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Abstract

Frontotemporal Dementia (FTD) is preceded by a long period of subtle brain changes, occurring in 

the absence of overt cognitive symptoms, that need to be still fully characterized. Dynamic 

network analysis based on resting-state magnetic resonance imaging (rs-fMRI) is a potentially 

powerful tool for the study of preclinical FTD.

In the present study, we employed a “chronnectome” approach (recurring, time-varying patterns of 

connectivity) to evaluate measures of dynamic connectivity in 472 at-risk FTD subjects from the 

Genetic Frontotemporal dementia research Initiative (GENFI) cohort.

We considered 249 subjects with FTD-related pathogenetic mutations and 223 mutation non-

carriers (HC). Dynamic connectivity was evaluated using independent component analysis and 

sliding-time window correlation to rs-fMRI data, and meta-state measures of global brain 

flexibility were extracted.

Results show that presymptomatic FTD exhibits diminished dynamic fluidity, visiting less meta-

states, shifting less often across them, and travelling through a narrowed meta-state distance, as 

compared to HC. Furthermore, global brain flexibility was significantly correlated to the expected 

age at symptom onset and processing speed performances in mutation carriers.

Dynamic connectivity changes characterize preclinical FTD, arguing for the desynchronization of 

the inner fluctuations of the brain. These changes antedate clinical symptoms, and might represent 

an early signature of FTD to be used as a biomarker in clinical trials.

Keywords

Frontotemporal Dementia; mutation; Granulin; Microtuble Associate Protein Tau; C9orf72; 
resting-state fMRI; dynamic brain functional connectivity; chronnectome

INTRODUCTION

Resting state functional magnetic resonance imaging (rs-fMRI) has become a useful tool to 

investigate the connectivity changes in neurodegenerative dementias1, 2. Spontaneous brain 
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activity at rest is organized in functionally specialized large-scale networks, that roughly 

correspond to different functional domains and that are selectively damaged by various 

neurodegenerative conditions3.

However, previous results make the implicit assumption that the functional coupling among 

brain regions is static and unchanging over short periods of time4–6.

This concept has since been modified with analytic approaches that capture the fact that the 

human brain is an interacting dynamic network and its architecture of coupling among brain 

regions varies across time (termed “the chronnectome”)7–12. Dynamic connectivity studies 

have demonstrated reoccurring patterns of brain functional connectivity, or functional 

connectivity “states”, that are reproducible over time and across subjects8, 13, 14. Initial 

dynamic connectivity studies were based on the assumption that subjects were allowed to be 

in only one “state” at a given point in time, while recent work has introduced the concept of 

“meta-states”, suggesting that subjects may be in multiple states to varying degrees at the 

same point in time7, 15. Thus, for instance, if in the time-course we are able to identify six 

distinct states of functional dynamic connectivity, at a given point in time each subject will 

have a weighted probability to be in more than one state15. Meaningful measures of meta-

state dynamic fluidity, such as the number of meta-states a subject passes through or the 

number of switches from one meta-state to another, have been suggested as an intuitive way 

to characterize global dynamic connectivity behaviour, showing promise for predicting 

mental states and cognitive performances4, 16. From this point of view, meta-state measures 

could provide a more “global” information on the effect of an ongoing neurodegenerative 

process, overcoming the evaluation of single specific brain areas or connectivity pathways, 

and evaluating global perturbation of the brain activity’s temporal dynamics7, 15.

Frontotemporal Dementia (FTD) is a neurodegenerative disease characterized by 

behavioural abnormalities, impairment of executive functions and language deficits17, 18 and 

defined by focal frontotemporal atrophy19. In a significant proportion of the cases, FTD is an 

inherited autosomal dominant disorder; mutations in the Granulin (GRN), chromosome 9 
open reading frame 72 (C9orf72) or Microtuble Associated Protein Tau (MAPT) genes drive 

up to ~40% of Mendelian cases20. In genetic FTD, the neural substrates associated with the 

presymptomatic stage need to be fully characterized, even though the perturbation of static 

large-scale networks mainly involving the frontal regions has already been 

demonstrated21, 22. Namely, in presymptomatic genetic FTD increased connectivity in 

medial frontal regions2, 23, especially within the Salience Network, and reduced seed-based 

connectivity between anterior cingulate cortex and posterior regions of the Default Mode 

Network21 has been already reported. The evaluation of large-scale structural network 

topology along with their temporal dynamics might offer a theoretical framework that can 

contribute to understand the earliest abnormalities in FTD, with the new perspective of 

whole brain assessment24.

These premises set the stage for the present study, in which we analyzed dynamic brain 

connectivity in presymptomatic subjects carrying GRN, MAPT or C9orf72 mutations with 

the purpose a) to assess the chronnectome fingerprint by considering meta-state measures; b) 

to study the association between chronnectome changes and cognitive performances; and c) 
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to correlate chronnectome changes with expected age at disease onset, to evaluate if meta-

state measures are associated with proximity to clinical onset. To this end, we analyzed rs-

fMRI data of 472 subjects from the Genetic Frontotemporal Dementia Initiative (GENFI) 

cohort (http://genfi.org.uk) using a dynamic functional network connectivity (dFNC) 

approach to investigate the chronnectome in presymptomatic mutations carriers as compared 

to mutation non-carriers.

METHODS

Subjects.

Data for this study were drawn from the GENFI multicenter cohort study, which consists of 

23 research centers in Europe and Canada. Inclusion and exclusion criteria have been 

previously described25. Local ethics committees approved the study at each site and all 

participants provided written informed consent according to the Declaration of Helsinki.

We considered asymptomatic participants at risk to carry GRN, C9orf72 or MAPT 
mutations. Between January 2012 and January 2017, we considered 472 participants, of 

which 249 were mutation carriers (45 with MAPT, 122 with GRN, and 82 with C9orf72 
mutations) and 223 were mutation non-carriers. Subjects were enrolled from 18 centers 

belonging to the GENFI network (4 remaining centers were excluded from the present 

project for image artifacts, very low number of included subjects (<2), or for using 1.5T 

MRI scanner); the MRI parameters for each of the 18 included centers was reported in 

Supplementary Table 1. Demographic characteristics of mutation carriers and mutation non-

carriers are reported in Table 1.

Estimated years from expected symptom onset in presymptomatic mutation carriers were 

calculated as the age of the participant at the time of the study assessment minus the mean 

familial age at symptom onset, as previously reported25.

Included at-risk subjects underwent a careful recording of demographic data and a 

standardized clinical and neuropsychological assessment (derived from the Uniform Data 

Set26), as previously published27. We considered tests highly sensitive to identify initial 

changes in presymptomatic genetic FTD, as previously reported25. Thus, we considered 

assessment of behavioural symptoms with the Cambridge Behavioural Inventory Revised 

version (CBI-R)28, general cognitive function with the Mini-Mental State Examination 

(MMSE)26, and cognitive processing speed and executive functions assessed with the part A 

and part B of the Trial Making Test (TMT)26, respectively. For each test, apart from the 

MMSE and CBI-R, we calculated Z scores based on language-specific norms25. 

Neuropsychological evaluation was harmonized across sites.

MRI acquisition.

MRI protocol was common to all the GENFI sites, and adapted for different scanners; no 

pre-study phantom harmonization was performed at local level. In summary, T2-weighted 

echo planar imaging (EPI) sequences sensitized to blood oxygenation level dependent 

(BOLD) contrast for rs-fMRI were considered in the present study (see Supplementary Table 

1 for details on the fMRI protocol used by each site). As the repetition times (TRs, ranging 
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from 2200 ms to 2500 ms) and the volume numbers (ranging from 140 to 200) varied across 

the GENFI centres, we considered only the first 140 volumes of the EPI images for each 

subject (mean acquisition time: 311.5±4.95 sec). During scanning, subjects were asked to 

keep their eyes closed, not to think of anything in particular, and not to fall asleep.

Neuroimaging pre-processing and analysis.

Functional data were pre-processed using the toolbox for Data Processing & Analysis for 

Brain Imaging (DPABI, http://rfmri.org/dpabi)29 based on the Statistical Parametric 

Mapping (SPM12) software.

For each subject, the first 2 volumes of the fMRI series were discharged to account for 

magnetization equilibration. The remaining 138 volumes underwent slice-timing correction 

and were realigned to the first volume. Any subject who had a maximum displacement in 

any direction larger than 2.5 mm, or a maximum rotation (x,y,z) larger than 2.5°, was 

excluded. Data were subsequently spatially normalized to the EPI unified segmentation 

template in Montreal Neurological Institute coordinates derived from SPM12 software and 

resampled to 3×3×3 cubic voxels. We preferred a normalization to the EPI template (instead 

of T1-based normalization) in line with recent data demonstrating that EPI normalization is 

able to reduce variability across subjects (especially when EPI distortion correction is not 

applied, as in our case) and boost the effective sample size by 15–25 %. Furthermore, 

studies assessing distance maps and intra subject variability in multicentre cohorts by EPI 

normalization are comparable with our data30. Spatial smoothing with an isotropic Gaussian 

kernel with full-width at half-maximum, 10 mm was applied; this threshold smoothing value 

was chosen for a number of reasons: 1) we assessed dFC within large areas, which are not 

usually affected by a relative large spatial smoothing; 2) we adopted in Abrol’s template to 

estimate the dFC31 (which has been calculated on 7500 healthy subjects) and consequently 

we opted for similar fMRI pipeline32 (10 mm FWHM); 3) spatial smoothing of 8–10 mm 

FWHM is recommended to increase sensitivity33.

Functional Networks Decomposition.

The functional imaging data were processed using the GIFT (GIFT toolbox, http://

mialab.mrn.org/software/gift)34 and a spatially constrained ICA algorithm35 called Group 

Information Guided independent component analysis (GIG-ICA) was used to compute 

spatial maps that corresponded to those from a previous analysis36. In this approach, brain 

network spatial maps are used as reference templates to calculate functional networks for 

each individual subject one-by-one by maximizing independence in the context of the spatial 

constraint. These template maps include the brain networks with a neuronal origin (not 

artefactual) and assign the remaining data to be noise. We take advantage from the recently 

published set of 37 spatial maps derived from 7500 healthy subjects as spatial references for 

our network selection31. We then considered only cortical and subcortical networks, and we 

discharged cerebellar networks due to incomplete coverage of cerebellum in our sample, 

thus considering 35 spatial maps. The TR of each subject was entered in GIFT pre-

processing, and we accounted for the differences in EPI acquisition protocols among centres. 

The Infomax approach was applied37 to estimate the independent group components and 35 

functional networks were considered (see Supplementary Figure 1 for details). Subject-
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specific spatial patterns and time-courses were derived using spatial-temporal regression and 

then converted to Z-scores. The single time courses were detrended (to remove baseline 

drifts from the scanners and/or physiological pulsations), orthogonalized with respect to 12-

motion parameters, despiked (replacement of outlier time points with 3rd order spline fitting 

to clean neighbouring points) and filtered using a 5th order Butterworth filter (0.01 to 0.15 

Hz)32.

Windowed functional network connectivity and correlation patterns decomposition (meta-
states).

The dynamic functional network connectivity (dFNC) was achieved using dynamic FNC 

toolbox implemented in GIFT38. dFNC was assessed using a sliding-window approach to 

estimate correlation matrices between components for each segment. Segments were defined 

with a tapered window convolving a rectangle (width=30, TRs=66 sec) with a Gaussian (σ 
=3) and slide in steps of 1 TR. A LASSO approach with L1 regularization (100 repetitions) 

was used to compute the covariance between the independent component (IC) time-courses. 

To obtain the decomposition into connectivity patterns (CPs), the spatial ICA (sICA) 

approach was applied14. As previously described, the time-courses were discretized (to work 

over a more tractable space) into 8 bins (positive and negative quartiles) and each timepoint 

was ended into a meta-state39. The time-courses for sICA CPs were derived from the 

regression of each subject’s dFNC information at each time window on the group of sICA 

CPs. During dFNC preprocessing the following covariates of no interest were considered: 

age, gender, acquisition site, scanner type, family number, genetic status of the proband, 

mean framewise displacement (calculated for each subject from the estimated motion 

parameters)40 and the variance associated with them has been regressed out from the 

windowed dynamic functional network connectivity correlations for each subject at this 

processing step.

Four indexes of connectivity dynamism were considered: i) the number of distinct meta-

states the subjects occupied during their scans (meta-state number); ii) the number of times 

that subjects switch from one meta-state to another (meta-state changes), iii) the largest 

distance of two meta-states that subjects occupied (meta-state span), and iv) the overall 

distance traveled by each subject through the state space (the sum of the L1 distances 

between successive meta-states, i.e. meta-state total distance).

Statistical analysis.

The assumption of normality for continuous variables was not satisfied for all group 

combinations, as assessed by Shapiro-Wilk’s test (p<0.05). Thus, comparisons of 

demographic and clinical characteristics between groups (mutation carriers vs. mutation 

non-carriers) were assessed by Mann-Whitney U test for continuous variables and χ2 test for 

categorical variables. Pearson’s correlation was used to assess the relationship between the 

meta-state measures (meta-state number, meta-state changes, meta-state span and meta-state 

total distance) and age at expected symptom onset. Finally, partial correlation (considering 

age as a nuisance variable) was used to test the relationship between meta-state measures 

and cognitive/behavioural performances (CBI-R, MMSE, TMT-A, TMT-B). All the 

statistical analysis was performed using IBM SPSS Statistics 22.0 (Chicago, USA) and 
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statistical significance level set at p< 0.05, corrected for multiple comparisons (Benjamini-

Hochberg False-Discovery-Rate (FDR) correction41), considering four meta-state measures 

and four clinical tests, either for direct comparisons (mutations carriers vs mutation non-

carriers) and for correlation analyses (between age at expected symptom onset and meta-

state measures and between clinical tests and meta-states measures). Finally, we considered 

each gene (GRN, C9orf72 or MAPT) and we conducted exploratory analyses as 

preprocessing (Independent Component Analysis, ICA) was applied on all subjects together.

RESULTS

Two hundred-forty nine mutation carriers (82 with C9orf72, 122 with GRN and 45 with 

MAPT mutations) were considered, compared with 223 mutation non-carriers. Considering 

clinical and demographic variables, mutation non-carriers were slightly older (47.2±13.2 vs 

44.7±11.7, p=0.042), in particular compared with MAPT mutation carriers (see 

Supplementary Table 2 for details). We considered six connectivity patterns (CPs) of dFNC, 

which are reported in Figure 1. The colors of each CP represent the direction and the 

strength of the correlation among the 35 considered network components (red: positive 

correlation and blue: negative correlation).

dFNC was expressed as a weighted sum of the discretized six-dimensional CPs, for each 

given point in time and for each subject. Mutation carriers exhibited diminished dynamic 

fluidity, as they occupied a fewer number of meta-states (i.e., meta-state numbers) and 

changed from one meta-state to another less often (i.e., meta-state changes) than mutation 

non-carriers (see Table 2). Furthermore, mutation carriers operated over a restricted dynamic 

range with decreased meta-state total distance, as they travelled less overall distance, 

between successive meta-states, through the state space than mutation non-carriers (see 

Table 2). We did not find any difference in meta-state span between groups.

In Figure 2, meta-state dynamics through time, meta-state numbers, meta-state change 

points, and meta-state total distance in a representative mutation carrier and in a 

representative mutation non-carrier were reported. A mutation non-carrier subject will show 

a greater brain dynamism as compared to a representative mutation carrier (panel A), as 

suggested by the more complex pattern in the former subject, with an higher number of 

realized meta-states (panel B), meta-state changes (panel C) also travelling a greater overall 

distance (panel D) compared to a mutation carrier subject.

In the exploratory analysis (not corrected for multiple comparisons), we evaluated C9orf72, 

GRN and MAPT mutation carriers separately, as compared to HC, C9orf72 mutation 

carriers showed reduced meta-states numbers (p=0.032) and reduced meta-state changes 

(p=0.041), MAPT mutation carriers had reduced meta-states numbers (p=0.042) and 

reduced overall meta-state total distance (p=0.046), while we did not find significant 

findings in regard to GRN mutation carriers, as compared to HC.

The correlation between meta-state measures and age at expected onset in mutation carriers 

was then considered (FDR-corrected for multiple comparisons). The closer the age at 

expected symptom onset, the lower the number of meta-states (Pearson’s correlation, r=

Premi et al. Page 7

Neuroimage. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−0.174, p=0.012), the lower the meta-state changes (r=−0.166, p=0.012), the lower the meta-

state span (r=−0.167, p=0.012) and the lower the meta-state total distance (r=−0.141, 

p=0.027) was found.

Finally, the correlation between meta-state measures and cognitive performance in mutation 

carriers and non-carriers, considering age at evaluation as a covariate, was assessed (not 

corrected for multiple comparisons). TMT-A scores (the higher the scores the worse the 

performances) were inversely correlated with meta-state span (r=−0.143, p=0.024) and 

meta-state total distance (r=−0.124, p=0.050): interestingly, exploring the correlation of 

TMT-A scores and meta-state measures, the inverse correlation with meta-state span was 

primarily related to C9orf72 group (r=−0.281, p=0.011, not corrected for multiple 

comparisons). No other significant correlation between meta-state measures and 

neuropsychological/behavioural tests in the three mutation separately were demonstrated. 

No other significant correlations between meta-state measures and MMSE, CBI-R or TMT-

B were found. No significant correlation between meta-state measures and 

neuropsychological/behavioural tests were evident.

DISCUSSION

In this study, results showed consistent evidence of reduced global flexibility and dynamism 

in the brain of presymptomatic FTD, which progressively worse with proximity to age at 

expected symptoms onset. Moreover, the impairment of global inner fluctuations of the brain 

was well correlated with processing speed performances in asymptomatic subjects carrying 

pathogenetic FTD mutations.

In the last decade, rs-fMRI has been used to estimate functional brain connectivity, 

considering regions with temporally coherent brain activity as “functional brain 

networks”42, 43. Up to now, most studies have relied on two implicit assumptions: the first is 

a “spatial assumption”, that each brain region participates in exactly one network, and the 

second is a “temporal assumption”, that the connectivity within each network are essentially 

static over time14, 44–46. New evidence clearly suggests that the brain is dynamically 

multistable, and spontaneous low-frequency fluctuations in BOLD fMRI data during the 

acquisition capture reoccurring patterns (states) of interactions among intrinsic networks at 

rest (chronnectome)7, 47. This is in line with spontaneous activity fluctuations found in 

electrophysiological studies48–50. Such findings open a new chapter in the study of 

neurodegenerative diseases, offering a different perspective to investigate the earliest brain 

changes, thus considering global brain connectivity instead of either single network 

connectivity or focal neural damage.

In the present study, we assessed the chronnectome fingerprint in preclinical monogenic 

FTD by considering meta-states. Meta-states properly describe whole brain flexibility, 

moving from the concept that each subject may be in a defined “state” of functional dynamic 

connectivity in at given point in time to the concept that a subject may have a weighted 

probability to be in more “states” in each given point in time. So, for each subject dynamic 

connectivity was represented by the sum of different connectivity pattern probability at the 

same time. From this point of view we explored indexes (meta-state numbers, changes, span, 
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total distance) that were related to the global dynamic properties of the brain rather than to a 

specific state behaviour. Figure 1 represented the six mean (considering all subjects) 

correlations’ matrix that were considered simultaneously to define the dynamic connectivity 

parameters for each subject. On the other hand, Figure 2 showed the matrix of the six CPs 

through time for each subject: as you can see in the first row (A) a “visual“ difference was 

present (mutation non-carrier appeared more dynamic than the mutation carrier) but the 

objective parameters (B, C, D: metastate number, changes, total distance travelled across 

metastates) were defined considering all the metastates in each point in time simultaneously. 

This core challenge allows us to better identify early and hidden features of brain disorders, 

as already demonstrated in schizophrenia15.

Herein, we reported that asymptomatic mutation carriers a) passed through a lower number 

of distinct meta-states (i.e., lower meta-state number); b) less often switched between meta-

states (i.e., lower meta-state changes), and c) switched frequently between two meta-states at 

close distal boundaries of the state space (i.e., lower mate-state total distance), as compared 

to mutation non-carriers. Altogether, these findings point to a precocious impairment of the 

inner fluctuations of the brain with an effect on at-distance networks through a diminished 

dynamic fluidity (meta-state number and meta-state changes) and a restricted dynamic range 

(meta-state total distance) in preclinical FTD51.

Prior work has primarily focused on topological differences among networks in FTD, 

identifying structural and even functional changes of specific brain networks in preclinical 

disease2, 21, 22, 25, 52–55 with specific neuropathological progression according with the 

molecular nexopathy paradigm56. In the present work, we suggested that FTD at the early 

stages also affects whole brain efficiency, providing a complementary and coordinated point 

of view on the presymptomatic phases of FTD.

Moreover, we reported that the greater the meta-state abnormalities in mutation carriers, the 

closer the age at expected onset, in line with the progressive changes which in turn lead to 

symptom onset and structural damage in FTD.

Finally, TMT-A, a test reflecting processing speed skills57, inversely correlated with 

measures of dynamic range connectivity. This confirms and extends previous hypothesis of a 

strict link between chronnectome fingerprint and cognition performances58, 59 that needs to 

be further explored, also considering the strength of correlations (low-moderate) in the 

mutation-carriers group . With regard to the discrepancy between cognitive (CBI-R) and 

behavioural (TMT-A in particular) association with meta-state measures it should be noted 

that the level of behavioural/cognitive symptoms in the preclinical phase of FTD is very low 

(not fulfilling diagnostic criteria for FTD), making behavioural and neuropsychological tests 

potentially useful only in the late preclinical phase of FTD (approximately 5 years before) as 

already demonstrated25. On the other hand, TMT-A, as index of preprocessing speed skill 

could represent a marker of the “global” brain perturbation in the preclinical phase of FTD, 

as captured by dynamic brain connectivity approach. Finally, no significant correlations 

between TMT-A and metastate measures in healthy controls were evident, supporting the 

idea that this findings in presymptomatic FTD were not primarily age-related.
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Our study presents a number of limitations that need to be acknowledged. First, the 

influence of vigilance (considering that rs-fMRI data were collected eye-closed) was not 

evaluated35. Second, subject motion is of particular concern in dynamic analyses of rs-

fMRI60. To overcome this limit, we included motion parameters estimation as well as mean 

framewise displacement in the preprocessing and in the statistical design, respectively32, 40. 

Third, considering the unconstrained nature of the resting-state signal, thought content 

during the scan represented a significant source of variability, can only be partially evaluated 

by retrospective questionnaires13, 61. Four , scan time of acquisition was in line with (or even 

greater than) previous studies13, 14 even though the development of effective dynamic 

functional connectivity statistical approaches is still an open field, deserving attention in the 

future15, 62–65.

Despite these limitations, to the best of our knowledge, this is the first study applying 

chronnectome approach to neurodegenerative dementias. The exploration of time-varying 

aspects of functional connectivity unveiled aspects of the underappreciated early brain 

changes in FTD and supported the view that at the very early disease stage FTD is affecting 

brain as global system, and only in a second phase the pathology involves selective focal 

regions. Therefore, FTD should be considered less focal than previously thought. These 

findings may have important implication on clinical grounds, as tracking desynchronization 

of the inner fluctuations of the brain might be a helpful prognostic marker to be used in 

future pharmacological and prevention trials and it could be considered a feasible approach 

to identify novel targets of intervention.
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Figure 1. The six connectivity patterns (CPs) resulting from the dynamic Functional Network 
Connectivity (dFNC) analysis.
The six correlations’ matrix (among the 35 considered network components) are reported. 

The colorbar represents the direction and the strength of each correlation (red: positive 

correlation, blue: negative correlation).
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Figure 2. Meta-state dynamics through time, meta-state numbers, meta-state change points, and 
meta-state total distance in a representative mutation carrier and in a representative mutation 
non-carrier.
Meta-state dynamics through time (panel A), meta-state numbers (panel B), meta-state 

change points (panel C), and meta-state total distance (panel D) in a representative mutation 

non carrier (left column) and representative mutation carrier (right column).

The colorbar represents the strength of probability to be in each meta-state. X-axis: the six 

connectivity patterns (Cps) are reported, from 1 to 6; Y-axis: time (seconds, after timecourse 

discretization in quartiles).
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Table 1.

Demographic characteristics of included participants.

Characteristic Carriers (n=249) Non-carriers (n=223) P-value*

Age (years) 44.7±11.7 47.2±13.2 0.042

Female, % 64.7% 56.5% 0.073^

Education (years) 14.4±3.2 14.1±3.3 0.242

Years at expected onset (years) −13.8±11.3 - -

Cognitive and behavioural assessment

MMSE 29.2±1.1 29.4±0.9 0.633

CBI-R 4.45±8.2 3.3±6.1 0.098

TMT-A (Z-scores) −2.5±64.5 −10.2±70.3 0.075

TMT-B (Z-scores) −8.2±80.7 −14.4±69.0 0.345

*
Mann-Whitney U test, otherwise specified; ^Chi-Square test; results are expressed as mean±standard deviation, otherwise specified.MMSE: Mini-

Mental State Examination; CBI-R: Cambridge Behavioural Inventory Revised version; TMT-A: part A of the Trial Making Test; TMT-B: part B of 
the Trial Making Test
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Table 2.

Meta-state measures in the studied groups.

Variable Carriers (n=249) Non-carriers (n=223) p*

Number of distinct metastates, mean±SD 51.0±8.9 53.1±8.8 0.024

Number of meta-state changes, mean±SD 51.3±8.5 53.3±8.1 0.024

Meta-state span, mean±SD 23.0±4.7 23.8±4.5 0.136

Meta-state total distance, mean±SD 82.1±17.5 86.2±17.3 0.027

*
Mann-Whitney U test (carriers vs non-carriers) FDR-corrected for multiple comparisons; SD: standard deviation.
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