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ABSTRACT
As people in the UK spend 95% of their time indoors, buildings are an important modifier of 
exposure to both non-optimal temperatures and air pollution. High ambient temperature 
and high PM2.5 (particulate matter) concentrations often occur together in urban areas. 
Residential building types prone to overheating (e.g. purpose-built flats) are often also more 
common in urban areas. Together, this may lead to spatial and demographic inequalities in 
indoor exposure to heat and PM2.5 from outdoor sources. By combining building simulations 
(EnergyPlus), a spatially distributed description of the residential building stock—from publicly 
available Energy Performance Certificate (EPC) data, ambient temperature, PM2.5 data and 
area-level (40–250 households) socio-demographic data—we estimated these inequalities 
in exposure for the population of England and Wales. Maximum indoor temperature was 
higher in areas with larger ethnic minority and infant populations, and lower in areas with a 
higher proportion of people aged ≥ 65 years. Indoor concentrations of outdoor-source PM2.5 
were higher in areas with larger ethnic minority and low-income populations. With rising 
inequality in England and Wales, housing and environmental conditions play an important 
role in contributing to health inequalities from social disadvantage.

POLICY RELEVANCE

Differences in environmental exposures may partly explain inequalities in health 
outcomes. These differences are mediated by dwelling type and quality. Identifying the 
driving factors for differences in environmental exposures may allow for the development 
of interventions to address health inequalities more effectively. This study finds differences 
in indoor exposure across socio-demographic groups due to both location and housing. 
This could be of interest to national, regional and local authorities responsible for targeting 
building retrofit interventions across the housing stock.
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1. INTRODUCTION
In the UK, the environmental threats of increasing ambient temperatures (Kendon et al. 2022) 
and air pollution concentrations that regularly exceed international guidelines (DEFRA 2019) 
pose a dual challenge to population health. Exposure to high ambient temperatures reduces 
thermal comfort, affecting people’s sense of wellbeing, cognitive performance, productivity and 
sleep quality, as well as aggravating existing health conditions (including renal, respiratory and 
cardiovascular diseases) and, in some cases, leading to heat stroke (Kovats & Hajat 2008). Air 
pollution accumulates in urban environments from the combustion of solid fuels for residential 
heating, road transport and industrial processes, and is similarly associated with harms to health, 
including increases in respiratory and cardiovascular disease (Brunekreef & Holgate 2002). 
Both exposures have been associated with excess deaths. It is estimated that the population 
spends up to 95% of its time indoors (Smith et al. 2016), making buildings a key modifier of how 
individuals experience heat and air pollution events, and therefore housing is a key component of 
climate change-adaptation strategies (WHO 2018). Growing health inequalities in high-income 
countries, despite overall improvements in health outcomes across the population, have been in 
part attributed to variations in housing quality between different population groups (Wilkinson 
& Marmot 2006). Poor-quality housing has been associated with respiratory and cardiovascular 
problems, increased risk of injuries and worse mental health outcomes (Kanchongkittiphon et al. 
2015; Midouhas et al. 2019; Nasim 2022; Simpson et al. 2024). These health risks do not occur in 
isolation but coincide with other environmental externalities: substandard housing is often located 
in areas with greater exposure to environmental hazards, less access to greenspace and higher 
concerns regarding neighbourhood safety (Cole et al. 2024).

There is growing evidence of a synergistic effect of outdoor air pollution and high ambient temperatures 
on health: several studies have found that hospital admissions during hot weather events rise with 
incremental increases in ambient concentrations of particulate matter (PM2.5, PM10) and nitrogen 
dioxide (NO2) (Grigorieva & Lukyanets 2021; Yitshak-Sade et al. 2018). These studies tend to focus 
on outdoor exposure, with fewer considering the mediating impact buildings have on exposure to air 
pollution and high temperatures and the roles that dwelling design, ventilation, energy efficiency and 
insulation may have. For research quantifying the health impacts of indoor environmental exposures, 
studies typically rely on observational study designs using cohort or cross-sectional data (Midouhas 
et al. 2019; Nasim 2022) yielding sample sizes in the thousands which require large time and resource 
commitments and may be prone to selection bias (Schoeler et al. 2023).

Alongside these dual environmental pressures on health are additional social pressures and 
policy considerations. There is a need to reduce heating costs as domestic energy prices have 
risen, leaving 30% of UK households spending more than 10% of their net income on energy 
in 2022 (Bradshaw & Keung 2022; DESNZ 2023). The housing stock must also meet national 
net zero targets (BEIS 2020). While those experiencing fuel poverty have been shown to 
benefit most from dwelling energy-efficiency improvements (Kerr et al. 2017), there may be 
unintended consequences associated with improving the energy efficiency of a dwelling. For 
example, increasing the insulation and airtightness of buildings improves energy efficiency and 
health in winter, but may increase the risk of summer thermal discomfort if done without the 
compensatory measures (Mavrogianni et al. 2013; Ortiz et al. 2020; Porritt et al. 2013), and indoor 
concentrations of some pollutants, as well as damp and mould, have been found to increase 
following some retrofits (Shrubsole et al. 2016). However, some studies have reported no effect 
on overheating of energy-efficiency improvements, including wall insulation, and a reduction in 
overheating in dwellings with thicker loft insulation (Fosas et al. 2018; Lomas et al. 2021, 2024). It 
may be that energy-efficient buildings being found to overheat more is due to studies conflating 
energy efficiency with built form. For example, newer more energy-efficient buildings are often 
flats, which often overheat more. This has relevance when considering inequalities in exposure 
as low-income households are more likely to occupy flats, so may therefore experience higher 
indoor temperatures. These complex interactions between different housing characteristics and 
outdoor conditions require that dwelling improvements are planned carefully whilst considering 
the potential for unintended consequences.
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Many studies have examined how outdoor environmental exposures, especially heat (Chakraborty 
et al. 2019; Cole et al. 2024; Macintyre et al. 2018) and air pollution (Milojevic et al. 2017), have an 
inequitable distribution across the population; especially that outdoor air pollution and extreme 
temperatures can be, on average, higher in more economically disadvantaged areas within 
cities. Studies of the urban heat island effect have demonstrated how flats (which are thought 
to be more likely to overheat) are often located in the hottest areas of a city (Macintyre et al. 
2018). Some studies frame this as an environmental justice issue, arguing that disadvantaged 
groups bear a disproportionate burden of exposure to environmental hazards (Pearce et al. 2010). 
However, these studies have usually relied on outdoor environmental exposure estimates due to 
the sparsity of indoor monitored data.

Another strand of research has sought to fill gaps in the data relating to indoor overheating and 
air pollution concentrations using building stock models. Models of archetypal buildings have been 
used to explore what features of a residential building may cause it to overheat (Mavrogianni et al. 
2014; Oikonomou et al. 2012). Studies have demonstrated how building energy simulation can be 
scaled to a large building stock using a meta model (see the Methods section) to predict indoor 
temperatures and indoor air pollution concentrations (Symonds et al. 2016) and can be applied to 
a spatialised housing stock based on Energy Performance Certificate (EPC) data (Taylor et al. 2019). 
Taylor et al. (2016) combined data from the Homes Energy Efficiency Database (HEED)—a database 
containing records of government-funded energy-efficiency installations in the UK housing stock—
with data from the English Housing Survey (EHS) to create a spatially distributed housing stock to 
which building energy modelling was applied. Indoor overheating metrics and ratios of indoor to 
outdoor pollution were estimated. The study found that buildings in urban (as opposed to rural) 
areas had higher mean summertime daily maximum daytime living room temperatures and lower 
indoor–outdoor pollution concentration ratios, driven mainly by differences between flats and 
houses. However, this study did not include variations in the outdoor environment. Recent work 
has demonstrated how area-aggregated EPC data linked to administrative data can be informative 
for health studies (Simpson et al. 2024). This approach allows the integration of information about 
built form, building materials and airtightness—which are more readily available, less intrusive and 
resource intensive to collect—to estimate indoor conditions; but has the limitation that the results 
are dependent upon the modelling assumptions and accuracy of the available data.

This technique has also been used to explore disparities in exposure to indoor air pollution by 
linking spatialised predictions of indoor air pollution with administrative data, finding that modelled 
infiltration of outside sourced air pollution into buildings was lower in more deprived areas of Greater 
London, but that modelled indoor concentrations from outdoor sources remained higher due to 
elevated ambient concentrations in such areas. Others have noted that urban flats may have reduced 
infiltration of outdoor-source PM2.5 due to lower permeability and being sheltered by adjoining 
buildings (Taylor et al. 2014). Additionally, population subgroups with an elevated risk of developing 
health impacts following exposure to high indoor temperatures and air pollution concentrations 
may spend an increased amount of time at home, indoors, relative to the wider population, making 
the home environment especially important (Ferguson et al. 2021; Holgate et al. 2021).

This paper uses building modelling, outdoor spatial data for temperature and PM2.5, and area-
level socio-economic data to identify inequalities in indoor exposure to heat and poor air quality, 
and their drivers at the building level. This advances on previous work that focuses on single 
indoor exposures by considering the two, often co-located, exposures (high temperature and 
air pollution) in parallel, and by exploring how these are driven by both the outdoor conditions 
and dwelling characteristics. Coverage of buildings is improved compared with the building stock 
used previously (Ferguson et al. 2021, 2023). Additionally, the inequalities of these exposures 
are assessed for a variety of different demographic variables, expanding on previous work which 
used income and the index of multiple deprivation (IMD) (Ferguson et al. 2021).

In this study ‘indoor exposure’ refers to the modelled temperature or PM2.5 concentration an 
individual would be exposed to across the spatialised housing stock and does not take into 
account temporal differences in these conditions or differences in the times when individuals 
may be at home.
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2. METHODS
A general outline of the method is as follows, with detail given in the subsequent discussion, and 
Figure 1 provides a visual outline of the framework. Population exposure to indoor temperature 
and air pollution is assessed using the following metrics (the ‘indoor exposures’):

•	 the two-day average daily-maximum living room temperature between the hours of 10:00 
and 22:00 (Taylor et al. 2021)

•	 the annual average indoor concentration of PM2.5 from outdoor sources.

The procedure used to estimate these exposures is now outlined.

First, building modelling tools are used to estimate the relationships between indoor and outdoor 
temperature, and between indoor and outdoor air pollution concentration, in residential buildings, 
including their dependence on building characteristics. The relationship between indoor and 
outdoor air pollution is characterised by an infiltration factor, defined as the ratio between the 
simulated indoor concentration of an outdoor-sourced pollutant and its concentration outdoors. 
The infiltration factor takes a value between 0 and 1, where 1 indicates that the air pollution 
concentration indoors is equivalent to the concentration outdoors, and 0 indicates no indoor 
pollution from outdoor sources. The indoor temperature was estimated for a given outdoor 
temperature, then outdoor temperature data were used in the later stage to reconstruct the 
indoor temperature distribution spatially.

Second, the distribution of building characteristics in the residential building stock across English 
and Welsh output areas (OAs—the smallest census geographical unit containing 40–250 
households) is estimated from the EPC database (DLUHC 2023).

Third, annual average outdoor PM2.5 concentrations and maximum temperatures (the ‘outdoor 
exposures’) for 2018 are extracted from existing spatial datasets: those of the Department of 
Environment, Food and Rural Affairs (DEFRA) (2018) and the Met Office’s HadUK-Grid (Met 
Office 2018), respectively, for each OA. These three elements are combined to estimate indoor 
temperature and indoor concentration of outdoor-source PM2.5 for each OA, which are linked to 
OA-level socio-demographic data from the most recent census.

Figure 1: Outline of the stages 
of the framework described in 
the Methods section.

Note: Building stock modelling 
and environmental data are 
linked to estimate area-level 
indoor exposures. The indoor 
exposures are further linked 
to socio-demographic data 
to assess inequalities in their 
distribution.
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Finally, these linked, OA-level data are used to estimate distributions of indoor temperature and 
indoor concentrations of outdoor-source PM2.5 concentrations weighted by the frequency of 
different socio-demographic populations in each OA in England and Wales. This output informs 
the present assessment of inequalities in indoor exposures.

2.1 BUILDING SIMULATION

Building simulations were run in EnergyPlus (v8.8), which is a widely used and well-validated 
building energy simulation program based on fundamental heat-balance principles. Heat balance 
of zones (rooms) and building elements (walls, roof, windows, etc.) are solved using the finite 
difference method, including the effect of solar gains, internal gains and assumed occupant 
behaviour. EnergyPlus includes an air flow network model that calculates the transfer of air 
between building zones and the outdoors, and can estimate pollutant concentrations using 
balance equations. Air flow is fully coupled to the thermal model and includes the effect of 
window-opening behaviour. A fixed outdoor concentration of an air pollutant is assumed, as well 
as a rate of deposition on building surfaces, which leads the pollutant concentration to decrease 
over time in the absence of other exchanges. Therefore, a more airtight building produces a lower 
modelled average concentration of air pollutants from outdoor sources. The authors chose not 
to model indoor sources of air pollution in this study, as its emphasis is on the modification of 
outdoor environmental exposure data by buildings.

To scale the analysis to the large number of buildings described by the EPC data, a meta-model 
approach was used following Symonds et al. (2016). A sample of building simulations was generated 
for a set of archetypical buildings with input parameters sampled randomly according to a Latin-
hypercube design of experiment. The design of experiment maximises the information extracted 
from a sample of the input space given that a full factorial experiment is too computationally 
expensive. The input–output relationship produced by the physical models was summarised using 
an artificial neural network (ANN) model; this is called a meta-model because it is a model of models. 
The purpose of the meta-model is to interpolate the results from different building simulations to 
a given combination of input variables; this is more computationally efficient than running building 
energy simulations for all possible buildings and produces only a small loss in accuracy (Symonds 
et al. 2016). The ANN was chosen because it has been shown to perform well at this task (Symonds 
et al. 2015). The meta-model was then used to estimate efficiently the distribution of outdoor 
source pollutant infiltration and indoor temperature across the building stock.

Input parameters for the building simulation include the window, wall, roof and floor thermal 
transmittances (often referred to as the ‘U-value’), overall building permeability, orientation, 
occupant window-opening threshold and occupant thermostat-setting. Categorical input variables 
include the building archetype and wall type (solid/cavity). Eight building archetypes were used, 
namely: detached house, semi-detached house, bungalow (i.e. single-storey detached house), 
mid-terrace house (i.e. row-house), end-terrace house, high-rise flat, low-rise flat and converted 
flat. These archetypes were previously developed by Taylor et al. (2019) and represent about 75% 
of the existing English housing stock.

2.2 BUILDING STOCK INFORMATION

Building stock information was extracted from the EPC database (DLUHC 2023), expanding on 
the method used by Taylor et al. (2019). An earlier study used the HEED and EHS datasets (Taylor 
et al. 2016), which may be higher quality data, but HEED covers fewer buildings and the EHS is 
not open data. EPCs describe the expected energy performance of buildings, and are required 
for all buildings built, sold or rented since the introduction of the EPC policy in 2008. Information 
indicates the type of building: U-values (thermal transmittances) of the glazing, roof, exterior 
walls and ground floor; floor area, ceiling height and glazing fraction. The extracted EPC stock 
dataset covers 17,770,964 dwellings, with EPCs recorded between 1 October 2008 and 31 May 
2023 (date of download). EPCs were used because they offer the most complete and up-to-date 
open public source of building information, and are geolocated so they can be combined with 
other spatial data.
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Following Taylor et al. (2019), permeability, U-values and glazing fraction were estimated based 
on the EPC. Permeability was estimated based on the presence of open fireplaces and the main 
heating system in place, type of building, facade area, whether floors are solid or suspended, 
building materials and glazing type. Infiltration through each of these elements was estimated 
according to Standard Assessment Procedure (SAP) ventilation rate calculations and summed as 
per SAP, accounting for the following assumptions: double-, secondary- and triple-glazed windows 
were assumed to have draught-proofing, the extent to which varied according to a three-point 
scale indicating the window had ‘some’, ‘partial’ or ‘mostly’ draught-proofing. Suspended timber 
ground floors were assumed to be unsealed if built before 1975 and sealed thereafter. Dwellings 
that indicated solid fuel, gas or anthracite as the main heating fuel were assumed to have an open 
flue, and flats and maisonettes were assumed to have a draught lobby, whilst other dwelling types 
were not. Open EPC data only record whether glazing fractions are typical for the building type 
(five-point scale from ‘Much less than typical’ to ‘Much more than typical’), so glazing fractions 
were estimated based on percentiles extracted from the EHS for each building type and region. 
Glazing fraction was assumed to be equal on all glazed facades of the building. When a building 
had been surveyed more than once, data were taken from the latest EPC, but missing data were 
infilled where possible from superseded EPCs. To ensure high data quality, unrealistic values were 
removed (e.g. unrealistically small or large floor areas and ceiling heights).

Each EPC contains the postcode of the building it describes. The postcode was used to link to the 
aggregation areas used for the other data sources (OA, etc.) with a look-up table provided by the 
UK Office for National Statistics (ONS).

Changes were made to the previous method (Taylor et al. 2019) to improve the coverage and 
accuracy of the classification:

•	 Thermal transmittances (U-values) were extracted directly from the EPC where available, 
or estimated depending on the performance and/or thickness of reported insulation (mm). 
If the insulation thickness was missing, the age band of the dwelling and the classification 
of the building element based on keywords (e.g. ‘pitched’, ‘flat’, or ‘thatched’ for roofs, and 
‘cavity’, ‘solid brick’ or ‘timber’ for external walls) was used to assign a U-value based on 
look-up tables provided in SAP for roof and wall elements. Floor U-values were calculated 
using the method provided in SAP. Estimated roof, wall and floor U-values were internally 
validated against the energy-efficiency rating additionally recorded in the EPC database for 
the corresponding building element. These variables assign a rating along a five-point scale 
(from ‘Very poor’ to ‘Very good’) on which each corresponds to a numerical U-value range 
(BRE 2014). If estimated U-values fell outside this range, they were assumed to be erroneous 
and a U-value within the given range was randomly selected from a uniform distribution. 
Previous work only used the efficiency category.

•	 Distinctions between high- and low-rise, purpose-built and converted flats are not directly 
recorded in EPCs. Previous work using EPC data assumed that a flat was converted if the 
‘built form’ field of the EPC identified it as a house; the authors identified that this was 
inaccurate for many buildings and that the built form field may simply be filled with a 
default value in many cases. Therefore, a new method of distinguishing between types of 
flat with increased accuracy was developed. It was assumed that flats are high rise if part of 
a building has seven or more storeys, or if the first line of its address ends in ‘Point’, ‘Tower’ or 
‘Heights’. Flats were assumed to be purpose-built low-rise if not high-rise and if the first line 
of its address ended in ‘Mansions’, ‘Court’, ‘Flats’ or ‘Apartments’ and did not begin with an 
alphanumeric, which usually indicates a modified address (e.g. ‘1A’). Otherwise, flats were 
assumed to be converted rather than purpose-built.

•	 Remaining missing data were infilled using medians grouped by building type and OA.

No information was included in the building stock describing occupant behaviour, so thermostat 
set points and window-opening thresholds had assumed distributions. Heating set points were 
assumed to have a truncated normal distribution with a mean of 22°C, standard deviation (SD) 
of 3°C, and truncated at 15 and 26°C. Window-opening thresholds were also assumed to have a 
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truncated normal distribution with a mean of 24°C, SD of 5°C and truncated at 10°C. Windows were 
assumed to open if the indoor temperature was higher than the outdoor temperature, the room 
was occupied, and the indoor temperature was above the threshold. The values were sampled for 
the building energy modelling step, but not used as predictors for the meta-model step, so the 
distributions contribute to the error estimate of the meta-model but are effectively averaged out 
of the final prediction. Window-opening contributes to the transport of outdoor pollutants into the 
building. No information about the internal subdivision of buildings is included in the EPC data, so 
all buildings of the same archetype were assumed to have the same layout scaled according to the 
total floor area reported in the EPC database. No information on building orientation was included 
in the database, so buildings were assigned orientations from a random uniform distribution; this 
makes predictions for individual buildings and streets inaccurate but will not affect the accuracy 
when averaging over larger areas. As no information existed about external shading of windows 
with brise soleil or external shutters, it was assumed that none was present. Internal drapes were 
included, active between 22.00 and 08.00 hours for privacy/lighting purposes.

2.3 OUTDOOR ENVIRONMENTAL DATA

Outdoor temperature observations were used from summer 2018, which had the highest UK June–
August average temperature recorded at the time. Maximum outdoor temperature during August 
2018 was extracted from the Met Office’s HadUK-Grid 1-km-scale dataset (Hollis et al. 2019) at 
each postcode centre point and used as the input temperature for the meta-model to estimate the 
indoor temperature for each dwelling. HadUK-Grid is a gridded data product created by re-analysis 
of weather station network observations. Annual average outdoor PM2.5 concentration from DEFRA’s 
background mapping project at 1-km grid level for each postcode centre point was extracted. 
These are modelled based on road network, industry and rail information, and observations from 
a national monitoring network. The 2018 estimates were used to correspond to the period chosen 
for the temperature analysis. To estimate indoor concentrations of outdoor-source PM2.5, outdoor 
PM2.5 concentration was multiplied by the annual average infiltration factor for each dwelling, 
estimated by the meta-model. Each postcode approximately maps to a single OA, described by a 
look-up table from the ONS.1 These datasets were chosen as the best available open public spatial 
data. Annual average PM2.5 concentration was used because temporally disaggregated spatial 
data covering the study area were not available from an appropriate open source.

2.4 ANALYSIS

The distribution of indoor heat and air pollution across the population, in relation to income, ethnicity 
and age, including older adults and infants, was assessed. Data relating to ethnicity and age are 
included in the most recent census, conducted in 2021, at census OA level. The recipients of Universal 
Credit, a means-tested social security payment available from the UK Department of Working 
Pensions (DWP) (2023), were used as a proxy of low-income households at OA level. The meta-
model, initialised and run as outlined above, outputs information on the indoor conditions of each 
dwelling, including the indoor temperature over a range of outdoor temperatures and infiltration 
factors. This information was linked to postcode level data for the 90th percentile of daily maximum 
temperature for the summer and outdoor concentrations of PM2.5 to estimate the indoor conditions 
for each dwelling. This outputs the indoor modelled indoor conditions for high temperatures and an 
annual average indoor concentration of PM2.5. Descriptive analysis of the estimated indoor conditions, 
potential drivers and area measures of socio-economic indicators was undertaken to explore the 
variation of indoor exposure across these dual environmental hazards. A summary of the datasets 
used in the modelling and subsequent analysis is included in Table 1. Differences in the distributions 
of outdoor and indoor exposures were compared using histograms, box plots and maps. Correlation 
coefficients, which describe the strength of association between two variables, were used to assess 
to what extent the dwellings in areas with higher outdoor temperatures and PM2.5 concentrations 
were the same dwellings with higher indoor temperatures and PM2.5 concentrations. Specifically, 
Spearman’s rank correlation coefficients were calculated for indoor against outdoor temperature and 
for indoor against outdoor PM2.5 for each dwelling. Spearman’s rank correlation indicates whether the 
relationship between two variables is monotonic on a scale of 0 to 1 (1 = perfect positive monotonic).
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3. RESULTS
3.1 DIFFERENCES IN OUTDOOR CONDITIONS ACROSS SOCIO-ECONOMIC GROUPS

Figures 2a and 3a show the population-weighted distributions of outdoor temperature and 
outdoor PM2.5 concentration. For both environmental hazards there is a pronounced difference in 
the distributions for the ethnic minority and ethnic non-minority populations. Smaller differences 
between the other demographic groups can be seen in the outdoor temperature and outdoor 
PM2.5 distributions for the remaining population groups: infants, people < 65 years and low-income 
households have slightly higher outdoor exposures. The urban heat island effect and poorer air 
quality found in cities mean that exposures to these environmental hazards are more pronounced 
in urban areas. Differences in exposure between demographic groups are then driven by the 
distribution of those groups between more and less urbanised areas (and especially London): 
with a higher proportion of ethnic minority people, and a higher proportion of people < 65 years 
(ONS 2023).

For temperature, a Spearman’s rank correlation coefficient of 0.61 was recorded, and for PM2.5 
concentration, 0.69, both significant at the 1% level. This demonstrates how the modelled 
variations in dwelling indoor temperatures and outdoor sourced PM2.5 are strongly driven by 
variations in outdoor conditions, but that there is also substantial variation created by building 
characteristics that modify outdoor–indoor transport. This means that the buildings with the 
highest indoor temperatures and outdoor-sourced PM2.5 indoor concentrations are often, but not 
always, those in areas with the highest outdoor temperatures and outdoor PM2.5 concentrations.

3.2 DIFFERENCES IN HOUSING AS A DRIVER ACROSS SOCIO-ECONOMIC GROUPS

Figures 2b and 3b present the impact of the dwelling characteristics separated from the outdoor 
conditions by estimating indoor temperature for a single daily maximum outdoor temperature 
(26°C chosen as a high but not extreme temperature allowing for reliable modelling) and 
calculating the dwellings’ outdoor pollutant infiltration factor. This summarises the effect of 
residential buildings on exposure to heat and outdoor PM2.5 under fixed outdoor conditions.

Dwellings in areas with greater proportions of infants, people < 65 years, low-income households 
and ethnic minorities are warmer (at a fixed outdoor temperature of 26°C) (Figure 3b). Dwellings 
in areas with greater proportions of low-income households and ethnic minorities have higher 
infiltration factors and are therefore more prone to higher levels of indoor air pollution from 
outdoor sources.

MODEL 
COMPONENT

DATA DEFINITION SOURCES

Housing stock 
meta-model

Dwelling Energy 
Performance Certificate (EPC)

Buildings database describing the quality of 
building features and fabric efficiency

DLUHC (2023)

Outdoor 
environmental 
conditions

Outdoor PM2.5 
concentrations

Annual average outdoor PM2.5 (particulate 
matter) concentration in a 1 × 1 km grid for 
England and Wales

DEFRA (2018)

Outdoor temperature data Summer (June–August) 90th percentile of 
daily maximum temperature for 2018 from 
the HadUK-Grid

Hollis et al. 
(2019)

Vulnerability 
analysis

Individuals aged ≥ 65 years Frequency of the population aged ≥ 65 years 
by census output area (OA)

ONS (2021)

Children/infants Frequency of the population aged 0–4 years 
by census OA

ONS (2021)

Ethnic minority Frequency of the population belonging to a 
racial or ethnic group outside of the majority 
white British population of the UK by census OA

ONS (2022)

Low income Frequency of individuals in receipt of 
Universal Credit per census OA

DWP (2023)
Table 1: Summary of the 
datasets used in the model and 
analysis.
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Figure 4 shows the spatial distributions of the environmental hazards and the modifying effect 
of dwellings at local authority district (LAD) level. LAD level is used here for visualisation purposes 
as there are about 200,000 OAs and about 400 LADs in England and Wales. Dark brown areas 
represent a co-location of a hazard and dwellings which exacerbate exposure indoors. For both 
environmental hazards, the South East of England has the highest outdoor levels. However, 
dwellings that exhibit greater warming and higher infiltration factors can be seen across the South 
West, Wales and the North. Co-location is particularly prominent in London and the East coast. 
Both hazards have similar distributions across England and Wales.

3.3 RESULTING DIFFERENCES IN INDOOR EXPOSURE

Figures 5 and 6 show the distribution of high indoor temperature and PM2.5 exposure across socio-
economic groups, respectively, by combining the dwelling and outdoor environmental information. 
Increased exposure to high indoor temperature and PM2.5 can be seen in areas with greater proportions 
of infants and ethnic minorities. Additionally, areas with higher proportions of low-income households 
exhibit a slight increase in air pollution exposure with an uptick in the lowest decile, potentially 
corresponding to poorer air quality in more affluent city centres, such as Central London.

As the proportion of older adults increases, there is a reduction in indoor levels to both environmental 
hazards. Areas of high older adult populations tend to be less urban (see Figure S1 in the supplemental 
data online), and this effect can be explained by the urban and rural effects in outdoor exposure, 
with urban areas being warmer and tending to have higher concentrations of PM2.5.

Figure 2: Differences in outdoor 
and indoor temperature 
across socio-economic 
groups: (A) population-
weighted distributions of 
outdoor temperature for each 
population group; and (B) 
modelled indoor temperature 
for a constant outdoor 
temperature (26°C).

Note: Differences are plotted for 
a single outdoor temperature to 
separate the modifying effect 
of the buildings from outdoor 
conditions.



Figure 3: Differences in 
outdoor and indoor PM2.5 
across socio-economic groups: 
(A) population-weighted 
distributions of outdoor 
PM2.5 concentration for each 
population group; and (B) 
infiltration factors for each 
population group.

Figure 4: Bivariate maps 
showing the distribution of the 
environmental hazards (red 
scale) and the modifying effect 
of the dwellings (blue scale): 
(A) heat and (B) high PM2.5 
concentrations.

Note: (A) The outdoor 
temperature is the 2018 
summer 90th percentiles 
averaged across local authority 
district (LAD). The indoor 
temperature is the average 
modelled indoor temperature 
for each LAD under a fixed 
outdoor temperature (26°C). 
(B) The outdoor PM2.5 is 
the average 2018 outside 
concentration averaged across 
LAD. The infiltration factor is the 
modelled proportion of outdoor 
PM2.5 that enters the dwelling.
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Figure 5: Differences in indoor 
temperature across socio-
economic groups driven by 
a combination of outdoor 
conditions and dwelling 
characteristics.

Note: The x-axis represents 
the proportion of each socio-
economic group as a decile, 
where 1 is the decile with the 
lowest proportion of each 
group and 10 is the highest. The 
y-axis represents an average of 
the modelled maximum two-
day temperature calculated 
for buildings in each output 
area (OA) for the study period 
(summer 2018).

Figure 6: Differences in indoor 
PM2.5 concentration across 
socio-economic groups driven 
by a combination of outdoor 
conditions and dwelling 
characteristics.

Note: The x-axis represents 
the proportion of each socio-
economic group as a decile, 
where 1 is the decile with the 
lowest proportion of each 
group and 10 is the highest. The 
y-axis represents the modelled 
indoor PM2.5 concentration 
calculated for buildings in each 
output area (OA) using the 
average outdoor concentration 
for 2018.
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3.4 CO-LOCATION OF OVERHEATING AND POOR INDOOR AIR QUALITY

Figure 7 shows a bivariate choropleth map of England and Wales created using indoor PM2.5 and 
temperature information at local authority level. Areas of co-location of high indoor temperature 
and indoor PM2.5 from outdoor sources can be seen around many major cities (marked by yellow 
dots), with greater indoor levels generally found in the South and East of England. The East coast 
exhibits high exposure to indoor heat. High exposure to indoor PM2.5 in the areas surrounding 
London may be due to the extensive road network feeding the city. Moderate levels of indoor 
heat are observed in the North Wales, Liverpool and Manchester region, despite low outdoor 
temperatures, and are driven primarily by housing factors (Figure 4). Rural areas, outside of the 
major towns and cities, in the South East also exhibit a moderate indoor heat; this is despite higher 
outdoor temperatures, suggesting a mediating effect of dwellings.

Figure S1 in the supplemental data online shows the distribution of the socio-economic variables 
for the same region and scale for context. Areas where high indoor temperature and low air quality 
coincide with vulnerable population groups can be identified and targeted for indoor monitoring 
initiatives and interventions aimed at reducing health inequalities by improving indoor conditions. 
Additional maps included in Figure 7 demonstrate the granularity of the data at a scale relevant 
to policymakers.

Figure 7: Bivariate choropleth 
map showing the spatial 
distribution of modelled 
indoor temperatures and 
PM2.5 concentrations. The 
smaller scale maps at bottom 
demonstrate the spatial scale 
of the analysis. The regions 
selected—(from left to right) 
North Wales, Liverpool and 
Manchester region; North East 
Anglia; and London—are also 
outlined in the full map.

Note: Each region is assigned 
a colour on the scale 
depending on the tertile of 
indoor temperature and PM2.5 
concentration in which it falls. 
Dark brown areas represent 
high exposures (third tertile) 
to both indoor hazards. Yellow 
dots represent major cities 
(with populations over 200,000).
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4. DISCUSSION
The framework presented in this study uses the EPC data alongside environmental datasets to 
estimate indoor exposures at the building level. These estimates were then linked to socio-
economic data at high spatial resolution (the lowest census block), with each OA containing 40–
250 households, to estimate inequalities in exposure. Indoor conditions were found to be driven 
both by outdoor conditions and modification by dwellings, and area-level inequalities exist across 
these drivers. This expands on previous methods that examined heat and air pollution separately 
or which did not explore their relation to demographics.

When implementing this framework for England and Wales, pronounced differences in high 
indoor temperature and PM2.5 concentrations driven by outdoor sources were found for the ethnic 
minority population. Higher exposure to outdoor PM2.5 can be seen in infant populations and low-
income households compared with the population average. Higher indoor heat exposure driven 
by dwellings was found for infants, low-income households and ethnic minority populations. 
Higher infiltration factors of external pollutants were found in areas with greater proportions of 
low-income households and ethnic minorities. This resulted in greater overall exposure to indoor 
heat found in areas with larger ethnic minority and infant populations and greater exposure to 
indoor air pollution in areas with larger ethnic minority, low-income and infant populations. Areas 
with higher proportions of older adults had lower indoor exposure to both environmental hazards.

Co-occurrences of high indoor temperature and air pollution were identified in several regions, 
primarily larger cities in the South and East of England. Previous studies have found a coincidence 
between heat and air pollution events and compounding health impacts of the two exposures 
(Grigorieva & Lukyanets 2021; Rai et al. 2023; Stafoggia et al. 2023; Yitshak-Sade et al. 2018). Future 
work could build on the identification of areas where high temperatures, high air pollution and 
vulnerable populations co-occur to prioritise interventions that aim to reduce health inequalities. 
This could involve prioritisation for more expensive monitoring studies to aid policymakers. This 
work should include a parallel exploration of internally generated pollutants and a greater range 
of types of pollutant.

4.1 STRENGTHS AND LIMITATIONS

An extended framework is presented to estimate unequal exposure to indoor heat and air 
pollution at the national level using publicly available data. As the EPC dataset does not include 
details on occupant demographics, the framework presented here allows for the identification 
of unequal housing and environmental exposures for different population groups without the 
need for linked administrative data. This bypasses barriers associated with accessing and using 
administrative data, such as delays and costs in gaining access and the risk of personal data 
disclosure. This approach could be applied to other countries that have open EPC data (or similar), 
open demographic data and open data on environmental conditions.

The main limitation using area-level data is that there are nuances in the distribution within 
areas that will be lost when examining small areas or small numbers of buildings. For example, 
these results show how, over England and Wales, areas with higher proportions of ethnic minority 
residents often have higher indoor concentrations of PM2.5 from outdoor sources; and this method 
could be used to identify areas which have both a high proportion of ethnic minority residents and 
high indoor concentrations of PM2.5 from outdoor sources. However, this method does not indicate 
whether buildings with high indoor concentrations of PM2.5 from outdoor sources within an area 
of aggregation are occupied by residents from any particular demographic. This is an inescapable 
limitation of using aggregated data.

The EPC database provides the most comprehensive open public data source of residential building 
characteristics; however, there are several limitations with EPC data. The register only began in 2008 
and a property is entered when it is sold, constructed or let, meaning the database better represents 
newer, more energy-efficient properties. Older properties, located in areas with lower residential 
mobility, may therefore not be entered into the database, resulting in a significant portion of the 
housing stock being overlooked. There are also known errors with the existing database, relating 
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to erroneously entered data (Few et al. 2023; Hardy & Glew 2019). Details on the orientation of 
each building are not included in the database, and were therefore uniformly assigned to each 
EPC dwelling, despite building orientation being a known contributor to overheating risk (Gupta & 
Gregg 2012; Habitzreuter et al. 2020). A previous study has shown that predicting overheating in 
a building based on incomplete information is challenging, but that performance is better at the 
stock level when averaging across many buildings (Symonds et al. 2017).

Modelled window-opening behaviour was simply based on temperature and the scheduled 
presence of a person, but research has shown that other factors can strongly influence window-
opening behaviour, especially noise and security (Mavrogianni et al. 2017). This may mean that in 
reality windows are opened less near busy roads or in urban areas, which could decrease indoor air 
pollution from outdoor sources and increase indoor temperatures, respectively.

The building meta-model used eight static housing archetypes. Though these archetypes are 
considered broadly representative of the housing stock, they will not represent the full range of 
dwellings across England and Wales. Modifications to the dwelling geometry, such as the addition 
of conservatories and extensions, has not been considered. The framework uses population data at 
the lowest level of spatial aggregation available in the UK (census OA). However, census OAs located 
in densely populated areas, such as Greater London, may exhibit high levels of heterogeneity in 
building parameters, leading to the masking of effects when indoor environmental conditions are 
spatially aggregated. By looking at each building as a single unit, differences across a building may 
be missed, particularly in the case of flats, where top-floor flats are more prone to overheating 
than those on lower floors. Further, the frequency of individuals in receipt of Universal Credit was 
used as a proxy of low income at the census OA level since the UK census does not release area-
income estimates at such high spatial resolution. Beginning in 2013, Universal Credit replaced six 
existing benefit schemes and has faced criticisms due to its increased conditionality for eligibility, 
meaning claimants of the previous benefit schemes were no longer entitled to the payment. The 
use of Universal Credit as a proxy for low income may therefore not fully capture the extent of 
income deprivation across England and Wales, explaining why smaller differences in indoor PM2.5 
exposure were observed between low- and non-low-income residents in the framework presented 
here compared with previous work (Shrubsole et al. 2016). This difference could also be due in 
part to the inclusion of air pollution from indoor sources, including socio-economic differences in 
smoking rates. Indoor sources of air pollution are also important, but they were not modelled in 
the present study.

5. CONCLUSIONS
The framework outlined in this study enabled the estimation of indoor exposures and their 
distribution across population groups at the output area (OA) level for England and Wales. Using 
the Energy Performance Certificate (EPC) data and metamodel allowed indoor conditions to be 
estimated for about 15 million dwellings. Higher temperatures for dwellings were found in areas 
with larger infant and ethnic minority areas, and higher PM2.5 concentrations for dwellings were 
found in areas with larger infant, ethnic minority and low-income populations, when compared 
with the population average. These differences in indoor exposure were driven by both the outdoor 
conditions and the modifying effect of dwellings. Co-location of indoor exposures was identified in 
the South East region of England and in urban areas.

Further work would extend this framework to include indoor sourced air pollution. The results 
can be used to identify areas of co-location of indoor exposures for targeted interventions which 
reduce inequalities. Separation of the environmental and building drivers of indoor exposures can 
be used to inform these interventions and ensure multiple exposures are considered to minimise 
the unintended consequences of building improvements.

NOTE
1	 See https://geoportal.statistics.gov.uk/datasets/b7103ec863b741e99cd3720480dae932/about/.

https://geoportal.statistics.gov.uk/datasets/b7103ec863b741e99cd3720480dae932/about/
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