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Abstract
Machine Learning (ML) and Deep Learning (DL) models show potential in surpassing traditional methods including general-
ised linear models for healthcare predictions, particularly with large, complex datasets. However, low interpretability hinders
practical implementation. To address this, Explainable Artificial Intelligence (XAI) methods are proposed, but a comprehen-
sive evaluation of their effectiveness is currently limited. The aim of this scoping review is to critically appraise the appli-
cation of XAI methods in ML/DL models using Electronic Health Record (EHR) data. In accordance with PRISMA scoping
review guidelines, the study searched PUBMED and OVID/MEDLINE (including EMBASE) for publications related to tabular
EHR data that employed ML/DL models with XAI. Out of 3220 identified publications, 76 were included. The selected pub-
lications published between February 2017 and June 2023, demonstrated an exponential increase over time. Extreme
Gradient Boosting and Random Forest models were the most frequently used ML/DL methods, with 51 and 50 publications,
respectively. Among XAI methods, Shapley Additive Explanations (SHAP) was predominant in 63 out of 76 publications, fol-
lowed by partial dependence plots (PDPs) in 11 publications, and Locally Interpretable Model-Agnostic Explanations (LIME)
in 8 publications. Despite the growing adoption of XAI methods, their applications varied widely and lacked critical evalu-
ation. This review identifies the increasing use of XAI in tabular EHR research and highlights a deficiency in the reporting of
methods and a lack of critical appraisal of validity and robustness. The study emphasises the need for further evaluation of
XAI methods and underscores the importance of cautious implementation and interpretation in healthcare settings.
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Introduction

The ‘Black Box’ problem

Artificial intelligence (AI) in healthcare is anticipated to
transform the sector.1–7 One example is machine learning
(ML) and deep learning (DL) models for predictive analy-
tics using tabular electronic health record (EHR) data.8

EHR data are a wealthy resource, providing extensive infor-
mation which can be applied for many beneficial applica-
tions including predicting 30-day mortality,9 identifying
risk groups for future diseases,10,11 and estimating hospital
length of stay.12

However, a limitation of ML/DL applications in this
context is that how or why the predictions are made from

a set of covariable, or feature, values is generally
unclear.1,13–17 Such explanations are necessary in order to
justify, control, improve and discover new information
from any model.14 Justification is important to ensure
patient and clinician trust in application of these models
in health,15,18,19 and to comply with ethical and legal
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expectations. Any AI model implemented in health settings
will need to gain trust from the patients it is used on, and the
clinicians and organisations that use it. Failure to do so may
risk the under-utilisation of AI in areas where it can be of
significant benefit.20 From an ethical perspective, humans
should be treated as such, not as objects, and thus ‘human
in the loop’ approaches are preferrable.21 Legally, there
are an increasing number of rules and regulations which
set expectations around the explainability of AI.21 For
example, the General Data Protection Regulation (GDPR)
stipulates the right to an explanation and to contest any
decision relating to automated processing and a person’s
health.22,23 GDPR also highlights the importance of
informed consent in the context of automated decision
making,23 a sentiment echoed in other legal documents
such as the European Chart of Fundament Rights.24

Control and improving models are essential to ensure any
predictive model is not biased, and protect the model
from adversarial attacks.14,19,25–27 If predictions can be
explained, then the underlying mechanisms for disease
could be discovered – however, extra care must be taken
in separating an association from a causal pathway.18,28–30

This lack of interpretability of complex ML/DL methods
is referred to as the ‘black box problem’.1,13 This contrasts
to methods such as generalised linear models (GLMs),
decision trees (DTs) and rule-based methods, which are
‘intrinsically interpretable’. That is they generate easily
interpretable outputs which are intuitively explainable to
humans.18

Explainable artificial intelligence (XAI)

A proposed solution for interpretation of ‘black box’
models is explainable artificial intelligence (XAI).14,19

XAI encompasses a range of interpretation methods
which can be applied to black box models to generate inter-
pretable explanations for their predictions. Approaches
include ‘model-specific’ methods limited to one or some
ML/DL models, and ‘model-agnostic’ applicable to any
ML/DL model.31 Methods may also be ‘intrinsic’, i.e.,
they arise from the model itself (just as coefficient
weights are produced from GLMs, and tree visualisations
from decision trees), or ‘post-hoc’, requiring further ana-
lysis for the explanation.31 There are also ‘transparent
models’, which are designed to retain the high-performing
predictive capabilities of ML/DL, but have the interpretabil-
ity of simpler models.15,18,19 They include generalised
additive models (GAMs)32 and Bayesian Rule Lists
(BRLs).33,34 However, their predictive performance is
regarded as inferior to standard ML/DL methods, and
thus they are not seen as a viable alternative at present.15

Among XAI methods, model-agnostic post-hoc
approaches are preferrable, preserving flexibility for
model selection and interpretation comparison.31 Post-hoc
methods also do not require the underlying model to be

altered, and so can be developed without access to the ori-
ginal model training data. These approaches can be further
sub-divided according to the nature of the explanation pro-
vided into: (1) individual explanations (2) global explana-
tions and (3) feature/outcome relationships.

Individual explanations. Individual explanations provide
information for why a specific prediction was made e.g.,
why a particular patient with certain characteristics is pre-
dicted to developed breast cancer within the next 5 years.
This is advantageous when explaining black box model pre-
dictions, because many of the modelling methods employ
multi-dimensional, complex, non-linear explanations
which are difficult to generalise across all individuals.31,35

By focussing explanations on one individual of interest,
individualised XAI methods offer an explanation that is
locally representative.35

XAI methods for individual explanations include Local
Individualised Model-Agnostic Explanations (LIME),35

Shapley Values,36 SHapley Additive exPlanations
(SHAP)37 and ‘Counterfactual’ explanations.31

The LIME method creates a locally representative
explanation by building a linear model around an individual
of interested and surrounding data points (e.g., the patient of
interest and patients with similar characteristics) weighted
inversely by their distance from the point of interest.35

The prediction is explained by coefficient weights derived
from the linear model for each feature. The weight of the
data points around the individual of interest is defined heur-
istically.35 Thus, explanations are vulnerable to changes in
the weighting used.

Shapley values are derived from economic game theory,
where they calculate the ‘pay-out’ to each contributor
working in a coalition to generate profit.36 In XAI, the con-
tributors are the features in the model, and the ‘profit’ is the
predicted outcome. Shapley values represent the contribu-
tion of each feature to the final prediction; the larger the
contribution, the larger the Shapley value ‘pay-out’.

SHAP values are derived from Shapley values.
However, they are constructed such that the sum of the
SHAP values for all of the features for a single prediction
is equal to the final prediction. This is an example of an
additive attributive model.37 In doing so, SHAP values
can be aggregated across predictions to give global and
feature/outcome relationship explanations. Calculation of
SHAP values is computationally intensive, thus in practice,
a user-defined sample of data is usually taken, and the
LIME method is used to calculate the SHAP values.31,37

Counterfactual explanations utilise an interpretation
approach commonly used by humans where something is
explained by describing what would need to happen for
the prediction to change.31 In the context of predictive
models, this involves illustrating how the predicted
outcome changes given changes in input features/vari-
ables.38 This is favourable to allow non-technical audiences
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to conceptualise unknown modelling processes by associat-
ing change of input with output.39 However, they do not
necessarily equate to causality, which is a clear risk of
their application in healthcare settings.

Global explanations. Global explanations provide an over-
view of how features contribute to predicted outcomes.31

Examples include global surrogate models and feature
importance.

Global surrogate models train an intrinsically interpret-
able model on the features from the original data and pre-
dicted outcome from the black box model, to generate an
intrinsically interpretable model which – hopefully –
closely replicates the predictions from the more complex
black box model.31 The explanation from the intrinsically
interpretable model can then explain how the predictions
are generated from the original black box model. It is also
important to ensure that the interpretable model is a reason-
able proxy for the black box model. Molnar (2023) suggests
this can be done by calculating the R2 between the predic-
tions from the black box model and those from the surro-
gate model.31

Feature Importance describes multiple methods which
rank features used to train a model in order of some
metric of ‘importance’. The earliest feature importance
was designed for Random Forests.40 This method retrains
the model with each feature’s values consecutively
shuffled, and compares the difference in ‘impurity’ (i.e.,
the lack of discrimination between the true and predicted
outcome) between each model and the original model.
The greater the difference in impurity, the more important
that feature. Later, this method could apply to any model
type by comparing prediction error.41 Feature importance
is a useful aid for feature selection, but is less reliable for
model interpretation as it depends on the scale of the fea-
ture’s values. In addition, it may be influenced by unrealis-
tic permuted data values.31 Features may also be regarded
as less important if correlated with each other.31

Contrastingly, SHAP feature importance takes the abso-
lute SHAP value for each feature for all individuals in the
data set and averages the value.37 It then ranks features
in importance of average absolute SHAP value. This is a
truly ‘post-hoc’ and ‘model-agnostic’ approach and,
rather than describing error, quantifies overall contributions
of each feature to predicted outcomes.

Feature/outcome relationships. Feature/Outcome relation-
ships specify how changing a feature value changes the pre-
diction, including non-linear and multi-dimensional
associations.31 Relationship explanations can also show
how different features interact with each other by colouring
plots according to an additional feature’s value.
Relationship explanations are often displayed graphically
as a feature value against prediction, and thus are typically
limited to showing 1-2 features at a time due to the limits of

human dimensional perception.42 Examples of methods
include partial dependence plots (PDPs), individual expect-
ation curves (ICE) and accumulated local effects (ALE)
plots.

Partial dependence plots show how a prediction changes
over a range of feature values across their marginal distribu-
tion. That is, overall values of other features in the dataset.
The relationship is calculated using the partial dependence
function, which for a given feature, takes each individual’s
data and calculates the predicted outcome for that feature
value with the remaining values fixed.42–44 The final rela-
tionship is an average of how the prediction changes over
all individuals. A risk of using these plots is over-
interpreting relationships for specific feature values which
are very rare or improbable in the dataset. This can be
addressed by showing density plots, which show how the
feature values are distributed. ICE plots are very similar,
except they display each individual as a separate curve on
the plot.45 This helps to show heterogeneity in changes in
prediction between individuals.

ALE plots use the conditional instead of marginal distri-
bution of the feature being changed.31 This avoids improb-
able or impossible combinations of values,31 for example a
person of height 2 m, who weighs 40 kg, or a person aged
50 who has smoked for 45 years.

It is also possible to display SHAP dependence plots.37

These plots display the relationship of feature value to its
SHAP value across a dataset.

XAI in healthcare research

Research using tabular EHR data are increasingly adopting
XAI methods. A scoping review conducted by Payrovnaziri
et al. (2020) from 2009 to 2019 identified only 42 publica-
tions using XAI, with only 5 employing post-hoc and
model-agnostic methods.46 LIME appeared in two publica-
tions,47,48 and a global surrogate model in one.49 Unique
methods included a probability calculation for feature
importance by Eck et al.,50 and automated/manual rule
pruning by Luo et al.51 A later survey conducted by Di
Martino and Delmastro (2023) up to 2021 reported 71 pub-
lications using post-hoc model-agnostic XAI in tabular and
time-series EHR research, with 90% published from 2020
onwards.52 SHAP was the most frequently used interpret-
ation method in this survey.52

Study aims/objectives
The aim of this scoping review is to provide an up-to-date
overview into the use of post-hoc model-agnostic interpret-
ation methods for ML and DL in EHR tabular research. It
also aims to characterise and critically appraise the use of
frequently applied methods in practice.

Caterson et al. 3



Methods
The scoping review was conducted in accordance with
PRISMA guidelines for scoping reviews.53 Table 1 pro-
vides the inclusion and exclusion criteria. Two major scien-
tific literature databases, PUBMED and OVID/MEDLINE
(including EMBASE) were searched for publications.

The review comprised three phases: an initial broad
search, title and abstract review, and full-text review. The
initial search was conducted on 1st May 2023 and an
updated search was completed on 27th June 2023, using
the search terms provided in Figure 1.

All publications including original articles, reviews, and
letters were included in the initial search, published any
year, and available in English. The purpose of starting
with a broad search field was to capture the wide range
of terminology and publication types across computer
science and medical science research. The online systematic
review platform Rayyan was used to carry out publication
screening.54 In the two subsequent phases of screening,
title and abstract, and full text, the exclusion and inclusion
criteria in Table 2 were applied. Publications were included
if they used post-hoc model-agnostic XAI to explain ML
models applied to tabular EHR data in healthcare.
Decision to exclude articles was based on three criteria:
out of scope (for example, no XAI, or only intrinsic or
model-specific XAI e.g., methods specific to deep learning,
neural networks), wrong data type (for example imaging,
genetic data, or natural language processing), or if the full
text was unavailable. A final search of grey literature
from included publication citations and the Google search
engine identified additional relevant articles.

Title, publication type, year of publication, author,
journal, medical sub-specialty and study aim were recorded
for each selected article. In addition, ML models used
(including final selected model), metrics for model

selection, and interpretation method(s). The nature of inter-
pretation was analysed under three domains: (1) Global
Feature Importance, (2) Feature/Outcome Relationships
and (3) Individual Explanations. Data were analysed and
summarised using R (v4.2.2).

Results
After de-duplication, 3220 publications were identified
from the search criteria. Of these, 132 were selected for full-
text review. There were 2792 publications excluded for
being outside the scope of the review and a further 296
related to clinical imaging or genetics. Of the 132 selected
for full-text review, 75 were selected for final inclusion. An
additional paper was included from the grey literature
search. Figure 2 summarises the selection process.

Publication characteristics

All included publications were original peer-reviewed
research articles. The articles were published between
February 2017 to June 2023, increasing substantially in
this time period (Figure 3a).

Identified studies aimed to improve predictive
performance for classification of diseases, identifying
complications and estimating length of stay using EHR
data. Common domains were medicine (24 publica-
tions),48,55–77 COVID-19 (10 publications),78–87

Psychiatry (7 publications)88–94 and surgery (7 publica-
tions).95–101 Most publications emphasised interpretation
methods for causal reasoning, especially for COVID-19,
where knowledge of the disease was limited at the time of
publications.86,87 Justification of the model’s predictive
performance was also a commonly cited motivation for
using interpretation methods.56,102–104

Machine learning models

Of the 76 publications, most trialled multiple ML/DL
methods to get the best predictive performance. In the
model development phase, EXtreme Gradient Boosting
trees (XGB) were the most used in 67% (51/76) publica-
tions, followed by Random forest (RF) in 66% (50/76) of
studies and Generalised linear models like logistic regres-
sion (LR) (Figure 3b). XGB remained the top choice for
the final models, with RF also frequently selected
(Figure 3b).

A range of performance metrics were evaluated for the
selection of the final ML model (Table 2). Area under the
receiver operating curve (AUROC) was the most frequently
reported (70/76). F1-score, accuracy, recall (sensitivity),
precision (i.e., positive predictive value, PPV) and specifi-
city were also all assessed in over one-third of publications
(Table 2).

Table 1. Inclusion and exclusion criteria applied for the scoping
review literature search.

Inclusion criteria Exclusion criteria

Publication relating to the use
of interpretation methods
(XAI) to explain machine
learning models in a
healthcare setting.

Post-hoc model-agnostic XAI
used

Tabular electronic healthcare
data research

Original articles, reviews,
letters

Text available in English

Outside scope (no XAI,
intrinsic or model-specific
XAI only)

Wrong Data Type (Related to
genetics, imaging, natural
language processing, or
sensor data)

Full Text Unavailable

XAI= explainable AI.
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Interpretation method selection

Overall, 16 different interpretation methods were used
(Table 3). SHAP was the most frequently used interpret-
ation method, reported in 83% (63/76) of publications.
LIME, PDP and surrogate models were used in 9 (12%),
8 (11%) and 7 (9%) of publications, respectively. Eleven
publications included feature importance. Interpretation
methods were used to evaluate only the final selected ML
model(s) in all bar two publications, which used an inter-
pretation method to compare how different models pre-
dicted outcomes.55,84

Interpretation method application

Individual explanations. SHAP values were the most fre-
quently used method for individual explanations, presented
in 30 publications.55,56,60,67,68,72–75,77,83,86,89,91,93,98–100,103–114

Individual explanations using the SHAP method were
displayed visually with force or waterfall plots.111 These
plots show a series of arrows pointing right (positive
SHAP value) or left (negative SHAP value), which
together combine to reach the final predicted outcome.

LIME was used in eight publications.48,55,73,84,97,102,
115,116 Sun et al. (2022) compared SHAP individual expla-
nations with LIME, and inferred that their similar

interpretations supported the ‘stability’ of the interpreta-
tions, which may be expected given SHAP values are calcu-
lated from the LIME method in practice.73 LIME was
commonly used to contrast positive and negative predic-
tions.48,73,115,116 Alternatively, Kibria et al. (2022) used
LIME to compare outputs for one prediction across
models to explain why different black box models had dif-
ferent predictive performances.55

Amongst all the publications that used SHAP or LIME,
only one publication reported the heuristically defined
hyper-parameters.48

Other, less frequently used individual explanations
included counterfactual explanations. There was only one
identified use of this method by Banerjee et al. (2021) to
predict mortality in severe mental illness.92 However,
rather than using this method causally as is the intended
purpose, they reported a spurious result which they felt
was indicative of bias in the dataset.

Global explanation methods. SHAP importance was the
most frequently reported metric. In its simplest form,
SHAP importance was represented as a bar plot.60,63,67,69,70,
73,75,77,80–82,86–90,98,99,101,104,105,110,113,117–125 However,
another commonly used figure was the ‘violin plot’,
which shows the SHAP value for each instance in the
data as a dot for each feature.55–59,62,66,72,74,76,78,79,83,
84,91,93–96,100,103,106,109,112,114,126–128 Features are ordered
from top to bottom from the most to least important. Each
dot is coloured to represent if the feature value is high or
low. In doing so, this plot not only shows the ranked
order of importance of features, but how feature values
may influence the SHAP value for each feature. Feature
importance was used in 11 publications.48,55,57,60,66,73,99,
108,112,113,119 It was typically used as simple summary of
a model, followed by other explanations.48,55,57,60,66,
73,99,101,108,111–113,119,124 In some cases, feature importance
was compared with SHAP importance.60,73,99,113,119 The
order of features according to permutation feature import-
ance versus SHAP importance often differed, but was
little commented on. This could have implications in later
work, which may only select some features for further
investigation based on one or other important metric.

Global surrogate models were used in six publica-
tions.49,82,114,116,123,129 This method was generally used to
justify an underlying black box model, such as describing

Figure 1. Search terms for PubMed and OVID/MEDLINE (including EMBASE) database.

Table 2. Frequency of metrics for evaluating and selecting the final
ML model.

Metric No. of publications (%)

AUROC 70 (92)

F-score 32 (42)

Accuracy 25 (33)

Recall (sensitivity) 47 (62)

Precision (PPV) 37 (49)

Specificity 25 (33)

NPV 10 (13)

AUROC= area under receiver operater curve, PPV= positive predictive
value, NPV= negative predictive value.
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predictive pathways. Vyas et al. (2022), used a surrogate
model to describe predictions for the diagnosis and severity
of dementia.116 They explained their final (black box)
model, a random forest, using a simple decision tree.
From the decision tree, they identified groups at very high
or low risk of developing dementia, and stated, for
example, ‘if a person fails to identify all three animals [in
a cognitive assessment questionnaire], they have a 95%
chance of developing dementia’.116 Only one (Zhang
et al. 2022123) publication quantified how well the surrogate
model approximated the black box model. Zhang et al.
(2022), reported R2 values of 0.68 and 0.57 for their
support vector machine (SVM) and RF models, i.e., the pro-
portion of variance explained between predictions from the
black box model and surrogate model were 68% and 57%,
respectively.123 These values implied there was a difference
between the surrogate and underlying black box model, and
may invalidate the surrogate model as a means to justify or
provide an explanation for this prediction.

Feature/outcome relationships. Partial Dependence Plots
were used in 15 publications.49,61,66,71,73,79,100,101,108,
109,111,121,125 Relationships between features and outcomes
were shown over a wide range of feature values, however
few publications also showed the density of data at
feature values from which the calculations were
made.37,79,109

In two publications, individual conditional expectation
(ICE) curves were also shown.73,108 In the paper by Sun
et al. (2022), this was helpful in highlighting heterogeneity

in feature/outcome relationships for some features, which
can be hidden by showing only the average partial depend-
ence alone.73

Sun et al. (2022) and Qiu et al. (2022) also presented
SHAP dependence plots with PDPs to compare relation-
ships.73, 109 The plots were generally similar in both
studies, which may imply the techniques are robust.
Interactions between features were shown using SHAP
dependence plots in eight publications.57,59,93,94,96,98,112,114

Discussion
This scoping review shows a significant rise in the interest
and application of XAI methods within the last 5 years in
EHR tabular research. In contrast to the 2020 review by
Payrovnaziri,46 this review reports a 10-fold increase in
post-hoc model-agnostic publications. This aligns with
the study by Di Martino & Delmastro (2023) which
reported a substantial rise in XAI publications up to
2021.52 Among the 76 identified publications, diverse
method choices and motivations were evident. Some
focussed on simple global feature importance metrics,
whilst others only have individual explanations, and some
gave comprehensive interpretations of global importance,
feature/outcome relationships and individual examples.

The need for XAI was supported by the high rate of
selection of black box models as the final model (e.g.,
Random Forest, XGBoost, Neural Networks), although
there is likely a high selection bias towards these methods
as simpler interpretable methods were less likely to need

Figure 2. PRISMA scoping review flow chart.
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XAI in the first place. AUROC was overall the most
favoured metric, whereas other metrics were seen in a
third or less of publications. AUROC may have been
favoured for its interpretation in the context of imbalanced
datasets, which are commonplace in healthcare data. The
range of other metrics selected may represent the diverse
aims of the models developed which may favour a specific
goal e.g., high sensitivity versus high specificity.

SHAP was the most popular method, not reported by
Payrovnaziri et al. (2020),46 but by Di Martino &
Delmastro (2023).52 This is likely because the SHAP
method was introduced in 2017,37 and so only translated to
healthcare research post-2019. Its widespread use suggests a
perceived superior performance versus other methods, but
authors seldom explicitly justify this choice.52 However,

what is notable about SHAP compared with the other
methods is that it offers interpretation approaches across all
three core domains discussed. It also is more theoretically
robust than other techniques.31,37,52 Thus, using the SHAP
method enables authors to gain in-depth insight into their
black box models, with a strong theoretical backing,31

without needing to use multiple methods.
The interpretation methods lack critical appraisal, with

vulnerabilities such as susceptibility to adversarial attacks,
as seen in instances like concealing ethnicity in the
COMPAS dataset.130 Potential consequences, such as influ-
encing predictions in healthcare decision-making, remain
largely unexplored and unacknowledged in publications.
Moreover, the dependence on heuristically defined hyper-
parameter values is evident,35,37 with limited reporting

Figure 3. (a) Included publications over calendar time (b) Machine learning methods selected for testing and the final model as a % of
publications.
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and understanding of vulnerability by authors.48 Evaluation
of global surrogate models was also lacking, and in the one
instance where it was performed, there was poor approxi-
mation between the black box and surrogate model.123

Evaluating similarity should be a requirement when using
this method. Partial dependence plots were shown over
wide feature value spaces, even though some feature
values may be very rare or impossible.31 Greater awareness
of the limitations of these interpretation methods is import-
ant to their appropriate application in the future.52

This scoping review is limited to tabular electronic health
record research, and thus does not provide an overview of
the application of interpretation methods to other healthcare
domains such as genetics, imaging, NLP and time-series
analysis. XAI in these domains differs from tabular EHR
research, due to the nature of the data involved,52 and thus
the applicability of XAI methods. This review also does
not report model-specific methods, methods limited to sub-
domains of AI such as deep neural networks, or transparent
models, and thusmay not include other widely usedmethods
limited to these groups. However, these methods are argu-
ably inferior to model-agnostic approaches, given they
limit the flexibility in initial model selection.14,15,31,52

Conclusion
Overall, this scoping review reinforces the recent surge in
the application of post-hoc interpretation methods for
addressing the black box problem in health care. There is

significant heterogeneity in the choice and application of
these methods. There is also a lack of evaluation of XAI
methodologies. Further research is required to properly
assess these methods for their intended purpose and
ensure that they are appropriate, robust and stand up to
the demands of explanations expected within healthcare.
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