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HIV-1 transmission precipitates a stringent genetic bottleneck, with 75% of
new infections initiated by a single genetic variant. Where multiple variants
initiate infection, recipient set point viral load (SpVL) and the rate of CD4+

T cell decline may be elevated, but these findings remain inconsistent.
Here, we summarised the evidence for this phenomenon, then tested
whether previous studies possessed sufficient statistical power to reliably
identify a true effect of multiple variant infection leading to higher SpVL.
Next, we combined models of HIV-1 transmission, heritability and disease
progression to understand whether available data suggest a faster CD4+ T
cell decline would be expected to associated with multiple variant infection,
without an explicit dependency between the two. First, we found that
most studies had insufficient power to identify a true significant difference,
prompting an explanation for previous inconsistencies. Next, our model
framework revealed we would not expect to observe a positive association
between multiple variant infections and faster CD4+ T cell decline, in the
absence of an explicit dependency. Consequently, while empirical evidence
may be consistent with a positive association between multiple variant
infection and faster CD4+ T cell decline, further investigation is required to
establish a causal basis.

1. Introduction
Almost all people living with HIV-1 will progress to AIDS in the absence
of treatment, and ultimately die of AIDS-related conditions. The progression
rate to AIDS, however, varies considerably between individuals [1,2]. Factors
understood to determine the rate of disease progression include characteris-
tics of the infecting virus such as replicative capacity, immunogenicity or
pre-adaptation [3–5]; and characteristics of the person such as age and human
leukocyte antigen (HLA) phenotype [6–8].
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In some viral infections, a worse clinical prognosis has been associated with an increased inoculum size, often described as
a ‘dose–response’ relationship [9,10]. For HIV-1, infections initiated by multiple genetically distinct viral variants are associated
with elevated set point viral loads (SpVL) and faster CD4+ T cell decline [11–15], which are indicative of a faster progression to
AIDS when left untreated [3]. Despite 25% of new infections being founded by multiple genetic variants [16–19], a mechanistic
understanding of this dose–response relationship remains elusive [15,20].

Recipient SpVL is in part explained by viral genotype, which is inherited from the transmitting individual’s infection. As
such, transmitting partners with high SpVLs may be associated with recipient infections with high SpVLs [21–25]. Concomi-
tantly, the probability of a recipient infection being initiated with multiple variants is greater for an individual with higher
SpVL, given identical viral diversity [26]. We might expect, therefore, that we should observe individuals with multiple variant
infections to have a higher SpVL because their infection would have been more likely initiated by a ‘high SpVL’ genotype.
Nonetheless, high viral loads shorten the duration of infection, thereby reducing the likelihood of the higher SpVL individual
transmitting and consequently restricting the accumulation of viral diversity. The impact of SpVL on the dynamics of the
transmitter’s infection therefore likely determines the need for a causal mechanism that links multiple variants to increased
SpVL.

In this study, we test this assumption by first summarising the existing evidence for an association between infections
initiated by multiple variants and faster CD4+ T cell decline. We then extend a statistical model to evaluate how likely a true
difference in progression to AIDS between individuals with and without infections initiated by multiple variants is to be
detected by these observational studies. Finally, we construct a model framework that combines a mechanistic transmission
model with statistical models to test the hypothesis that we should expect to observe an association between multiple variant
infection and prognosis in the absence of an explicit dependency linking the two.

2. Methods
2.1. Literature review
We first conducted a review to understand the extent to which a difference in HIV-1 prognosis between infections initiated
by single and multiple variants is supported. To systematically collate these data, we searched the PUBMED database
with the following search criteria: (‘HIV’[Title] OR ‘human immunodeficiency virus type 1’[Title]) AND (‘founder*‘[Title]
OR ‘multiplicity’[Title] OR ‘variant*‘[Title]) AND (‘viral loads’[Title/Abstract] OR ‘CD4’[Title/Abstract] OR ‘disease progres-
sion’[Title/Abstract] OR ‘poisson’[Title/Abstract]). We restricted our search to studies published between 1 January 2000 and 1
September 2023. Briefly, our search strategy required studies to have reported original estimates of founder variant multiplicity
in people with acute or early HIV-1 infections; the recipient partner should not be receiving pre-exposure prophylaxis, and
the transmitting partner should be antiretroviral treatment naive. We did not place restrictions on study design, geographical
location or on the age of participants. We identified a subset of studies that satisfied our search criteria, which also conducted
statistical analyses comparing clinical biomarkers of disease progression between single and multiple variant infections of
people living with HIV-1. We recorded the number of study participants, the location of the study, the proportion of the study
whose infection was initiated by multiple variants, the method of founder variant quantification, the sampling strategy of viral
load and CD4+ measurements, and details of the statistical analysis conducted.

2.2. Probability of observing a significant association between SpVL and multiple variant infection
We extended a previously described statistical model that illustrates how the distribution of HIV-1 SpVL changes across a
transmission cycle [27]. In the original statistical model, the population is subdivided into three groups: carriers, representing
people living with HIV, regardless of whether they will go on to be transmitters; transmitters, representing carriers that have
transmitted infection to at least one other person; and recipients, representing individuals with recently initiated infections
from the transmitters. Making the simplifying assumption that the population of log10 SpVL in each group follows a normal
distribution, the change in mean and variance of each may be expressed as a series of linear equations. We parameterised the
carrier population with mean 4.74 log10 copies ml−1 and variance 0.78 [27,28].

We then extended this statistical model to consider the findings that infections initiated by multiple founder variants are
associated with significantly higher SpVLs than those initiated by single variants. We assume that the normal distribution of
recipient SpVLs, X , calculated by Bonhoeffer et al.’s model, with mean, μ and variance, σ2, can be approximated by a mixture
distribution comprising two normal distributions (electronic supplementary material, pages S2 and S3 and figures S1–S3, pages
S6–S8). These respective component distributions describe the population of SpVLs attributable to multiple and single variant
infections in the transmitter population, contributing to the mixture according to their frequency, p and 1 − p , respectively. The
mixture distribution is parameterised such that [29]

(2.1)E X  = μ = p μMV + 1 − p μSV ,

(2.2)E X − μ 2  = σ2 = p  σMV2 + μMV2 +  1 − p  σSV2 + μSV2 − μ2 .

Where σMV2 = σSV2  [13], and with a known effect size representing the true difference in SpVL, μMV − μSVand known values of μ
and p, the component distributions may be parameterised. We inferred component distribution parameters for all combinations
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of effect size between +0.01 and 1 log10 increase SpVL, and values of p, between 0 and 0.6. We sampled from the component
distributions proportionally to the probability that infection was initiated by multiple variants, p, and inferred the significance
of the difference between the sample means using a one-sided t-test. We sampled 100 independent draws and recorded the
proportion of samples with a significant difference between single and multiple variant log10 SpVL distributions.

2.3. A model framework integrating transmission dynamics, transmitter and recipient viral loads and CD4+ T cell
decline

We devised a model framework combining three well-characterised aspects of HIV-1 transmission to identify whether available
data on HIV-1 transmission can explain observed associations between multiple variant infection and log10 SpVL/CD4+ T cell
decline. This framework comprises a mechanistic model of HIV transmission, and statistical models of heritability and disease
progression. Importantly, this framework assumes no causal relationship between multiple variant infection, and higher log10
SpVL or the rate CD4+ T cell decline.

2.4. Heritability model
Heritability denotes the proportion of variation in SpVL between epidemiologically linked individuals that can be explained by
genetic variation of the transmitted virus [21,23]. To predict log10 SpVL, y, for individual j in pair i, we fitted a Bayesian linear
mixed model to SpVLs of 196 previously determined transmission pairs from the Swiss HIV cohort study (SHCS) [30,31]. SpVL
was defined as the geometric mean of viral loads over a period of at least 180 days, obtained prior to commencing antiretroviral
treatment and excluding the primary (90 days post-estimated date of infection) and late (CD4+ T cell count was below 100 µl−1)
phases of the infection. For each pair, we fitted a random intercept, γ0i, for the within-pair mean log10 SpVL and adjusted for
key covariates: recipient sex (male, female), age at infection (categorised to intervals of: 16–24, 25–29, 30−39−40−80), partner
(transmitter/recipient) and risk group (male–female, female–male and men-who-have-sex-with-men (MSM)).

As the direction of transmission is not known for these pairs, for the purpose of our modelling scenario, we imputed an
epidemiological role (transmitter or recipient) for each individual. First, we calculated a theoretical distribution of transmitter
log10 SpVLs in a population, using a statistical model described by Bonhoeffer et al. [27]. We then assigned the role of transmit-
ter within each pair to the individual whose log10 SpVL had the highest likelihood of being a transmitter. We conducted two
sensitivity analyses on the allocation of transmitter: (i) refitting the heritability model with randomly assigned transmitter status
within a transmission pair; and (ii) assigning the individual with highest viral load as the transmitter (electronic supplementary
material, pages S4 and S5 and figure S4, page S9)

(2.3)

yij =  β0 + β1sexij + β2ageij + β3partnerij +  β4riskgroupi + γ0i + ϵijγ0i ∼ N 0,σμ2 ;   ϵij ∼ N 0,σϵ2 .

Priors for the parameter values were informed by Hollingsworth et al. (electronic supplementary material, table S1, page S10)
[21]. The model was fitted using Markov chain Monte Carlo (MCMC) simulation for 10 000 iterations across four chains. The
first 1000 iterations of each chain were discarded as burn-in. Convergence of the joint posterior distribution and adequate
mixing of all chains was assessed against criteria of effective sample size, ESS > 1000, and rank-normalised Gelman–Rubin
statistic, R < 1.05 [32] (electronic supplementary material, table S2 and figure S5, pages S11 and S12). Assumptions of normality
and homogeneity of variance were satisfied following visual inspection of QQ and residual plots (electronic supplementary
material, figure S6, page S13). Predicted values of heritability were drawn from the posterior predictive distribution, calculated
as the variance of the predicted SpVL divided by the sum of the variance of predicted SpVL and the expected variance of the
errors (electronic supplementary material, figure S7, page S14) [33].

2.5. Tolerance model
We used a previously described statistical model that characterises the relationship between recipient SpVL and CD4+ T cell
decline [34,35]. In brief, this model was fitted to SpVLs and longitudinal CD4+ T cell counts of 3036 people living with HIV-1
who participated in the SHCS. In their analysis, Regoes et al. [34] found that the rate of change of CD4+ T cells per ml of blood
per day, y, for recipient, j, was best expressed as a quadratic function of SpVL, log10Vj. The tolerance at birth for females is given
by, α 0, F ,  which thereafter changes linearly with age, a, at rate cF, per year. The sex difference between tolerance at birth, η 0,M ,
and the sex difference between the change of tolerance per life year, M 0,M , represent the linear effects of recipient age and sex,
and their interaction,

(2.4)yj = α0, F + η0,M + cF + zM a log10Vj 2 .

During model fitting, Regoes et al. excluded the linear viral load term and the intercept, finding that they did not deviate
significantly from zero. The parameter values used in this study are detailed in the electronic supplementary material, table S3,
page S15.
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2.6. Transmission model
We extended a previously described mechanistic transmission model that links transmitter infection viral load with the
probability of recipient infection being initiated by multiple viral variants [26]. The model calculates the number of virus
particles, n, and number of viral variants, N, initiating infection in the recipient partner at a given time τ during the transmit-
ter partner’s infection. The number of virus particles founding infection at transmission time, τ, is distributed binomially,n τ Bin ν τ ,p , assuming an inoculum of size, ν τ , which is proportional to viral load at transmission and a per-particle
establishment probability, p. The marginal probability that a given number of variants initiates infection, P N τ , is given by

P N τ ∼ ∑n τ = N τ
v P N τ |n τ . As in the original model, we reconciled the low probability of infection acquisition with a relatively

high proportion of multiple variant infections, by assuming only a fraction, f, of exposures occur in an environment conducive
to transmission resulting in a zero-inflated probability distribution.

The number and diversity of virus particles are modelled across the duration of the transmitter infection. Similar to
Thompson et al. [26], we assumed that no transmission occurs during AIDS due to the severity of illness and categorised the
remaining infectious period into primary, chronic and pre-AIDS. We then extended the model to relax the previous assumption
of fixed viral loads in primary and pre-AIDS infection (electronic supplementary material, figure S8A, page S16). Specifically,
we assumed that viral load varied by Fiebig stage during primary infection, with stages of length 5 days (stage I), 5.3 days
(stage II), 3.2 days (stage III), 5.6 days (stage IV) and 69.5 days (stage V) [36]. Within each stage, we assumed the log10 viral load
profiles follow a normal distribution, calculated the probability that infection was initiated by multiple variants for the 0.1, 0.15,
0.5, 0.85, 0.9 percentile viral load and weighted by their respective probability density (electronic supplementary material, figure
S8B, page S16). For pre-AIDS infection we fitted a lognormal distribution to previously described viral loads using maximum
likelihood, then calculated the probability that infection was initiated by multiple variants at discrete intervals, weighted
according to their respective probability density [37]. The best-fit distribution for pre-AIDS viral loads was parameterised
by mean log10 1.62 and standard deviation log10 0.114 (electronic supplementary material, figure S8C, page S16). Finally, we
followed Thompson et al. in assuming that a small number of variants predominate early infection, giving way to a more
uniform distribution of variants (synonymous with higher diversity) as infection progresses (electronic supplementary material,
figure S8E, page S16) [38]. We modelled the proportion of the xth most common viral variant at time, τ, since infection, as a
gamma distributed random variable, X Γ j, k , with shape parameter, j = 0.417, and scale parameter, k = τ/0.563. All other fixed
parameters remained the same as first presented by Thompson et al. (electronic supplementary material, table S4, page S15).

To calculate the probability that an infection is initiated by multiple variants for a given transmitter SpVL, we first estimated
risk group stratified parameter values f and p, integrated across all infected potential transmitters in the population, and all
times during their courses of infection. Whereas Thompson et al. [26] set the per particle transmission probability, p, and
the proportion of the time the recipient environment is conducive for transmission, f, such that the conditional probability
of transmitting multiple variants in a single act was 0.3, we used a Bayesian model fitting approach to infer joint posterior
distributions of f and p for a given per-event probability of acquisition and the observed probability that infection is initiated by
multiple founder variants (electronic supplementary material, figure S9, page S17). We ran two independent MCMC simula-
tions for 30 000 iterations with a 25% burn-in for each risk group. After concatenating the two chains, a minimum ESS of 2000
was achieved across all analyses, with a Gelman–Rubin statistic of R < 1.05. Joint posterior distributions of f and p recapitulated
empirical distributions of the per-event probability of acquisition and the probability that infection is initiated by multiple
founder variants (electronic supplementary material, figure S10, page S18) [19,39]. Parameter values of f and p were drawn from
the joint posterior distribution and used to calculate individual probabilities that an infection is initiated by multiple variants,
for a given transmitter SpVLs integrated over the course of that transmitter’s infection.

2.7. Risk group-stratified cohorts
To disentangle variation associated with sex and age across risk groups, we simulated risk group-stratified data from the 196
SHCS transmission pairs used in our heritability analysis. First, we selected only those pairs whose risk groups were reversible
and calculated separate variance–covariance matrices for each risk group of mean log10 SpVL, age at infection and sex pairs.
Next, we used these relationships to synthesise populations of size 200, from a truncated multivariate normal distribution.
Categorical variables were enumerated prior to simulation and reclassified according to the cumulative probability distribution
calculated for each variable from the empirical data. We truncated ‘age at infection’ with a lower bound of 16. We validated
these results by comparing the difference in the means and variance between the stratified simulated and empirical data
(electronic supplementary material, figure S11, page S19).

3. Computation
All analyses were implemented in R v. 4.1.2 [40]. The heritability model was fitted in Stan using BRMS v. 2.20.4 [41,42]. Extensive
use was made of the Tidyverse suite v. 2.0.0 for data handling; and tidybayes v. 3.0.6, emmeans v. 1.8.9 , bayesplot v. 1.10.0 and
performance v. 0.10.5 for post-processing [43–46].
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4. Results
4.1. Observational evidence for an association between infections initiated by multiple variants and faster CD4+ T cell

decline
We conducted a systematic search of the PUBMED database, which returned 292 unique studies. We identified five studies that
characterised associations between founder variant multiplicity, viral load and CD4+ T cell decline across six epidemiological
cohorts (table 1) [11–15]. All studies inferred a binary ‘single/multiple’ classification of founder variant multiplicity, and all
studies modelled the outcome of multiple variant infection on viral load. Five of the six epidemiological cohorts were analysed
for a CD4+ T cell outcome. Heterosexual transmissions were analysed by Sagar et al. [11], Abrahams et al. [12] and Janes et al.
[13], while MSM transmissions were also analysed in Janes et al., Chaillon et al. [14] and Macharia et al. [15].

Multiple variant infection was associated with significantly higher viral load at diagnosis in four epidemiological cohorts. To
compare viral loads between infections initiated by single and multiple variants, Abrahams et al., Chaillon et al. and Macharia
et al., applied univariate statistical tests. Sagar et al. and Janes et al. applied linear mixed-effects models and generalised linear
models, respectively. Janes et al. included key covariates, such as sex, age and human leukocyte antigen genotype, whereas
all other studies reported unadjusted estimates. Effect sizes were reported for three epidemiological cohorts and were broadly
consistent (table 1). For the studies that analysed repeat viral load measurements, the presence of a significant difference
between single and multiple variant infections varied throughout infection. For example, at the time of diagnosis, higher viral
load was not associated with multiple variant infection in Janes-STEP, but at each time-point thereafter, higher viral load
was associated with multiple variant infection. In both epidemiological cohorts analysed by Janes et al., the magnitude of the
increase in viral load due to multiple variant infection decreased over time.

Of the four epidemiological cohorts in which a significant association between viral load and multiple variant infection was
identified, a further association with lower CD4+ T cell count or faster CD4+ T cell decline was established in two. Mean square
root CD4+ T cell counts over the first year of infection were analysed by Janes et al., revealing a significant decrease in CD4+ T
cell count associated with multiple variant infection in Janes-RV144. Meanwhile, Sagar et al. had performed a survival analysis
of the proportion of individuals with a CD4+ T Cell count above 350 cells mm−3, stratified by founder variant multiplicity. This
analysis revealed women infected with multiple variant infections would reach a CD4+ T cell count of less than 350 cells mm−3

in 39.2 months (95% confidence interval (CI): 30.8–47.6), significantly faster than 56.8 months (46.0–67.7) for those with single
variant infections. A second study, Macharia et al., also identified a significantly greater rate of decline of the proportion of
individuals with a CD4+ T Cell count above 350 cells mm−3, but did not also identify an association with SpVL. One cohort did
not demonstrate any association between multiple variant infection and either viral load or CD4+ T cell decline [12].

4.2. Do we expect to observe an association between multiple variant infection and log10 SpVL in an observational
study?

Previous observations linking multiple variant infection to a higher SpVL and faster rate of CD4+ T cell decline are inconsistent.
To determine whether such studies had sufficient statistical power, we tested how likely it is that a true difference in SpVL
between individuals with and without infections initiated by multiple variants would have been detected. To compare the
probability of observing a significant difference between the log10 SpVL of infections initiated by single and multiple variants,
we first modelled changes in the distribution of log10 SpVL over a transmission cycle (see electronic supplementary material,
pages S2 and S3) [27]. Extending this statistical model, we approximated the recipient log10 SpVL distribution with two normal
distributions of equal variance, representing single and multiple variant infections. The difference in the means was assumed
to be the signed effect size of observational studies (table 1). We then sampled the distributions of single and multiple variant
infection log10 SpVL, each proportional to the frequency of single and multiple variant infections in the population, and tested if
the samples were significantly different.

Across different study sizes, we found that the probability that a true difference in log10 SpVL between individuals with
and without infections initiated by multiple variants will be detected by an observational study varies considerably (figure 1).
Given the signed effect sizes of multiple variant infection on log10 SpVL by Janes et al. and Sagar et al., and their respective
study sizes, we calculated the proportion of observational studies likely to detect a true significant effect of multiple variant
infection. For Janes-RV144, we estimated that one would expect to record a significant difference in log10 SpVL between single
and multiple SpVL in less than half (0.411 (95% CI: 0.381–0.441)) of cohorts. Conversely, for Janes-STEP we estimated that one
would be equally as likely to record a significant difference than not (0.517 (0.486–0.548)), and for Sagar et al. that one would be
more likely than not to record a significant difference (0.672 (0.643–0.701)).

Our analysis also shows that for given effect size, the probability that infection is initiated by multiple variants influences the
probability of observing a true difference between multiple and single variant SpVLs. The probability that infection is initiated
by multiple variants differs significantly by risk group [19], therefore analysing one specific risk group could determine how
likely one is to record a significant association between multiple variant infection and greater log10 SpVL. To illustrate this,
we assume a cohort of size 66 and an effect size of 0.27 log10 copies ml−1 (medians, table 1). The probability of observing a
significant difference between the SpVLs of infections initiated by multiple and single variants in a male-to-female cohort is
0.289 (95% CI: 0.262–0.318), compared with 0.257 (0.231–0.285) for a female-to-male infection cohort, and 0.367 (0.338–0.397)
for a MSM cohort. Compared with a male-to-female cohort, we are significantly more likely to observe a true difference
between the SpVLs of infections initiated by single and multiple in a MSM cohort (odds ratio (OR) 1.61 (95% CI: 1.31–1.97).
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On the contrary, we are significantly less likely to observe a true difference in a female-to-male cohort (OR 0.562 (0.442–0.713)).
Altogether, these results suggest that most observational studies are insufficiently powered and are not certain to consistently
detect a true difference in log10 SpVL between individuals with and without infections initiated by multiple variants.

4.3. Using available data on HIV-1 transmission, our model framework cannot recapitulate the association between
multiple variant infection and log10 SpVL/CD4+ T cell decline

To establish whether available data can explain the probability that infection is initiated by multiple variants, SpVL and the
rate of CD4+ T cell decline, we designed a model framework characterising HIV-1 transmission and disease progression (figures
2 and 3). First, we calculated the probability that a recipient’s infection was initiated by multiple variants as a function of the
transmission pair’s SpVL (the ‘transmission model’). Second, we calculated the recipient partner’s SpVL as a function of their
transmitting partner’s SpVL (the ‘heritability model’) (figure 3a). Third, we calculated the rate of a recipient’s CD4 cell decline as
a function of their SpVL (the ‘tolerance model’) (figure 3b) [34]. Using these models, we were able to infer the extent to which
SpVL or CD4+ T cell decline varied as a function of the probability that infection was initiated by multiple variants in a risk
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Figure 1. For each study that calculated an effect size, we estimated the power of each study to detect a significant difference in SpVL between individuals with and
without infections initiated by multiple founder variants. Scaling with study size (n), an effect size threshold is apparent, above which one is more likely than not to
observe a significant difference in SpVL between single and multiple variant infections. The probability that infection is initiated by multiple variants greatly increases
the probability of observing a true difference in SpVL due to founder variant multiplicity, saturating between 0.2 and 0.3, depending on study size. The effect sizes
calculated by each study and the frequency of multiple variant infections are shown as white-filled circles.
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group stratified population of people living with HIV. Importantly, this model assumes no causal relationship between multiple
variant infection, higher log10 SpVL or the rate CD4+ T cell decline.

The heritability and transmission models were newly fitted for this study. We estimated the broad sense heritability, H2,
of log10 SpVL using a Bayesian linear mixed model and calculated an approximate R2 value. For this study, we assumed
heritability measures the extent to which genetic variation between infecting viral lineages explains the observed variation
of log10 SpVL. Including a random intercept for each pair, and adjusting for recipient sex, age at infection, partner and risk
group, we estimated the H2 to be 0.238 (95% highest posterior density: 0.123–0.341). When fitting our transmission model, the
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Figure 2. To evaluate the relationship between the probability that infection is initiated by multiple variants, and the rate of CD4+ T cell decline, we leverage three
well-characterised empirical relationships: we predict recipient SpVL as a function of transmitter SpVL; calculate the probability that a potential recipient infection is
initiated by multiple variants, as a function of transmitter SpVL; and predict the daily rate of CD4+ T cell decline (ΔCD4) from recipient SpVL.
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probability that infection is initiated by multiple variants was lowest at intermediate transmitter SpVLs (P(MV) = 0.14 at 4 log10
copies mm−3 for male-to-female transmissions), but more likely at higher transmitter SpVLs (P(MV) = 0.81 at 7 log10 copies mm−3

for male-to-female transmissions) (figure 3c). Lower transmitter SpVLs were approximately representative of the risk group
average probability that infection was initiated by multiple variants (P(MV) = 0.22 at 2 log10 copies mm−3 for male-to-female
transmissions).

Applying our model framework to simulated risk group-stratified transmission pairs, we inferred relationships between the
probability that infection is initiated by multiple variants, recipient log10 SpVL and the rate of CD4+ T cell decline. Across risk
groups, we found that recipient infections were most likely to have a low probability of being initiated by multiple variants and
present with intermediate log10 SpVL (figure 4a). Specifically, the median probabilities that infection was initiated by multiple
variants were 0.173 (interquartile range (IQR): 0.147–0.221) for receptive anal intercourse in men-who-have-sex-with-men
(MSM-receptive), 0.212 (0.178–0.276) for people-who-inject-drugs (PWID), 0.131 (0.108–0.167) for male-to-female, 0.080 (0.064–
0.104) for female-to-male and 0.174 (0.146–0.222) for insertive anal intercourse in men-who-have-sex-with-men (MSM-insertive).
For risk groups associated with a greater risk of multiple variant infection, such as MSM-receptive and PWID, most infections
would be expected to have a low probability of being initiated by multiple variants, except a small proportion of infections
initiated with multiple variants with very high probability (approx. 0.8). There was no clear trend between these relatively high
probabilities that infection is initiated by multiple variants and high recipient log10 SpVL.

Across risk groups, we predicted a relatively slow rate of CD4+ T cell decline, determined as a function of recipient
log10 SpVL, age and sex. Specifically, the median rates of daily CD4+ T cell decline were −0.200 (IQR: −0.250 to −0.154) for
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MSM-receptive, −0.177 (−0.225 to −0.138) for PWID, −0.189 (−0.239 to −0.145) for male-to-female, −0.204 (−0.260 to −0.158) for
female-to-male and −0.200 (−0.250 to −0.154) for MSM-insertive (figure 4b). For risk groups associated with a greater probability
of multiple variant infection, such as MSM-receptive and PWID, the overall distribution of the daily rate of CD4+ T cell decline
remained consistent with risk groups associated with a lower probability of multiple variant infection. Within each risk group,
where an infection was predicted to be initiated with multiple variants at a high probability, this did not correspond to a faster
rate of CD4+ T cell decline. Qualitatively, our findings were consistent across transmitter allocation methods and when log10
SpVL and CD4+ T cell decline were compared with the probability that infection is initiated by multiple particles (electronic
supplementary material, figures S12 and S13, pages S20 and S21).

To compare our model framework with the outcome variables used in observational studies, we calculated the mean SpVLs
for single and multiple variant infection as well as the proportion of each risk group that would have an excess of 350 CD4+ T
cells mm−3 over time. The average log10 SpVL of female-to-male infections initiated by multiple variants was the same as single
variant infections (median 4.22 (IQR: 4.20–4.25) log10 copies mm−3; 4.22 (4.22–4.23) log10 copies mm−3, respectively) (figure 5a).
The average log10 SpVLs of male-to-female, MSM-receptive, MSM-insertive and PWID infections initiated by multiple variants
were slightly greater than infections initiated by a single variant (4.18 (4.16–4.20) log10 copies mm−3 and 4.17 (4.16–4.17) log10
copies mm−3; 4.24 (4.22–4.25) log10 copies mm−3 and 4.23 (4.22–4.23) log10 copies mm-3; 4.24 (4.22–4.25) log10 copies mm−3 and
4.23 (4.22–4.23) log10 copies mm−3; and 4.17 (4.16–4.18) log10 copies mm−3 and 4.15 (4.15–4.16) log10 copies mm−3, respectively).
Across all risk groups, log10 SpVLs of single variant infection were significantly less dispersed than those from infections
initiated by multiple variants (paired, single-tailed t-test, p = 0.0027).

We also found that the difference in time to a clinically relevant (≤350 cells mm−3) CD4+ T cell count between multiple and
single variant infections varied slightly across risk groups (figure 5b). In MSM-receptive transmissions, the time to a clinically
relevant CD4+ T cell count for single variant infections was 9.96 years, compared with 9.92 years for infections initiated by
multiple variants. In both male-to-female and PWID transmissions, however, the median time to a clinically significant CD4+ T
cell count in multiple variant infections was the same as that for single variant infections (10.7 and 10.9 years, respectively). In
female-to-male and MSM-insertive transmissions, the time to a clinically significant recipient CD4+ T cell count for infections
initiated by a single variant (9.78, 9.95) was actually slightly shorter than those initiated by multiple variants (9.93, 9.97). Across
all risk groups, the median time to a clinically significant recipient CD4+ T cell count associated with single variant infection was
significantly less dispersed than those from infections initiated by multiple variants (paired, single-tailed t-test, p = 0.003).

5. Discussion
In this study, we sought to understand whether the significant association between multiple variant infection, log10 SpVL
or faster CD4+ T cell decline could be recapitulated using available data, in the absence of an explicit dependency. First,
we identified six epidemiological cohorts in which associations between multiple variant infection, viral load and CD4+ T
cell decline had previously been investigated. We then showed how most observational studies lacked the statistical power
to consistently identify a true effect. Indeed, the probability of observing a true difference in SpVL due to multiple variant
infection could depend on study parameters and the risk group analysed. Next, we tested whether, using available data,
we would expect to observe the reported association between multiple variant infection and HIV-1 prognosis. Our model
framework revealed we should not expect a high probability of multiple variants initiating infection to coincide with high
log10 SpVL and a faster rate of CD4+ T cell decline. Interpreting our probabilistic output through median log10 SpVL and
the proportion of individuals with greater than 350 CD4+ T cells mm–3, we found that both end-points were similar between
multiple and single variant infections and varied only slightly across risk groups. Both log10 SpVL and the time to a clinically
significant CD4+ T cell count, showed significantly greater variation in multiple variant infections than infections initiated by a
single variant across risk groups.

Altogether, our results are consistent with the hypothesis that a causal mechanism is required to recapitulate the observed
association between multiple variant infection and HIV-1 prognosis. This suggests that a simple association between higher
viral load and greater diversity in the transmitter that leads to higher viral load in the recipient, irrespective of the number
of variants initiating infection, is itself an insufficient explanation. Across an infection cycle, individuals with intermediate
log10 SpVL infections are more likely to pass on their infection than those with higher viral loads [28]. According to our
transmission model, infections acquired from such individuals are initiated by multiple variants with low probability while
multiple variant infections initiated by individuals with high log10 SpVL occur more frequently. Accordingly, to observe an
association between high log10 SpVL and multiple variant infection without a within-patient mechanism, log10 SpVL would
need to be predominantly determined by the transmitted genotype. Instead, we calculated the broad sense heritability of log10
SpVL to be 23.9%, meaning the log10 SpVL of the recipient infection is only weakly determined by the genotypic load of the
transmitter virus population.

Presently, a causal link between the number of variants initiating HIV-1 infection and disease prognosis is yet to be identi-
fied. Where an infection is initiated by multiple variants, this is associated with a weaker selective transmission bottleneck
such that any ‘reasonably fit’ virus may initiate infection [47,48]. Founder viruses isolated from patients whose infection was
initiated by multiple variants have shown a worse replicative capacity in vitro than those initiated by single variants [15]. This
may suggest that it is not an inherent virological property of the founder viruses that drives an association with a faster rate of
CD4+ T cell decline, but instead how the presence of multiple variants determines disease dynamics in early infection. Multiple
variant infections typically possess one major variant and one or more minor variants at a single point in time [15,49,50].
The relative proportions of these variants in major compartments have been shown to vary throughout early infection, in
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addition to prolific inter-variant recombination [49,51,52]. Nonetheless, key phenotypes such as coreceptor usage efficiency,
IFN-α resistance and viral fitness are not associated with the proportions of founder variants in each individual during acute
infection [20]. It has been speculated that the shifts in variant proportion in early infection are immune driven, with minor
variants cyclically out-competing the dominant variant due to a non-negligible selective advantage [49]. Given that multiple
variant infections lead to the earlier presence of broadly neutralising antibodies, it may follow that in trying to mount a
sufficiently broad immune response, initial efficacy is attenuated and leads to increased sequestration and higher viral loads
during the chronic phase [53,54].

We were unable to account for several contributors to HIV-1 disease progression in our models. The role of human genetic
variability, in particular specific HLA genotypes that modulate resistance to infection, is well documented and may have a
key role in determining SpVL, in particular when transmitter and recipient are phenotypically similar [8,55]. Crucially, should
the interaction between HLA and viral genotype determine log10 SpVL in the recipient, independent action assumptions in
our model of heritability would be contravened [5]. Viral properties, such as immunogenicity and co-receptor usage, may also
contribute to the rate of CD4+ T cell decline independent of log10 SpVL, but remain unaccounted for [56]. Our model framework
also highlights limitations in our understanding of HIV-1 transmission. Our transmission model assumes no mutation, selection
and recombination; all of which may influence the within-person fitness of the infecting virus [51,52]. The heritability model
links the within-person processes of the transmission model to the tolerance model; mid-parent offspring regression estimates
of heritability are infamously low-powered, however, and we cannot exclude the possibility that within phylogenetically linked
transmission pairs, infection of a seronegative partner occurred from an unknown third party or a common source [57].
Furthermore, the precise quantification of pathogen trait heritability remains challenging, with estimates of HIV-1 virulence
heritability varying between 7% and 40% [21–25,58,59].

In summary, our model framework cannot recapitulate the observed associations between multiple variant infection and
faster CD4+ T cell decline in the absence of an explicit dependency between the two. Moreover, given the existence of a
true effect, our statistical model has shown that most observational studies lack the power to reliably detect it. Ultimately,
there remain key shortcomings in our knowledge of events happening both during and just after transmission, and whether
these events determine HIV-1 prognosis. This phenomenon would benefit from further study through a causal framework,
incorporating transmitter and recipient viral loads, the time since infection sampling and the number of variants initiating
infection, should data be available.
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