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Background. Machine learning (ML) methods can identify complex patterns of treatment effect heterogeneity. How-
ever, before ML can help to personalize decision making, transparent approaches must be developed that draw on
clinical judgment. We develop an approach that combines clinical judgment with ML to generate appropriate com-
parative effectiveness evidence for informing decision making. Methods. We motivate this approach in evaluating the
effectiveness of nonemergency surgery (NES) strategies, such as antibiotic therapy, for people with acute appendicitis
who have multiple long-term conditions (MLTCs) compared with emergency surgery (ES). Our 4-stage approach 1)
draws on clinical judgment about which patient characteristics and morbidities modify the relative effectiveness of
NES; 2) selects additional covariates from a high-dimensional covariate space (P . 500) by applying an ML
approach, least absolute shrinkage and selection operator (LASSO), to large-scale administrative data (N = 24,312);
3) generates estimates of comparative effectiveness for relevant subgroups; and 4) presents evidence in a suitable
form for decision making. Results. This approach provides useful evidence for clinically relevant subgroups. We
found that overall NES strategies led to increases in the mean number of days alive and out-of-hospital compared
with ES, but estimates differed across subgroups, ranging from 21.2 (95% confidence interval: 1.8 to 40.5) for
patients with chronic heart failure and chronic kidney disease to 210.4 (229.8 to 9.1) for patients with cancer and
hypertension. Our interactive tool for visualizing ML output allows for findings to be customized according to the
specific needs of the clinical decision maker. Conclusions. This principled approach of combining clinical judgment
with an ML approach can improve trust, relevance, and usefulness of the evidence generated for clinical decision
making.
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Highlights

� Machine learning (ML) methods have many potential applications in medical decision making, but the lack
of model interpretability and usability constitutes an important barrier for the wider adoption of ML
evidence in practice.

� We develop a 4-stage approach for integrating clinical judgment into the way an ML approach is used to
estimate and report comparative effectiveness.

� We illustrate the approach in undertaking an evaluation of nonemergency surgery (NES) strategies for acute
appendicitis in patients with multiple long-term conditions and find that NES strategies lead to better
outcomes compared with emergency surgery and that the effects differ across subgroups.

� We develop an interactive tool for visualizing the results of this study that allows findings to be customized
according to the user’s preferences.
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The rapid recent development of machine learning (ML)
algorithms has catalyzed a new paradigm for health care
research,1–3 including on risk prediction with high-
dimensional data,4,5 estimation of optimal combination
drug therapies,6,7 and the use of artificial intelligence for
diagnostic imaging.8 ML methods can search over high-
dimensional genetic, clinical, and sociodemographic data
from electronic health records to detect relevant treat-
ment by subgroup interactions.9–13 These applications of

ML have the potential to generate evidence that can
inform more personalized medical decision making.

Despite the growing availability of evidence from ML,
clinical practitioners and policy makers can perceive
many of these methods as ‘‘black boxes,’’ and this may
undermine the appropriate use of ML in decision mak-
ing.14 This has been compounded by a number of studies
that highlight the risk of bias in the development and use
of algorithms (e.g., Obermeyer et al.15). Algorithms may
perform poorly for some groups, for instance due to
being trained on data in which these groups have low
prevalence,16 or because historical data may reflect and
reinforce previous biases in decision making or opportu-
nities.17 This may be exacerbated by the use of proxy
variables in place of the variable of interest, particularly
where the degree of mismeasurement differs across
groups.15 Conceptually, one can think of a model or
algorithm as being ‘‘fair’’ if it performs equally across
subgroups defined by sensitive variables (e.g., gender/sex,
age).18 Improving the fairness of ML approaches is an
active area of research (see Pessach and Shmueli19 for a
useful review of this literature). Moreover, checklists that
have been developed to assess risks of high-dimensional
confounding and spurious subgroup findings from ML
models can also help mitigate these concerns.20–22

While including clinical judgment in the design of ML
models can also improve clinical trust,23 there remains a
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gap in the literature about how to integrate clinical judg-
ment for ensuring usability, trust, and sufficient under-
standing of ML output by evidence users. An important
area where clinical decision making may be improved by
clinical investigators codeveloping an ML approach is in
generating appropriate evidence to target interventions
for people with multiple long-term conditions (MLTCs;
or multiple comorbidities). These populations are often
excluded from randomized controlled trials (RCTs), and
there is a lack of evidence on how comorbidities, alone
and in combination with each other, and with other risk
factors (e.g., age), might influence response to interven-
tions. This leads to challenges for clinical decision mak-
ers who have to rely solely on their clinical judgment in
deciding which intervention a patient should receive.24,25

New approaches for integrating clinicians’ explicit and
tacit knowledgei about decision making for these patients
into the design and translation stages of ML models are
required to help target interventions. This article aims to
present an approach for integrating clinical judgment
into the development and reporting of ML approaches
for estimating subgroup effects.

We develop a 4-stage approach for harnessing clinical
judgment with ML to provide evidence to inform deci-
sion making. We exemplify the approach in evaluating
nonemergency surgery (NES) strategies (including, e.g.,
antibiotic therapy and/or delayed surgery) versus emer-
gency surgery (ES) for patients with acute appendicitis
who have MLTCs. RCTs have reported that NES strate-
gies may lead to similar outcomes to ES for people with
acute appendicitis but have excluded older patients and
underrepresented those with MLTCs.27,28 Some pub-
lished clinical guidelines have suggested that frailty, as
well as individual comorbidities, such as diabetes and
heart disease,24,29 should be considered in deciding
between NES strategies or ES, but not others. Hence,
there is still limited evidence available to inform decision
making about the choice of NES versus ES for patients
with MLTCs admitted to hospital with acute appendicitis.

The ESORT study used large-scale administrative
data to undertake effectiveness and cost-effectiveness
analyses for 5 acute conditions (acute appendicitis, acute
gallstone disease, diverticular disease, acute hernia, and
intestinal obstruction) and found that NES strategies
including antibiotic therapy, and/or later surgery, might
be more beneficial than ES for older patients and those
with severe levels of frailty (see Hutchings et al.,30 Moler-
Zapata et al.,31 and Grieve et al.32 for further details).
However, this study has not provided evidence that can
inform decision making for people with MLTCs. These
patients tend to be older and frailer, and these character-
istics may interact with a myriad of LTCs. Hence,

providing useful evidence for clinical decision making
requires consideration of hundreds of variables.

We present an approach that combines expert judg-
ment from clinical co-investigators with the use of least
absolute shrinkage and selection operator (LASSO), a
data-driven ML approach to covariate selection.36 Six
clinical decision makers helped design (stage 1) and
report findings (stage 4) of the study in a way that helped
the ML approach estimate treatment effects for sub-
groups of decision-making relevance and ensure that
results were clearly presented and the limitations and
uncertainties discussed. This approach can be adapted to
other decision-making settings, which may warrant alter-
native ML models or more formal approaches to expert
opinion elicitation. We illustrate the approach in extend-
ing the ESORT study to undertake a new evaluation of
NES strategies for people with acute appendicitis who
have MLTCs.30–32 We develop an interactive tool that
can help customize the ML output for the needs of the
particular decision maker.

Overview of the Relevant Features of the

ESORT Study, the Decision Problem, and Data

Population of Interest

We focus on acute appendicitis as this is a common rea-
son for emergency admission. For people who have
MLTCs, a vital decision is whether to have antibiotic
therapy with the possibility of later surgery (NES) rather
than ES. As the patient is admitted as an emergency, this
decision is usually taken promptly by the clinical team,
including surgeons and anesthetists. The population
under consideration all had MLTCs and were identified
from the Hospital Episode Statistics (HES) database.34

The study population met the general ESORT inclusion
criteria: patients were aged 18 y or older; admitted as an
emergency via an accident and emergency department or
primary care referral to 1 of 175 NHS hospitals in Eng-
land from April 1, 2010, to December 31, 2019; had the
relevant ICD-10 diagnostic codes for acute appendicitis;
and met other inclusion criteria (N = 24,312) (see Hutch-
ings et al.,30 Moler-Zapata et al.,31 and Grieve et al.32 for
further details). Here, MLTC was defined as 2 or more of
28 comorbidities at or up to 2 y prior to admission.35

Comparator Strategies

Admissions were defined as receiving the ES strategy if,
according to Office of Population Censuses and Surveys
codes, they had a relevant operative procedure within the
7 d of eligibility (see Grieve et al.32 for further details).
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All other eligible admissions were designated as receiving
NES strategies including antibiotic therapy and/or sur-
gery after 7 d.

Covariates

Baseline covariates were extracted from HES and
included age, sex, ethnicity, and the Index of Multiple
Deprivation (IMD). An indicator of frailty was derived
from the Secondary Care Administrative Records Frailty
(SCARF) index after excluding medical comorbidities
that were in the list of 28 used to define MLTCs.36 Table
1 lists the baseline characteristics of the population of
interest, of whom 15% had NES strategies and 85% had
ES. The 28 individual comorbidities were extracted using
ICD-10 codes based on the study by Stokes et al.35 of
MLTCs in acute admissions in HES (see Table 2).

Outcomes

The outcome measure was the number of days alive and
out of hospital (DAOH) at 90 d measured from the index
date.37,38 The calculation of DAOH used HES data on
the total duration of hospitalization over the 90-d period
including readmissions and the date of death from

linkage to the Office for National Statistics (ONS) death
record. Patients who died within the 90-d period were
assigned zero DAOH.

Overview of Analysis of Comparative Effectiveness

The main interest for decision making was the compara-
tive effectiveness of NES strategies versus ES on the
mean DAOH at 90 d for subgroups defined by baseline
patient characteristics and individual LTCs. The analyti-
cal approach recognized that some prognostic variables
available to the clinicians that may influence the choice
of NES versus ES, such as the patient’s physiological sta-
tus, were not recorded in the data. We therefore followed
the original ESORT study in using an instrumental vari-
able (IV) analysis. The IV was the hospital’s ‘‘tendency
to operate,’’ defined as the proportion of eligible patients
who had NES rather than ES in the year prior to the
specific admission.

The rationale for the IV approach is that, provided
the requisite assumptions for the IV to be valid are met,
it can reduce the risk of bias in the estimate of relative
effectiveness that is due to confounding.39 In particular,
a major concern when attempting to estimate compara-
tive effectiveness from observational data is that there

Table 1 Baseline Characteristics of Patients in the Cohort

Patient Characteristics, n (%) Emergency Surgery (n = 20,669) Nonemergency Surgery (n = 3,643)

Age, y
\60 11,337 (55) 1,195 (33)
60–74 6,089 (29) 1,151 (32)
.75 3,243 (16) 1,297 (36)

Frailty
Not frail 18,292 (88) 3,132 (86)
Frail 2,377 (12) 511 (14)

Sex
Male 9,951 (48) 1,766 (48)
Female 10,718 (52) 1,877 (52)

Admission method
Accident and emergency department 14,964 (72) 2,573 (71)
General practitioner referral 5,705 (28) 1,070 (29)

Ethnicity
Not stated/unknown 1,425 (7) 178 (5)
White 17,630 (85) 3,149 (86)
Black/Black mixed 392 (2) 91 (2)
Asian/Asian mixed 833 (4) 171 (5)
Chinese/other 389 (2) 54 (1)

Index of Multiple Deprivation
Quintile 1: most deprived 3,689 (18) 633 (17)
Quintile 2 4,010 (19) 725(20)
Quintile 3 4,151 (20) 710 (19)
Quintile 4 4,231 (20) 728 (20)
Quintile 5: least deprived 4,363 (21) 810 (22)
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may be unmeasured baseline prognostic differences
between the comparison groups, such as the severity of
the disease, which could act as confounding factors. The
relative advantage of an IV approach is that it can bal-
ance these unobserved prognostic differences between
the comparison groups and hence reduce the risk of bias
in the estimates of treatment effectiveness.39–41

Our previous articles have explained in detail why the
hospitals’ tendency to operate (TTO) may be a valid IV
for the choice of NES versus ES,30–32 and have set out
why the requisite underlying assumptions are plausible in
this context. In brief, the hospital’s TTO needs to satisfy
the following assumptions: 1) it is not correlated with the
outcome except through the treatment assignment, con-
ditional on the covariates; 2) it is strongly correlated with
treatment assignment; and 3) it does not increase the
probability of treatment assignment at a specific value of
the IV but decreases it at higher values. A series of study
design features supported the validity of the IV, includ-
ing: 1) given the acute nature of the condition, it is
unlikely that patients would choose to attend hospitals
according to their TTO; 2) referrals from tertiary hospi-
tals were excluded; and 3) models were adjusted for
proxies for hospital quality-of-care indicators.30–32 Also,
some tests carried out provided further reassurance,
showing the IV to be strongly correlated with treatment
assignment (F . 100) and to achieve good balance in
observed covariates, which might suggest that it also bal-
ances the unobserved ones (see Moler-Zapata et al.31 for
further detail).

Given that it is plausible that the TTO is a valid IV,
the subsequent estimation of comparative effectiveness
can mitigate the risks of bias from unmeasured con-
founding. A further advantage of the IV approach that
we take is that it recognizes the potential for effect modi-
fication according to unobserved covariates (see also sec-
tion 2 in the supplementary materials).42,43 The extension
in this article is that within the framework of using the
IV to estimate comparative effectiveness, we take a 4-
stage approach to combining clinical judgment with ML
to estimate comparative effectiveness for specific sub-
groups of decision-making relevance.

A 4-Stage Approach for Developing Appropriate

Evidence to Target the Choice of Intervention

We now outline the 4-stage approach to combining clini-
cal judgment with ML (see Figure 1). We exemplify each
stage in evaluating NES versus ES for people with acute
appendicitis who have MLTCs. In this approach, we draw
on coproduction between investigators with a primarily

methodological or primarily clinical background.44 Clini-
cal judgment is provided by 6 clinical investigators (4 sur-
geons, 1 intensivist, and 1 anesthetist, all with at least 25 y
of clinical experience) with roles as both researchers and
users of research evidence. All are coauthors and were
involved in the design and conduct of the study.

Stage 1: Effect Modifier Selection
Using Clinical Judgment

In preparation for stage 2, and to address the concern
that ML methods may identify spurious subgroup effects
at the expense of those of decision-making relevance, the
clinical co-investigators used their expert judgment to
identify which of the 28 comorbidities should be selected
as ‘‘forced’’ covariates and considered as effect modifiers.
The unselected comorbidities are considered in stage 2.

Implementation of stage 1. We undertook a survey
among the clinical investigators to rate the 28 comorbidities
as ‘‘low,’’ ‘‘medium,’’ or ‘‘high’’ priority for inclusion as
forced covariates in terms of their influence on the choice
of NES strategies or ES and/or their potential for modify-
ing the relative effectiveness of ES versus NES strategies.
We discussed the purpose of the exercise at an online inves-
tigators’ meeting and developed a brief survey question-
naire. Our meeting included a discussion of the challenges
of using an ML approach to identify those patient charac-
teristics that modify the effectiveness of NES strategies ver-
sus ES for patients with MLTCs. The questionnaire was
circulated for comment and then modified for face validity
before we circulated it to the clinical investigators. All 6
clinical investigators independently completed the survey.
We designated the comorbidities with a mean rank across
the responses of at least ‘‘medium’’ priority as forced cov-
ariates that must be included in the model and considered
as effect modifiers. Nine of the 28 comorbidities were
selected. Interrater agreement between the 6 clinical investi-
gators was fair to good (intraclass correlation 0.62).

Stage 2: Data-Driven Effect Modifier Selection

While clinical input allows us to identify suspected effect
modifiers, it cannot detect those covariates that are
unknown modifiers either alone or in combination with
other morbidities or other covariates. One could consider
a full set of treatment by covariate interactions. However,
this may lead to a high-dimensional, complex model with
many parameters that is overfitted to the data and yields
unstable estimates. In extreme cases, estimation may be
infeasible. A wide range of approaches to covariate selec-
tion are available (see chapter 3 in Hastie et al.45),
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including backwards selection, whereby variables are
dropped sequentially based on their statistical signifi-
cance. However, backwards selection suffers from over-
fitting to the data used to assess statistical significance.46

Here, we considered the LASSO approach to reduce
the risk of overfitting by reducing model complexity
through selecting variables for inclusion, thereby reduc-
ing the number of parameters estimated (see section 1 in
the supplementary materials).36,47 LASSO can lead to
regularization bias since, as the estimated coefficients
are shrunk toward zero, some meaningful variables for
clinical decision making may be excluded. We use a
post-double selection (PDS) approach to account for
regularization bias while selecting potential confounders
for inclusion. PDS identifies potential confounders by
estimating auxiliary regressions of 1) the treatment on
covariates and 2) the outcome on covariates. The final
models include the union of variables that were selected
as influencing treatment or outcomes.48,49 This final
model provides asymptotically valid standard errors for
the treatment effect. Variables that are not selected in
any of the auxiliary regressions are deemed not to be suf-
ficiently important confounders to warrant inclusion.

We adapt the PDS approach to account for effect modi-
fication as described below.

Implementation of stage 2. The covariates under consid-
eration were from 4 broad groups:

a. Patient characteristics (age category, sex, frailty),
b. medium-/high-priority comorbidities,
c. low-priority comorbidities, and
d. covariate interactions, among comorbidities (b and

c) and each comorbidity with age category, sex, and
frailty (a).

Computational time increases with the number of vari-
ables considered, and so covariates and covariate inter-
actions were dropped if any subgroup failed to meet a
minimum volume threshold of 50 patients in each group
(see Table S1 in the supplementary materials for a full
list of covariates).50

Following the results of stage 1, we implement our
variable selection approach as follows. Rigorous LASSO
was allowed to select: (i) variables from groups (c-d) for
the outcome model, while the inclusion of variables in (a-
b) and the treatment indicator was ‘‘forced’’, (XSelectedY

),ii

and any variables from any of the groups (a–d) for the
treatment model, while the inclusion of the instrument
was ‘‘forced’’, (XSelectedD

) (see Supplementary Table S2 for
alternative approaches to selection of covariates). In the
outcome model, we also include interactions between the
treatment and each variable in groups (a–d) to allow for
effect modification by these variables, and we use rigor-
ous LASSO to select those to retain. We then form the
union of the selected covariates and those selected based
on clinical input in Stage 1. This represents the final set
of effect modifiers for the subsequent estimation of sub-
group effects (XSelected). In summary, this step finds cov-
ariates that are included in the final models, as their
omission would lead to a large omitted variable bias.

Stage 3: Individual and Subgroup Effect Estimation. To
provide nuanced treatment effect estimates to inform
more personalized decision making, we require treatment
effects to be estimated at the individual level, which can
then be aggregated to appropriate subgroups according
to the variables previously selected by clinical judgment
(stage 1) and LASSO (stage 2). As summarized in section
‘Overview of Analysis of Comparative Effectiveness’, the
ESORT study used the TTO as the IV to address unob-
served confounding due to the lack of baseline informa-
tion on prognostic factors such as the patients’ physiology.
However, as these variables could also modify the

Figure 1 Illustration of the 4-stage approach for integrating
clinical judgment into a machine learning model.
Arrows connecting the rectangle show the sequence of stages. Arrows

connecting the circles with the rectangles indicate the use of machine

learning methods or clinical input in that stage. Color key: black,

logical ordering; blue, machine learning; red, clinical judgment.
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treatment response, we applied a local instrumental vari-
able (LIV) estimator,52–54 as this provides consistent
individual-level effect estimates in the presence of hetero-
geneity according to observed and unobserved confoun-
ders. These individual effects can then be aggregated to
obtain estimates for the overall population and relevant
subgroups (see section 2 in the supplementary materials
and Basu54 and Moler-Zapata et al.30 for further details).

The intuition behind this method is that, from the
data, it is possible to identify marginal patients who are
in equipoise with respect to the treatment assignment
decision given their level of measured and unmeasured
covariates and for whom a small (marginal) change in
the IV is sufficient to nudge them into the treatment
group.55 Contrasting the outcomes for patients who are
identical in measured and unmeasured covariates but
have marginally different levels of the IV, we can identify
marginal treatment effects (MTEs). Our LIV estimator
uses the variables selected in stages 1 and 2 (see section 2
in the supplementary materials) for estimating MTEs.
This approach has advantages over methods such as
using fully interacted regression models with recycled
predictions, which assume that there are no unobserved
confounders or effect modifiers.56,57

In addition to variables in XSelected and XForced , models
for estimating treatment effects are adjusted for the
patient’s ethnicity (according to categories considered in
HES), IMD,iii age and age-squared terms, time period, as
well as teaching hospital status and hospital quality-of-
care indicators (according to rates of 90-d all-cause mor-
tality and readmissions in preceding periods). Once the
individual-level treatment effects have been estimated,
several approaches can be taken to identify subgroups of
interest. These subgroups could be prespecified, for
instance, according to the list derived in stage 1 and stage
2, or determined data adaptively.10,11,59–63 Here,
individual-level effects are aggregated for subgroups
defined by the covariates and covariate interactions
selected in stage 1 and stage 2.

Implementation for stage 3. We estimate individual-level
treatment effects by including the variables selected in
stage 1 and stage 2 (see section 2 in the supplementary
materials for further details). We aggregate the resultant
individual-level effect estimates to obtain a subgroup
effect estimate for each group defined by variables in the
set of treatment effect modifiers identified in stage 1 and
stage 2 (i.e., X Selected and XForced). Standard errors were
obtained by nonparametric bootstrap.

Results for stages 1 to 3. The results for stage 1 are given
in Table 2. Briefly, 7 comorbidities were chosen as being
of clinical relevance; that is, they were deemed to influ-
ence 1) the choice of NES strategies versus ES, 2) the
relative effectiveness of NES versus ES (i.e., effect modi-
fiers), and 3) met the requirement that there were at least
50 observations for each comparator group at each level
of the subgroup (see Table 2).

In stage 2, of the potential modifiers considered, the
LASSO selected only 1 additional covariate, chronic
viral hepatitis B, in the treatment assignment and out-
come models (see columns 2 and 3 in Table 3). However,
LASSO chose several additional covariate interactions as
effect modifiers (see columns 4 and 5 in Table 3).

Once the individual-level effects were aggregated to
the overall MLTC population with acute appendicitis
(stage 3), NES strategies led to, on average, 4.6 (95%
confidence interval [CI]: 2.7 to 7.0) additional DAOH
compared with ES. For patients older than 75 y and
those with frailty, NES led to relatively greater gains in
DAOH compared with ES. Figure 1 also shows that as
compared with ES, NES strategies lead to gains in
DAOH for most subgroups identified according to the
covariates selected in stage 1 and stage 2 but with some
differences in the magnitude of the gains from 21.2 (1.8
to 40.5) for patients with chronic heart failure
and chronic kidney disease, to 210.4 (229.8 to 9.1)
for patients with cancer and hypertension, albeit with
large uncertainty around some of the point estimates (see
Figure 1).

Stage 4: Reporting of Findings for Assisting
Decision Making

In studies using ML to detect effect modifiers, the num-
ber of potential subgroup effects, and hence the com-
plexity of the reporting, increases as the covariate space
grows. Here, we identified 48 subgroups as being of pol-
icy relevance from more than 500 candidates. We recog-
nized that the way results are presented to evidence users
influences data interpretation and subsequent adoption
of evidence in decision making.64–66 We therefore dis-
cussed with clinical co-investigators how to adapt the
presentation of findings to help inform decision making.
In this stage, we describe how clinical judgment was used
to inform graphical presentation of the results from
stages 1 to 3.

Implementation of stage 4. We prepared a pilot version
of the interactive tool (https://github.com/silviamoler) to

Moler-Zapata et al. 7



illustrate alternative ways of presenting results. To obtain
the views of the clinical investigators on the way results
can be presented, we held 6 online meetings between, at
least, 2 of 3 nonclinical investigators and each clinical
investigator. Meetings lasted 30 to 60 min and followed
a broad topic guide covering usefulness, readability, and
ease of understanding of the results to potentially inform
clinical decision making. The meetings were informal,
rather than interviews, given the familiarity and trust
among participants, and clinical investigators were able
to ask and respond to questions in the discussion. The
nonclinical investigators circulated brief notes following
meetings and prepared a summary of findings from the
meetings for review by all investigators. We did not use
formal elicitation methods as the goal of these discus-
sions was to illustrate alternative options for reporting
results and how dynamic, interactive approaches for
reporting may be most helpful for bridging clinicians’
tacit with ML-generated knowledge and fostering adop-
tion of ML evidence in practice. The results of these dis-
cussions are presented below.

Results for stage 4. We summarize the findings from
these discussions within 3 main themes: 1) data, 2) meth-
ods, and 3) presentation format. We develop 2 alternative
display options to exemplify additional ways of present-
ing the findings.

Data. The prevailing view was that the main results were
plausible (e.g., those for people aged .75 y) but that
some should be interpreted with caution. In particular,
the lack of granular information with respect to the
severity of some conditions, for example, the stage of the
cancer, whether diabetes was type 1 or type 2, and
whether hypertension was controlled, must be acknowl-
edged. Some comorbidities might be imperfectly captured
in the data (e.g., due to changes in coding practices).
Hence, the clinical co-investigators put the findings
through a critical lens to help sift which were helpful for
informing decision making and which were not.

Methods. Some of the clinicians wanted clarification as
to which stage of LASSO the subgroups were selected

Table 2 Covariates Selected Using Clinical Judgment in Stage 1

Comorbidity Sample Size (% NES) Selected Met the Volume Threshold

Alcohol misuse 1,847 (11) No —
Asthma 6,569 (11) No —
Atrial fibrillation 170 (24) No —
Cancer 734 (25) Yes Yes
Chronic heart failure 1,104 (34) Yes Yes
Chronic kidney disease 3,665 (23) Yes Yes
Chronic pain 2,725 (14) No —
Chronic pulmonary disease 2,948 (21) Yes Yes
Chronic viral hepatitis B 194 (28) No —
Cirrhosis 938 (8) Yes Yes
Dementia 405 (42) Yes Yes
Depression 5,213 (10) No —
Diabetes 6,383 (19) Yes Yes
Epilepsy 1,042 (12) No —
Hypertension 13,046 (17) No —
Hypothyroidism 3,369 (13) No —
Inflammatory bowel disease 702 (16) Yes Yes
Irritable bowel syndrome 1 (0) No —
Multiple sclerosis 200 (9) No —
Myocardial infarction 74 (12) No —
Parkinson’s disease 170 (25) No —
Peptic ulcer disease 142 (20) No —
Peripheral vascular disease 2,168 (17) No —
Psoriasis 381 (12) No —
Rheumatoid arthritis 1,065 (17) No —
Schizophrenia 300 (13) No —
Severe constipation 2,559 (13) No —
Stroke 42 (14) Yes No

NES, nonemergency surgery.
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(see stage 2). Similarly, it could be helpful to understand
what determines the width of the confidence intervals
(e.g., similar sample sizes may have CIs of different
widths, for example, due to difference in the variability
of individual-level effect estimates). They felt that forcing
specific covariates into the models was helpful in gener-
ating subgroups of particular interest to them but that it
was also useful for the ML to consider that there may be
effect modification according to many other covariates
alone and in combination.

Data display format. The clinical co-investigators
expressed different preferences about the grouping and
the ordering of the subgroups. For instance, some pre-
ferred seeing all the results in 1 graph, whereas others

found it challenging to interpret findings from this num-
ber of subgroups and preferred forest plots with fewer
results. In Figure 2, patients could belong to different
subgroups, which could complicate the interpretation.
One way of partially addressing this would be to group
results according to combinations of patient characteris-
tics, such as age and frailty or individual comorbidities.
Some of the clinical investigators expressed a preference
for visualizing the results ordered by effect size (as in
Figure 2), whereas others would prefer alternative order-
ing, for example, to be according to groupings/clusters
of comorbidities. They also requested that the figure
reported numeric values for the effect sizes and confi-
dence intervals, sample sizes for the subgroups, and
NES/ES rates for each subgroup.

Table 3 Covariates Selected Using Post–Double Selection with LASSO in Stage 2

Comorbidity

Selected as Main Effect Selected as Interaction

In Treatment Model In Outcome Model In Treatment Model In Outcome Model

Age 60-74 y — — Yes Yes
Age .75 y — — Yes Yes
Frail — — No No
Female — — Yes No
Cancer — — No Yes
Chronic heart failure — — Yes Yes
Chronic kidney disease — — Yes Yes
Chronic pulmonary disease — — Yes No
Cirrhosis — — Yes No
Dementia — — No No
Diabetes — — Yes No
Inflammatory bowel disease — — No No
Alcohol misuse No No No No
Asthma No No No No
Atrial fibrillation No No No No
Chronic pain No No No No
Chronic viral hepatitis B Yes Yes No No
Depression No No No No
Epilepsy No No No No
Hypertension No No No Yes
Hypothyroidism No No No No
Multiple sclerosis No No No No
Parkinson’s disease No No No No
Peptic ulcer disease No No No No
Peripheral vascular disease No No No Yes
Psoriasis No No No No
Rheumatoid arthritis No No No No
Schizophrenia No No No No
Severe constipation No No No No
Stroke No No No No

All variables selected had to meet a minimum volume threshold of 50 for each comparator. In addition to the covariates listed in this table, some

variables that were not considered as effect modifiers in stage 1 or 2 were included in the models for estimating treatment effects. These included

the patient’s ethnicity, Index of Multiple Deprivation, as well as teaching hospital status and hospital acute care indicators. LASSO, least

absolute shrinkage and selection operator.

Moler-Zapata et al. 9



The clinical co-investigators recognized that the pre-
sentation exemplified by Figure 2 was most helpful for
informing those decisions when the effect for a single
subgroup was of prime interest. A downside of this
ordering of results by magnitude is that groups that are
more closely related (e.g., age groups) are not necessarily
displayed together, which can impede comparisons.
Encouraged by the feedback from the clinical co-
investigators, we now consider 2 complementary ways of
presenting results.

A more flexible approach would allow the user to
choose the covariates by which to stratify the sample.
Inevitably there is a precision-interpretability tradeoff
when choosing the level of aggregation at which to pres-
ent effect estimates. While disaggregated subgroups are
more targeted for an individual patient in that subgroup,
with very refined groups it is difficult to identify clinically
relevant recommendations. At the link https://github
.com/silviamoler/ESORT-M, we offer a dynamic forest
plot by which the user can visualize estimates of relative
effectiveness for different combinations of patient sub-
groups to help inform the decision of prime interest.
However, some caution is required here since the esti-
mated effects have uncertainty associated with them that
must be appropriately conveyed, and considering many
groups may lead to discoveries that fail to generalize, an
issue akin to multiple testing bias.

Discussion

We present a 4-stage approach for integrating clinical
judgment into a ML model (LASSO) for informing deci-
sion making. This approach to harnessing clinical judg-
ment can help address concerns with fully data-driven
approaches and increase trust in ML to help improve
decision making. The 4 stages are model selection using
1) clinical judgment and 2) ML methods, 3) estimation
of subgroup effects, and 4) selecting and reporting of
results for decision making. We illustrate this approach
in undertaking a new evaluation of NES strategies for
acute appendicitis in patients with MLTCs. Here, the
key role for clinical judgment is in co-designing the gen-
eration of evidence to prespecify potential drivers of het-
erogeneity in effects (modifiers) and help refine the
reporting of results. However, the broad approach
described of drawing on clinical judgment to inform the
design of ML models and the presentation of results is
applicable to other settings.

This article makes 3 important contributions to the lit-
erature. First, we add to efforts to increase trust and fos-
ter the appropriate adoption of ML in clinical decision

making, which requires enhancing clinicians’ and in
many settings patients’ understanding the purpose and
limitations of ML models. Using expert judgment plays a
key role in building users’ trust in the study’s findings.23

We complement this rapidly growing literature by devel-
oping a transparent approach for integrating clinical
judgment into the use of ML, in this case LASSO. We
anticipate that a similar principled approach may be ben-
eficial in building trust in other ML algorithms, such as
those relying on random forests. For methods that impli-
citly rely on complex combinations of covariates, it may
be helpful to assess which variables drive predictions, for
instance, using SHAP (SHapley Additive exPlanations)
values,67 and to consider how these correspond to those
identified by clinicians as being important. Thus, our
work seeks to further a broader research agenda on
improving the transparency of ML approaches.

Our study also complements the related literature of
‘‘explainable ML,’’ which aims to help users understand
the predictions of ML models. In addition to methods
based on partial dependence plots,68 which allow
researchers to investigate the contribution of variables to
a model’s output, the use of ‘‘model fact’’ labels or
‘‘model cards’’ to provide clear instructions on how the
evidence of the model should be used might be help-
ful.69,70 These approaches may be helpful in improving
assessments of treatment effect heterogeneity. Tools have
been previously developed to plot output from ML pre-
diction models and their performance (e.g., accuracy,
recall, etc.) in an interactive way.71 We emphasize the
key role of graphical tools in the comprehension and
translation of ML output. Our tool allows users to plot
the evidence in ways deemed most useful by them,
according to users’ needs.

Second, this is the first study to formally evaluate het-
erogeneity in the clinical effectiveness of NES versus ES
for acute appendicitis patients with MLTCs. Antibiotic
therapy may be the best treatment option for patients
with serious comorbidities given the high risks associated
with surgery,29 but there is little empirical evidence. We
find that NES, including antibiotic therapy, leads to bet-
ter clinical outcomes than ES for MLTC patients overall
and particularly for those who are older, frail, or have
chronic heart failure, chronic kidney disease, or diabetes.
Although, for simplicity this article focused on the main
clinical outcome (DAOH at 90 d), our precedent
research suggests that this is strongly predictive of cost-
effectiveness.31,32

Third, the study contributes to the literature on data-
adaptive approaches for IV estimation. We extend PDS
for use with LIV methods building on Belloni et al.48

Similar approaches have been adopted in the context of

10 Medical Decision Making 00(0)
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binary IVs72,73 but had not yet been considered for IVs
that have multiple values or are continuous.

The study has several strengths. First, we used large
routine data that covered the full population of interest

in England, for which rich clinical and sociodemographic
information could be retrieved. Second, we adopted a
co-production approach that recognized the dual role of
the clinical co-investigators as both researchers and users

Figure 2 Effectiveness of nonemergency surgery (NES) strategies versus emergency surgery (ES) on days alive and out of
hospital up to 90 d by subgroup (display option, No. 1).
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of research evidence in the context of decision making in
clinical practice. Third, we applied robust causal infer-
ence methods described in Moler-Zapata et al.31 for
addressing the likely bias due to confounding and
heterogeneity.

This study had a number of limitations. First, as is
the case with many routinely collected administrative
datasets, these data lacked fine-grade coding on mea-
sures of disease severity (e.g., cancer progression,

diabetes type) and other patient characteristics (e.g.,
body mass index), whereas in practice, clinicians would
have access to this more granular data. Therefore, deci-
sion making at the bedside will continue to require care-
ful clinical judgment. Improved data linkage and/or
triangulating evidence from multiple data sources could
help address this shortcoming. Second, this study did not
explore other issues with ML such as the risk of algorith-
mic biasiv or the ‘‘fairness’’ of decisions.15,74 Third, the

Display Option 2 Plot of Main Covariate Effects

The patient’s age and frailty level are factors that clinicians often take into consideration when making decisions about
allocation to ES or NES. Figure 3 allows the reader to see how effectiveness varies across age groups or frailty levels. It also
reveals differences in relative effectiveness according to whether patients had chronic heart failure, chronic kidney disease, and
dementia, albeit with wide statistical uncertainty for some of these subgroups.

Figure 3 Effectiveness of nonemergency surgery (NES) strategies versus emergency surgery (ES) on days alive and out of
hospital (DAOH) up to 90 d by subgroup (display option, No. 2).
Only subgroups for main effects are reported in this figure. Subgroups defined by age, sex, and frailty levels appear as consecutive rows. Labels

have been modified to include the percentage of patients who received NES in that subgroup.

Display Option 3 Plot of Specific Patient Characteristics

Some of the clinicians requested that results were presented to focus on specific subgroups of prime interest. Figure 4 takes this
approach in showing a forest plot with treatment effects solely for patients aged 75 y or older. The average gains from NES
versus ES are relatively large and precisely estimated with relatively little modification according to whether the patient has
chronic heart failure or diabetes. Similar plots could be produced for those subgroups who are frail or who have chronic heart
failure or dementia.
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study drew on clinical judgment from 6 clinical co-
investigators and did not extend the elicitation of judg-
ment to a larger sample of external clinicians. The
approach we used benefited from our clinical investiga-
tors’ familiarity with the general research question and a
level of trust that allowed for a pragmatic and less struc-
tured approach to eliciting their clinical judgment. How-
ever, their views may differ from those of a larger
external sample of clinicians. Lastly, in interpreting the
results, given the number of comparisons undertaken, a
clear concern is multiple testing bias leading to false dis-
coveries. This concern coupled with the wide uncertainty
surrounding the effects for individual subgroups limits
the extent to which the study provides a strong basis for
definitively recommending differential treatment deci-
sions by subgroup. One could apply post hoc corrections
to account for the number of tests undertaken, albeit
some such corrections (e.g., Bonferroni75) can be overly
conservative. Here, a useful output from this study is in
raising new hypotheses for future research, in proposing
more nuanced subgroup combinations that may modify
the relative effectiveness of NES versus ES, so we do not
do so here.76

This study identifies areas for future research. The set-
ting exemplifies the potential to integrate clinical judg-
ment into ML and could be generalized in different ways.
For example, the clinical input could have adopted more
formal approaches such as a Delphi Panel or survey of a
larger sample of external clinicians for achieved expert
consensus. In settings in which selection on observables is
plausible, other ML approaches could have been consid-
ered such as meta-learners77 or causal forests.78 Other
variable selection methods could be considered such as
the ‘‘group LASSO,’’ which allows predefined groups of
covariates to jointly be selected into or out of a model,
potentially leading to a more interpretable model.79 One

could explore other data-driven approaches for identify-
ing subgroups (see, e.g., Su et al.,10 Lipkovich et al.,11

Foster et al.,59 Loh et al.,60 Hapfelmeier et al.,61 Dwivedi
et al.,62 and Dusseldorp and Van Mechelen63), which
split the data by characteristics predictive of expected
treatment benefit. Since many of these are tree based,
they result in mutually exclusive subgroups, which may
be more interpretable. Our approach could be contrasted
with other alternatives, such as using ML and clinical
judgment to develop a single risk score to predict relative
effectiveness and target interventions.

Our approach can be generalized in several ways.
Building on recent work by Rodrigues et al.,80 one could
use expert judgment in stage 1 to design a directed acyc-
lic graph (DAG) representing the causal relationships
between variables. This would allow us to identify the
set of covariates for adjustment that ensures both that 1)
the risk of confounding is minimized and 2) no post-
treatment variables such as colliders (i.e., variables
influence by treatment and outcomes) or mediators
(intermediate variable that lies on the causal pathway)
are controlled for either by analysis or in the design stage
through sample selection. Evaluating the implications of
alternative assumptions about the DAG could be
assessed in sensitivity analyses. In Supplementary Table
S2, we show that treatment effects estimated for sub-
groups identified in stage 2 (see Table 3) do not vary
when 1) expert judgment is not used for identification of
effect modifiers (fully data driven; column 4) and 2) only
expert judgment is used (column 5). However, this does
not constitute a formal test for bias, and results could be
subject to the problems described in section 1 with fully
data-driven approaches.

While our approach drew on judgment from clinical
decision makers, which was appropriate in this emer-
gency setting, for chronic conditions, it may be more

Figure 4 Effectiveness of nonemergency surgery (NES) strategies versus emergency surgery (ES) on days alive and out of
hospital (DAOH) up to 90 d by subgroup (display option, No. 3).
Labels have been modified to clearly reflect to which subgroup each row refers. Indentation is used to indicate whether the subgroup is defined

by individual comorbidity or an interaction.
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appropriate to include judgment from patients and the
public in combination with ML to inform models of
shared decision making and indeed the use of decision
aids, such as QRISK, which is used to inform initiation
of statins for the primary prevention of cardiovascular
disease in the United Kingdom.81,82 Setting up patient
and public involvement (PPI) panels for deciding how
evidence should be presented to a lay population to facil-
itate shared decision-making processes could be helpful.
These panels should recognize that patients may be less
familiar with some concepts discussed, and therefore,
PPI panel participants would need to be offered simple,
clear materials and training to ensure these are accessi-
ble. The ESORT project successfully set up PPI panels
to discuss aspects of the study design, including end-
points.83 Alternative approaches to preference elicitation,
including discrete choice experiments, to explore which
graphics could be more visually accessible, appealing,
and easy to interpret for patients would need to be
considered.

In conclusion, our approach combining ML methods,
in this case LASSO, with clinical judgment improves evi-
dence generation for clinical decision making by increas-
ing transparency, interpretability, and trust.
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Notes

i. Tacit knowledge (or ‘‘know-how’’) is context-specific
knowledge that is acquired through previous experience
and is hard to transmit. It is different from ‘‘explicit’’ or

‘‘codified’’ knowledge (i.e., knowledge that can be acquired
through research).26

ii. While in principle we could include the variables identified
by clinicians among the variables for possible selection
and allow the LASSO algorithm to assess whether they
warrant inclusion, here we force their inclusion, which
would increase efficiency if these variables are truly
influential.

iii. We follow previous recommendations, including those
from National Institute for Health and Care Excellence
methods guidance, and do not consider the patient’s ethni-
city or IMD in stage 1 or 2, as it would not generally be
appropriate to issue differential treatment recommenda-
tions according to ethnicity or deprivation.58

iv. Algorithmic bias occurs when data-driven approaches
replicate and even amplify human biases present in the
data.
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