
Articles
eClinicalMedicine
2024;77: 102887

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102887
Diagnostic performance of deep learning for infectious
keratitis: a systematic review and meta-analysis
Zun Zheng Ong,a,o Youssef Sadek,b,o Riaz Qureshi,c,o Su-Hsun Liu,c Tianjing Li,c Xiaoxuan Liu,d,e,f Yemisi Takwoingi,g Viknesh Sounderajah,h

Hutan Ashrafian,h Daniel S. W. Ting,i,j Jodhbir S. Mehta,i,j Saaeha Rauz,a,d Dalia G. Said,k,l Harminder S. Dua,k,l Matthew J. Burton,m,n and
Darren S. J. Tinga,d,j,k,∗

aBirmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
bBirmingham Medical School, College of Medicine and Health, University of Birmingham, UK
cDepartment of Ophthalmology and Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
dDepartment of Inflammation and Ageing, College of Medicine and Health, University of Birmingham, UK
eDepartment of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
fHealth Data Research UK, London, UK
gDepartment of Applied Health Sciences, University of Birmingham, Birmingham, UK
hInstitute of Global Health Innovation, Imperial College London, London, UK
iSingapore National Eye Centre, Singapore Eye Research Institute, Singapore
jOphthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
kAcademic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, UK
lDepartment of Ophthalmology, Queen’s Medical Centre, Nottingham, UK
mInternational Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, UK
nNational Institute for Health Research (NIHR) Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL
Institute of Ophthalmology, London, UK

Summary
Background Infectious keratitis (IK) is the leading cause of corneal blindness globally. Deep learning (DL) is an
emerging tool for medical diagnosis, though its value in IK is unclear. We aimed to assess the diagnostic accuracy of
DL for IK and its comparative accuracy with ophthalmologists.

Methods In this systematic review and meta-analysis, we searched EMBASE, MEDLINE, and clinical registries for
studies related to DL for IK published between 1974 and July 16, 2024. We performed meta-analyses using
bivariate models to estimate summary sensitivities and specificities. This systematic review was registered with
PROSPERO (CRD42022348596).

Findings Of 963 studies identified, 35 studies (136,401 corneal images from >56,011 patients) were included. Most
studies had low risk of bias (68.6%) and low applicability concern (91.4%) in all domains of QUADAS-2, except the
index test domain. Against the reference standard of expert consensus and/or microbiological results (seven external
validation studies; 10,675 images), the summary estimates (95% CI) for sensitivity and specificity of DL for IK were
86.2% (71.6–93.9) and 96.3% (91.5–98.5). From 28 internal validation studies (16,059 images), summary estimates for
sensitivity and specificity were 91.6% (86.8–94.8) and 90.7% (84.8–94.5). Based on seven studies (4007 images), DL
and ophthalmologists had comparable summary sensitivity [89.2% (82.2–93.6) versus 82.2% (71.5–89.5); P = 0.20] and
specificity [(93.2% (85.5–97.0) versus 89.6% (78.8–95.2); P = 0.45].

Interpretation DL models may have good diagnostic accuracy for IK and comparable performance to ophthalmologists.
These findings should be interpreted with caution due to the image-based analysis that did not account for potential
correlation within individuals, relatively homogeneous population studies, lack of pre-specification of DL thresholds,
and limited external validation. Future studies should improve their reporting, data diversity, external validation,
transparency, and explainability to increase the reliability and generalisability of DL models for clinical deployment.
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Research in context

Evidence before this study
Infectious keratitis (IK), commonly known as corneal
infection, is the leading cause of corneal blindness globally.
Timely diagnosis is imperative for achieving favourable clinical
outcomes. However, current diagnostic approach is
challenged by low microbiological culture yield, long
turnaround time for culture results, and need for clinical
expertise, which is particularly lacking in low- and middle-
income countries (LMICs). All these issues underscore the
need for innovative solutions to improve IK diagnosis. Deep
learning (DL) – a subset of artificial intelligence – has
demonstrated considerable promise in enabling medical
diagnoses, though its value in IK remains unclear. We
conducted a systematic search across EMBASE (OVID),
MEDLINE (OVID), DANS EASY Archive, and trial registries, to
identify studies investigating the diagnostic accuracy of DL
models for IK (based on any type of corneal imaging)
published from 1974 until July 16, 2024. We identified one
recent systematic review which assessed the diagnostic
accuracy of DL in IK. However, this review was limited by a
small sample size (n = 11 studies), inclusion of slit-lamp/
anterior segment photograph-based studies only, invalid
statistical methods, and lack of meta-analytic comparison
between DL models and ophthalmologists.

Added value of this study
This review, which adheres to Cochrane methods, represents
the most comprehensive examination of DL models for
diagnosing IK to date (based 35 studies with 136,401 corneal
images from >56,011 patients). In addition, to our
knowledge, this is the first and only review that has

systematically evaluated the performance of DL models, based
on both internal and external validation studies, and
compared accuracy with that of ophthalmologists. Our meta-
analyses (based on images as the unit of analysis) found DL
may have good diagnostic accuracy for IK, particularly in
diagnosing the presence of any IK, and to a lesser extent, in
differentiating the underlying causes of IK. For IK, DL had
comparable sensitivity and specificity with those of
ophthalmologists, potentially supporting the use of DL
models in real-world settings. Methodological quality
assessment using the QUADAS-2 tool showed most studies
had low risk of bias (68.6%) and low applicability concern
(91.4%) in terms of patient selection, reference standard and
flow and timing. However, there was high risk of bias and
high applicability concern in the index test domain due to lack
of threshold pre-specification and limited external validation.
This is likely to overestimate diagnostic accuracy and affect
the generalisability of our findings.

Implications of all the available evidence
DL models may have good diagnostic accuracy for IK and
comparable performance to ophthalmologists, highlighting
its potential clinical value as a medical aid in real-world
settings. However, diagnostic accuracy may be unduly precise
due to using multiple images from an individual without
accounting for potential correlation within individuals,
relatively homogeneous population studies, lack of threshold
pre-specification, and limited external validation. Future
studies need to improve their reporting, data diversity,
external validation, transparency, and explainability to
increase the reliability and generalisability of DL models.
Introduction
Infectious keratitis (IK), commonly known as corneal
infection, is the leading cause of corneal blindness
globally.1,2 Once considered a “silent epidemic” in low-
and middle-income countries (LMICs), IK has resulted
in ∼5 million cases of blindness worldwide and ac-
counts for ∼2 million cases of monocular blindness
annually.2,3 The annual incidence of IK is dispropor-
tionately higher in LMICs (113–799 per 100,000 people)
than in high-income countries (HICs; 2.5–40.3 per
100,000 people),2,4–6 primarily due to limited access to
eye care and increased trauma, amongst other risk fac-
tors. A recent meta-analysis estimated that the global
incidence of fungal keratitis alone (excluding other
causes of IK) is projected to exceed one million cases
annually, predominantly affecting Asian and African
populations.7 In view of its significant global public
health burden, a consortium-led proposal has called for
the designation of IK as a neglected tropical disease,
aiming to draw concerted and sustained global effort to
tackle IK in LMICs.8

IK can be caused by a wide array of pathogens,
including bacteria, fungi, protozoa, and viruses. Pa-
tients afflicted by IK often experience profound ocular
discomfort and vision impairment, with some losing
the entire eye due to intractable infection.9–13 Timely
and accurate diagnosis is crucial for achieving a good
clinical outcome in IK, though this is currently chal-
lenged by the variable low yield and relatively high costs
of conventional microbiological culture, long turn-
around time for positive results, poorly differentiated
clinical features (among different causes of IK), reliance
on clinical expertise/equipment, and delay in seeking
medical attention.14,15 All these issues highlight an un-
met need for innovative solutions to improve the
diagnosis of IK.
www.thelancet.com Vol 77 November, 2024
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In recent years, there has been a surge of interest in
integrating artificial intelligence (AI) into clinical med-
icine, including the field of infectious diseases, ranging
from diagnosis, risk stratification, disease outbreak
surveillance, and antimicrobial drug discovery/
development.16–18 Deep learning (DL), a subset of AI, has
shown significant potential in aiding automated medical
diagnostics, clinical prioritisation, decision-making
processes, and streamlining healthcare workflows in
both HICs and LMICs.19–22 While DL has shown
considerable promise as a diagnostic tool for several
ophthalmic conditions,19,20,23 its clinical potential for
diagnosing IK remains to be fully elucidated.24,25

This systematic review aimed to evaluate the diag-
nostic accuracy of DL models for IK using corneal im-
aging, compare their accuracy with that of
ophthalmologists, and investigate methodological issues
for improving future research and potential clinical
deployment.
Methods
This systematic review and meta-analysis was conducted
in accordance with recommendations in the Cochrane
Handbook for Systematic Reviews of Diagnostic Test
Accuracy,26 and reporting followed the Preferred
Reporting Items for Systematic Review and Meta-
Analysis for Diagnostic Test Accuracy Studies
(PRISMA-DTA).27 The systematic review protocol was
registered with PROSPERO (CRD42022348596) and
published.28

Search strategy and selection criteria
We performed a comprehensive search of bibliographic
databases, including EMBASE (OVID), MEDLINE
(OVID), IEEE Xplore, and DANS EASY Archive, and
trial registries, including the Cochrane CENTRAL,
ISRCTN registry (www.isrctn.com/), US NIH Ongoing
Trials Register (https://www.clinicaltrials.gov/), and
WHO International Clinical Trials Registry Platform
(ICTRP). The search was first performed on May 8,
2022, and last updated on July 16, 2024. We also
manually searched the bibliographies and citations of
the included studies to identify any additional poten-
tially relevant studies. There was no restriction on study
design, publication year, or language for the search. The
search strategy, including keywords and index terms,
was adapted to each information source. An example of
the search strategy is provided in Supplementary
Table S1.

Two reviewers (ZZO and YS) independently
screened the abstracts and assessed the full-text of
potentially eligible studies, with disagreements adjudi-
cated by a senior author (DSJT). We included all
diagnostic accuracy studies, including clinical trials,
cross-sectional studies, prospective and retrospective
cohort studies, and case–control studies, that examined
www.thelancet.com Vol 77 November, 2024
the accuracy of DL models for diagnosing any type of IK,
encompassing bacterial, fungal, Acanthamoeba, and/or
viral keratitis. We included only studies that used
corneal imaging, such as slit-lamp/anterior segment
photography (ASP), in vivo confocal microscopy (IVCM),
anterior segment optical coherence tomography, and/or
corneal topography/tomography. Depending on the
study design and target condition(s), the reference
standard was either expert consensus, microbiological
results, and/or treatment response, or a composite
reference standard. Exclusion criteria included reviews,
case reports, studies that did not use any corneal im-
aging, or those that focused on image segmentation
instead of disease classification. There was no restriction
on patient age, gender, ethnicity, study location, or
sample size.

Data analysis
Two reviewer authors (ZZO and YS) independently
extracted the data separately using a pre-defined data
extraction sheet. Any disagreement was adjudicated by a
senior author (DSJT). Study authors were contacted to
request additional data or clarification where necessary.
We included all eligible studies for qualitative assess-
ment, and where possible, we constructed 2 × 2 con-
tingency tables for calculation of sensitivity and
specificity. We extracted data from both internal and
external validation studies of DL models as well as the
performance of ophthalmologists, with the intent of
meta-analysing these three sets of data separately. In-
ternal validation refers to the evaluation of DL models
based on the dataset from the same data source used to
develop the model, whereas external validation involves
testing the developed DL models using an independent
dataset (derived from a different source/population). We
used image as the unit of analysis as this was most
commonly used and reported in DL studies. We recog-
nise images from the same eye and same person are
likely to be correlated, but we did not have individual
participant data to allow us to account for the potential
correlation. Therefore, our analysis using aggregate data
might lead to unduly precise estimates (i.e., narrower
confidence intervals) of the diagnostic accuracy of DL
models. Where multiple accuracy estimates were re-
ported for DL in a study (e.g. results generated from
different algorithms for the same dataset), we only
included the best performing DL model (based on the
best sensitivity) in the meta-analyses as we were inter-
ested in study-level outcomes.

We presented summary estimates of sensitivity and
specificity with 95% confidence intervals (CIs) from
each included primary study on forest plots. We
generated summary receiver operating characteristic
(SROC) plots and 95% confidence/prediction regions
around the point estimates for each target disease to
visually assess heterogeneity as recommended by the
Cochrane Handbook for Systematic Reviews of
3
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Diagnostic Accuracy.26 The I2 statistic (commonly used
in intervention meta-analysis reviews) was not used in
this review as it does not account for heterogeneity due
to threshold effects induced by the relationship between
sensitivity and specificity and is also susceptible to
precision of the included studies. In addition, the mean
and variance of proportions such as sensitivity and
specificity are related, and such mean-variance re-
lationships can lead to biased I2 estimates because of
ignoring variability in the within-study variance across
studies.26 We expected heterogeneity in the types of DL
systems and algorithms used across studies and
considered all to be acceptable as our review aimed to
assess the accuracy of any DL system for corneal
imaging. In view of the anticipated between-study
heterogeneity, we used random-effects models for all
meta-analyses. To jointly synthesise sensitivities and
specificities in each meta-analysis, we fitted a bivariate
model. We performed analyses using the user written
command metandi and the ‘meqrlogit’ command in
Stata 15. We investigated the effect of imaging type on
sensitivity and specificity by adding covariate terms to
the bivariate model (bivariate meta-regression). We used
bivariate meta-regression to also compare the accuracy
of DL models and ophthalmologists. We computed
absolute differences in sensitivity and specificity post-
estimation of the bivariate model parameters using the
nlcom command with P values for the differences from
Wald tests.

We performed subgroup analyses by: (1) classifica-
tion of the target disease (e.g. distinguishing IK from
healthy eyes/non-IK corneal pathologies or differenti-
ating the underlying causes of IK); and (2) corneal im-
aging (e.g. ASP versus IVCM). For studies which
included both classifications of the target disease, our
meta-analysis focussed primarily on the DL ability to
differentiate the underlying causes of IK as it is expected
to provide more clinical value.

Two independent reviewer authors (ZZO and YS)
critically appraised the included studies for methodo-
logical rigor using the Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) tool to examine risk of
bias in four domains, including patient selection, index
test, reference standard, and flow and timing, as well as
applicability in the first three domains.29

Role of the funding source
The funders of this study had no role in study design,
data collection, data analysis/interpretation, or writing
of the report.
Results
Our initial search identified 963 articles, of which 882
studies (after de-duplication) were screened and 63 full-
text articles were assessed for eligibility (Fig. 1). After
excluding 28 ineligible studies, we included 35 studies
(at least 56,011 patients, with 136,401 corneal images)
published between 2018 and 2024.30–64 Ten
studies30,31,35,37,44,47,49–51,63 reported only the number of
images but not the patients. The 35 studies were con-
ducted in eight countries, with China being the com-
monest location (21, 60.0%). Key characteristics of the
included studies are summarised in Table 1.

Of the 35 studies, ten (28.6%) and seven (20.0%)
studies focused on distinguishing IK from healthy
corneas33–36,45,46,48,50,54,58 and from non-IK corneal
pathologies,30,33,34,44,45,56,57 respectively. Twenty-six (74.3%)
studies examined the performance of DL models in
differentiating the underlying causes of IK, including six
(17.1%) studies on various IK such as bacterial, fungal,
Acanthamoeba, and/or viral keratitis36,40,46,48,58,64 seven
(20.0%) on bacterial keratitis versus fungal
keratitis,32,38,53,54,60–62 five (14.3%) on fungal keratitis
versus other causes of IK,41,47,51,59,63 three (8.6%) on
fungal keratitis alone,37,49,55 one (2.9%) on fungal keratitis
versus Acanthamoeba keratitis,31 one (2.9%) on bacterial
keratitis versus other causes of IK,42 one (2.9%) on viral
keratitis versus other causes of IK,52 one (2.9%) on
bacterial keratitis alone,43 and one (2.9%) on
microbiological-positive versus microbiological-negative
bacterial/fungal keratitis.39 Six (17.1%) studies focused
on multiple classifications.33,34,36,45,46,64 Twenty-six (74.3%)
studies used ASP,30,32–34,36,38–48,52–54,56–60,62,64 while nine
(25.7%) used IVCM images.31,35,37,49–51,55,61,63 Of the 26
ASP-based studies, all (100%) used slit lamp/digital
cameras to acquire corneal images,30,32–34,36,38–48,52–54,56–60,62,64

while two studies also used smartphone-captured im-
ages as one of the external validation sets.45,58 Among
IVCM-based studies, eight (88.9%) employed the Hei-
delberg HRT III RCM35,37,49–51,55,61,63 and one (11.1%) used
the NIDEK confoscan 3.0.31

All 35 studies were cross-sectional studies; 27 (77.1%)
used retrospective data,30–32,35,36,38,40–43,45–47,49–56,58,60,62–64 six
(17.1%) used both prospective and retrospective
data,33,34,44,48,57,59 and two (5.7%) studies used prospective
data.39,61 Most studies (30, 85.7%) excluded mixed
infections,31–33,35–44,46,47,49–56,58–64 19 (54.3%) excluded low-
quality images,30–32,36–38,44,45,48,49,51,53–57,62–64 and six (17.1%)
did not provide details regarding their exclusion
criteria.33,35,46,49,50,58 Various reference standards were
used: 19 (54.3%) studies used expert consensus and
microbiological confirmation,31,36–40,42,43,45–48,51,57–59,62–64 nine
(25.7%) used microbiological confirmation (based on
smear, culture, and/or PCR testing) alone,41,50,52–56,60,61 six
(17.1%) used expert consensus only,30,33–35,44,49 and one
(2.9%) used microbiological confirmation and treatment
response.32 Most studies (31, 88.6%) used convolutional
neural networks (CNNs) as the primary DL
models.30–38,40–54,56,58,60,62–64 Fourteen (40.0%) studies used
external validation,33,34,40,44,45,48,51,53,56–60,64 and 14 (40.0%)
compared the diagnostic accuracy of DL models with
ophthalmologists,33,34,36,40,41,44,45,48,53,57–59,63,64 though only
seven (20.0%) studies provided sufficient 2 × 2 data for
www.thelancet.com Vol 77 November, 2024
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Fig. 1: PRISMA flow chart of study selection.
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head-to-head meta-analysis (see below). The most com-
mon data split for training and validation/testing was
80:20 [n = 9 (25.7%) studies].33,39–43,47,49,58

Most studies (68.6%) were judged to have low risk of
bias in all three domains, namely patient selection,
reference standard, and flow and timing domains, but
high risk of bias in the index test domain
(Supplementary Fig. S1 and Table S2). Eleven (31.4%)
studies30,35,44,46,47,49–51,54,58,62 were deemed to have an un-
clear risk of bias, due to unclear source/process of pa-
tient selection. Thirty (85.7%) studies were at high risk
of bias in the index test domain due to the lack of pre-
specified threshold. Three (8.6%) studies35,47,50 had an
unclear risk of bias in the reference standard domain
www.thelancet.com Vol 77 November, 2024
due to uncertainties in the reference standard used.
Four (11.4%) studies32,35,58,59 had a high/unclear risk in
flow and timing domain due to the potential inconsis-
tency of reference standard used. For applicability, most
studies had low concern regarding patient selection (33,
94.2%) and reference standard (32, 91.4%) but high
concern in the index test domain (30, 85.7%) due to
potential overestimation of the diagnostic accuracy of
DL because of the lack of threshold pre-specification.

Based on external validation data (seven studies,
10,675 images) the sensitivity and specificity were 86.2%
(71.6–93.9) and 96.3% (91.5–98.5) (Table 2 and Fig. 2).
For internal validation data (28 studies, 16,059 images),
the sensitivity and specificity of DL for diagnosis of IK
5
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Authors (Year) Country Inclusion
criteria

Exclusion criteria No. of
patients

No. of
images

Mean age (SD; range)
years

Study design Target condition Reference
standarda

Imaging
modality

Cai et al. (2021)30 China Various corneal
pathologies,
including IK

Duplicated, incorrect
magnification images, and
photographs with a lack of clarity
were excluded

NR 112 NR Cross-sectional Corneal ulcer versus other
pathology

Expert consensus ASP

Essalat et al.
(2023)31

Iran IK Poor quality images NR 4001 NR Cross-sectional FK and AK versus other IK and
normal

Microbiology,
expert consensus

IVCM

Ghosh et al. (2022)32 Thailand BK and FK Low quality images, mixed
infections

194 2167 NR Cross-sectional BK versus FK Microbiology,
treatment
response

ASP

Gu et al. (2020)33 China Various corneal
pathologies,
including IK

NR 5835 5835 NR Cross-sectional IK versus other corneal
pathologies

Expert consensus ASP

Hong et al. (2021)34 China Various corneal
pathologies,
including IK

Dilated pupil images NR 1098 NR Cross-sectional IK versus other pathology and
normal

Expert Consensus ASP

Hou et al. (2021)35 China FK NR NR 1870 NR Cross-sectional FK versus normal Expert consensus IVCM

Hu et al. (2023)36 China IK Inconclusive diagnosis, mixed
infections, other corneal
diseases, poor quality

744 2757 NR Cross-sectional IK versus Normal and
differentiating IK causes
(BK,VK,FK)

Expert consensus,
microbiology

ASP

Huang et al.
(2022)37

China FK Mixed infections, ocular surface
disease, thyroid eye disease, viral
keratitis, poor image quality

NR 2157 NR Cross-sectional Fusarium FK versus non-Fusarium
FK

Expert consensus,
microbiology

ASP

Hung et al. (2021)38 Taiwan BK and FK Mixed infections, poor quality
images, history of other corneal
diseases

580 1330 55.4 ± 20.2 Cross-sectional BK versus FK Expert consensus,
microbiology

ASP

Kogachi et al.
(2023)39

India BK and FK Missing results on one or more
microbiologic tests.

886 1970 NR Cross-sectional Morphological differences
between images of
microbiologically positive and
negative corneal ulcers

Expert consensus,
microbiology
(culture and
smear)

ASP

Koyama et al.
(2021)40

Japan IK Mixed infections 362 4306 59.4 ± 21.8 Cross-sectional Differentiate IK causes (BK, FK,
AK, and HSK)

Expert consensus,
microbiology

ASP

Kuo et al. (2020)41 Taiwan IK Mixed infection, no initial photo 288 288 NR Cross-sectional FK versus other IK Microbiology ASP

Kuo et al. (2021)42 Taiwan IK Mixed infections or no consensus 1512 1512 NR Cross-sectional BK versus other IK Expert consensus,
microbiology

ASP

Kuo et al. (2022)43 Taiwan BK Contaminated, mixed infections 929 929 NR Cross-sectional Pseudomonas BK versus non-
Pseudomonas BK

Expert consensus,
microbiology
(smear and
culture)

ASP

Li et al. (2020)44 China Various types of
corneal
pathologies
(including IK)

Lack of clarity, low contrast or
duplications

NR 2437 43.8 Cross-sectional IK versus other corneal
pathologies and cataract

Expert consensus ASP

Li et al. (2021)45 China Various types of
corneal
pathologies,
including IK

Poor-quality and unreadable
images

7988 13,557 NEH dataset (41.6/4–98),
ZEH dataset (39.2/10–83),
JEH dataset (42.3/8–96),
NOC dataset (45.7/5–89),
Smartphone dataset
(44.3/5–90)

Cross-sectional IK versus other corneal
pathologies and normal

Expert consensus,
microbiology

ASP

(Table 1 continues on next page)

A
rticles

6
w
w
w
.thelancet.com

V
ol

77
N
ovem

ber,
20

24

http://www.thelancet.com


Authors (Year) Country Inclusion
criteria

Exclusion criteria No. of
patients

No. of
images

Mean age (SD; range)
years

Study design Target condition Reference
standarda

Imaging
modality

(Continued from previous page)

Li et al. (2022)46 China BK, FK and HSK NR 519 1886 NR Cross-sectional IK versus normal and
differentiating IK causes (BK, FK,
and HSK)

Expert consensus,
microbiology
(culture), IVCM

ASP

Li et al. (2023)47 China FK NR NR 423 NR Cross-sectional FK versus other IK Expert consensus,
microbiology

ASP

Li et al. (2024)48 China IK Poor quality images, lack of
diagnostic certainty

10,369 23,055 53.6 Cross-sectional Differentiate BK,FK,VK, AK and
NIK

Expert consensus,
microbiology

ASP

Liang et al. (2023)49 China FK NR NR 7278 NR Cross-sectional FK with hyphae versus non-
hyphae

Expert consensus IVCM

Liu et al. (2020)50 China FK NR NR 1870 NR Cross-sectional FK versus normal Microbiology IVCM

Lv et al. (2020)51 China FK Poor image quality, interfering
conditions

NR 2623 NR Cross-sectional FK versus other IK Expert consensus,
microbiology

IVCM

Natarajan et al.
(2022)52

India HSK Resolving or scarred infections or
microbiologically negative cases.
Mixed infections

285 307 NR Cross-sectional Stromal viral keratitis (HSK)
versus other IK

Microbiology
(culture or PCR)

ASP

Redd et al. (2022)53 India BK and FK Culture-negative or
polymicrobial infections

980 980 NR Cross-sectional BK versus FK Microbiology
(culture or smear)

ASP

Soleimani et al.
(2023)54

Iran BK and FK Mixed infections, had corneal
graft procedures, ocular surface
conditions, poor quality image

977 9329 NR Cross-sectional BK versus FK versus normal Microbiology
(culture)

ASP

Tang et al. (2023)55 China FK Blurry images, and images
without hyphae structure were
excluded

NR 3364 NR Cross-sectional Fusarium FK versus other FK, and
aspergillus FK versus other FK

Microbiology
(culture)

IVCM

Tiwari et al. (2022)56 India
and
USA

BK and FK Cases with no definite diagnosis 1124 1124 NR Cross-sectional Differentiate corneal ulcer and
scar (other pathology)

Microbiology
(culture)

ASP

Ueno et al. (2024)57 Japan Various corneal
diseases
including IK

Poor quality images 6443 6443 NR Cross-sectional IK versus other corneal diseases Expert consensus,
microbiology

ASP

Wang et al. (2021)58 China BK, FK and HSK NR 3320 6073 Normal: 55.0, BK: 53.1,
FK: 60.6, HSK: 52.2

Cross-sectional Differentiate IK causes (BK, FK,
HSK)

Expert consensus,
microbiology

ASP

Wei et al. (2023)59 China BK, FK, and AK Mixed infections, poor images,
history of ocular surface diseases

1496 1916 50.4 Cross-sectional Differentiate FK from other IK Expert consensus,
microbiology
(culture or
scraping)

ASP

Won et al. (2023)60 Korea IK (BK and FK) Viral or Acanthamoeba keratitis
were excluded

107 684 NR Cross-sectional BK versus FK Microbiology
(culture and
scraping)

ASP

Wu et al. (2018)61 China BK and FK Mixed infections, Age > 65 years
or multi-comorbidities

79 56 48.0 ± 6.3 Cross-sectional BK versus FK Microbiology
(smear and
culture) and
IVCM

IVCM

Wu et al. (2023)62 China BK and FK Mixed infections, corneal
perforation, poor quality images,
other corneal diseases

352 704 53.6 ± 11.5 Cross-sectional FK versus BK Expert consensus,
microbiology
(smear/culture)

ASP

(Table 1 continues on next page)
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Authors (Year) Country Inclusion
criteria

Exclusion criteria No. of
patients

No. of
images

Mean age (SD; range)
years

Study design Target condition Reference
standarda

Imaging
modality

(Continued from previous page)

Xu et al. (2021)63 China BK and FK Poor-quality images NR 3177 NR Cross-sectional FK versus other IK Expert consensus,
microbiology

IVCM

Zhang et al.
(2022)64

China All types of IK Mixed infections, poor images,
history of other ocular
inflammation

4283 5030 NR Cross-sectional Differentiate IK causes (BK, FK,
HSK, AK)

Expert consensus,
microbiology
(smear/culture)

ASP

Authors (Year) Type of internal validation External
validation

Training/
validation/
testing ratiob

AI algorithms Diagnostic accuracy Performance for
ophthalmologists

Cai et al. (2021)30 Random split sampling No 70:10:20 CNN: Residual Network, Inception,
DenseNet

Sens: 64.2% (ResNet), 75.0% (InceptionV3), 60.7% (DenseNet) NR

Essalat et al.
(2023)31

Random split sampling with
5-fold cross-validation

No 75:25 Densenet161 Sens: 99.5% (healthy), 91.4% (AK), 97.0% (FK), 88.8% (non-specific
keratitis), 94.8% (average)
Spec: 98.8% (healthy), 98.3% (AK), 96.4% (FK), 98.1% (non-specific
keratitis), 97.8% (average)

NR

Ghosh et al. (2022)32 Random split sample
validation

No 85:5:10 Ensemble AUC: 0.904
Sens: 77.0% (81.0–83.0)
PPV: 91.0% (87.0–95.0)

NR

Gu et al. (2020)33 Random split sampling Yes 80:20 CNN: Inception-v3 AUC: 0.930 (0.904–0.952) NR

Hong et al. (2021)34 Random split sampling with
5-fold cross-validation

Yes NR CNN: Inception-v3 based AUC: 0.950
Sens: 92.0%

NR

Hou et al. (2021)35 Random split sampling No 70:30 CNN: AlexNet, ZFNet, VGG16 AUC: 1.000 (VGG16)
Sens: 99.3% (VGG16)
Spec: 99.2% (VGG16)

NR

Hu et al. (2023)36 Random split sampling No BK: 65:20:15
other groups:
70:10:20

CNN: VGG16, ResNet34,
InceptionV4, DenseNet121,
EffecientNetV2-M. Transformer:
ViT-Base

AUC: 0.830 (VGG16), 0.820 (Resnet34), 0.860 (InceptionV4),
0.810 (Densenet121), 0.820 (Vit-Base), 0.850 (EffecientNetV2-M)

AUC:
0.890–0.970 (normal),
0.750–0.780 (VK),
0.740–0.720 (FK),
0.660–0.610 (BK)

Huang et al.
(2022)37

NR No 64:16:20 Inception ResNet v2 AUC: 0.785 (0.742–0.828) (original), 0.876 (0.843–0.909) (enhanced)
Sens: 72.0% (original), 83.1% (enhanced)
Spec: 71.6% (original), 76.6% (enhanced)

NR

Hung et al. (2021)38 Random split sampling with
five-fold cross validation

No 66:17:17 DenseNet161 AUC: 0.850
Sens: 65.8% (41.5–65.8)
Spec: 87.3% (86.0–95.3)

NR

Kogachi et al.
(2023)39

NR NR 80:10:10 MobileNetV2, DenseNet201 AUC:
Culture results only:
0.480 (0.400–0.570) (DenseNet)
0.520 (0.440–0.600) (MobileNet)
Culture and smear results:
0.560 (0.440–0.670) (DenseNet)
0.510 (0.380–0.650) (MobileNet)

NR

Koyama et al.
(2021)40

Split sample validation with
K-fold validation

Yes 80:20 InceptionResNetV2 AUC: 0.979 (AK), 0.907 (BK), 0.950 (FK), 0.923 (HSK) AUC (AI versus clinicians):
0.820 versus 0.580 (BK),
0.840 versus 0.590 (AK),
0.780 versus 0.520 (FK),
0.730 versus 0.590 (HSK)

(Table 1 continues on next page)
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Authors (Year) Type of internal validation External
validation

Training/
validation/
testing ratiob

AI algorithms Diagnostic accuracy Performance for
ophthalmologists

(Continued from previous page)

Kuo et al. (2020)41 Random split sampling with
5-fold cross-validation

No 80:20 CNN: DenseNet AUC: 0.650
Sens: 71.1% (62.1–78.6)
Spec: 68.4% (61.1–74.9)

Non-corneal
ophthalmologists:
Sens: 51.8% (42.7–60.7)
Spec: 77.2% (70.9–83.3)
Corneal specialists:
Sens: 71.9% (63.1–79.4)
Spec: 78.5% (72.0–84.1)

Kuo et al. (2021)42 Random split sampling with
5-fold cross-validation

No 80:20 CNN: SE-ResNet AUC: 0.752
Sens: 82.4% (74.4–90.2)
Spec: 54.7% (47.0−62.4)

NR

Kuo et al. (2022)43 Fivefold cross-validation,
random split sampling

No 80:20 ResNet50,ResNext50,
DenseNet121, SE-ResNet50,
EfficientNet B0, EfficientNet B1,
EfficientNet B2, EfficientNet B3,
Ensemble model (BE2, BE3, BE4,
BE5)

AUC: 0.760 (EfficientNet B2), 0.770 (BE4)
Sens: 81.1% (76.3–85.8) (EfficientNet B2), 79.6% (69.0–90.3) (BE4)
Spec: 51.5% (47.1–55.8) (EfficientNet B2), 57.2% (48.6–65.9) (BE4)

NR

Li et al. (2020)44 Fourfold cross-validation,
stratified random sampling

Yes NR CNN: ResNet Sens: 91.5%
Spec: 93.1%

ACC: 68.0%–96.0%

Li et al. (2021)45 Random split sample
validation

Yes 70:15:15 CNN: DenseNet121, Inception-v3,
ResNet50

AUC: DenseNet121 (0.998)
Sens: 97.7% (96.4–99.1)
Spec: 98.2% (97.1–99.4)

ACC:
95.2%–98.3% (cornea
specialist with 3 years of
experience),
96.6%–98.6% (cornea
specialist with 6 years of
experience)

Li et al. (2022)46 Random split sampling, 5-
fold cross-validation

No NR CAA-Net AUC: 0.840 (average), 0.990 (normal), 0.810 (VK), 0.820 (FK), 0.750
(BK)
Sens: 66.1% (average)
Spec: 66.9% (average)

NR

Li et al. (2023)47 Random split sampling, 5-
fold cross-validation

No 80:20 Model 1: DenseNet 121,
mobienet_v2, squeezentet1_0
models, (LASSO) model, MLP
classifier
Model 2: Automatic segmentation
and DL model

AUC: 0.839 (0.751–0.927) (Model 1); 0.925 (0.869–0.981) (Model 2)
Sens: 86.1% (Model 1); 90.5% (Model 2)
Spec: 76.2% (Model 1); 85.7% (Model 2)

NR

Li et al. (2024)48 Random split sampling Yes 70:15:15 CNN (Densenet121,
Inceptionresnetv2, Swin-
transformer, DeepIK)

DeepIK (best-performing)
AUC: 0.949 (0.937–0.960) (BK); 0.970 (0.961–0.979) (FK); 0.955
(0.946–0.964) (VK); 0.994 (0.988–0.999) (AK); 0.979 (0.972–0.984)
(NIK)
Sens: 76.9% (71.8–82%) (BK); 79.7% (74.9–84.5%) (FK); 83.5%
(80.6–86.3%) (VK); 75.0% (65.0–85.0%) (AK); 89.3% (86.7–91.9%)
(NIK)
Spec: 93.8% (92.5–95%) (BK); 96.6% (95.7–97.5%) (FK); 91.7%
(90.10–93.3%) (VK); 99.9% (99.8–100%) (AK); 95.5% (94.4–96.7%)
(NIK)

DeepIK versus Ophthal Sens:
74% versus 63% (BK)
78% versus 66% (FK)
80% versus 70.5% (VK)
66% versus 54.5% (AK)
84% versus 74.5% (NIK)
DeepIK versus Ophthal Spec:
88.5% versus 89.4% (BK)
94.5% versus 92.5% (FK)
94% versus 85% (VK)
98.5% versus 99.1% (AK)
95% versus 91.1% (NIK)

Liang et al. (2023)49 Random split sampling No 80:20 SACNN AUC: 0.993
Sens: 97.0%
Spec: 98.5%

NR

Liu et al. (2020)50 Random split sampling No 91:9 CNN: AlexNet, VGG16 Sens: 99.9% (Novel AlexNet), 99.8% (Novel VGG16)
Spec: 100% (Novel AlexNet), 100% (Novel VGG16)

NR

(Table 1 continues on next page)
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Authors (Year) Type of internal validation External
validation

Training/
validation/
testing ratiob

AI algorithms Diagnostic accuracy Performance for
ophthalmologists

(Continued from previous page)

Lv et al. (2020)51 Random split sample
validation with 5-fold cross-
validation

Yes NR CNN: ResNet AUC: 0.988 (0.976–0.991) (no diabetes), 0.977 (0.976–0.991)
(diabetes)
Sens: 91.9% (no diabetes); 82.6% (diabetes)
Spec: 98.3% (no diabetes); 98.9% (diabetes)

NR

Natarajan et al.
(2022)52

Random split sampling No 87:13 DenseNet-201 AUC: 0.730 (0.568–0.892)
Sens: 69.6%
Spec: 76.5%

NR

Redd et al. (2022)53 Stratified random sampling Yes 75:10:15 CNN:
MobileNetV2, DenseNet201,
Ensemble method

AUC:
0.860 (0.780–0.930) (MobileNetV2), 0.840 (0.760–0.920)
(DenseNet201), 0.840 (0.760–0.920) (Ensemble method)

AUC: 0.790 (0.690–0.890)

Soleimani et al.
(2023)54

Random split sample
validation with 5-fold cross-
validation

No 72:8:20 CNN: Adam AUC:
0.999 (healthy); 0.960 (BK versus FK); 0.990 (filamentous versus
yeast)
Sens: 99.3% (healthy); 84.0% (BK versus FK); 77.5% (filamentous
versus yeast)
Spec: 99.2% (healthy); 84.0% (BK versus FK); 76.6% (filamentous
versus yeast)

NR

Tang et al. (2023)55 Random split sampling No 90:10 DT classifier model,
DL classifier model

AUC:
0.786 (0.736–0.837) (DT Fusarium), 0.887 (0.853–0.922) (DL
Fusarium), 0.737 (0.687–0.784) (DT Aspergillus), 0.828
(0.782–0.866) (DL Aspergillus)

NR

Tiwari et al. (2022)56 Random split sample
validation

Yes 60:20:20 CNN: VGG16 AUC: 0.973 (MUTT trials), 0.947 (Byers)
Sens: 93.5% (89.1–97.9) (MUTT trials), 78.2% (67.3–89.1) (Byers)
Spec: 84.4% (79.42–89.42) (MUTT trials), 91.3% (85.8–96.8) (Byers)

NR

Ueno et al. (2024)57 Random split sampling Yes 86:14 YOLO v3, v5 and retinanet YOLO v5
AUC: 0.996 (0.978–0.997) (IK)
Sens: 88.7% (86.3–90.8%) (IK)
Spec: 97.7% (97.3–98.2%) (IK)

Yes

Wang et al. (2021)58 Random split sample
validation

Yes 80:10:10 CNN: Inception, Residual Network,
DenseNet

AUC: 0.959 (0.943–0.975) (InceptionV3), 0.952 (0.934–0.970)
(ResNet50), 0.961 (0.945–0.977) (DenseNet121)

AUC: 0.852 (0.823–0.881)

Wei et al. (2023)59 Random split sampling Yes 70:30 Internal validation:
Binary logistic regression, random
forest classification, decision tree
classification
External validation:
Binary logistic regression

Internal validation:
AUC: 0.859–0.916
Sens: 94.8%–98.0%
Spec: 73.7%–88.3%
External validation (binary logistic regression):
AUC: 0.903 (0.808–0.998)
Sens: 90.7% (77.4–100)
Spec: 89.9% (75.0–100)

Sens: 69.1% (46.7–76.7)
Spec: 71.7% (52.0–83.3)

Won et al. (2023)60 NR Yes 87:13 ResNEt-50
Proposed method

Sens: 75.0% (ResNEt-50); 86.4% (Proposed method)
Spec: 87.0% (ResNEt-50), 89.1% (Proposed method)

NR

Wu et al. (2018)61 NR No NR Support Vector Machine AUC: 0.946
Sens: 89.3%
Spec: 95.7%

NR

Wu et al. (2023)62 Random split sampling No 64:16:20 CNN (Resnet50, Resnet 152,
Densenet 121, Densenet169)

AUC: 0.88 (Resnet152)
Sens: 92.0% (Resnet152)
Spec: 83.0% (Resnet 152)

NR

(Table 1 continues on next page)
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were 91.6% (86.8–94.8) and 90.7% (84.8–94.5).
Subgroup analyses of the two target disease classifica-
tions were performed using internal validation data
only as there were insufficient data from external
validation studies. Based on eight studies (4479
images)30,35,44,45,49,50,56,57 for distinguishing IK from
healthy corneas/non-IK corneal pathologies, the
sensitivity and specificity were 96.9% (92.4–98.8) and
96.7% (91.3–98.8). For differentiating the causes of IK
(20 studies, 11,580 images),36–38,41–43,46,48,52,54,55,59,61–63 DL
had a sensitivity of 87.9% (81.5–92.3) and 86.9%
(78.7–92.2). Based on the seven studies (four internal
and three external validation studies, 4007 images) that
compared the accuracy of DL models with ophthal-
mologists (using the same reference standard and
corneal images in both groups),36,41,45,48,57,59,63 DL models
had higher sensitivity [89.2% (82.2–93.6) versus 82.2%
(71.5–89.5); P = 0.20] and specificity [(93.2%
(85.5–97.0) versus 89.6% (78.8–95.2); P = 0.45] than
ophthalmologists, though not statistically significant
(Table 2 and Fig. 3). The absolute differences in
sensitivity and specificity were 7.0% (−3.6 to 17.5) and
3.7% (−5.8 to 13.1). Diagnostic accuracy of all included
studies is detailed in Supplementary Fig. S2 and
Table S3.
Discussion
Previous systematic reviews and meta-analyses have re-
ported the diagnostic accuracy of DL in medical imag-
ing.22,65 However, their broad scope (all types of medical
imaging for any medical condition) limited the interpre-
tation of the role of DL for a specific medical condition.
To our knowledge, this study represents the most up-to-
date and comprehensive systematic review and meta-
analysis specifically evaluating the diagnostic accuracy of
DL in IK. Based on 35 studies with ≥56,011 patients
(136,401 corneal images), DL appears to have good diag-
nostic accuracy for IK, including its ability to distinguish
IK from healthy eyes or non-IK corneal pathologies, and
to a lesser extent, to differentiate the underlying causes of
IK. When compared to ophthalmologists, DL models
exhibit comparable diagnostic accuracy in IK, supporting
its potential use in real-world settings. Based on our
systematic literature search, we identified only one pub-
lished systematic review that had similarly evaluated the
diagnostic accuracy of DL in IK.66 However, the review
was limited by several critical aspects, including the
relatively small number of included studies (n = 11
studies), the inclusion of slit-lamp/ASP-based studies
only, lack of distinction/analysis in the performance
among internal and external validation studies, and oph-
thalmologists, and most importantly, the unconventional/
inappropriate meta-analytic approach that was adopted
(i.e. directly deriving the summary results based on the
reported AUC without constructing the 2 × 2 tables),
which questions the validity of their findings.
11
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Model (N = # studies | n = # images) Sensitivity (95% CI) P-value Specificity (95% CI) P-value

1. DL performance (External validation)

Overall (N = 7 | n = 10,675) 86.2% (71.6–93.9) – 96.3% (91.5–98.5) –

2. DL performance (Internal validation)

Overall (N = 28 | n = 16,059) 91.6% (86.8–94.8) – 90.7% (84.8–94.5) –

3. Distinguishing IK from healthy eyes/non-IK corneal pathologies (Internal validation)a

Overall (N = 8 | n = 4479) 96.9% (92.4–98.8) – 96.7% (91.3–98.8) –

ASP (N = 5 | n = 2354) 94.6% (84.9–98.2) 94.7% (78.7–98.8)

IVCM (N = 3 | n = 2125) 98.8% (94.3–99.7) 98.6% (91.8–99.8)

4. Differentiating causes of IK (Internal validation)b

Overall (N = 20 | n = 11,580) 87.9% (81.5–92.3) 0.27 86.9% (78.7–92.2) 0.06

ASP (N = 15 | n = 8569) 86.2% (78.2–91.7) 83.6% (73.3–90.5)

IVCM (N = 5 | n = 3011) 91.8% (80.8–96.8) 94.0% (83.5–98.0)

5. DL versus clinicians (Studies that performed direct comparison)b

DL (N = 7 | n = 4007) 89.2% (82.2–93.6) 0.20 93.2% (85.5–97.0) 0.45

Clinician (N = 7 | n = 4007) 82.2% (71.5–89.5) 89.6% (78.8–95.2)

ASP = Anterior segment photography; IVCM = In vivo confocal microscopy. aStatistical comparison between ASP and IVCM groups was not possible due to small number of
studies. bStatistical comparison made between ASP and IVCM groups or between DL and ophthalmologists using bivariate meta-regression with Wald tests. P-value of
<0.05 is considered statistically significant.

Table 2: Overview of meta-analytic results of the performance of deep learning (DL) and clinicians for infectious keratitis (IK).
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IK is primarily diagnosed using clinical criteria
(usually with slit lamp examination) supplemented by
microbiological investigations and/or imaging tests
such as slit-lamp/ASP, IVCM, and other modalities.14

However, the diagnosis of IK often requires consider-
able clinical expertise. Our review showed that DL
models may have good diagnostic accuracy for IK. Based
on ASP, DL models achieved a sensitivity of 96.9% and a
specificity of 96.7% in diagnosing/distinguishing IK
from healthy corneas/non-IK corneal pathologies. This
finding highlights the potential of DL models to facili-
tate early and automated diagnosis of IK in primary care
settings, providing an innovative solution to an unmet
global need, particularly in LMICs where access to
ophthalmologists is limited and IK is most prevalent.

Another diagnostic challenge in IK lies in the diffi-
culty of identifying the underlying microbiological cau-
ses due to overlapping clinical signs, wide-ranging
causative organisms, and variably low microbiological
culture yield. A previous international survey showed
that even corneal experts were only able to correctly
distinguish bacterial keratitis from fungal keratitis in
65% of cases based on clinical signs alone.67 This chal-
lenge was further substantiated in a recent survey
among 66 corneal specialists from 16 countries, where
the accuracy in distinguishing bacterial and fungal
keratitis was only 49–76% based on ASP alone.68 Sig-
nificant disparities in diagnostic accuracy was noted
among the corneal specialists, with specialists in India
being more proficient in diagnosing fungal keratitis
than those practicing outside India. This is likely due to
a higher level of experience among the Indian experts in
managing fungal keratitis, which is significantly more
prevalent in India than other parts of the world such as
the United States.68 Our meta-analysis showed that DL
models, based on ASP, may have good diagnostic per-
formance (86.2% sensitivity, 83.6% specificity) in
differentiating the causes of IK. This indicates the po-
tential of DL as an aid for clinical experts, particularly in
identifying less frequently encountered causes of IK.

This study also included DL models that used IVCM
images. IVCM is a corneal imaging tool that enables
high-resolution imaging on the cellular level. It is useful
for assisting the diagnosis of IK, particularly filamen-
tous fungal keratitis and Acanthamoeba keratitis, where
it can visualise fungal hyphae and Acanthamoeba cysts
and/or trophozoites.14,69,70 However, interpretation of
IVCM images requires substantial clinical expertise, a
gap which can potentially be addressed by AI. Our re-
sults highlight that DL models, based on IVCM images,
may accurately distinguish IK from healthy corneas/
non-IK corneal pathologies (98.8% sensitivity and
98.6% specificity) as well as differentiate the underlying
causes of IK (91.8% sensitivity and 94.0% specificity).
Interestingly, IVCM-based DL models appear to
perform better than the ASP-based DL models in
differentiating the underlying causes of IK. The differ-
ence in performance may be attributable to a difference
in patient selection as IVCM is usually performed when
fungal, Acanthamoeba and/or atypical infections are
suspected, whereas ASP is used to capture all types of
IK. In addition, IVCM produces more consistent and
high-contrast images whereas ASP is less standardised
and more prone to missing subtle corneal pathologies
(due to the transparent nature of the cornea). However,
clinically related issues such as small field of view,
www.thelancet.com Vol 77 November, 2024
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Fig. 2: Summary receiver operating characteristic (SROC) plots for: (A) Diagnostic accuracy of deep learning (DL) models for any IK (external
validation; seven studies, 10,675 images); (B) Diagnostic accuracy of DL for infectious keratitis (IK) (internal validation; 28 studies, 16,059
images); (C) Diagnostic accuracy of DL for distinguishing IK from healthy corneas/non-IK corneal pathologies (internal validation; eight studies,
4479 images), and (D) Diagnostic accuracy of DL for differentiating causes of IK (internal validation; 20 studies, 11,580 images).
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highly operator-dependent (for obtaining good quality
images), and limited availability of IVCM need to be
considered.14,71,72

Although the performance of DL models appears
promising in this review, it is important to contextualise
the results and interpret them with care in view of the
heterogeneity of the included studies. Some studies
included only images with or without IK (but not other
www.thelancet.com Vol 77 November, 2024
types of corneal pathologies), which means that some
DL models are restricted to a particular medical classi-
fication task (i.e. distinguishing IK from healthy corneas
or diagnosing a particular type of IK). That said, these
DL models may still play a valuable assistive role in
under-resourced regions where IK is most prevalent and
clinical expertise is scarce. In addition, we performed
the meta-analyses based on two broad disease
13
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Fig. 3: Summary receiver operating characteristic (SROC) plot of deep learning (DL) models versus ophthalmologists (based on seven studies,
4007 images). The hollow symbols are the study points for each index test with dotted lines connecting the pair of points from each study. The
study points have been scaled by sample size to reflect the precision of the estimates of sensitivity and specificity from the studies. The solid
circles are the summary points representing the summary sensitivities and specificities. Each summary point is surrounded by a 95% confidence
region which illustrates the uncertainty around the estimates of sensitivity and specificity.
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classification tasks, which both demonstrated good DL
diagnostic accuracy. Comparison between DL models
and ophthalmologists showed comparable diagnostic
accuracy, supporting the potential of DL for assisting the
diagnosis of IK in real-world settings.

In terms of overall completeness and applicability of
evidence, this systematic review and meta-analysis
included studies spanning several countries with
diverse economic backgrounds, encompassing LMICs
and HICs. Notably, South Asia and East Asia, recognised
for their high rates of IK, were well-represented in this
study, offering valuable insights into the diverse pre-
sentations of IK.6,7 Various imaging modalities such as
ASP and IVCM targeting various causes of IK were
included, mirroring the clinical variations and complex-
ities of IK encountered in real-world clinical settings.
This broad-based approach enhances the applicability and
generalisability of the findings to real-life scenarios.
Another strength is that all the images used in the
included studies were sourced from independent local
patient cohorts in real-world clinical settings rather than
relying on publicly available databases, which prevents
overlap of data sources. In addition, the majority (82.9%)
of the studies used microbiological confirmation (smear
microscopy, culture, and/or PCR) as the reference stan-
dard or as part of the composite reference standard,
which helps ensure disease verification. Although this
approach is currently considered the best available
reference standard, it may not capture all IK cases by
definition. Future studies evaluating the role of AI in
complementing the current diagnostic approach (e.g.
increasing diagnostic sensitivity) would be of value. We
adopted a proactive approach in ensuring methodological
rigor and relevance of our review using the recom-
mended QUADAS-2 tool while awaiting the development
of QUADAS-AI tool.73
www.thelancet.com Vol 77 November, 2024
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Several limitations are recognised in this systematic
review, including selecting the best performing DL
model where multiple accuracy estimates were re-
ported and the use of images without accounting for
potential correlation of images from the same patient.
Previous research and our meta-analysis show that
internal validation tends to overestimate diagnostic
accuracy of DL models (due to overfitting), emphasis-
ing the importance of external validation for ascer-
taining the generalisability of DL models.22 Based on
the seven external validation studies, we showed good
diagnostic accuracy of IK (86.2% sensitivity and 96.3%
specificity). Another limitation is that most of the
studies lacked clarity on the reporting of patient char-
acteristics and focused on relatively homogenous pop-
ulations. The lack of diversity may potentially introduce
algorithm bias and affect the generalisability and fair-
ness of DL models, as highlighted by the recent
STANDING Together initiative.74 The heterogeneous
DL models/architectures used across different studies
pose challenges in selecting the best-performing DL
model. Finally, many of the studies did not address the
inherent AI-related ‘black-box’ issue, which may hinder
their acceptance among clinicians.75 This lack of
transparency poses important medicolegal concerns as
clinicians are ultimately responsible for their patients.
Visualisation techniques such as Grad-CAM have been
employed to enhance the transparency and explain-
ability of DL models.76 We did not include studies that
performed multimodal analysis, though only one study
was identified.62

DL holds considerable promise for IK, with com-
parable diagnostic accuracy to ophthalmologists.
However, future studies need to focus on improving
study reporting (e.g. STARD-AI),77 data diversity,
external validation, transparency of AI algorithms/ar-
chitectures, and explainability to increase the reliability
and generalisability of DL models. As the technology
matures, it is anticipated that DL is likely to transform
the diagnostic landscape of IK in both HICs and
LMICs.
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