Variational Bayes for Model Averaging for Multivariate models using Compositional predictors

Alex Lewin (Work with Darren Scott, LSHTM)

December 2020

Microbiome

Microbiome: collection of all the microbes inside and on surface of the human body

Microbes interact with immune system, weight regulation etc. etc.

Quantification: next generation sequencing of microbiome species

Obtain relative abundances of different species

Pictures from www.whatisbiotechnology.org, Bikel et al. 2/18Computational and Structural Biotechnology Journal 2015

Compositional data as Covariates

Microbiome:
$$p$$
 variables X_1, \dots, X_p with $\sum_j X_j = 1$

Usual to use some form of log transform for microbiome variables as predictors.

Eg, with reference category, use **log-ratio** transform:

$$y = \sum_{j=1}^{p-1} \theta_j \log(X_j/X_p) + \epsilon$$

We use an alternative parametrisation:

$$y = \sum_{j=1}^{p} \theta_j \log(X_j) + \epsilon$$

with **constraint** $\sum_{j=1}^{p} \theta_j = 0$

Lin et al. Biometrika 2013.

Spike-and-slab prior:

Variable selection performed through binary indicators

$$\xi_j = egin{cases} 1 & \implies heta_j
eq 0 \ 0 & \implies heta_j = 0 \end{cases}$$

Two issues regarding priors:

- 1. Prior on non-zero θ ? Need constraint $\sum_{j=1}^{p} \theta_j = 0$.
- 2. Prior on $\boldsymbol{\xi}$?

We cannot have $|\xi| = 1$.

Singular MVN on non-zero θ :

$$\boldsymbol{\theta}_{\boldsymbol{\xi}}|\boldsymbol{\xi} \sim \mathcal{N}(T_{\boldsymbol{\xi}}\boldsymbol{\mu}_{\boldsymbol{\xi}}, \sigma^2 T_{\boldsymbol{\xi}} T_{\boldsymbol{\xi}}^T)$$

where $\mathcal{T}_{\boldsymbol{\xi}} = \mathbb{I}_{|\boldsymbol{\xi}|} - \frac{1}{|\boldsymbol{\xi}|} \mathbb{J}_{|\boldsymbol{\xi}|}$ ensures the sum to zero constraint.

For binary indicators, use a truncated distribution:

$$oldsymbol{\xi} \propto \prod_{j=1}^p \kappa_j^{\xi_j} (1-\kappa_j)^{(1-\xi_j)} imes ext{I}[|oldsymbol{\xi}|
eq 1]$$

High-dimensional outcomes, high-dimensional predictors

Metabolomics: small molecules, products of cellular processes

Our aim: linking metabolome \sim microbiome

Pictures from Krumsiek et al. Current Opinion in Biotechnology 2016 6/18

High-dimensional outcomes, high-dimensional predictors

Frame the problem as a multivariate linear regression model:

$Y|X, Z \sim \mathcal{MN}(X_{\gamma}B_{\gamma} + Z_{\xi}\Theta_{\xi}, \mathbb{I}, C_{\eta})$

- Sparse variable selection on matrices of associations $(B_{\gamma} \text{ and } \Theta_{\xi})$
- Sparse covariance selection (C_{η})
- Model averaging over all combinations of γ, ξ, η provides flexible modelling of B, Θ, C

Our previous work on sparse variable and covariance selection using MCMC:

Bottolo, Banterle, et al. doi: 10.1101/467019 on bioRxiv

Estimating the posterior: Variational Bayes

Full model

$$\begin{split} p(y,\theta) &= \left\{ \prod_t p(y_t | \beta_t, \sigma_t^2, \rho_t) \right\} \times \left\{ \prod_t \prod_s p(\beta_{ts} | w_t, \gamma_{ts}) \right\} \times \left\{ \prod_t p(\theta_t | \Sigma_t(w_t, T), \xi_t) \right\} \times \\ &\left\{ \prod_t \prod_s p(\gamma_{ts} | \omega_s) \right\} \times \left\{ \prod_t \prod_j p(\xi_{tj} | \kappa_j) \right\} \times \left\{ \prod_s p(\omega_s) \right\} \times \left\{ \prod_j p(\kappa_j) \right\} \times \\ &\left\{ \prod_t p(\sigma_t^2 | \tau, \nu) \prod_{k < t} p(\rho_{tk} | \sigma_t^2, \tau, \eta_{tk}) \right\} \times \\ &\left\{ \prod_t \prod_{k < t} p(\eta_{tk} | \lambda) \right\} \times \left\{ \prod_t p(w_t | a_w, b_w) \right\} \times p(\lambda) p(b_w) p(\tau) \end{split}$$

Mean field approximation

$$q(\mathbf{z}) = \left\{ \prod_{t} \prod_{s} q(\beta_{ts}, \gamma_{ts}) \right\} \times \left\{ \prod_{t} q(\theta_{t}, \xi_{t}) \right\} \times \left\{ \prod_{s} q(\omega_{s}) \right\} \times \left\{ \prod_{j} q(\kappa_{j}) \right\}$$
$$\left\{ \prod_{t} q(\sigma_{t}^{2}) \prod_{k < t} q(\rho_{tk}, \eta_{tk} | \sigma_{t}^{2}) \right\} \times \left\{ \prod_{t} q(w_{t} | a_{w}, b_{w}) \right\} \times q(\lambda)q(b_{w})q(\tau)$$

Mean field approximation for variable selection

We use CAVI (co-ordinate ascent variational inference).

Unconstrained	Constrained
Need joint distribution for β,γ	Need joint distribution for θ,ξ
Product of Normal and Bernoulli	Product of Singular Normal and Truncated Bernoulli
Treat variables (j) independently	Variables (j) are dependent
Mean field: $\prod_{j=1}^p q(eta_j \gamma_j)q(\gamma_j)$	Mean field: $q(heta m{\xi})q(m{\xi})$
VB (CAVI) obtains $E_q(\beta_j \mid \gamma_j)$, $Var_q(\beta_j \mid \gamma_j)$, $E_q(\gamma_j)$	VB (CAVI) obtains $E_q(heta \mid m{\xi}),$ $Var_q(heta \mid m{\xi})$
	MCMC needed to get $E_q(\xi)$

```
Algorithm 1 Pseudo-Algorithm for Hybrid VB-MCMC
  for i = 1, ..., n_{VB} do
      CAVI update obtains E_{a}(\beta)
      CAVI update obtains E_a(\gamma)
      . . .
      for i = 1, \ldots, n_{MCMC} do
          Reversible Jump Birth/Death move propose update to \xi
          Accept/reject using Metropolis-Hastings step
      end for
      Calculate \hat{E}_{a}(\xi) Monte Carlo average
  end for
```

Ye et al. Statistics and Computing 2020.

Bayesian framework allows for model averaging over all explored models.

Posterior means of binary indicators γ, ξ, η are marginal posterior probabilities of inclusion (MPPI):

Using mean field approximation, $E_q(\gamma)$ are estimates of posterior means.

Monte Carlo average for compositional indicators: $\hat{E}_{q}(\xi) = \frac{1}{N_{iter}} \sum_{t=1}^{N_{iter}} \xi^{(t)}$

Also obtain shrunk estimates of regression coefficients (include uncertainty from model selection):

Mean field approximation: $E_q(\beta)$, $E_q(\theta)$

Simulation Study

Predictors (real data from n=514 adult cohort):

- 40 microbiome species
- sex, alcohol intake, diet intake
- 60 noise variables

Simulate 10 response variables from multi-variate Normal

Associations:

- 8 microbiome species associated with 5 responses each
- sex, alchol, diet associated with 10, 8, 4 responses

Simulation Study Parameters:

- SNR = 2

- residual correlation = 0.3
- residual dependence block diagonal

Results

Monitoring convergence of Variational updates:

Results

14/18

Results

ROC curves averaged over 5 simulated data sets.

- A: Sparse variable selection on non-compositional predictors
- B: Sparse variable selection on compositional predictors
- C: Sparse covariance selection

- Bayesian modelling of multivariate responses: sparse variable selection and covariance selection
- Bayesian model averaging provides flexible modelling of associations
- Variational Bayes to speed up computation for high-dimensional data
- Hybrid VB-MCMC to deal with compositional predictors

Thank you!

• Darren Scott

- Leonardo Bottolo
- Marco Banterle
- Sylvia Richardson

Funded by MRC LID Doctoral training grant, MRC Methodology Grant, DynaHealth Healthy Aging EU Horizon 2020 grant.

Variable and covariance selection: **Bottolo, Banterle, et al. doi: 10.1101/467019 on bioRxiv** Microbiome data transformation: **Lin et al. Biometrika 2013.** Hybrid VB-MCMC: **Ye et al. Statistics and Computing 2020.**