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Motivation

@ Genetic studies aiming at identifying association between point
mutations (SNPs) and multivariate phenotypes:
@ gene expression measurements

metabolomics data

©

©

protein concentrations

@ Looking for sparse variable selection

o Take into account data correlations
(possibly sparse)

(% Z
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Bayesian Setting

High dimensional data

@ p ~ 10* to 10° variables in X
@ qranging from 1 to 10* variables in Y
@ Around n = 5000 observations

Focus on Sparse Bayesian Variable Selection (sparse BVS)

@ Estimate using MCMC

@ Provides the posterior probability of association for each predictor
and each response (model averaging).
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Frame the problem as a multivariate linear regression model:

Y =X B+ E

nxq nXp pXq —nNXp

or equivalently:
Y ~ MN(XB,1,,C)

@ Sparse variable selection on
associations (B)

. . -4,,/,
@ Sparce covariance selection (C) o.”l/; ——
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Variable selection performed through binary matrix I' (p x ¢q)

1 = Bjpy #0

Yik =
T lo = Bjp=0

Sparsity prior v, ~ Bern(w;r),  wjx ~ Beta()

Gamma matrix

Outcomes

Predictor variables

Predictor X; only appears in a regression if -, is 1.
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Two options for Covariance matrix:

@ Dense covariance matrix C' with Inverse Wishart prior

@ Covariance selection performed using Gaussian Graphical
models:
(C~1);; <> outcomes y; and y; are conditionally independent.
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Previous work in Bayesian multivariate regression

o Either assume diagonal covariance matrix

Gamma matrix

=
N

Correlation matrix

N

H N,

N
.,

Outco

Outcomes

Bottolo L, Chadeau-Hyam, M et al. (2013)

Lewin A et al. (2015)

@ Or assume all responses related to the same set of predictors

Gamma matrix

Predictor variables

Bottolo L, Petretto, E et al. (2011)
Bhadra A and Mallick BK (2013)
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N
Our work on SUR model

o Full selection matrix I'; Full covariance matrix R
Gamma matrix Correlation matrix
1) I I 0
3 o ' " - - ) 3
' E .

Predictor variables Outcomes

Formulate as a Seemingly Unrelated Regressions (SUR) model:

Yy, = X, By, + € fork=1,---,q

nxl1 nxdg dix1 nx1

Covlere] = Cky # 0 = Outcomes do not naturally separate as in
previous hierarchical model.
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In both “previous” cases, models are conjugate in B and C'
— only I" (variable selection) are updated.

@ In the SUR model, Standard priors (Normal, Inverse Wishart) —
Not Conjugate in B or C

@ Can calculate posterior full conditionals for 3, and C — Gibbs
sampler for v, B, and C.

@ However, computationally intensive if use naive updates.
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A Factorisation of the Covariance Matrix
From Zellner and Ando (2010): decompose the Likelihood:

(
Y1 = Xy,8,, + &1
Y2 = X0, By, + p21(Y1 — Xy, Byy) + €2

Yr = X, By, + le pri(yr — X, 85,) + €k
<

0 k#1

with E €k, €1 =
| ] {agﬂn k=1
So Likelihood separates across separate responses.

Reparametrisation is C' «+— {02, pi }
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We reformulate the reparametrisation as a factorisation of the

Covariance matrix:
Ci-1) ¢
i

¢

Clyy =

j

forj:27"'7q

2 t v—1
Uj = Cj - CjC(j—l)cj
— -1
p‘7 = C(jil)c‘j

Complete factorisation of the Covariance matrix (or equivalently the
Precision matrix).

We define this for any covariance matrix (dense or sparse).
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@ Factorise priors across the ¢ response variables: C' ~ W (v, M)
becomes [[I_, N'(pjlo3, M) x IG(a%|v, M)

So posterior conditionals factorise also:
H/\/ pjlo?, M, X,Y,B,T) x IG(o%|v, M, X,Y, B,T)

So MCMC updates for C parameters factorise over responses.
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© Regression coefficients prior: [[7_, N'(B;|v;, W)

MCMC for B not so straightfoward: Zellner and Ando used
simplified factorisation + Gibbs resampling

We have calculated correct factorised full conditionals:
?:1 B’Y]|(B N B])?VVJX7K C7F

@ Update for ,; parameters also factorised over response variables

(using the ESS (evolutionary stochastic search) algorithm
developed by Bottolo et al. )
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Sparse covariance selection

Replace IW prior by Hyper-IW prior
conditional on a graph.

Decomposable (chordal or triangulated)
graph: C ~ HIW¢(v, M)

HIW factorises over connected components of graph G:
K

p(C) =p(Cp) [[ P(Ch, | Cs,)
k=2

- Sy, are separators in the graph
- Py, are cliques

Remaining elements of C' are updated using a “completion operation”.
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For decomposable graphs, there is a nice connection between p; and
Precision matrix:

Pji = 0 <— (Cil)ij =0
MCMC sampler:

@ Update graph structure (single edge or junction tree moves).
@ Retain simple Normal and Inverse Wishart priors on p; and 0]2-.
@ Given graph, only need to update the non-zero pj;.

Sparsity leads to another computational gain (only non-zero pj;).
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Bayesian "model averaging” means non-decomposable graphs can be
approximated by decomposable graphs.

Decomposable:

Non-decomposable:

00 02 04 06 08 10
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Case study: mQTL discovery in the North Finland
Birth Cohort study (NFBC)

@ The NFBC66 is a cohort of 12000 adults followed since 1966

@ Question of interest is the discovery of genetic markers
associated with metabolite regulation of lipids

@ These responses are highly structured, with strong correlations
@ After quality control,

n = 4023 people

q = 103 metabolites

p = 9172 SNPs on chromsome 16
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Precision Graph mostly sparse!

Data Correlation Residual Correlation

i
1

MAP (adj) Graph
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Evidence of enhanced linkage for Chromosome 16

PIP

PIP

Manhattan plot - HESS
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Summary

@ Bayesian SUR model with sparsity prior to perform variable
selection for multiple responses.

@ Estimating the residual covariance matrix increases the accuracy
of the variable selection

@ Modelling sparsity in the residual covariance matrix aids
computations

@ Computational speed-up — model can be used on large genomic
data sets.
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