine

the amino acid sequences of peptides bound by the antibodies in each sample. In this study,

sequencing was performed using the NovaSeq 6000 with the S2 flowcell (Illumina, San Diego,

CA).

VirScan data analysis

Each immunoprecipitation plate included 7–8 negative controls (beads only) and 3 positive

controls (pooled plasma from other study participants infected >2 years with viral loads

>2,000 copies/mL). Raw read counts from the VirScan assay were based on exact matching of

the initial 50 nucleotides for each read. Fold change values and associated p-values were deter-

mined by comparing observed read counts to those in negative control reactions using the

exact test for the negative binomial distribution in the edgeR package [71, 72]. Fold change val-

ues were adjusted by setting the value to one under the following conditions: read count<15,

fold change <3, and/or p-value >0.001. Adjusted fold change values>1 represented signifi-

cant antibody reactivity. VARscore values were calculated from VirScan data using the

ARscore package v0.2.0 [73].

Statistical methods

Peptide clusters with high levels of antibody reactivity at the cohort-level were identified based

on having two or more peptides with cohort-level mean antibody reactivity (log10 fold change)

>0.5 (i.e., adjusted fold change>3.16). Viral load and antibody reactivity (fold change) values

were log10-transformed prior to statistical analysis. Analysis of associations between antibody

reactivity to HIV peptides and HIV viral load was performed using simple linear regression;

this analysis was limited to HIV peptides that had significant antibody reactivity (adjusted fold

change>1) for one or more participants. Multiple comparisons correction was performed

using two methods: a) q-values calculated from observed p-values to control the false discovery

rate (where q-values <5% indicated statistical significance) [74], and b) the Bonferroni

method. Epitopes in overlapping peptides associated with lower HIV viral load were identified

with epitopefindr v1.1.30 [75]. Epitope logos were generated using ggseqlogo v0.1 [76]. Epi-

tope-level reactivity was determined by selecting the maximum fold change value for any pep-

tide containing that epitope. HIV-1 VARscore values refer to the mean VARscore value across
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all HIV-1 subtypes. Analysis of associations between two continuous variables was performed

using simple linear regression. Between-group comparisons for categorical variables were per-

formed using Fisher’s exact test. Between-group comparisons for continuous variables were

performed using the Wilcoxon rank-sum test. Statistical analyses were performed using the

statistical environment R [77]. Data were visualized using base R and ggplot2 [78].

Informed consent

HPTN 071 participants provided written informed consent before study enrollment. HPTN 071

was approved by the institutional review boards and ethics committees of the London School of

Hygiene and Tropical Medicine, the University of Zambia, and Stellenbosch University. Data

and samples used for this work were accessed between 1/1/2020 and 12/312023. The authors did

not have access to information that could be used to identify individual study participants.

Results

Study cohort

This report evaluated a subset of the 978 participants who acquired HIV infection during the

HPTN 071 trial [65]. The study cohort included 77 seroconverters (13 controllers [viral load

<2,000 copies/mL with no ARV drugs detected at two annual study visits], 64 non-controllers

[viral load�2,000 copies/mL with no ARV drugs detected at two annual study visits]). VirScan

testing was performed using samples collected at the second HIV-positive study visit (infection

duration: 1–2 years). The mean viral load at this visit was 802 copies/mL for the controller

group (interquartile range [IQR]: 399, 1,180) and 101,393 copies/mL for the non-controller

group (IQR: 7,110, 80,098). There was no significant difference between groups for biological

sex, age, or study country (S1 Table in S1 File).

Fig 1 provides an overview of the analyses in this report. Antibody responses were first

characterized for the study cohort and were then evaluated at the peptide level (reactivity to a

single peptide from the VirScan library), epitope level (reactivity to a common amino acid

sequence shared by overlapping peptides), and aggregate level for associations with HIV viral

load and HIV controller status.

HIV antibody reactivity in the study cohort

VirScan was used to characterize antibody responses to HIV peptides in the 77 study partici-

pants (Fig 2). Ten clusters of HIV peptides had high levels of antibody reactivity (defined as

having two or more peptides with mean antibody reactivity [log10 fold change] >0.5). Seven of

these clusters were identified in a prior report that evaluated antibody responses among HIV

controllers and non-controllers with unknown duration of infection (cluster 1: gag [p17; N-

terminus]; cluster 2: gag [p24; C-terminus]; cluster 3: integrase [C-terminus]; cluster 4: vpu

[N-terminus]; cluster 5: envelope [gp120; V3 loop and CD4 binding loop]; cluster 6: envelope

[gp120/gp41; V5 and fusion peptide]; cluster 7: envelope [gp41; C-terminal heptad repeat

region, HR2]) [64]. The three additional peptide clusters identified in this report had high lev-

els of antibody reactivity to the following targets: cluster a: the first zinc finger region of the

nucleocapsid protein, gag p7; cluster b: the N-terminus of protease, including the active site;

and cluster c: the N-terminus of integrase.

Associations between antibody reactivity and HIV viral load

Peptide-level responses. We next evaluated whether antibody reactivity to individual

peptides was associated with HIV viral load (Fig 3). This analysis included the 1,235 HIV

PLOS ONE Antibody targets associated with low HIV viral load

PLOS ONE | https://doi.org/10.1371/journal.pone.0305976 September 17, 2024 5 / 21

https://doi.org/10.1371/journal.pone.0305976


peptides with significant antibody reactivity (adjusted fold change >1) that were detected in

samples from one or more participants. Antibody reactivity to 43 peptides was significantly

associated with viral load after multiple testing correction to control for the false discovery rate

(q<0.05, p�0.00158). Using the Bonferroni correction method, antibody reactivity to one pep-

tide remained significantly associated with viral load (p = 3.1 x 10−6; Peptide ID: 18306). For

all 43 peptides, higher levels of antibody reactivity were associated with lower viral loads.

The 43 peptides were located in the six clusters of homologous peptides that had high levels

of mean antibody reactivity for the cohort (Fig 1, S2 Table in S1 File). Twenty-six peptides

were located in gag (four in the N-terminal region of p17 [cluster 1], five in the C-terminal

region of p24 [cluster 2] and 17 in the C-terminal region of p7 [cluster a]). Three peptides

were located in the C-terminal region of integrase (cluster 3). The remaining 14 peptides were

located in env (seven in the region spanning the V5 loop of gp120 and fusion peptide of gp41

[cluster 6] and seven in the HR2 of gp41 [cluster 7]).

Epitope-level responses. The program eptiopefindr [75] was used to identify common

epitopes for the peptides in each cluster (Fig 4). The number of peptides with each epitope ran-

ged from two to 17. Clusters 1, 2, 3, and 7 each contained one common epitope shared by pep-

tides in the cluster, while Clusters a and 6 each contained two common epitopes. The

Fig 1. Study overview. The figure shows an overview of the assessments in this report. Antibody profiles were first characterized for the study cohort. Antibody

responses were then evaluated at the peptide, epitope, and aggregate levels for associations with HIV viral load, and at the epitope and aggregate levels for

associations with HIV controller status. Footnotes: 1 This analysis is shown in Fig 2. 2 “Peptide” refers to a single peptide in the VirScan library. This analysis is

shown in Fig 3; the peptides associated with HIV viral load are described in S2 Table in S1 File. 3 “Epitope” refers to a common amino acid sequence shared by

overlapping peptides. The epitopes associated with HIV viral load are described in Fig 4. 4 This analysis is shown in Fig 5, Panels A-B. 5 This analysis is shown

in Fig 5, Panel C. 6 This analysis included the epitopes identified in step 2B and is shown in Fig 6. 7 This analysis is shown in Fig 7, Panels A-C. 8 This analysis is

shown in Fig 7, Panel D and included 36 additional participants who were virally suppressed on antiretroviral treatment.

https://doi.org/10.1371/journal.pone.0305976.g001
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association between antibody reactivity and HIV viral load remained statistically significant

when the analysis was performed at the epitope level for each of the eight epitopes. Estimated

effect for the association ranged from -1.430 to -0.520; this measure indicates the change in

viral load (log10 scale) associated with one unit increase in antibody reactivity (log10 scale) (i.e.,

if the estimated effect were -0.5, then when comparing two participants that differ tenfold in

antibody reactivity, we would expect the participant with higher reactivity to have a 32%

[10−0.5] lower viral load).

The figure shows the features of the eight epitopes where higher antibody reactivity was

associated with lower viral load. These epitopes were identified from 43 peptides located in six

clusters (Fig 3; S2 Table in S1 File). HIV gene and protein locations were determined based on

full-length peptides. Sequence logos were generated using ggseqlogo v0.1 [76]. Estimated effect

and associated p-values were calculated using simple linear regression between antibody reac-

tivity and viral load. The estimated effect indicates the change in viral load (log10 scale) associ-

ated with a unit increase in antibody reactivity (log10 scale). Negative values indicate that a

unit increase in antibody reactivity was associated with a decrease in viral load.

Abbreviations: gp: glycoprotein; HR: helical region; 95% CI: 95% confidence intervals.

Fig 2. Antibody reactivity to peptides spanning the HIV genome. The plot shows the mean level of antibody binding to HIV peptides in

the VirScan library for all 77 study participants analyzed one to two years after HIV infection. The x-axis shows the nucleotide position

relative to genomic coordinates for the HIV HXB2 reference strain (NCBI #NC_001802). The y-axis shows mean antibody binding (log10

fold change); each dot represents the mean antibody binding result for one peptide. The genomic locations of ten peptide clusters with high

levels of mean antibody reactivity are indicated by vertical gray lines. Seven of the peptide clusters were identified in a prior study (cluster 1:

gag [p17]; cluster 2: gag [p24]; cluster 3: integrase; cluster 4: vpu; clusters 5 and 6: envelope [gp120]; cluster 7: envelope [gp41]) [64]. Three

new peptide clusters were identified in this study (cluster a: gag [p7]; cluster b: protease; cluster c: integrase). Abbreviations: Kb: kilobase.

https://doi.org/10.1371/journal.pone.0305976.g002
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Fig 3. Peptide-level antibody responses and HIV viral load. The plots show the association between the level of

antibody reactivity to HIV peptides and HIV viral load as determined by linear regression. Data are shown for the 77

participants in the study cohort; this analysis included 1,235 HIV peptides that had significant antibody reactivity

(adjusted fold change>1) for at least one participant. Panel A: The volcano plot shows the significance of the

association between the level of antibody reactivity and viral load. The x-axis shows the estimated effect of antibody

reactivity on viral load (estimated effect from the linear regression). Positive values indicate that higher levels of

antibody reactivity were associated with higher viral loads; negative values indicate that higher levels of antibody

reactivity were associated with lower viral loads. The y-axis shows the -log10 p-value for the association between the

level of antibody reactivity and viral load. Each dot represents data for a single peptide; blue dots indicate peptides with

a significant association. The blue dashed line indicates the highest q-value<5% (q = 0.0453); this corresponds to a p-
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Aggregate responses

We next evaluated whether aggregate antibody reactivity to the epitopes described in Fig 4 was

associated with HIV viral load (Fig 5). We found a significant association between the total

number of epitopes targeted and HIV viral load (estimated effect: -0.15, 95% CI: -0.26, -0.04,

p = 0.008); here, estimated effect indicates the change in viral load (log10 scale) associated with

one additional targeted epitope. There was also a significant association between participant

mean antibody reactivity (fold change) across all eight epitopes and HIV viral load (estimated

effect: -1.76, 95% CI: -2.38, -1.15, p<0.001); here, estimated effect indicates the change in viral

load (log10 scale) associated with one unit increase in mean antibody reactivity (log10 scale).

Panel A: Aggregate antibody reactivity was evaluated for the eight HIV epitopes shown in

Fig 4. The x-axis shows the number of epitopes targeted (adjusted fold change>1). The esti-

mated effect indicates the change in viral load (log10 scale) associated with one additional tar-

geted epitope. Panel B: Mean antibody reactivity was evaluated across all eight HIV epitopes

shown in Fig 4. The x-axis shows the mean antibody reactivity (log10 fold change) across all

eight epitopes. The estimated effect indicates the change in viral load (log10 scale) associated

with one unit increase in mean antibody reactivity (log10 scale). Panel C: The VARscore is a

composite measure of the overall breadth and strength of antibody reactivity to all peptide tar-

gets across a viral genome, as measured by VirScan. The x-axis shows the HIV-1 VARscore.

The estimated effect indicates the change in viral load (log10 scale) associated with one unit

increase in HIV-1 VARscore.

The VARscore is a composite value that combines VirScan data for all peptide targets across

a viral genome; this provides an aggregate measure of the overall breadth and strength of anti-

body reactivity to a virus [73]. We next evaluated whether HIV-1 VARscore was associated

value of 0.00158. The dotted blue line indicates the cutoff for significance using the Bonferroni correction (p = 0.05/

1,235 = 4.0 x 10−5). Panel B: The plot shows the same data and significance thresholds visualized across the viral

genome. The x-axis shows nucleotide position relative to genomic coordinates for the HIV HXB2 reference strain

(NCBI #NC_001802). The y-axis shows the -log10 p-value for the association between antibody reactivity and viral

load. Black dots indicate peptides for which higher antibody reactivity was associated with higher viral loads; red dots

indicate peptides for which higher antibody reactivity was associated with lower viral loads. The genomic locations of

the ten peptide clusters from Fig 2 are indicated by vertical gray lines. Abbreviations: Kb: kilobase; VL: viral load.

https://doi.org/10.1371/journal.pone.0305976.g003

Fig 4. HIV antibody epitopes associated with lower HIV viral load.

https://doi.org/10.1371/journal.pone.0305976.g004
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with HIV viral load (Fig 5). There was a significant association between HIV-1 VARscore and

HIV viral load (estimated effect: -0.37, 95% CI: -0.59, -0.15, p = 0.001); here, estimated effect

indicates the change in viral load (log10 scale) associated with one unit increase in HIV-1

VARscore.

Associations in the non-controller participant subset. We next evaluated whether the

associations between antibody reactivity and HIV viral load were still observed when data

from the 13 controllers were removed from the analysis. At the peptide level, we analyzed the

1,183 HIV peptides that had significant antibody reactivity in samples from one or more of the

64 non-controllers (S1 Fig in S1 File); this analysis did not identify any peptides where anti-

body reactivity was significantly associated with viral load after multiple testing correction. At

the epitope-level, associations between antibody reactivity and viral load were still observed

when the 13 controllers were excluded (S3 Table in S1 File). The association remained statisti-

cally significant for five of the eight epitopes (epitopes 2.1, 3.1, 6.1, 6.2, and 7.1; estimated effect

range: -0.977 to -0.352); the association between epitope-level antibody reactivity to the other

three epitopes (1.1, a.1 and a.2) and viral load was not significant.

As a final step in this portion of the analysis, we evaluated whether aggregate antibody reac-

tivity was associated with viral load when the 13 controllers were excluded (S2 Fig in S1 File).

In this analysis, the association between the number of epitopes targeted (adjusted fold change

>1) and viral load was not significant (estimated effect: -0.08, 95% CI: -0.17, 0.01, p = 0.094);

here, estimated effect indicates the change in viral load (log10 scale) associated with one addi-

tional targeted epitope. In contrast, we still observed a significant association between partici-

pant mean antibody reactivity (fold change) across all eight epitopes and viral load for the

non-controller group (estimated effect: -1.17, 95% CI; -1.79, -0.54; p<0.001); here, estimated

effect indicates the change in viral load (log10 scale) associated with one unit increase in mean

antibody reactivity (log10 scale). The association between HIV-1 VARscore and viral load also

remained significant for the non-controller subset (estimated effect: -0.24, 95% CI: -0.44,

-0.05; p = 0.016); here, estimated effect indicates the change in viral load (log10 scale) associated

with one unit increase in HIV-1 VARscore.

Associations between antibody reactivity and HIV controller status

Epitope-level responses. We next compared antibody reactivity to each of the eight epi-

topes in controllers (n = 13) vs. non-controllers (n = 64) (Fig 6). Panel A shows the frequency

Fig 5. Aggregate antibody responses and HIV viral load. The plots show the association between three aggregate measures of HIV antibody reactivity and

HIV viral load, as determined by linear regression. Data are shown for the 77 participants in the study cohort. For each panel, each dot represents data for a

single participant. The y-axes show the HIV viral load (log10 scale). The blue lines indicate the least squares regression lines. P-values indicate the significance of

the associations as determined by linear regression. Grey regions show the 95% confidence bands for the mean antibody response.

https://doi.org/10.1371/journal.pone.0305976.g005
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Fig 6. Epitope-level antibody responses in controllers vs. non-controllers. Antibody reactivity was assessed for the

HIV epitopes shown in Fig 4 for two participant groups: controllers (n = 13; red) and non-controllers (n = 64; grey).

Panel A: The plot shows the frequency of reactivity to each epitope in each group (reactive: adjusted fold change>1;

not reactive: adjusted fold change = 1). P-values show the significance of the association between controller status and

the prevalence of reactivity using Fisher’s exact test. Panel B: The plot shows antibody reactivity (log10 fold change) to

each epitope; each dot indicates data for one participant. Mean values for each group are indicated by black crossbars.

P-values show the significance of the association between controller status and the level antibody reactivity based on

Wilcoxon rank-sum test statistics.

https://doi.org/10.1371/journal.pone.0305976.g006
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of antibody reactivity (adjusted fold change >1) to each of the epitopes in the two groups.

Antibody reactivity to two epitopes was observed more frequently among controllers than

non-controllers (epitope a.1: 13/13 [100.0%] vs. 42/64 [65.6%], p = 0.015; epitope a.2: 13/13

[100.0%] vs. 45/64 [70.3%], p = 0.03); for the remaining epitopes, there was no significant dif-

ference in the prevalence of antibody reactivity between groups. Panel B shows mean antibody

reactivity (fold change) to each of the eight epitopes in the two groups. Mean antibody reactiv-

ity to seven epitopes was higher among controllers than non-controllers (epitope 1.1: 24.7 vs.

9.3, p = 0.001; epitope 2.1: 22.2 vs. 10.3, p = 0.009; epitope a.1: 27.2 vs. 9.2, p = 0.001; epitope

a.2: 28.4 vs. 10.1, p = 0.001; epitope 3.1: 27.4 vs. 17.4, p = 0.007; epitope 6.2: 16.4 vs 9.0,

p = 0.017; epitope 7.1: 38.2 vs. 28.1, p = 0.025); there was no significant difference in mean

antibody reactivity to epitopes 6.1 between the two groups (which may be due to low power;

epitope 6.1. only had two peptides, the lowest among all epitopes).

Aggregate responses. We next compared aggregate antibody reactivity to the eight epi-

topes for controllers vs. non-controllers (Fig 7, Panels A-C). The number of epitopes targeted

ranged from five to eight for controllers and from two to eight for non-controllers. The mean

number of epitopes targeted was higher among controllers vs. non-controllers (7.15 vs. 6.19,

Fig 7. Aggregate antibody responses in controllers vs. non-controllers. Aggregate antibody reactivity was assessed for controllers (n = 13; red) and non-

controllers (n = 64; grey). Panel A: Aggregate antibody reactivity was evaluated for the eight HIV epitopes shown in Fig 4. The histogram shows the number of

epitopes targeted by participants based on controller status. Data were binned according to the number of epitopes targeted by each study participant. Bar

heights indicate frequency. Panel B: The plot shows the number of epitopes targeted based on controller status; each dot indicates the number of epitopes

targeted for one study participant. Mean values for each group are indicated by black crossbars. P-values show the significance of the association between

controller status and antibody reactivity based on t-statistics. Panel C: The plot shows the mean antibody reactivity (mean log10 fold change) across all selected

epitopes based on controller status; each dot indicates mean data for one study participant. Mean values for each group are indicated by black crossbars. P-

values show the significance of the association between controller status and antibody reactivity based on t-statistics. Panel D: The VARscore is a composite

measure of the overall breadth and strength of antibody reactivity to all peptide targets across a viral genome, as measured by VirScan. The plot shows HIV-1

VARscores for controllers (N = 13, red) and viremic non-controllers (N = 64, grey); this analysis also included a group of non-controllers who were suppressed

on antiretroviral therapy within the first year of HIV infection (N = 36, blue; see Methods). Each dot indicates HIV-1 VARscore data for one study participant.

Mean values for each group are indicated by black crossbars. P-values show the significance of the association between controller status and HIV-1 VARscore

based on t-statistics. Panels E-F: The plots show VARscores for HIV-2 (Panel E) and HSV-2 (Panel F) for controllers (n = 13; red) vs. non-controllers (n = 64,

grey). Each dot indicates data for one participant. Mean values for each group are indicated by black crossbars. P-values show the significance of the association

between controller status and the VARscore based on t-statistics.

https://doi.org/10.1371/journal.pone.0305976.g007
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p = 0.015). The participant mean antibody reactivity (fold change) across all eight epitopes was

also higher for controllers vs. non-controllers (21.31 vs. 10.70, p<0.001). Both measures indi-

cate that controllers reacted more broadly across the eight epitopes than non-controllers.

We then compared HIV-1 VARscores for controllers vs. non-controllers (Fig 7, Panel D);

this analysis included an additional group of 36 participants who were virally suppressed on

ART (viral load <400 copies/mL with ARV drugs detected at both HIV-positive study visits).

Mean HIV-1 VARscores were higher for controllers than non-controllers (3.03 vs. 2.47,

p = 0.043), indicating that controllers had stronger overall HIV-1 specific antibody responses

than non-controllers. Mean HIV-1 VARscores were lower for participants suppressed on ART

than controllers (1.56 vs. 3.03, p<0.001) and non-controllers (1.56 vs. 2.47, p<0.001); this

finding is consistent with prior studies that demonstrate a down-regulation of HIV antibody

expression in persons who are virally suppressed on ART [47–50].

As a final step, we compared VARscores for two other viruses to assess whether the findings

in Fig 6 were specific for HIV-1. This analysis was performed for HIV-2, which was expected

to be uncommon in this cohort, and HSV-2, which was expected to be highly prevalent in this

cohort (Fig 7). For both viruses, mean VARscores were similar for controllers and non-con-

trollers (HIV-2: 0.66 vs. 0.69, p = 0.80; HSV-2: 2.32 vs. 1.90, p = 0.25). This indicates that the

observed differences in HIV-1 VARscores were HIV-1 virus-specific and did not reflect gen-

eral differences in the breadth and strength of the antibody response in controllers vs. non-

controllers.

Discussion

In this report, we used VirScan to characterize HIV antibody responses associated with viral

load and controller status among persons who had been living with HIV for one to two years.

These persons were enrolled in a community-randomized trial that recruited participants

from the general population in Zambia and South Africa. We identified ten peptide clusters

that served as the primary targets of HIV antibodies in this cohort (three in env, three in gag,

two in integrase, and one each in protease and vpu). Seven of these clusters (clusters 1–7) over-

lapped with clusters identified in our previous study [64]. This was consistent with the findings

from our earlier report in an independent cohort with a different prevalent HIV subtype

(prior study: subtype B; current study: subtype C). Three new peptide clusters (clusters a-c)

were also identified in this report. The new clusters could represent epitopes that are more

commonly targeted in subtype C HIV. High-level reactivity to these targets could also be more

common in the first 1–2 years of HIV infection [47] or could reflect other differences in the

cohorts used for analysis in this report and our prior report [64].

We found that higher levels of antibody reactivity to 43 HIV peptides representing 8 unique

epitopes were associated with lower HIV viral loads. All eight epitopes were located in the clus-

ters commonly targeted by both controllers and non-controllers, suggesting that more robust

antibody responses to standard HIV targets, rather than responses to unique targets, may play

a role in controlling viral replication. HIV controllers reacted more frequently to two of these

epitopes (a.1 and a.2) and had higher mean antibody reactivity to seven of these epitopes (1.1,

2.1, a.1, a.2, 3.1, 6.2, and 7.1). Three of these seven epitopes and 26 (72.2%) of the 36 corre-

sponding peptides are located in gag. These findings are consistent with prior studies that

found robust controller antibody responses to broad gag targets [55, 60–62].

When antibody reactivity to all eight HIV epitopes was assessed as a composite measure,

both the number of epitopes targeted and the mean reactivity across the eight epitopes was

associated with lower viral load. Higher reactivity to targets across the HIV genome (HIV-1

VARscore [73]) was also associated with lower viral load. These associations remained
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significant when we compared reactivity in controllers and non-controllers. HIV controllers

targeted more of the eight epitopes, had higher mean reactivity across all eight targets, and had

significantly higher mean HIV-1 VARscores than non-controllers. These findings are consis-

tent with general differences in the breadth of the antibody response that we observed in our

prior study of controllers vs. non-controllers with unknown duration of infection [64]. Taken

together, our findings suggest that broad, robust antibody responses to standard HIV targets

may contribute to viral containment and HIV controller status.

In this study, 7/13 (54%) of the controllers had a viral load below the limit of quantification

(400 copies/mL) and were assigned a viral load value of 399 copies/mL. Using this conservative

approach, we identified 43 peptides where the level of antibody reactivity was significantly

associated with viral load; for all of these peptides, higher levels of antibody reactivity were

associated with lower viral loads (Fig 3). Using the largest possible value below the limit of

quantification for "censored" participants assured that the type I error was actually an upper

bound and that we could be confident in the significance of the association with viral load.

Since this approach might increase the number of false negative results, we conducted addi-

tional sensitivity analyses. When we used an assigned value of 200 copies/mL or more, we did

not observe large numbers of additional peptides showing significance. Only when the

imputed vial load value was consistently below 200 copies/mL for each of the seven censored

participants did we observe a somewhat larger increase in the number of significant peptides.

In all simulation scenarios, the 43 peptides remained significantly associated with viral load.

To our knowledge, none of the bnAbs currently under investigation for HIV treatment and

prevention target epitopes located in the same regions of the corresponding HIV proteins as

the peptides identified in this study [79–81]. Notably, one of these epitopes (7.1) overlaps with

an HR2 epitope that we previously demonstrated was preferentially targeted prior to infection

in persons who were able to control infection after HIV acquisition [68]. We did not identify

any peptides or epitopes where higher levels of antibody reactivity were associated with higher

HIV viral load or non-controller status. This was unexpected, since viral suppression from

ART generally leads to a reduction in antibody titer due to reduced antigen exposure [47–50],

which was consistent with our findings of lower HIV-1 VARscores in persons on ART as com-

pared to both controllers and non-controllers.

Viral suppression on ART can improve health outcomes for PWH and reduce risk of HIV-

related mortality [8–15]. HPTN 071 and global health programs have also demonstrated that

reducing viral load at the community level with “universal testing and treatment” strategies

can significantly reduce HIV incidence [66, 82]. These findings led UNAIDS to establish “95-

95-95” Fast-Track targets based on mathematical models indicating that achieving 95% success

in each step of the HIV care cascade (diagnosis, linkage to care, viral suppression on ART)

would effectively curb the epidemic [83]. Unfortunately, significant structural barriers to uni-

versal ART delivery still remain in some resource-limited settings [84, 85].

Significant reductions in HIV incidence may still be achieved with more modest levels of

community-wide viral load reduction. A modeling study found that lower viral loads in North

America vs. sub-Saharan Africa (difference of ~0.5 log10 viral load) may significantly contrib-

ute to observed geographic differences in HIV incidence [86]. Other studies have demon-

strated that similar reductions in population-level viral load were associated with reduced HIV

incidence [87–89]. The findings in this report suggest that enhancing the depth and breadth of

HIV antibody responses (potentially with pre-infection or therapeutic vaccination [90–93])

could help lower community-level viral load and reduce HIV incidence. This approach may

offer advantages in settings with barriers to universal ART delivery. Further research could

evaluate whether the epitopes identified in this report might be useful targets for immune-

based interventions for modulating HIV viral load.
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This study has several limitations. First, despite the large size of the HPTN 071 trial

(>48,000 persons enrolled and followed), we were only able to identify 13 controllers with

known duration of infection. Second, the HPTN 071 cohort only included participants from

Zambia and South Africa, where the vast majority of infections are caused by subtype C infec-

tion HIV; the HPTN 071 cohort also included a disproportionate number of women (74%).

These factors may limit the generalizability of our findings. Third, the viral load assay that was

used in HPTN 071 had a LOQ of<400 copies/mL [66]; the plasma samples stored in this trial

did not have sufficient volume for testing with a more sensitive viral load assay. For this rea-

son, we were not able to evaluate factors associated with elite control of HIV infection. Fourth,

the VirScan assay measures IgG binding to unglycosylated, linear epitopes; therefore, we were

not able to assess reactivity for other antibody isotypes or against glycosylated or conforma-

tional epitopes. Fifth, the measure of antibody reactivity provided by the VirScan assay reflects

both antibody titer and avidity; therefore, we were not able to assess whether the observed

associations between antibody reactivity, viral load, and controller status were driven by differ-

ences in antibody titer, antibody avidity, or a combination of both factors. Sixth, CD4 cell

count data was not collected in HPTN 071, cellular samples were not stored, and consent was

not obtained for host genetic testing; therefore, we were not able to evaluate the association of

viral load and HIV control with other factors, such as host HLA type [69] and cellular immune

responses [94–97]). Seventh, the viral loads were too low in most controllers for HIV genotyp-

ing; this limited our ability to evaluate viral factors associated with viral load and controller sta-

tus [98, 99]. Eighth, we assessed antibody profiles at a single timepoint (infection duration: 1–2

years); further research in cohorts with known duration and longer post-infection follow-up

could be used to evaluate the evolution of these responses and their association with viral load

over the full HIV disease course. Finally, it is possible that the higher levels of antibody reactiv-

ity that we observed in persons with lower viral loads could be a consequence of HIV control

(rather than the cause), reflecting more robust immune systems among those with a greater

capacity for viral containment. If the findings from this study are confirmed in other cohorts,

further studies could be performed to determine whether enhancing reactivity to the HIV epi-

topes identified in this study (e.g., with vaccination or passive immunization) results in a

reduction in HIV viral load.

Conclusion

We identified HIV antibody targets that are associated with lower viral load and HIV control-

ler status one to two years after infection. We also demonstrated that robust aggregate

responses to these targets and broad antibody reactivity across the HIV genome were associ-

ated with these outcomes. These findings provide novel insights into the relationship between

humoral immunity and viral containment, which could help inform the design of antibody-

based approaches for HIV treatment and prevention.
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