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Summary
Background Individual immune responses to SARS-CoV-2 are well-studied, while the combined effect of these
responses on population-level immune dynamics remains poorly understood. Given the key role of population
immunity on pathogen transmission, delineation of the factors that drive population immune evolution has
critical public health implications.

Methods We enrolled individuals 5 years and older selected using a multistage cluster survey approach in the
Northwest and Southeast of the Dominican Republic. Paired blood samples were collected mid-pandemic (Aug 2021)
and late pandemic (Nov 2022). We measured serum pan-immunoglobulin antibodies against the SARS-CoV-2 spike
protein. Generalized Additive Models (GAMs) and random forest models were used to analyze the relationship
between changes in antibody levels and various predictor variables. Principal component analysis and partial
dependence plots further explored the relationships between predictors and antibody changes.

Findings We found a transformation in the distribution of antibody levels from an irregular to a normalized single
peak Gaussian distribution that was driven by titre-dependent boosting. This led to the convergence of antibody levels
around a common immune setpoint, irrespective of baseline titres and vaccination profile.

Interpretation Our results suggest that titre-dependent kinetics driven by widespread transmission direct the
evolution of population immunity in a consistent manner. These findings have implications for targeted
vaccination strategies and improved modeling of future transmission, providing a preliminary blueprint for
understanding population immune dynamics that could guide public health and vaccine policy for SARS-CoV-2
and potentially other pathogens.
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Research in context

Evidence before this study
The level of immune protection across a population strongly
influences the magnitude and severity of infectious disease
epidemics. However, understanding how individual-level
factors such as infection, vaccination, immune waning, or
host immunogenicity influence population immunity and the
evolution of population has not been well characterized. We
searched PubMed from January 2020 to April 2024 with the
following search terms: “SARS-CoV-2” AND “population
immunity” AND “antibody response” AND “immune
dynamics” OR “Immunoepidemiology” Studies were included
if they provided data on population-level immune responses
to SARS-CoV-2, measured antibody levels, and were
conducted in diverse geographic regions. We found limited
relevant literature with most population-level studies
focusing on cross-sectional seroepidemiological studies of risk
factors for infection, transmission dynamics, and
epidemiological parameters. Some cohort studies examined
antibody kinetics over time among individuals infected,
vaccinated, or both, with findings suggesting that the
magnitude of immune boosting declines following multiple
antigen exposures. Some studies examined the role of
population immunity on viral evolution, post-acute sequelae
of COVID-19, or both. However, no studies explicitly
examined how the distribution of antibody levels across a
population evolve over time or explore the concept of

environmental/viral pressure driving population to an
immune setpoint.

Added value of this study
This study provides insights into the evolution of population
immunity to SARS-CoV-2. Our research examines how the
distribution of antibody levels evolved across a population in
a high transmission setting, from mid pandemic to late
pandemic. We identify a consistent pattern of immune
marker convergence towards a single-peak Gaussian
distribution, driven by titre-dependent boosting, which has
not been previously documented. These findings highlight the
concept of a population immune setpoint, suggesting that
widespread transmission and vaccination drive immune
responses to similar levels across a population. This
understanding has implications for tailoring vaccination
strategies, enhancing epidemiological modeling, and
informing public health policies to effectively manage SARS-
CoV-2 and other epidemic pathogens.

Implications of all the available evidence
Our findings build on an expansive knowledge base of SARS-
CoV-2 epidemiology and individual-level immunity to discern
how humoral immunity evolves among populations exposed
to serial waves of transmission.

Articles

2

Introduction
Population-level immunity is arguably the most important
predictor of transmission dynamics for infectious
pathogens. Despite this, the investigation of population
immunity and immune dynamics, known as immunoe-
pidemiology, remains largely overshadowed by the focus
on individual immune responses. While the study of
population immune dynamics is relatively simple for
certain pathogens such as measles that generate complete,
or near complete, and long-term immune protection
following infection or a primary vaccine series, it is sub-
stantially more difficult for SARS-CoV-2 and other
epidemic-prone pathogens that generate partial and tran-
sient immune protection.1 Given this, only a small number
of studies have aimed to characterize population immune
protection during the pandemic,2–4 and these studies have
focused on cross-sectional estimates with their public
health utility limited by rapid changes in population im-
munity and emergence of more immune-evasive variants.5

The question of how population immunity evolves over
time and whether there are generalizable principles that
underpin this evolution is unexplored.

The humoral response following antigen exposure is
dynamic, typically characterized by immunological
boosting and high levels of protection in the several
months after vaccination or infection. Antibody levels
then decline over time, with a rapid drop in the first
6–12 months followed by a slower decline or stabiliza-
tion thereafter.6–8 Yet, despite these overall trends, in-
dividual immune responses are highly variable,
influenced by the number and timing of vaccine doses
or infections, severity of infection, and individual dif-
ferences in the host immune response. As such, and
when considered in the context of declining vaccination
uptake and widespread undetected and/or unreported
infections, understanding population immunity and
immune markers dynamics is a considerable challenge.

Given these challenges, we aimed to understand if
patterns or trends in antibody dynamics assessed on a
population level may provide insights into the factors
that drive the evolution of population immunity.
Following the introduction of a novel pathogen into a
wholly susceptible population, particularly one that
generates partial and transient immune protection such
as SARS-CoV-2, the distribution of population immu-
nity and immune marker levels early in the pandemic
would, in most scenarios, be highly irregular. This was
demonstrated across multiple population-based studies
early in the COVID-19 pandemic.3,5,9,10 However,
whether this irregular distribution of antibody levels
would persist or whether the combined influence of
vaccinations, infections and humoral waning would lead
www.thelancet.com Vol 108 October, 2024
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to alternate patterns is largely unknown. Data from a
single prior study that measured SARS-CoV-2 spike-
antibody levels among patients enrolled across an acute
febrile infection surveillance platform in the Dominican
Republic suggests that population immunity may not
remain disordered but rather converge towards a pre-
dictable pattern, with normalization in the distribution
of antibody levels from an irregular to a single Gaussian
peak over time.5 But these findings have not been
replicated and the design of the study precluded analysis
of factors driving the observed changes.

To investigate this potential convergence phenome-
non and the factors that drive the evolution of popula-
tion immune markers we analyzed serological data from
a cohort study in the Dominican Republic. By exam-
ining the dynamics of population immune markers, we
aimed to understand how and why population immu-
nity evolves—with the ultimate goal of informing
vaccination and public health policy.
Methods
Settings, COVID-19 vaccine characteristics and
national control measures
The Dominican Republic is an upper middle income
Latin American country that shares the island of His-
paniola with Haiti. With almost 11 million residents, it
is the second most populous country in the Carib-
bean.11,12 The first laboratory confirmed case of SARS-
CoV-2 was reported in the Dominican Republic on 1
March 2020, and strict public health measures
commensurate with most regional countries were
implemented. Six discrete waves of transmission
occurred between March 2020 and December 2022
(Fig. 1A). The Dominican Republic launched a national
COVID-19 vaccination campaign in February 2021, and
in July 2021 was the first country in the Americas to
authorize third doses for high-risk individuals. Vacci-
nation coverage increased rapidly from Mar to Nov 2021
but slowed thereafter (Fig. 1B). The principal COVID-19
vaccines administered included the inactivated viral
CoronaVac (Sinovac), that generates antibodies to the
spike and nucleocapsid proteins, and the adenovirus
vector ChAdOx1-S (Oxford/AstraZeneca) and mRNA
BNT162b2 (Pfizer/BioNTech) vaccines, which generate
only anti-spike antibodies. On Feb 16, 2022, the
Dominican Republic lifted all COVID-19-related re-
quirements and restrictions including mask mandates,
proof of vaccination to enter venues, and business ca-
pacity limitations. Based on a national household sero-
logical survey conducted between 30 June and 12
October 2021, which provides the first of the two sam-
pling timepoints for the present study and conducted
between the third (Mu) and fourth (Delta) waves of
transmission (Fig. 1A), 77.6% (CI 71.1–83.4) of the
population aged ≥ 5 years were estimated to have been
previously infected at least once.3 Overall, 37.5%
www.thelancet.com Vol 108 October, 2024
(CI 32.9–41.3) of the ≥5-year-old population were esti-
mated to have been previously infected and vaccinated,
40.1% (CI 38.2–42.0) previously infected but not vacci-
nated, 11.9% (CI 8.1–16.5) vaccinated but not infected,
and 10.5% (CI 8.6–12.3) neither vaccinated nor infected.3

Study design, participant selection, and ethical
considerations
As previously described,3 between June 30 and Oct 10,
2021, we conducted a three-stage cross-sectional na-
tional household serological survey and enrolled 6683
participants from 3832 households, and 134 clusters
across all 32 provinces nationally. Briefly, to maximize
spatial distribution we used grid- and satellite-image
based methods to select clusters and 60 households
within each cluster.13 Household members aged ≥ 5
years old present in the home at the time of the seros-
urvey were invited to participate. During October and
November 2022, we conducted repeat blood sampling
across 38 of the 134 clusters in four provinces in the
northwest and southeast of the country, defined for
analysis purposes as Northwest Region and Southeast
Region. Clusters were balanced between urban and ru-
ral and selected given proximity to existing longitudinal
acute febrile infection surveillance sites in Espaillat and
San Pedro de Macoris provinces, operated by the study
team in partnership with the Ministry of Health and
Social Assistance. Written consent was obtained for all
participants and provided by (i) the participating adult
for individuals ≥18 years, (ii) the legal guardian for non-
emancipated minors, and (iii) the participating eman-
cipated minor where applicable. Emancipated minors
were defined as individuals less than 18 years of age that
are either married, pregnant, a parent, living indepen-
dently of parents, or legally emancipated. In addition to
written consent, written assent was provided by adoles-
cents 14–17 years old, and verbal assent by children
7–13 years old. The study protocol was approved by the
National Council of Bioethics in Health, Santo Domingo
(013-2019, 007-2021), the Institutional Review Board of
Pedro Henríquez Ureña National University, Santo
Domingo, and the Mass General Brigham Human
Research Committee, Boston, USA (2019P000094,
2021P001294). All participants enrolled in the 38 pre-
specified clusters were invited to participate in re-
sampling and therefore no sample size calculation was
performed. Study procedures and reporting adhered to
STROBE criteria for observational studies.

Study procedures
Questionnaires were administered to all study partici-
pants using the KoBo Toolbox data collection platform
(www.kobotoolbox.org) on electronic tablets to collect
self-reported individual-level covariates including de-
mographics (age, gender, race-ethnicity); comorbid
medical conditions; weight and height; primary occu-
pation; if the work location was primarily indoors,
3
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Fig. 1: Individual and population changes in SARS-CoV-2 spike antibody levels. (A) National reported SARS-CoV-2 cases per day with
predominant circulating variant denoted. Limited sequencing data is available prior to mid-2021. Vertical shading indicates timing of the
sampling periods: 5 Jul to 10 Oct 2021 (S1, yellow) and 29 Oct to 29 Nov 2022 (S2, green). (B) Nationally reported COVID-19 vaccine coverage
with dark gray indicating three or more doses, gray two or more doses, and light gray one dose. Data on national SARS-CoV-2 cases and COVID-
19 vaccinations used in plot A and B are available from https://ourworldindata.org/coronavirus. Data on predominant circulation viral variants
were previously reported.10 (C) Histogram plot of the number of days between paired sample collection with vertical dashed line indicating the
median value (426 days). (D) Histogram plot of the number of days from the last vaccine dose at the first sampling timepoint (yellow, S1) and
the second sampling timepoint (green, S2). Vertical dashed lines indicate median values (71 and 437 days, respectively). Underlying data are
summarized in Supplementary Tables S1 and S2. (E) Boxplots show the spike antibody levels across the two sampling periods stratified by age
group. The thick horizontal line indicates the median value, with lower and upper hinges representing the first and third quartiles. Whiskers
indicate values between the first quartile and the lowest value, and third quartile and highest value, respectively, but no further than the 1.5 x
the interquartile range. Values outside this range are plotted individually. The thin black lines connecting time periods indicates changes in
individual participant spike antibody levels. (F) Ridge plots indicates the density of spike antibody titres across the study population at the two
sampling time points. (G) Ridge plots as in plot F stratified by the total number of vaccine doses received at each sampling time point (left), and
age (right). N = 1026 for all plots except A and B that use national reported data.
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outdoors, or a mix of the two; smoking status; and
number, date, and type of COVID-19 vaccine received.
Venous blood was collected, processed as sera, and
frozen at −80 C.

Immunoassay characteristics
Serum pan-immunoglobulin antibodies against the
SARS-CoV-2 spike and nucleocapsid glycoprotein were
measured at the Brigham and Women’s Hospital, Bos-
ton, USA, on the Roche Elecsys SARS-CoV-2 electro-
chemiluminescence immunoassay that uses a
recombinant protein modified double-antigen sandwich
format (Roche Diagnostics, Indianapolis, USA). The S
assay targets antibodies to the S1 subunit of the spike
protein based upon the ancestral Wuhan Hu-1 strain.
The assay was calibrated with positive and negative
www.thelancet.com Vol 108 October, 2024
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quality controls before analyses. Values were quantified
between 0.40 and 250 U/mL representing the primary
measurement range, with values below 0.40 U/mL re-
ported as 0.40 U/mL. Samples with S-antibody values >
250 U/mL underwent automated 1:50 dilution with
further 1:10 dilution for samples >12,500 U/mL, rep-
resenting an upper limit of detection of 125,000 U/mL.
Samples were considered reactive according to the
manufacturer cutoff index (S-antibody level ≥ 0.8 U/
mL). Values are reported as binding antibody units
(BAU), that approximate Elecsys SARS-CoV-2 S-anti-
body U/mL in accordance with manufacturer’s recom-
mendations and the WHO International Standard and
International Reference Panel for S-antibody SARS-
CoV-2 immunoglobulin.14 Antibodies to the nucleo-
capsid glycoprotein were only measured on samples
from the first sampling timepoint.

Classification and statistical analysis
All analyses and data visualization were performed us-
ing the R statistical programming language (R version
4.3.0, 2023-04-21), using ggplot2 for data visualization.15

Regression analyses
We used GAMs to investigate the relationship between
change in interval S-antibody levels and various factors.
S-antibody change was calculated by subtracting the
log10 scale antibody level at the first sampling timepoint
from the log10 antibody level at the second sampling
timepoint. We fitted GAMs to the data using the mgcv
package, with the dependent variable being the change
in S-antibody levels between the sampling timepoints.
The model incorporated predictor variables that influ-
ence or may influence exposure risk or differential
antibody contraction, including baseline S-antibody and
N-antibody levels, age, sex, smoking status, urban
versus rural setting, number of COVID-19 vaccine doses
prior to the first sampling period (S1), days since last
COVID-19 vaccine dose, and days between sample
collection. Given that self-reported prior COVID-19
infection has been documented to be unreliable, an
assertion supported by our cohort that reported ∼10%
incidence of prior infection (Supplementary Table S1),
this variable was not included in this or subsequent
models. We generated plots to visualize the relationship
between the baseline S-antibody level and the outcome
variable by the number of interval vaccine doses
received, given this was a priori the most important
variable in determining the change in interval antibody
levels.

Model prediction and out-of-sample validation
Our analysis involved three different methods of model
training and validation: Regional split, random split, and
10-fold cross-validation. For all models, we used the
random forest algorithm implemented in the random-
Forest package. In the first method, we split the data
www.thelancet.com Vol 108 October, 2024
based on the study region. Observations from the
Southeast region were used to train the model, and
observations from the Northwest region were used to
test the model. This method was used to assess the
model’s ability to generalize across different geograph-
ical regions. The random forest model was trained with
500 trees and 3 random features tried at each split. The
second method involved randomly shuffling the data
and splitting it into training and test sets at a 70:30 ratio.
The random forest model was again trained using the
same formula as previously. In the third method, we
used 10-fold cross-validation using the caret package,
splitting the data into a training set (70%) and a test set
(30%). The training data was further split into 10 folds.
For each iteration, the model was trained on 9 folds and
validated on the remaining fold. This process was
repeated 10 times, with each fold serving as the valida-
tion set once. The final model was then evaluated on the
unseen test data. We used the mean squared error
(MSE), root mean squared error (RMSE), R2 score, and
Pearson correlation coefficient as metrics to evaluate
model performance.

Principal component analysis
We performed principal component analysis (PCA) to
explore the relationships between predictor variables
and S-antibody change (Fig. 3A). First, we selected
predictor variables based upon variable identified in the
prior regression analyses as being consistently associ-
ated with interval S-antibody change, including age, log
scaled baseline S and N titres, vaccination doses prior to
and during the interval, and number of days since the
last COVID-19 vaccine dose. We scaled and centered the
data prior to performing PCA. To create a biplot of
the PCA results, we used the ggbiplot function and
modified the aesthetics to include groups based on the
number of interval vaccine doses.

Partial dependence plots
Partial dependence plots were created to visualize the
relationship between the change in S-antibody titre
levels between the two sampling time points and various
predictor variables. A random forest model with the
randomForest package was fitted using the following
predictor variables: baseline S-antibody level, baseline
N-antibody level, age, days post last COVID-19 vaccine
dose (DPV), number of interval vaccine doses received
between the two time points, number of vaccine doses
received prior to the first sampling time point. The
random forest model was built using 500 trees, with an
mtry of 12 selected using a 5-fold cross-validation pro-
cess. For each predictor variable, a partial dependence
plot was generated using the pdp package. The partial
function was used to calculate the marginal effect of
each predictor variable on the change in S-antibody titre
levels, holding all other variables constant at their
average values. Scatter plots with jittered points were
5
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created to represent individual data points, and post-hoc
smoothing was performed using the gam function. p-
values were calculated for each predictor variable using
GAM models, which were fitted to the change in S-
antibody levels and the respective predictor variable. p-
values were obtained from the summary of the GAM
models, indicating the significance of the term of the
predictor variable in explaining the change in S-antibody
levels.

Sensitivity analyses
To assess for potential regression towards the mean, a
subset of individuals with the top and bottom 5% of S-
antibody levels were selected. The baseline S-antibody
measurements within this subset were then shuffled
randomly using the sample function and a linear
regression model was fit using shuffled values to predict
the actual subsequent measurements. We then exam-
ined the impact of extreme baseline S-antibody values
on subsequent readings. After identifying and excluding
outliers, defined as values falling outside 1.5 times the
IQR above the 75th percentile and below the 25th
percentile, we subjected the data (both full and without
outliers) to three cross-validation methods as previously
described: region-based, random split, and 10-fold. For
each, a general additive model was used, and perfor-
mance metrics including MSE, RMSE, R2R2, and cor-
relation were calculated. To assess the influence of
outlier removal, differences in metrics between the two
datasets were assessed.

Modeling titres as a dynamical system
To further explore principles underlying the evolution of
population immune titres we considered various sce-
narios, including the scenario that population titres
converge over time as suggested by prior studies.5 The
converge of titres to a set point may be explained in
terms of dynamical system theory: if x is the initial titre,
then and the post-infection titre is defined by some
function f(x). If f(x*) = x* has a non-zero solution x*,
then the fixed point will be stable—i.e., converge over
time—if |f(x*)|<1. To visualise these theoretical expla-
nations for convergence, we simulated two distributions
of titres. First, we generated a ‘low titre distribution’,
with 100 normally distributed random numbers with
mean = 1 and sd = 2. Second, we generated a ‘high titre
distribution’, with 100 normally distributed random
numbers with mean = 4 and standard deviation = 0.5.
We then considered three illustrative functions: 1) A
simple shift, representing titre-independent boosting
without waning: f(x) = 1 + x; 2) Titre-dependent boosting
without waning: f(x) = f(x) = 1 + e0.3x; 3) Titre-dependent
boosting with waning: f(x) = 2 + e0.3(x−2). Note that these
are illustrative functions selected to show the relevant
dynamical properties, and so results will not be sensitive
to specific parameters or titre distributions chosen as
long as the |f (x*)|<1 criteria are the same.
Missing data
While the overall dataset was near complete, there were
a small number of missing data including for education
level (N = 1), area of residence (N = 4), and occupation
(N = 6). Missing data for regression models, partial
analyses, and PCA were addressed using multiple
imputation with the mice package in R. This involved
creating five complete datasets (m = 5) from the original
data using the mice function. This imputation process
accounts for the uncertainty associated with missing
values. The mice::complete function was used to extract a
single, complete dataset from the set of five imputed
datasets created by mice. This was then used for sub-
sequent analyses.

Data sources
National and provincial demographic data and cluster
population and classification (urban versus rural) were
provided by the Dominican Republic National Statistics
Office and the United National Statistics Division.11,12

SARS-CoV-2 cases and deaths were obtained from
COVID-19 GitHub repository.16 Data on COVID-19
vaccinations are available from https://ourworldindata.
org/coronavirus. Other data were enumerated during
the study.

Role of the funder
The study was primarily funded by the Centers for
Disease Control and Prevention (CDC) under grant
U01GH002238, with salary support provided by the
Wellcome Trust under grant 206250/Z/17/Z, and the
Australian National Health and Medical Research
Council under Investigator grant APP1158469. The
funders, specifically the CDC, were involved in the
design of the study, data collection, analysis, and inter-
pretation of data. Additionally, CDC staff contributed to
the manuscript’s editing process. The Wellcome Trust
and the Australian National Health and Medical
Research Council provided salary support to AK and CL,
respectively, but did not have direct involvement in the
study’s design, data collection, analysis, interpretation of
data, or manuscript preparation.
Results
Study design and participants
Of the 6683 individuals enrolled in the multistage na-
tional serological survey, 1045 individuals from 38
clusters (in prespecified study regions in the northwest
and southeast) were resampled between 28 Oct and 29
Nov 2022 (Fig. 1A–C). 1026 individuals had paired
samples suitable for serological analysis and are
included in the current study (Supplementary Fig. S1),
with details of study participants described in
Supplementary Table S1. COVID-19 vaccine coverage
was high with 83.9% (95% Confidence Interval 81.5%–

86.0%) having received at least one COVID-19 vaccine at
www.thelancet.com Vol 108 October, 2024
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the first sampling timepoint, increasing to 93.0% (CI
91.3–94.4) by the second timepoint. Just 43.6% received
a vaccine dose between the sampling timepoints and the
mean number of doses increased from 1.7 to 2.3 doses
per person. The median interval since the last vaccine
dose received was 71 days (IQR 11, 131) at the first
sampling timepoint and 437 days (IQR 334, 503) at the
second sampling timepoint (Fig. 1D, Supplementary
Table S2), reflecting the national slowdown in vaccine
uptake (Fig. 1B).

Dynamics of population immune marker
distribution
S-antibody prevalence between sampling time points
increased from 92.8% (91.0–94.2) to 100%, affirming
high baseline exposure and indicating all participants
were exposed through infection, vaccination, or both by
the second sampling timepoint. While only 44% of
participants received a vaccine dose between sampling
timepoints, 80.6% (CI 78.1–82.9) registered an increase
in titres. S-antibody GMT values increased 9.9-fold
(Supplementary Fig. S2 and Table S3, Fig. 1), suggest-
ing widespread infections during the three waves of
interval transmission, attributable to Delta, BA.1, and/or
BA.2/4/5 (Fig. 1). To assess if infection or vaccination
drove the increase in antibody levels, we measured
changes among those that did not receive an interval
COVID-19 vaccine dose and 77.5% (CI 74.0–80.8)
registered an increase in antibody levels between sam-
pling timepoints (considered a surrogate measure of
interval infections, in the absence of interval vaccina-
tion). GMT titres increased 6.6-fold (Fig. 2A,
Supplementary Fig. S1). We then assessed S-antibody
changes among individuals that had never received a
COVID-19 vaccine. 95.8% (CI 87.6–98.7) registered an
interval increase and GMT titres increased 43-fold
(Supplementary Fig. S1). Overall, these findings
confirm a substantial cumulative force of infection over
the study period.

Notably, we observed a marked normalization of the
S-antibody titre distribution across the study population,
from a broad and largely irregular distribution during
mid-pandemic (Aug 2021, sampling midpoint) to a near
Gaussian single-peak distribution by late-pandemic
(Nov 2022) (Fig. 1F). This finding was consistent
regardless of age or number of COVID-19 vaccine doses
received (Fig. 1G), and by study region, suggesting the
driver of this observation was likely generalizable. We
considered that normalization of titre distribution to a
single peak may be secondary to titre-dependent boost-
ing, wherein boosting between the sampling timepoints
occurs in a non-uniform manner dependent on baseline
titres. To explore this, we examined individual changes
in antibody levels, and observed a consistent increase in
interval antibody levels among those with lower baseline
titres and declining titres among those with higher
baseline titres (Fig. 2A and B).
www.thelancet.com Vol 108 October, 2024
To better characterize the relationship between S-
antibody levels at the two sampling timepoints, we used
generalized additive models (GAMs) to account for
factors that may be associated with differential exposure
risk or rate of antibody decay and demonstrated a near
linear inverse relationship between baseline S-antibody
level and the change in antibody level between the
timepoints (Fig. 2C, Supplementary Table S4), with
similar findings when stratified by number of interval
vaccine doses (Fig. 3). We then stratified by study region
(NW versus SE) and found similar results
(Supplementary Fig. S3) supporting the generalizability
of these observations, at least across the Dominican
Republic. Unadjusted analyses to assess the crude
relationship between baseline S-antibody levels and
subsequent antibody changes were similar
(Supplementary Fig. S4).

We then explored the underlying relationship be-
tween key covariates known or suspected to influence
the level of immune markers using principal compo-
nent analysis to assess if differing computation ap-
proaches generated consistent findings. We again
identified a strong inverse relationship between baseline
S-antibody level and the change in antibody levels be-
tween the sampling timepoints, with opposing vectors
between baseline S-antibody levels and interval S-anti-
body change indicating an inverse correlation (Fig. 2D).
Notably, the number of interval vaccine doses, which we
considered may drive interval S-antibody dynamics,
exhibited a modest contribution to S-antibody change.
PCA findings were similar between study regions
(Supplementary Fig. S5), implying that the relationship
between the change in S-antibody level and the other key
covariates were similar irrespective of study site.

Prediction of change in antibody levels
To assess if our primary GAM models were robust, we
utilized three out-of-sample techniques to assess their
predictive performance. All three methods achieved
comparable and high predictive performance (Pearson
correlation between predicted and observed value, all
0.93) (Fig. 2E, Supplementary Table S6). Considering
the considerable association between baseline S anti-
body levels and changes in antibody levels, we ran a
variation of the model that included only baseline S
antibody levels as a predictor variable which demon-
strated similar high predictive performance (correlation
coefficients all 0.92) (Supplementary Table S6).

Sensitivity analyses
Given the unexpected finding that mid-pandemic S-
antibody levels were strongly associated with the
individual-level change in antibody titres measured in
the late-pandemic phase, irrespective of other factors
including the number of vaccine doses received between
the two sampling timepoints, we conducted sensitivity
analyses to assess for alternate explanations. First, we
7
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Fig. 2: Observed and modeled changes in SARS-CoV-2 spike antibody changes following waves of Delta, BA.1, BA.2, and BA.4/5
transmission. (A) Paired boxplot show S-antibody levels at the first (S1) and second (S2) sampling timepoints. The thick horizontal line
indicates the median value, with lower and upper hinges representing the first and third quartiles. Whiskers indicate values between the first
quartile and the lowest value, and third quartile and highest value, respectively, but no further than the 1.5 x the interquartile range. Values
outside this range are plotted individually. The thin lines connecting time periods indicates changes in individual participant antibody levels with
red lines representing a decline in S-antibody level and green lines indicating an increase in S-antibody level. All samples are paired across the
sampling periods (n = 1026). (B) Scatterplot shows observed (unadjusted) fold change in log10 antibody level (y-axis) by baseline S-antibody
level (x-axis) (n = 924). Log values < 10̂0 not shown (N = 102). Blue line represents LOESS smoothing and dashed red line indicates no difference
in baseline and follow-up S-antibody level. (C) GAM estimates of the change in antibody level between sampling periods (y-axis) by antibody
level at the first sampling time point (x-axis). The regression curve is indicated with the blue line with shading indicating the 95% CI and
individual regression partial values with gray dots. The horizontal red dashed line represents no antibody change between sampling timepoints.
To control for variables that influence or may influence exposure risk or differential antibody contraction, the model included age, sex, urban
versus rural setting, number of COVID-19 vaccine doses prior to the first sampling period (S1), days since last vaccine dose, and days between
samplings. N = 1026. Model output and metrics detailed in Supplementary Table S4. (D) PCA biplot shows the relationships between the
underlying data with colored ovals representing the 95% confidence regions (area approximating 95% of the data points) for the number of
interval vaccine doses. The light green circle represents the 95% confidence region for all data points. Points represent observations, and arrows
indicate the contribution of the variables to the principal components. Longer arrows suggest stronger correlations, and arrows pointing in the
same direction indicate the corresponding variables have similar patterns of variation. Proportion of variance explained is 40.5% and 22.6% for
PC1 and PC2 respectively, with full listing in Supplementary Table S7. N = 1024. (E) Scatterplot of predicted versus observed log10 S-titre
change from the GAM model shown in plot C using three out-of-sample validation approaches (N = 1026) with model metrics listed in
Supplementary Table S6.
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Fig. 3: SARS-CoV-2 spike antibody changes by number of interval COVID-19 vaccine doses received. Baseline and follow-up sampling
midpoints were Aug 2021 (S1) and Nov 2022 (S2). Top row shows paired boxplots of S-antibody levels for each sampling period, stratified by
number of interval COVID-19 vaccine doses (i.e., the number of doses received between the first and second sampling periods). The thick
horizontal line indicates the median value, with lower and upper hinges representing the first and third quartiles. Whiskers indicate values
between the first quartile and the lowest value, and third quartile and highest value, respectively, but no further than the 1.5 x the interquartile
range. Values outside this range are plotted individually. The thin lines connecting time periods indicates changes in individual participant
antibody levels with red lines representing a decline in S-antibody level and green lines indicating an increase in S-antibody level. All samples are
paired across the sampling periods. (B) Scatterplot demonstrates observed (unadjusted) fold change in antibody level (y-axis) by baseline S-
antibody level (x-axis), stratified by number of COVID-19 vaccine doses. Black line represents LOESS smoothing and dashed red line indicates no
difference in baseline and follow-up S-antibody level. Log values < 10̂0 not shown. (C) GAM estimates of the change in antibody level between
sampling periods (y-axis) by antibody level at the first sampling time point (x-axis). The regression curve is indicated with the blue line with
shading indicating the 95% CI and individual regression partial values with gray dots. The horizontal dashed red line represents no antibody
change between sampling timepoints. To control for variables that influence or may influence exposure risk or differential antibody contraction,
the model included age, sex, urban versus rural setting, number of COVID-19 vaccine doses prior to the first sampling period, days since last
vaccine dose, and days between samplings. Summaries of model outputs are provided in Supplementary Table S4. Individuals that received four
interval vaccine doses (N = 2) are not shown. Number of study participants for the top and bottom rows are 579 (interval vaccine = 0), 322
(interval vaccine = 1), 105 (interval vaccine = 2), 18 (interval vaccine = 3). Data for four interval vaccine doses (n = 2) are not presented. Number
of participants for the middle row, by plot are 528 (interval vaccine = 0), 292 (interval vaccine = 1), 84 (interval vaccine = 2), and 18 (interval
vaccine = 3). The difference in observation number between the middle versus the top/bottom rows is because participants with log
values < 10̂0 are not shown for plots in the middle row.

Articles
considered the possibility of regression to the mean—a
well-documented phenomenon where initial extreme
measurements tend to converge to the mean in subse-
quent measurements. Using a permutation approach17
www.thelancet.com Vol 108 October, 2024
we found no significant association between shuffled
initial S-antibody levels and subsequent ones (p-value
0.935, R-squared was nearly zero), suggesting that
regression to the mean did not meaningfully influence
9
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our results. Then, we excluded outliers and carried out-
of-sample analyses and compared results with all data
versus data excluding outliers. The findings were
essentially unchanged, with a difference in R-squared
value of 0.004. Finally, we evaluated the relationship
between baseline antibody levels and their subsequent
changes across the entire spectrum of baseline values.
This was to assess for evidence of a ceiling effect arising
from potential instability in assay measurements for
very high baseline values. Our analysis showed no sig-
nificant deviation for high baseline antibody levels from
the general trend, indicating that a ceiling effect was
unlikely to influence our results (Fig. 2B).

Drivers of S-antibody titre change between
sampling timepoints
After demonstrating that S-antibody levels at the base-
line sampling timepoint tracked closely with the interval
change in antibody levels, we sought to better under-
stand the role and importance of other key variables. To
do this, we first performed partial dependence analyses
using a random forest model and included baseline S-
antibody and N-antibody titres, age, vaccine doses
received prior to the first sampling timepoint, vaccine
doses received between the first and second timepoints,
and the number of days since the last vaccination dose
(DPV) (Supplementary Fig. S6). The most important
feature was baseline S-antibody titre, as indicated by its
largest percentage increase in mean squared error (Inc.
MSE, 136.4%) when permuted (Supplementary
Table S5). Baseline N-antibody titre, days post vaccina-
tion, and interval vaccination doses were of low impor-
tance (Inc. MSE, 28.6%, 20.7 and 19.7 respectively), and
baseline vaccination doses and age were minimally
important (Inc. MSE, 8.1 and 7.5). These findings
demonstrate that while multiple variables contribute to
the trajectory of individual S-antibody levels, baseline
S-antibody level (and therefore baseline immune pro-
tection) is the primary driver. Patterns of variation
identified in the PCA analysis aligned with partial
dependence analyses (Fig. 2D, Supplementary Fig. S6),
indicating that irrespective of computation approach
findings were similar.

Evolution of humoral markers to an immune
setpoint
Two findings were unexpected and hard to reconcile
with what is known about the complexity of population
immunity and the immune response to vaccination.
First that baseline antibody levels were strongly (but
inversely) correlated with subsequent levels, and second
that the number of interval vaccine doses did not appear
to markedly impact later antibody levels. To reconcile
these findings, we hypothesized that immuno-ecological
pressure drives immune markers levels to a discrete
setpoint below which antibody levels are boosted and
above which antibody levels decline. To examine this
hypothesis, we examined the change in antibody levels
in more detail and indeed demonstrated a distinct level
or “immune setpoint” around which antibody titres
converge regardless of baseline levels and only
marginally impacted by the of the number of vaccine
doses received between the sampling timepoints
(Fig. 4), with findings consistent when stratified by age
and study region (Supplementary Fig. S7). These find-
ings align with our prior analyses (Fig. 2A–D) that
suggested a consistent convergence of antibody levels to
a set point irrespective of baseline antibody levels.

Convergence of titres as a dynamical system
To further explore the immune setpoint concept, we
considered plausible theoretical reasons for this pattern.
As described in the methods, given a predictable rela-
tionship between pre-infection titre and post-infection
titre, it is possible to define kinetics over multiple
waves as a mathematical dynamical system. We found
that if the change in titre post-infection depends on pre-
infection titre and wanes for higher titres, then boosting
and waning in antibody kinetics over multiple infection
waves will gradually converge to a narrow distribution of
set point titres (Fig. 5). This provides a theoretical
explanation for the patterns observed in Figs. 2–4; if the
relationship between pre- and post-infection titres is a
convergent function, we would expect convergence to a
set point, and initial titre and prior exposure history
become less important in predicting titre over sequen-
tial exposures.
Discussion
Our study findings, derived from a carefully sampled
population enrolled through a multistage household
survey in the Dominican Republic, provides insights
into the evolution of population immunity. We observed
a convergence in the distribution of population immune
markers to a single peak over time, provide evidence
that this is driven by a process of titre dependent
boosting, and demonstrate that antibody markers coa-
lesce around a discrete setpoint. Collectively, these
findings suggests that the accumulation of population
immunity is not due to a random or semi-random series
of vaccination and infection events. Rather, that the
evolution of population immunity follows a predictable
and non-random pattern, at least for pathogens such as
SARS-CoV-2 that generate intense and widespread
transmission.

While many studies have measured immune
markers across populations, the examination of how
immunity evolves across populations is largely unex-
plored. Our findings suggest that the introduction of
widely transmitted pathogen into a susceptible popula-
tion leads to a predictable evolution of immune
markers. Other data supports this assumption. We
previously reported on an independent study that
www.thelancet.com Vol 108 October, 2024
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Fig. 4: Change in SARS-CoV-2 spike antibody levels by baseline titres. Scatterplots of paired antibody levels are stratified in each plot by
baseline antibody level, shown as a categorical variable on the x-axis. Horizontal black bar represents the median values at the first (baseline)
sampling timepoint and arrowhead tip the median value at the second (follow-up) sampling timepoint. Connecting black line represents the
change in median values between the sampling timepoints. Horizontal red dashed line is used illustratively as population “set-point” (3.75 BAU/
ml) following the last SARS-CoV-2 infection wave (BA.2/4/5, Fig. 1). Main plot represents all data and lower plots represent data stratified by
the number of COVID-19 vaccine doses received between the two sampling timepoints. Number of study participants by plot are 1026 (Overall),
579 (interval vacc dose = none), 322 (interval vacc dose = one), 105 (interval vacc dose = two). Data for three and four interval vaccine doses not
shown given sparsity of data points (N = 18 and N = 2 respectively). Interval vacc dose indicates the number of COVID-19 vaccine doses received
between the first and second sampling timepoint.
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examined S-antibody levels among patients presenting
to health facilities in the Dominican Republic with un-
differentiated febrile infection, and demonstrated a
similar evolution of SARS-CoV-2 titres from an irregular
distribution to a single peak from mid to late pandemic
(Supplementary Fig. S8).5 In that study, the shift from
an irregular to a regular distribution of antibody
markers was progressive over time and was not due to,
for example, a single wave of intense transmission. In
South Africa, which has been heavily impacted by
sequential waves of transmission,10 a prospective cohort
study documented similar trends with immune marker
boosting among those with low baseline levels and
waning among those with high baseline levels across
Beta, Delta and Omicron waves of transmission.18
www.thelancet.com Vol 108 October, 2024
Predicting changes in individual-level immunity re-
mains complex due to range of factors that influence the
immune response. However, our findings suggest that
when aggregated across a population, immune markers
appear to follow distinct patterns. We developed a model
trained on one group of study participants and, unex-
pectedly, were able to accurately predict changes in
baseline S-antibody levels (a marker of immune pro-
tection) in an out-of-sample group more than a year
later. The accuracy of the prediction was based almost
entirely on the initial S-antibody level, overshadowing
the anticipated influence of factors like additional vac-
cine doses, diverse exposure risks, waning immunity,
and individual immune variations. In particular, while
additional COVID-19 vaccine doses were associated with
11
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Fig. 5: Theoretical insights into titre stability through simulated infection cycles. Plots demonstrate the relationship between initial titres
and titres after 1 and 2 waves of infections for different functional relationships between pre-infection and post-infection titres. The first
column represents baseline titres for two hypothetical titre distributions (light blue and purple). Different distributions were intentionally
chosen to illustrate how the specified functions impacted markedly different distributions. Column two illustrates the function applied to the
baseline titres. (A) Uniform boost post-infection, independent of prior titre, and without waning. This results in a non-convergent dynamical
system with no fixed point, and hence titres would be expected to increase over time. (B) Titre-dependent boost with no waning. This results in
a non-convergent dynamical system, with gradually increase and narrowing titre distribution. (C) Titre-dependent boosting and waning for
higher titres, which produces a dynamical system with a stable fixed point, and hence convergence in titres to a set point over multiple waves,
regardless of initial value.
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a larger increase in S-antibody levels between the sam-
pling timepoints, the impact was less pronounced than
anticipated. Despite the fact that vaccinations undeni-
ably bolster the humoral response, their role in directing
overall population immune dynamics seems less influ-
ential than previously assumed in this context.

While the limited influence of vaccinations on sub-
sequent immune marker levels is perhaps counterintu-
itive, it provides valuable insight into the likely drivers of
population-level immunity dynamics. Our data strongly
suggests the existence of a population immune setpoint,
a level of antibody response towards which individuals
and ultimately the population converge (Fig. 2). The
pressure from population-level infection waves and titre-
dependent antibody kinetics to reach this setpoint
appears to override individual factors like additional
vaccine doses, implying that irrespective of whether
antibody responses stem from infection or vaccination,
similar levels of response—and hence protection—are
ultimately attained in high transmission settings.
Notably, this does not undermine the role of vaccines,
rather the opposite. Although vaccines did not drive
markedly higher titres when measured over the entire
study period, we interpret that this reflects their role in
reducing infection. If infection-induced boosting was
uniform across the population (i.e., similar rates of
infection among those that did versus did not receive
interval vaccine doses), those that received additional
vaccine-induced boosting would, under most circum-
stances, be expected to register the largest increases in
antibody titres. The fact that this was not the case, and
similar levels of boosting were observed regardless of
vaccine doses received (Figs. 2 and 4), implies that in-
fections, and therefore infection-induced boosting, were
less common among vaccinated versus unvaccinated
individuals.

Similar to the finding that additional vaccine doses did
not substantially impact later antibody levels, our finding
that baseline antibody levels were strongly associated with
changes 15-months later was not initially anticipated.
Given the multiple factors that would be expected to
disrupt future antibody level prediction we considered it
highly unlikely that a baseline antibody measurement
would independently (i.e., without carefully adjusting for
individual-level factors that influence boosting and
waning) predict the change at follow-up measurements
more than a year later. However, when considered in the
context an environment that drives antibody levels to an
immune setpoint, this is precisely what would be antici-
pated. Given coalescence to a set point, individuals with
low baseline antibody levels would be expected to register
the largest increases while those with high levels would
be expected to register the smallest increases or declining
values, as we observed.

While immunological setpoints have been described
for individual responses to malignancies or immuno-
therapies, and for population-level humoral responses
www.thelancet.com Vol 108 October, 2024
following vaccinations, the concept of a population
immunological setpoint driven by ecological pressures
has not been previously reported. We encourage further
independent investigation of this phenomenon, which
has a range of potential public health implications. For
example, we identified an immunological setpoint of
around 103.7 BAU/ml (or 5500 BAU/ml) (Fig. 2), a titre
that translates to an estimated 90–95% reduction in
relative risk of symptomatic SARS-CoV-2 infection from
BA.2 and BA.4/5, based on correlates of protection es-
timates using the same immunoassay.19 This raises the
question of whether population immune setpoints
consistently track with measured immune correlates of
protection, a seemingly logical hypothesis assuming
sufficiently widespread transmission. If so, immune
correlates of protection that can be estimated relatively
quickly,19 could serve as a valuable tool for estimating
future population immune setpoints, with public health
implications such as tailored vaccine strategies for high
risk populations and refined model estimates of future
transmission. Furthermore, our finding that the distri-
bution of immune markers shifts to a single normalized
peak over time may allow for more efficient serological
surveys by requiring fewer data points compared to
sampling an irregular or skewed distribution, given the
same power calculation. Yet, further work is necessary
to determine how and when streamlined sampling
would be appropriate. Additionally, the shift of immune
markers to a normal distribution may prove be a useful
biomarker signal of transition from epidemic to
endemic transmission, acknowledging that defining
endemicity is challenging for rapidly evolving patho-
gens. While the current study focuses on SARS-CoV-2,
the normalization of immune markers and the im-
mune setpoint phenomenon may inform the epidemi-
ological investigation and public health response for
other widely transmitted pathogens.

Strengths of this study include a sampling approach
that was carefully designed and implemented using a
three-stage methodology to maximize representative-
ness. All participants provided paired samples for
serological analyses which allowed us to track individual
as well as population level antibody changes over time.
We analyzed data from two geographically discrete study
locations in the northwest versus southeast of the
country to understand if regional differences impacted
our findings. We employed a widely used and exten-
sively validated immunoassay that has been demon-
strated to track with immunological protection. Finally,
we used a range of computational and sensitivity anal-
ysis approaches to triangulate and validate our findings.
Yet there are some limitations. We measured antibodies
against the spike protein of the ancestral virus, rather
than the spike of more recent variants. However, several
studies have demonstrated that boosting after exposure
to variant antigens primarily generates cross-reactive
antibodies with minimal if any variant-specific
13
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antibodies.8,20,21 Given the current study population were
highly exposed through infection, vaccination, or both,
prior to the first sampling timepoint (i.e., prior to Delta
and Omicron) subsequent infections can be assumed to
largely backboost based on prior immune imprinting.
While we clearly demonstrate that titre-dependent
boosting drove the evolution of immune markers over
multiple waves in this settings, our data which did not
include testing for acute infection cannot definitively
establish the reason for this pattern of boosting. Given
that multiple immune correlates of protection studies
have demonstrated that infection risk tracks closely with
immune titres we assume that immune restricted
transmission is the primary driver, wherein those with
high titres avoid infection and those with lower titres are
infected.19,22–24 However, other factors may contribute.
For example, some data suggests that the magnitude of
boosting and rate of waning generally decrease
following multiple exposures.8 Similarly, prior studies
on influenza have demonstrated that boosting after
vaccination is attenuated among individuals with high
pre-vaccination haemagglutination inhibition assay ti-
tres, when compared against those with low pre-
vaccination titres.25 These findings could potentially
contribute to a similar pattern of immune markers
evolution as we observed. While we used a total S-anti-
body assay for our study, the underlying principle sug-
gests that similar dynamics would be observed for any
humoral marker that tracks with protection against
infection. Although sampling was conducted using a
multistage approach with findings similar across
discrete geographic regions, our conclusions may not
apply to other settings. Lastly, while our data does not
explicitly examine the role of emerging viral variants,
the principle of a pathogen or variant-specific setpoint
would be expected to apply regardless of viral charac-
teristics given sufficient transmission and an immuno-
assay that tracks with infection risk.

In conclusion, our study provides unusual insights
into the immunoepidemiology of SARS-CoV-2 in a high
transmission setting. We observed titre-dependent dif-
ferences in individual antibody kinetics that led to the
convergence of immune markers to a population im-
mune setpoint. The selective force driving population
immunity towards this setpoint appears to be sufficiently
strong to minimize the impact of a range of factors
typically considered important for eliciting or modulating
the humoral response. While further investigation is
needed to fully understand the drivers and implications
of these findings, the influence of varying transmission
intensity and emerging strains, and the consistency of
immune correlates in predicting setpoints, our study of-
fers a preliminary blueprint for how population immu-
nity evolves under high transmission pressure. This
knowledge may be leveraged to decipher transmission
patterns, predict epidemic risks, and guide public health
policy for SARS-CoV-2 and potentially other pathogens.
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