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Post-transcriptional reprogramming by
thousands of mRNA untranslated regions
in trypanosomes

Anna Trenaman1,3, Michele Tinti 1,3, Richard J. Wall1,2 & David Horn 1

Although genome-wide polycistronic transcription places major emphasis on
post-transcriptional controls in trypanosomatids, messenger RNA cis-reg-
ulatory untranslated regions (UTRs) have remained largely uncharacterised.
Here, we describe a genome-scalemassive parallel reporter assay coupledwith
3’-UTR-seq profiling in the African trypanosome and identify thousands of
regulatory UTRs. Increased translation efficiency was associated with dosage
of adenine-rich poly-purine tracts (pPuTs). An independent assessment of
native UTRs using machine learning based predictions confirmed the robust
correspondence between pPuTs and positive control, as did an assessment of
synthetic UTRs. Those 3’-UTRs associated with upregulated expression in
bloodstream-stage cells were also enriched in uracil-rich poly-pyrimidine
tracts, suggesting a mechanism for developmental activation through pPuT
‘unmasking’. Thus, we describe a cis-regulatory UTR sequence ‘code’ that
underpins gene expression control in the context of a constitutively tran-
scribed genome. We conclude that thousands of UTRs post-transcriptionally
reprogram gene expression profiles in trypanosomes.

Post-transcriptional regulatory sequences often reside within messen-
gerRNA (mRNA) 3’-untranslated regions (UTRs).UTRsare thought tobe
particularly important in the context of unregulated polycistronic
transcription in the trypanosomatids, where differential expression
controls necessarily operate almost exclusively post-transcription1, at
the level of mRNA abundance and translation control in particular2–6.
Although functional characterisation of trypanosomatid protein-coding
regions has progressed rapidly in recent years, there has been less
progress in the characterisation of mRNA untranslated regions which,
based on our updated annotation, comprise approx. 34% of the African
trypanosome genome.

The parasitic trypanosomatids include the African and South
American trypanosomes and the Leishmania spp7. African trypano-
somes, Trypanosomabrucei, cause sleeping sickness, or humanAfrican
trypanosomiasis; American trypanosomes, Trypanosoma cruzi, cause
Chagas disease; and the Leishmania spp. cause the leishmaniases.

Beyond these neglected tropical diseases, African trypanosomes also
cause nagana in cattle and other livestock. These protozoan parasites
are transmitted among mammals by distinct insect vectors. Gene
expression control mechanisms in trypanosomatids are of interest,
therefore, in terms of understanding pathogenesis, and in terms of
developing interventions. The trypanosomatids also present notably
tractablemodels for studies focussing on post-transcriptional controls
operating in eukaryotes.

In trypanosomatids, longpolycistronic transcription units contain
genes encoding proteins with unrelated functions and with wide-
ranging expression levels. Primary transcripts are co-transcriptionally
processed into individual mRNAs by trans-splicing of a common,
39-nucleotide, capped ‘spliced leader’, and by polyadenylation8–10.
These mRNA processing steps are coupled, and driven by 8–25
nucleotide, uracil-rich, poly-pyrimidine tracts, that are typically
80–140 nucleotides downstream of a polyadenylation site and 10–40
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nucleotides upstream of a trans-splicing site11. No further consensus
sequences have been defined for polyadenylation sites, typically an A;
splicing branch sites, typically an A; or trans-splicing acceptor
sites, typically the first AG dinucleotide downstream of the poly-
pyrimidine tract.

The majority of experimentally characterised trypanosomatid
UTRs are from T. brucei, and studies have typically focussed on 3’-UTRs
that impact developmentally regulated expression; primarily for those
proteins that substantially differ in abundance between themammalian
bloodstream-form of the parasite and the procyclic form, typically
found in themid-gut of the insect vector. Amongapproximately twenty-
five genes with known regulatory 3’-UTRs are those encoding enzymes
involved in ATP production12–14, cell surface transporters13,15–18, and
mRNA-binding proteins12,19,20. Attention has also focussed on regulatory
3’-UTRs that impact the expression of other developmental stage-
specific cell surface proteins21, including genes that are unusually tran-
scribed by RNA polymerase I, and that encode super-abundant surface
proteins22 and variant surface glycoproteins23. Despite intense efforts,
however, regulatory 3’-UTRs, and the relevant cis-regulatory sequences,
remain largely uncharacterised in the trypanosomatids.

To gain further insight into the principles governing post-
transcriptional gene expression controls operating in trypanosoma-
tids, we designed aMassive Parallel Reporter Assay (MPRA) inT. brucei.
Implementation of a UTR-seq strategy allowed us to assess 3’-UTR
regulatory potential at a genomic scale and revealed thousands of
regulatory 3’-UTRs. Analysis of thousands of hit-fragments, and an
independent assessment of native UTRs using a machine learning
approach, revealed poly-purine tracts associated with increased
translation. Our findings further suggest developmentalmodulationof
poly-purine tract function by poly-pyrimidine tracts.

Results
A Massive Parallel 3’-UTR Reporter Assay
Todevelop a genome-scale screening platform for the identificationof
regulatory 3’-UTRs in T. brucei, we assembled the pRPaiUTR reporter
construct, containing a dual positive (blasticidin deaminase, BSD) and
negative (thymidine kinase, TK) selectablemarker (Fig. 1a). TheBSD-TK
reporter was assessed using known positive or negative regulatory 3’-
UTR fragments inserted immediately downstream; from aldolase13 or
cytochrome oxidase genes14, respectively (Fig. 1a). The resulting con-
structs were used to derive recombinant T. brucei strains, which were
assessed using drug-selection and dose-response analysis, revealing
relative blasticidin-resistance and ganciclovir-sensitivity associated
withuseof the aldolase3’-UTR, as intended (Fig. 1b). Inducible reporter
expression, and increased expression driven by the aldolase 3’-UTR,
was also confirmed by protein blotting (Supplementary Fig. 1a). The
cassette immediately downstream of the BSD-TK stop-codon in
pRPaiUTR then facilitated high-efficiency ligation of a library of T. brucei
genomic DNA fragments, and assessment of both library complexity
and fragment orientation (Fig. 1c). We constructed the library by
cloning T. brucei genomic DNA fragments of 1–3 kbp in length and
found that >90% of the clones analysed contained inserts in the
expected size-range (Supplementary Fig. 1b); the semi-filling approach
used maximised ligation of individual T. brucei genomic DNA frag-
ments to the pRPaiUTR reporter construct (Fig. 1c). The plasmid library
was then used to generate a high-complexity bloodstream form T.
brucei library comprising approx. 2.5 million clones; given a haploid
genome size of ~40Mbp, this is equivalent to a theoretical >50 times
genome coverage for both native oriented and inverted fragments
(Supplementary Fig. 1c).

Library screening was carried out by pre-inducing reporter
expression with tetracycline for 24h, followed by either positive or
negative selection (Fig. 1d). In the blasticidin, ‘positive-control’ arm of
the screen, survival was increased by 3’-UTR fragments that increased
BSD-TK expression; this is because blasticidin deaminase inactivates

the blasticidin toxin. In contrast, in the ganciclovir, ‘negative-control’
arm of the screen, survival was increased by 3’-UTR fragments that
reduced BSD-TK expression; this is because thymidine kinase converts
ganciclovir into a toxin. We monitored growth during selection and
harvested cells after four, six and eight days in each case; comparison
with an unselected culture revealed substantial selection by both
blasticidin, which reduced relative cell number >4000-fold by day
eight, and ganciclovir, which reduced relative cell number >60-fold by
day eight (Supplementary Fig. 1d). Genomic DNA was extracted from
each selected sample, and DNA libraries were generated by amplifying
the fragments cloned immediately downstream of the reporter,
including the flanking index sequences (Fig. 1c, Supplementary Fig. 1e).
A control set of amplicons was also generated in parallel using the
plasmid library as template. All seven samples were deep-sequenced,
and ‘UTR-seq’ reads were mapped to the T. brucei genome; 100.3
million paired reads for the blasticidin-selected samples (4.8% with an
index sequence), 176.2 million for the ganciclovir-selected samples
(4.8% with an index sequence), and 50.7million for the plasmid library
(6.5%with an index sequence).As apreliminaryquality control step,we
evaluated the read counts in annotated 3’-UTR regions and visualized
the results using principal component analysis. This analysis revealed a
cluster of blasticidin-selected samples and a separate cluster of
ganciclovir-selected samples, which were both separated from the
plasmid library control sample (Fig. 1e). We also quantified indexed
read-counts adjacent to Sau3AI sites in the T. brucei genome. This
analysis yielded signals for >48,000 sites, with strong enrichment
adjacent to these sites, as expected given our use of Sau3AI to con-
struct the library, and a substantial change in the profile following
blasticidin-selection (Fig. 1f). These results are consistent with the view
that distinct genomic fragments that impact reporter expression were
enriched in the MPRA.

To visualise genome-wide hit-profiles, we identified enriched
regions (peaks) for which the read count was increased following
selection relative to the plasmid library control sample.We considered
protein coding sequence (CDS)-derived peaks and peaks that exten-
ded outside of CDSs separately, and only reads associated with frag-
ments cloned in their native orientation relative to the reporter at this
stage; using indexed reads to determine orientation and relative
enrichment. Positive selection with blasticidin yielded 80 enriched
CDS peaks and 1827 enriched ‘inter-CDS’ peaks, while negative selec-
tion with ganciclovir yielded 918 enriched CDS peaks and 1915 enri-
ched ‘inter-CDS’peaks (Fig. 2a). The striking excess of ‘inter-CDS’peaks
relative to CDS peaks following positive selection with blasticidin
suggested that fragments incorporating 3’-UTRs selectively supported
robust reporter expression. To further explore this hypothesis, we
visualised read-mapping relative to annotated genes and show three
examples of long CDSs, encoding dynein heavy chains, that are on
average twenty-five times longer than their cognate 3’-UTRs; these
examples serve to illustrate the striking enrichment for positive reg-
ulatory fragments that do indeed incorporate 3’-UTRs (Fig. 2b).

A closer inspection of enriched inter-CDS peaks revealed some
additional notable features, including association of subtelomeric
Variant Surface Glycoprotein (VSG) genes with an increased propor-
tion of positive regulatory fragments (Supplementary Fig. 2), as
expected, given the positive regulatory potential of the VSG 3’-UTR23.
In contrast, we observed an increased proportion of fragments linked
to negative regulation derived from subtelomeric retrotransposon
hotspot (RHS) arrays, VSG expression site associated gene (ESAG)
arrays, and from rDNA loci (Supplementary Fig. 2). These observa-
tions are consistent with previously reported negative control of RHS
genes24 and a lack of mRNA processing signals at rDNA loci. We con-
clude that distinct genomic fragments that impact reporter expres-
sion were indeed enriched in the MPRA and that many 3’-UTR
sequences likely function similarly in their native context and in
the MPRA.
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At this point, many T. brucei 3’-UTRs remained unannotated.
Taking advantage of the Apollo annotation app25 implemented at
TriTrypDB26, we revised or added 3’-UTR annotations for 4703 genes
(seeMethods formore details). Using the newdata, now incorporating
3’-UTR annotations for >8028 genes, and >97% of all genes, we find the
average 3’-UTR to be 622 b (median 388 b). Since the average CDS is
1576 b (median 1215 b), the average 5’-UTR is 177 b (median 82 b;
excluding the common 39 b spliced leader sequence), and only 1974 b
is thought to be dedicated to intronic sequence in just two CDSs in the

entire haploid genome, UTRs account for approx. 34% of the mRNA
transcriptome in T. brucei, while 3’-UTRs account for approx.
26% (Fig. 2c).

Identification of thousands of regulatory 3’-UTRs
All inter-CDS peaks recovered from the MPRA were manually curated,
using indexed reads to define the boundaries of genomic fragments
(see Methods for more details). This yielded 1941 and 2282 fragments
that overlapped with 3’-UTRs, following positive selection with
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blasticidin, or negative selection with ganciclovir, respectively. All
these recovered fragments were assigned to their cognate 3’-UTR and
assessed for relative enrichment (Supplementary Data 1). We derived
counts for indexed paired reads and ran pairwise comparisons for day-
4, day-6 and day-8 positive and negative selected samples to calculate
log2 fold changes. Given the absenceof downstreammRNAprocessing
signals in our reporter construct, we expected relatively few mRNA
processing signals and regulatory elements generated by fragments
cloned in the inverted orientation relative to the reporter. Indeed, a
comparison of log2 fold changes for fragments cloned either in the
native orientation, or in inverted orientation, revealed the expected
strand-bias following either positive (p = 2.4−113) or negative (p = 2.7−21)
selection (Fig. 3a).

To further explore the quality and coverage of our dataset, we
asked whether previously described regulatory 3’-UTRs in T. brucei
registered enriched hit fragments in the appropriate armof the screen.
A literature search yielded twenty-five documented regulatory 3’-
UTRs; thirteen linked to positive regulation and twelve linked to
negative regulation in bloodstream form trypanosomes (Supplemen-
tary Data 1). Nine of these known regulatory 3’-UTRs register as hits in
the expected positive arm of the screen (χ2 p = 1.1−7), and six as hits in
the expected negative arm of the screen (χ2 p =0.01). These are high-
lighted in Fig. 3b, where the fragments described above are ranked
according to fold-change following either positive or negative selec-
tion (Fig. 3b); the highly repetitive VSGs and ESAGs were not surveyed
as part of this analysis. We also employed the Wilcoxon rank-sum test
to determine statistical significance and adjusted the resultingp-values
for multiple comparisons using the False Discovery Rate (FDR). This
assessment revealed significant enrichment (FDR <0.1) for 1112 posi-
tive regulatory hit fragments from 1070 3’-UTRs, and 807 negative
regulatory hit fragments from 801 3’-UTRs, (Supplementary Data 1).

The known regulatory 3’-UTRs detailed above, that were also
associated with significantly enriched fragments in the MPRA, serve as
exemplars, and for a sub-set of these, we show both MPRA read-
mapping and gene expression: including tracks for RNA-seq read-
depth to indicate mRNA abundance27, and ribosome profiling data to
indicate translated protein-coding regions and translation efficiency5.
First, positive regulatory hit-fragments are shown for the aldolase and
phosphoglycerate kinase (PGK) genes (Fig. 3c). The aldolase 3’-UTR
was the positive regulatory UTR used for initial validation of the
reporter assay (Fig. 1a, b), while the PGKA-C locus illustrates differ-
ential control of adjacent paralogs. PGKC yields a hit-fragment
following positive selection, consistent with specific, and 3’-UTR-
dependent, upregulation in bloodstream-form cells28. Second, nega-
tive regulatory hit-fragments are shown for cytochrome oxidase
subunit and nucleoside transporter genes (Fig. 3d). A cytochrome
oxidase subunit 3’-UTR was used for initial validation of the reporter
assay (Fig. 1a, b), while the nucleoside transporter locus illustrates
three paralogs, all of which register hit-fragments, consistent
with 3’-UTR-dependent negative regulation in nucleoside-replete
conditions15. Third, the trypanosome hexose transporter (THT) locus

registers independent positive and negative regulatory hit-fragments
(Fig. 3e), consistent with developmental regulation of both THT1 and
THT2 paralogs13. Among these exemplars, several hit-fragments iden-
tify specific regulatory portions of each 3’-UTR (Fig. 3c–e).

The assessment above indicated that the MPRA effectively selec-
ted positive and negative regulatory T. brucei 3’-UTRs and UTR frag-
ments at a genomic scale. A requirement for mRNA processing signals
likely contributed to strand-bias following positive selection (Fig. 3a)
and may also increase the proportion of hit fragments that include a
downstream poly-pyrimidine tract and splicing site. Indeed, we found
that 79% of significantly enriched blasticidin-selected hits and 59% of
ganciclovir-selected hits included the native downstream splice site
(SupplementaryData 1).Notably, an analysis of the cognate 3’-UTRs for
these hits revealed significantly longer (p = 4.5–12) UTRs associatedwith
positive control relative to negative control (Fig. 3f).

Since trans-splicing-associated sequences have been reported to
impact splicing efficiency9, and splicing is coupled to polyadenylation
of the upstream transcript, we wondered whether downstream splice-
sites might impact expression of the reporter in our screen. We found
no evidence in support of this view, however. First, poly-pyrimidine
tracts associatedwith the processing of high or low abundancemRNAs
do not appear to be substantially different (Supplementary Fig. 3a).
Second, although the dinucleotides immediately preceding an AG
splice-site occur at substantially different frequencies and are asso-
ciated with differential abundance of cognate mRNAs (Supplementary
Fig. 3b), we saw no evidence for selection bias for these sequences
downstreamof ourUTRhit fragments, in either thepositive or negative
control screens (Supplementary Fig. 3c). We conclude that differences
in native splice-sites, included downstream of the majority of our hit
fragments, had little impact on expression of the reporter in ourMPRA.

Poly-purine tracts are enriched in the 3’-UTRs of highly
translated mRNAs
To explore features thatmay drive differential expression, we trimmed
significantly enriched hit fragments and retained only those reporter-
adjacent regions that overlapped with 3’-UTRs for analysis (Supple-
mentaryData 1).We first compared nucleobase composition andmotif
enrichment in positive and negative regulatory hit fragments from the
MPRA. Positive regulatory fragments were more A-rich (p = 1.1−22),
C-poor (p = 1.1−12), and U(T)-poor (p = 5.9−5) relative to negative reg-
ulatory fragments; both sets of fragments were C-poor and U(T)-rich
(Fig. 4a). Consistent with these differences in nucleobase composition,
a motif search revealed highly significant enrichment of a 9-b, A-rich,
poly-purine motif (at 4163 sites, 10.3 sites per kb, E value 1.7−73) in
positive regulatory fragments (Fig. 4b).

Selection in our MPRA was contingent upon the activity of the
reporter, such that 3’-UTRs affecting gene expression either at the level
of mRNA abundance or translation impacted the output. To further
explore the relationship between hits in the MPRA and gene expres-
sion control, we assessed previously published data for mRNA
abundance, translation efficiency5, and mRNA half-life3, in relation to

Fig. 1 | A massive parallel 3’-UTR reporter assay. a The pRPaiUTR reporter con-
struct. A blasticidin S-deaminase (BSD) and thymidine kinase (TK) fusion gene, with
positive or negative regulatory 3’-UTRs cloned immediately downstream of the
stop codon, was placed under the control of a tetracycline-inducible rDNA pro-
moter and flankedby homology regions (X1 isHYGΔ and X2 is rDNA) to integrate the
full construct at the tagged rDNA spacer locus in the 2T1 T. brucei strain; both RNA
polymerase I and RNA polymerase II are used to drive protein coding gene tran-
scription in T. brucei. A constitutively expressedNPT cassette under the control of a
bloodstreamVSG expression site (ES)promoterwasalso included to allow selection
of recombinants in the absence of tetracycline. b Dose response curves reveal
relative blasticidin (BSD) resistance and ganciclovir (GCV) sensitivity when reporter
expression is increased (green); see Supplementary Fig. 1a. c The cassette imme-
diately downstream of the BSD-TK stop-codon facilitated high-efficiency library

construction. pRPaiUTR was digested with BbsI and T semi-filled, while T. brucei
genomic DNA was partially digested with Sau3AI and fragments of 1–3 kbp were G
semi-filled prior to ligation. The FseI sites and index sequences facilitated assess-
ment of library complexity and fragment orientation. d The massive parallel
reporter assay. The plasmid library was used to assemble a T. brucei library, which
was inducedwith tetracycline, selectedwith BSDorGCV, and subjected toUTR-seq.
e We sampled the library at days 4, 6 and 8 (lighter to darker shading), extracted
genomic DNA, amplified cloned library fragments by PCR, deep-sequenced the
products, mapped reads to annotated 3’-UTRs, and compared the outputs using
principal component analysis. f Mapped reads adjacent to 48,509 Sau3AI sites in
the T. brucei genome were quantified. Data for the plasmid library and sequences
recovered following 6 days of selection are shown.
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hit-fragment enrichment in the MPRA (Fig. 4c, Supplementary
Fig. 4a, b); translation efficiency is calculated by dividing ribosome
footprint read-counts by mRNA read-counts for each CDS5. We found
that hits in theMPRAweremore strongly correlatedwithdifferences in
translation efficiency (Fig. 4c,p = 1.2−68) than theywerewithdifferences
in mRNA abundance or mRNA half-life (Supplementary Fig. 4a, b,
p = 1−18 and 1.3−21, respectively). A similar analysis, but this time asses-
sing mRNA abundance and translation efficiency in relation to fre-
quency of the 9-b, A-rich motif identified in 3’-UTRs above (Fig. 4d,

Supplementary Fig. 4c, d), revealed a clear correlation with translation
efficiency (Fig. 4d, R2 = 0.28), a weak inverse correlation with mRNA
abundance (Supplementary Fig. 4c, R2 = 0.02) and a weak correlation
with mRNA half-life (Supplementary Fig. 4d, R2 = 0.07). An assessment
of UTR length (see Fig. 3f) and A-rich motif density within 3’-UTRs
indicated that both the density and dosage of poly-purine tracts cor-
related with translation efficiency (Fig. 4e).

To further illustrate base composition bias and A-rich poly-purine
tract enrichment, we show four exemplar gene loci, representing

Fig. 2 | Enrichment of 3’-UTR sequences following positive selection. a The
Circos plot shows an approx. 25 Mbp map of the T. brucei genome, incorporating
eleven mega-base chromosomes, and encoding approx. 9000 genes. Polycistrons
are indicated on the outer circle. Enrichment for DNA fragments inserted in the
sense orientation in relation to the reporter, following blasticidin selection for
positive control (green background), or ganciclovir selection for negative control
(magenta background), is indicated. Scale is log2-fold-change relative to plasmid
control, with values clipped when > 4. b The maps show UTR-seq read-density for

three exemplar genes. The grey lines with arrowheads indicate the UTRs and
transcription from left to right. Sense paired, indexed reads highlight the bound-
aries of hit fragments, and are indicated by the green lines, with total reads indi-
cated in grey. c The boxplot shows length data after updating the T. brucei 3’-UTR
annotations. Boxes indicate the interquartile range (IQR), the whiskers show the
range of values within 1.5*IQR and a horizontal line indicates the median. The
notches represent the 95% confidence interval for each median. n = 8115 (5’-UTR),
8258 (CDS), 8022 (3’-UTR).
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Fig. 3 | Identificationof thousands of regulatory 3’-UTRs. a The violin plot shows
relative enrichment of inter-CDS fragments cloned in their native or inverted
orientation. Blasticidin selection for positive control; green, n = 1941 fragments.
Ganciclovir selection for negative control; magenta, n = 2282 fragments. The open
circles indicate median values, while t-tests were two-sided. b 3’-UTR associated
fragments were ranked based on indexed read fold-change between the positive
and negative selection screens. Previously published regulatory 3’-UTRs (see Sup-
plementary Data 1) that feature as hits are highlighted. c The maps show UTR-seq
read-density for two exemplar positive regulatory 3’-UTR fragments. Sense paired,
indexed reads are indicated by the green lines, with total reads indicated in grey.
UTR hit fragments are indicated as green boxes; with arrows indicating direction of
transcription from left to right. RNA-seq (solid green) and ribosome profiling data
(black) are also shown. The upper protein-map shows the relationship between the

paralogs (PGKB-C) with identical amino acids shown inwhite, different amino acids
in grey and additional segments in one of the proteins in black. d The maps show
read-density for two exemplar negative regulatory 3’-UTRs. Sense indexed reads
are indicated by the magenta line and UTR hit fragments are indicated as magenta
boxed arrows. The paralogs compared in this case are NT8.1-2. Other details as for
(c). e The map shows read-density for the hexose transporter locus with both
positive and negative regulatory 3’-UTR fragments. Other details as for (c, d). f The
boxplot shows length data for putative positive (n = 844) and negative (n = 468)
regulatory 3’-UTRs associated with hit fragments that also include downstream
mRNA processing sequences. Boxes indicate the interquartile range (IQR), the
whiskers show the range of values within 1.5*IQR and a horizontal line indicates the
median. The notches represent the 95% confidence interval for each median. The
t-test was two-sided.
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Fig. 4 | Poly-purine tracts are enriched in the 3’-UTRs of highly translated
mRNAs. a The boxplot shows nucleobase composition for positive (n = 833) and
negative (n = 464) regulatory hit fragments of > 20 b in length, that also include
downstream mRNA processing sequences. Boxes indicate the IQR, the whiskers
show the range of values within 1.5*IQR and a horizontal line indicates the median.
The notches represent the 95% confidence interval for each median, while t-tests
were two-sided. b The poly-purine tract (pPuT) motif shown was enriched in
positive regulatory hit fragments relative to the negative fragments. c The plot
shows fold-enrichment of hit fragments in the screen relative to published

measures of translation efficiency5. The t-test was two-sided. d The plot shows
number of A-rich motifs shown in b in 3’-UTRs relative to published measures of
translation efficiency.n = 4220; FIMO settings ‘p <0.01’. eTheplot showspublished
measures of translation efficiency relative to density of A-rich motifs (FIMO setting
‘p <0.01’), 3’-UTR length (all > 250 b), andmRNA abundance5. n = 3608. f Themaps
show UTR-seq read-density for four exemplar positive regulatory 3’-UTRs. Tracks
showing nucleobase density are included. Other details as for Fig. 3c. Numbers of
pPuT motifs in each UTR and translation efficiency (TE) measures are also
indicated.
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positive control hits in our screen, and transcripts with translation
efficiency scores that are all above themedian value of 0.555. The gene
maps display MPRA read-mapping and gene expression as above, and
now also include tracks showing G-A-T-C base-composition (Fig. 4f).
The nucleobase composition tracks effectively highlight low-
complexity sequences, including T(U)-rich poly-pyrimidine tracts,
known to be enriched in trypanosomatid 3’-UTRs1. Notably, A-rich
regions can also be seen in each exemplar 3’-UTR and hit-fragment,
while prominent A-rich regions are not seen in the 3’-UTRs of several
flanking genes (Fig. 4f); the number of poly-purine motifs present in
these four exemplar 3’-UTRs ranges from six to twenty-three. We
conclude that A-rich poly-purine tracts are specifically enriched in the
3’-UTRs of highly translated mRNAs.

Poly-purine tracts are enriched in the UTRs of highly translated
paralogs
There are several examples of differentially expressed tandem para-
logous genes in trypanosomatids, such as the phosphoglycerate
kinase andhexose transporter genes shown in Fig. 3c, e.Wewondered
whether other examples would display A-rich regions and poly-purine
motifs specifically enriched in the 3’-UTRs of a preferentially
expressed paralog. A scan of hits recovered in the screen revealed
differential poly-purine tract abundance in nine tandem paralog
pairs (Fig. 5a). These genes encode mRNA-binding proteins29–32,
cytoskeletal proteins33, transporters34–36, nucleolar proteins37, and
hexokinases38. The nucleobase composition tracks highlight A-rich
regions in all positive regulatory 3’-UTR hit fragments from theMPRA
(Fig. 5a). Indeed, poly-purine tract density and 3’-UTR length are
predictive of differential translation for all of these paralog-pairs,
while three paralogous 3’-UTRs associated with lower expression
completely lacked A-rich poly-purine tracts (Fig. 5b). A lesser
expressed zinc transporter 3’-UTR also yielded a hit-fragment in the
negative control arm of the MPRA (Fig. 5a). These results indicated
that theMPRA not only identified thousands of regulatory sequences,
but also effectively distinguished between the 3’-UTRs of otherwise
closely related paralogs.

Predicting translation efficiency using UTR sequences alone
The analyses above suggested that A-rich poly-purine tracts increase
translation in T. brucei. We next used a machine learning approach to
predict expression from UTR sequences alone as an orthogonal
approach to the identification of cis-acting sequences. We considered
both 5’-UTRs and 3’-UTRs for this analysis and first assessed nucleo-
base composition in relation to translation efficiency. Consistent with
analysis of hit-fragments above (Fig. 4a), 3’-UTRs associated with
higher translation efficiency tended to be relatively A-rich and C-poor,
which was also found to be the case for 5’-UTRs (Fig. 6a).

Machine learningwas next used topredict translation efficiency. A
set of 46 features were used to train a random forest regressor and to
run the predictions, yielding Pearson correlation coefficients of 0.62
(Mean Squared Error = 0.02) when using 3’-UTRs alone (Fig. 6b, upper
panel), and 0.66 (MSE = 0.018) when using both 5’-UTRs and 3’-UTRs
(Fig. 6c, upper panel). We conclude that the algorithm effectively
predicted observed measures of translation efficiency using 3’-UTR
sequences alone, and that 5’-UTR sequences likely also contribute to
translation efficiency control. The value of the top eight features and
their contributions to the predictions were visualised using SHAP
(SHapley Additive exPlanation) values39. 3’-UTR-length, A-rich tracts
and low C-countmade the greatest contribution to predictions of high
(indicated in red) translation efficiency (Fig. 6b, lower panel). When
both 5’-UTRs and 3’-UTRs were considered, 3’-UTR-length, 3’-UTR A-
tracts, 5’-UTR AU-count, and 5’-UTR A-count made the greatest con-
tribution (Fig. 6c, lower panel). Thus, the MPRA, as well as machine
learning based predictions, implicated A-rich poly-purine tracts as the
primary 3’-UTR cis-acting sequences that promote translation.

Poly-purine and -pyrimidine rich 3’-UTRs in bloodstream up-
translated mRNAs
Our findings above indicated that translation is controlled in a perva-
sivemanner by dosage and density of poly-purine tracts in 3’-UTRs.We
next sought to identify sequences that impactdevelopmental life-cycle
stage specific expression patterns. Using previously published trans-
lation efficiency data5, we searched for motifs enriched in the 3’-UTRs
of transcripts with >5-fold increased translation in bloodstream-form
cells, relative to insect-stage cells. This analysis revealed significant
enrichment of a 9-b, U-rich, poly-pyrimidine tract (at 4.2 sites per kb,
E value 1.1−26) (Fig. 7a). An assessment of both A-rich and U-rich motif
density in 3’-UTRs associated with >4-fold developmentally regulated
genes, in relation to eithermRNA abundance or translation efficiency5,
revealed significantly higher densities of both the A-rich poly-purine
motif shown in Fig. 4b, and the U-rich poly-pyrimidine motif shown in
Fig. 7a, in 3’-UTRs associated with bloodstream-form up-translated
mRNAs (Fig. 7b). Poly-pyrimidine tractswere also significantly enriched
in 3’-UTRs associated with more abundant transcripts in insect-stage
cells (Fig. 7b).

These findings suggest that a high density of poly-pyrimidine
tracts reduces translation (and mRNA stability) in bloodstream-form
trypanosomes, also mitigating the positive effect of poly-purine tracts
on translation when both sequences co-occur at high density. An
assessment of co-occurrence of these sequences in 3’-UTRs associated
with >4-fold up-translated transcripts in either bloodstream-form or
insect-stage cells yielded data consistent with this hypothesis (Fig. 7c);
this cohort of bloodstream-form up-translated transcripts was speci-
fically overrepresented (χ2 p = 1.8−7) for longer ( >2 kbp) 3’-UTRs with a
high density ( >20 per kbp) of both poly-purine and poly-pyrimidine
tract motifs (see Fig. 7c, left-hand panels).

We identified forty-four >3-fold up-translated transcripts in
bloodstream-form cells, with 3’-UTRs of >2 kbp and with >20 poly-
purine and poly-pyrimidine tract motifs per kbp. Transcripts pre-
viously noted to have long 3’-UTRs1, those associated with Gene
Ontology terms for ‘mRNA binding’ (p = 1.4−16), or ‘protein kinase
activity’ (p = 2.3−8), were overrepresented in this cohort. Notably, these
include the bloodstream-specific VSGmRNA-binding protein, CFB229,32

(see Fig. 5a), the known 3’-UTR regulated mRNA-binding protein,
RBP10 12, and the repressor of differentiation kinase, RDK240; both
RBP10 and RDK2 are known to promote the bloodstream-form
phenotype.

The relative density of A-rich andU-richmotifs, 3’-UTR length, and
translation efficiency differential, are visualised for four exemplars of
these bloodstream-form up-translated transcripts; RBP10, RDK2, the
known 3’-UTR regulated glycosylphosphatidylinositol-specific phos-
pholipase, GPI-PLC41, and the bloodstream-specific alternative
oxidase42, and also for two insect-stage up-translated exemplars
(Fig. 7c, right-hand panel). All 3’-UTRs for these genes yielded hit-
fragments in the respective positive and negative control arms of the
MPRA, and we show a map for each gene locus. The individual maps
display MPRA read-mapping, and tracks showing G-A-T-C base-com-
position, as above, and now include gene expression tracks for both
bloodstream-form and insect-stage cells5 to highlight developmental
differences (Fig. 7d, e). A high density of both A-rich andU-rich regions
can be seen in the 3’-UTRs of bloodstream-form up-translated genes
(Fig. 7d). Indeed, three independent hit-fragments were associated
with RBP10, consistent with recent dissection of this >7 kb 3’-UTR12. In
contrast, a high density of U-rich sequences can be seen in the 3’-UTRs
of insect-stage up-translated genes (Fig. 7e), encoding the amino acid
transporter18, and major surface protease21, both known to be regu-
lated by their 3’-UTRs. Indeed, a U-rich element in the 3’-UTR appears
to suppress translation in bloodstream-form cells in the latter case21.
We conclude that long 3’-UTRs enriched in both poly-purine and poly-
pyrimidine tracts often display increased translation in bloodstream-
form cells.
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Synthetic positive regulatory 3’-UTRs are enriched in poly-
purine tracts
Our results above indicated a role for poly-purine tract dosage and
density in increasing translation efficiency, and also suggested a role
for poly-pyrimidine tracts in modulating poly-purine tract function.
Indeed, an assessment of co-occurrence of these distinct motifs in
3’-UTRs indicated a tendency for enrichment of both sequences in long

UTRs (Fig. 8a). To further explore 3’-UTR sequence - function rela-
tionships, and as an additional test of our hypothesis that A-rich poly-
purine tracts increase gene expression, we took advantage of library
fragments cloned in reverseorientation relative to their native context,
that were derived entirely from within native 3’-UTRs, and that were
enriched following positive selection in our MPRA (see Fig. 8b). Forty-
three such inverted and synthetic UTR fragments of >500 b were

Fig. 5 | Poly-purine tracts are enriched in the UTRs of highly expressed para-
logs. a Themaps showUTR-seq read-density for nine tandemparalog pairs, all with
positive regulatory 3’-UTR hit fragments, > 10 A-richmotifs (FIMO setting ‘p <0.01’)
in the 3’-UTR of one paralog, and with < 33% the number of A-rich motifs in the
other paralog. Tracks showing nucleobase density are included.Other details as for
Fig. 3c, d.b The plot shows publishedmeasures of translation efficiency andmRNA

abundance5 relative to density of A-rich motifs (FIMO setting ‘p <0.01’) and 3’-UTR
length for theparalog pairs in a. Thedarker text labels indicate those geneswith hit-
fragments in the positive selection screen. *, translation efficiencymeasures appear
similar forNOP66/86 and for hexokinases because the coding sequences are largely
identical. The 3’-UTRs are distinct, however, and reveal differential expression (a).
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Fig. 6 | Predicting translation efficiency using UTR sequences alone. a The plots
show nucleobase composition for 5’-UTRs of >49 b, CDSs of >199 b, and 3’-UTRs of
> 99 b, relative to publishedmeasures of translation efficiency5.bMachine learning
model evaluation based on 3’-UTR sequences. The upper plot shows translation
efficiency values for the test set (n = 2020 genes) compared with the model pre-
dictions. A linear regression line is shown. The lower plot shows the SHAP values for
each gene and for the top eight features that contribute to the predictions. The

colour scale reflects relative contribution to high (red) or low (blue) translation
efficiency. The dots are jittered in the y-axis to illustrate the distribution of the
SHAP values. Am2, A-tracts longer than 5 allowing 2mismatches; Cm2, C-tracts longer
than 5 allowing 2mismatches; AGm2, AG-tracts longer than 5 allowing 2mismatches.
c Machine learning model evaluation based on 5’-UTR and 3’-UTR sequences.
n = 2016 genes. Other details as in panel b.
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found to be significantly enriched following blasticidin-selection.
These fragments displayed anA-richmotif density that was on average
3.3-times greater that the U-richmotif density (Fig. 8c). Thus, T(U)-rich
poly-pyrimidine tracts, often found in T. brucei 3’-UTRs1, increased
reporter expression when reoriented to yield synthetic A-rich poly-
purine tract-rich 3’-UTRs, thereby mimicking native positive regula-
tion. Given similar proportions of U-rich and A-rich motifs in longer

3’-UTRs, we conclude that there was substantial selection for, and
enrichment of, A-rich sequences in this synthetic arm of theMPRA.We
mapped and visualized both poly-purine and -polypyrimidine motif
distribution in these hit fragments (Fig. 8d). Notably, in addition to
densely packed A-rich poly-purine motifs, synthetic U-rich poly-pyr-
imidine motifs likely served as synthetic downstream splicing signals,
similar to those ‘cryptic splice sites’ described previously8. Thus,
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analysis of synthetic, positive regulatory 3’-UTRs in the MPRA further
supported the robust correspondence between A-rich poly-purine
tracts and positive control.

Discussion
Eukaryotic cells express thousands of proteins that differ in abundance
over a wide range, and regulation involves interactions between mRNA
3’-UTRs and mRNA binding proteins. T. brucei is an important proto-
zoanparasite and, largely due topervasive polycistronic transcription, a
model organism for studies on post-transcriptional gene expression
controls. Knowledge regarding the mechanisms involved remains lim-
ited, however. We devised a massive parallel reporter assay coupled to
genome-scale UTR-seq to identify cis-regulatory sequences embedded
withinT. brucei3’-UTRs.Analysis of thousandsof regulatory 3’-UTRs and
UTR fragments, and a machine learning approach, revealed a cis-reg-
ulatory code underpinning differential expression control.

Our findings indicate that poly-purine tracts in 3’-UTRs drive
increased translation in a dosage- and density-dependent manner.
Although our reporter assay was not designed to assess developmental
controls, our analysis also suggests that poly-pyrimidine tracts can
conditionally modulate the activity of poly-purine tracts. More specifi-
cally, we propose recruitment of translation machinery by positive
regulatory A-rich poly-purine tracts (Fig. 9a), and base-pairingmediated
masking of these sequences by U-rich poly-pyrimidine tracts in the
same transcript (Fig. 9b). We suggest that conditional unmasking of
poly-purine tracts contributes to increased expression in bloodstream-

form cells, potentially driven by temperature differences encountered
in the mammalian bloodstream or insect vector.

Limitations of our study include a readout fromour reporter assay
that depended upon protein product, meaning that impacts of a 3’-
UTRonmRNAmaturation, translation, and turnoverwerenot assessed
separately, as well as lack of independent validation of novel hit frag-
ments and 3’-UTRs. Our reporter assay was also conducted using only
bloodstream form cells, meaning that our hypothesis regarding
developmental control through (un)masking of poly-purine tracts is
more speculative. Future studies in this area should address these
limitations and may reveal regulatory factors that control expression
by interacting with poly-purine and/or poly-pyrimidine tracts, and/or
other regulatory sequences, in 5’-UTRs and/or 3’-UTR.

mRNA-binding proteins are undoubtedly involved in decoding
the cis-regulatory code we describe here, and typanosomatids express
large numbers of predicted mRNA-binding proteins43. Indeed, a
genome-wide tethering screen identified approx. 300 T. brucei pro-
teins that control gene expression when bound to a reporter mRNA44.
Notably, and consistent with our findings, T. brucei transcripts with
U-rich 3’-UTRs are unstable and degraded by the nuclear exosome45,46.
RBP10 also binds insect-stage specific transcripts containing UA(U)6
motifs, reducing translation and increasing turnover in bloodstream
form cells47, while another mRNA-binding protein, DRBD18, impacts
polyadenylation and facilitates the production of longer mRNAs with
longer 3’-UTR48–50. Other bespoke regulatory sequences are undoubt-
edly also embedded within T. bruceiUTRs, including AU-rich elements

Fig. 7 | Poly-purine and -pyrimidine rich 3’-UTRs in bloodstream up-
translated mRNAs. a The motif shown was enriched in 3’-UTRs that displayed
>5-fold upregulated translation5 in bloodstream-form cells relative to control UTRs
( < 10% difference between life-cycle stages; n = 1450). b The violin plots on the left
showmotif density for 3’-UTRs of >250 b that displayed >4-fold upregulatedmRNA
abundance in bloodstream-form cells (BF-up; n = 139), or insect-stage, procyclic
form cells (PF-up; n = 73), relative to control UTRs ( < 10% difference between life-
cycle stages;n = 999). The violinplots on the right showmotif density for 3’-UTRs of
>250 b that displayed >4-fold upregulated translation in bloodstream-form cells
(BF-up; n = 278), or insect-stage, procyclic form cells (PF-up; n = 81), relative to
control UTRs ( < 10% difference between life-cycle stages; n = 818). Data are shown
for the A-rich poly-purinemotif in Fig. 4b, and for the U-rich poly-pyrimidine motif
in Fig. 7a, (FIMO settings ‘p <0.01’). Open circles indicate median values while t-

tests were one-sided. c The plots show density of A-rich motifs and U-rich motifs
(FIMO settings ‘p <0.01’), and 3’-UTR length and also published ratios of translation
efficiency5 for the bloodstream form up-translated and procyclic form up-
translated sets of transcripts described in (b). The plot on the right shows data for
those six exemplar 3’-UTRs detailed in (d, e), four from the BF-up set and two from
the PF-up set. d The maps show UTR-seq read-density for four exemplar 3’-UTRs
associatedwith bloodstream formup-translated genes andwith positive regulatory
hit fragments in the screen. Tracks showing nucleobase density are included. Other
details as for Fig. 3c. e The maps show UTR-seq read-density for two exemplar 3’-
UTRs associatedwith insect-stageup-translatedgenes andwith negative regulatory
hit fragments in the screen. Tracks showing nucleobase density are included; other
details as for Fig. 3d.

Fig. 8 | Synthetic positive regulatory 3’-UTRs are enriched inpoly-purine tracts.
aTheplot shows 3’-UTR length relative to density of A-richmotifs andU-richmotifs
(FIMO settings ‘p <0.01’). n = 4891; UTRs of > 250 b. b The schematic shows
assessment of hit fragments in the positive selection arm of the MPRA that were
derived from native 3’-UTRs, but inverted relative to their native orientation. The
t-test was one-sided. c The violin plot shows motif density for all significantly

enriched synthetic fragments of > 500 b. n = 43. Data are shown for the A-rich poly-
purine motif in Fig. 4b, and for the U-rich poly-pyrimidine motif in Fig. 7a (FIMO
settings ‘p <0.01’). Open circles indicate median values. d The maps show the
distribution of A-rich and U-rich motifs in those hit fragments of between 750 and
1500 b in length.

Article https://doi.org/10.1038/s41467-024-52432-0

Nature Communications |         (2024) 15:8113 12

www.nature.com/naturecommunications


in 3’-UTRs, implicated in developmental controls involving transcript
destabilisation by RBP651, or stabilisation by either ZC3H1152 or DHH153.
Other examples include VSG transcript binding and positive control by
CFB232, and procyclin transcript binding and negative control by
NRG154. In termsof specific responses to environmental cues, PuREBP1-
2 negatively regulates nucleoside transporter transcripts by binding a
stem-loop structure in the 3’-UTR55, and RBP5 binds and regulates its
own transcript in an iron-responsivemanner19. The sequences involved
in recruiting other mRNA binding proteins that orchestrate key
developmental transitions, such as ZFP156, ZFP357, RBP758 and
ZC3H2030, are less clear. Modulation of RNA folding, structure, and
function may also be impacted by mRNA-binding proteins, or long
non-coding RNAs59. Our approach, annotation and dataset should
facilitate future efforts to identify bespoke cis-acting UTR sequences
and regulons in the trypanosomatids, and to determine how UTRs, as
well as codon usage bias2,4, impact translation and mRNA turnover.

Our findings suggest a remarkably versatile strategy for evolving
new regulatory UTRs from low-complexity, repetitive and abundant
sequence motifs. A-rich and T-rich tracts are abundant in the T. brucei
genome and homologous recombination and microhomology-
mediated end-joining are the dominant DNA repair pathways60. We
envision a system that facilitates rapid adaptation of gene expression
through assembly of novel UTRs. This mechanism may drive devel-
opmental stage-specific expression and/or differential expression of
paralogs following gene duplication, and similar mechanisms may
operate in other trypanosomatids. Indeed, we find several examples of
tandemparalogous genes with distinct UTRs inT. brucei. We also show
that inverted genomic U(T)-rich sequences form ‘synthetic’ A-rich
positive regulatory UTRs in our screen. Notably, poly-purine tracts are
over-represented in the genomes of other eukaryotes, including yeast

and humans61. Indeed, gene expression is primarily controlled at the
level of translation in human cells62, where purine-rich 5’-UTRs can
promote translation factor binding and translation63, suggesting that
our findings could have broader implications. In conclusion, we
describe post-transcriptional reprogramming underpinned by a cis-
regulatory code embedded within trypanosome UTRs.

Methods
T. brucei growth and manipulation
Bloodstream form Lister 427 Trypanosoma brucei and derivatives,
including 2T164, were cultured in HMI-11 (Gibco) supplemented with
10% fetal bovine serum (Sigma) at 37 °C and with 5% CO2 in a humi-
dified incubator. Genetic manipulations were carried out by electro-
poration using a Nucleofector (Lonza), with cytomix for routine
transfections and a Nucleofector Human T-cell kit (Lonza) for high
efficiency library transfections65. Strains expressing thymidine kinase
were cultured in HMI-11 lacking thymidine, made from IMDM base
media (ThermoFisher Scientific) and supplemented with 1mM
hypoxanthine (Sigma), 0.05mM bathocuprione disulphonic acid
(Sigma), 1mM sodium pyruvate (Sigma), 1.5mM L-cysteine (Sigma)
and 10% fetal bovine serum (Sigma).

pRPaiUTR plasmid construction
A LacZ stuffer fragment was amplified using primers UTR5 and UTR3
(Supplementary Data 1) and cloned into pRPaiSL 66 using ApaI and KpnI
restriction sites; this added flanking BbsI and FseI sites to the LacZ
stuffer to facilitate library assembly. Next, a synthetic DNA fragment
(GeneArt) consisting of the tubulin 5’-UTR and a blasticidin-Ty1-
thymidine kinase fusion cassette was cloned upstream of the LacZ
stuffer using BamHI and AflII restriction sites. A second synthetic DNA
fragment (GeneArt) containing a bloodstream VSG expression site (ES)
promoter, aldolase 5’-UTR, neomycin phosphotransferase gene and
actin 3’-UTR was then cloned between the rDNA promoter and
hygromycin targeting region using NheI and NdeI restriction sites.
The aldolase 3’-UTR fragment (695 bp) was amplified by PCR using
the Ald3UTRFseIF and Ald3UTRFseIR primers and the COXV 3’-UTR
fragment (204 bp) was amplified using the CoxV3UTRFseIF and Cox-
V3UTRFseIR primers (Supplementary Data 1). The PCR products were
cloned into pRPaiUTR downstream of the BSD-TK reporter gene and in
place of the LacZ stuffer. The resulting pRPaiUTR constructs were
digested with AscI prior to transfection into 2T1 cells.

Dose-response assays
Cells were plated in 96-well plates at 1 × 103 cells/ml in a 2-fold serial
dilution of selective drug; blasticidin (Melford) or ganciclovir (Sigma).
Plates were incubated at 37 °C for 72 h, 20μl resazurin sodium salt
(AlamarBlue, Sigma) at 0.49mM in PBS was added to each well and
plates were incubated for a further 6 h. Fluorescence was determined
using an Infinite 200 pro plate reader (Tecan) at an excitation wave-
length of 540nm and an emission wavelength of 590 nm. Data were
analysed and EC50 values were derived using Prism (GraphPad).

Protein blotting
T. brucei cell lysates were separated on a 10% SDS polyacrylamide gel
and transferred to nitrocellulose membrane (Protran, Amersham)
using the semi-dry Turbo-blot system (Bio-Rad). Membranes were
probed with anti-Ty1 mouse monoclonal antisera (Sigma) at 1:5000
followed by anti-mouse HRP-coupled secondary antisera (Bio-rad) at
1:10,000. Signal was visualised using a chemiluminescence kit (Amer-
sham) according to the manufacturer’s instructions.

UTR plasmid library and T. brucei library assembly
The UTR library was assembled essentially as described previously67,
except that the genomic fragments used were 1–3 kbp in size and they
were cloned into pRPaiUTR. Briefly, pRPaiUTR was digested with BbsI and

Fig. 9 | A model for UTR-based post-transcriptional expression control in T.
brucei. a Poly-purine tracts (pPuTs) in 3’-UTRs drive increased translation in a
dosage- and density-dependent manner. b pPuTs and poly-pyrimidine tracts
(pPyTs) in 3’-UTRs interact such that pPyTs mask pPuTs and reduce gene expres-
sion in procyclic form (PF, insect stage) cells. Changes in secondary structure,
possibly due to temperature differences, could be responsible for pPuT (un)
masking. 5’-UTR sequences may behave similarly.
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semi-filled with dTTP using Klenow DNA polymerase I (NEB). T. brucei
genomic DNA was partially digested with Sau3AI (NEB) for 1 h at 37 °C.
TheDNAwas separated on a 1% agarose gel andDNA corresponding to
1–3 kbp in size was excised and extracted using a gel extraction kit
(Qiagen). The gDNA fragments were semi-filled with dGTP as above
and then ligated to semi-filled pRPaiUTR using T4 DNA ligase (NEB)
overnight at 16 °C before electroporation into MegaX DH10B Electro-
comp T1R cells (ThermoFisher). Dilutions from a 500mL culture were
grown on plates, and plasmids from 30 colonies were analysed fol-
lowing FseI digestion. The plasmid library was then isolated using a
HiSpeed Plasmid Maxi Kit (Qiagen) and digested with AscI prior to
nucleofection into T. brucei. Briefly, puromycin sensitive 2T1-Sce* cells
were generated65 and induced with tetracycline (1μg/ml) for 8 h prior
to nucleofection, which was carried out in 12 replicates using 12.5μg
digested UTR plasmid library DNA and 5 × 107 cells for each replicate.
Selection (1μg/ml phleomycin and 2μg/mlG418) was applied 6 h later.

UTR library screening
Sixty hours after library nucleofection, expression of the BSD-TK
reporter cassette was induced by the addition of tetracycline (1μg/ml)
for 24 h. Either blasticidin (0.2mg/ml) or ganciclovir (0.15μg/ml) drug
selection was applied, and growth was monitored using a haemocyt-
ometer over 8 days. Each arm of the screen was initiated with 4 × 107

cells and cell populations were maintained at a minimum of 2 × 107

throughout to maintain library complexity. Cells were harvested on
days 4, 6 and 8, and genomic DNAwas extracted using a DNeasy blood
and tissue kit (Qiagen). pRPaiUTR library fragments were amplified from
gDNA samples and the plasmid library using the pRPaUTRseq2 primer
(Supplementary Data 1) and LongAmp polymerase (NEB) - 94 °C 5min;
28 cycles: 94 °C 45 s, 50 °C 45 s, 65 °C 3min 30 s; 65 °C 10min. PCR
amplicons were purified using a PCR purification kit (Qiagen).

Annotation of 3’-UTRs
We refined and revised the 3’-UTR annotations for the T. brucei
TREU927 core genome using the Apollo community annotation plat-
form, available via TriTrypDB26. This re-annotation process was
informed by nanopore RNA sequencing data59. We acquired the fast5
datasets (ERR7889821 and ERR7889820) and carried out base-calling
with Guppy software (version 6.2.1 + 6588110, Oxford Nanopore
Technologies) on a GPU infrastructure. The base-calling parameters
were set with the flowcell specified as FLO-MIN106 and the kit as SQK-
RNA002. We then employed Minimap2 (version 2.24-r1122) to align
raw reads to the genome sequence, storing the alignments as BAM
files.We alsodownloaded and re-aligned all available datasets from the
SRAbioproject PRJNA63499768. A customPython scriptwasdeveloped
to filter BAM alignments and retain only those reads containing either
the conserved 5’ spliced leader sequence (TCTGTACTATATTG) or
poly-A sequences of ten ormore nucleotides in length. Coveragemaps
were generated from the BAM files using BamCoverage (version 3.5.0)
from the DeepTools suite, with a resolution of 5-bp per window. To
enhance the accuracy of 3’-UTR annotations in the T. brucei 927
reference genome, coverage maps and processed BAM files were
uploaded into the Apolloweb interface. This integration facilitated the
manual revision of 4703 3’-UTR annotations across the organism’s 11
main chromosomes. During this process, 3’-UTRs were adjusted —

extended, shortened, or appendedwhere previously unannotated— to
align with the empirical data presented within the Apollo interface.

UTR library sequencing and analysis
PCR amplicons from above were submitted for sequencing at the
Tayside Centre for Genomic Analysis (University of Dundee).
Sequencing libraries were prepared using the Nextera Flex kit (Illu-
mina). Briefly, PCR amplicons were subjected to tagmentation to
produce 300–350 bp fragments with tag and adapter sequences, and
then amplified by limited-cycle PCR to add index adapters. The

libraries were then pooled and sequenced on a NextSeq 500 (Illumina)
platform to obtain 144–228 million 75-b paired-end reads per sample.
Reads were aligned to the reference T. brucei genome v46, clone
TREU927 from TriTrypDB26 using Bowtie269, with the ‘very-sensitive-
local’ pre-set alignment option. The alignments were converted to
BAM format, reference sorted and indexed with SAMtools70. Align-
ment statistics were retrieved using the SAMtools stats function.
A custom python script was used to separate, and save as BAM files,
alignments containing the 5’ (‘CTGACTCCTTAAGGGCC’) or the 3’
(‘GCCGGCCTCAGTTA’) index sequences in either forward or reverse
complement orientation. We used the peak detection algorithm,
MACS271, to define enriched regions (peaks) in the blasticidin or gan-
ciclovir selected samples relative to the plasmid library control sample.
The parameters of MACS2 were --min-length 300 --max-gap 1 --broad
--nomodel --keep-dup all -q 1 --broad-cutoff 1 --broad --llocal 3000. We
then manually curated the boundaries of fragments that overlapped
with annotated 3’UTRs, using indexed read-counts to record genomic
coordinates. This was performed using the Apollo community anno-
tation platform tool available at TriTrypDB. These curated fragments
were converted to Simplified Annotation Format (SAF) and used to
derive paired read-counts. The counts were determined using fea-
tureCounts from the Subreadpackage72 using the BAM files containing
all the alignments and the BAM files containing only the index
sequence specific alignments. The featureCounts parameters were: -p
(pair-end) -B (both ends successfully aligned) -C (skip fragments that
have their twoends aligned to different chromosome) -M (countmulti-
mapping) -O (match overlapping features). Using BEDtools intersect
function73, we assigned and trimmed blasticidin and ganciclovir
selected fragments to align with the corresponding 3’-UTR sequences.
Where a single fragment spanned acrossmultiple 3’-UTRs, we selected
the 3’-UTR overlapping segment closest to the BSD-TK CDS in the
reporter construct.

Principal component analysis
3’-UTR coordinates from T. brucei genome v46 were formatted into
SAF for countingusing featureCounts72 and theBAMfiles containing all
the alignments. The read counts were normalized using the Stan-
dardScaler function in the Python scikit-learn package to ensure
comparability. Subsequently, principal component analysis was per-
formed using the function in the Python scikit-learn package (https://
scikit-learn.org/).

Statistical analysis
Manually curated genomic fragments were used to count indexed
reads from blasticidin and ganciclovir selected BAM files, yielding data
for fragments cloned in the reporter construct in either native orien-
tation relative to transcription, or in reverse orientation. Total read-
counts were utilized to normalize indexed read-counts across samples,
whichwere scaled by a factor of 10million. The resulting values (paired
reads per 10millionmappedpaired reads) were rounded to the nearest
integer. These read-counts were then compared pairwise between day-
4, day-6 and day-8 blasticidin and ganciclovir selected samples, and
indexed reads from opposite ends of each fragment were considered
separately, yielding six pairwise comparisons. These values served as
the basis for the two-sidedWilcoxon rank-sum test, for computing log2
fold changes and log2 average intensity; 1 was added to the datasets to
avoid zero division for the latter two calculations. p-values obtained
from the Wilcoxon test were adjusted for multiple comparisons using
the False Discovery Rate (FDR) Benjamini-Hochberg (BH) method,
implemented using the multipletests function from the statsmodels
Python package (https://github.com/statsmodels/statsmodels/).

Data visualisations
To visualize indexed read-count coverage around Sau3AI sites, we first
utilized a custom Python script that employed regular expressions to
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identify and annotate these recognition sites (GATC) in the megabase
chromosomes of the TREU927 reference genome. The sites were
recorded in BED format. We then consolidated BAM files containing
paired reads with indexed sequences from blasticidin and ganciclovir-
selected samples and the plasmid library control sample. Using the
bamCoverage tool from the deepTools package74, we computed read
coverage at 1 bp resolution for all samples and saved these outputs in
BigWig format. Subsequently, the computeMatrix function from the
deepTools package was used to generate a count matrix for a 500 bp
region around the Sau3AI sites, with settings to sum values across bins
and treatmissing data as zero. Finally, we visualized the resulting data as
heatmapsusing theplotHeatmap function from thedeepTools package,
sorting regions in descending order. For the Circos plots, fold-changes
in indexed reads in the blasticidin or ganciclovir enriched regions rela-
tive to the plasmid library control were computed. Briefly, we used the
indexed read-counts in forward orientation to compute fold-change for
sense fragments and indexed read-counts in reverse orientation to
compute fold-change for anti-sense fragments. The polycistronic
regions were derived with a custom python script using the GFF file
retrieved fromTriTrypDB26. Briefly, strand annotation for gene-IDs were
used to determine the orientation and length of the polycistronic
regions. Any changes in gene orientation between the previous andnext
gene determine the starts of a new polycistronic region. The poly-
cistronic regions were converted in karyotype annotation file for
visualization in Circos75 along with fold-change in read-abundance in
blasticidin or ganciclovir enriched peaks relative to the plasmid library
control. To visualise UTR-seq mapping for individual genes, genome
coverage of aligned reads was extracted from the BAM files with
BEDtools73 (-bg option) to output bedGraph files, or with deepTools
(bamCoverage)74 to output bigWig files. The G-A-T-C frequencies were
computed with a custom script using a window of 100bp and saved as
bedGraph files. The bedGraph files were converted to BigWig using the
bedGraphToBigWig program76. The track files were visualized either
with PyGraphviz (https://github.com/pygraphviz/pygraphviz) or svist4-
get python packages77. Tracks showing RNA-seq data and ribosome
profiling data5 (cultured bloodstream form) were also included.

Machine learning
A custom Python script was used to filter T. brucei 3’-UTRs, initially
numbering 8261. The first step involved removal of 207 sequences of
< 20 b. We further refined our dataset by removing 2027 sequences
associated with genes exhibiting stage-specific expression, those with
an iBAQ score < 4 in bloodstream form (BSF) and >4 in procyclic form
(PCF), and vice versa78. The refined pool of 6214 UTRs was clustered
using mmseqs, grouping the first 200 b of each sequence, and
choosing representative sequences with homology <0.4, yielding
5871 sequences for further analysis. Feature extraction from 5’ and 3’-
UTRs was performed using another Python script that harnessed the
‘re’module for regular expression patternmatching and Biopython for
sequence manipulation79. Our script analyzed various DNA sequence
attributes, such as nucleotide base counts and the prevalence of poly-
purine, poly-pyrimidine, andhomopolymeric stretches. These features
were normalized against the total length of each 3’-UTR. To derive
translation efficiency (TE) metrics for each gene, we used published
ribosome profiling data5, taking the ribo-seq replicate average
and normalizing it against the combined average of ribo-seq and total
RNA-seq (cultured bloodstream form), yielding a proportion between
0 and 1, yielding, for 5777 genes, TE values as a proportion between 0
and 1. We then assessed the predictive capability of 42 extracted fea-
tures using a Random Forest Regressor from the scikit-learn library
(https://scikit-learn.org/). Our dataset was partitioned into a 70%
training set and a 30% test set. Features with Pearson correlation
coefficients exceeding 0.95 were deemed redundant and removed,
yielding 23 predictive features. The model’s efficacy was evaluated
using linear regression analyses conducted via the SciPy package80.

Finally, to interpret the Random Forest model, we visualized the
importance of the top eight features using SHAP values from the
corresponding Python package, thereby elucidating the contribution
of each UTR feature to the TE predictions39.

Sequence motif and base composition analysis
MEME (https://meme-suite.org/meme/tools/meme) was used to
search for enriched un-gapped sequence motifs in hit-fragments or
UTRs relative to a control dataset using the settings: differential
enrichment mode, any number of repetitions, search given strand
only. FIMO (Find Individual Motif Occurrences, https://meme-suite.
org/meme/tools/fimo) was used to search hit-fragments or UTRs for
occurrences of the motifs identified using MEME using the settings:
match p-value ‘<0.01’, scan given strandonly.Motif visualisationswere
generated using WebLogo (https://weblogo.berkeley.edu) and base
composition analysis was carried out using Excel.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding author upon request. High-throughput sequencing
data generated for this study have been deposited at the Sequence
Read Archive under primary accessionnumber PRJNA1076082. Source
data are provided with this paper in the Source Data file. Source data
are provided with this paper.

Code availability
Code generated for this study and package versions have been
deposited at GitHub (https://github.com/mtinti/utr_bsf_code) and
Zenodo (https://zenodo.org/doi/10.5281/zenodo.10636308)81.
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