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Motivation
Genetic studies aiming at identifying association between point
mutations (SNPs) and multivariate phenotypes:

gene expression measurements

metabolomics data

protein concentrations

...

Looking for sparse variable selection

Take into account data correlations
(possibly sparse)
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Bayesian Setting

High dimensional data

p ≈ 104 to 106 variables in X

q ranging from 1 to 104 variables in Y

Around n = 5000 observations

Focus on Sparse Bayesian Variable Selection (sparse BVS)

Estimate using MCMC

Provides the posterior probability of association for each predictor
and each response (model averaging).
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Frame the problem as a multivariate linear regression model:

Y
n×q

= X
n×p

B
p×q

+ E
n×p

or equivalently:
Y ∼MN (XB, In, C)

Sparse variable selection on
associations (B)

Sparce covariance selection (C)
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Variable selection performed through binary matrix Γ (p× q)

γjk =

{
1 =⇒ Bjk 6= 0

0 =⇒ Bjk = 0

Sparsity prior γjk ∼ Bern(ωjk), ωjk ∼ Beta()

Gamma matrix

Predictor variables

O
ut

co
m

es

Predictor Xj only appears in a regression if γjk is 1.
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Two options for Covariance matrix:

Dense covariance matrix C with Inverse Wishart prior

Covariance selection performed using Gaussian Graphical
models:
(C−1)ij ↔ outcomes yi and yj are conditionally independent.
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Previous work in Bayesian multivariate regression
Either assume diagonal covariance matrix

Gamma matrix

Predictor variables

O
ut

co
m

es

Correlation matrix

Outcomes

O
ut

co
m

es

Bottolo L, Chadeau-Hyam, M et al. (2013)
Lewin A et al. (2015)

Or assume all responses related to the same set of predictors
Gamma matrix

Predictor variables

O
ut

co
m

es

Correlation matrix

Outcomes

O
ut

co
m

es

Bottolo L, Petretto, E et al. (2011)
Bhadra A and Mallick BK (2013)
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Our work on SUR model

Full selection matrix Γ; Full covariance matrix R
Gamma matrix

Predictor variables

O
ut

co
m

es

Correlation matrix

Outcomes

O
ut

co
m

es

Formulate as a Seemingly Unrelated Regressions (SUR) model:

yk
n×1

= Xγk
n×dk

βγk
dk×1

+ εk
n×1

for k = 1, · · · , q

Cov[εkεl] = Ckl 6= 0 =⇒ Outcomes do not naturally separate as in
previous hierarchical model.
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In both “previous” cases, models are conjugate in B and C
−→ only Γ (variable selection) are updated.

In the SUR model, Standard priors (Normal, Inverse Wishart) −→
Not Conjugate in B or C

Can calculate posterior full conditionals for βk and C → Gibbs
sampler for γk,βk and C.

However, computationally intensive if use naive updates.
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A Factorisation of the Covariance Matrix

From Zellner and Ando (2010): decompose the Likelihood:

y1 = Xγ1βγ1 + ε1

y2 = Xγ2βγ2 + ρ21(y1 −Xγ1βγ1) + ε2
...

yk = Xγkβγk +
∑
l<k

ρkl(yl −Xγlβγl) + εk

with E[εk, εl] =

{
0 k 6= l

σ2kIn k = l

So Likelihood separates across separate responses.

Reparametrisation is C ←→ {σ2k, ρkl}
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We reformulate the reparametrisation as a factorisation of the
Covariance matrix:

C(j) =

(
C(j−1) cj
ctj cj

)
for j = 2, · · · , q

σ2j ≡ cj − ctjC−1
(j−1)cj

ρj ≡ C−1
(j−1)cj

Complete factorisation of the Covariance matrix (or equivalently the
Precision matrix).

We define this for any covariance matrix (dense or sparse).
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Factorise priors across the q response variables: C ∼ IW(ν,M)

becomes
∏q
j=1N (ρj |σ2j ,M)× IG(σ2j |ν,M)

So posterior conditionals factorise also:

q∏
j=1

N (ρj |σ2j ,M,X, Y,B,Γ)× IG(σ2j |ν,M,X, Y,B,Γ)

So MCMC updates for C parameters factorise over responses.

Alex Lewin (LSHTM) Bayesian Variable Selection June 2018 12 / 22



Regression coefficients prior:
∏q
j=1N (βj |γj ,W )

MCMC for B not so straightfoward: Zellner and Ando used
simplified factorisation + Gibbs resampling

We have calculated correct factorised full conditionals:∏q
j=1 βγj |(B r βj),W,X, Y,C,Γ

Update for γj parameters also factorised over response variables
(using the ESS (evolutionary stochastic search) algorithm
developed by Bottolo et al. )
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Sparse covariance selection

Replace IW prior by Hyper-IW prior
conditional on a graph.

Decomposable (chordal or triangulated)
graph: C ∼ HIWG(ν,M)

HIW factorises over connected components of graph G:

p(C) = p(CP1)
K∏
k=2

p(CPk
| CSk

)

- Sk are separators in the graph
- Pk are cliques

Remaining elements of C are updated using a “completion operation”.
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For decomposable graphs, there is a nice connection between ρj and
Precision matrix:

ρji = 0 ⇐⇒ (C−1)ij = 0

MCMC sampler:

Update graph structure (single edge or junction tree moves).

Retain simple Normal and Inverse Wishart priors on ρj and σ2j .

Given graph, only need to update the non-zero ρji.

Sparsity leads to another computational gain (only non-zero ρji).
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Bayesian ”model averaging” means non-decomposable graphs can be
approximated by decomposable graphs.

Decomposable:
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Case study: mQTL discovery in the North Finland
Birth Cohort study (NFBC)

The NFBC66 is a cohort of 12000 adults followed since 1966

Question of interest is the discovery of genetic markers
associated with metabolite regulation of lipids

These responses are highly structured, with strong correlations

After quality control,
n = 4023 people
q = 103 metabolites
p = 9172 SNPs on chromsome 16
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Precision Graph mostly sparse!

                 Data Correlation              Residual Correlation
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Evidence of enhanced linkage for Chromosome 16
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Summary

Bayesian SUR model with sparsity prior to perform variable
selection for multiple responses.

Estimating the residual covariance matrix increases the accuracy
of the variable selection

Modelling sparsity in the residual covariance matrix aids
computations

Computational speed-up→ model can be used on large genomic
data sets.
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