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Abstract: While there is immense potential in using unmanned aerial vehicles (UAVs) to facilitate
precision water management, there is Currently no consensus on practical strategies to operationally
implement these technologies to guide water resources management decisions, particularly within
smallholder farming contexts. To address this gap, this study employs bibliometric techniques to
assess the current state of UAV applications for evapotranspiration (ET) estimation in agricultural
settings. The analysis of 49 peer-reviewed papers from Scopus was conducted using Biblioshiny
and VOSviewer to enhance comprehension of this expanding research field. The study highlights a
significant increase in scholarly research on utilising UAVs for precision water management over the
past decade. The investigations indicate that UAVs in agriculture are gaining prominence and exhibit
substantial potential for various precision agriculture (PA) applications. Significant cost reductions
for UAV technology and remote sensing (RS) are anticipated soon, primarily driven by the availability
of open-source platforms for processing tasks, such as Google Earth Engine. This research aims
to inform smallholder farmers about the benefits of integrating UAVs into their farming practices,
enhancing operational efficiency and productivity. Policymakers can use these findings to develop
regulatory frameworks and incentive schemes that facilitate UAV adoption among smallholder
farmers. Additionally, technology developers can leverage insights from this study to identify
areas needing innovation and optimisation tailored to small-scale agriculture. Hence, this study
seeks to bridge the gap between technological advancements and practical agricultural applications,
promoting sustainable farming practices and enhancing the socioeconomic welfare of smallholder
farmers.

Keywords: smallholder farming; precision agriculture; UAV; evapotranspiration; water stress; food
security; Biblioshiny

1. Introduction

In numerous developing nations globally, smallholder farms, defined as those encom-
passing less than two hectares, constitute significant contributors to agricultural output
and stand as primary drivers of socioeconomic development [1]. Given their substantial
yield output vis-a-vis land occupancy, these entities possess the capacity to serve as pivotal
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agents in addressing concerns regarding food security [1-3]. Despite their relative signif-
icance, the precarious circumstances prevailing among many such smallholder farmers
often hinder the realisation of their agricultural productivity potential and render them
ill-equipped to cope with climatic adversities [1,4].

From a South African perspective, many smallholder farmers, particularly those de-
pendent on rain-fed agriculture, persistently encounter food and nutritional insecurity
challenges attributable to water shortages, erratic weather patterns, and prolonged dry
spells [5]. South Africa, on average, receives approximately half of the global mean annual
precipitation (MAP), with pronounced precipitation variability and climatic extremities
exacerbating these conditions; consequently, diminished water availability frequently
compromises the optimal cultivation of crops, notably within dryland agricultural sys-
tems [6,7]. Given these circumstances and the distinctive challenges faced by these farmers,
the implementation of innovative, evidence-based, and cost-effective interventions tailored
to bolster productivity and fortify resilience against adversities holds promise for their
improvement [4,8].

Precision Agriculture (PA) is pivotal in mitigating the global challenge of food security
by implementing tailored strategies and management interventions. The PA process
comprises data collection, analysis and communication technologies, decision making,
and practice management [9]. Central to these endeavours is minimising the unnecessary
depletion of critical resources, such as nutrients and water, while increasing crop yields and
mitigating potential adverse environmental repercussions [10,11]. PA technologies serve as
instrumental decision-support tools aimed at optimising agricultural operations, facilitating
interventions in mitigating plant water stress, diagnosing plant diseases, assessing crop
yields, and undertaking plant phenotyping, among other functions [9,12,13].

Accurate evapotranspiration (ET) spatiotemporal estimation and assessment of crop
water status constitute fundamental aspects of precision water management, which in
turn is a vital component of the PA paradigm [14,15]. Several methodologies have been
devised for ET monitoring, with two primary categories prevalent in scientific inquiry:
ground-based/in situ and remote sensing (RS) approaches. ET estimation through field-
based methods typically entails the application of water balance principles. Moreover,
micrometeorological techniques based on the principles of the shortened energy balance,
such as the Bowen ratio [16,17], eddy covariance [18], scintillometry [19,20], and surface
renewal [21] methods have garnered extensive utilisation in ET estimation endeavours.

Nonetheless, these measurements often exhibit limitations, being confined to specific
points or weighted by area, posing challenges in extrapolating findings to broader scales
owing to the intrinsic heterogeneity of land surfaces. Furthermore, there has been a
notable surge in interest regarding the utilisation of RS and, more specifically, UAVs for
PA applications in the past decade [15,22,23]. Given their distinctive attributes, UAVs
offer advantages conducive to smallholder farms, enabling circumvention of limitations
associated with in situ and satellite-based techniques.

Drone Applications in Precision Agriculture

UAVs are equipped with lightweight sensors capable of capturing high spatial-resolution
images. This capability contrasts with many freely available satellite-based datasets, which
often lack the spatial resolution required to accurately represent smallholder farms’ spatial
heterogeneity [24,25]. Moreover, satellite-based RS is more susceptible to cloud cover, whereas
UAVs can be flown at lower altitudes, making them less prone to their impacts. UAVs can also
be flown at user-defined intervals. In contrast, the satellite’s flight path is fixed, and revisit
and repeat cycles are restricted [26-28].

Despite their advantages, UAVs possess inherent limitations that warrant consider-
ation. These include limited flight durations due to battery constraints, data processing
and analysis challenges, and regulatory restrictions that may complicate operations. More-
over, the initial capital investment may create significant financial barriers for smallholder
farmers, potentially hindering the widespread adoption of this technology [8,29,30].
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Several essential factors emerge when comparing costs between UAVs and other RS
platforms, such as satellites or manned aerial vehicles (MAVs). UAVs typically require
a lower initial investment, being more affordable than high-resolution satellite data and
devoid of recurring subscription fees for data access [8]. Although operational training for
UAVs is necessary, it often proves more straightforward and accessible than the specialised
qualifications required for traditional RS methods, making UAVs more user-friendly for
smallholder farmers. Additionally, UAVs facilitate user-defined flight plans for immediate data
acquisition, eliminating delays associated with satellite revisit times [4,5,28]. This combination
of accessibility and cost-effectiveness positions UAVs as a viable option for smallholder
farmers, allowing them to obtain timely, high-resolution data to enhance their agricultural
practices without the financial constraints imposed by satellite-based RS services.

As research on UAV applications in agriculture has increased, it is necessary to synthe-
sise the existing literature and explain the intellectual framework of this domain. Moreover,
few reviews discuss UAV applications in the PA sector, focusing on ET estimation. For
example, Rejeb et al. (2022) undertook a bibliometric analysis to summarise drone research
in agriculture [13]. Similarly, Gokool et al. (2023) assessed using UAV technology in
facilitating PA techniques, with a specific emphasis on small-scale farming operations [8].

Singh et al. (2022) conducted a scholarly investigation similar to Rejeb et al. (2022),
focusing mainly on viticulture [31]. In contrast, Awais et al. (2022) detailed crop water
status estimation using UAV-based methods [32]. Nhamo et al. (2020) examined the
significance of UAVs in agricultural water management and crop health, highlighting their
potential as an alternative approach to enhance productivity in smallholder farms [4]. In
addition, Raparelli and Bajocco (2019) analysed the use of UAVs in agriculture and forestry
research over the last twenty years. However, their investigation is limited to academic
studies published only between 1995 and 2017, failing to capture the constantly evolving
nature of this rapidly advancing field [33].

While the aforementioned studies offer a comprehensive analysis and generate novel
and valuable insights, their primary focus has generally been on the capabilities of UAVs,
particularly in the context of crop mapping and monitoring. Therefore, this study aims
to fill the existing knowledge gap by conducting a comprehensive scoping review and
bibliometric analysis of the literature on the practical use of UAVs for estimating ET or
detecting crop water stress. The objective is to give current, concise insights that may guide
and enhance PA practices.

Moreover, this research may serve as a vital resource for gaining a more profound
understanding of using UAVs to enhance precision water management practices. With the
increasing volume of scholarly output in scientific disciplines, it has become imperative
for researchers to use quantitative review methodologies to comprehend the structure of
knowledge [34]. Furthermore, as the complexity of research fields increases, it is essential
to analyse the information created within these disciplines [35]. This analysis serves several
purposes, including uncovering new contributions, documenting research traditions and
trends, identifying the themes that have been investigated, and exploring prospective
avenues for future research.

Consequently, the study endeavours to attain the objectives below:

1.  Conduct a scoping literature review on UAV-based RS techniques to facilitate precision
water management within smallholder farms.

2. Identify significant journals, publications, authors, and nations that have made notable
contributions using UAVs in ET estimation and crop water stress detection.

3. Describe UAV-based approaches to monitor crop water use and aid PA.

4. Use co-citation analysis to group publications according to their semantic similarity,
identify thematic areas, and map studies’ main “intellectual structure.”

5. Identify data analytic methods used to support the estimation of ET and detection of
crop water stress and analyse these results within the context of smallholder farming.
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2. Materials and Methods
2.1. Literature Search

An initial literature search was conducted using academic search engines, such as
Elsevier, Scopus, and Science Direct, to identify prominent keywords in published papers
from high-impact-factor journals that addressed three main areas of interest: precision
water management (S1), unmanned aerial vehicles (52), and crop water status (S3). An
iterative procedure facilitated the identification of a definitive keyword string that most
accurately described the objective of the investigation.

After this, Scopus was selected as the sole abstract and citation database for the bib-
liometric analysis due to its comprehensive and trustworthy standardised results. The
meta-data of publications were retrieved using the following query string: “(“precision
agriculture” OR “precision farm*” OR “precision irrigation” OR “precision water manage-
ment” OR “site-specific irrigation management” OR “site-specific management”) AND
(“unmanned aerial vehicle” OR “UAV” OR “unmanned aerial system” OR “UAS” OR
“unmanned aerial systems imagery” OR “drone”) AND (“evapotranspiration” OR “tran-
spiration” OR “crop water use” OR “crop water requirement” OR “water requirement” OR
“water stress” OR “stomatal conductance”)” on 7 August 2023.

Despite recognising smallholder farms as a significant area of interest in this study,
they were excluded from the search query due to the limited number of studies assessing
the relevance of UAV applications in these settings. Consequently, the search query was
broadened to enable a more comprehensive review of applicable techniques and to facilitate
the contextualisation of the main findings. However, the ensuing discussion portion of this
review will undertake a more comprehensive analysis of the findings to ascertain the cost-
effectiveness of the platforms and methodologies used in the final selection of studies. The
search was conducted without applying any constraints on the timespan; however, articles
that were not published in accredited peer-reviewed journals and not written in English
were excluded. The search results returned 69 references. The Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR)
framework was used to avoid biased reporting by guiding decisions regarding selecting
articles to be included or excluded from the review (see Figure 1).

The eligibility criteria for the review were established as follows:

1. The full-length article must be peer-reviewed, published in English, easily accessible,
and readily available.

2. The study or review should specifically address the use of UAV technology for esti-
mating ET or detecting crop water stress within the context of PA.

Two reviewers screened the title, abstract, and full-length article. Subsequently, a
third-party independent reviewer resolved disputes to ascertain that all the papers included
in the study adhered to the predetermined eligibility criteria. After screening these articles’
titles and abstracts, 49 full-length articles were identified as eligible and were sought for
downloading. No additional articles were sought following this process.

2.2. Data Analysis

Once the final database (1 = 49) had been compiled, a citation analysis was executed
using the Biblioshiny App version 4.3.0 (accessed using the R environment: Bibliometrix-R
package) to explore the connection between authors and peer-reviewed articles, underlying
citation patterns and the most influential authors and publications. Biblioshiny is a standard
citation and co-citation analysis tool. This tool offers simple interaction with other software
and significant data handling and analysis freedom. Moreover, a co-citation analysis was
conducted using VOSviewer (version 1.6.19) software to visualise the findings and generate
the bibliometric networks. VOSviewer offers a range of intuitive visualisations, particu-
larly for analysing bibliometric maps [36]. Finally, the connections and linkages between
countries, institutions, and journals were analysed to depict the collaboration network.
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Figure 1. The flow diagram for article selection according to the PRISMA-ScR framework.

3. Results

The initial analysis focused on the temporal distribution of scholarly research on
agricultural UAVs in precision water management, as shown in Figure 2. There has been a
notable surge in publications since 2019, with six recorded publications. Hence, the period
from 2013 to 2018 may be characterised as the first phase, during which an average of one
article was published yearly. The surge in publications after 2019 indicates a notable rise
in research activity, signifying the widespread use of UAVs in RS and PA [9]. Specifically,
there was an increase in the number of publications from 6 in 2019 to 12 in 2022, reaching
its highest point at 13 in 2021.
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Figure 2. Annual publication distribution.

3.1. Fundamental Statistical Data

Table 1 presents a comprehensive overview of the essential statistical information
on the overall literature dataset. Studies on using UAVs to enhance precision water man-
agement were first documented in 2013. Since then, this field of research has shown an
upward trajectory, with a compound annual growth rate of about 7.18%. In 2015, there was
a notable increase in the average total citations (TCs) per publication, reaching its highest
point at 372, as shown in Figure 3. Similarly, it is worth noting that 2015 had the highest
average total citations (TCs) per year, amounting to 41.33.

Table 1. Essential bibliographic details contained in the completed literature dataset.

Description Result Description Result
Timespan 2013-2023 References 3040
Number of journals 21 Author’s keywords (DE) 185
Number of publications 49 Authors 243
Annual growth rate % 7.18 Single-authored documents 0
Document average age 2.78 Co-authors per document 5.94
Average citations per document 41.29 International co-authorships % 36.73
50 372 400

N W
o O O

[}

2014 2015 2017 2018

Number of Articles/Citable Years/
Mean Total Citations per Year
—_
o

B Number of Articles

B Mean Total Citations per Year

X
249
X
74 62 67
100
I M_oielEaba
— ol - — . >(. X. X - -x. 0

2019 2020 2021 2022 2023
Year
Citable Years

x Mean Total Citations per Article

300

200

Mean Total Citations per Article

Figure 3. The dissemination of mean annual citations and publications.

3.2. Distribution Characteristics of Leading Research Countries

The distribution parameters of significant research nations indicate the respective
countries” impact on the UAV applications for ET estimation within the PA domain. The
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dataset used in this scholarly research was disseminated throughout 22 distinct nations.
The published papers have been circulated across different continents, including eight
European countries (Spain, Italy, Greece, Denmark, France, Sweden, Portugal, Germany),
seven Asian countries (China, Israel, South Korea, Pakistan, Saudi Arabia, Egypt, Iran), four
American countries (USA, Brazil, Canada, Chile), two African countries (South Africa and
Zimbabwe), and one Oceania country (Australia). As seen in Figure 4, most publications
were published in the United States and China. The United States of America is first
in terms of paper volume, with 15 articles. Nevertheless, the average number of article
citations for the nation under review was comparatively lower than that of countries such
as Spain and China.

100%
80%
60%
40%
1
0%
2 NS >

CO "Q '& S & x ‘\) \ & ,@ .Q,O &
S L @ O@ R RS ,Z,O'Z’ &‘\ \&b
‘(‘ Y’O 9
O\}
o)
Country
B Single Country Article Internationally Collaborative Article

Figure 4. The nationalities of corresponding authors in the top 15 nations with the highest productivity
in UAV applications in precision water management.

China emerged as the only developing nation in the top three regarding scholarly output,
surpassing other countries significantly. China’s research contributions constituted almost 22%
of the overall production, demonstrating its substantial presence in the academic landscape.
Furthermore, the average citation for each paper was 34.6, surpassing that of the United States
(26.5). Additionally, its paper volume attained the second-highest position on a worldwide
scale. Spain ranked second in total citations, with a cumulative count of 361; however, it
achieved the highest average citations per article at 120.3. Furthermore, Spain positioned
itself as the third highest publication volume, indicating its substantial impact on academic
literature. Another significant contributor is South Africa, which is sixth in publication volume.
This developing nation ranks fifth in total citations, with a total of 53. Additionally, South
Africa had an average citation score of 26.5 per article.

3.3. Influential Authors and Citation Analysis

This section provides an overview of prominent authors and explores the use of au-
thor citation networks to represent and structure the existing body of literature visually. A
collective of 243 authors contributed to the 49 articles on using UAVs to enhance precision
water management. A total of 207 researchers contributed to the publication of a single
paper, while 28 authors published two articles. Additionally, four authors had three articles
published, and another four authors had four articles published. Figure 5 displays the
author-level performance data for the 15 authors with the most publications (in chronologi-
cal order). The authors showing the most activity in this study’s emphasis area are Wenting
Han, Lav Khot, Huihui Zhan, and Liyuan Zhang. Moreover, Wenting Han, and Liyuan
Zhang, and have garnered the most citations.
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Figure 5. Key author-level citation metrics for authors with several publications.

The publications’ global citation score (GCS), average TCs per year, and normalised
citation score were all examined (Table 2). The GCS, which also contains citations from
works in other fields, accurately represents the TCs a publication received in the abstract
and citation database (Scopus) that was utilised. Gago et al. (2015) had the publication
with the highest rank in terms of TCs and average TC per year [37]. The researchers
comprehensively reviewed the capability of UAVs to analyse the water use of plants at a
crop scale to enhance crop water stress management. This was accomplished by exploring
the various RS-based indices obtained from UAV technology and their capacity to ascertain
plant physiological properties.

Table 2. The Global Citation Score (GCS) of the ten highest-ranking publications.

Journal TC TC per Year Normalised TC
Agricultural Water Management 372 41.33 1.00
Precision Agriculture 249 24.90 1.00
Precision Agriculture 240 21.82 1.00
Remote Sensing 146 29.20 217
Remote Sensing 108 27.00 4.03
Remote Sensing 97 19.40 1.44
Remote Sensing 88 12.57 1.20
Remote Sensing 82 16.40 1.22
Biosystems Engineering 62 10.33 1.00
Computers and Electronics in Agriculture 61 20.33 3.48

According to the normalised citation performance measure, the work authored by
Messina et al. (2020) had the highest normalised TC score. This study comprehensively
analyses the current advancements in UAV thermal RS in the agricultural sector. It provides
a detailed description of the most recent applications and offers insights into potential
areas for future research. The authors highlight that the crucial task of detecting water
stress based on plant temperature data has significant value. In addition, Messina et al.
(2020) explain that temperature-based indicators provide a rapid and efficient approach
to evaluating and estimating the water status of crops. One widely used indicator for
monitoring plant water status and managing irrigation resources is the crop water stress
index (CWSI).

Another vital article in Table 2, which features a prominent author in the field, was
the publication by Zhang et al. (2019). This study used high-resolution multispectral
images obtained from a UAV to assess the suitability of the data for mapping the water
stress condition of maize under different levels of deficit irrigation. Nine VIs associated
explicitly with agricultural water stress were calculated from the multispectral imagery.
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They were then used to develop inversion models for the CWSI. According to Zhang et al.
(2019), “the ratio of Transformed Chlorophyll Absorption in Reflectance Index (TCARI)
and Renormalized Difference Vegetation Index (RDVI), and the TCARI and Soil Adjusted
Vegetation Index (SAVI) had the best correlations with the CWSI”. The VI-CWSI regression
models were compared to an empirical CWSI model developed using on-site canopy
temperature, air temperature, and relative humidity measurements. In assessing crop and
soil variability, the VI-CWSI regression models devised in this investigation were more
effective than on-site measurements.

Furthermore, Sagan et al. (2019) ranked among the top five publications with the
highest citation counts. The researchers assessed three commercially accessible thermal
cameras for UAVs: the ICI 8640 P-series (Infrared Cameras Inc., Beaumont, TX, USA),
FLIR Vue Pro R 640 (FLIR Systems, Wilsonville, OR, USA), and thermoMap (senseFly,
Cheseaux-sur-Lausanne, Switzerland). The study’s findings indicate that the three thermal
cameras yielded valuable temperature data that may be effectively used in PA and plant
phenotyping. The ICI 8640 P-series had the most favourable outcomes among the three
systems [38]. However, the FLIR Vue Pro R 640 is a cost-effective alternative given its
affordability and acceptable performance. Farmers and researchers may acquire crucial
discernment on crop water conditions by using sophisticated analytics and integrating
thermal data with other pertinent information, enabling them to implement prompt and
precise irrigation management. This balance between cost and efficacy is essential for
addressing agricultural challenges, particularly for smallholder farmers, by providing
practical and affordable UAV-based thermal imaging solutions.

3.4. Influential Academic Journals

The completed literature database included 21 scholarly journals with a total of 49 pa-
pers that explore the use of UAVs for identifying crop water stress to facilitate PA. Remote
Sensing and Agricultural Water Management exhibit the highest volume of papers, compris-
ing around 53% of the overall publications. Remote sensing maintains its position at the
forefront of the rankings for TCs, with a score of 660. Hence, this journal is prominent in
the field of study focus. Figure 6 presents a visual representation of the critical journals
categorised based on Bradford’s law, a method used to determine the correlation between
published articles and the journals in which they are published.

Core Journals

Agricultural Water Management

Computers and Electronics in Agriculture

Applied Computational Electromagnetics Society Journal

Environmental Technology and Innovation = Zone 1 Zone2 =Zone3

Remote Sensing
Precision Agriculture
Drones

Agronomy
Biosytems Engineering A

Crop Journal

0 2 4 6 8 10 12 14 16 18

Number of Articles

Figure 6. The categorisation of academic journals based on Bradford’s law, fostering the dissemination
of scholarly investigations.

Bradford’s law proposes separating the pool of journal citations for a particular study
emphasis area into three distinct zones based on their frequency. Zone 1 signifies the
journals of utmost significance since they obtain the highest frequency of citations within
their respective topic areas and hence receive the most scholarly attention. Zones 2 and
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3 correspond to the journals with the average and least number of citations, respectively.
According to Bradford’s law, eighteen papers were published in a single journal under
Zone 1. Additionally, fifteen articles were published across four journals under Zone 2,
while five were published across five journals under Zone 3. According to the findings
shown in Table 3, Remote Sensing emerges as one of the most influential journals, as it attains
a high ranking in terms of output, TCs, and citation.

Table 3. Evaluation of publishing sources based on the number of articles published.

Journal Publication Start Year Number of Publications h-Index TCs
Remote Sensing 2017 18 11 660
Agricultural Water Management 2015 8 6 504
Precision Agriculture 2013 3 3 548
Computers and Electronics in Agriculture 2021 2 2 65
Drones 2020 2 2 26
International Journal of Environmental Science and 2023 1 1 14
Technology

Crop Journal 2022 1 1 2
Journal of Inlﬁellzgent and Robotic Systems: Theory 2022 1 1 2
and Applications

Journal of ASABE 2022 1 1 2
Journal of Universal Computer Science 2022 1 1 4
Remgte Sensing Applications: Society and 2022 1 1 1
Environment

Environmental Technology and Innovation 2021 1 1 18
Hydrology 2021 1 1 12
Information Sciences Letters 2021 1 1 13
Internatz.onal ]ou‘rnal of Applied Earth Observation 2021 1 1 1
and Geoinformation

Journal of Sensors 2021 1 1 6
Agronomy 2020 1 1 27
Applied Computational Electromagnetics Society 2020 1 1 1
Journal

Sensors (Switzerland) 2020 1 1 25
Water (Switzerland) 2020 1 1 10
Biosystems Engineering 2018 1 1 62

3.5. The Frequency, Growth, and Co-Occurrence of Keywords

The selection of keywords by authors for a publication has a pivotal role in shaping
the communication of the article within scientific communities [39]. Keyword analysis
is a method to uncover overarching research patterns by aggregating the terms found in
relevant papers within a particular field [40]. The Bibliometrix and Biblioshiny installation
packages in R Studio were used to quantify the top twenty authors and supplementary key-
words inside this domain (Tables 4 and 5). To ensure consistency, semantically equivalent
terms were merged, such as the consolidation of “drone” and “drones”, as well as “crop
water stress index” and “CWSI”. According to Table 4, it is evident from the respective
frequencies of 14% and 4% that authors prefer the term UAVs over the colloquial phrase
“drones”. Additionally, “evapotranspiration” and “precision agriculture” are highly ranked.
Despite being ranked sixth, the CWSI is the first term that offers valuable information
concerning an index used to quantify crop water stress. As a result, it is considered one of
the most widely utilised indices whose values range from 0 to 1 and is positively correlated
with the water stress level of many plant species. The CWSI integrates canopy temperature
and environmental variables such as humidity and solar radiation to comprehensively
measure plant water stress. Awais et al. (2023) revealed that the CWSI obtained via thermal
sensors on UAVs might be deemed suitable for real-time irrigation management. Addition-
ally, this index has been used in the detection of ET, as shown by previous studies conducted
by Bellvert et al. (2014), Santesteban et al. (2017), and Awais et al. (2023) [25,32,41].



Drones 2024, 8, 476 11 of 21

Table 4. Frequency of the top 20 author’s keywords.

Author Keyword Frequency (%) Author Keyword Frequency (%)
remote sensing 14.00 canopy temperature 3.00
unmanned aerial vehicles 14.00 land surface temperature 3.00
evapotranspiration 10.00 thermal imagery 3.00
precision agriculture 9.00 deep learning 3.00
CWSI 7.00 irrigation 3.00
water stress 6.00 grapevines 2.00
precision irrigation 4.00 image processing 2.00
stomatal conductance 4.00 irrigation scheduling 2.00
vegetation index 4.00 Landsat 8 2.00
drone 4.00 machine learning 2.00

Table 5. Frequency of the top 20 keywords plus.

Keyword Plus Frequency (%) Keyword Plus Frequency (%)
remote sensing 13.00 water stress 3.00
unmanned aerial vehicle 11.00 infrared-imaging 3.00
antennas 8.00 crop water stress indices 3.00
crops 8.00 vegetation index 3.00
evapotranspiration 8.00 agricultural robots 2.00
irrigation 7.00 energy balance 2.00
precision agriculture 7.00 satellite imagery 2.00
water management 4.00 land surface temperature 2.00
soil moisture 4.00 plants (botany) 2.00
vegetation 3.00 water supply 2.00

Stomatal conductance (4%) and canopy temperature (3%) are also valuable indicators
of water stress [5,42]. However, in terms of their frequency of occurrence, stomatal con-
ductance was shown to be more prevalent. The widespread use of “deep learning” and
“machine learning” suggests that much of the literature has been dedicated to exploring
Artificial Intelligence (AI) techniques for UAV-based agriculture. Machine Learning (ML)
methods are well suited for analysing data supplied by UAVs and other remote-sensing
and ground-based systems due to their adaptability and capacity to process large quanti-
ties of nonlinear data [43,44]. Another notable term that garnered attention was thermal
imaging, accounting for 3% of the data. Thermal imaging serves to detect variations in the
temperature of the leaf surface caused by physiological changes resulting from water stress.
Moreover, leaf stomata closure decreases transpiration and evaporative cooling, resulting
in a noticeable elevation in leaf temperature detected by thermal sensors [9].

Antennas (8%) transmit high-frequency radio signals between a smart controller
and a UAV (refer to Table 5). Several studies have referenced the use of antennas in the
context of georeferencing, namely, the Global Navigation Satellite System (GNSS) [45,46]
and telemetry antennas [47,48]. Furthermore, soil moisture (4%) is crucial to crop water
management, affecting ET and crop growth [49]. InfraRed-imaging (3%) has emerged
as a valuable technique for identifying and measuring crop water stress [50]. Moreover,
methodologies for estimating ET with the use of UAVs mostly employ VI-based modelling
(3%) [51] or energy balance (2%) techniques [52]. Another crucial term is land surface
temperature (2%). This variable is often included as a principal input in energy balance
models like the Surface Energy Balance Algorithm for Land (SEBAL) for estimating ET [53].

3.6. Visualising Thematic Clusters in Keyword Co-Occurrence Networks

Keyword co-occurrence networks allow researchers to identify fundamental themes
within a particular domain of study [13]. Furthermore, these networks serve as a power-
ful scientometric instrument that enables the visualisation and demonstration of shared
characteristics among co-occurring phrases or themes in scholarly literature. Using this
methodology, researchers can comprehensively understand a publication’s content and
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crucial details on the procedures, theoretical frameworks, and perspectives. Thirty nodes
are distributed between three distinct clusters. In addition, nodes in Figure 7 represent
keywords that appeared at least six times in the literature.
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Figure 7. Co-occurrence network of keywords that appeared at least six times in the litera-
ture database. The various colours represent distinct thematic clusters, indicating groups of
related keywords.

One cluster involves precision irrigation, which relates to water management. Other
keywords within this cluster include crop water stress indices such as ‘stomatal conduc-
tance” and ‘canopy temperature’. Information on these indicators can aid in providing
insight into the water status of crops, thereby optimising water use concerning irrigation
management. The second cluster relates to ET. ‘Crops” and ‘soil moisture’ are integral to
the ET process since they influence the amount of water lost from the land surface to the
atmosphere. Moreover, RS-based approaches are widespread in ET estimation. The two
leading RS platforms include ‘UAVs’ and ‘satellite imagery’.

RS-based ET estimation often employs the ‘energy balance” method, which consid-
ers the energy exchanges at the land surface. ‘Land surface temperature’ (LST) is a vital
component of this method and is measured using thermal infrared sensors on RS plat-
forms (e.g., satellites or drones). The third cluster relates to ‘vegetation” involving ‘VIs’.
The Normalised Difference Vegetation Index (NDVI) has been widely used in vegetation
monitoring, specifically in ET estimation and crop water-stress detection. Moreover, veg-
etation, including trees, shrubs, crops, and grasses, plays a central role in transpiration.
Nevertheless, the transpiration rate depends on factors such as the type of vegetation, its
growth stage, and environmental conditions.

4. Discussion

Currently, there is no established method for selecting a practical UAV-based approach
to determine crop water status and subsequently guide irrigation management decisions
for small-scale agriculture. This is crucial since these farmers’ challenges and limitations are
primarily due to the prevalent resource constraints in their environments. Therefore, in this
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study, clustering techniques were employed to facilitate the identification of overarching
themes on case study applications involving UAVs to estimate ET or detect crop water
stress in PA. The results section consolidates data from 49 publications across various
journals. Hence, these themes were examined and will be further discussed concerning the
smallholder farmer context.

4.1. Advances in Thermal Remote Sensing

Thermal RS has gained prominence in the literature due to advancements in sensor
technology and a subsequent reduction in costs. This technology utilises thermal and near-
infrared (NIR) imagery to compute the crop coefficient (Kc) and ET, as the transpiration
rate is closely related to canopy temperature. Kc has been shown to correlate with canopy
reflectance; however, the accuracy of these measurements can be influenced by various
factors, including the properties of the thermal camera, prevailing weather conditions, and
the multiple sources of emitted and reflected thermal radiation. Consequently, meticulous
calibration of ground data collection and reference panels for temperature measurement
and data processing are essential to ensure accurate temperature retrieval [9,54].

In water stress conditions, the closure of leaf stomata leads to reduced transpiration
and evaporative cooling, resulting in a significant increase in leaf temperature, which
thermal sensors can detect. Using thermal images obtained from UAVs and establishing
correlations between foliar temperature and stomatal conductance, valuable insights can
be gained into how plants respond to water stress [5,24,42,55,56]. Monitoring these vari-
ables during crop growth enables small-scale farmers to implement effective strategies to
minimise losses and maximise crop production.

It is noteworthy, however, that leaf or canopy temperature alone does not comprehen-
sively characterise crop water status; an equally stressed canopy can exhibit temperatures
of 25 °C or 35 °C, depending on the ambient temperature (Ta). To address this limita-
tion, the canopy-to-air temperature difference (Tc — Ta) has been proposed as a more
informative metric, demonstrating a strong correlation with stem water potential, leaf
water potential, and stomatal conductance in horticultural crops [46]. While these in situ
measurements provide a viable means for detecting crop water stress, relying solely on
UAV-based measurements can present challenges.

4.2. Practical UAV Solutions for Small-Scale Farmers

Using an RGB sensor on a cost-effective UAV may be the most practical option for
small-scale farmers concerned with irrigation applications. For example, Messina and
Modica (2022) suggest enhancing RGB sensors to capture images in spectral bands such
as Red Edge and NIR, thereby circumventing the need to invest in a more expensive
multispectral camera [57]. Furthermore, Gautam et al. (2021) used an RGB camera mounted
on an autonomous UAV to compute the canopy area as a proxy of Kc [46]. Thus, with the
enhanced autonomy of UAVs and the improved efficiency of data processing techniques, it
may be feasible for farmers to estimate irrigation needs at various stages throughout the
season by using a UAV-based RGB camera. Furthermore, images captured by these sensors
require less processing, eliminating the need for additional processing software. As a result,
operational expenses are reduced [58].

4.3. Energy Balance Models for ET Estimation

Two primary models that facilitated ET estimation emerged in the database: thermal
band-based energy-balance techniques and empirical VI models [59]. UAV-based energy
balance methods are generally modified versions of satellite-based energy balance models,
such as SEBAL, Surface Energy Balance System (SEBS), Mapping Evapotranspiration at
High Resolution with Internalized Calibration (METRIC), One Source Energy Balance
(OSEB), Two Source Energy Balance (TSEB), Dual-Temperature Difference (DTD), and
High-Resolution Mapping of Evapotranspiration (HRMET), leveraging UAV datasets for
accurate ET estimation [30,60]. Moreover, energy balance approaches are subdivided into
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various approaches, whereby UAV inputs are used directly, or a coarser satellite resolution
image is downscaled.

Adopting RS-based ET estimation models in smallholder settings is often hindered
by their complexity and data requirements. Smallholder farmers frequently lack access to
comprehensive in situ datasets, such as meteorological data, land surface temperature, and
canopy structure data, which are essential for many ET models. The acquisition of these
datasets is often costly and necessitates specialised equipment, placing an additional burden
on limited resources. Furthermore, the technical expertise required to operate these models
frequently exceeds the capabilities of smallholder farmers. Moreover, utilising these models
necessitates a thorough understanding of the underlying principles and advanced data
processing and analysis skills, which are typically unavailable within this demographic.

The data requirements inherent in many energy balance models, such as SEBS and
SEBAL, pose significant challenges for their application in smallholder farming contexts.
Models like SEBS, demanding extensive data inputs including thermal infrared imagery, me-
teorological data, and land cover information, often prove too intricate and data-intensive
for resource-constrained smallholder settings [61]. Furthermore, these models frequently
lack direct measurement validation and are best suited for larger spatial scales, limiting
their practical applicability for smaller, more fragmented farmlands. Models like SEBAL
require calibration against ground-based measurements or other independent ET data
sources [53,62,63], which may be scarce in smallholder settings. Additionally, the spe-
cialised expertise in remote sensing, meteorology, and data analysis needed to implement
these models may not be readily available to farmers in these contexts.

Addressing the limitations of complex ET models in smallholder settings requires a
shift toward simplified approaches and tailored solutions. OSEB and HRMET, with their
minimal input data requirements, offer alternative approaches worth further investiga-
tion [30]. Developing adapted methods designed to align with the resource constraints
and expertise levels of smallholder farmers is crucial. Collaborative efforts involving re-
searchers, extension services, and farmers are essential to develop and implement practical
ET estimation methods that are locally relevant and sustainable. Additionally, models
like METRIC-EEFLUX and the QWaterModel, known for their low data requirements,
free accessibility, and user-friendliness [64-66], provide promising alternatives. However,
further testing of these models in diverse smallholder farming environments is necessary
to validate their accuracy and reliability.

The versatility and practicality of UAVs, coupled with using less data-intensive energy
balance models, make them particularly well suited for smallholder agriculture. Future
research should prioritise the development of user-friendly ET estimation methods tailored
for smallholder settings, focusing on accessible data collection methods and straightfor-
ward analysis techniques. Empowering farmers through training programs that foster
an understanding of ET, utilise readily available sensors, and interpret data for informed
decision making is crucial. By prioritising accessibility and practicality, researchers can
better support smallholder farmers in adopting sustainable water management practices
and enhancing agricultural productivity.

4.4. VI Methods for ET Estimation

To this end, the use of VI-based ET estimation methods may prove to be most ap-
propriate. Methods utilising VIs to estimate ET often involve establishing a relationship
between a VI and Kc [67]. Past studies have employed diverse spectral and thermal in-
dicators like NDVI and CWSI to predict Kc [46]. The association between NDVI and Kc
can be ascertained through basic linear regression or advanced approaches involving ML
techniques. Subsequently, by using NDVI as a proxy for Kc, the computation of ET becomes
more accessible. NDVI is often the preferred indicator of choice as it is versatile and can be
easily computed using the data acquired from most multispectral sensors onboard various
remote sensing platforms. Subsequently, it has frequently been used as a primary indicator
for vegetation assessment in agricultural studies [68].
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4.5. The Role of CWSI in Water Management

Tang et al. (2019) confirmed that the CWSI may be a more effective indicator when
included in maize ET calculations under rain-fed conditions. The researchers used the
index to ascertain the stress coefficient (Ks = 1 — CWSI). Their findings indicated that
ET calculated using the Ks-CWSI approach had a stronger association with the modified
FAO-56 Kc technique, as shown by a coefficient of determination (R?) value of 0.81. Notably,
numerous small-scale farms in sub-Saharan Africa rely on rainfall for irrigation, leading
to significant water scarcity issues. As a result, most agricultural development in these
settings occurs under water-stress conditions [4].

4.6. Utilisation of the Water Deficit Index (WDI) for Crop Stress Assessment

The WDI is another valuable indicator for assessing crop water stress by depicting
the relationship between actual (ETa) and potential evapotranspiration (ETp), defined as
WDI =1 — (ETa/ETp) [69]. In a study by Antoniuk et al. (2021), the authors utilised a
UAS equipped with multispectral and thermal sensors to detect and quantify drought
stress in winter wheat using the Water Deficit Index (WDI). The results concluded that
the significant correlation of the WDI to stomatal conductance and leaf water potential
indicates the possibility of detecting early drought signals [70].

4.7. The Role of Machine Learning in ET and Water Stress Assessment

The literature database has extensively employed ML techniques to estimate ET
and water stress. These approaches offer several advantages in dealing with complex
and high-dimensional data and capturing nonlinear relationships, making them well
suited for modelling and forecasting hydrological variables. Moreover, numerous studies
have demonstrated that ML can accurately capture complex relationships between VlIs,
environmental factors, and ET, enabling more precise mapping of ET across different land
covers and weather conditions [71-74].

In addition, ML algorithms, such as random forest, support vector machines, and
multiple linear regression, have proven effective in analysing crop characteristics such as
water and health status [75-77]. However, among these algorithms, the random forest
ensemble has consistently outperformed the other two mentioned algorithms. This was
demonstrated in various studies [51,78]. In addition, deep learning, a branch of ML, has
been extensively used in agricultural water status research and has consistently achieved
better outcomes than conventional ML methods [58]. Although these models may pro-
vide accurate results that require little user involvement, their complexity, demanding
computational and data-intensive requirements may restrict their practicality for broad
usage in facilitating precision water management in smallholder farms. For example,
Niu et al. (2022) [47] compared a stochastic configuration networks (SCN) model to a
linear regression model. The authors established a relationship between NDVI and Kc
for estimating the ET of pomegranate trees. The findings showed that the SCN model
achieved an R? value of 0.995, while the linear regression model achieved 0.975. While
the SCN model achieved superior performance, the linear regression model demonstrated
exemplary performance and may be the preferred method of choice in many instances due
to its simplicity, interpretability, and computing efficiency.

4.8. Future Directions and Research Gaps

In addition to the various approaches that have been identified from the literature
database for the estimation of ET and crop water stress, most research has been focused on
orchards, including pistachio [53], olive [57], almond [24,79], pomegranate [47], pecan [80],
and vineyards, including grapevine [46,81,82] and pinot noir [41,83]. There have been
fewer studies conducted on staple crops like maize [9,59,84] or winter wheat [50,70] and
no studies on neglected and underutilised crops. Therefore, it would be advantageous to
prioritise research on these and other climate-resilient and nutrient-rich crops since many
smallholder farmers grow these staple crops. Improving the productivity of these farms can
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not only aid in enhancing food and nutrition security but also improve the socioeconomic
conditions of these often-marginalised smallholder communities.

4.9. Challenges and Opportunities

The previous discussion emphasised the many themes of using UAVs to facilitate

precision water management in smallholder farms. Nevertheless, despite the global recog-
nition and demonstration of the immense potential of these advanced technologies, their
adoption in resource-constrained nations has significantly lagged. The innovation gap in
the context of smallholder farms within these regions might be ascribed to many factors.

Cost and affordability: the price of UAV technology might be a considerable obstacle,
particularly for small-scale farms or enterprises, due to the initial outlay costs and
infrastructure requirements involved in obtaining and maintaining the equipment.
Fortunately, as UAV technology advances, new camera designs are being introduced,
costs are decreasing, image processing techniques are improving, and more experi-
ments are being conducted on UAV-based RS for agricultural purposes. In addition,
the initial outlay is also offset by the potential for repeat flights, resulting in more
frequent datasets and reduced labour and resource expenses.

Technical literacy and information accessibility: insufficient technical literacy among
smallholder farmers may hinder their comprehension, operation, and maintenance
of drone technology. Moreover, inequities in accessing information and extension
services might lead to unequal dissemination of knowledge on the advantages and
uses of UAV technology. Therefore, smallholder farmers may exhibit risk aversion
and be reluctant to invest in new technology without compelling information about
their benefits, hindering the pace at which it is adopted. Nevertheless, collaboration
between the public and private sectors can be established through partnerships with
non-governmental organisations with a local presence, such as agricultural extension
workers. These partnerships can provide practical training to farmers and enhance
their technological skills.

Limited infrastructure: inadequate infrastructure might impede the implementation
and use of UAVs in rural regions where many smallholder farms are situated. These
factors include substandard road networks, insufficient electrical supply, and no
charging facilities. Subsequently, governmental organisations should ensure capacity
development by equipping the relevant farmers with the necessary tools to operate
these technologies.

Data-intensive methods: in small-scale farming, it is anticipated that the UAV will col-
lect most of the data. Nevertheless, several techniques outlined in the literature rely on
high-quality in situ measurements to develop and verify the models for predicting cru-
cial variables. Hence, more research is necessary regarding UAV-based methodologies,
including all the required data acquisition to provide the desired outcome.

Research into practical alternatives: the most frequently used VIs rely on multispectral
cameras to detect crop water stress. Furthermore, the thermal sensor attachment is
widespread in several investigations. However, as previously stated, an RGB sensor on
an affordable UAV might be the most feasible choice for small-scale farmers interested
in irrigation applications. Nevertheless, a few investigations have shown the sensor’s
capacity in this aspect. Hence, further research using the RBG sensor and cutting-edge
methodologies is necessary to decrease operating expenses.

Computational resources: processing, disseminating, and displaying UAV data require
considerable computational capacity. Potential users may need supplementary re-
sources or new skills to manage the substantial amounts of data associated with UAVs
effectively. However, geospatial cloud computing platforms, such as GEE, have signif-
icantly transformed how geospatial data are handled and processed. These systems
offer several advantages over conventional approaches by integrating ML techniques.
Furthermore, this platform provides access to sophisticated computational capabilities
for handling large volumes of geographical data and warrants further investigation.
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5. Conclusions

Smallholder farmers primarily rely on indigenous knowledge for their agricultural
practices; however, these practices can be enhanced by integrating modern farming tech-
niques to improve productivity and resilience in the face of climate change. Consequently,
further efforts are needed to improve accessibility to and utilisation of technological ad-
vancements for small-scale and developing farmers. The agricultural industry is increas-
ingly recognising the significance of this research area and is supporting the development
of practical approaches that benefit all agrarian stakeholders. UAVs are gaining traction
for various precision agriculture applications, with anticipated cost reductions due to
open-source processing platforms, such as Google Earth Engine. This review highlights
various methods, challenges, and opportunities for using UAV technologies to estimate
crop water use, identify water stress, and understand the contextual conditions in which
smallholder farmers operate. UAVs equipped with multispectral or hyperspectral cameras
can effectively map crop water stress, enabling precise irrigation and reducing water waste.
High-resolution UAV imagery provides insights into crop health indicators, such as chloro-
phyll levels and vegetation indices, facilitating early interventions and improved yields.
Furthermore, deploying RGB sensors on cost-effective UAVs offers a practical solution for
small-scale farmers focused on irrigation, especially as these sensors can be adapted to
capture images in spectral bands such as Red Edge and NIR, thereby eliminating the need
for more expensive equipment. A multi-pronged approach is essential for implementing
drone technology in small-scale agriculture; this approach should include user-friendly
UAV applications, farmer training programs, and collaborative efforts among researchers,
extension services, and farmers. Such initiatives will bridge the gap between cutting-edge
technology and the practical needs of smallholders, promoting sustainable and productive
agricultural practices. While this review contributes to the growing body of knowledge
in the field, it acknowledges limitations stemming from the subjective selection of studies
included. Nonetheless, the findings offer a foundation for developing effective precision
water management practices by applying UAV technologies in agriculture.
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