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Kamaryn T. Tannera,*, Karla Diaz-Ordazb, Ruth H. Keogha
aDept of Medical Statistics, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK

bDept of Statistical Science, University College London, London, WC1E 6BT, UK

Accepted 4 September 2024; Published online 12 September 2024
Abstract
Objectives: We describe the steps for implementing a dynamic updating pipeline for clinical prediction models and illustrate the pro-
posed methods in an application of 5-year survival prediction in cystic fibrosis.

Study Design and Setting: Dynamic model updating refers to the process of repeated updating of a clinical prediction model with new
information to counter performance degradation. We describe 2 types of updating pipeline: ‘‘proactive updating’’ where candidate model updates
are tested any time new data are available, and ‘‘reactive updating’’ where updates are only made when performance of the current model declines
or the model structure changes. Methods for selecting the best candidate updating model are based on measures of predictive performance under
the 2 pipelines. The methods are illustrated in our motivating example of a 5-year survival prediction model in cystic fibrosis. Over a dynamic
updating period of 10 years, we report the updating decisions made and the performance of the prediction models selected under each pipeline.

Results: Both the proactive and reactive updating pipelines produced survival prediction models that overall had better performance in
terms of calibration and discrimination than a model that was not updated. Further, use of the dynamic updating pipelines ensured that the
prediction model’s performance was consistently and frequently reviewed in new data.

Conclusion: Implementing a dynamic updating pipeline will help guard against model performance degradation while ensuring that the
updating process is principled and data-driven. � 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Clinical prediction models provide patients and clini-
cians with an estimated risk of a health outcome based on
individual characteristics [1]. The output may be used to
identify higher-risk individuals and inform medical deci-
sion making. As external factors change, the performance
of prediction models may decline over time [1,2]. This is
often manifested as calibration driftdthe deterioration of
the model’s calibration over time [3,4]. The introduction
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of new treatments or newly measured risk factors may also
render a prediction model out of date.

Numerous methods have been proposed and compared
for one-time updating of prediction models [2,5e10],
which include recalibration and Bayesian updating, but
no single technique has been found to be best across set-
tings with different updating sample sizes and population
shifts. Regardless of the technique selected, after updat-
ing, model performance may again deteriorate as the dis-
ease, treatments and/or population mix changes. Dynamic
updating is a strategy for combating this by repeatedly up-
dating the prediction model, making use of new data and
information. Although dynamic updating has been shown
to be promising [2,9,11], there is a lack of guidance on
how to implement a dynamic updating pipeline. A pipe-
line provides a systematic process for determining
whether to update a prediction model based on perfor-
mance metrics, significance of changes and availability
of new predictors.
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What is new?

Key findings
� Dynamic updating of clinical prediction models

enables predictive performance to be maintained
over time in the presence of changes in population
mix, environmental factors, and treatment options.

What this adds to what is known?
� We describe 2 types of dynamic updating pipelines

based on proactive and reactive updating, and pro-
vide guidance on their implementation.

� Both pipelines are illustrated, each with different
implementation choices, for prediction of 5-year
survival in cystic fibrosis over 10 periods and we
show that they can guard against performance
degradation.

What is the implication and what should change
now?
� We encourage the use of a dynamic updating pipe-

line instead of ad hoc updating as it ensures
continual performance review and a data-driven
approach to prediction model updating.

In this study, we describe and illustrate methodological
pipelines for dynamic evaluation and updating of a clinical
prediction model. In Section 2, we draw from both the ma-
chine learning and model updating literature to introduce 2
updating pipelines and enumerate the steps and choices to
be made when implementing a dynamic updating process.
Section 3 provides background on the motivating example,
survival prediction for people with cystic fibrosis (CF), a
genetic life-shortening disease. The pipelines are illustrated
in Section 4 using data from the UK CF Registry [12]. After
fitting an initial model for 5-year survival prediction using
data on characteristics recorded in 2005 and follow-up
through 2010, we retrospectively track the dynamic updat-
ing steps that would have been implemented under our 2
pipelines as new data became available annually over the
period 2011-2021. Results are reported in Section 4 and
we conclude with a Discussion in Section 5.
2. Materials and methods

2.1. Overview of dynamic model updating

The focus is on the setting in which a prediction model
is developed for use within a population which is evolving
over time, as is the case for prediction models developed
within a specific patient population. We consider an initial
prediction model f0, developed using development dataset
P0 during period u 5 0. We plan to repeatedly update f0
as the population in which it was developed evolves. Let
P0 contain data from (t 1,t0]. After time t0, new data are ac-
quired during period u 5 1 to form dataset P1 containing
data from (t0,t1]. P1 may contain a single new data point,
several years of data, or anything in between. The length
of any period u will depend on perceived need for an up-
date, resource availability, procedures for retrieving new
data and the ability of users of the prediction model to
adapt to changes. Let fu* denote the ‘‘current’’ prediction
model at the start of period u þ 1. New data Puþ1 may
be used to update f �u via one of k5 1...K updating methods,
(eg, refitting, recalibration, Bayesian updating), resulting in
prediction model f kuþ1. We let method k 5 1 denote ‘‘no
update,’’ so that one candidate model is the current model.
The K candidate models are evaluated based on selected
performance metrics (such as discrimination and calibra-
tion measures), and we let mv ð f kuþ1;Puþ1Þ be the value
of the vth performance metric for model f kuþ1 evaluated
on data Puþ1. Performance metrics and methods for their
comparison are discussed further below.
2.2. Proactive Vs reactive updating

In a proactive updating strategy, updates are applied in
each period u and the best performing model from a set
of updating methods becomes the current prediction model.
This strategy may be appropriate when frequent changes to
the model can be tolerated and when incorporation of new
data is a priority. Under this strategy, no check is made to
see if the current model’s performance has deteriorated.
In period u þ 1, new data are acquired, Puþ1, and the cur-
rent prediction model, f �u, is updated using each of the K
updating techniques to obtain candidate updating models,
fu
1
þ1,fu

2
þ1,...,fu

K
þ1. The performance of each candidate model

is evaluated in the new data using each of the V evaluation
metrics. Because models are both updated with and evalu-
ated in Puþ1, optimism should be accounted for using test-
train split, bootstrapping or cross-validation [13,14] (see
Table 1). The model identified as the best performer is
selected to become the new current model and predictions
are made using this model until the next update (See
Fig 1, left panel).

In contrast, reactive updating begins by determining in
each period u whether the current model requires an update
based on some criteria. The performance of the current
model f �u in the prior period’s data Pu is compared to its
performance in the new data Puþ1, based on metrics mv( fu*,
Pu) and mv( fu*, Puþ1), v 5 1,...,V. The metrics are
compared to a set of predefined performance thresholds
or ‘‘triggers’’, which specify how much the performance
of the current model would have to deteriorate in the new
data to warrant an update. If no triggers are flagged, the cur-
rent model f �u is retained for another period; if one or more
triggers are flagged, the current model is updated using the



Table 1. Considerations for proactive and reactive dynamic updating pipelines

Category Description

Updating frequency Updating frequency will depend on several factors: the frequency with which new data are acquired; the
updating method chosen (e.g., a full refit requires more data than a Bayesian update); downstream
users’ tolerance to adjust to updates; and the extent and speed of changes in the environment.

Proactive: More frequent updates with smaller incremental improvements. Updating may occur even if
model is performing adequately.

Reactive: Less frequent updates may have greater differences from previous model. Updated only when
performance of current model falls below threshold. Performance of change detection methods may
vary by circumstance [15].

Mix of old and new data Models may be updated using newly acquired data only or a combination of old and new data, providing a
larger dataset. Including older data will ‘‘smooth’’ the updates but may slow the incorporation of new
trends [11]. Weights may be used to give more importance to recent observations [16].

Proactive: Including more old data will yield update candidates that are more similar to the current
model.

Reactive: Including more old data reduces the chances of the current model’s performance falling below
updating thresholds.

Methods for model updating Dynamic model updating consists of repeated updating steps, which may include full refitting,
recalibration, and Bayesian updating methods. Descriptions and comparisons of updating techniques
can be found in [2,8] for binary outcome settings and in [9] for the time-to-event case.

Proactive and Reactive: Both pipelines accommodate multiple updating methods.

Performance metrics and internal
validation

Prediction models can be evaluated in terms of their calibration (e.g., calibration plot, calibration
intercept and slope), discrimination (e.g., area under the receiver operating characteristic curve, C-
index), and overall performance (e.g., R2, Brier score) [1]. Because some performance evaluations are
made in the same data used to update the model, internal optimism must be accounted for. Internal
validation methods include a random-split sample approach, bootstrapping, cross-validation [13,14].
Because the split sample approach may be inefficient, the latter 2 are preferred but the choice needs
to consider their computational complexity and compatibility with other modeling choices, such as
multiple imputation [17].

Proactive and Reactive: Both allow for choice of appropriate metrics and validation methods.

Performance metrics comparison Comparisons may be based on relative changes (e.g., an x% decrease in C-index) or deviations from target
values (e.g., difference of calibration intercept from 0.0). Metrics points estimates can be directly
compared, or hypothesis testing can be used to assess the significance of any differences, e.g., using a
t-test applied to metrics estimated across bootstrap replicates. Multiple testing may be required.

Postemodel selection inference If methods include model selection (e.g., variable selection), then the model’s performance may be
optimistic in that data. Appropriate postselection inference should be used. Ignoring this would impact
any decisions to update based on hypothesis testing.

Proactive and Reactive: Same considerations apply for both pipelines

Non-inferiority margins and triggers Non-inferiority margins to determine acceptable updates must be pre-defined (see Section 2.3). A data-
driven option is to define the margin as some number of SDs from the current model’s performance
metric.

Proactive: With wider non-inferiority margins, more update candidates will be deemed acceptable. To
require updates to be superior on all performance metrics, margins can be set to zero.

Reactive: Thresholds can be based on comparison of performance metrics in the old and new data, e.g.
percentage change. Triggers may be informed by external information, such as a new predictor or a
known external shock to the system.

Computation time Computation time will increase with larger sample sizes and more updated candidates and modeling
choices (e.g., Bayesian methods, multiple imputation, cross-validation).

Proactive: Greater, all models are implemented and evaluated in the updating period. Reactive: Lower,
e.g. no updating is required in an unchanging environment.
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new data, Puþ1 (See Fig 1, right panel). As in the proactive
strategy, optimism must be accounted for (see Table 1).

Implementing a proactive or reactive dynamic updating
strategy requires a number of methodological choices to
be made. Some key decisions and a comparison of the pipe-
lines are presented in Table 1. In Table 2, we consider
several scenarios of change and how each pipeline can
adapt to them.
2.3. Selecting a candidate model update using
performance metrics

Performance of clinical prediction models is typically
evaluated across multiple metrics including calibration,
discrimination, and overall prediction error. Under a dy-
namic updating strategy, we may find that a candidate
model is superior on one metric but inferior on another.



Figure 1. Summary of proactive and reactive updating strategies. Proactive updating begins by updating the current prediction model, while reac-
tive updating begins by determining whether the current model requires an update. In proactive updating, for each performance metric and each
updating method, the performance of the current model in the new data is compared to the performance of the updating candidates in the new
data, that is,mv ð f �u ;Puþ1Þ is compared tomv ð f kuþ1;Puþ1Þ. In reactive updating, the performance of the current model is compared in last period’s
data and in the new data, that is, mv ð f �u ;PuÞ is compared to mv ð f �u ;Puþ1Þ. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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Choosing based on one criterion alone may lead to substan-
tial performance degradation in other criteria over time.

To facilitate comparison such that improvement in one
metric does not lead to unacceptable worsening in others,
we adopt acceptability graphs as described in [21]. An up-
date from f �u to fuþ1 is defined as ‘‘acceptable’’ if fuþ1 is
both noninferior on all performance metrics to f �u and supe-
rior on at least 1 metric. Noninferiority margins are speci-
fied for each metric. A sample acceptability graph for 2
metrics (C-index and calibration intercept) is shown in
Figure 2 where the noninferiority margin for both metrics
is 0.01. The shaded region represents the values of the met-
rics that are superior to Model 1 on at least one dimension
and noninferior on the other. Model A is not an acceptable
update because the calibration intercept is not noninferior;
B is not acceptable because it is not superior on either
dimension; C is superior to Model 1 on calibration intercept
and noninferior on C-index, and is therefore an acceptable
update. A noninferiority margin of 0 means that only supe-
rior models will be accepted.
3. Application to the UK Cystic Fibrosis Registry
dataset

3.1. Overview

There is a rich literature on survival prediction models in
CF with models fit to data from the US, UK, Canada and
Europe using statistical techniques including Cox regres-
sion, landmarking, and machine learning [22e26]. At the
same time, new treatments and improved standards of care
have led to dramatic increases in expected survival. In the
last decade, the median predicted survival age increased
by over 10 years to 56 years (UK Cystic Fibrosis [27]).
With the increasing use of disease-modifying therapies,
continued improvements in survival are expected and exist-
ing prediction models will require updating [18].

We illustrate proactive and reactive updating pipelines
for a model predicting 5-year survival in CF using data
from the UK CF Registry, which collects data at annual re-
views. This model’s aim is prediction not explanation. To
showcase the diversity possible in updating pipelines, our
proactive updating approach uses Bayesian candidate up-
date models; in the reactive updating pipeline we obtain
model updates, where needed, by considering recalibration
and refitting to allow for both changes in the baseline haz-
ard and rapid updating of the coefficients. Figure 3 shows
process flows for both pipelines.

3.2. Study population & data preparation

The study population was comprised of all individuals in
the UK CF Registry with an annual review between January
1, 2005, and December 31, 2016, who were aged 5.5 years
or more at the time of the annual review. This resulted in
74,338 annual review records for 9933 unique individuals.
Of these, 2058 had the composite event of death or trans-
plant up to the end of follow-up at December 31, 2021.

We created the initial model development dataset, P0,
using predictor information from annual reviews in calen-
dar year 2005 and death/transplant information up to
December 31, 2010. For performance evaluation and pre-
diction model updating, we created 11 additional datasets,
P1,...P11, using data on predictors from years 2006,
2007,...,2016 with follow-up respectively through year
end 2011, 2012,...,2021. The initial model f0 was fit using
P0 and similar predictors to the model of [23] (see



Table 2. Scenarios of change and their implications for the proactive and reactive updating pipelines

Scenario Description

External shock. Eg, the introduction of a
new therapy that dramatically
improves survival outcomes such as
cystic fibrosis transmembrane
conductance regulator modulator
therapies in CF [18].

The new treatment can be included in both pipelines using either refitting or Bayesian updating. A key
limitation is the amount of new data available on outcomes for people receiving it. Information from
clinical trials could be incorporated into the prior in Bayesian updating. Refitting may not be possible
early in the treatment rollout if few individuals receiving the treatment have had the event [9].

Proactive: Data related to the new treatment are naturally incorporated with each update. Analysts may
choose to use only/mostly new data for the updates to speed adaptation of the prediction model.

Reactive: Slower to respond because performance of the current model may not decrease during rollout of
the new treatment due to lack of data for the treated. A trigger could be applied to force an update
based on external information.

Changes in the baseline risk, e.g., as in
the EuroScore I model [2], or in
patient mix.

Changes in baseline risk could manifest themselves as calibration drift, which can be addressed in both
pipelines without a full refit using either intercept recalibration or Bayesian updating. When calibration
is the primary consideration, analysts may wish to incorporate visual assessment of calibration plots for
a more complete assessment of calibration. If calibration drift is expected from external knowledge,
analysts may require updates to have superior calibration and/or lower calibration trigger thresholds.
Case mix changes, which can occur over time or when a model is applied to a different population, may
require updating the predictor coefficients. In both pipelines, Bayesian updating allows knowledge
from the previous model to be applied to new case mix data.

Proactive: Baseline risk changes likely occur gradually over time. Proactive updating will make gradual
changes to the model at each update, with the goal of preventing calibration from drifting too far.

Reactive: Speed of adaptation will depend both on threshold size and on speed of change in the
environment. Based on inspection of a calibration plot, an update trigger could be set.

Data quality increases or decreases,
e.g., due to changes in data collection
techniques or changes in the extent of
missingness over time.

Changes in data quality, e.g., data definitions or accuracy of certain measurements, could affect
performance, resulting in updates under both pipelines. Missingness in predictors requires
consideration in terms of how missing data are treated both at the model fitting stage and at the
evaluation stage. Techniques such as multiple imputation and Bayesian methods to address missing
data have been developed [17,19], but increase computational complexity. Implications for updating
pipelines will depend on whether data quality changes are temporary or permanent, and whether they
are apparent from external knowledge or more subtle. For temporary quality issues, analysts may
consider increasing the ratio of old to new data used for updating.

Proactive: Use of only/mostly new data for the updates could speed adaptation of the prediction model to
a known new level of data quality.

Reactive: Known changes in quality could be used to define update triggers.

Changes are burdensome for users. Eg,
models used to identify high-risk
groups of people (as with COVID-19
pandemic shielding lists) or primary
care models requiring change across
an entire health system.

Opting for recalibration will maintain the rank order of inividuals in terms of risk while allowing for
calibration to be adjusted. Bayesian methods with high values of the forgetting factor will have
regression parameters constrained to be more similar to the current model [9,20].

Proactive: May not be the best choice as it results in more frequent updates. Non-inferiority margins
could be set to zero to require the updates to be superior on all metrics.

Reactive: Thresholds can be defined so that the model is only updated when performance change would
have important clinical implications.

CF, cystic fibrosis.
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Appendix A). We allowed for new predictors to be added to
the model over the 10-year updating process, as described
in Appendix A.
3.3. Implementation of a proactive updating pipeline
with Bayesian dynamic updating

A Bayesian dynamic updating approach combines infor-
mation learned in the past (the prior distribution) with new
information in the updating data (the likelihood). Here, the
main model is a Weibull hazard model. Because there is
missing predictor data, we include models for those vari-
ables in a fully Bayesian approach. Details of the Bayesian
specification are in Appendix B. For periods u O 0, priors
were derived from parameter estimates from the previous
period, scaled by a forgetting factor, x, which specifies
the uncertainty in the prior [20,28]. We consider Bayesian
updates with 4 different values, x 5 (0.7,0.8,0.9,1.0). Two
additional proactive pipelines using refitting and recalibra-
tion instead of Bayesian updating are described in
Appendix D.

The performance of the previous period’s selected model
in the new data is compared to the performance of the
candidate update models in the new data. For these compar-
isons, we randomly divided each updating dataset Puþ1 into
training Ptrain

uþ1 (75%) and holdout Phold
uþ1 (25%) datasets,

though cross-validation or bootstrapping could also have
been chosen. The candidate update models fu

k
þ1

(k 5 1,...,5) are fit using Ptrain
uþ1 and all performance metrics

are evaluated in Phold
uþ1. We calculated 4 performance metrics



Figure 2. A sample acceptability graph for 2 performance measures.
For a noninferiority margin of 0.1 for both C-index and calibration
intercept, the shaded region indicates the values of those measures
representing acceptable updates from Model 1. Of updated candi-
dates A, B and C, only C is considered an acceptable update.
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for 5-year survival prediction for each candidate update:
Brier score, C-index, calibration intercept, and calibration
slope.

To compare the performance between candidates, we
used a hypothesis testing framework with a one-sided
paired Wilcoxon signed rank test (significance level of
5%) and each performance metric was computed on 250
bootstrap samples of Phold

uþ1. To control for multiple testing
across metrics and update candidates, we implemented
Holm’s procedure [29]. We used a data-driven approach
to define noninferiority margins and set them at 1 SD from
the value of the current model for C-index and calibration
intercept/slope. Because Brier score values were close to
zero, we set this margin at 0.005. If no candidate updates
were superior on at least one metric and noninferior on
all others, the current model was retained. If more than
one candidate update was acceptable, we chose the one
with best calibration intercept.

3.4. Implementation of a reactive updating pipeline with
recalibration and refitting

In the reactive strategy, the candidate model updating
methods were recalibration and refitting. After new data
Puþ1 was acquired, training Ptrain

uþ1 and holdout datasets
Phold
uþ1 were created by random 75%/25% split. If an update

was required based on one or more triggers, fu* was up-
dated to f �uþ1 using Ptrain

uþ1 and performance of the updated
model was computed in Phold

uþ1. If no update was triggered,
fu*þ1 was set to fu*.

We prespecified tolerance levels on absolute or relative
performance of the current model in the new data that
would trigger an update. Because the C-index had low vari-
ability and we had high tolerance for frequent updates, we
set the C-index trigger at a drop of 2% or more. As Brier
score values were close to zero, we set the threshold to
be an increase of 0.01 or more in the new data, compared
to the previous data. Because the exp(calibration intercept)
estimates the ratio of observed to expected events, the
trigger can be defined in terms of permitted deviation in this
ratio. Here, if the calibration intercept or slope measured in
the new data was more than 0.1 away from the target values
of 0 and 1, respectively, an update was triggered. Finally, if
a new predictor was introduced, this automatically trig-
gered an update.

These trigger criteria were varied in 3 sensitivity ana-
lyses described in Appendix E.

Appendix C describes handling of missing data and
Appendix F lists software used.
4. Results

4.1. Proactive updating pipeline with Bayesian dynamic
updating

In each period, performance of the Bayesian updated
model was compared to the performance of the current
model. A summary of the results from the updating pipeline
is shown in Table 3. In period 1, the initial model was re-
tained, but in every subsequent period one of the candidate
update models was chosen. The forgetting factor of the
selected model (x) varied by period. Performance of the
initial model representing no updating is provided for com-
parison. The C-index of the updated models was better than
the initial model in all but 1 period and was better than the
current model in all but 2 periods. Although the magnitude
of the difference in any single period was small, less than
0.02, over the entire updating cycle the C-index of the final
updated model was 0.08 greater than the initial model (See
Figure 4). Because a calibration intercept closer to 0 is
preferred, we compared the absolute values of the calibra-
tion intercept. The calibration intercept of the updated
model was better than the current model by 0.10 or more
in three updating periods and was better than the initial
model in 8 periods.

4.2. Reactive updating pipeline with recalibration and
refitting

After the initial model was fit, triggers were evaluated in
each of the 10 annual updating datasets. Table 4 shows the
triggers and updating results for each period for the current
and updated models. In periods 1 and 10, there was a
trigger for calibration intercept and the model was recali-
brated. In periods 3, 8, and 9, new predictors were added
that required a full refit and in period 2, C-index and cali-
bration triggers fired. None of the triggers indicated that an
update was needed for periods 4 to 7, so the current model
was retained. The C-index of the updated model was equal
to or better than both the current model and the initial
model in each period (See Fig 5). The calibration



Figure 3. Process flow for a proactive updating pipeline (a) and a reactive updating pipeline (b) implemented with training/holdout data split to
address internal optimism. Dotted arrows indicate inputs to the next step; solid arrows indicate the next step in the pipeline. The proactive pipeline
used Bayesian model updating and the reactive pipeline used refitting and recalibration. Chosen evaluation metrics were the same for both pipe-
lines. We illustrate the random-split sample approach we used for validation but cross-validation or bootstrapping may also be used (See ‘‘Perfor-
mance metrics and internal validation’’ in Table 1). (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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intercept of the updated model was better than the current
model in 8/10 periods and better than or equal to the initial
model in 9/10 periods. In the second period, the model was
refit in response to calibration slope and C-index triggers
but the calibration intercept of the resulting updated model
was worse (0.13) than that of the current model (0.9). This
update was accepted nonetheless because it satisfied the
noninferiority conditions. In period 9, an update was
accepted despite having an inferior calibration intercept
because we chose to automatically update when new pre-
dictors were present, regardless of noninferiority condi-
tions. A sensitivity analysis of the trigger settings found
poorer calibration intercepts when trigger thresholds were
reduced (ie, lower threshold for needing an update) and
when new predictors did not force refitting (Details in
Appendix E). The estimated hazard ratios for this pipeline
changed less frequently than the proactive updating pipe-
line but the changes tended to be larger in magnitude
(Fig S1, Appendix E).
5. Discussion

In this study, we described proactive and reactive pipe-
lines for dynamic updating of clinical prediction models
that allow different modeling and performance criteria
choices. Implementation of such a pipeline requires deci-
sions to be made about updating frequency, updating
methods, performance criteria, and trigger/threshold set-
tings. Although certain methods may suit particular



Table 3. Performance results from the proactive updating pipeline with Bayesian dynamic updating

Per
u

Selected
Update

C-index Brier score Calibration intercept Calibration slope

Initial Prior Update Initial Prior Update Initial Prior Update Initial Prior Update

0a Initial model 0.84 NA NA 0.08 NA NA �0.10 NA NA 0.90 NA NA

1b No update 0.87 0.87 0.87 0.08 0.08 0.08 0.13 0.13 0.13 1.01 1.01 1.01

2c Using x 5 0.7 0.82 0.82 0.82 0.09 0.09 0.08 0.13 0.13 �0.03 0.80 0.80 0.89

3 Using x 5 0.8 0.82 0.88 0.88 0.06 0.06 0.09 0.02 �0.19 �0.08 1.00 1.12 0.99

4 Using x 5 1.0 0.89 0.89 0.89 0.06 0.06 0.06 0.10 �0.03 0.07 1.04 0.95 1.00

5 Using x 5 1.0 0.89 0.89 0.89 0.06 0.06 0.06 0.14 0.12 0.08 1.02 1.03 0.96

6 Using x 5 0.8 0.89 0.90 0.90 0.06 0.05 0.05 0.11 �0.03 �0.09 1.05 0.96 0.91

7 Using x 5 0.7 0.92 0.93 0.92 0.05 0.04 0.04 0.11 �0.04 0.06 1.14 1.04 1.03

8 Using x 5 1.0 0.90 0.91 0.92 0.04 0.04 0.04 0.08 0.10 0.08 1.07 1.03 1.05

9 Using x 5 0.7 0.91 0.92 0.92 0.03 0.03 0.03 �0.07 �0.13 �0.07 1.05 1.01 1.01

10 Using x 5 0.7 0.91 0.92 0.92 0.03 0.03 0.02 �0.34 �0.32 �0.21 1.08 1.011 1.011

C-index, Brier score, and calibration intercept and slope are shown for each period for the ‘‘Initial’’ (not updated) model f0, the ‘‘Prior’’ period’s
model (the model to be updated) f �u�1, and this period’s selected ‘‘Update’’ model f �u . Using the row Period u 5 2 as an example, performance
metrics were calculated in the period 2 holdout data for the initial model; the period 1 model to be updated f �1 ; and the period 2 selected model
(the best performing update candidate) f k2 5f �2 . (See Table S1 for a description of the update datasets.).

a The initial model was fit to the development dataset in period u 5 0. Updating has not yet begun.
b In period u 5 1, the initial model was selected as the best performer of the update candidates, so it was retained. f �1 5 f0.
c In period u 5 2, the period 1 model is updated with a Bayesian model with forgetting factor x 5 0.7. This becomes the period 2 model f �2 .
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datasets and environments better than others, the most
important step is taking the decision to move away from
ad hoc updating and to implement a dynamic updating pro-
cess. There is no set of implementation choices that will
guarantee an optimal updating process. Rather, a good
pipeline will consist of well thought-out decisions about
the components to match the resources and data available.
Figure 4. Results from the proactive updating pipeline with Bayesian dyna
initial model (green squares) and over the prior period’s model (orange circ
on the left and difference in absolute value of the calibration intercept betw
denote periods in which the model from period u - 1 was selected as the be
that the updated model had superior performance to either the prior or initial
performance. (For interpretation of the references to color in this figure leg
In our illustrative example, we used a proactive pipeline
using Bayesian updating methods and a reactive pipeline
based on refitting and recalibration. However, we could
have combined Bayesian updating with a reactive pipeline
or refitting and recalibration with a proactive pipeline.
Similarly, other choices for performance measures and their
evaluation could be employed. In our example of updating
mic updating. Performance difference of the updated model over the
les). Difference in C-index between the 2 indicated models is shown
een the 2 models is shown on the right. Unfilled squares and circles
st performer in period u. Points above the horizontal line at 0 indicate
model and points below 0 indicate that the updated model had inferior
end, the reader is referred to the Web version of this article.)



Table 4. Performance results from the reactive updating pipeline with recalibration and refitting

Per
u Trigger

Selected
Update

C-index Brier score Calibration intercept Calibration slope

Initial Prior Update Initial Prior Update Initial Prior Update Initial Prior Update

0a NA Initial 0.84 NA NA 0.08 NA NA �0.05 NA NA 0.87 NA NA

1b calib int Recal 0.87 0.87 0.87 0.08 0.08 0.08 0.17 0.17 0.09 0.98 0.98 0.96

2c C-index, calib slope Refit 0.82 0.82 0.82 0.09 0.09 0.09 0.18 0.09 0.13 0.77 0.76 0.81

3 new predictors Refit 0.88 0.88 0.89 0.06 0.06 0.06 0.08 0.03 �0.03 0.96 1.00 0.96

4 none No update 0.88 0.89 NA 0.06 0.06 NA 0.16 0.03 NA 0.99 0.93 NA

5 none No update 0.89 0.89 NA 0.06 0.06 NA 0.20 0.10 NA 0.97 0.94 NA

6 none No update 0.89 0.90 NA 0.06 0.05 NA 0.17 0.00 NA 1.00 0.95 NA

7 none No update 0.92 0.93 NA 0.05 0.04 NA 0.17 0.00 NA 1.09 1.07 NA

8 new predictors Refit 0.90 0.91 0.91 0.04 0.04 NA 0.15 0.03 0.15 1.02 1.05 1.01

9 new predictors Refit 0.91 0.92 0.92 0.03 0.03 0.03 0.01 �0.03 0.02 1.00 0.98 0.98

10 calib int Refit 0.90 0.92 0.92 0.03 0.02 0.02 �0.26 �0.21 �0.09 1.03 1.07 1.06

C-index, Brier score, and calibration intercept and slope are shown for each period for the ‘‘Initial’’ (not updated) model f0, the ‘‘Prior’’ period’s
model (the model to be updated) f �u�1, and this period’s ‘‘Update’’ model f �u if an update was indicated by the triggers. Using Update 2 as an
example, two different triggers fired leading to an update by refitting. Performance metrics calculated in the period 2 holdout data are shown
for the initial model; the period 1 model to be updated f �1 ; and the updated model fit to the period 2 training data f k2 . (See Table S1 for a descrip-
tion of the update datasets.

a The initial model was fit to the development dataset in period u 5 0. Updating has not yet begun.
b In period u 5 1, a calibration intercept trigger led to the initial model being updated via intercept recalibration.
c In period u 5 2, triggers on both C-index and calibration slope led to the period 1 model being refit.
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a model for prediction of 5-year survival in people with CF,
we used an annual update cycle because this is how the data
are released by the UK CF Registry. In some contexts
where data may be acquired more frequently, it may be
possible to update more frequently. There are trade-offs be-
tween sample size and speed, and different updating
methods have different data requirements. Updating can
use a combination of old and new data to increase sample
Figure 5. Results from the reactive updating pipeline with recalibration and
model (green squares) and over the prior period’s model (orange circles). Diff
and difference in absolute value of the calibration intercept between the 2 m
in which the model from period u - 1 was selected as the best performer in
dated model had superior performance to either the prior or initial model an
formance. (For interpretation of the references to color in this figure legend
size but this slows the pace of change of the model. The
rate of updating must also be balanced between how rapidly
the environment is changing and therefore, how quickly the
current prediction model’s performance is deteriorating,
and how frequently downstream users of the prediction
model can absorb changes. Abrupt changes to predicted
outcomes are likely to be confusing to clinicians and pa-
tients. The sample splitting scheme (random, cross-
refitting. Performance difference of the updated model over the initial
erence in C-index between the 2 indicated models is shown on the left
odels is shown on the right. Unfilled squares and circles denote periods
period u. Points above the horizontal line at 0.0 indicate that the up-
d points below zero indicate that the updated model had inferior per-
, the reader is referred to the Web version of this article.)
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validation, bootstrapping) choice has implications on
computing times, memory requirements, and model over-
optimism, and needs to be carefully considered. Also, we
focused on a pure prediction problem; there may be other
considerations (eg, strong assumptions about confounding,
focus on ‘‘causal’’ exposure during model development,
etc.) for updating explanatory causal models used to quan-
tify treatment effects or for policy making. The updating
pipelines considered in this paper could also be useful in
the emerging context of models for enabling prediction un-
der interventions [30,31].

In the illustration of survival prediction in CF, when us-
ing a proactive updating strategy, the prediction model was
updated more often than with the reactive strategy because
there was no threshold determining whether to update or
not. The reactive strategy had slightly better calibration
during periods 4-7 when the model was not being updated
compared to the proactive strategy where the model was
updated in each of those periods. Overall, both pipelines
led to improvements in calibration and discrimination in
most periods in comparison to no updating.

The machine learning literature contains studies on contin-
uously updating predictive models in the context of continu-
ously generated streaming data. Much of this work was
motivated by computational concerns when working with
very large amounts of data, how to identify concept drift,
and dealing with class imbalance [32,33]. In our clinical
setting, it is more common for data to be released in batches
after cleaning and anonymization. [21] Feng et al. proposed
procedures for updating a machine learningebased prediction
model with externally supplied candidate updates by limiting
the error due to bad updates in a binary outcome setting using
sensitivity and specificity. The methods here differ in that
creating candidate updates is part of the pipeline.

New treatments and procedures are continually being
discovered that change the risk of an outcome. In this envi-
ronment, we expect the performance of clinical prediction
models to deteriorate as changing risk causes calibration
drift and new information must be accounted for. Having
a dynamic updating pipeline in place ensures that perfor-
mance metrics will be calculated on an ongoing basis and
the decisions about when and how to update will be made
in a timely, principled manner.
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