Appendix

Table of Contents

Figure A1. Flow chart describing the literature search2
Figure A2. Sensitivity analysis with the weakest associations embedded in the meta-analyses
Appendix Table A1. MOOSE Checklist of Current Systematic Review and Meta-Analysis
Appendix Table A2. PubMed Search (01.01.1991 - 23.03.2020)5
Appendix Table A3. Web of Science Search (01.01.1991 - 23.03.2019)7
Appendix Table A4. Excluded studies and reasons
Appendix Table A5. Results of the Risk of Bias Evaluation with a Modified Newcastle-Ottawa-Scale
Appendix Table A6. Designs of Studies Investigating the Association of Polypharmacy with Adverse Health Outcomes
in Older Adults with Cancer
Appendix Table A7. Follow-Up and Effect Size Data of Studies Investigating the Impact of Polypharmacy on Health
Outcomes in Older Adults with Cancer
Appendix Table A8. Designs of Studies Investigating the Association of Potentially Inappropriate Medication with
Adverse Health Outcomes in Older Adults with Cancer22
Appendix Table A9. Follow-Up and Effect Size Data of Studies Investigating the Impact of Potentially Inappropriate
Medication on Health Outcomes in Older Adults with Cancer23
References

Figure A2. Comparison of main meta-analysis using the strongest association if multiple results, eligible to be included in the same meta-analysis, were reported (left column) and sensitivity analysis using the weakest associations (right column)

Study name

Hong 2020

Jeon 2019

Karuturi 2018 BC

C. Association of PIM use and hospitalization (Main)

Study name	Stati	stics for eac	r each study Risk ratio and 95% Cl		
	Risk ratio	Lower limit	Upper limit		
Hong 2020	1,40	0,98	1,99	=-	
Jeon 2019	2,18	1,03	4,63		
Karuturi 2019_BC	1,28	1,02	1,61	-=-	
Karuturi 2018_CRC	1,02	0,79	1,32		
Chun 2018	0,95	0,76	1,18		
Choi 2018	0,76	0,21	2,77		
Park 2016	1,35	0,71	2,56		
Maggiore 2014	1,01	0,64	1,59		
Overall	1,14	0,99	1,32		
Test for heterogeneity:	Q=9.34, df	= 7, p= 0.229), I ² = 25.1%	0,1 0,2 0,5 1 2 5 10	

E. Association of PIM use and treatment-related toxicities (Main) Study name Statistics for each study Risk ratio and 95% CI

								_	
	Risk ratio	Lower limit	Upper limit						
Lin 2018	2,91	1,42	5,97			-	+-	+	
Park 2016	1,30	0,48	3,53		-	╶┼═╴	+		
Maggiore 2014	1,03	0,59	1,81		-	-	-		
Overall	1,56	0,79	3,08			-	-		
Test for heterogeneit	y: Q=5.06, d	df= 2, p= 0.08	0, I ² = 60.5%	0,1 0,2	0,5	1	2	5	10

	Risk	Lower	Upper							
Study name	Statis	stics for eacl	h study		Ri	sk ratio	o and	95%		
F. Association of	PIM use	and treat	ment-rela	ted to	xiciti	es (Se	nsiti	vity)		
Test for heterogeneit	γ: Q=9.99, c	df= 7, p= 0.18	9, I ² = 29.9%	0,1	0,2	0,5	1	2	5	10
Overall	1,05	0,90	1,24				þ			
Maggiore 2014	0,64	0,30	1,35			-	-			
Park 2016	1,35	0,71	2,56					+		
Choi 2018	0,76	0,21	2,77		-					
Chun 2018	0,95	0,76	1,18				-			
Karuturi 2018_CRC	1,01	0,81	1,26				+			

Upper limit

1,99

4,63

1,23

Risk ratio and 95% CI

D. Association of PIM use and hospitalization (Sensitivity)

Statistics for each study

Lower

limit

0,98

1,03

0,75

Risk

ratio

1,40

2.18

0,96

	Risk ratio	Lower limit	Upper limit					
Lin 2018	2,91	1,42	5,97			+	-+	
Park 2016	1,30	0,48	3,53			-	-	
Maggiore 2014	0,90	0,54	1,49			-		
Overall	1,48	0,68	3,19				-	
Test for heterogene	eitv: Q=6.84	. df= 2. p= 0	.033. I ² = 70.8%	6 0.1 0.2	0.5 1	2	5	10

 H. Association of polypharmacy and postoperative complications (Sensitivity)

 Study name
 Statistics for each study
 Risk ratio and 95% CI

	Risk ratio	Lower limit	Upper limit	
Samuelsson 2019	2,82	0,67	11,86	
Fagard 2017	1,11	0,49	2,54	
Lee 2016	1,02	0,39	2,67	
Kenig 2015	1,20	0,48	3,01	
de Glas 2013	1,76	1,39	2,23	
Kristjansson 2010	1,67	0,82	3,41	
Overall	1,65	1,34	2,02	
Test for heterogeneity	r: Q=3.12, di	f= 5, p= 0.682	2, I ² = 0%	0,1 0,2 0,5 1 2 5 10

Notes: Yellow shading highlights studies with multiple results, eligible to be included in the same meta-analysis (e.g., different PIM definitions or different postoperative complications). Only meta-analyses are presented, which included studies with multiple outcomes.

Appendix Table A1. MOOSE Checklist of Current Systematic Review and Meta-Analysis

Itom No	Penarting Critoria	Poforonce to manuscript
Reporting	of Background	Reference to manuscript.
	Broblem definition	Introduction 4th paragraph
	Problem demittion	Introduction, 4 th paragraph
2	Description of Study Outcome(s)	Introduction, 4 th paragraph
3	Type of expective or intervention used	Introduction, 4 th paragraph
4	Type of exposure of intervention used	Introduction, 4 th paragraph
5	Study Depulation	Introduction, 4 th paragraph
Departing	af Socrahing Strategy	introduction, 4 ^{ac} paragraph
	Ouslifications of sourchars (og librarians and investigators)	Mothods Eth paragraph
/	Qualifications of searchiers (eg, indication and investigators)	Mothods, 3 rd and 3 rd
8	search strategy, including time period included in the synthesis and keywords	paragraph; Appendix Table A2, A3
9	Effort to include all available studies, including contact with authors	Methods, 5 th paragraph
10	Databases and registries searched	Methods, 2 nd paragraph
11	Search software used, name and version, including special features used (eg, explosion)	Methods, 4 th paragraph
12	Use of hand searching (eg, reference lists of obtained articles)	Methods, 4 th paragraph
13	List of citations located and those excluded, including justification	Methods, 4 th paragraph;
		Appendix Table A4
14	Method of addressing articles published in languages other than English	Results, 1 st paragraph
15	Method of handling abstracts and unpublished studies	Methods, 5 th paragraph
16	Description of any contact with authors	Methods, 5 th paragraph
Reporting	of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Methods, 2-4 th paragraph
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Methods, 2-5 th paragraph
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	Methods, 5 th paragraph
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Methods, 6 th paragraph
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	Methods, 6 th paragraph
22	Assessment of heterogeneity	Methods, 7 th paragraph
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be	Methods, 7-9 th paragraph
24	Provision of appropriate tables and graphics	Tables 1-4 Figure 1
Reporting	of results should include	
25	Granhic summarizing individual study estimates and overall estimate	Figure 1
25	Table giving descriptive information for each study included	Tables 1-4
20	Results of sensitivity testing (eg. subgroup analysis)	Besults 15 th paragraph
28	Indication of statistical uncertainty of findings	Results 5-13 th naragraph
Reporting	of discussion should include	nesaris, s 15 paragraph
29	Quantitative assessment of hias (eg. nublication hias)	Results 4 th paragraph
30	lustification for exclusion (eg. exclusion of non-English language citations)	Results 4 th paragraph
31	Assessment of quality of included studies	Results 4 th paragraph
		Appendix Table A5
Reporting	of conclusions should include	
32	Consideration of alternative explanations for Observed results	Conclusions
33	domain of the literature review)	Conclusions
34	Guidelines for future research	Discussion, 17 th paragraph
35	Disclosure of funding source	Disclosure of Funding Source

From: Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Metaanalysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA*. 2000; 283(15):2008-12.¹

Appendix Table A2. PubMed Search (01.01.1991 - 23.03.2020)

Step	Step combination	Search Term(s)	Results
1		Potentially Inappropriate Medication List[MeSH]	421
2		PIM List*[tw]	31
3		Inappropriate Medication*[tw]	1,631
4		Inappropriate Medicine*[tw]	118
5		Inappropriate Prescrib*[tw]	3,948
6		Inappropriate Prescription*[tw]	682
7		Inappropriate Drug*[tw]	619
8		Suboptimal Medication*[tw]	90
9		Suboptimal Medicine[tw]	1,734
10		Suboptimal Medicines[tw]	215
11		Suboptimal Prescrib*[tw]	84
12		Suboptimal Prescription*[tw]	15
13		Suboptimal Drug Use[tw]	12
14		Suboptimal Drugs[tw]	2,386
15		Incorrect Medication*[tw]	80
16		Incorrect Prescribing[tw]	22
17		Incorrect Prescription*[tw]	45
18		Incorrect Drug*[tw]	87
19		Potentially inappropriate prescrib*[tw]	315
20		Potentially inappropriate prescription*[tw]	223
21		Potentially inappropriate medication*[tw]	1157
22		Potentially inappropriate medicine*[tw]	70
23		Potentially inappropriate drug*[tw]	127
24		Beers Criteria[tw]	636
25		STOPP[tw]	425
26		Screening Tool of Older Person's Potentially Inappropriate Prescriptions[tw]	16
27		Medication Appropriateness Index[tw]	125
28	OR 1 - 27		10,084
29		Polypharmacy[MeSH]	5,010
30		Polypharmacy[tw]	9,508
31		Polymedication*[tw]	221
32		Polymedicine[tw]	12
33		Polyprescription*[tw]	2
34		Polydrug*[tw]	1,532
35		Multiple Prescription*[tw]	135
36		Multiple Prescrib*[tw]	104
37		Multiple Medication*[tw]	1,643
38		Multiple Medicine[tw]	9
39		Multiple Medicines[tw]	75
40		Multiple Drug*[tw]	7,917
41		Multiple Drug Use[tw]	254
42		Geriatric assessment[tw]	28,491
43		Geriatric assessments[tw]	245
44		Geriatric review[tw]	4
45		Geriatric reviews[tw]	1,585
46	OR 29 – 45		49,526
47		Neoplasms[MeSH Terms]	3,297,252
48		Neoplasms[tw]	2,641,421
49		Neoplasm[tw]	709,792
50		Neoplasia[tw]	60,136
51		Neoplasias[tw]	5,705
52		Tumors[tw]	603,992
53		Tumor[tw]	1,641,379
54		Cancer[tw]	1,692,423

55		Cancers[tw]	254,370
56		Malignancy[tw]	140,247
57		Malignancies[tw]	115,634
58		Malignant Neoplasms[tw]	9,493
59		Malignant Neoplasm[tw]	4,677
60		Neoplasm, Malignant[tw]	1
61		Neoplasms, Malignant[tw]	1
62		Benign Neoplasms[tw]	1,871
63		Neoplasms, Benign[tw]	5
64		Benign Neoplasm[tw]	1,760
65		Neoplasm, Benign[tw]	1
66		Carcinoma[tw]	815,373
67		Carcinomas[tw]	118,794
68		Metastasis[tw]	352,672
69		Metastases[tw]	159,856
70		Lymphoma[tw]	232,981
71		Lymphomas[tw]	41,912
72		Lymphoid malignancy[tw]	702
73		Lymphoid malignancies[tw]	2,591
74		Lymphoid[tw]	109,900
75		Leukemia[tw]	307,885
76		Leukemias[tw]	16,224
77		Myeloma[tw]	60,076
78		Myelomas[tw]	1,123
79		Adenoma[tw]	88,095
80		Adenomas[tw]	34,905
81		Oncology[tw]	115,839
82		Oncological[tw]	22,357
83		Hematology[tw]	21,443
84		Hematological[tw]	44,745
85		Carcinogenesis[tw]	85,912
86		Carcinogeneses[tw]	13
87		Adenocarcinoma[tw]	229,681
88		Adenocarcinomas[tw]	27,274
89	OR 47 - 88		4,509,385
90	28 OR 46	Polypharmacy or PIM	58,161
91	89 AND 90	(Polypharmacy or PIM) and Neoplasm	6,054
		"Editorial" [Publication Type]	-
		"Comment" [Publication Type]	
		"Review" [Publication Type]	
		"Review Literature as Topic"[Mesh]	
		"Letter" [Publication Type]	
		"Correspondence as Topic"[Mesh]	
92	NOT	"Case Reports" [Publication Type]	-2,011
93	91 NOT 92	((Polypharmacy or PIM) and Neoplasm) NOT 92	4,043
94		Since 1991	3,771

Appendix Table A3. Web of Science Search (01.01.1991 - 23.03.2019)

Step	Step	Search Set	Results
	combination		
1	PIM	TS=("Potentially Inappropriate Medication List" OR "PIM List*" OR "Inappropriate Medication*" OR "Inappropriate Medicine*" OR "Inappropriate Prescrib*" OR "Inappropriate Prescription*" OR "Inappropriate Drug*" OR "Suboptimal Medication*" OR "Suboptimal Medicine" OR "Suboptimal Medicines" OR "Suboptimal Prescrib*" OR "Suboptimal Prescription*" OR "Suboptimal Drug Use" OR "Suboptimal Drugs" OR "Incorrect Medication*" OR "Incorrect Prescribing" OR "Incorrect Prescription*" OR "Incorrect Drug*" OR "potentially inappropriate prescrib*" OR "Incorrect Drug*" OR "potentially inappropriate prescrib*" OR "potentially inappropriate medicine*" OR "potentially inappropriate drug*" OR "Beers Criteria" OR STOPP OR "Screening Tool of Older Person's Potentially Inappropriate Prescriptions" OR "Medication Appropriateness Index") <i>Indexes=SCI-EXPANDED Timespan=All years</i>	4,509
2	Polypharmacy	TS=("Polypharmacy" OR "Polymedication*" OR "Polymedicine" OR "Polyprescription*" OR "Polydrug*" OR "Multiple Prescription*" OR "Multiple Prescrib*" OR "Multiple Medication*" OR "Multiple Medicine" OR "Multiple Medicines" OR "Multiple Drug*" OR "Multiple Drug Use" OR "Geriatric assessment" OR "Geriatric assessments" OR "Geriatric review" OR "Geriatric reviews") Indexes=SCI-EXPANDED Timespan=All years	23,216
3	Neoplasms	TS=("Neoplasms" OR "Neoplasm" OR "Neoplasia" OR "Neoplasias" OR "Tumors" OR "Tumor" OR "Cancer" OR "Cancers" OR "Malignancy" OR "Malignancies" OR "Malignant Neoplasms" OR "Malignant Neoplasm" OR "Neoplasm, Malignant" OR "Neoplasms, Malignant" OR "Benign Neoplasms" OR "Neoplasms, Benign" OR "Benign Neoplasm" OR "Neoplasm, Benign" OR "Carcinoma" OR "Carcinomas" OR "Metastasis" OR "Metastases" OR "Lymphoma" OR "Lymphomas" OR "Lymphoid malignancy" OR "Lymphoid malignancies" OR "Lymphoid" OR "Leukemia" OR "Leukemias" OR "Myeloma" OR "Myelomas" OR "Adenoma" OR "Adenomas" OR "Oncology" OR "Oncological" OR "Hematology" OR "Hematological" OR "Carcinogenesis" OR "Carcinogeneses" OR "Adenocarcinoma" OR "Adenocarcinomas") Indexes=SCI-EXPANDED Timespan=All years	4,083,743
4	PIM OR PP	#1 OR #2	26,546
5	(PIM OR PP)	#3 AND #4	<u> </u>
	AND	Indexes=SCI-EXPANDED Timespan=All years	4,001
	Neoplasms		
6	Unwanted	TS=("Editorial" OR "Comment" OR "Review" OR "Review Literature as Topic" OR "Letter"	1,979,970
	study design	OR "Correspondence as Topic" OR "Case Reports")	
		Indexes=SCI-EXPANDED Timespan=All years	
7		#5 NOT #6	4,097
8	Since 1991		4,030

Appendix Table A4. Excluded studies and reasons

1. No cohort study design or	1. Williams GR, Deal AM, Pergolotti M, Muss HB, Sanoff HK, Lund JL. Association of comorbidity and polypharmacy with skeletal muscle measures in
prospective/retrospective	older adults with cancer. J Clin Oncol 2018;36.
observational study design	2. Wildes TM, Maggiore RJ, Tew WP, et al. Factors associated with fails in older adults with cancer: a validated model from the Cancer and Aging
applied to randomized	Research Group. Support Care Cancer 2018;26:3563-70
controlled trial (RCI)	3. Russo C, Terret C, Cropet C, Albrand G. Geriatric assessment in oncology: Moving the concept forward. The 20 years of experience of the Centre Leon Berard geriatric oncology program. I Geriatr Oncol 2018:9:673-8.
population (11 _1)	4. Turner IP. Tervonen HE. Shakib S. Singhal N. Prowse R. Bell IS. Factors associated with use of falls risk-increasing drugs among patients of a geriatric
	oncology outpatient clinic in Australia: a cross-sectional study. J Eval Clin Pract 2017:23:361-8.
	5. Pamoukdijan F. Aparicio T. Zelek L. et al. Impaired mobility. depressed mood, cognitive impairment and polypharmacy are independently associated
	with disability in older cancer outpatients: The prospective Physical Frailty in Elderly Cancer patients (PF-EC) cohort study. J Geriatr Oncol 2017;8:190-
	5.
	6. Tan T, Ong WS, Rajasekaran T, et al. Identification of Comprehensive Geriatric Assessment Based Risk Factors for Malnutrition in Elderly Asian Cancer
	Patients. PLoS One 2016;11:e0156008.
	7. Rajasekaran T, Tan T, Ong WS, et al. Comprehensive Geriatric Assessment (CGA) based risk factors for increased caregiver burden among elderly Asian
	patients with cancer. J Geriatr Oncol 2016;7:211-8
	8. Canoui-Poitrine F, Reinald N, Laurent M, et al. Geriatric assessment findings independently associated with clinical depression in 1092 older patients
	with cancer: the ELCAPA Cohort Study. Psychooncology 2016;25:104-11.
	9. Williams GR, Deal AM, Nyrop KA, et al. Geriatric assessment as an aide to understanding falls in older adults with cancer. Support Care Cancer
	2015;23:2273-80.
	10. Tournigand C, Canoui-Poitrine F, Reinald N, et al. Association between geriatric assessment findings and clinical depression in 1092 older patients with
	cancer: The ELCAPA Cohort study. J Clin Oncol 2015;33.
	11. Yeoh TT, Tay XY, Si P, Chew L. Drug-related problems in elderly patients with cancer receiving outpatient chemotherapy. J Geriatr Oncol 2015;6:280-7.
	12. Turner JP, Shakib S, Singhal N, et al. Prevalence and factors associated with polypharmacy in older people with cancer. Support Care Cancer
	2014;22:1727-34.
	13. Prithviraj GK, Koroukian S, Margevicius S, Berger NA, Bagai R, Owusu C. Patient Characteristics Associated with Polypharmacy and Inappropriate
	Prescribing of Medications among Older Adults with Cancer. J Geriatr Oncol 2012;3:228-37.
	14. Parks RM, Hall L, Tang S, et al. Evaluation of a cancer-specific comprehensive geriatric assessment (CGA) tool in older women with newly diagnosed
	primary breast cancer. J Clin Oncol 2011;29.
	15. Prithviraj GK, Bagai R, Koroukian SM, Berger NA, Owusu C. Polypharmacy and functional status in older patients with breast, colon, and lung cancers. J
	16. Beitran BE, Motta R, Gamarra MP, Araujo R, Castillo JJ. Comprehensive Geriatric Assessment in Elderly Patients with Aggressive Non-Hodgkin
	Lymphoma in Peru. Biodo 2018;132:3
	from the Concer & Aging Resilience Evaluation (CARE) study. I Coristr Oncel 2020 [onub aboad of print]
2. Study population was not	10. Hoomma A. Barth H. Hasehko M. et al. Drognostic impact of polynharmacy and drug interactions in patients with advanced cancer. Concer Chamather
2. Study population was not	18. Hoemme A, Barth H, Haschke M, et al. Prognostic impact of polypnarmacy and drug interactions in patients with advanced cancer. Cancer Chemother
ninited to older cancer	PridrindCol 2019;83(4):773-774.
60 years or older) (n=14)	19. Laurent w, Guerz GD, Bastuji-Garinis, et al. Chronological Age and Kisk of Chemotherapy Noniedsibility: A Real-Life Conort Study of 153 Stage II of III
00 years of older). (11-14)	20 Senal G. Liveal N. Oguz G. et al. Delirium Frequency and Rick Eactors Among Dationts With Cancer in Palliative Care Unit. Am L Hess Palliat Care
	20. Senero, Oysariy, Oguzio, et al. Demount riequency and Risk ractors Antong Patients with Cancer in Panalive Care Unit. And J Hosp Panat Care
	2017,34.202-0

	21. Calip GS, Xing S, Jun DH, Lee WJ, Hoskins KF, Ko NY. Polypharmacy and Adherence to Adjuvant Endocrine Therapy for Breast Cancer. J Oncol Pract
	2017;13:e451-e62.
	22. Pujara D, Mansfield P, Ajani J, et al. Comprehensive geriatric assessment in patients with gastric and gastroesophageal adenocarcinoma undergoing gastrectomy. J Surg Oncol 2015;112:883-7.
	23. Fisch MJ, Zhao F, Manola J, Miller AH, Pirl WF, Wagner LI. Patterns and predictors of antidepressant use in ambulatory cancer patients with common
	solid tumors. Psychooncology 2015;24:523-32.
	24. Sasaki T, Fujita K, Sunakawa Y, et al. Concomitant polypharmacy is associated with irinotecan-related adverse drug reactions in patients with cancer.
	IIII J CIIII Olicol 2015,16.755-42.
	25. Chou WC, Chang PR, Chen PT, et al. Chinical Significance of Vulnerability Assessment in Patients with Primary Read and Neck Cancer Undergoing Definitive Concurrent Chemoradiation Therapy. Int J Padiat Oncel Piel Phys 2020 [onub aboad of print]
	Definitive Concurrent Chemoradiation Therapy. Int 3 Radiat Oncol Biol Phys 2020 [epub anead of philit].
	Predictors of postoperative complications. Eur J Surg Oncol 2020;46:123-30.
	27. Jeppesen SS, Matzen LE, Brink C, et al. Impact of comprehensive geriatric assessment on quality of life, overall survival, and unplanned admission in
	patients with non-small cell lung cancer treated with stereotactic body radiotherapy. J Geriatr Oncol 2018;9:575-82
	28. Jorgensen TL, Herrstedt J. The influence of polypharmacy, potentially inappropriate medications, and drug interactions on treatment completion and prognosis in older patients with ovarian cancer. I Geriatr Opcol 2019;51879-4068(19)30293-0
	29 van Abhema D, van Vuuren A, van den Berkmortel E, et al. Eunctional status decline in older natients with breast and colorectal cancer after cancer
	treatment: A prospective cohort study. I Geriatr Oncol 2017:8:176-84
	30 Oldak S. Joannou S. Kamath P. et al. Polynharmacy in Patients with Ovarian Cancer. Oncologist 2019;24:1201-8
	31 Sanchez-Barroso L. Anellaniz-Ruiz M. Gutierrez-Gutierrez G. et al. Concomitant Medications and Risk of Chemotherany-Induced Perinheral
	Neuropathy. Oncologist 2019;24:E784-E92.
3. Polypharmacy or PIM was	32. Kirkhus L, Saltyte Benth J, Rostoft S, et al. Geriatric assessment is superior to oncologists' clinical judgement in identifying frailty. Br J Cancer
assessed but only reported	2017;117:470-7.
combined with other	33. Antonio M, Saldana J, Carmona-Bayonas A, et al. Geriatric Assessment Predicts Survival and Competing Mortality in Elderly Patients with Early
assessments. (n=15)	Colorectal Cancer: Can It Help in Adjuvant Therapy Decision-Making? Oncologist 2017;22:934-43
	34. Patel D, Turner J, Athreya V, Barry F, Singhal N. Outcomes of Geriatric Assessment for Metastatic Colorectal Cancer Patients from a Dedicated
	Geriatric Oncology Program. Asia Pac J Clin Oncol 2015;11:62.
	35. Patel D, Mah A, Turner J, Barry F, Singhal N. Outcomes of geriatric assessment for advance non-small cell lung carcinoma (NSCLCA) patients from a
	dedicated geriatric oncology program. Ann. Oncol. 2015;26:131.
	36. Kristjansson SR, Ronning B, Hurria A, et al. A comparison of two pre-operative frailty measures in older surgical cancer patients. J Geriatr Oncol 2012;3:1-7.
	37. Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment
	37. Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017:98:858-67
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Entiou D, Koloventzou II. et al. Vulnerability variables among octogenerian myeloma natients: a single-center analysis of 110
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28.
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short- but not
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short- but not long-term outcome prediction in older patients undergoing abdominal cancer surgery. J Geriatr Oncol 2018;9:642-8.
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short- but not long-term outcome prediction in older patients undergoing abdominal cancer surgery. J Geriatr Oncol 2018;9:642-8. Kotzerke D, Moritz F, Mantovani L, et al. The performance of three oncogeriatric screening tools - G8, optimised G8 and CARG - in predicting
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short- but not long-term outcome prediction in older patients undergoing abdominal cancer surgery. J Geriatr Oncol 2018;9:642-8. Kotzerke D, Moritz F, Mantovani L, et al. The performance of three oncogeriatric screening tools - G8, optimised G8 and CARG - in predicting chemotherapy-related toxicity in older patients with cancer. A prospective clinical study. J Geriatr Oncol 2019;10:937-43.
	 Caparrotti F, O'Sullivan B, Bratman SV, et al. Exploring the Impact of Human Papillomavirus Status, Comorbidity, Polypharmacy, and Treatment Intensity on Outcome of Elderly Oropharyngeal Cancer Patients Treated With Radiation Therapy With or Without Chemotherapy. Int J Radiat Oncol Biol Phys 2017;98:858-67. Gavriatopoulou M, Fotiou D, Koloventzou U, et al. Vulnerability variables among octogenerian myeloma patients: a single-center analysis of 110 patients. Leuk Lymphoma 2019;60:619-28. Kenig J, Mastalerz K, Mitus J, Kapelanczyk A. The Surgical Apgar score combined with Comprehensive Geriatric Assessment improves short- but not long-term outcome prediction in older patients undergoing abdominal cancer surgery. J Geriatr Oncol 2018;9:642-8. Kotzerke D, Moritz F, Mantovani L, et al. The performance of three oncogeriatric screening tools - G8, optimised G8 and CARG - in predicting chemotherapy-related toxicity in older patients with cancer. A prospective clinical study. J Geriatr Oncol 2019;10:937-43. Moth EB, Kiely BE, Stefanic N, et al. Predicting chemotherapy toxicity in older adults: Comparing the predictive value of the CARG Toxicity Score with

	42. Orum M, Gregersen M, Jensen K, Meldgaard P, Damsgaard EMS. Frailty status but not age predicts complications in elderly cancer patients: a follow-
	up study. Acta Oncol 2018;57:1458-66.
	43. Owusu C, Schluchter M, Koroukian SM, Schmitz KH, Berger NA. Black-white disparity in physical performance among older women with newly
	diagnosed non-metastatic breast cancer: Exploring the role of inflammation and physical activity. J Geriatr Oncol 2018;9:613-9.
	44. Sbrana A, Antognoli R, Pasqualetti G, et al. Effectiveness of Multi-Prognostic Index in older patients with advanced malignancies treated with
	immunotherapy. J Geriatr Oncol 2020;11(3):503-507.
	45. Shahrokni A. Vishnevsky BM. Jang B. et al. Geriatric Assessment. Not ASA Physical Status. Is Associated With 6-Month Postoperative Survival in
	Patients With Cancer Aged >/=75 Years. J Natl Compr Canc Netw 2019:17:687-94.
	46. Souwer ETD. Verweij NM. van den Bos F. et al. Risk stratification for surgical outcomes in older colorectal cancer patients using ISAR-HP and G8
	screening tools. J Geriatr Oncol 2018;9:110-4.
4. Polypharmacy or PIM was	47. Jones SM, Rosenberg D, Ludman E, Arterburn D, Medical comorbidity and psychotropic medication fills in older adults with breast or prostate cancer.
not assessed (n=1)	Support Care Cancer 2015;23:3005-9 (antidepressant and sedative fills)
5. Publication was retracted	48. Rocco N. Rispoli C. Pagano G. et al. RETRACTED: Breast cancer surgery in elderly patients; postoperative complications and survival (Retracted article.
(n=1)	See vol. 15, pg. 2, 2015). BMC Surgery 2013;13
6. Study used the same	49. Jeong YM, Lee KE, Lee ES, et al. Preoperative medication use and its association with postoperative length of hospital stay in surgical oncology
cohort as in other	patients receiving comprehensive geriatric assessment. Geriatr Gerontol Int 2018;18:12-9.
publication(s) (n=9)	50. Jeong YM, Lee E, Kim KI, et al. Association of pre-operative medication use with post-operative delirium in surgical oncology patients receiving
	comprehensive geriatric assessment. BMC Geriatr 2016;16:134.
	51. Lin RJ, Ma H, Guo R, Troxel A, Diefenbach CS. Potentially Inappropriate Medication Use in Elderly Patients with Diffuse Large B-Cell Lymphoma
	Predicts Inferior Survival and Treatment-Related Toxicities. Blood 2017;130.
	52. Lin RJ, Ma H, Guo R, Grossbard ML, Troxel AB, Diefenbach CSM. Polypharmacy and potentially inappropriate medication use in older patients with
	aggressive non-Hodgkin lymphoma (NHL) leads to inferior survival and increased treatment-related toxicities. J Clin Oncol 2017;35.
	53. Lin RJ, Guo R, Becker DJ, Grossbard ML, Diefenbach CSM. Adverse impact of polypharmacy and potentially inappropriate medication use in newly
	diagnosed, elderly lymphoma patients. J Clin Oncol 2016;34
	54. Lin RJ, Guo R, Becker DJ, Grossbard ML, Diefenbach CSM. Contribution of polypharmacy and potentially inappropriate medication use to inferior
	survival in older patients with aggressive lymphoma. J Clin Oncol 2016;34.
	55. Kwon M, Kim SA, Roh JL, et al. An Introduction to a Head and Neck Cancer-Specific Frailty Index and Its Clinical Implications in Elderly Patients: A
	Prospective Observational Study Focusing on Respiratory and Swallowing Functions. Oncologist 2016;21:1091-8.
	56. Vande Walle N, Kenis C, Heeren P, et al. Fall predictors in older cancer patients: a multicenter prospective study. BMC Geriatr 2014;14:135.
	57. Baitar A, Kenis C, Decoster L, et al. The prognostic value of 3 commonly measured blood parameters and geriatric assessment to predict overall
	survival in addition to clinical information in older patients with cancer. Cancer 2018;124:3764-75.
7. No data on any of the	58. Losada B, Guerra JA, Malon D, Jara C, Rodriguez L, Del Barco S. Pretreatment neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte,
adverse health outcomes	and neutrophil/monocyte ratios and outcome in elderly breast cancer patients. Clin Transl Oncol 2018.
of interest (i.e., all-cause	59. Inci G, Woopen H, Richter R, Chekerov R, Muallem MZ, Sehouli J. The impact of polypharmacy and comorbidities on surgical morbidity and mortality
mortality, inpatient	in patients with gynecological malignancies: Results of a prospective study in 237 patients. J Clin Oncol 2017;35.
hospitalization,	60. Parks RM, Hall L, Tang SW, et al. The potential value of comprehensive geriatric assessment in evaluating older women with primary operable breast
prolongation of existing	cancer undergoing surgery or non-operative treatmenta pilot study. J Geriatr Oncol 2015;6:46-51.
hospitalization, treatment-	61. Luciani A, Biganzoli L, Colloca G, et al. Estimating the risk of chemotherapy toxicity in older patients with cancer: The role of the Vulnerable Elders
related toxicity defined by	Survey-13 (VES-13). J Geriatr Oncol 2015;6:272-9.
CTCAE grade ≥3, and	62. Korc-Grodzicki B, Sun SW, Zhou Q, et al. Geriatric Assessment as a Predictor of Delirium and Other Outcomes in Elderly Patients With Cancer. Ann
postoperative	Surg 2015;261:1085-90.
complications). (n=17)	

	63. Iurlo A, Ubertis A, Artuso S, et al. Comorbidities and polypharmacy impact on complete cytogenetic response in chronic myeloid leukaemia elderly
	patients. Eur J Intern Med 2014;25:63-6.
	64. Huiart L, Bouhnik AD, Rey D, et al. Complementary or alternative medicine as possible determinant of decreased persistence to aromatase inhibitor
	therapy among older women with non-metastatic breast cancer. PLoS One 2013;8:e81677.
	65. Caillet P, Canoui-Poitrine F, Vouriot J, et al. Comprehensive geriatric assessment in the decision-making process in elderly patients with cancer:
	ELCAPA study. J Clin Oncol 2011;29:3636-42.
	66. McAlpine JN. Hodgson EJ. Abramowitz S. et al. The incidence and risk factors associated with postoperative delirium in geriatric patients undergoing
	surgery for suspected gynecologic malignancies. Gynecol Oncol 2008:109:296-302. (postoperative delirium)
	67. Babcock ZR. Kogut SJ. Vvas A. Association between polypharmacy and health-related quality of life among cancer survivors in the United States. J
	Cancer Surviv 2020;14:89-99 (health-related guality of life)
	68. Decoster L. Quinten C. Kenis C. et al. Health related quality of life in older patients with solid tumors and prognostic factors for decline. J Geriatr Oncol
	2019;10:895-903 (health-related quality of life)
	69. Feng X, Higa GM, Safarudin F, Sambamoorthi U, Tan X. Potentially inappropriate medication use and associated healthcare utilization and costs
	among older adults with colorectal, breast, and prostate cancers. J Geriatr Oncol 2019;10:698-704. (healthcare utilization and costs)
	70. Galvin A, Helmer C, Coureau G, et al. Determinants of functional decline in older adults experiencing cancer (the INCAPAC study). J Geriatr Oncol
	2019;10:913-20. (functional decline)
	71. Gouraud C, Paillaud E, Martinez-Tapia C, et al. Depressive Symptom Profiles and Survival in Older Patients with Cancer: Latent Class Analysis of the
	ELCAPA Cohort Study. Oncologist 2019;24:e458-e66. (depression)
	72. Kirkhus L, Harneshaug M, Saltyte Benth J, et al. Modifiable factors affecting older patients' quality of life and physical function during cancer
	treatment. J Geriatr Oncol 2019;10:904-12. (physical function and health-related quality of life)
	73. Umit EG, Baysal M, Bas V, Asker I, Kirkizlar O, Demir AM. Polypharmacy and potentially inappropriate medication use in older patients with multiple
	myeloma, related to fall risk and autonomous neuropathy. J Oncol Pharm Pract 2020;26:43-50.
	74. Iurlo A, Nobili A, Latagliata R, et al. Imatinib and polypharmacy in very old patients with chronic myeloid leukemia: effects on response rate, toxicity
	and outcome. Oncotarget. 2016;7(48):80083-80090.
8. No hazard ratio or odds	75. Nieder C, Mannsaker B, Pawinski A, Haukland E. Polypharmacy in Older Patients ≥ 70 Years Receiving Palliative Radiotherapy. Anticancer Res
ratio reported for	2017;37:795-9.
dichotomous	76. Lima JTO, Bergmann A, Mello MJG, et al. A practical clinical score to predict early death after a comprehensive geriatric assessment (CGA) in elderly
polypharmacy or PIM	cancer patients: A prospective cohort study with 608 patients. J Clin Oncol 2017;35
variable or, if reported, 95	77. Decoster L, Kenis C, Schallier D, et al. Geriatric Assessment and Functional Decline in Older Patients with Lung Cancer. Lung 2017;195:619-26
% confidence intervals (CI)	78. Sendur MA, Silay K, Aksoy S, Ozbek S, Ozdemir N, Altundag K. Effect of polypharmacy on treatment preferences and outcome in older breast cancer
are missing. (n=13)	patients. Ann. Oncol. 2016;27.
	79. Brunello A, Fontana A, Zafferri V, et al. Development of an oncological-multidimensional prognostic index (Onco-MPI) for mortality prediction in older
	cancer patients. J Cancer Res Clin Oncol 2016:142:1069-77.
	80. Jolly TA. Mariano CJ. Deal AM. et al. The association of Geriatric Assessment (GA) identified deficits and 30-day re-admission in hospitalized older
	cancer patients. J Clin Oncol 2015:33.
	81. Kim JW, Kim YJ, Lee KW, et al. The early discontinuation of palliative chemotherapy in older patients with cancer. Support Care Cancer 2014:22:773-
	81.
	82. Li DN, Korc-Grodzicki B, Zhou Q, et al. Preoperative geriatric assessment (GA) and surgical outcomes in older women with gynecological (gyn) cancer. J
	Clin Oncol 2012;30.
	83. Honecker FU, Wedding U, Rettig K, Huschens S, Bokemeyer C. Use of the Comprehensive Geriatric Assessment (CGA) in elderly patients (pts) with
	solid tumors to predict mortality. J Clin Oncol 2009;27.

84. Freyer G, Geay JF, Touzet S, et al. Comprehensive geriatric assessment predicts tolerance to chemotherapy and survival in elderly patients with
advanced ovarian carcinoma: a GINECO study. Ann Oncol 2005;16:1795-800.
85. Giannotti C, Sambuceti S, Signori A, et al. Frailty assessment in elective gastrointestinal oncogeriatric surgery: Predictors of one-year mortality and
functional status. J Geriatr Oncol 2019;10:716-23.
86. Liuu E, Saulnier PJ, Gand E, et al. Frailty and diabetes status in older patients with cancer: impact on mortality in the ANCRAGE cohort. Aging Clin Exp
Res 2020 [epub ahead of print].
87. van Deudekom FJ, van der Velden LA, Zijl WH, et al. Geriatric assessment and 1-year mortality in older patients with cancer in the head and neck
region: A cohort study. Head Neck 2019;41:2477-83.

Appendix Table A5. Results of the Risk of Bias Evaluation with a Modified Newcastle-Ottawa-Scale (Counting of the Study Quality Score is explained in the table legend)

First Author		Sele	ection		Comparability	y Outcome			Study
	Representa-	Selection of	Ascertainment	Demonstration	Comparability of	Assessment of	Was follow-up	Adequacy of	Quality
	tiveness of the	the non-	of exposure	that outcome of	cohorts on the	outcome (up to	long enough for	follow up of	Score (up
	exposed cohort	exposed	(up to 1P)	interest was not	basis of the	1P)	outcomes to	cohorts	to 9P) (a)
	(up to 1P)	cohort		present at start of	design or analysis		occur (up to	(up to 1P)	
		(up to 1P)		study (up to 1P)	(up to 2P)		1P)		
Dhakal et al. ²	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Hong et al. ³	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P^{a}$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9ª
					$C \rightarrow 0P^{b}$				7 ^b
Klepin et al. ⁴	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	6
Lu-Yao et al.⁵	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Hakozaki et al. ⁶	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P^{c}$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8 ^c
					$C \rightarrow 0P^d$				7 ^d
Ku et al. ⁷	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow 0P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Reed et al. ⁸	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Sales et al.9	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Samuelsson et al. ¹⁰	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	7
Williams et al. ¹¹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Nishijima et al. ¹²	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Ommundsen et al. ¹³	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	A or $B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Jeon et al. ¹⁴	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Lin et al. ¹⁵	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	A or $B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Westley et al. ¹⁶	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8
Lin et al. ¹⁷	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P^e$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8 ^e
					$C \rightarrow 0P^{f}$				7 ^f
Kenis et al. ¹⁸	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Karuturi et al. ¹⁹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Karuturi et al. ²⁰	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P^{g}$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9 ^g
					$C \rightarrow 0P^h$				7 ^h
Chun et al. ²¹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Choi et al. ²²	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Antonio et al. ²³	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Fagard et al. ²⁴	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Woopen et al. ²⁵	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8
Samuelsson et al. ²⁶	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8
Park et al. ²⁷	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Lee et al. ²⁸	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 0P$	$A \rightarrow 2P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8

First Author		Sel	ection		Comparability		Outcome		
	Representa-	Selection of	Ascertainment	Demonstration	Comparability of	Assessment of	Was follow-up	Adequacy of	Quality
	tiveness of the	the non-	of exposure	that outcome of	cohorts on the	outcome (up to	long enough for	follow up of	Score (up
	exposed cohort	exposed	(up to 1P)	interest was not	basis of the	1P)	outcomes to	cohorts	to 9P) (a)
	(up to 1P)	cohort		present at start of	design or analysis		occur (up to	(up to 1P)	
		(up to 1P)		study (up to 1P)	(up to 2P)		1P)		
Jonna et al. ²⁹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Bourdel-Marchasson	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
et al. ³⁰									
Sud et al. ³¹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9
Kenig et al. ³²	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8
Chiang et al. ³³	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	8
Ommundsen et al. ³⁴	$A \rightarrow 1P$	$A \rightarrow 1P$	A or $B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Maggiore et al. ³⁵	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P^i$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9 ⁱ
					$C \rightarrow 0 P^j$				7 ^j
Hamaker et al. ³⁶	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Hamaker et al. ³⁷	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
de Glas et al. ³⁸	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 0P$	$B \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Elliot et al. ³⁹	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 2P^k$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	9 ^k
					$C \rightarrow 0P^{I}$				7'
Badgwell et al. ⁴⁰	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Kanesvaran et al. ⁴¹	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Hamaker et al. ⁴²	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 1P$	$A \rightarrow 1P$	$C \rightarrow OP$	$B \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	7
Kristjansson et al.43	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	$B \rightarrow 0P$	$C \rightarrow OP$	$A \rightarrow 1P$	$A \rightarrow 1P$	$A \rightarrow 1P$	6

Abbreviations: P, point.

^a For the association of polypharmacy with hospitalization

^b For the associations of PIM use with hospitalization and of polypharmacy with overall survival and with treatment-related toxicity

^c For the outcome overall survival

^d For the outcome hospitalization

^e For the outcome overall survival

^f For the outcome treatment-related toxicity

^g For the association of PIM use with emergency department visit/hospitalization/overall survival

^h For the exposure polypharmacy and associations of PIM use with emergency department visit, hospitalization, and overall survival

ⁱ For the association of polypharmacy with in-patient hospitalization

^j For the associations of polypharmacy with treatment-related toxicity, of PIM use with hospitalization and with treatment-related toxicity

^k For the exposure polypharmacy

¹ For the exposure PIM use

(a) Counting of the Study Quality Score

In our modified Newcastle-Ottawa-Scale (NOS), the study quality score ranges from 0 to 9 points, with more points indicating a study has lower risk of bias. Points were allocated to each sub-category as shown below. A modification of the NOS made was that an extra point was given for studies which adjusted for comorbidity because this is an important source for confounding by indication in our research question on polypharmacy and PIM.

Selection:

(1) Representativeness of the exposed cohort: A, truly representative (1 point); B, somewhat representative (1 point); C, selected group of users (0 points); D, no description of the derivation of the cohort (0 points).

(2) Selection of the non-exposed cohort: A, drawn from the same community as the exposed cohort (1 point); B, drawn from a different source (0 points); C, no description of the derivation of the non-exposed cohort (0 points).

(3) Ascertainment of exposure: A, secure record (1 point); B, structured interview (1 point); C, written self-report (0 points); D, no description (0 points).

(4) Demonstration that outcome of interest was not present at start of study: A, yes (1 point); B, no (0 points).

Comparability:

(1) Comparability of cohorts on the basis of the design or analysis: A, study controls for co-morbidities (2P); B, study controls for age and sex (1P) (if studies are conducted in males or females only no control for sex was mandatory); C, no control for age, sex or co-morbidities.

Outcome:

(1) Assessment of outcome: A, independent blind assessment (1 point); B, record linkage (1 point); C, self-report (0 points); D, no description (0 points).

(2) Was follow-up long enough for outcomes to occur: A, yes (1 point); B, no (0 points).

(3) Adequacy of follow up of cohorts: A, complete follow up – all subjects accounted for (1 point); B, subjects lost to follow up were unlikely to introduce bias because a small number (less than 15 %) were lost or description provided of those lost (1 point); C, follow-up rate was lower than 85 % and no description of those lost (0 points); D, no statement (0 points).

First Author, Year	Polypharmacy	Study	Country	Claims	Data	Study Population				
·	Definition	Design		Data	Collection	Cancer Type	Population	Total (N)	Female (%)	Age (Years)
Dhakal et al, 2020 ²	≥ 5 drugs	RCS, PU	U.S.	No	2000-2016	AML	Inpatients	235	N.R.	≥ 60ª
Hong et al, 2020 ³	≥ 5 drugs ^b	PCS, PU	South Korea	No	2014-2015	Solid cancer	Inpatients	301	30.9	70 - 93
Klepin et al, 2020 ⁴	≥ 5 drugs	RCT, PU	U.S.	No	2011-2014	AML	In- and outpatients	40	40	61-83
Lu-Yao et al, 2020_BC ⁵	≥ 5 drugs ^c	PCS, PU	U.S.	Yes	1991-2014	BC	Inpatients	5,490	100	≥ 65
Lu-Yao et al, 2020_LC⁵	≥ 5 drugs ^c	PCS, PU	U.S.	Yes	1991-2014	LC	Inpatients	7,309	N.R.	≥ 65
Lu-Yao et al, 2020_PC⁵	≥ 5 drugs ^c	PCS, PU	U.S.	Yes	1991-2014	РС	Inpatients	1,430	0	≥ 65
Hakozaki et al, 2019 ⁶	≥ 5 drugs	RCS, PU	Japan	No	2016-2019	NSCLC	In- and outpatients	157	36.3	≥ 65
Karuturi et al, 2019_BC ²⁰	≥ 5 drugs	RCS, PU	U.S.	Yes	2007-2009	BC	Outpatients	1,595	100	≥ 66
Karuturi et al, 2019_CRC ²⁰	≥ 5 drugs	RCS, PU	U.S.	Yes	2007-2009	CRC	Outpatients	1,528	50.4	≥ 66
Ku et al, 2019 ⁷	≥ 3 drugs	PCS, PU	South Korea	No	2010-2014	HNSCC	Outpatients	233	15.5	65-84
Reed et al, 2019 ⁸	≥ 6 drugs	RCS, PU	Canada	No	N.R.	Any	Inpatients	275	57.5	≥ 70
Sales et al, 2019 ⁹	N.R.	PCS, PU	Brazil	No	2015-2017	Gynecologic cancer	Outpatients	84	100	60-96
Samuelsson et al, 2019 ¹⁰	≥ 5 drugs	PCS, PU	Sweden	No	2010-2016	CRC	Inpatients	49	53.1	≥ 75
Williams et al, 2019 ¹¹	≥ 10 drugs	RCS, PU	U.S.	Yes	2009-2013	Any	In- and outpatients	125	80	65-93
Nishijima et al, 2018 ¹²	≥ 5 drugs	PCS, PU	U.S.	No	2009-2014	Any	Inpatients	546	72	65-100
Ommundsen et al, 2018 ¹³	≥ 6 drugs	PCS, PU	Norway	No	2011-2014	CRC	Inpatients	114	49	65-95
Westley et al, 2018 ¹⁶	≥ 6 drugs ^d	RCS, PU	Canada	Yes	1998-2012	BC	Inpatients	24,463	100	≥ 65
Kenis et al, 2018_1 ¹⁸	≥ 5 drugs	PCS, PU	Belgium	No	2009-2011	BC, CRC, LC, PC, OC	Inpatients	763	67.8	70 - 95
Kenis et al, 2018_2 ¹⁸	≥ 5 drugs	PCS, PU	Belgium	No	2011-2012	BC, CRC, LC, PC, OC	Inpatients	402	66.7	70 - 95
Choi et al, 2018 ²²	≥ 5 drugs	RCS, PU	South Korea	No	2014-2015	All surgical	Inpatients	475	54.7	65 - 96
Antonio et al, 2018 ²³	≥ 6 drugs	PCS, PU	Spain	No	2008-2016	CRC (stage II and III)	Inpatients	193	37.3	75 - 89
Fagard et al, 2017 ²⁴	≥ 5 drugs	PCS, PU	Belgium	No	2009-2015	CRC	Inpatients	190	44.7	70 - 97
Woopen et al, 2016 ²⁵	≥ 5 drugs	RCT, PU	Germany	No	2000-2009	OC	Inpatients	134	100	≥ 70 ^e
Park et al, 2016 ²⁷	≥ 5 drugs	RCS, PU	South Korea	No	2008-2013	HNC	Inpatients	229	16.2	65 - 87
Lee et al, 2016 ²⁸	≥ 8 drugs	RCS, PU	South Korea	No	2009-2014	CRC	Inpatients	240	42.5	70 - 96
Jonna et al, 2016 ²⁹	≥ 7 drugs	RCS, PU	U.S.	No	2000-2008	Any	Inpatients	803	48.2	≥ 65
Bourdel-Marchasson et	≥ 4 drugs	RCT, PU	France	No	2007-2012	Any except lymphoma	Inpatients	606	47.4	≥ 70
al, 2016 ³⁰										
Sud et al, 2015 ³¹	≥ 6 drugs	RCS, PU	Canada	No	2005-2010	Solid cancer	In- and outpatients	318	44	80 - 92
Kenig et al, 2015 ³²	≥ 5 drugs	PCS, PU	Poland	No	2013-2014	Solid abdominal tumors	Inpatients	75	44.0	65 - 93
Ommundsen et al, 2014 ³⁴	≥ 8 drugs	PCS, PU	Norway	No	2006-2008	CRC	Inpatients	178	57.3	70 - 94
Maggiore et al, 2014 ³⁵	≥ 4 drugs ^f	PCS, PU	U.S.	No	2006-2009	Solid tumor	Outpatients	500	56.2	≥ 65
Hamaker et al, 2014 ³⁶	≥ 5 drugs	RCT, PU	Netherlands	No	2007-2011	BC	Inpatients	73	100	66 - 87
Hamaker et al, 2014 ³⁷	≥ 5 drugs	PCS, PU	Austria	No	2009-2013	Hematologic malignancy	Inpatients	108	47	67.1 - 98.9
Elliot et al, 2014 ³⁹	≥ 4 drugs ^g	RCS, PU	U.S.	No	2004-2009	AML	Inpatients	150	39	61 - 87
de Glas et al, 2013 ³⁸	≥ 5 drugs	RCS, PU	Netherlands	No	1997-2011	BC	Outpatients	3,179	100	65 - 98

Appendix Table A6. Designs of Studies Investigating the Association of Polypharmacy with Adverse Health Outcomes in Older Adults with Cancer

First Author, Year	Polypharmacy	Study	Country	Claims	Data	Study Population				
	Definition	Design		Data	Collection	Cancer Type	Population	Total (N)	Female (%)	Age (Years)
Badgwell et al, 2013 ⁴⁰	≥ 6 drugs	PCS, PU	U.S.	No	2010-2012	Abdominal cancer	Inpatients	111	45.0	65 - 89
Kanesvaran et al, 2011 ⁴¹	≥ 5 drugs	RCS, PU	Singapore	No	2007-2010	Any	Outpatients	249	38.6	70 - 94
Hamaker et al, 2011 ⁴²	≥ 5 drugs	PCS, PU	Netherlands	No	2002-2008	Any	Inpatients	292	48.8	65 - 96
Kristjansson et al, 2010 ⁴³	≥ 5 drugs	PCS, PU	Norway	No	2006-2008	CRC	Inpatients	182	57.1	70 - 94

Abbreviations: AML, acute myeloid leukemia; BC, breast cancer; CRC, colorectal cancer; HNSCC, head and neck squamous cell carcinoma; HNC, head and neck cancer; LC, lung cancer; N.R., not reported; NSCLC, non-small cell lung cancer; OC, ovarian cancer; PC, prostate cancer; PCS, prospective cohort study; PU, prevalent user design; RCS, retrospective cohort study; RCT, randomized controlled trial

^a Only patients aged 60 years or above were included in this systematic review and meta-analysis.

^b Categories "5-9 drugs" and "≥ 10 drugs" have been pooled for the meta-analysis.

^cCategories "5-9 drugs", "10-14 drugs", and "≥ 15 drugs" have been pooled for the meta-analysis.

^d Categories "6-10 drugs" and "> 10 drugs" have been pooled for the meta-analysis.

^eOnly patients aged 70 years or above were included in this systematic review and meta-analysis.

^fCategories "4-9 drugs" and " \geq 10 drugs" have been pooled for the meta-analysis.

^g Category "2-3 drugs" was not used for the meta-analysis.

First Author, Year	Polypharmacy	Prevalence of	Outcome	Noutcome	FUP	HR or OR	Adjust	ed Covaria	tes
	Definition	Polypharmacy				(95% CI)	Age+	Comor-	Other
		(%)					sex ^a	bidity	
Dhakal et al, 2020 ²	≥ 5 drugs	64.3	Overall survival	≈235 ^b	12 years	1.12 (0.81-1.57)	-	х	Multiple ^c
Hong et al, 2020 ³	≥ 5 drugs	45.2	Hospitalization	123	30 days	1.73 (1.18-2.55)	х	х	ECOG PS
	5-9 drugs	36.5	Grade ≥ 3 CTCAE toxicity	162	28 days	1.13 (0.70-1.83)	-	-	-
	≥ 10 drugs	8.6	Grade ≥ 3 CTCAE toxicity	162	28 days	1.78 (0.75-4.22)	-	-	-
	5-9 drugs	36.5	Overall survival	≈230 ^b	2.5 years	1.51 (1.09-2.08)	-	-	-
	≥ 10 drugs	8.6	Overall survival	≈230 ^b	2.5 years	2.04 (1.25-3.32)	-	-	-
Klepin et al, 2020 ⁴	≥ 5 drugs	30	Overall survival	≈4	14.9 months ^d	1.25 (0.51-3.06) ^e	-	-	-
Lu-Yao et al, 2020_BC⁵	5-9 drugs	39.3	Hospitalization	N.R.	6 months	1.17 (1.01–1.37) ^f	-	-	-
	10-14 drugs	28.6	Hospitalization	N.R.	6 months	1.61 (1.37–1.89) ^f	-	-	-
	≥ 15 drugs	16.7	Hospitalization	N.R.	6 months	2.01 (1.68–2.39) ^f	-	-	-
Lu-Yao et al, 2020_LC ⁵	5-9 drugs	31.9	Hospitalization	N.R.	6 months	1.36 (1.19–1.72) ^f	-	-	-
	10-14 drugs	33.7	Hospitalization	N.R.	6 months	1.49 (1.30–1.72) ^f	-	-	-
	≥ 15 drugs	25.7	Hospitalization	N.R.	6 months	1.82 (1.57–2.11) ^f	-	-	-
Lu-Yao et al, 2020_PC⁵	5-9 drugs	37.2	Hospitalization	N.R.	6 months	1.42 (1.02-1.97) ^f	-	-	-
	10-14 drugs	30.7	Hospitalization	N.R.	6 months	1.75 (1.25–2.45) ^f	-	-	-
	≥ 15 drugs	21.6	Hospitalization	N.R.	6 months	2.14 (1.49–3.05) ^f	-	-	-
Hakozaki et al, 2019 ⁶	≥ 5 drugs	59.9	Overall survival	74	7.1 months ^d	1.97 (1.14-3.42)	-	-	Multiple ^g
			Progression-free survival	111	7.1 months ^d	1.44 (0.95-2.18)	-	-	Multiple ^h
			Grade ≥2 irAE	27	7.1 months ^d	1.74 (0.67-4.93)	-	-	-
			Hospitalization	76	7.1 months ^d	3.14 (1.54-6.58)	-	-	-
Karuturi et al,	≥ 5 drugs	73.7	Emergency room visit	552	9 months	1.73 (1.31-2.29)	-	-	-
2019_BC ²⁰			Hospitalization	369	9 months	1.83 (1.29-2.59)	-	-	-
			Overall survival	34	9 months	N.S.	-	-	-
			Emergency room visit/	598	9 months	N.R.	-	-	-
			Hospitalization/ Overall survival						
Karuturi et al,	≥ 5 drugs	71.2	Emergency room visit	552	9 months	1.23 (1.04-1.47)	-	-	-
2019_CRC ²⁰			Hospitalization	369	9 months	N.S.	-	-	-
			Overall survival	34	9 months	N.S.	-	-	-
			Emergency room visit/	598	9 months	N.R.	-	-	-
			Hospitalization/ Overall survival						
Ku et al, 2019 ⁷	≥ 3 drugs	N.R.	Overall survival	81	5.83 years	1.13 (0.73–1.74)	-	-	-
			Cancer-specific survival	57		1.26 (0.75–2.12)	-	-	-
			Non-cancer-specific survival	24		1.09 (0.42–2.82)	-	-	-
Reed et al, 2019 ⁸	≥ 6 drugs	52.7	Grade ≥ 3 CTCAE toxicity	199	1 month	1.16 (0.62–2.18)	-	-	Multiple ⁱ

Appendix Table A7. Follow-Up and Effect Size Data of Studies Investigating the Impact of Polypharmacy on Health Outcomes in Older Adults with Cancer

First Author, Year	Polypharmacy	Prevalence of	Outcome	Noutcome	FUP	HR or OR	Adjuste	ed Covariat	ces
	Definition	Polypharmacy				(95% CI)	Age+	Comor-	Other
		(%)					sex ^a	bidity	
Sales et al, 2019 ⁹	N.R.	N.R.	Overall survival	9	1 year	2.65 (0.71-9.81)	х	х	Multiple ^j
Samuelsson et al,	≥ 5 drugs	67.3	POCs	16	1 year	2.82 (0.67-11.85)	-	-	-
2019 ¹⁰			Length of stay > 8 days	N.R.	8 days ^d	1.01 (0.29-3.45)	-	-	-
Williams et al, 2019 ¹¹	≥ 10 drugs	41.2	Hospitalization	41	47 months	1.03 ^f (0.64-1.65) ^k	х	х	-
			Long-term care stay	20		0.33 ^f (0.17-0.64) ^k	х	х	-
Nishijima et al, 2018 ¹²	≥ 5 drugs	N.R.	Overall survival	191	5.7 years	1.46 (1.08–1.98)	-	-	-
Ommundsen et al, 2018 ¹³	≥ 6 drugs	51	Overall survival	46	51 months ^d	1.5 (0.8-2.7)	-	-	-
Westley et al, 2018 ¹⁶	6-10 drugs	26.2	Emergency department visit	3,129	45 days	1.23 (1.15-1.31)	х	-	Multiple ^l
	≥ 11 drugs	5.6	Emergency department visit	3,129	45 days	1.53 (1.33-1.77)	х	-	Multiple ^I
Kenis et al, 2018_1 ¹⁸	≥ 5 drugs	51.6	Overall survival	471	6.3 years	1.43 (1.18-1.73) ^e	-	-	Stage, tumor type
Kenis et al, 2018_2 ¹⁸	≥ 5 drugs	54.2	Overall survival	214	4.5 years	1.27 (0.96-1.68) ^e	-	-	Stage, tumor type
Choi et al, 2018 ²²	≥ 5 drugs	50.7	Post-discharge	14	30 days	3.96 (1.05-	-	-	Transfusion,
			institutionalization			14.86) ^m			infection
Antonio et al, 2018 ²³	≥ 6 drugs	64.8	Treatment refusal	141	36 weeks ⁿ	5.34 (1.55-18.40)	-	-	Cancer site, VES-13
									≥ 3, oncogeriatric
									group
			Grade \geq 3 CTCAE toxicity	105	36 weeks ⁿ	1.26 (0.43-3.65)	-	-	-
			Completion ≥ 80% of planned	105	36 weeks ⁿ	0.50 (0.20-12.6)	х	-	Social support,
			dose						toxicity
Fagard et al, 2017 ²⁴	≥ 5 drugs	47.4	CD ≥ 2 30-day POCs	78	30 days	1.11 (0.49-2.54)°	х	х	-
Woopen et al, 2016 ²⁵	≥ 5 drugs	N.R.	Grade \geq 3 CTCAE toxicity	N.R.	19.7 months ^a	1.12 (1.02-1.24) ^ĸ	х	-	Multiple ^p
Park et al, 2016 ²⁷	≥ 5 drugs	29.3	Grade \geq 3 CTCAE toxicity	21	N.R.	1.55 (0.61-3.94)	-	-	-
			Hospitalization > 1 month	20	1 month ^q	1.70 (0.66-4.36)	-	-	-
20			Non-cancer health event ^r	66	2 years	1.81 (0.99-3.31)	-	-	-
Lee et al, 2016 ²⁸	≥ 8 drugs	13.8	Major 30-day POCs ^s	99	30 days	1.02 (0.39-2.67)	-	х	Multiple
Jonna et al, 2016 ²⁹	≥ 7 drugs	N.R.	Overall survival	≈800 ⁰	6 years	1.18 (1.02-1.38)	-	-	-
Bourdel-Marchasson et al, 2016 ³⁰	≥ 4 drugs	62.5	62.5 Overall survival 266 1 year 1.62 (1.07-2		1.62 (1.07-2.44) ^u	-	-	Multiple ^v	
Sud et al, 2015 ³¹	≥ 6 drugs	38	Toxicity-related therapy discontinuation	102	. 30 days 1.31 (0.77-2.22) - x Mulitp		Mulitple ^w		
			Hospitalization	102	30 days	2.28 (1.34-3.88)	-	x Mulitple ^w	
Kenig et al, 2015 ³²	≥ 5 drugs ^x	44.0	All POCs	38	30 days	1.6 (0.7-4.1)	x	-	Type of cancer, severity of surgery
			Major POCs ^y	20	30 days	4.2 (1.4-12.1)	х	-	Same as above

First Author, Year	Polypharmacy	Prevalence of	Outcome	Noutcome	FUP	HR or OR	Adjuste	ed Covariat	tes
	Definition	Polypharmacy				(95% CI)	Age+	Comor-	Other
		(%)					sex ^a	bidity	
Ommundsen et al, 2014 ³⁴	≥8 drugs	N.R.	Overall survival	93	5 years	2.2 (1.1-4.3)	-	-	-
Maggiore et al, 2014 ³⁵	4-9 drugs	50.8	Grade ≥ 3 CTCAE toxicity	257	598 days	1.34 (0.92-1.97)	-	-	-
	≥ 10 drugs	11.5	Grade ≥ 3 CTCAE toxicity	257	598 days	0.82 (0.45-1.49)	-	-	-
	≥ 4 drugs	62.3	Hospitalization	112	598 days	1.34 (0.82-2.18)	-	х	Creatinine
									clearance
Hamaker et al, 2014 ³⁶	≥ 5 drugs	50.7	Grade ≥ 3 CTCAE toxicity	27	N.R.	6.38 (1.99-23.47)	-	-	-
			Overall survival	54	2.67 years ^d	1.41 (0.82-2.44)	-	-	-
Hamaker et al, 2014 ³⁷	≥ 5 drugs	65	Overall survival	≈70 ^b	1 year	1.20 (0.64-2.24)	-	-	-
Elliot et al, 2014 ³⁹	≥ 4 drugs	52	Overall survival	29	30 days	9.98 (1.18-84.13)	-	х	-
			Complete remission	71	132 days	0.20 (0.06-0.65)	-	х	-
			Intensive care unit stay	30	132 days	6.57 (0.80-53.72)	-	х	-
			Length of stay > 35 days	N.R.	132 days	0.94 (0.29-3.08)	-	х	-
de Glas et al, 2013 ³⁸	≥ 5 drugs	13.5	POCs	618	30 days	1.76 (1.39-2.23)	х	-	Multiple ^z
Badgwell et al, 2013 ⁴⁰	≥ 6 drugs	47.7	Length of stay > 7 days	55	35 days	2.45 (1.09-5.48)	-	-	Stage, weight loss ≥ 10%
Kanesvaran et al, 2011 ⁴¹	≥ 5 drugs	60.5	Overall survival	172	3 years	1.62 (1.18-2.23)	-	-	-
Hamaker et al, 2011 ⁴²	≥ 5 drugs	47.8	Overall survival	187	1 year	1.10 (0.81-1.48)	-	-	-
Kristjansson et al,	≥ 5 drugs	25.8	Severe POCs ^s	N.R.	30 days	1.73 (0.87-3.44)	-	-	Tumor location
2010 ⁴³			All POCs	N.R.	30 days	1.67 (0.82-3.42)	-	-	Tumor location

Values in bold are statistically significant (p<0.05)

Abbreviations: BC, breast cancer; CD, Clavien-Dindo; CI, confidence interval; CTCAE, Common Terminology Criteria for Adverse Effects; ECOG PS, Eastern Cooperative Oncology Group performance status; FUP, follow-up period; HR, hazard ratio; irAE, immune-related adverse events; LC, lung cancer; N.R., not reported; N.S., not significant; OR, odds ratio; PC, prostate cancer; POC, postoperative complication; VES-13, Vulnerable Elders Survey

^a If the study population consisted only of males or females, no adjustment for sex is necessary and therefore a cross was made even if the study adjusted for age only.

^b Number of deaths were not reported but estimated from Kaplan-Meier plots.

^cKarnofsky Performance Status, cytogenetics, intensity of chemotherapy.

^d Median follow up.

^eOR was reversed so that no polypharmacy was the reference group.⁴⁴

^fIncidence rate ratio.

^g ECOG PS, presence of liver metastasis, presence of bone metastasis, programmed death-ligand 1 (PD-L1) expression, epidermal growth factor receptor (EGFR) mutation, and the Gustave Roussy Immune Score (GRIm-Score).

^h Smoking status, ECOG PS, presence of liver metastasis, PD-L1 expression, EGFR mutation, initially chosen immune checkpoint inhibitors (ICIs), and GRIm-Score.

ⁱWeight loss, ECOG PS, cancer stage, hemoglobin, platelet count, neutrophils, and creatinine clearance.

^j Site of cancer, cancer stage, malnutrition, and Katz index.

^k95 % CIs was estimated from reported point estimate and p-value.⁴⁵

¹Receipt of income supplement, access to primary care, type of surgery, number of surgeries before definitive surgery, benzodiazepine use, anticoagulants use, steroids use, diabetes, active cardiac disease, past hospitalization, institutional volume, postoperative radiotherapy and chemotherapy, clustering by surgical institution.

^m Model with largest area under the curve (AUC).

ⁿ Patients were followed at least until 3 months after finishing the chemotherapy, which could last for 24 weeks for fit patients.

^o Analysis was done in 115 patients with geriatric assessment data available. ORs and 95% CIs were estimated with the original study data, which have been provided by the corresponding author.

^p International Federation of Gynecology and Obstetrics (FIGO) stage, histology, BMI, number of recurrence, number of administered chemotherapy cycles and study entered.

^q The follow-up period lasted for at least 1 month.

^r Defined as readmission to the hospital within 2 years after the initial treatment for any cause that was not directly related to the index cancer or newly developed second primary cancer. ^s Defined as CD class equal to or greater than II.

^t Activities of daily living, instrumental activities of daily living, mini mental state examination, Korean Older Depression Scale, delirium, mini nutritional assessment.

^u The result was obtained from the model with higher AUC done in 565 patients.

^v Food intake over the last 3 months, protein-rich food intake, calf circumference, cancer origin, metastasis, lymphocytes.

^w Anemia, leukocytosis, estimated glomerular filtration rate (eGFR) < 60 mL/min, palliative intent, line of therapy ≥ 2, initial dose adjustment.

^xOnly results for \geq 5 drugs were extracted and no results for \geq 6 drugs.

^y Defined as CD class III to V.

² Stage, type of surgery, most extensive axillary surgery, neoadjuvant treatment.

First Author, Year	PIM Criterion Applied	Study	Country	Claims	Data	Study Populat	ion			
		Design		Data	Collection	Cancer Type	Population	Total (N)	Female (%)	Age (Years)
Hong et al, 2020 ³	Beers 2015 (avoid)	PCS, PU	South Korea	No	2014-2015	Solid cancer	Inpatients	301	30.9	70-93
Jeon et al, 2019 ¹⁴	PDRM ^a	RCS, PU	South Korea	No	2014-2015	All surgical	Inpatients	473	54.8	65-96
Lin et al, 2019 ¹⁵	Beers 2015 (all)	RCS, PU	U.S.	No	2001-2016	Hematologic	Inpatients	527	39	60-78.7
						malignancy				
Lin et al, 2018 ¹⁷	Beers 2015 (all)	RCS, PU	U.S.	No	2009-2014	Aggressive	Inpatients	171	49	≥ 60
						NHL				
Karuturi et al, 2018 and	HEDIS-DAE (avoid); Beers 2012	RCS, PU	U.S.	Yes	2007-2009	BC	Outpatients	1,595	100	≥ 66
2019_BC ^{b 19,20}	(all); STOPP criteria									
Karuturi et al, 2018 and	HEDIS-DAE (avoid); Beers 2012	RCS, PU	U.S.	Yes	2007-2009	CRC	Outpatients	1,528	50.4	≥ 66
2019_CRC ^{b 19,20}	(all); STOPP criteria									
Chun et al, 2018 ²¹	N.R.	RCS, PU	U.S.	Yes	2007-2011	BC	Outpatients	2,401	100	≥ 66
Choi et al, 2018 ²²	Beers 2015 (avoid)	RCS, PU	South Korea	No	2014-2015	All surgical	Inpatients	475	54.7	65 - 96
Samuelsson et al, 2016 ²⁶	Socialstyrelsen criteria	RCS, PU	Sweden	Yes	2007-2010	CRC	In- and	7,279	52.4	75 - 98
	(avoid, long-term use)						outpatients			
Park et al, 2016 ²⁷	Beers 2012 (all)	RCS, PU	South Korea	No	2008-2013	HNC	Inpatients	229	16.2	65 - 87
Chiang et al, 2015 ³³	Beers 2012 (all)	RCS, NU	U.S.	No	2000-2008	Any	Inpatients	677	47.4	≥ 65
Maggiore et al, 2014 ³⁵	Beers 2012 (avoid ^c)	PCS, PU	U.S.	No	2006-2009	Solid tumor	Outpatients	500	56.2	≥ 65
	Zhan's classification (all)									
	HEDIS-DAE 2011 (avoid)									
	Combination of all 3 criteria above									
Elliot et al, 2014 ³⁹	Beers 2012 (all)	RCS, PU	U.S.	No	2004-2009	AML	Inpatients	150	39	61 - 87

Appendix Table A8. Designs of Studies Investigating the Association of Potentially Inappropriate Medication with Adverse Health Outcomes in Older Adults with Cancer

Abbreviations: AML; acute myeloid leukemia; avoid, drugs to avoid; BC, breast cancer; CRC, colorectal cancer; HEDIS-DAE, Healthcare Effectiveness Data and Information Set Drugs to Avoid in the Elderly; HNC, head and neck cancer; long-term use, drugs to avoid long-term use; NHL, non-Hodgkin lymphoma; NU, new user design; PCS, prospective cohort study; PDRM, pre-operative discontinuation requiring medications; PIM, potentially inappropriate medication; PU, prevalent user design; RCS, retrospective cohort study; STOPP, Screening Tool of Older Person's Prescriptions

^a PDRM were defined as medications that should be discontinued before surgery due to surgical risks.

^b Studies by Karuturi et al.^{19,20} published in 2018 and 2019 were combined because they both used the same study population but different criteria to define PIM use.

^c Beers criteria's drugs to avoid except for lorazepam, prochlorperazine, metoclopramide, and atropine–diphenoxylate.

First Author, Year	PIM Criterion	PIM	Outcome	Noutcome	FUP	HR or OR	Adjuste	ed Covariat	es
		Prevalence (%)				(95% CI)	Age + sex ^a	Comor- bidity	Other
Hong et al, 2020 ³	Beers 2015 (avoid)	45.5	Hospitalization	123	30 days	1.40 (0.98-1.99)	-	-	-
Jeon et al, 2019 ¹⁴	PDRM ^b	57.5	Readmission after surgery	37	30 days	2.18 (1.01-4.70)	х	х	Multiple ^c
Lin et al, 2019 ¹⁵	Beers 2015 (all)	46	Delirium	112	100 days	1.79 (1.22-2.65)	-	-	Multiple ^d
			Fall	34	100 days	1.36 (0.69-2.66)	-	-	-
			Non-relapse survival	167	11.9 years	1.54 (1.14-2.09)	-	-	-
			Overall survival	298	11.9 years	1.28 (1.02-1.6)	-	-	-
Lin et al, 2018 ¹⁷	Beers 2015 (all)	47	Treatment delay and/or dose reduction	101	N.R.	1.95 (0.99-3.84)	-	-	Albumin at diagnosis, IPI
			Grade ≥ 3 CTCAE toxicity	112	N.R.	2.91 (1.42-5.97) ⁰	-	-	Albumin at diagnosis
			Progression-free survival	N.R.	28 months ^f	2.81 (1.36-5.81)	-	-	WBC, IPI
			Overall survival	41	28 months ^f	3.12 (1.49-6.52)	х	-	WBC, IPI
Karuturi et al,	HEDIS-DAE (avoid)	22.2	Emergency department visit	552	9 months	0.96 (0.78-1.18)	х	х	Multiple ⁱ
2018 and			Hospitalization	369	9 months	0.96 (0.75-1.23)	х	х	Multiple ⁱ
2019_BC ^{g19,20}			Overall survival	34	9 months	2.31 (1.07-4.96)	х	х	Multiple ⁱ
			Composite outcome ^h	598	9 months	0.96 (0.79-1.17)	х	х	Multiple ⁱ
	Beers 2012 (all)	27.6	Emergency department visit	552	9 months	1.02 (0.85-1.24)	х	х	Multiple ⁱ
			Hospitalization	369	9 months	1.00 (0.79-1.26)	х	х	Multiple ⁱ
			Overall survival	34	9 months	1.86 (0.88-3.96)	х	х	Multiple ⁱ
			Composite outcome ^h	598	9 months	0.99 (0.82-1.19)	х	х	Multiple ⁱ
	STOPP criteria	39	Emergency department visit	552	9 months	N.S.	-	-	-
			Hospitalization	369	9 months	1.28 (1.02-1.61)	-	-	-
			Overall survival	34	9 months	N.S.	-	-	-
			Composite outcome ^h	598	9 months	1.07 (0.89-1.29)	-	х	Multiple ^j
Karuturi et al,	HEDIS-DAE (avoid)	15.5	Emergency department visit	621	9 months	0.99 (0.8-1.23)	х	х	Multiple ⁱ
2018 and			Hospitalization	450	9 months	1.02 (0.79-1.32)	х	х	Multiple ⁱ
2019_CRC ^{g19,20}			Overall survival	76	9 months	0.80 (0.40-1.59)	х	х	Multiple ⁱ
			Composite outcome ^h	687	9 months	0.96 (0.78-1.19)	х	х	Multiple ⁱ
	Beers 2012 (all)	24.8	Emergency department visit	621	9 months	0.96 (0.79-1.16)	х	х	Multiple ⁱ
			Hospitalization	450	9 months	1.01 (0.81-1.27)	х	х	Multiple ⁱ
			Overall survival	76	9 months	0.80 (0.40-1.59)	х	х	Multiple ⁱ
			Composite outcome ^h	687	9 months	0.96 (0.78-1.19)	х	х	Multiple ⁱ
	STOPP criteria	30.9	Emergency department visit	621	9 months	N.S.	-	-	-
			Hospitalization	450	9 months	N.S.	-	-	-
			Overall survival	76	9 months	N.S.	-	-	-
			Composite outcome ^h	687	9 months	1.11 (0.94-1.33)	х	х	Multiple ^k

Appendix Table A9. Follow-Up and Effect Size Data of Studies Investigating the Impact of Potentially Inappropriate Medication on Health Outcomes in Older Adults with Cancer

First Author, Year	PIM Criterion	PIM Prevalence (%)	Outcome	Noutcome	FUP	HR or OR (95% Cl)	Adjusted Covariates		
							Age + sex ^a	Comor- bidity	Other
Chun et al, 2018 ²¹	N.R.	30.2	Emergency department visit	504	6 months	0.95 (0.76-1.18) ^l	х	х	Multiple ^m
Choi et al, 2018 ²²	Beers 2015 (avoid)	26.7	Post-discharge institutionalization	14	30 days	0.76 (0.21–2.78)	-	-	-
Samuelsson et al,	Socialstyrelsen	22.5	Length of stay ≥ 10 days	N.R. ⁿ	30 days	1.14 (1.00 -1.29)	х	-	Multiple ^o
2016 ²⁶	criteria (drugs to avoid as long-term use)		Overall survival	368	30 days	1.43 (1.11-1.85)	х	-	Multiple ^o
Park et al, 2016 ²⁷	Beers 2012 (all)	24.0	Grade ≥3 CTCAE toxicity	21	N.R.	1.30 (0.48-3.53)	-	-	-
			Length of stay > 1 month	20	1 month ^p	2.30 (0.89-5.95)	-	-	-
			Non-cancer health event ^q	68	2 years	1.35 (0.71-2.57)	-	-	-
Chiang et al, 2015 ³³	Beers 2012 (all)	28.3 (in N=675)	30-day unplanned readmission	238	30 days	1.36 (0.94-1.99)	x	-	Multiple ^r
Maggiore et al, 2014 ³⁵	Beers 2012 (avoid ^s)	30.1	Grade ≥3 CTCAE toxicity	258	598 days	0.97 (0.66-1.43)	-	-	-
		(in N=488)	Hospitalization	109	598 days	1.01 (0.64-1.61)	-	-	-
	Zhan's classification	10.8	Grade ≥3 CTCAE toxicity	264	598 days	1.03 (0.59-1.82)	-	-	-
	(all)	(in N=498)	Hospitalization	114	598 days	0.64 (0.31-1.37)	-	-	-
	HEDIS-DAE 2011	13.8	Grade ≥3 CTCAE toxicity	265	598 days	0.90 (0.54-1.49)	-	-	-
	(avoid)	(in N=499)	Hospitalization	115	598 days	0.67 (0.35-1.29)	-	-	-
	Combination of all 3	29.7	Grade ≥3 CTCAE toxicity	264	598 days	0.98 (0.67-1.44)	-	-	-
	PIM criteria above	(in N=498)	Hospitalization	114	598 days	1.01 (0.64-1.59)	-	-	-
Elliot et al, 2014 ³⁹	Beers 2012 (all)	19	Overall survival	29	30 days	0.89 (0.31-2.58)	-	-	-
			Complete remission	71	132 days	0.96 (0.42-2.19)	-	-	-
			Intensive care unit stay	30	132 days	0.42 (0.12-1.51)	-	-	-
			Length of stay > 35 days	N.R.	132 days	0.87 (0.32-2.34)	-	-	-

Values in bold are statistically significant (p<0.05)

Abbreviations: avoid, drugs to avoid; BC, breast cancer; CI, confidence interval; CRC, colorectal cancer; CTCAE, Common Terminology Criteria for Adverse Effects; FUP, follow-up period; HEDIS-DAE, Healthcare Effectiveness Data and Information Set Drugs to Avoid in the Elderly; HR, hazard ratio; IPI, international prognostic index; long-term use; N.R., not reported; N.S., not significant; OR, odds ratio; PDRM, pre-operative discontinuation requiring medications; PIM, potentially inappropriate medication; STOPP, Screening Tool of Older Person's Prescriptions; WBC, white blood cell count at diagnosis.

^a If the study population consisted only of males or females, no adjustment for sex is necessary and therefore a cross was made even if the study adjusted for age only.

^b PDRM were defined as medications that should be discontinued before surgery due to surgical risks.

^cTransfusion, gastrointestinal cancer, if the cancer stage is stage 4.

^d Prior falls, platelet count on admission, creatinine clearance.

^eOR was obtained from the meeting abstract being published before the main publication.

^fMedian follow up.

^g Studies by Karuturi et al.^{19,20} published in 2018 and 2019 were combined because they both used the same study population but different criteria to define PIM use.

^h Composite outcome includes emergency department visit, hospitalization, and overall survival.

¹Year of diagnosis, race, stage, poverty, education, number of baseline care providers, chemotherapy regimen, baseline emergency room visit/hospitalization.

^jYear of diagnosis, poverty, education, number of care providers, chemotherapy regimen, baseline medications, cancer stage, and baseline emergency room visit/hospitalization.

^kYear of diagnosis, poverty, education, number of care providers, chemotherapy regimen, race, and baseline emergency room visit/hospitalization.

¹The original poster abstract reported an adjusted risk difference. The authors provided the OR and 95% CI shown in the table in reply to an inquiry from the review authors.

^m Race, marital status, stage at diagnosis, claims-data based predicted frailty, medication burden.

ⁿ The number of cases with LOS \geq 10 days was not reported but it can be estimated that almost half of the study population, which was n=7,279, had an LOS \geq 10 days because the median LOS was 9 days in subjects without PIM and 10 days in subjects with PIM.

^o American Society of Anesthesiologists classification of physical status class, type of surgical procedure, T stage, clinical stage, postoperative surgical complications, urgency of surgery ^pThe follow-up period lasted for at least 1 month.

^q Defined as readmission to the hospital within 2 years after the initial treatment for any cause that was not directly related to the index cancer or newly developed second primary cancer. ^r Race, Katz index feeding item, Lawton-housework questionnaire, reason for index admission.

^s Beers criteria's drugs to avoid except for lorazepam, prochlorperazine, metoclopramide, and atropine–diphenoxylate.

References

- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *Jama*. 2000;283(15):2008-2012. doi: 10.1001/jama.283.15.2008.
- 2. Dhakal P, Lyden E, Muir KE, et al. Prevalence and effects of polypharmacy on overall survival in acute myeloid leukemia. *Leuk Lymphoma*. 2020:1-7. doi: 10.1080/10428194.2020.1737687
- 3. Hong S, Lee JH, Chun EK, et al. Polypharmacy, Inappropriate Medication Use, and Drug Interactions in Older Korean Patients with Cancer Receiving First-Line Palliative Chemotherapy. *Oncologist.* 2020;25(3):e502-e511. doi: 10.1634/theoncologist.2019-0085
- 4. Klepin HD, Ritchie E, Major-Elechi B, et al. Geriatric assessment among older adults receiving intensive therapy for acute myeloid leukemia: Report of CALGB 361006 (Alliance). *J Geriatr Oncol.* 2020;11(1):107-113. doi: 10.1016/j.jgo.2019.10.002
- 5. Lu-Yao G, Nightingale G, Nikita N, et al. Relationship between polypharmacy and inpatient hospitalization among older adults with cancer treated with intravenous chemotherapy. *J Geriatr Oncol.* 2020. doi: 10.1016/j.jgo.2020.03.001
- 6. Hakozaki T, Hosomi Y, Shimizu A, Kitadai R, Mirokuji K, Okuma Y. Polypharmacy as a prognostic factor in older patients with advanced non-small-cell lung cancer treated with anti-PD-1/PD-L1 antibody-based immunotherapy. *J Cancer Res Clin Oncol.* 2020. doi: 10.1007/s00432-020-03252-4
- 7. Ku JY, Roh JL, Kim SB, Choi SH, Nam SY, Kim SY. Prognostic value of neutrophil-to-lymphocyte ratio in older patients with head and neck cancer. *J Geriatr Oncol*. 2019. doi: 10.1016/j.jgo.2019.06.013
- Reed M, Patrick C, Quevillon T, Walde N, Voutsadakis IA. Prediction of hospital admissions and grade 3-4 toxicities in cancer patients 70 years old and older receiving chemotherapy. *Eur J Cancer Care*. 2019;28(6):9. doi: 10.1111/ecc.13144
- 9. Sales J, Azevedo C, Santos C, et al. Risk factors comprehensive geriatric assessment for early death in elderly patients with gynecological cancer. A prospective cohort study. *Int J Gynecol Cancer*. 2019;29:A159-A159. doi: 10.1136/ijgc-2019-IGCS.386
- 10. Samuelsson KS, Egenvall M, Klarin I, Lokk J, Gunnarsson U. Preoperative geriatric assessment and follow-up of patients older than 75 years undergoing elective surgery for suspected colorectal cancer. *J Geriatr Oncol.* 2019. doi: 10.1016/j.jgo.2019.01.020
- 11. Williams GR, Dunham L, Chang Y, et al. Geriatric Assessment Predicts Hospitalization Frequency and Long-Term Care Use in Older Adult Cancer Survivors. *J Oncol Pract.* 2019;15(5):e399-e409. doi: 10.1200/jop.18.00368
- 12. Nishijima TF, Deal AM, Lund JL, Nyrop KA, Muss HB, Sanoff HK. The incremental value of a geriatric assessment-derived three-item scale on estimating overall survival in older adults with cancer. *J Geriatr Oncol.* 2018;9(4):329-336. doi: 10.1016/j.jgo.2018.01.007
- 13. Ommundsen N, Nesbakken A, Wyller TB, et al. Post-discharge complications in frail older patients after surgery for colorectal cancer. *Eur J Surg Oncol.* 2018;44(10):1542-1547. doi: 10.1016/j.ejso.2018.06.024
- 14. Jeon MS, Jeong YM, Yee J, et al. Association of pre-operative medication use with unplanned 30-day hospital readmission after surgery in oncology patients receiving comprehensive geriatric assessment. *Am J Surg.* 2019. doi: 10.1016/j.amjsurg.2019.06.020
- 15. Lin RJ, Hilden PD, Elko TA, et al. Burden and impact of multifactorial geriatric syndromes in allogeneic hematopoietic cell transplantation for older adults. *Blood Adv.* 2019;3(1):12-20. doi: 10.1182/bloodadvances.2018028241
- 16. Westley T, Syrowatka A, Henault D, et al. Patterns and predictors of emergency department visits among older patients after breast cancer surgery: A population-based cohort study. *J Geriatr Oncol.* 2018;9(3):204-213. doi: 10.1016/j.jgo.2017.10.003
- 17. Lin RJ, Ma H, Guo R, Troxel AB, Diefenbach CS. Potentially inappropriate medication use in elderly non-Hodgkin lymphoma patients is associated with reduced survival and increased toxicities. *Br J Haematol.* 2018;180(2):267-270. doi: 10.1111/bjh.15027
- 18. Kenis C, Baitar A, Decoster L, et al. The added value of geriatric screening and assessment for predicting overall survival in older patients with cancer. *Cancer*. 2018;124(18):3753-3763. doi: 10.1002/cncr.31581
- 19. Karuturi MS, Holmes HM, Lei X, et al. Potentially inappropriate medication use in older patients with breast and colorectal cancer. *Cancer.* 2018;124(14):3000-3007. doi: 10.1002/cncr.31403
- 20. Karuturi MS, Holmes HM, Lei X, et al. Potentially inappropriate medications defined by STOPP criteria in older patients with breast and colorectal cancer. *J Geriatr Oncol.* 2019;10(5):705-708. doi: 10.1016/j.jgo.2019.01.024

- 21. Chun DS, Peacock-Hinton S, Lund JL. Potentially inappropriate medication use and emergency department visits in older women diagnosed with breast cancer initiating chemotherapy. *Pharmacoepidemiol Drug Saf.* 2018;27:295-295.
- 22. Choi KS, Jeong YM, Lee E, et al. Association of pre-operative medication use with post-surgery mortality and morbidity in oncology patients receiving comprehensive geriatric assessment. *Aging Clin Exp Res.* 2018;30(10):1177-1185. doi: 10.1007/s40520-018-0904-2
- 23. Antonio M, Carmona-Bayonas A, Saldana J, et al. Factors Predicting Adherence to a Tailored-Dose Adjuvant Treatment on the Basis of Geriatric Assessment in Elderly People With Colorectal Cancer: A Prospective Study. *Clin Colorectal Cancer.* 2018;17(1):e59-e68. doi: 10.1016/j.clcc.2017.09.003
- 24. Fagard K, Casaer J, Wolthuis A, et al. Value of geriatric screening and assessment in predicting postoperative complications in patients older than 70 years undergoing surgery for colorectal cancer. *J Geriatr Oncol.* 2017;8(5):320-327. doi: 10.1016/j.jgo.2017.07.008
- 25. Woopen H, Richter R, Ismaeel F, et al. The influence of polypharmacy on grade III/IV toxicity, prior discontinuation of chemotherapy and overall survival in ovarian cancer. *Gynecol Oncol.* 2016;140(3):554-558. doi: 10.1016/j.ygyno.2016.01.012
- 26. Samuelsson KS, Egenvall M, Klarin I, Lokk J, Gunnarsson U. Inappropriate drug use in elderly patients is associated with prolonged hospital stay and increased postoperative mortality after colorectal cancer surgery: a population-based study. *Colorectal Dis.* 2016;18(2):155-162. doi: 10.1111/codi.13077
- Park JW, Roh JL, Lee SW, et al. Effect of polypharmacy and potentially inappropriate medications on treatment and posttreatment courses in elderly patients with head and neck cancer. *J Cancer Res Clin Oncol.* 2016;142(5):1031-1040. doi: 10.1007/s00432-015-2108-x
- Lee YH, Oh HK, Kim DW, et al. Use of a Comprehensive Geriatric Assessment to Predict Short-Term
 Postoperative Outcome in Elderly Patients With Colorectal Cancer. Ann Coloproctol. 2016;32(5):161-169. doi: 10.3393/ac.2016.32.5.161
- 29. Jonna S, Chiang L, Liu J, Carroll MB, Flood K, Wildes TM. Geriatric assessment factors are associated with mortality after hospitalization in older adults with cancer. *Support Care Cancer.* 2016;24(11):4807-4813. doi: 10.1007/s00520-016-3334-8
- Bourdel-Marchasson I, Diallo A, Bellera C, et al. One-Year Mortality in Older Patients with Cancer:
 Development and External Validation of an MNA-Based Prognostic Score. *PLoS One.* 2016;11(2):e0148523.
 doi: 10.1371/journal.pone.0148523
- 31. Sud S, Lai P, Zhang T, Clemons M, Wheatley-Price P. Chemotherapy in the oldest old: The feasibility of delivering cytotoxic therapy to patients 80 years old and older. *J Geriatr Oncol.* 2015;6(5):395-400. doi: 10.1016/j.jgo.2015.07.002
- 32. Kenig J, Olszewska U, Zychiewicz B, Barczynski M, Mitus-Kenig M. Cumulative deficit model of geriatric assessment to predict the postoperative outcomes of older patients with solid abdominal cancer. *J Geriatr Oncol.* 2015;6(5):370-379. doi: 10.1016/j.jgo.2015.03.004
- 33. Chiang LY, Liu J, Flood KL, et al. Geriatric assessment as predictors of hospital readmission in older adults with cancer. *J Geriatr Oncol.* 2015;6(4):254-261. doi: 10.1016/j.jgo.2015.04.003
- 34. Ommundsen N, Wyller TB, Nesbakken A, et al. Frailty is an independent predictor of survival in older patients with colorectal cancer. *Oncologist.* 2014;19(12):1268-1275. doi: 10.1634/theoncologist.2014-0237
- 35. Maggiore RJ, Dale W, Gross CP, et al. Polypharmacy and potentially inappropriate medication use in older adults with cancer undergoing chemotherapy: effect on chemotherapy-related toxicity and hospitalization during treatment. *J Am Geriatr Soc.* 2014;62(8):1505-1512. doi: 10.1111/jgs.12942
- 36. Hamaker ME, Seynaeve C, Wymenga AN, et al. Baseline comprehensive geriatric assessment is associated with toxicity and survival in elderly metastatic breast cancer patients receiving single-agent chemotherapy: results from the OMEGA study of the Dutch breast cancer trialists' group. *Breast.* 2014;23(1):81-87. doi: 10.1016/j.breast.2013.11.004
- 37. Hamaker ME, Mitrovic M, Stauder R. The G8 screening tool detects relevant geriatric impairments and predicts survival in elderly patients with a haematological malignancy. *Ann Hematol.* 2014;93(6):1031-1040. doi: 10.1007/s00277-013-2001-0
- 38. de Glas NA, Kiderlen M, Bastiaannet E, et al. Postoperative complications and survival of elderly breast cancer patients: a FOCUS study analysis. *Breast Cancer Res Treat.* 2013;138(2):561-569. doi: 10.1007/s10549-013-2462-9
- 39. Elliot K, Tooze JA, Geller R, et al. The prognostic importance of polypharmacy in older adults treated for acute myelogenous leukemia (AML). *Leuk Res.* 2014;38(10):1184-1190. doi: 10.1016/j.leukres.2014.06.018

- 40. Badgwell B, Stanley J, Chang GJ, et al. Comprehensive geriatric assessment of risk factors associated with adverse outcomes and resource utilization in cancer patients undergoing abdominal surgery. *J Surg Oncol.* 2013;108(3):182-186. doi: 10.1002/jso.23369
- 41. Kanesvaran R, Li H, Koo KN, Poon D. Analysis of prognostic factors of comprehensive geriatric assessment and development of a clinical scoring system in elderly Asian patients with cancer. *J Clin Oncol.* 2011;29(27):3620-3627. doi: 10.1200/jco.2010.32.0796
- 42. Hamaker ME, Buurman BM, van Munster BC, Kuper IM, Smorenburg CH, de Rooij SE. The value of a comprehensive geriatric assessment for patient care in acutely hospitalized older patients with cancer. *Oncologist.* 2011;16(10):1403-1412. doi: 10.1634/theoncologist.2010-0433
- 43. Kristjansson SR, Jordhoy MS, Nesbakken A, et al. Which elements of a comprehensive geriatric assessment (CGA) predict post-operative complications and early mortality after colorectal cancer surgery? *J Geriatr Oncol.* 2010;1(2):57-65. doi: 10.1016/j.jgo.2010.06.001
- 44. Orsini N. From floated to conventional confidence intervals for the relative risks based on published doseresponse data. *Comput Methods Programs Biomed.* 2010;98(1):90-93. doi: 10.1016/j.cmpb.2009.11.005
- 45. Altman DG, Bland JM. How to obtain the confidence interval from a P value. *BMJ*. 2011;343:d2090. doi: 10.1136/bmj.d2090