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A B S T R A C T

Background: Scrub typhus is underdiagnosed and underreported but emerging as a global public health problem. 
To inform future burden and prediction studies we examined through a systematic review the potential effect of 
environmental covariates on scrub typhus occurrence and the methods which have been used for its prediction.
Methods: In this systematic review, we searched PubMed, Scopus, Web of Science, China National Knowledge 
Infrastructure and other databases, with no language and publication time restrictions, for studies that investi-
gated environmental covariates or utilized methods to predict the spatial or temporal human. Data were 
manually extracted following a set of queries and systematic analysis was conducted.
Results: We included 68 articles published in 1978–2024 with relevant data from 7 countries/regions. Significant 
environmental risk factors for scrub typhus include temperature (showing positive or inverted-U relationships), 
precipitation (with positive or inverted-U patterns), humidity (exhibiting complex positive, inverted-U, or W- 
shaped associations), sunshine duration (with positive, inverted-U associations), elevation, the normalized dif-
ference vegetation index (NDVI), and the proportion of cropland. Socioeconomic and biological factors were 
rarely explored. Autoregressive Integrated Moving Average (ARIMA) (n = 8) and ecological niche modelling 
(ENM) approach (n = 11) were the most popular methods for predicting temporal trends and spatial distribution 
of scrub typhus, respectively.
Conclusions: Our findings summarized the evidence on environmental covariates affecting scrub typhus occur-
rence and the methodologies used for predictive modelling. We review the existing knowledge gaps and outline 
recommendations for future studies modelling disease prediction and burden.
Trial registration: PROSPERO CRD42022315209.

1. Background

Scrub typhus is a vector-borne infectious disease caused by the 
bacteria Orientia tsutsugamushi, Candidatus Orientia chuto (Izzard et al., 

2010) and Candidatus Orientia chiloensis (Abarca et al., 2020), and 
transmitted by the bite of larval stage of chigger mites. The common 
symptoms and signs are fever, myalgia, eschar, and regional lymph-
adenopathy. Multi-organ failure can develop, and the median case 
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fatality rate in reported series of untreated cases is 6% (Taylor et al., 
2015). This neglected tropical disease is often misdiagnosed (Koh et al., 
2010; Kannan et al., 2020) but the impact is significant. Estimates 
published in 1997 suggested a large potential disease burden, with over 
a billion individuals susceptible to scrub typhus and a million clinical 
cases annually worldwide (Rosenberg, 1997). While it predominantly 
affects parts of South and Southeast Asia, northern Australia, the islands 
of the western Pacific, and Indian Ocean (Kelly et al., 2009), there is 
mounting evidence to suggest that the range of scrub typhus expands 
beyond these traditional boundaries to the Middle East, South America 
and Africa (Izzard et al., 2010; Weitzel et al., 2016). The true extent and 
distribution of scrub typhus remain unknown.

Climate and other environmental changes could be potential cata-
lysts for unexpected occurrence and increasing trends in incidence, as 
they all affect the survival, development, reproduction, behavior, and 
population dynamics of vectors and hosts. The alterations in climate and 
habitat can facilitate migration and expansion of both (Walker, 2016; 
Ding et al., 2022), thereby amplifying the threat of vector-borne diseases 
globally (Jiang and Richards, 2018; Elliott et al., 2019). Changes in the 
proportion of the natural environment and the social environment, such 
as rapid urbanization and deforestation, are changing the scope of 
human activities, affecting the distribution of chiggers and the oppor-
tunities for human exposure to infected chiggers (Min et al., 2019). 
Chiggers act as both the reservoirs and primary vectors of scrub typhus 
and are hardy and present in a huge range of habitats (Pearson et al., 
2019). This suggests that the natural cycles of the bacterium might have 
been well maintained over thousands of years across a large geographic 
distribution (Walker, 2016). However, our understanding of which 
environmental factors play an important role in this overall process and 
how they affect the occurrence of human cases is still lacking.

Prediction models play an important role in anticipating disease 
distribution, which is essential for guiding public health responses and 
policy decisions (DeFelice et al., 2017; Bhatt et al., 2013). Numerous 
studies have applied and adapted various prediction models for 
epidemic forecasting, resource allocation, identifying populations at risk 
and providing early public health warnings, especially during the 
COVID-19 period (Feng et al., 2020; Leung et al., 2021). However, the 
application of prediction models in the context of scrub typhus has been 
notably underexplored. To date, there has been no review systematically 
evaluating and comparing the different types of prediction models used 
in various study settings for scrub typhus, regardless of whether they 
focus on a specific area or span a broader geographical scope.

In this review, we critically appraise published studies using models 
to predict the spatial or temporal distribution of scrub typhus. First, we 
identified environmental covariates which have been found to have 
significant associations with scrub typhus. Second, we reviewed 
modelling frameworks that were used to predict the occurrence of scrub 
typhus. For each paper, we extracted information on the type of model, 
the data used, the metrics of model performance and the validation 
methodology. Finally, using this information, we point out knowledge 
gaps remaining in this field and suggest future research directions.

2. Methods

This systematic review adhered to PRISMA (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) guidelines (Page et al., 
2021) (Appendix Table S3). The protocol had been registered with the 
International Prospective Register of Systematic Reviews (PROSPERO) 
with registration number CRD42022315209.

2.1. Search strategy and selection criteria

To identify relevant publications, we did a systematic literature 
search without any language, publication date or geographical re-
strictions, to identify manuscripts that detailed associated environ-
mental covariates and prediction models for scrub typhus. We searched 

six databases: PubMed, Scopus, Ovid Medline, Ovid Embase, Web of 
Science, and China National Knowledge Infrastructure. Additional 
searches to identify grey literature were conducted using MedNar, WHO 
Global Index Medicus, ProQuest Dissertations and Theses Global data-
base, Preprints in Europe PMC, and the ProMED website. The first 200 
results from Google Scholar were also examined (Haddaway et al., 
2015).

We developed and refined an exhaustive search string assisted by an 
experienced university librarian, incorporating Medical Subject Head-
ings (MeSH) terms, and customized for compatibility with each data-
base. To ensure high sensitivity of the search, we used the combination 
of scrub typhus synonyms (“Orientia tsutsugamushi”, etc.) and broad 
research outcomes of interest (“risk”, etc.) as the search term. The full 
search syntax can be found in the Appendix (Table S1). The initial search 
results were pooled, and duplicates were removed using EndNote 20.

Studies were included if they contained human scrub typhus cases 
and examined the association between environmental covariates and 
scrub typhus or utilized modelling methods to predict spatial or tem-
poral distribution. We excluded studies with unavailable full text, con-
ference abstracts, and review studies without primary data.

The titles and abstracts of identified studies were independently 
screened by two reviewers (QW and TM), records in Korean and Japa-
nese were reviewed by native speakers (AL and ST), and studies in other 
languages were translated and checked using Google Translate. Rayyan 
(Ouzzani et al., 2016), a web-based platform, was used to streamline this 
process. For any potential eligible articles, the full text was screened to 
make the final decision about inclusion. To ensure that no relevant 
studies were excluded erroneously, a third reviewer (KS) randomly 
selected and verified the screening results. Any disagreements were 
resolved by consensus or following discussions with RJM.

2.2. Data extraction and data analysis

A standardized data extraction form was developed using Microsoft 
Excel (version 2310). Relevant variables were extracted by two in-
vestigators independently (QW and TM), and for articles in Korean and 
Japanese, QW extracted information using Google Translate, and then 
AL and ST (native speakers) verified the extraction. The extracted data 
included: article and research information (authors, publication year, 
publication language, country of first author affiliation, geographical 
region of the study, study design and investigation date); characteristics 
of the study participants (sample size, diagnostic method and definition 
of disease); environmental covariates outcomes (definition, source, 
spatial and temporal resolution, association/relationship, statistical in-
dicators and results); method/model outcome (volume and time-space 
scale of data used for modelling, mathematical or statistical methods 
or models developed and used, method/model performance (accuracy, 
discrimination) and validation methods).

For environmental covariates employed, we used descriptive statis-
tics to summarize the number of studies, study sites, total number of 
cases. Additionally, we assessed the pattern of association between 
environmental covariates and scrub typhus occurrence, which was 
achieved by carefully reviewing and interpreting graphical representa-
tions and statistical findings presented in the studies. The analytical 
approaches used to evaluate those associations were also summarized. 
For the examination of prediction models, we sorted the identified 
models by their prediction objectives and number of studies and pre-
sented the data via Sankey chart to provide a structured overview.

2.3. Study quality assessment

Each epidemiological study that satisfied the inclusion criteria was 
subject to a quality assessment using the National Institute of Health 
(NIH) framework for Observational Cohort and Cross-sectional Studies 
(https://www.nhlbi.nih.gov/health-topics/study-quality-assessment 
-tools). For prediction model studies, the EPIFORGE checklist (Pollett 
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et al., 2021), a guideline for standardized reporting of epidemic fore-
casting and prediction research was used to assess the reporting quality 
of included prediction studies. We categorized the studies into four 
quality categories based on the calculated percentage of the overall 
score relative to the total possible score: poor (0–25%), fair (25%–50%), 
good (50%–75%), and excellent (75%–100%).

3. Results

3.1. Study selection

Our literature searches identified 13,674 records, with 6586 unique 
records after removal of duplicates. 4462 articles were not considered 
relevant after title and abstract screening, leaving 2124 articles. 
Following full text screening, 68 studies which investigated environ-
mental factors or utilized models to predict spatial or temporal distri-
bution were included in this review (Fig. 1). The results from every 
database are provided in the appendix (Table S2).

3.2. Quality assessment

All included studies received a ‘good’ quality rating or above, except 
for two studies which obtained a ‘fair’ quality rating, with the complete 
risk assessment result for each study provided in the appendix (Excel 
Table S1 and Excel Table S2).

3.3. Trend of included studies

From 68 studies reviewed, conducted between 1978 and 2024, the 
majority were in Mainland China (n = 42), followed by South Korea (n 
= 10), and Taiwan (n = 6). In Mainland China, research spanned across 
first (16 studies), second (16 studies), and third (two studies) adminis-
trative divisions, indicating a deep dive into local regions. South Korea’s 

nine studies were mostly nationwide, with one detailed study at the first 
administrative division. Taiwan’s three research covered the whole re-
gion, with two studies exploring the first administrative division and one 
exploring the second. Additional studies were noted in Japan (one study 
at the first and second administrative level each), Laos (one at the sec-
ond level), Nepal (one countrywide), Thailand (one countrywide and 
two at the first level), and India (one at first level and 2 at s level). The 
full list of included publications can be found in appendix (Table S5 and 
Table S6).

3.4. Spatial focus of included studies

Since scrub typhus is an understudied disease and the data are not 
abundant, the overall number of studies is relatively low with only 1 
study (Olson and Scheer, 1978) published before 2010 and an average of 
4.47 studies published per year from 2010 to 2022. The year 2010 
marked the beginning of an increase in publications, with Mainland 
China showing a notable rise (Fig. 2). The number of studies peaked in 
2016, 2019, 2021 and 2022 at eight.

Most studies (n = 41, 60%) used case count data from routine passive 
surveillance (Fig. 3A). In several studies, incidence (n = 13, 19%) and 
presence/absence (n = 8, 12%) utilizing passive surveillance data were 
also investigated. Studies spanned a diverse spatial extent, from coun-
try/region down to the third administrative level and the spatial reso-
lutions varied, ranging from point/pixel to country/region. (Fig. 3B). 
The majority of studies (n = 27, 40%) were conducted at the 3rd 
administrative level or below. Only six studies (9%) were performed on 
very fine spatial resolutions of points or pixels.

3.5. Environmental covariates

For environmental factors, 58 articles detailed 121 study sites across 
seven countries/regions which investigated 68 various environmental 

Fig. 1. PRISMA diagram of study selection.

Q. Wang et al.                                                                                                                                                                                                                                   Environmental Research 263 (2024) 120067 

3 



covariates (Fig. S1) and we grouped them into five categories: meteo-
rological, geographic, socioeconomic, biological, and spatial-temporal 
covariates (Table 1). Detailed statistical results of the top ten environ-
mental covariates with the highest frequency investigated in the 
included studies were visualized in Fig. S2 and non-linear effects be-
tween various covariates and scrub typhus extracted from included 
studies can be found in appendix Table S7.

Meteorological factors are commonly recognized as important 
covariates related to scrub typhus (Roberts et al., 2021; Mungmung-
puntipantip and Wiwanitkit, 2021; Lu et al., 2021; Lin et al., 2021; 
Bhopdhornangkul et al., 2021; Li et al., 2021), with temperature, pre-
cipitation and humidity dominating. Among the studies reviewed, 83% 
(n = 48) included temperature as a covariate, while 74% (n = 43) 
included precipitation. Over half of the studies (n = 33, 56.9%) included 
humidity. Temperature analysis frequently utilized mean temperature 
whereas relative humidity was the primary metric for humidity. The 
lagged effects of meteorological factors, ranging from one week to one 
year, were explored in multiple studies conducted in mainland China 
(Ding et al., 2022; Lu et al., 2021; Yang et al., 2014; 陈胤忠 徐慧 et al., 
2016; 吴义城 and 李申龙, 2016; Luo et al., 2024; K et al., 2024; Huang 
et al., 2023; Han et al., 2023; Wei et al., 2023; Li et al., 2023; Luo et al., 
2022; H et al., 2022; He et al., 2022a), South Korea (Kwak et al., 2015a; 
Kim et al., 2020; Chang et al., 2024), Japan (Seto et al., 2017) and India 
(Narang et al., 2022; D’Cruz et al., 2024). The relationships between 

temperature and precipitation and scrub typhus were found to be either 
positive (Min et al., 2019; Olson and Scheer, 1978; Lu et al., 2021; Lin 
et al., 2021; Li et al., 2021; Yang et al., 2014; 吴义城 and 李申龙, 2016; 
Kim et al., 2020; Seto et al., 2017; Kim and Jang, 2010; Tsai and Yeh, 
2013; Li et al., 2014; 陈纯 et al., 2016; Wu et al., 2016; Sun et al., 2018; 
Chang et al., 2017; Wei et al., 2017a; Chang et al., 2019; Yao et al., 2019; 
Zheng et al., 2019; Luo et al., 2020; Wangrangsimakul et al., 2020; 李文 
and 刘小波, 2021)or to follow an inverted-U pattern (吴义城 and 李申龙, 
2016; Kim et al., 2020; 孙烨, 2016; 孙烨 and 曹务春, 2016), in which the 
response variable increases up to a certain point, after which it begins to 
decrease. The humidity displayed more complex associations, including 
positive, inverted-U, and W-shaped patterns where response variable 
increases, decreases, and then increases again across different humidity 
levels. This W-shaped pattern of association with humidity was specif-
ically observed in one study conducted in Thailand (Bhopdhornangkul 
et al., 2021). Other meteorological variables such as sunshine hours 
(Min et al., 2019; Lu et al., 2021; 陈胤忠 徐慧 et al., 2016; Tsai and Yeh, 
2013; Li et al., 2014; 陈纯 et al., 2016; Yao et al., 2019; Luo et al., 2020; 
孙烨, 2016; 孙烨 and 曹务春, 2016; Xin et al., 2020a)(n = 17, 29.3%), 
atmospheric pressure (Lu et al., 2021; Tsai and Yeh, 2013; Li et al., 2014; 
孙烨 and 曹务春, 2016) (n = 8, 13.8%), and wind speed (Lu et al., 2021; 
Kim et al., 2020; Kwak et al., 2015b) (n = 9, 15.5%) have been identified 
as important indicators in a number of studies, exhibiting positive, 
negative, and negative correlations, respectively. Four studies from 

Fig. 2. Number of included studies per year by study country/region.

Fig. 3. A. Data source and response variables used in included studies; and B. Geographical scale and spatial resolution of included studies.
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China, demonstrated that the El Niño/Southern Oscillation (ENSO), as 
well as the Multivariate ENSO Index (MEI) (Lu et al., 2021; 吴义城 and 
李申龙, 2016; He et al., 2022a; Wei et al., 2017a), also played an 
important role in affecting the occurrence of scrub typhus. Notably, the 
interaction of temperature, precipitation and sunshine were explored in 
a recent study (K et al., 2024).

Geographic factors such as elevation, the Normalized Difference 
Vegetation Index (NDVI), and various land cover types including crop-
land, forest, and grassland are frequently examined for their associations 
with scrub typhus, displaying positive, negative, and inverted-U pat-
terns. Elevation was a important predictor in 17% of the studies (n =
10), NDVI in 21% (n = 12), cropland in 16% (n = 9), forest in 16% (n =
9), and grassland in 9% (n = 5). A higher NDVI usually led to an 
increased risk of scrub typhus (吴义城 and 李申龙, 2016; Zheng et al., 
2019; 李文 and 刘小波, 2021; Kuo et al., 2011; Kim and Kim, 2018a) due 
to the crucial role of vegetation in maintaining vectors (such as chiggers) 
and hosts (like rodents). The proportion of forest (Wu et al., 2016; 
Wangrangsimakul et al., 2020; 李文 and 刘小波, 2021) area was found 
to be negatively associated with scrub typhus, whereas recreational 
forest area (Tsai and Yeh, 2013) and deforestation (Min et al., 2019) 
exhibited positive associations. Two studies also found terrain slope had 
a negative impact on scrub typhus (Wei et al., 2023; Acharya et al., 
2019) and one study in Thailand included habitat complexity and 
fragmentation as predictors (Wangrangsimakul et al., 2020).

Socioeconomic variables such as population density (n = 10, 17.2%), 

farming and elderly population (n = 4, 6.9%, n = 2, 3.4%), income (n =
2, 5%), gross domestic product (GDP) (n = 2, 5%), urban accessibility 
and urbanization were also considered to be relevant. The higher 
numbers of farmer (Min et al., 2019; Kim et al., 2020; Tsai and Yeh, 
2013; Kuo et al., 2011) and elder populations (Kim et al., 2020; Kang 
and Choi, 2018) were generally associated with an increased risk of 
scrub typhus. The relationship with population density was inconsistent 
across studies: some studies indicating a positive association (吴义城 
and 李申龙, 2016; Seto et al., 2017; Wangrangsimakul et al., 2020) and 
others suggesting a negative one (Min et al., 2019; 李文 and 刘小波, 
2021). GDP was studied in three articles with varying effect directions: 
one article from southern China indicated a negative effect (Zheng et al., 
2019), and the other article from Qingdao City in northern China 
showing a positive effect (Xin et al., 2020b).

Biological variables, such as rodent density and information on 
mites, were infrequently reported in the literature. Rodent density was 
explored in four studies (Huang et al., 2023; Wei et al., 2017a; 刘晓宁, 
2019; 余向华, 2019) and demonstrated a positive association with scrub 
typhus. Similarly, the Orientia infection rate in mites/rodents was only 
examined in one study (刘晓宁, 2019), which found positive associa-
tions of both with scrub typhus. The full list and frequency of the 
environmental covariates can be found in appendix (Fig. S1).

Five methodological classes for analyzing associations were identi-
fied: correlation testing, multivariate regression, linear/nonlinear 
modelling, machine learning, and spatial-temporal modelling 

Table 1 
The environmental covariates found to have significant associations with scrub typhus in 2 or more studies.

Category Covariates Number of 
studies (%)

Number of 
study sites

Case 
count

Associations (number of study sites)

Biological Rodent density 4 (6.9) 4 19241 Positive (4)
Geographic NDVI 12 (20.7) 21 171775 Positive (12), negative (3), inverted U (3), suitable range: 0.18–0.39 (1); 

0.6–0.8 (1)
Elevation 10 (17.2) 11 79942 Positive (3), negative (4), N-shape (1), 1 U shape (1), 1 inverted U (1)
Proportion of 
cropland

9 (15.5) 9 221304 Positive (2), inverted U (2), negative (2), U shape (1)

Proportion of forest 9 (15.5) 9 199359 Negative (4), positive (3)
Proportion of 
grassland

5 (8.6) 5 191985 Negative (4), 1 U shape (1)

Proportion of shrub 4 (6.9) 4 70225 Positive (3), 1 inverted U (1)
Proportion of water 
body

4 (6.9) 4 80871 Positive (1), negative (3)

Farmland 3 (5.2) 3 9210 Positive (2)
Landcover 2 (3.4) 2 57304 Paddy field and artificial land positive (1), built-up land high risk (1)
Proportion of built-up 
land

2 (3.4) 3 92948 Positive (2), negative (1)

Proportion of Mosaic 
habitat

2 (3.4) 2 105541 Positive (1), negative (1)

Slop 2 (3.4) 3 16657 Negative (3)
Meteorological Temperature 48 (82.8) 93 1077077 Positive (50), inverted U (10), negative (6), U (1), suitable range: 8.9–11.1 of 

monthly average temperature (1)
Precipitation 43 (74.1) 59 1016434 Positive (31), inverted U (3), negative (9), N shape (4), suitable 

range:196.0–275.0 for precipitation of wettest month (1)
Humidity 33 (56.9) 50 839083 Positive (22), inverted U (7), negative (6), W-shape (3), U-shape (1)
Sunshine hour 17 (29.3) 21 269342 Positive (11), inverted U (4), negative (4)
Wind speed 9 (15.5) 12 212359 Negative (6), inverted U (1), inverted N (1)
Atmospheric pressure 8 (13.8) 11 39674 Negative (7), positive (3)
ENSO 2 (3.4) 3 4795 Positive

Socioeconomic Population density 10 (17.2) 10 210016 Positive (7), negative (2), inverted U (1)
Farmer population 4 (6.9) 6 2854 Positive (4), negative (1), inverted U (1)
GDP 3 (5.2) 3 7327 Positive (1), negative (1)
Elderly population 2 (3.4) 2 1296 Positive
Income 2 (3.4) 2 2196 Negative (2)
Urban accessibility 2 (3.4) 2 989 Inverted U (2)
Urbanization 2 (3.4) 2 5810 Positive (2)

Spatial 
temporal

Location 3 (5.2) 3 121683 Complex
Time 2 (3.4) 3 52473 Complex

Associations graphic schema

Positive Negative U shape Inverted U W shape N shape
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(Table S4). Among these, multivariable regression was the most 
frequently employed modelling approach, utilized in 36% of studies (n 
= 21), with negative binomial multivariable regression being the most 
common variant (n = 9), followed by Poisson regression (n = 4). Ma-
chine learning approaches were preferred for analyses involving point/ 
pixel data, whereas multivariable regression was the method of choice 
for areal-type data aggregated over administrative regions (Fig. 4). The 
majority of studies (n = 44, 75.9%) utilized monthly aggregated data as 
their input, with yearly data being the next most common (n = 12, 
20.7%). Additionally, 13 studies (22.4%) employed more than one 
analytical method to investigate association.

3.6. Prediction models

Beyond solely investigating associations between covariates and 
scrub typhus, between 2012 and 2024, 25 studies were dedicated to 
modelling and predicting the occurrence of scrub typhus over time and/ 
or space. These were primarily conducted in mainland China (n = 20), 
with additional studies in South Korea (n = 4) and Nepal (n = 1). These 
studies mainly utilized data from the national disease surveillance sys-
tems, although some also drew on hospital records and surveys for their 
analyses. On average, the duration covered by these studies was 8.46 
years, with sample sizes varying widely from specific case numbers 
(ranging from N = 225 to N = 166,839) to broad geographical scopes 
encompassing multiple administrative regions such as cities, counties, or 
provinces. Detailed information on the publications included in this 
section can be found in the Appendix (Table S6).

The predicted response variables across these studies encompassed a 
diverse range, including six focusing on presence/absence, ten on case 
count, two on incidence, and one on Disability-Adjusted Life Years 
(DALYs). Reflecting their primary objectives, as depicted in Fig. 5, these 
investigations were categorized into two groups: twelve studies 
concentrated on temporal prediction (extrapolations into future time), 
while nine focused on spatial prediction (interpolation within the same 
region as data points or extrapolation to regions outside of the spatial 
extent of data points). Two studies uniquely combined both temporal 
and spatial predictions to enhance understanding of scrub typhus dy-
namics (吴义城 and 李申龙, 2016; Kim et al., 2020).

For projections into the future, Autoregressive Integrated Moving 
Average (ARIMA) and its variations, including Seasonal Autoregressive 
Integrated Moving Average (SARIMA) and Seasonal Autoregressive In-
tegrated Moving-Average with Exogenous Regressors (SARIMAX), were 
frequently used with nine papers focusing on case number and one on 
DALYs (Yang et al., 2015). These temporal extrapolation studies pri-
marily analyzed time series data, concentrating on identifying trends, 
seasonality, and random fluctuations. Notably, one study demonstrated 
that a SARIMA model incorporating eight exogenous environmental 
variables significantly outperformed a standard SARIMA model in 

forecasting scrub typhus case number (He et al., 2022b).
In terms of spatial prediction, Boosted Regression Trees (BRT) (Yao 

et al., 2019; Zheng et al., 2019; 孙烨 and 曹务春, 2016; Xin et al., 2020b; 
Y et al., 2023) and other ecological niche modelling (ENM) approach, 
specifically with Maxent (吴义城 and 李申龙, 2016; Li et al., 2023; Kim 
et al., 2020; Acharya et al., 2019; Yu et al., 2018; L et al., 2023) and 
random forest (Huang et al., 2023; Acharya et al., 2019), were 
commonly employed for mapping the presence/absence of the disease 
across different areas. One study conducted in South Korea used a 
spatially structured random effect within a Bayesian spatial-temporal 
model to analyze scrub typhus risk (Kim and Kim, 2018b) and one 
study conducted in China used a GAM to predict the case number under 
the future scenario (Ding et al., 2022). A study conducted in Nepal 
utilized both ENM with Maxent and ENM with Random Forest, finding 
that both methods effectively mapped the environmental suitability for 
scrub typhus (Acharya et al., 2019). For predictions that required both 
temporal and spatial analysis, the ENM approach with Maxent was 
widely adopted (吴义城 and 李申龙, 2016; Kim et al., 2020).

No mechanistic models have yet been applied in the field of scrub 
typhus research. Out-of-sample validation is a common practice in 
prediction studies, employed in 84% of them (n = 21). For studies 
extrapolating spatial distributions, 75% and 70% of data were typically 
used for training leaving 25% and 30% for validation; 10-fold cross 
validation was adapted in three studies (Zheng et al., 2019; Acharya 
et al., 2019; Xin et al., 2020b). The number of simulations run for a 
single model varied, ranging from 1032,76 to 300 (Zheng et al., 2019; Xin 
et al., 2020a). The threshold values defining high environmental suit-
ability for scrub typhus showed variation among the studies, with a 
range from 0.06576 to 0.558. Six studies utilized these specific thresholds 
to conduct further analyses, including the estimation of populations at 
risk (吴义城 and 李申龙, 2016; Yao et al., 2019; Zheng et al., 2019; Xin 
et al., 2020a; Acharya et al., 2019; Yu et al., 2018). All presence/absence 
predictions were modelled based on data at the third administrative 
level or below or on point/pixel data. The primary evaluation metric 
was Area Under the Curve (AUC).

For temporal extrapolations, data from initial periods-such as early 
years, months or weeks in the whole dataset - were frequently used for 
training and modelling, and data of subsequent periods, whether they be 
later years, months, or weeks, was reserved for prediction validation 
(Kim et al., 2020; Kwak et al., 2015b; Yang et al., 2015; He et al., 2022b; 
丁磊 and 赵仲堂, 2012; Wang et al., 2014; 颜玉炳 et al., 2016; 阮春来 
et al., 2017; 李文 赵嘉欣 et al., 2021; Wang et al., 2022) (N = 10). In this 
time-based cross-validation, the ’folds’ are not random but rather 
sequential segments that respect the temporal order of observations. 
Evaluation metrics for training fit include the Akaike Information Cri-
terion (AIC) in three studies, Bayesian Information Criterion (BIC) in five 
studies, R2 in six studies, and Root Mean Square Deviation (RMSE) in 
three studies. Validation metrics include R2 and RMSE (each in three 

Fig. 4. Analytical approaches for association evaluation by input data resolution, temporally from daily to yearly and spatially using areal or point/pixel.
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studies), Mean Absolute Error (MAE) in one study, Intraclass Correlation 
Coefficient (ICC) in one study, and descriptive descriptions in three 
studies.

4. Discussion

Our review provides a comprehensive examination of published 
research conducted on environmental risk factors significantly associ-
ated with occurrence of scrub typhus, and the models utilized for pre-
dicting its occurrence, drawing evidence from 68 studies. Remarkably, 
only one study published before 2010 (in 1978) linked temperature to 
scrub typhus, with the remaining 57 studies published after 2010. This 
underscores the historical neglect of scrub typhus, and its significant 
potential for future research and exploration. In the face of escalating 
climate change, the insights gleaned from this review become even more 
pivotal. The shifting climate not only influences existing ecological 
balances but also dictates the spread and emergence of diseases like 
scrub typhus, like our previous work done in China suggesting that the 
case number would increase with global warming (Ding et al., 2022). 
This review help lay the groundwork for a framework to identify regions 
where transmission may intensify, new areas where scrub typhus may 
emerge, and locations that could become unsuitable for transmission 
due to climatic shifts. We believe these evaluations is instrumental in 
steering global health policies and offering a strategic compass to 
navigate the shifting landscape of scrub typhus transmission in an era of 
climatic uncertainty.

Given that humans are typically incidental hosts, and the bacterium 
of scrub typhus is mainly reservoired in, and transmitted by, chigger 
mites in the natural cycle, the activities and distribution of vectors and 
hosts, such as mites, alongside human behaviors, and activities, are 
undoubtedly closely linked to the disease occurrence. These elements 
are significantly influenced by climatic and environmental conditions. 
Our analysis of 58 articles highlighted meteorological and geographic 
factors as principal risk factors. Crucial climate parameters such as 
temperature, precipitation, humidity, sunshine hour, atmospheric 
pressure, and wind speed are deeply intertwined with disease occur-
rence. Most studies found positive associations with temperature, 

precipitation, and humidity, indicating that warm and humid environ-
ments provide favorable conditions for the occurrence of scrub typhus 
(Pearson et al., 2019; Kong et al., 2007; Traub and Wisseman, 1974). 
The observation of inconsistent patterns, such as inverted U, N shape (李 
文 and 刘小波, 2021), and W shape (Bhopdhornangkul et al., 2021), 
reflect differences in measurement methods and regional characteristics. 
Linear analyses may not capture the complexity evident in more flexible, 
non-linear approaches like generalized additive model (GAM). Addi-
tionally, environmental heterogeneity and different dominant species of 
mite, such as the warmth-preferring Leptotrombidium deliense (Kuo et al., 
2015; Ma et al., 2022; Traub and Wisseman, 1968) in southern regions 
and the cooler-climate Leptotrombidium scutellare (Kuo et al., 2015; 
Xiang and Guo, 2021) in northern areas, further contribute to these 
diverse patterns. These factors underscore the need for tailored ap-
proaches that consider local ecological and methodological contexts 
when studying climate influences on scrub typhus. The few studies on 
atmospheric pressure (Lu et al., 2021; Tsai and Yeh, 2013; Li et al., 2014; 
孙烨 and 曹务春, 2016) and wind speed (Lu et al., 2021; Kim et al., 2020; 
Kwak et al., 2015b) reported negative relationships, which could be 
explained by lower atmospheric pressure and higher wind speeds being 
less conducive to the survival of chiggers or reducing the frequency of 
outdoor human activities.

Geographic variables such as elevation exhibit variable effects on the 
occurrence of scrub typhus, reflecting the complex interplay of local 
ecologies across different regions and suggesting that there may be an 
optimal elevation range for the disease’s vectors and hosts. The 
Normalized Difference Vegetation Index (NDVI), a measure of vegeta-
tion health and density, is often associated positively with scrub typhus, 
which is attributed to better vegetation conditions providing suitable 
habitats for both chiggers and hosts (Traub and Wisseman, 1974; San-
tibáñez et al., 2015). The positive and inverted U-shaped relationships 
with cropland, and the negative associations with forested areas, suggest 
that croplands offer conducive environments for human-chigger in-
teractions (Chaisiri et al., 2017), while denser forest regions might be 
less favorable for the survival and reproduction of these vectors and 
their hosts or offer less opportunities for chigger-human interactions.

The impact of socioeconomic factors on the occurrence of scrub 

Fig. 5. Prediction models by response variables, objectives and validation status.
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typhus is multifaceted and complex, indicating that population struc-
ture, economic conditions and urbanization all contribute to the dis-
ease’s risk profile. The observed positive correlations between the 
proportion of farmers in the population and scrub typhus cases under-
score the link between agricultural activities and the disease’s occur-
rence (Min et al., 2019; Kim et al., 2020; Tsai and Yeh, 2013; Kuo et al., 
2011), aligning with the previously mentioned positive association with 
cropland. Similarly, the positive relationship with the elderly population 
might indicate a higher susceptibility among older adults to scrub ty-
phus, potentially due to diminished immunity and the presence of 
chronic health conditions (Kim et al., 2020; Kang and Choi, 2018). The 
observed inverted U-shaped relationship with urban accessibility sug-
gests that the risk of scrub typhus initially increases and then decreases 
through the urbanization process, likely due to changes in population 
density, sanitary conditions, and public health infrastructure over time 
(Zheng et al., 2019; Xin et al., 2020a). This pattern, alongside the pos-
itive correlation with the level of urbanization, supports the notion that 
early stages of urban development may heighten disease risk, which 
subsequently declines as living conditions improve (孙烨 and 曹务春, 
2016; Xin et al., 2020a). Given the limited number of studies contrib-
uting to these insights, further research is necessary to confirm these 
preliminary findings and fully understand the dynamics involved.

Although only a limited number of studies have focused on biological 
variables such as rodent density or the distribution of mites (刘晓宁, 
2019; 余向华, 2019; Wei et al., 2017b), their critical role in the trans-
mission dynamics of scrub typhus is undeniable. The high incidence of 
scrub typhus in human is directly influenced by density and distribution 
of chiggers and rodents. Their sparse mention might predominantly 
stem from the challenges in obtaining data for rodent and chigger 
densities, which can be labor-intensive and require specialized 
expertise.

Scrub typhus transmission can be influenced by environmental fac-
tors through three main pathways: vector development, host dynamics 
and human exposure (Fig. 6). The lifecycle of mites is a critical 

component in the transmission of scrub typhus, and it is heavily influ-
enced by a range of environmental factors. The larvae are parasitic and 
responsible for transmitting the pathogen to vertebrate hosts, including 
humans (Rapmund et al., 1969; Frances et al., 1999; Roberts et al., 
1975). Temperature and precipitation are pivotal in regulating the 
development, survival, and reproduction of these mites. Warmer and 
more humid climates tend to favor mite population growth by providing 
optimal conditions for egg-laying and larvae survival (Audy, 1961; 
Wharton and Fuller, 1952; Kawamura and Ikeda, 1936). Additionally, 
vegetation types, such as grasslands, shrublands, and croplands, offer 
suitable habitats for the larvae to cluster and wait for hosts, while rodent 
density plays a crucial role as rodents are the primary hosts. Climate 
factors like temperature and rainfall influence rodent breeding cycles 
and survival rates, thereby affecting the availability of hosts for the 
mites. Favorable climate conditions, coupled with abundant vegetation, 
provide more food resources, potentially boosting rodent populations 
and, consequently, increasing the number of infected mites. Agricultural 
practices, especially in rural areas, increase human exposure to 
mite-infested environments (Elliott et al., 2019). Changes in land use, 
including the abandonment of farmland or the creation of ecotones 
(areas where different habitats meet), can influence the distribution of 
mites and their hosts (Audy et al., 1947; Audy and Harrison, 1951). 
Farmland, built-up land, and mosaic habitats (areas with a mix of 
vegetation types) affect where mites are most likely to encounter hosts 
and subsequently transmit the disease. In rural, agricultural, or fringe 
habitats, people are more likely to encounter infected mites. Climatic 
variables—such as temperature, precipitation, humidity, wind speed, 
and atmospheric pressure—further influence mite behavior and trans-
mission. ENSO events, for instance, can lead to shifts in precipitation 
patterns, indirectly affecting mite populations and the timing of human 
cases (Wei et al., 2017a). Higher population density and urbanization, 
particularly during the early stages of urban growth, increase human 
exposure to mite habitats, while economic factors such as GDP and in-
come levels may modulate access to healthcare and preventive 

Fig. 6. Potential mechanisms of environmental covariates influencing scrub typhus.
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measures. Overall, the transmission of scrub typhus depends on a 
multifaceted interaction between biological, environmental, and socio-
economic factors, making it essential to consider local ecological and 
societal contexts when studying the occurrence of the disease.

The diversity of relationships observed across various climate, 
geographic, and socioeconomic factors with respect to the incidence of 
scrub typhus underscores the complexity of its epidemiology. While the 
existing data provide valuable insights into potential risk factors and 
their associations with the disease, the current evidence base is rela-
tively narrow, pointing to the necessity for a more expansive research 
effort. Understanding both environmental and biological determinants 
is essential for establishing accurate predictive models and tailoring 
effective public health measures.

The application of various methods to explore spatial trends and 
predict the spread of scrub typhus epidemics has laid a foundation for 
forecasting occurrences of the disease over time and space. Our findings 
demonstrated the ARIMA and ecological niche modelling approach were 
particularly favored for temporal extrapolation and spatial prediction, 
respectively. The diversity in the chosen models and methodologies 
mirrors the complex nature of scrub typhus and highlights the necessity 
for ongoing innovation in predictive modelling techniques.

Temporal models like ARIMA are effective for capturing time series 
patterns, especially when trends and seasonality are present, making 
them suitable for short-term forecasting. However, ARIMA struggles 
with irregular data and requires stable, long time-series data for accu-
racy, thus it cannot handle sudden changes. SARIMA improves on this by 
handling seasonal fluctuations, which is useful for diseases like scrub 
typhus that are influenced by climatic cycles, though it still faces chal-
lenges with short-term irregularities. Exponential smoothing models, 
while computationally efficient and adaptive to recent trends, are 
limited in capturing long-term trends or seasonal patterns. The effec-
tiveness of the SARIMA model with additional exogenous environmental 
variables underscores the importance of integrating external factors into 
temporal prediction models (He et al., 2022b). However, it is important 
to acknowledge the limitations inherent in time series analyses, partic-
ularly when applied to scrub typhus. Many climate variables, such as 
temperature, exhibit gradual changes with annual cycles, along with 
scrub typhus incidence. The co-variation reflects underlying environ-
mental dependencies, which could help prediction. While short-term 
changes may be less pronounced, the consistent patterns in climate 
data can be leveraged to predict disease outbreaks over time, if models 
are appropriately designed to account for the cyclical nature of these 
variables. However, the slow, cyclical nature of climate factors can 
introduce confounding effects, as other variables with similar patterns 
might distort the relationship between the climate and disease inci-
dence. This confounding, especially when not accounted for, should be 
recognized as a significant limitation in time series models, particularly 
in studies with limited data. On the spatial side, ENMs are powerful tools 
for predicting the spatial distribution of scrub typhus, using environ-
mental factors such as temperature and precipitation to map risk areas. 
These models are effective for identifying potential outbreaks in regions 
with sparse data but are less useful for temporal forecasting. Geo-
statistical models, like spatial regression, offer a more statistically robust 
approach by accounting for spatial autocorrelation and incorporating 
socio-economic factors, though they require extensive spatial data and 
are computationally intensive. In regions with rich time-series data and 
spatial information, combining spatial and temporal models can provide 
comprehensive insights into scrub typhus outbreaks, accounting for 
both time and place.

The adaptation of multiple models within a single study, as 
demonstrated in Nepal (Acharya et al., 2019), and the comparative 
analysis of their performance, provide valuable information for selecting 
and combining appropriate models based on the specific objectives and 
available data of future studies. Our analysis also indicated that 
out-of-sample validation is a common approach in prediction studies, 
although the metrics used to assess model performance vary depending 

on the type of response variable and desired output. Employing multiple 
evaluation metrics is recommended for a more comprehensive under-
standing of model accuracy and reliability. Even though challenges in 
predicting the spatial distribution of scrub typhus due to its specific 
environmental and biological constraints exist, these models remain 
valuable tools for identifying potential risk areas and guiding targeted 
public health interventions.

However, unlike other vector-borne diseases such as dengue and 
malaria, mechanistic models have not yet been applied for scrub typhus. 
Future research directions should include the integration of mechanistic 
models, the incorporation of a broader range of environmental and 
socio-economic data, and the development of adaptable models capable 
of responding to shifts in disease transmission dynamics. It is also 
important to tailor different approaches to various types and levels of 
scrub typhus data, ensuring that they can be effectively applied across 
different scales of analysis, and the comparison and combination of 
different modeling approaches to identify the most suitable model for 
specific situations are recommended. Collaboration across disciplines 
and regions will be essential to enhance our predictive capabilities and, 
ultimately, to mitigate the impact of scrub typhus through informed 
public health interventions.

Our search strategy was implemented in an inclusive manner 
through relevant and grey literature databases without language or 
publication time restriction. However, reliance on one Chinese and one 
international database means that some studies published in national or 
local journals may have been overlooked during our search process. 
Additionally, reviews were excluded as we focused on original analytical 
research. It is also important to note that our synthesis is limited to 
quantitative research studies; consequently, several studies employing 
qualitative analysis were not considered. Another limitation of this 
study is the high degree of heterogeneity among the included studies. 
The variation in study designs, sample sizes, statistical methods, and 
measurement standards led to differences in the reported effects. This 
heterogeneity complicates the aggregation of results and ultimately led 
us to refrain from conducting a meta-analysis, as combining such diverse 
data could produce misleading conclusions due to the differences in 
underlying assumptions and methodologies.

5. Conclusions

Our review bridges key gaps in the understanding of scrub typhus 
regarding the relevant environmental factors and prediction models and 
proposes a framework for guiding future research directions. With the 
expanding impact of scrub typhus, it is imperative that the covariates 
identified in this review be systematically taken into consideration for 
the development of association models. Further exploration into the 
complex dynamic relationships between socioeconomic and biological 
factors is highly recommended. Cross-national and long-term studies are 
essential to generate more generalizable insights into the varied patterns 
and dynamics of scrub typhus, thereby enhancing our understanding 
and management of the disease.
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chiggers as human pathogens. An overview of tropical diseases 1, 173–202.

Seto, J., Suzuki, Y., Nakao, R., Otani, K., Yahagi, K., Mizuta, K., 2017. Meteorological 
factors affecting scrub typhus occurrence: a retrospective study of Yamagata 
Prefecture, Japan, 1984-2014. Epidemiol. Infect. 145 (3), 462–470.

Sun, Y., Shi, C., Li, X.L., Fang, L.Q., Cao, W.C., 2018. [Epidemiology of scrub typhus and 
influencing factors in Yunnan province, 2006-2013]. Zhonghua liu Xing Bing xue za 
zhi= Zhonghua Liuxingbingxue Zazhi 39 (1), 54–57.

Taylor, A.J., Paris, D.H., Newton, P.N., 2015. A systematic review of mortality from 
untreated scrub typhus (Orientia tsutsugamushi). PLoS Negl Trop Dis 9 (8), 
e0003971.

Traub, R., Wisseman, Jr CL., 1968. Ecological considerations in scrub typhus: 2. Vector 
species. Bull. World Health Organ. 39 (2), 219.

Traub, R., Wisseman, Jr CL., 1974. The ecology of chigger-borne rickettsiosis (scrub 
typhus). J. Med. Entomol. 11 (3), 237–303.

Tsai, P.J., Yeh, H.C., 2013. Scrub typhus islands in the Taiwan area and the association 
between scrub typhus disease and forest land use and farmer population density: 
geographically weighted regression. BMC Infect. Dis. 13, 191.

Walker, D.H., 2016. Scrub typhus — scientific neglect, ever-widening impact. N. Engl. J. 
Med. 375 (10), 913–915.

Wang, T., Yao, Y., Huang, X., Peng, Z., 2014. Characteristics of scrub typhus epidemic in 
guangdong province from 2006 to 2012. Chin. J. Endemiol. 33 (4), 429–432.

Wang, Z., Zhang, W., Lu, N., et al., 2022. A potential tool for predicting epidemic trends 
and outbreaks of scrub typhus based on Internet search big data analysis in Yunnan 
Province, China. Front. Public Health 10, 1004462.

Wangrangsimakul, T., Elliott, I., Nedsuwan, S., et al., 2020. The estimated burden of 
scrub typhus in Thailand from national surveillance data (2003-2018). PLoS Negl 
Trop Dis 14 (4), e0008233.

Wei, Y., Huang, Y., Li, X., et al., 2017a. Climate variability, animal reservoir and 
transmission of scrub typhus in Southern China. PLoS Neglected Trop. Dis. 11 (3), 
e0005447.

Wei, Y., Huang, Y., Li, X., et al., 2017b. Climate variability, animal reservoir and 
transmission of scrub typhus in Southern China. PLoS Negl Trop Dis 11 (3), 
e0005447.

Wei, X., He, J., Yin, W., et al., 2023. Spatiotemporal dynamics and environmental 
determinants of scrub typhus in Anhui Province, China, 2010-2020. Sci. Rep. 13 (1), 
2131.

Weitzel, T., Dittrich, S., Lopez, J., et al., 2016. Endemic scrub typhus in South America. 
N. Engl. J. Med. 375 (10), 954–961.

Wharton, G.W., Fuller, H.S., 1952. A Manual of the Chiggers. The Biology, Classification, 
Distribution, and Importance to Man of the Larvae of the Family Trombiculidae 
(Acariña).

Wu, Y.-C., Qian, Q., Soares Magalhaes, R.J., et al., 2016. Spatiotemporal dynamics of 
scrub typhus transmission in mainland China, 2006-2014. PLoS Neglected Trop. Dis. 
10 (8), e0004875.

Xiang, R., Guo, X.-G., 2021. Research advances of Leptotrombidium scutellare in China. 
Kor. J. Parasitol. 59 (1), 1.

Xin, H., Fu, P., Sun, J., et al., 2020a. Risk mapping of scrub typhus infections in Qingdao 
city, China. PLoS Neglected Trop. Dis. 14 (12), e0008757.

Xin, H., Fu, P., Sun, J., et al., 2020b. Risk mapping of scrub typhus infections in Qingdao 
city, China. PLoS Neglected Trop. Dis. 14 (12), e0008757.

Q. Wang et al.                                                                                                                                                                                                                                   Environmental Research 263 (2024) 120067 

11 

http://refhub.elsevier.com/S0013-9351(24)01974-1/sref19
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref19
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref19
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref20
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref20
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref20
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref21
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref21
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref21
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref22
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref22
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref22
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref23
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref23
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref23
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref24
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref24
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref24
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref25
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref25
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref26
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref26
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref26
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref27
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref27
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref28
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref28
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref29
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref29
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref30
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref30
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref30
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref31
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref31
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref31
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref32
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref32
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref33
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref33
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref34
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref34
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref34
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref34
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref35
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref35
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref36
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref36
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref36
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref37
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref37
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref37
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref38
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref38
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref39
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref39
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref39
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref40
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref40
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref40
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref41
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref41
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref41
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref42
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref42
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref42
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref43
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref43
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref44
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref44
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref44
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref45
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref45
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref45
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref46
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref46
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref46
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref47
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref47
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref47
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref48
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref48
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref48
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref49
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref49
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref49
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref50
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref50
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref50
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref51
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref51
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref51
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref52
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref52
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref53
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref53
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref53
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref54
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref54
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref55
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref55
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref56
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref56
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref57
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref57
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref58
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref58
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref59
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref59
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref59
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref60
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref60
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref60
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref61
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref61
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref61
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref62
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref62
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref62
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref63
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref63
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref64
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref64
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref65
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref65
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref65
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref66
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref66
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref66
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref67
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref67
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref67
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref68
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref68
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref69
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref69
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref70
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref70
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref70
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref71
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref71
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref72
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref72
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref73
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref73
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref73
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref74
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref74
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref74
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref75
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref75
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref75
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref76
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref76
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref76
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref77
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref77
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref77
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref78
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref78
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref79
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref79
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref79
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref80
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref80
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref80
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref81
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref81
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref82
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref82
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref83
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref83


Y, Z., M, Z., Y, Q., et al., 2023. Epidemiological analysis and risk prediction of scrub 
typhus from 2006 to 2021 in Sichuan, China. Front. Public Health 11, 1177578.

Yang, L.P., Liu, J., Wang, X.J., Ma, W., Jia, C.X., Jiang, B.F., 2014. Effects of 
meteorological factors on scrub typhus in a temperate region of China. Epidemiol. 
Infect. 142 (10), 2217–2226.

Yang, L.-P., Liang, S.-Y., Wang, X.-J., Li, X.-J., Wu, Y.-L., Ma, W., 2015. Burden of disease 
measured by disability-adjusted Life years and a disease forecasting time series 
model of scrub typhus in laiwu, China. PLoS Neglected Trop. Dis. 9 (1), e3420.

Yao, H., Wang, Y., Mi, X., et al., 2019. The scrub typhus in mainland China: 
spatiotemporal expansion and risk prediction underpinned by complex factors. 
Emerg Microbes Infect 8 (1), 909–919.

Yu, H., Sun, C., Liu, W., et al., 2018. Scrub typhus in Jiangsu Province, China: 
epidemiologic features and spatial risk analysis. BMC Infect. Dis. 18 (1), 372.

Zheng, C., Jiang, D., Ding, F., Fu, J., Hao, M., 2019. Spatiotemporal patterns and risk 
factors for scrub typhus from 2007 to 2017 in southern China. Clin. Infect. Dis. : an 
official publication of the Infectious Diseases Society of America 69 (7), 1205–1211.

丁磊, 王显军, 赵仲堂, 2012. 秋冬型恙虫病流行特征及影响因素研究: 山东大学.
余向华, 倪, 2019. 潘琼娇. 温州市2006—2016年恙虫病流行特征分析. 中国公共卫生管理 

35 (6), 803–805.

刘晓宁, 柳燕, 2019. 安徽省阜阳市秋冬型恙虫病病原体基因型及流行危险因素研究: 安徽 
医科大学.

吴义城, 张文义, 李申龙, 2016. 我国大陆地区恙虫病时空特征分析及风险预测研究: 中国人 
民解放军军事医学科学院.

孙烨, 方立群, 2016. 曹务春. 山东、安徽、江苏省2006-2013年秋冬型恙虫病流行特征及 
影响因素研究. 中华流行病学杂志 37 (8), 1112–1116.

孙烨, 方, 曹务春, 2016. 我国恙虫病地方性流行南北异质性比较研究: 中国人民解放军军事 
医学科学院.

李文, 李贵昌, 刘小波, 鲁亮, 2021. 基于多模型的中国恙虫病高风险区流行风险因素分析: 
中国疾病预防控制中心.

李文, 马德龙, 赵嘉欣, et al., 2021. 广东省恙虫病流行特征及发病风险预测. 中国媒介生物 
学及控制杂志 32 (3), 334–338.

阮春来, 屈宏宇, 自回归移动平均模型在恙虫病预测中的应用研究, 田丽丽, 2017. 医学动物 
防制 33 (2), 133–135.

陈纯, 郑红英, 张周斌, 王大虎, 李铁钢, 王鸣, 2016. 气象因素对广州市虫媒传染病发病影响 
研究. 疾病监测 31 (12), 984–988.

陈胤忠, 李峰, 徐慧, et al., 2016. 江苏省盐城市沿海滩涂2005-2014年恙虫病时空分布特征 
及影响因素分析. 中华流行病学杂志 37 (2), 232–237.

颜玉炳, 郭志南, 厦门市恙虫病流行特征及发病趋势预测效果研究, 陈小平, 2016. 中华卫生 
杀虫药械 (3), 262–265.

Q. Wang et al.                                                                                                                                                                                                                                   Environmental Research 263 (2024) 120067 

12 

http://refhub.elsevier.com/S0013-9351(24)01974-1/sref84
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref84
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref85
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref85
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref85
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref86
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref86
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref86
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref87
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref87
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref87
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref88
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref88
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref89
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref89
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref89
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref90
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref91
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref91
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref92
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref92
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref93
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref93
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref94
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref94
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref95
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref95
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref96
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref96
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref97
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref97
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref98
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref98
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref99
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref99
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref100
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref100
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref101
http://refhub.elsevier.com/S0013-9351(24)01974-1/sref101

	A systematic review of environmental covariates and methods for spatial or temporal scrub typhus distribution prediction
	1 Background
	2 Methods
	2.1 Search strategy and selection criteria
	2.2 Data extraction and data analysis
	2.3 Study quality assessment

	3 Results
	3.1 Study selection
	3.2 Quality assessment
	3.3 Trend of included studies
	3.4 Spatial focus of included studies
	3.5 Environmental covariates
	3.6 Prediction models

	4 Discussion
	5 Conclusions
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Abbreviations
	Appendix A Supplementary data
	References


